
M A N N I N G

Reuven M. Lerner

200 exercises to make you a stronger data analyst

2 EPILOGUE

Example of using loc to retrieve and assign values in a Pandas data frame

Column selector

Row selector
250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

True

True

True

False

False

210

160

110

60

10

v

>100

Assign 987 to all six elements
covered by this combination
of row and column selectors.

10090

5040

zy

>180

200190180170160d

TrueTrueFalseFalseFalse

230220210e 250240

180170160d 200190

130120110c 150140

Pandas Workout
200 EXERCISES TO MAKE YOU

A STRONGER DATA ANALYST

REUVEN M. LERNER

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any
usage of the information herein.

Manning Publications Co. Development editor: Frances Lefkowitz
20 Baldwin Road Technical development editor: Gary Hubbard
PO Box 761 Review editor: Dunja Nikitović
Shelter Island, NY 11964 Production editor: Kathy Rossland

Copy editor: Tiffany Taylor
Proofreader: Mike Beady

Technical proofreader: Ninoslav Cerkez
Typesetter and cover designer: Marija Tudor

ISBN 9781617299728
Printed in the United States of America

In memory of my father,
Rabbi Barry Dov Lerner (1942–2023), who taught me to

■ be insatiably curious
■ share everything I learn
■ believe in other people
■ do it all with humor

brief contents
1 ■ Series 1
2 ■ Data frames 37
3 ■ Importing and exporting data 70
4 ■ Indexes 100
5 ■ Cleaning data 131
6 ■ Grouping, joining, and sorting 159
7 ■ Advanced grouping, joining, and sorting 191
8 ■ Midway project 231
9 ■ Strings 251

10 ■ Dates and times 279
11 ■ Visualization 307
12 ■ Performance 365
13 ■ Final project 392

iv

contents
preface viii
acknowledgments x
about this book xii
about the author xvii
about the cover illustration xviii

1 Series 1
EXERCISE 1 ■ Test scores 4

EXERCISE 2 ■ Scaling test scores 16

EXERCISE 3 ■ Counting tens digits 19

EXERCISE 4 ■ Descriptive statistics 26

EXERCISE 5 ■ Monday temperatures 29

EXERCISE 6 ■ Passenger frequency 32

EXERCISE 7 ■ Long, medium, and short taxi rides 34

2 Data frames 37
EXERCISE 8 ■ Net revenue 41

EXERCISE 9 ■ Tax planning 44

EXERCISE 10 ■ Adding new products 53

EXERCISE 11 ■ Bestsellers 58

EXERCISE 12 ■ Finding outliers 60
v

CONTENTSvi
EXERCISE 13 ■ Interpolation 65

EXERCISE 14 ■ Selective updating 67

3 Importing and exporting data 70
EXERCISE 15 ■ Weird taxi rides 73

EXERCISE 16 ■ Pandemic taxis 79

EXERCISE 17 ■ Setting column types 87

EXERCISE 18 ■ passwd to df 89

EXERCISE 19 ■ Bitcoin values 92

EXERCISE 20 ■ Big cities 96

4 Indexes 100
EXERCISE 21 ■ Parking tickets 102

EXERCISE 22 ■ State SAT scores 112

EXERCISE 23 ■ Olympic games 116

EXERCISE 24 ■ Olympic pivots 126

5 Cleaning data 131
EXERCISE 25 ■ Parking cleanup 135

EXERCISE 26 ■ Celebrity deaths 143

EXERCISE 27 ■ Titanic interpolation 148

EXERCISE 28 ■ Inconsistent data 154

6 Grouping, joining, and sorting 159
EXERCISE 29 ■ Longest taxi rides 162

EXERCISE 30 ■ Taxi ride comparison 172

EXERCISE 31 ■ Tourist spending per country 182

7 Advanced grouping, joining, and sorting 191
EXERCISE 32 ■ Multicity temperatures 194

EXERCISE 33 ■ SAT scores, revisited 204

EXERCISE 34 ■ Snowy, rainy cities 215

EXERCISE 35 ■ Wine scores and tourism spending 222

vii
8 Midway project 231
Problem 232

Solution 247

9 Strings 251
EXERCISE 36 ■ Analyzing Alice 256

EXERCISE 37 ■ Wine words 261

EXERCISE 38 ■ Programmer salaries 268

10 Dates and times 279
EXERCISE 39 ■ Short, medium, and long taxi rides 285

EXERCISE 40 ■ Writing dates, reading dates 291

EXERCISE 41 ■ Oil prices 297

EXERCISE 42 ■ Best tippers 300

11 Visualization 307
EXERCISE 43 ■ Cities 309

EXERCISE 44 ■ Boxplotting weather 320

EXERCISE 45 ■ Taxi fare breakdown 327

EXERCISE 46 ■ Cars, oil, and ice cream 341

EXERCISE 47 ■ Seaborn taxi plots 358

12 Performance 365
EXERCISE 48 ■ Categories 370

EXERCISE 49 ■ Faster reading and writing 376

EXERCISE 50 ■ “query” and “eval” 384

13 Final project 392
Problem 392

Column names and meanings 394

index 417

preface
When I started to teach Python at companies around the world, I wasn’t surprised by
how my students were using the language. They were typically using it the same way I
was: for shell scripting in a more expressive language than Bash, writing server-side
web applications, developing automated tests, and working with relational databases.

 After a while, I found that students were using Python to analyze data—something
I hadn’t expected. Python was powerful and easy to use, but it was also fairly ineffi-
cient. How could people use it for data analysis?

 I soon learned what many others already knew: NumPy combined the ease of
Python with the efficiency of C. I jumped on the NumPy bandwagon, using it for
analysis and teaching courses in it. But NumPy was still a bit too low-level for my tastes.

 I was thus delighted to discover pandas, which gave me the speed and efficiency of
NumPy but with a rich API that made many of my daily tasks easier. I have often
described pandas as being like a car’s automatic transmission, which we can contrast
with the low-level manual transmission that NumPy provides. Pandas allowed me to
read and write data in a variety of formats, to examine and analyze my data, to clean it,
and to visualize it—in short, all the functionality I needed. I was hooked.

 In the decade since I first encountered pandas, interest in the library has skyrock-
eted. It’s hard to exaggerate the degree to which pandas is now being used; I’ve per-
sonally taught pandas everywhere from government agencies to startups to hedge
funds to Fortune 100 companies.

 Pandas approaches problems differently than Python. The syntax is the same, but
the data structures are different, and the way you structure your solutions is also differ-
ent. Pandas is so vast that it’s easy to lose track of all the techniques. And unlike the
core Python language, which tries to adhere to the maxim “There should be only one
viii

PREFACE ix
way to do it,” there are often many ways to accomplish the same task in pandas. Know-
ing which of these ways is fastest to execute and easiest to maintain isn’t always obvi-
ous, even (or especially) if you’re an experienced Python developer.

 For all these reasons, I’m a big believer in practice. Only by practicing the use of
pandas can you remember its most important functionality and know how to apply it.
And it’s not enough to practice with pretend, synthetic data; if you want to really get
good with pandas, you need to use real-world data with all its problems, warts, missing
values, and poor construction.

 The exercises in this book all come from classes I’ve taught over the last decade.
Many have gone through iterations and changes along the way as I’ve seen what prob-
lems newcomers to pandas experience and the kinds of problems most likely to trip
people up. My goal is to give you an opportunity to practice your pandas skills in a way
that sets you up for success when you use pandas at work. Just as every run of a flight
simulator makes a pilot more ready to fly an airplane full of passengers, every exercise
you do in this book will make you more ready to use pandas to its fullest potential.

acknowledgments
A large number of people have helped me put together Pandas Workout.

 Although my name appears on the cover, many people at Manning Publications
have given me incredible (and patient) support during its creation. Chief among
them are associate publisher Mike Stephens, who encouraged me to write a second
book, and editor Frances Lefkowitz, who knows how to provide just the right amount
of gentle pressure along with useful editorial suggestions. I received helpful com-
ments from technical reviewer Ninoslav Cerkez as well.

 Several dozen people signed up to read, review, and comment on the book while it
was being written and edited. Their comments definitely helped me improve and
sharpen the text, code, examples, and explanations. I also greatly appreciate the many
people who bought Pandas Workout in the prerelease (MEAP) form and who com-
mented on Manning’s liveBook system.

 I am grateful to the team that produces the Pandas Tutor website for providing
interactive visualization of pandas queries in the same way the Python Tutor site does
for Python programs. The link following each exercise in this book takes you to a pan-
das Tutor page prefilled with my solution. The nature of pandas, and of Pandas Tutor,
means I had to make do with truncated data—but the visualization will still help you
better understand the solution.

 Thank you to all the reviewers—Alain Couniot, Alex Garrett, Alex Lucas, Alexan-
der Kogler, Amilcar de Abreu Netto, Cage Slagel, Dean Langsam, George Mount,
Helen Mary Labao Barrameda, Jeff Neumann, Jeff Smith, Juan Delgado, Kiran Anan-
tha, Mikael Dautrey, Miki Tebeka, Răducu Sergiu Popa, Sadhana Ganapathiraju, Salil
Athalye, Satej Kumar Sahu, Sruti Shivakumar, Steven Herrera, and Xiangbo Mao—
your suggestions helped make this a better book.
x

ACKNOWLEDGMENTS xi
 Finally, my family has been incredibly patient, somehow believing me every time I
told them I had “just a few more things to edit” as I wrote the book over the past three
years. Thanks so much to my wife, Shira, and our three children, Atara, Shikma, and
Amotz.

about this book
Collecting data used to be a challenge. That’s no longer the case, thanks to small,
cheap sensors, ubiquitous mobile devices, and the integration of computing into
nearly every part of our lives. Now our world is awash in more data than we know what
to do with, tracking everything from the steps we take to the effectiveness of advertis-
ing to the temperature on nearly any part of the planet.

 We’re now faced with a new problem: how can we sort through all this data we’ve
collected? How can we make sense of it and use it to make better decisions?

 For decades, the go-to choice has been Microsoft Excel. This makes sense; Excel is
convenient, graphical, and installed on nearly every computer in the world. Excel
makes it fairly easy to import data, clean it, perform calculations with it, and produce
fancy, colorful reports, including charts.

 In the last few years, though, Excel has faced a new and surprising challenger: pan-
das. Pandas started as a convenient wrapper for NumPy, a library that combines the
speed and efficiency of C with the friendliness of Python. Pandas added many meth-
ods to NumPy’s offerings, including high-quality support for text strings, date/time
data, and visualization. Pandas can also read and write data in a wide variety of for-
mats, including from online resources and relational databases.

 All this, along with the underlying power of the Python language, the fact that pan-
das can handle far larger data sets than Excel, and its ability to run “headless” rather
than take up an individual analyst’s computer, has increasingly tipped the scales in
favor of pandas. I’ve taught Python and pandas at numerous financial institutions that
are moving their analysts away from Excel and toward pandas for these reasons, and
I’ve worked with many companies in other sectors that are increasingly standardizing
on pandas.
xii

ABOUT THIS BOOK xiii
 Of course, Excel isn’t the only tool or language for data analysis. People are mov-
ing to pandas from programming languages like R and Matlab, too—partly for the
price, partly for the performance, and partly for the huge ecosystem of open source
Python modules available on the Python Package Index (PyPI).

 The problem is that pandas is a huge library with thousands of methods and
numerous options that you can pass to each of them. And pandas offers numerous
ways to accomplish a given task, one of which is often much more performant than
the others.

 Learning how to work with pandas and how to use it correctly and efficiently fre-
quently means a great deal of trial and error. A shortcut to mastery is to practice on
problems specifically meant to help you better understand specific pandas features,
much as particular exercises are meant to tone specific muscles.

 That’s where this book comes in. Across 50 main exercises (and 150 more “Beyond
the exercise” challenges, as well as two larger projects), Pandas Workout will make you a
more fluent, confident user of pandas. Each exercise asks you to load real-world data
into pandas and then answer various questions about that data. As you work through
the book, you’ll learn about the most important parts of pandas—and even more
importantly, you’ll learn how and when it’s appropriate to use them.

 Pandas Workout isn’t designed to teach you pandas, although I hope you’ll learn
quite a bit along the way. Rather, this book is meant to help you improve your under-
standing of pandas, how it works, and how to use it to answer questions based on data.

 Please don’t just read through the book. It’s also a mistake to read an exercise, say
to yourself that you know how to solve it, and then move on. Each exercise includes
several questions, and many of them are trickier to answer than you may think. More-
over, reading my solutions without having worked on the exercises yourself isn’t nearly
as effective for internalizing how pandas works. So, please take the time to do the
exercises, working through them gradually.

 You should especially avoid feeding my questions into ChatGPT and just reviewing
the answers it gives. Not only are those answers often wrong, but real learning comes
from struggling a bit, getting things wrong, and then learning from your mistakes.

Who should read this book
If you’ve taken a pandas course but are still searching on Stack Overflow or Google for
how to solve problems with pandas, this book is for you. It’s not a tutorial but is meant
to solidify your understanding of pandas via repeated practice.

 Many pandas courses don’t emphasize the need for core Python knowledge before
learning pandas. I firmly believe you should get a good grounding in Python if you’ll
be using pandas, and this book reflects that perspective. However, you don’t need to
know that much; I assume you’re comfortable with core data types, loops, functions,
list comprehensions, and installing modules with pip. In a few places (not too many),
you can also benefit from knowing about lambda.

ABOUT THIS BOOKxiv
How this book is organized: A road map
This book has 13 chapters, each focusing on a different aspect of pandas. Exercises in
each chapter use techniques from previous chapters and sometimes from later ones.
For example, we use string techniques (chapter 9) and datetime values (chapter 10) in
earlier chapters. Think of the titles as general guidelines, rather than strict rules, for
what you’ll practice and learn in each chapter.

 The chapters cover these topics:

1 Series—Understanding what a series is and how we can retrieve selected values
from a series.

2 Data frames—Constructing data frames and retrieving selected values from a
data frame.

3 Import and export—Reading and writing files in different formats, including CSV
and JSON.

4 Indexes—Setting and retrieving indexes and multi-indexes.
5 Cleaning—Turning messy, real-world data into a form we can use more easily:

for example, identifying duplicates, handling missing values, and removing
unnecessary and incorrect data.

6 Grouping, joining, and sorting—The core of much pandas functionality: group-
ing data, joining multiple data frames, and sorting by both indexes and values.
These topics are so important that two chapters address them.

7 Advanced grouping, joining, and sorting—Deeper examination of the techniques
introduced in chapter 6.

8 Project—Completing a large project based on the Python developer survey.
9 Strings—Working with text data from within pandas.

10 Dates—Working with date and time data from within pandas.
11 Visualization—Plotting both via the pandas API and using the Seaborn module.
12 Performance—Optimizing the speed and memory usage of our data.
13 Final project—Completing a large project examining American colleges and

universities.

Exercises form the main part of each chapter. Each exercise has five components:

 Exercise—A problem statement for you to tackle.
 Working it out—A detailed discussion of the problem and how to solve it.
 Solution—The solution code and (in most cases) a link to the code on the Pan-

das Tutor site so you can execute it. Solution code, along with test code for each
solution, is also available on the Manning website at www.manning.com/
books/pandas-workout and GitHub at https://github.com/reuven/pandas
-workout.

 Beyond the exercise—Three additional, related exercises. These questions are nei-
ther answered nor discussed in the book, but the code is downloadable along

https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
www.manning.com/books/pandas-workout
www.manning.com/books/pandas-workout
www.manning.com/books/pandas-workout

ABOUT THIS BOOK xv
with all the other solution code from the book. You can also discuss these addi-
tional exercises and compare solutions with other Pandas Workout readers in the
book’s online forum on Manning’s liveBook platform.

About the code
This book contains a great deal of pandas code. Unlike most books, the code reflects
what you are supposed to write rather than what you’re supposed to read. If experi-
ence is any guide, some readers (maybe you!) will have better, more elegant, or more
correct solutions than mine. If this is the case, don’t hesitate to contact me.

 Solution code for all exercises, including the “Beyond the exercise” questions, is
available in these places outside of the book:

 The Pandas Workout website (www.manning.com/books/pandas-workout) and
GitHub repo (https://github.com/reuven/pandas-workout) have all the code
solutions organized by chapter and then by exercise number so you can down-
load the code and run it on your own computer.

 Pandas Tutor (https://PandasTutor.com), an amazing online resource for
teaching and learning pandas, allows you to enter nearly any pandas code and
see how it works, with visual cues demonstrating transformations. Most of the
solutions in this book have a link pointing to the code in the Pandas Tutor so
you can run it without typing it into the site. Note that those links generally use
small samples of the data.

This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, the source code is formatted in a fixed-width font
like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 I hope that the combination of the solution code (in print), explanations, Pandas
Tutor links, and downloadable code will help you fully understand each solution and
apply its lessons to your own code.

Software/hardware requirements
First and foremost, this book requires that you have both Python and pandas. You can
download and install Python most easily from https://python.org. I suggest installing
the latest version available. There are also other ways to install Python, including the
Windows Store or Homebrew for Mac. This book should work with any version of
Python from 3.9 and up; I used 3.12 in the final checks of the code.

https://python.org
https://PandasTutor.com
https://github.com/reuven/pandas-workout
www.manning.com/books/pandas-workout

ABOUT THIS BOOKxvi
 You also need to install pandas. I used pandas 2.1.4 by the time the book was done,
but most or all of the code should work fine with any 2.1.x version. You can download
and install it using pip install pandas on the command line.

 You aren’t required to install an editor or IDE (integrated development environ-
ment) for Python, but it will certainly come in handy. Two of the most popular IDEs
are PyCharm (from JetBrains) and Visual Studio Code (from Microsoft). I’m a big fan
of the Jupyter Notebook, which you can install with pip install jupyter.

liveBook discussion forum
Purchase of Pandas Workout includes free access to liveBook, Manning’s online read-
ing platform. Using liveBook’s exclusive discussion features, you can attach comments
to the book globally or to specific sections or paragraphs. It’s a snap to make notes for
yourself, ask and answer technical questions, and receive help from the author and
other users. To access the forum, go to https://livebook.manning.com/book/pandas-
workout/discussion. You can also learn more about Manning’s forums and the rules
of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/pandas-workout/discussion
https://livebook.manning.com/book/pandas-workout/discussion
https://livebook.manning.com/discussion

about the author
REUVEN M. LERNER is a full-time Python and pandas trainer, teach-
ing both companies and individuals in person and online. Reuven
also publishes “Better Developers,” a weekly newsletter about
Python, and “Bamboo Weekly,” with pandas challenges based on
current events. Reuven holds a bachelor’s degree in computer sci-
ence from MIT and a PhD in learning sciences from Northwestern.
He also wrote Python Workout, published by Manning in 2020.

xvii

about the cover illustration
The figure on the cover of Pandas Workout is “Femme Tongouse,” or “Woman of Tun-
guska, Northern Siberia,” taken from a collection by Jacques Grasset de Saint-Sauveur,
published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

xviii

Series
If you have any experience with pandas, you know that we typically work with data
in two-dimensional tables known as data frames, with rows and columns. But each
column in a data frame is built from a series, a one-dimensional data structure (fig-
ure 1.1), which means you can think of a data frame as a collection of series.

Figure 1.1 Each of a data frame’s columns is a series.

0

84,079,811357,0224

67,897,000248,5733

38,654,7389,984,6702

67,326,56993,6281

331,893,7459,833,520

PopulationArea (sq km)
Column
names

Germany

France

Canada

United
Kingdom

United
States

Country

Index

String
column

Integer
columns

Rows
1

2 CHAPTER 1 Series
This perspective is particularly useful once you learn what methods are available on a
series, because most of those methods are also available on data frames—but instead
of getting a single result, we get one result for each column in the data frame. For
example, when applied to a series, the mean method returns the mean of the values in
the series (figure 1.2). If you invoke mean on a data frame, pandas invokes the mean
method on each column, returning a collection of mean values. Moreover, those val-
ues are themselves returned as a series on which you can invoke further methods.

A deep understanding of series can be useful in other ways, too. In particular, with a
boolean index (also known as a mask index), we can retrieve selected rows and columns
of a data frame. (If you aren’t familiar with boolean indexes, see the sidebar “Select-
ing values with booleans,” later in this chapter.)

 One of the most important and powerful tools we have as pandas users is the
index, used to retrieve values from both series and data frames. We’ll look at indexes
in greater depth in later chapters, but knowing how to set and modify an index, as
well as retrieve values using unique and nonunique values, comes in handy just about
every time you use pandas. This chapter will help you better understand how to use
indexes effectively.

Naming conventions in this book
I use several variable names throughout this book:

 s refers to a series.
 df refers to a data frame.
 pd is an alias to the pandas library, loaded with import pandas as pd.

Although I’m a big fan of using semantically powerful variable names, I use s and df
quite a bit when teaching pandas. Given that we normally work with only one series
or data frame at a time, I’ll assume its meaning is clear. In the rare cases when I use
more than one series or data frame, I’ll normally add numbers to s and df.

c1 c2 c3

r1

r2

r3

One
series

One
series

One
series

df['c1'].mean()
returns a float.

df.mean() returns
a series, each

column’s mean.

Figure 1.2 Invoking a series method
(such as mean) on a data frame often
returns one value for each column.

3■CHAPTER 1 Series
Useful references

I also like to refer to the Series and DataFrame classes without an initial pd before
their names. My code thus usually starts with

from pandas import Series, DataFrame

Table 1.1 What you need to know

Concept What is it? Example To learn more

Jupyter Web-based system for
programming in Python
and data science

jupyter notebook http://mng.bz/BmYq

f-strings Strings into which
expressions can be inter-
polated

f'It is currently
{datetime.datetime
.now()}'

http://mng.bz/lWoz
and
http://mng.bz/a1dJ

data types (aka dtype) Data types allowed in
series

np.int64 http://mng.bz/gBVR

pd.Series.astype Returns a new series
with the same contents,
converted to the target
dtype

s.astype(np.int32) http://mng.bz/xjVB

pd.Series.mean Returns the arithmetic
mean of the series
contents

s.mean() http://mng.bz/e1DJ

pd.Series.max Returns the highest
value in a series

s.max() http://mng.bz/A8pW

pd.Series.idxmin Returns the index of the
lowest value in a series

s.idxmin() http://mng.bz/ZR6Z

pd.Series.idxmax Returns the index of the
highest value in a series

s.idxmax() http://mng.bz/RmrP

np.random.default
_rng

Returns a NumPy ran-
dom-number generator
with an optional seed

np.random.default
_rng(0)

http://mng.bz/27RX

g.integers Returns a NumPy array of
randomly selected inte-
gers via the generator

g.integers(0, 10,
100)

http://mng.bz/1JZg

g.random Returns a NumPy array of
randomly selected floats
between 0 and 1 via the
generator

np.random.rand
(10)

http://mng.bz/PRBP

s.std() Returns the standard
deviation of a series

s.std() http://mng.bz/Gy4N

4 CHAPTER 1 Series
EXERCISE 1 ■ Test scores
Create a series of 10 elements, random integers from 70 to 100, representing scores
on a monthly exam. Set the index to be the month names, starting in September and

s.loc Accesses elements of a
series by labels or a
boolean array

s.loc['a'] http://mng.bz/zXlZ

s.iloc Accesses elements of a
series by position

s.iloc[0] http://mng.bz/0K7z

s.value_counts Returns a sorted
(descending frequency)
series counting how
many times each value
appears in s

s.value_counts() http://mng.bz/WzOX

s.round Returns a new series
based on s in which the
values are rounded to
the specified number of
decimals

s.round(2) http://mng.bz/8rzg

s.diff Returns a new series
based on s whose values
contain the differences
between each value in s
and a previous row

s.diff(1) http://mng.bz/jP59

s.describe Returns a series summa-
rizing all major descrip-
tive statistics in s

s.describe() http://mng.bz/EQ1r

pd.cut Returns a series with the
same index as s but with
categorized values based
on cut points

pd.cut(s, bins=[0,
10, 20],
labels=['a', 'b',
'c'])

http://mng.bz/N2eX

pd.read_csv with
squeeze

Returns a new series
based on a
single-column file

s = pd.read_csv
('filename.csv')
.squeeze()

http://mng.bz/D4N0

str.split Breaks strings apart,
returning a list

'abc def ghi'
.split() # returns
['abc', 'def',
'ghi']

http://mng.bz/aR4z

str.get Retrieves a character
from a series

s.str.get(0) http://mng.bz/JdWv

s.fillna Replaces NaN values
with a specified value

s.fillna(5) http://mng.bz/wjrQ

Table 1.1 What you need to know (continued)

Concept What is it? Example To learn more

5EXERCISE 1 ■ Test scores
ending in June. (If these months don’t match the school year in your location, feel
free to make them more realistic.)

 With this series, write code to answer the following questions:

 What is the student’s average test score for the entire year?
 What is the student’s average test score during the first half of the year (i.e., the

first five months)?
 What is the student’s average test score during the second half of the year?
 Did the student improve their performance in the second half? If so, by how

much?

Working it out

In this first exercise, I asked you to create a series of 10 elements with random integers
from 70 to 100. This raises several questions:

 How do we define a series?
 How can we create 10 random integers from 70 to 100?
 How can we set the index of the series to month names?

To define a pandas series, we call Series, passing it an iterable—typically a Python list
or NumPy array, for example:

s = Series([10, 20, 30, 40, 50])

Here, I asked you to define the series such that it contains 10 random integers. There
are certain areas in which pandas defers to NumPy, including when generating ran-
dom numbers. We can get a NumPy array of random integers by creating a random-
number generator with np.default_rng and then invoking integers on the object
we get back.

Predictable random numbers
The Python standard library’s random module has a randint method that returns a
random integer:

random.randint(0, 100)

In the case of random.randint, the returned values range from 0 to 100, including
100.

In the world of NumPy, though, we do things differently. First, we create a new ran-
dom-number generator object:

g = np.random.default_rng()

With this generator in hand, we can create an array of random integers by invoking
g.integers:

g.integers(0, 100, 10)

6 CHAPTER 1 Series
We can thus get 10 random integers between 70 and 100 with

g = np.random.default_rng(0)
g.integers(70, 101, 10)

We can use them to create a series:

g = np.random.default_rng(0)
s = Series(g.integers(70, 101, 10))

We now have a series of random integers between 70 and 100. But the index contains
integers from 0 through 9—much as would be the case in a NumPy array or a Python
list. There’s nothing inherently wrong with a numeric index, but pandas gives us much
more power and flexibility, letting us use a wide variety of data types, including strings.

 We can change the index by assigning to the index attribute:

g = np.random.default_rng(0)
s = Series(g.integers(70, 101, 10))
s.index = 'Sep Oct Nov Dec Jan Feb Mar Apr May Jun'.split()

(continued)

This method differs from Python’s random.randint function in the following ways:

 It returns a NumPy array rather than a single integer.
 It takes three arguments: the minimum value, the maximum value, and the

length of the array that should be returned.
 The second argument is one more than the highest value we can get back.

Because this is a book of exercises, you will likely want to compare your solutions
with mine. How can we do that, though, if we’re both generating random numbers?
We can pass a random seed: a number that kicks off the random-number generator
when we invoke np.random.default_rng. If you and I pass the same argument to
default_rng, we will see the same sequence of random numbers.

Here’s an example of how we can create an array of random integers from 0 to 100:

g = np.random.default_rng(0)
a = g.integers(0, 100, 10)

g = np.random.default_rng(0)
b = g.integers(0, 100, 10)

a == b

If you’re a NumPy old-timer like me, you may wonder about the np.random.seed func-
tion, which operated similarly to the argument passed to default_rng. That function
still exists, but the core NumPy developers discourage its use in favor of generator
objects.

Seeds the random-number
generator with 0 Gets 10 random

integers from 0 to 100

Seeds the random-number
generator with 0Gets another 10 random

integers from 0 to 100
Because the seeds
were the same, a
and b will be, too.

Upper bound of 101 allows
for a result of 100.

7EXERCISE 1 ■ Test scores
Sure enough, printing the contents of s shows the same values, but with our index:

Sep 96
Oct 89
Nov 85
Dec 78
Jan 79
Feb 71
Mar 72
Apr 70
May 75
Jun 95
dtype: int64

NOTE You can assign a list, NumPy array, or pandas series as an index. How-
ever, the data structure you pass must be the same length as the series. If it
isn’t, you’ll get a ValueError exception, and the assignment will fail.

If we know what index we want when we create the series, we can assign it to the index
keyword parameter:

g = np.random.default_rng(0)
months = 'Sep Oct Nov Dec Jan Feb Mar Apr May Jun'.split()
s = Series(g.integers(70, 101, 10),

index=months)

This is my preferred method for creating a series, and I use this style for most of the
book. That said, if and when I want to change the index, I can assign a new value to
s.index.

 Now that we’ve created our series, how can we perform the calculations I asked
for? We first want to find the student’s average test score for the entire year. We can
calculate that with the mean method, which runs on any numeric series (Even if the
series contains only integers, mean will always return a float. That’s because in Python,
division always returns a float.):

print(f'Yearly average: {s.mean()}')

Note that we put the call to s.mean() inside curly braces in a Python f-string. F-strings
(short for format strings, although I like to call them fancy strings) allow any Python
expression inside the curly braces. The result is a string suitable for assigning, print-
ing, or passing as an argument to a function or method.

 Next, we want to find the averages for the first and second halves of the school
year. To do that, we need to retrieve the first five elements in the series and then the
second five elements. There are a few different ways to accomplish this.

 If we were using a standard Python sequence, we could use a slice by using square
brackets along with indications of where we wanted to start and end. For example, given
a string s, we can get the first five elements with the slice s[:5]. That returns a new
series with the elements of s starting with index 0 (the start) up to and not including

8 CHAPTER 1 Series
index 5. Generally, whenever you provide a range in Python—be it in a slice or the
range built-in—the maximum is always “up to and not including.”

 It’s thus not a surprise that we can retrieve the first five elements from our
sequence using this same syntax: s[:5]. Because a slice always returns an object of the
same type, this slice returns a five-element series. Because it’s a series, we can then run
the mean method on it, getting the mean score for the first semester:

s[:5].mean()

What about the second semester? We can get those scores in a similar way, creating a
slice from index 5 until the end of the series with s[5:] (figure 1.3). It’s important
not to provide an ending index here because the max index is always one more than
we want. If we were to explicitly state s[5:9] or s[5:-1], we would miss the final value.
And yes, we can say s[5:10], even though there is no index 10, because slices tend to
be forgiving in Python:

s[5:].mean()

Figure 1.3 Retrieving slices from our series

I would argue that it’s even better to use the .loc and .iloc accessors. Whereas .loc
retrieves one or more elements based on the index, .iloc retrieves based on the
numeric position—the default index. Let’s start with .iloc because its usage is similar
to what we’ve already written:

s.iloc[:5].mean()

Mean scores for
the first half

Mean scores for
the second half

9876543210

82

JunMayAprMarFebJanDecNovOctSep

897977739773709185

Index

Default
(numeric)

index

Values

s[:5] s[5:]

9EXERCISE 1 ■ Test scores
“But wait,” you may be saying. “Why are we using the positional, numeric index?
Didn’t we set an index with the names of the months?” Indeed we did. Moreover, we
can use those to get our answers, instead.

 Once again, we want to get a slice. And once again, we can do that—pandas is
smart enough to let us use the textual index with a slice. We can use the loc accessor if
we want, which is normally a good idea when working with series and mandatory when
working with data frames. It’s not mandatory with a series, but it is definitely a good
idea to keep your code more readable.

 If we want to get the scores from the first five months (September, October,
November, December, and January), we can use the following slice:

first_half_average = s.loc['Sep':'Jan'].mean()

The endpoint of a slice is normally “up to and not including,” but in this case, the slice
endpoint is “up to and including.” That is, our 'Sep':'Jan' slice includes the value for
January. What gives?

 Simply put, when you use .loc, the slice end is no longer “up to and not including”
but rather “up to and including.” This makes logical sense because it’s not always obvi-
ous what “up to and not including” a custom index would be. But it’s often surprising
for people with Python experience who are starting to use pandas. It’s also different
from the behavior we saw on the same series with .iloc, using positional indexes.

I should add that there’s another way to get the first and second halves of the year: the
head and tail methods. The head method takes an integer argument and returns

loc vs. iloc vs. head
Most of the time, I prefer to use .loc, which is more readable and easier to under-
stand. Plus, .loc offers a great deal of flexibility and power when working with data
frames. But there is a cost: in some simple benchmarking I performed, pandas took
twice as long to get the text-based slice (with .loc) as the number-based slice (with
.iloc).

Retrieve via the index using .loc and via the position using .iloc.

0

82

Sep

9

Jun

89

8

May

79

7

Apr

77

6

Mar

73

5

Feb

97

4

Jan

73

3

Dec

70

2

Nov

91

1

Oct

85

Index

Default
(numeric)

index

Values

.loc

.iloc

10 CHAPTER 1 Series
that many elements from the start of s. (If you don’t pass a value, it returns the first 5,
which is convenient for our purposes.) We can thus get the mean for the first five
months of the year with

s.head().mean()

If you prefer to be explicit, you can say

s.head(5).mean()

We can similarly use the tail method to get the final five elements from s:

s.tail().mean()

Again, the default argument value is 5, but we can make it explicit with

s.tail(5).mean()

Finally, we can check the improvement by subtracting the first half’s average from the
second half. We assign each half’s mean to a variable and then calculate the difference
in an f-string:

first_half_average = s['Sep':'Jan'].mean()
second_half_average = s['Feb':'Jun'].mean()

print(f'First half average: {first_half_average}')
print(f'Second half average: {second_half_average}')

print(f'Improvement: {second_half_average - first_half_average}')

Solution

g = np.random.default_rng(0)
months = 'Sep Oct Nov Dec Jan Feb Mar Apr May Jun'.split()
s = Series(g.integers(70, 101, 10),

index=months)

print(f'Yearly average: {s.mean()}')

first_half_average = s['Sep':'Jan'].mean()
second_half_average = s['Feb':'Jun'].mean()

print(f'First half average: {first_half_average}')
print(f'Second half average: {second_half_average}')

print(f'Improvement: {second_half_average - first_half_average}')

You can explore a version of this in the Pandas Tutor at http://mng.bz/27ld.

http://mng.bz/27ld

11EXERCISE 1 ■ Test scores
Beyond the exercise

Here are three additional exercises to help you better understand using .loc and
.iloc to retrieve data from s, the series used in this exercise:

 In which month did this student get their highest score? Note that there are at
least three ways to accomplish this: you can sort the values, taking the largest
one, using a boolean (mask) index to find rows that match the value of s.max(),
the highest value, or invoking s.idxmax(), which returns the index of the high-
est value.

 What were this student’s five highest scores?
 Round the student’s scores to the nearest 10. (A score of 82 would be rounded

down to 80, but a score of 87 would be rounded up to 90.) Be sure to read the
documentation for the round method (http://mng.bz/8rzg) to understand its
arguments and how it handles numbers like 15 and 75.

Understanding mean and standard deviation
Two of the most common and important calculations we can make on a data set are
the mean and the standard deviation. Pandas lets us calculate the mean on a series
s with s.mean() and the standard deviation with s.std().

What are these calculations? And why do we care about them so much?

The mean describes the center of a data set. (In a moment, I’ll describe where this
description can be flawed.) We add all the values and then divide them by the number
of values we have. In pandas syntax, we can say that s.mean() is the same as
s.sum() / s.count() because s.sum() adds the values and s.count() tells us
how many non-NaN values are in the series.

Is the mean a truly good measurement of the “middle” of our data? The answer is, it
depends. On many occasions, it’s useful because it gives us a central point on which
we can focus. For example, we can talk about mean height, mean weight, mean age,
or mean income in a population, and it will give us a single number that represents
the entire population under discussion.

But the mean is flawed because a single large value can skew it. An old statistical
joke is that when Bill Gates enters a bar, everyone in the bar is now, on average, a
millionaire. For this reason, the mean isn’t the only way we can calculate the “middle”
of our values. A common alternative is the median, which is the value precisely half-
way from the smallest to the largest value. (If there is an even number of values, we
take the average of the two innermost ones.) In the Bill Gates example, the median
income of everyone in the bar will shift slightly when he enters, but it won’t change
any assumptions we’ve made about the population.

http://mng.bz/8rzg

12 CHAPTER 1 Series
(continued)

To calculate the median, we first sort the values and then take the middle one.

By changing one value, we can see that the mean is more easily affected by
outliers than the median.

Median
is 80.5

Mean
is 81.6

5291087643

70

FebNovJunOctSepMayAprMarJanDec

919189858279777373

9876543210

82

JunMayAprMarFebJanDecNovOctSep

897977739773709185

Median
is 80.5

Mean
is 171.9

5291087643

70

FebNovJunOctSepMayAprMarJanDec

10009189858279777373

9876543210

82

JunMayAprMarFebJanDecNovOctSep

897977739773709185

13EXERCISE 1 ■ Test scores
In this section, we used several so-called aggregation methods, which run on a series and
return a single number—for example, sum, mean, median, and std. We’ll use these
throughout the book, and you can use them in any data-analysis projects you work on.

Whether we’re using the mean or the median to find the central point in our data set,
we will almost certainly want to know the standard deviation: a measurement of how
much the values in our data set vary from one another. In a data set with 0 standard
deviation, the values are all identical. By contrast, a data set with a very large stan-
dard deviation has values that vary greatly from the mean value. The higher the stan-
dard deviation, the more the values in the data set vary from the mean.

To calculate the standard deviation on series s, we do the following:

 Calculate the difference between each value in s and its mean.
 Square each of these values.
 Sum the squares.
 Divide by the number of elements in s. This is known as the variance.
 Take the square root of the variance, which gives us the standard deviation.

Expressed in pandas, we say

import math
math.sqrt(((s - s.mean()) ** 2).sum() / s.count())

Given our values of s from before, this results in a value of 8.380930735902785.
If we then calculate s.std(), we get . . . uh, oh. We get a different value,
8.83427667918797. What’s going on?

By default, pandas assumes that we don’t want to divide by s.count() but rather by
s.count() - 1. This is known as the sample standard deviation and is typically used
on a sample of the data rather than the entire population. The pandas authors
decided to default to this calculation. (NumPy’s std calculation doesn’t do this.)

If you want to get the same result that we calculated and that NumPy provides, you
can pass a value of 0 to the ddof (delta degrees of freedom) parameter:

s.std(ddof=0)

This tells pandas to subtract 0 (rather than 1) from s.count() and thus match our
calculation for standard deviation. In this book, I do not pass this parameter to std,
and I use the default value of 1 for the ddof parameter.

In a normal distribution used for many statistical assumptions, we expect that 68%
of a data set’s values will be within 1 standard deviation of the mean, 95% within
2 standard deviations, and 99.7 within 3 standard deviations. If you invoke
np.random.randint (for integers) or np.random.rand (for floats), you’ll get a truly
random distribution. If you prefer to get a normal distribution in which the randomly
selected numbers are centered around a mean and within a particular standard devi-
ation, you can instead use g.normal. This method takes three arguments: the mean,
the standard deviation, and the number of values to generate. It returns a NumPy
array with a dtype of np.float64, which you can use to create a new series.

14 CHAPTER 1 Series

When sums go wrong
The sum method is useful, as you can imagine. You will likely want to use it on
numeric series to combine the values. But it turns out that if you run s.sum() when
s is a series of strings, the result is the strings concatenated together:

s = Series('abcd efgh ijkl'.split())
s.sum()

Things get even weirder when your series contains strings, but those strings are
numeric:

s = Series('1234 5678 9012'.split())
s.mean()

Where does this number come from? The values of s are added together as strings,
resulting in '123456789012'. But then s.mean() converts this string into an integer
and divides it by 3 (the length of the series).

This is one of those cases where the behavior makes logical sense but is almost cer-
tainly not what you want. It also appears to have been fixed in Python 3.12, returning
a TypeError exception.

Understanding dtype
In Python, we constantly use the built-in core data types: int, float, str, list,
tuple, and dict. Pandas is a bit different in that we don’t use those types much.
Rather, we use the types we get from NumPy, which provide a thin, Python-compatible
layer over values defined in C.

Every series has a dtype attribute, and you can always read from that to know the
type of data it contains. Every value in a series is that type; unlike a Python list or
tuple, you cannot mix different types in a series. That said, pandas does allow us to
define the dtype as object, meaning a series contains Python objects. When the
dtype is object, we can usually assume that the series contains Python strings;
more on that in chapter 9. Storing nonstring objects is rare and should generally be
avoided, but there are sometimes good reasons to do so. You’ll also have a dtype
of object if there are multiple types in the series.

Several standard types of dtype values are defined by NumPy and used by pandas.
There are also special pandas-specific types, some of which we’ll discuss later in the
book. The core NumPy dtype values to know are as follows:

 Integers of different sizes—np.int8, np.int16, np.int32, and np.int64.
 Unsigned integers of different sizes—np.uint8, np.uint16, np.uint32, and

np.uint64.
 Floats of different sizes—np.float16, np.float32, and np.float64. (On

some computers, you also have np.float128.)
 Python objects—object.

Returns
'abcdefghijkl'

Returns
41152263004.0

15EXERCISE 1 ■ Test scores
When you create a series, pandas normally assigns the dtype based on the argu-
ment you pass to Series:

 If all values are integers, the dtype is set to np.int64.
 If at least one of the values is a float (including NaN), the dtype is set to

np.float64.
 Otherwise, the dtype is set to object.

You can override these choices by passing a value to the dtype parameter when you
create a series. For example:

s = Series([10, 20, 30], dtype=np.float16)

If you try to pass a value that’s incompatible with the dtype you’ve specified, pandas
will raise a ValueError exception.

Why should you care about the dtype? Because getting the type right, especially if
you’re working with large data sets, allows you to balance memory usage and accu-
racy. These are problems we normally don’t think about in standard Python, but they
are front and center when working with pandas.

For example, The np.int8 type handles 8-bit signed numbers (i.e., both positive and
negative), which means it handles numbers from –128 through 127. What happens
if you go beyond those boundaries?

s = Series([127], dtype=np.int8)
s+1

That’s right: in the world of 8-bit signed integers, 127+1 is –128. It’s like the odom-
eter of your car rolling over back to 0 when you’ve driven it for many years, except you
won’t have any warning and thus won’t know whether your calculations are accurate.

Yes, this is a problem. So, you need to ensure that the dtype you use on your series
is big enough to store whatever data you’re working with, including the results of any
calculations you perform. If you’re planning to multiply your data by 10, for example,
you need to ensure that the dtype is large enough to handle that, even if you won’t
be displaying or directly using such values.

Given this problem, why not go for broke and use 64-bit integers for everything? After
all, those are likely to handle just about any value you may have.

Perhaps, but those will also use a lot of memory. Remember that 64 bits is 8 bytes,
which doesn’t sound like much for a modern computer. But if you’re dealing with 1
billion numbers, using 64 bits means the data will consume 8 gigabytes of memory
without considering any overhead that Python, your operating system, and the rest of
pandas may need. And, of course, you’re unlikely to have just only numbers in
memory.

As a result, you need to consider how many bits you want and need to use for your
data. There’s no magic answer; each case must be evaluated on its own merits.

Returns a one-element series
with a value of –128.

16 CHAPTER 1 Series
EXERCISE 2 ■ Scaling test scores
When I was in high school and college, our instructors sometimes gave extremely
hard tests. Rather than fail most of the class, they would scale the test scores, known in
some places as grading on a curve. They would assume that the average test score
should be 80, calculate the difference between our actual mean and 80, and then add
that difference to each of our scores.

 For this exercise, I want you to generate 10 test scores between 40 and 60, again
using an index starting with September and ending with June. Find the mean of the
scores and add the difference between the
mean and 80 to each of the scores.

Working it out

One of the most important ideas in pandas
(and in NumPy) is that of vectorized opera-
tions. When we perform an operation on
two different series, the indexes are
matched, and the operation is performed
via the indexes (figure 1.4). For example,
consider

s1 = Series([10, 20, 30, 40])
s2 = Series([100, 200, 300, 400])

s1 + s2

The result is

0 110
1 220
2 330
3 440
dtype: int64

(continued)

What if you want to change the dtype of a series after you’ve already created it? You
can’t set the dtype attribute; it’s read-only. Instead, you have to create a new series
based on the existing one by invoking the astype method:

s = Series('10 20 30'.split())
s.dtype

s = s.astype(np.int64)
s.dtype

If you try to invoke astype with a type that isn’t appropriate for the data, you’ll get
(as we saw when constructing a series) a ValueError exception.

Returns "object"

Returns "np.int64"

403020

3210

10

400300200

3210

100

440330220

3210

110

s1

s2

+

=

Figure 1.4 When we add two series
together, the result is a new series—the
result of adding elements at the same index.

17EXERCISE 2 ■ Scaling test scores
What happens if we set an explicit index rather than rely on the default positional
index?

s1 = Series([10, 20, 30, 40],
index=list('abcd'))

s2 = Series([100, 200, 300, 400],
index=list('dcba'))

s1+s2

The result is

a 410
b 320
c 230
d 140
dtype: int64

Again, pandas added the values together
according to the index. Notice that this hap-
pened even though the index in s1 was for-
ward (abcd), whereas the index in s2 was
backward (dcba). The index values deter-
mine the value match-ups, not their position
(figure 1.5).

 But what happens when we try to add not
one series and another series but rather a
series and a scalar value? Pandas does
something known as broadcasting—it
applies the operator and that scalar value
to each value in the series, returning a new
series. For example:

s = Series([10, 20, 30, 40],
index=list('abcd'))

s + 3

The result is

a 13
b 23
c 33
d 43
dtype: int64

Notice that we get back from the operation
a new series whose index matches those of
s and whose values are the result of adding
each element of s and the broadcast inte-
ger 3 (figure 1.6). We can do this with any

'd''c''b'

403020

'a'

10

'a''b''c'

400300200

'd'

100

'd''c''b'

140230320

'a'

410

s1

s2

+

=

Figure 1.5 Vectorized operations work
using the index, not the position.

'd''c''b'

403020

'a'

10

'd''c''b'

504030

'a'

20

s1

s2 10

+

=

Figure 1.6 Operations involving a series and
a scalar value result in broadcasting the
operation, resulting in a new series.

18 CHAPTER 1 Series
operator, including comparison operators such as == and <. (The result of the latter is
a boolean series, which we can then use as a mask index to keep only the rows we want.)

 So, if we want to generate 10 test scores between 40 and 60 and then add 10 points
to them, we can do the following:

g = np.random.default_rng(0)

months = 'Sep Oct Nov Dec Jan Feb Mar Apr May Jun'.split()

s = Series(g.integers(40, 60, 10),
index=months)

s+10

And sure enough, we’ll get the following:

Sep 62
Oct 65
Nov 50
Dec 53
Jan 53
Feb 57
Mar 59
Apr 69
May 68
Jun 54
dtype: int64

That’s nice, but the code still doesn’t quite do what we want. That’s because we don’t
know how many points we need to add to each score. We must first find the mean of s
and then determine how far that is from 80. We can do that by invoking s.mean() and
then subtracting the result from 80. Whatever we get back is the scale factor we need
to add.

 In other words, we can say

s + (80-s.mean())

And the result?

Sep 83.0
Oct 86.0
Nov 71.0
Dec 74.0
Jan 74.0
Feb 78.0
Mar 80.0
Apr 90.0
May 89.0
Jun 75.0
dtype: float64

Notice how this solution moves back and forth between scalar values and series, which
is common in pandas calculations: The call to s.mean() returns a scalar value. We

19EXERCISE 3 ■ Counting tens digits
then calculate 80 - s.mean(), resulting in a scalar value. But then we add s and that
number, adding (using broadcast) our series to that scalar value.

NOTE The final series has a dtype of float64, whereas s had a dtype of
int64. Why the change? Because whenever we perform an operation on an
int and a float, we get back a float, even if there’s no need for it, as with addi-
tion. And division in Python 3 always returns a float. So the call to s.mean(),
because it invokes division, always returns a float. And then when we add (via
broadcast) the integer values in s to the floating-point mean, we get a series
of floats.

Solution

s + (80 - s.mean())

You can explore a version of this in the Pandas Tutor at http://mng.bz/1JDV.

Beyond the exercise

Whether you’re performing an operation on two series or using broadcasts to combine
a series and a scalar, the index is one of the most important ideas in pandas. It dictates
how vectorized operations are performed as well as the index of the new series created
by the operation. Here are some more exercises having to do with these topics:

 There’s at least one other way to scale test scores: by looking at both the mean
of the scores and their standard deviation. Anyone who scored within one stan-
dard deviation of the mean got a C (below the mean) or a B (above the mean).
Anyone who scored more than one standard deviation above the mean got an
A, and anyone who got more than one standard deviation below the mean got a
D. During which months did our student get an A, B, C, and D?

 Were there any test scores more than two standard deviations above or below
the mean? If so, in which months?

 How close are the mean and median to each another? What does it mean if they
are close? What would it mean if they were far apart?

EXERCISE 3 ■ Counting tens digits
In this exercise, I want you to generate 10 random integers in the range 0 to 100.
(Remember that the np.random.randint function returns numbers that include the
lower bound but exclude the upper bound.) Create a series containing those num-
bers’ tens digits. Thus, if our series contains 10, 25, 32, we want the series 1, 2, 3.

Working it out

Given that we have created our series with np.random.randint(0, 100, 10), we know
that the 10 integers will all range from 0 (at the low end) to 99 (at the high end). We
know that each number will contain either one or two digits.

http://mng.bz/1JDV

20 CHAPTER 1 Series
 To get the tens digit, we can do this:

1 Divide our series by 10, turning the dtype into a floating type and moving the
decimal point one position to the left.

2 Turn our series back into np.int8, removing the fractional part of the number.

If the original number had two digits, we now have the tens digit. And if the original
number had one digit, we are left with 0.

 Sure enough, this works just fine, resulting in

0 4
1 4
2 6
3 6
4 6
5 0
6 8
7 2
8 3
9 8
dtype: int8

Notice that the dtype here is int8 (figure 1.7).

Figure 1.7 Graphical depiction of dividing the series by 10, converting to np.int8

87362183967676447

9876543210

44

8328066644

9876543210

/ 10

.astype(
np.int8)

8.73.62.18.30.96.76.76.44.74.4

9876543210

21EXERCISE 3 ■ Counting tens digits
But we can do even better than this: Python’s // (“floordiv”) operator performs inte-
ger division. If we divide the series by 10 using //, we’ll still get our dtype of int8.
That’s the approach I’ll go with because it reduces the number of operations we need
to perform.

 There is another way to do this, which involves more type conversions. This time,
we convert our series not into floats but rather into strings. Why? Because when we
turn integers into strings, we can retrieve particular elements from them, such as the
second-to-last digit.

 To do this, we convert our series of integers (dtype of int8) into a series of strings
(dtype of str) using the astype method:

s.astype(str)

But then what? We’ll talk about this more in chapter 8, which discusses strings in
depth, but the key is the str accessor that lets us apply a string method to every ele-
ment in the series. The get method on that accessor works like square brackets on a
traditional Python string—so if we say s.astype(str).str.get(0), we get the first
character in each integer; and if we say s.astype(str).str.get(-1), we get the final
character in each string. (In Python, negative string indexes count from the end.) We
can thus get the second-to-last digit, aka the tens digit, with s.astype(str).str
.get(-2).

 But of course, that’s not enough: if we have a one-digit number, what will get(-2)
return? It won’t give us an error or an empty string, but rather NaN. Fortunately, we
can use the fillna method to replace NaN with any other value—for example, '0'. We
then get back a series containing one-character strings: the tens digits from our origi-
nal series. Our code looks like this:

s.astype(str).str.get(-2).fillna('0')

And the result is

0 4
1 4
2 6
3 6
4 6
5 0
6 8
7 2
8 3
9 8
dtype: object

As you can see from the dtype, the result is object, which typically means Python
strings. Can we turn it back into a series of integers? Yes, by calling astype with an
integer argument (figure 1.8). We’ll use np.int8 because all of our numbers are
small:

s.astype(str).str.get(-2).fillna('0').astype(np.int8)

22 CHAPTER 1 Series
And the result is

0 4
1 4
2 6
3 6
4 6
5 0
6 8
7 2
8 3
9 8
dtype: int8

Figure 1.8 Graphical depiction of turning the series into strings, retrieving the item
at index –2, and replacing NaN with 0

'87''36''21''83''09''67''67''64''47''44'

9876543210

87362183967676447

9876543210

44

'8''3''2''8'0'6''6''6''4''4'

9876543210

.fillna(0)

.astype(
str)

'8''3''2''8'NaN'6''6''6''4''4'

9876543210

.str.get(-2)

23EXERCISE 3 ■ Counting tens digits
I think this is a cleaner way to do things than the int-to-float technique I showed ear-
lier. But it is also more complex, and if you know you’ll only have two-digit data, it may
be overkill.

 If you think the previous code puts too much on a single line, you can use a sneaky
trick popularized by my friend Matt Harrison (www.metasnake.com): Python allows us
to split code across lines if we’re still inside open parentheses. We can thus open
parentheses on purpose and put each method call on a separate line. This can make
things easier to read and follow and lets us put comments on each line:

(
s
.astype(str) # get a series based on s, with dtype str
.str.get(-2) # retrieve the second-to-last character
.fillna('0') # replace NaN with '0'
.astype(np.int8) # get a new series back dtype int8

)

This style gives the same result as the initial one-liner but is often more readable, espe-
cially as the code gets more complex.

NOTE Pandas has traditionally used Python strings, and that’s what I assume
in this book. As of this writing, however, there is an experimental new type,
pd.StringDType, which aims to replace str. This is part of a larger movement
in pandas to create new data types, partly so NaN will no longer always be a
float and can represent a missing value from any type. I wouldn’t be surprised
if pd.StringDtype is a standard, recommended part of pandas in the coming
years. There is also increasing support for Apache Arrow, including its string
types. For now, though, Python strings are the best-supported version of
strings in pandas, and we use them in this book.

Solution

g = np.random.default_rng(0)
s = Series(g.integers(0, 100, 10))
s // 10

You can explore a version of this in the Pandas Tutor at http://mng.bz/PRY9.

Beyond the exercise

 What if the range were from 0 to 10,000? How would that change your strategy,
if at all?

 Given a range from 0 to 10,000, what’s the smallest dtype you should use for
integers?

 Create a new series with 10 floating-point values between 0 and 1,000. Find the
numbers whose integer component (i.e., ignoring any fractional part) are even.

http://mng.bz/PRY9
www.metasnake.com

24 CHAPTER 1 Series
Selecting values with booleans
In Python and other traditional programming languages, we select elements from a
sequence using a combination of for loops and if statements. Although you can do
that in pandas, you almost certainly don’t want to. Instead, you want to select items
using a combination of techniques known as a boolean index or a mask index.

Mask indexes are useful and powerful, but their syntax can take some getting used
to. First, consider that we can retrieve any element of a series via square brackets
and an index:

s = Series([10, 20, 30, 40, 50])
s.loc[3]

Instead of passing a single integer, we can also pass a list (or NumPy array, or series)
of boolean values (i.e., True and False):

s = Series([10, 20, 30, 40, 50])
s.loc[[True, True, False, False, True]]

Wherever we pass True, the value from s is returned, and wherever we pass False,
the value is ignored. This is called a mask index because we’re using the list of bool-
eans as a type of sieve, or mask, to select only certain elements. Mask indexes don’t
transform the data but rather select specific elements from it.

An explicitly defined list of booleans isn’t very useful or common. But we can also use
a series of booleans—and those are easy to create. All we need to do is use a com-
parison operator (e.g., ==), which returns a boolean value. Then we can broadcast the
operation and get back a series. For example:

s.loc[s < 30]

Returns 40

Notice the double square brackets!
The outer pair indicates we want to
retrieve from s. The inner pair
defines a Python list. Returns a
series containing 10, 20, and 50.

5040302010

43210

TrueFalseFalseTrueTrue

43210

5020

410

10
Choosing items via a mask index

Returns the series
containing 10 and 20

25EXERCISE 3 ■ Counting tens digits
This code looks very strange, even to experienced developers, in no small part
because s is both outside the square brackets and inside them. Remember that we
first evaluate the expression inside the square brackets. In this case, it’s s < 30,
which returns a series of boolean values indicating whether each element of s is less
than 30. We get back Series([True, True, False, False, False]).

That series of booleans is then applied to s as a mask index. Only those elements
matching the True values are returned—in other words, just 10 and 20.

We can get more sophisticated, too:

s.loc[s <= s.mean()]

5040302010

43210

FalseFalseFalseTrueTrue

43210

s

< 30

Generating a boolean series by
broadcasting an operation

[]

5040302010

43210

FalseFalseFalseTrueTrue

43210

5020

410

10

< 30

s

Using the boolean series
as a mask index

Returns the series
containing 10, 20, and 30

26 CHAPTER 1 Series
EXERCISE 4 ■ Descriptive statistics
The mean, median, and standard deviation are three numbers we can use to get a bet-
ter picture of our data. Adding a few other numbers can give us an even more com-
plete picture. These descriptive statistics typically include the mean, standard deviation,
minimum value, 25% quantile, median, 50% quantile, and maximum value. Under-
standing and using descriptive statistics is a key skill for anyone working with data, and
in this exercise, you’ll practice doing so with the following:

(continued)

Now s appears three times in the expression: once when we calculate s.mean(), a
second when we compare the mean with each element of s via broadcast, and a third
when we apply the resulting boolean series to s. We can thus see all of the elements
that are less than or equal to the mean.

Finally, we can use a mask index for assignment and retrieval. For example:

s.loc[s <= s.mean()] = 999

The result?

0 999
1 999
2 999
3 40
4 50
dtype: int64

In this way, we replace elements less than or equal to the mean with 999.

This technique is worth learning and internalizing because it’s both powerful and effi-
cient. It’s useful when working with individual series, as in this chapter—but it’s also
applicable to entire data frames, as we’ll see later in the book.

One final note: given a series s, you can retrieve multiple items from different indexes
using fancy indexing: passing a list, series, or similar iterable inside the square brack-
ets. For example:

s.loc[[2,4]]

This code returns a series containing two values: the elements at s.loc[2] and
s.loc[4].

The outer square brackets indicate that we want to retrieve from s using loc, and the
inner square brackets indicate that we want to retrieve more than one item. Pandas
returns a series, keeping the original indexes and values.

Don’t confuse fancy indexing with the application of a mask index; in the former case,
the inner square brackets contain a list of values from the index. In the case of a
mask index, the inner square brackets contain boolean (True and False) values.

27EXERCISE 4 ■ Descriptive statistics
 Generate a series of 100,000 floats in a normal distribution with a mean of 0
and a standard deviation of 100.

 Get the descriptive statistics for this series. How close are the mean and
median? (You don’t need to calculate the difference; rather, consider why they
aren’t the same.)

 Replace the minimum value with 5 times the maximum value.
 Get the descriptive statistics again. Did the mean, median, and standard devia-

tions change from their previous values? (Again, it’s enough to see the differ-
ence without calculating it.) If so, why?

Working it out

In this exercise, we create a slightly different distribution than before: rather than
using np.random.randint, we instead use g.normal, which I described in the sidebar
“Understanding mean and standard deviation,” earlier in this chapter. When we
invoke g.normal, we still get random numbers, but they are picked from the normal
distribution—and we can specify both the mean and the standard deviation.

 We thus create our series as follows:

g = np.random.default_rng(0)
s = Series(g.normal(0, 100, 100_000))

We could call several different methods to find the descriptive statistics. But fortu-
nately for us, pandas provides the describe method, which returns a series of mea-
surements:

 count—The number of non-NaN values in the series
 mean—The mean, same as s.mean()
 std—The standard deviation, same as s.std()
 min—The minimum value, same as s.min()
 25%—The value in s you’ll choose if you line up the values from smallest to larg-

est and pick whatever is 25% of the way through, same as s.quantile(0.25)
 50%—The median value, same as s.median() or s.quantile(0.5)
 75%—The value in s you’ll choose if you line up the values from smallest to larg-

est and pick whatever is 75% of the way through, same as s.quantile(0.75)
 max—The maximum value, same as s.max()

You could get each of these values separately—but it’s often useful to see and read
them all at once.

 Here’s the result from calling s.describe():

count 100000.000000
mean 0.157670
std 99.734467
min -485.211765
25% -66.864170
50% 0.172022

We can use _ in integers
to separate digits.

28 CHAPTER 1 Series
75% 67.343870
max 424.177191
dtype: float64

The mean is 0.157670. Not quite zero, which is what I asked for, but these are random
numbers picked from a distribution, meaning there will always be wiggle room. The
median, aka the 50% quantile, is 0.172022, which is very close to the mean. That
makes sense, given that in a normal distribution, half of the numbers are below the
mean and half are above it. The standard deviation here is roughly 100, meaning if all
goes well, 68% of the values in s will be between –100 and +100.

 What happens when we replace the minimum value with 5 times the max value?
Moreover, how can we do that?

 First, we need to find all the indexes at which the minimum value is located. (The
idxmin method would return only one of the locations with this minimum value, but
we want to modify as many as may exist.) The easiest way to do that is to first get a
boolean series indicating which elements match the minimum value:

s == s.min()

This returns a boolean series with True wherever the value of s is the minimum. We
can then apply this boolean series as a mask index:

s.loc[s == s.min()]

Now we have a series of only one element whose value is s.min(). We can assign a new
value in its place using an assignment. But what do we want to assign? Five times the
max value:

s.loc[s == s.min()] = 5*s.max()

Now that we have modified our series, we can call s.describe() on it again. We want
to compare the mean, median, and standard deviations. What do we find?

count 100000.000000
mean 0.183731
std 99.947900
min -465.995297
25% -66.862839
50% 0.174214
75% 67.345174
max 2120.885956
dtype: float64

First, the mean value has gone up a bit—which makes sense, given that we took the
smallest value and made it larger than the previously defined largest value. That’s why
the mean, although valuable, is sensitive to even a handful of very large or very small
values.

 Second, the standard deviation has also gone up. Again, this makes a great deal of
sense, given that we have made a single value that’s larger than anything we had

29EXERCISE 5 ■ Monday temperatures
before. True, the standard deviation didn’t change much, but it reflects that values in
our series are spread out more than they were previously.

 Finally, the median barely shifted. That’s because it tends to be the most stable
measurement, even when we have fluctuations at the extremes. This doesn’t mean you
should only look at the median, but it can be useful. For example, if a country is trying
to determine the threshold for government-sponsored benefits, a small number of
very rich people will skew the mean upward, thus depriving more people of that help.
The median will allow us to say that (for example) the bottom 20% of earners will
receive help.

Solution

import numpy as np
import pandas as pd
from pandas import Series, DataFrame

g = np.random.default_rng(0)
s = Series(g.normal(0, 100, 100_000))

print(s.describe())

s.loc[s == s.min()] = 5*s.max()

print(s.describe())

You can explore a version of this in the Pandas Tutor at http://mng.bz/JdM0.

Beyond the exercise

 Demonstrate that 68%, 95%, and 99.7% of the values in s are indeed within
one, two, and three standard distributions of the mean.

 Calculate the mean of numbers greater than s.mean(). Then calculate the
mean of numbers less than s.mean(). Is the average of these two numbers the
same as s.mean()?

 What is the mean of the numbers beyond three standard deviations?

EXERCISE 5 ■ Monday temperatures
Newcomers to pandas often assume that a series index must be unique. After all, the
index in a Python string, list, or tuple is unique, as are the keys in a Python dictionary.
But the values in a pandas index can repeat, making it easier to retrieve values with
the same index. If an index contains user IDs, country codes, or email addresses, we
can use it to retrieve data associated with specific index values that would otherwise
require a messier and longer mask index.

 In this exercise, I want you to create a series of 28 temperature readings in Celsius,
representing four seven-day weeks, randomly selected from a normal distribution with
a mean of 20 and a standard deviation of 5, rounded to the nearest integer. (If you’re

http://mng.bz/JdM0

30 CHAPTER 1 Series
in a country that measures temperature in Fahrenheit, pretend you’re looking at the
weather in an exotic foreign location rather than where you live.) The index should
start with Sun, continue through Sat, and repeat Sun through Sat until each tempera-
ture has a value. The question is, what was the mean temperature on Mondays during
this period?

Working it out

This exercise has two parts. First, we need to create a series that contains 28 elements
but with a repeating index. Let’s start by creating a random NumPy array of 28 ele-
ments drawn from a normal distribution in which the mean is 20 and the standard
deviation is 5. (This means, as we’ve seen, that 95% of the values will be within 10
degrees of 20: that is, between 10 and 30. An extreme swing for one month, perhaps,
but let’s assume it’s early spring or late autumn.) We can do this using g.normal, as
we’ve seen before:

g = np.random.default_rng(0)
g.normal(20, 5, 28)

How can we create a 28-element index with the days of the week? One option is to sim-
ply create a list of 28 elements by hand. But I think that we can be a bit more clever
than that, taking advantage of some core Python functionality. We can start by creat-
ing a seven-element list of strings with the days of the week:

days = 'Sun Mon Tue Wed Thu Fri Sat'.split()

If we had only seven data points in our series, we could set the index with index=days
inside the call to Series. But because we have 28 data points, we want the list to repeat
itself. We can create such a 28-element list by multiplying the list by 4, as in days * 4.
This is very different behavior than the broadcast functionality of pandas!

 We can thus create the series as follows:

s = Series(g.normal(20, 5, 28),
index=days*4)

But g.normal returns floats (specifically, np.float64 objects). How can we turn this
into a series of integers?

 One way would be to use astype(np.int8) on our numbers. (The temperature is
unlikely to get below –100 degrees or above 100 degrees, so we should be fine.) And
that approach would basically work, but it would truncate the fractional part of the val-
ues rather than round them. If we want to round them to the nearest integer, we can
call round on the series, thus getting back floats with no fractional portion. Then we
can call astype(np.int8) on what we get back, resulting in a series of integers:

g = np.random.default_rng(0)
s = Series(g.normal(20, 5, 28),

index=days*4).round().astype(np.int8)

Multiplying a Python list returns a new list
with the original list’s elements repeated.

31EXERCISE 5 ■ Monday temperatures
We can now start to address the problem of repeated values in the index. Yes, the
index can have repeated values—not just integers, but also strings (as in this example)
and even other data structures, such as times and dates (as we’ll see in chapter 9).
Normally, when we retrieve a value from a series via loc, we expect to get back a single
value. But if the index is repeated, we will get back multiple values. And in pandas,
multiple values are returned as a series.

NOTE When you retrieve s.loc[i], for a given index value, you can’t know in
advance whether you will get a single, scalar value (if the index occurs only
once) or a series (if the index occurs multiple times). This is another case in
which you need to know your data to know what type of value you’ll get back.

In this case, we know that Mon exists four times in our series. And thus, when we ask for
s.loc['Mon'], we’ll get back a series of four values, all of which have Mon as their
index:

s.loc['Mon']

We get back:

Mon 22
Mon 19
Mon 22
Mon 24
dtype: int8

Because this is a series, we can run any series methods we like on it. And because we
want to know the average temperature on Mondays in this location, we can run
s.loc['Mon'].mean(). Sure enough, we get the answer: 21.75.

Solution

days = 'Sun Mon Tue Wed Thu Fri Sat'.split()

g = np.random.default_rng(0)
s = Series(g.normal(20, 5, 28),

index=days*4).round().astype(np.int8)

s.loc['Mon'].mean()

You can explore a version of this in the Pandas Tutor at http://mng.bz/wjeq.

Beyond the exercise

 What was the average weekend temperature (i.e., Saturdays and Sundays)?
 How many times is the change in temperature from the previous day greater

than 2 degrees?
 What are the two most common temperatures in our data set, and how often

does each appear?

http://mng.bz/wjeq

32 CHAPTER 1 Series
EXERCISE 6 ■ Passenger frequency
In this exercise, we begin looking at real-world data loaded from a one-column CSV
file. We’ll take a deeper look at reading from and writing to files in chapter 3, but we
start here by invoking pd.read_csv, calling squeeze on the one-column data frame it
returns, and getting back a series.

 The data is in the file taxi-passenger-count.csv, available along with the other data
files used in this course. The data comes from 2015 data I retrieved from New York
City’s open data site, where you can get enormous amounts of information about taxi
rides in New York City over the last few years. This file shows the number of passengers
in each of 100,000 rides.

 Your task in this exercise is to show what percentage of taxi rides had only one pas-
senger versus the (theoretical) maximum of six passengers.

Working it out

Let’s start with reading the data into our series. read_csv is one of the most powerful
and commonly used functions in pandas, reading a CSV file (or anything resembling
a CSV file) into a data structure. As I mentioned, read_csv returns a data frame—but
if we read a file containing only one column, we get a data frame with a single column.
We can then invoke squeeze on that single-column data frame, getting back a series.
Because all the values in this file are integers, pandas assumes that we want the series
dtype to be np.int64.

 We also set the header parameter to None, indicating that the first line in the file
should not be taken as a column name but rather as data to be included in our
calculations:

s = pd.read_csv('data/taxi-passenger-count.csv',
header=None).squeeze()

The resulting series has a name value of 0, which we can safely ignore.

NOTE Although many methods operate on a series (or data frame), read_csv
is a top-level function in the pd namespace. That’s because we’re not operat-
ing on an existing series or data frame. Rather, we’re creating a new one
based on the contents of a file.

Once we have read these values into a series, how can we figure out how often each
value appears? One option is to use a mask index along with count:

s.loc[s==1].count()
s.loc[s==6].count()

But wait: I asked you to give the proportion of elements in s with either 1 or 6. Thus
we need to divide those results by s.count():

s.loc[s==1].count() / s.count()
s.loc[s==6].count() / s.count()

Results in 7207
Results in 369

Results in about .720772 Results in
about .036904

https://github.com/reuven/pandas-workout

33EXERCISE 6 ■ Passenger frequency
There’s nothing inherently wrong with doing things this way, but there’s a far easier
technique: value_counts, a series method that is one of my favorites. If we apply
value_counts to the series s, we get back a new series whose keys are the distinct val-
ues in s and whose values are integers indicating how often each value appeared.
Thus, if we invoke s.value_counts(), we get

1 7207
2 1313
5 520
3 406
6 369
4 182
0 2
Name: 0, dtype: int64

Notice that the values are automatically sorted from most common to least common.
 Because we get back a series from value_counts, we can use all our series tricks on

it. For example, we can invoke head on it to get the five most common elements. We
can also use fancy indexing to retrieve the counts for specific values. Because we’re
interested in the frequency of one- and six-passenger rides, we can say

s.value_counts()[[1,6]]

That returns

1 7207
6 369
Name: 0, dtype: int64

But we’re interested in the percentages, not the raw values. Fortunately, value_counts
has an optional normalize parameter that returns the fraction if set to True. We can
thus say

s.value_counts(normalize=True)[[1,6]]

which returns the values

1 0.720772
6 0.036904
Name: 0, dtype: float64

Solution

import pandas as pd
from pandas import Series, DataFrame

s = pd.read_csv('data/taxi-passenger-count.csv', header=None).squeeze()

s.value_counts(normalize=True)[[1,6]]

You can explore a version of this in the Pandas Tutor at http://mng.bz/qjQw.

http://mng.bz/qjQw

34 CHAPTER 1 Series
Beyond the exercise

Let’s analyze the taxi passenger data in a few more ways:

 What are the 25%, 50% (median), and 75% quantiles for this data set? Can you
guess the results before you execute the code?

 What proportion of taxi rides are for three, four, five, or six passengers?
 Consider that you’re in charge of vehicle licensing for New York taxis. Given

these numbers, would more people benefit from smaller taxis that can take only
one or two passengers or larger taxis that can take five or six passengers?

EXERCISE 7 ■ Long, medium, and short taxi rides
In this exercise, we once again look at taxi data—but instead of the number of passen-
gers, we examine the distance (in miles) each taxi ride went. Once again, I’ll ask you
to create a series based on a single-column CSV file, taxi-distance.csv.

 First, load the data into a series. Then modify the series (or create another series)
containing category names rather than numbers based on these criteria:

 Short, 2 miles
 Medium, > 2 miles but 10 miles
 Long, > 10 miles

Calculate the number of rides in each category.

Working it out

It’s not unusual to take numeric values and convert them to named categories. In this
exercise, we want to turn taxi distances into short, medium, and long rides. How can
we do that?

 One approach is to use a combination of comparisons and assignments:

categories = s.astype(str)
categories.loc[:] = 'medium'
categories.loc[s<=2] = 'short'
categories.loc[s>10] = 'long'
categories.value_counts()

When we call value_counts, we get the following:

short 5890
medium 3402
long 707
Name: 0, dtype: int64

This certainly works, but as you probably guessed, there is a more efficient approach.
The pd.cut method allows us to set numeric boundaries and then cut a series into

Creates a new series
the same length as s Assigns all the

values to medium

Assigns small values
to the string short

Assigns large values to the
string long

https://github.com/reuven/pandas-workout

35EXERCISE 7 ■ Long, medium, and short taxi rides
parts (known as bins) based on those boundaries. Moreover, it can assign labels to
each of the bins.

 Notice that pd.cut is not a series method but rather a function in the top-level pd
namespace. We’ll pass it a few arguments:

 Our series, s
 A list of four integers representing the boundaries of our three bins, assigned to

the bins parameter
 A list of three strings, the labels for our three bins, assigned to the labels

parameter

Note that the bin boundaries are exclusive on the left and inclusive on the right. In
other words, by specifying that the medium bin is between 2 and 10, that means >2
but < = 10. This means the first boundary needs to be less than the smallest value in s.
However, we can get around that by passing the include_lowest=True keyword argu-
ment, which ensures that the lowest value passed to bins is included in the first bin.

 The result of this call to pd.cut is a series the same length as s but with the labels
replacing the values:

pd.cut(s,
bins=[0, 2, 10, s.max()],
include_lowest=True,
labels=['short', 'medium', 'long'])

The result, as depicted in Jupyter, is as follows:

0 short
1 short
2 short
3 medium
4 short

...
9994 medium
9995 medium
9996 medium
9997 short
9998 medium
Name: 0, Length: 9999, dtype: category
Categories (3, object): ['short' < 'medium' < 'long']

The task I gave you for this exercise wasn’t to turn the ride lengths into categories but
rather to determine the number of rides in each category. For that, we need to call on
our friend value_counts:

pd.cut(s,
bins=[0, 2, 10, s.max()],
include_lowest=True,
labels=['short', 'medium', 'long']).value_counts()

And sure enough, this gives us the answer we want:

Notice that the dtype is
category. We will discuss

categories later in the book.
Shows the relative
order of the categories
in their description

36 CHAPTER 1 Series
short 5890
medium 3402
long 707
Name: 0, dtype: int64

Solution

import pandas as pd
from pandas import Series, DataFrame

s = pd.read_csv('data/taxi-distance.csv', header=None).squeeze()

pd.cut(s,
bins=[0, 2, 10, s.max()],
include_lowest=True,
labels=['short', 'medium', 'long']).value_counts()

You can explore a version of this in the Pandas Tutor at http://mng.bz/7vx9.

Beyond the exercise

 Compare the mean and median trip distances. What does that tell you about
the distribution of the data?

 How many short, medium, and long trips were there for trips that had only one
passenger? Note that the data for passenger count and trip length is from the
same data set, meaning the indexes are the same.

 What happens if you don’t pass explicit intervals and instead ask pd.cut to just
create three bins, with bins=3?

Summary
In this chapter, we saw that a pandas series provides powerful tools to analyze data.
Whether it’s the index, reading data from files, calculating descriptive statistics,
retrieving values via fancy indexing, or even categorizing our data via numeric bound-
aries, we can do a lot. In the next chapter, we’ll expand our reach to look at data
frames, the two-dimensional data structures that most people think of when they work
with pandas.

http://mng.bz/7vx9

Data frames
Since long before the invention of computers, people have used tables to present
data. That’s because tables make it easy to enter, display, understand, and analyze
data. Each row in a table represents a single record or data point, and every column
describes an attribute associated with each point. For example, consider table 2.1
of country names, sizes (in square kilometers), and populations, with data taken
from Wikipedia toward the end of 2022.

If it seems obvious to arrange data this way, that’s because we’ve seen it for so long
and in so many contexts. Indeed, here are some examples of tables I’ve seen in just
the last few days:

 Stock-market updates—The rows are stocks and popular indexes, and the col-
umns are the current value, the absolute change since yesterday, and the per-
centage change since yesterday.

Table 2.1 Country data

Country Area (sq km) Population

United States 9,833,520 331,893,745

United Kingdom 93,628 67,326,569

Canada 9,984,670 38,654,738

France 248,573 67,897,000

Germany 357,022 84,079,811
37

38 CHAPTER 2 Data frames
 Luggage allowances on international flights—The rows describe different types of
tickets, and the columns indicate how large or heavy our carry-on and checked
bags can be.

 Nutrition information on packaged food—The rows are different items we want to
know about (for example, calories, fat, and sugar), and the columns describe
the quantity per 100 grams or for an entire package.

Because each column contains one attribute or category, it typically contains one type
of data. However, each row may contain several different types of data because it cuts
across several columns. Adding a new column means adding a new dimension, or
aspect, to each record. Adding a new row means adding a new record with a value for
each column.

 Computers have been used to store tabular information for decades, most
famously in spreadsheet software such as Excel. Pandas continues this tradition, orga-
nizing tables in data frames. Each column in a data frame is a pandas series object. The
data frame has a single index shared by all of its columns. In many ways, a data frame
is a collection of series with a common index.

 Because each column in a data frame is its own series, each can have a distinct
dtype. For example, we can have a data frame with one integer column, one float col-
umn, and one string column (figure 2.1).

A data frame typically contains more information than we need. Before we can answer
any questions, we first need to pare our data down to a subset of its original rows and
columns. In this chapter, we practice doing that—retrieving only the rows and columns
we want based on criteria appropriate for our query. We see how the .loc accessor,
boolean indexes, and various pandas methods allow us to work on just the data that we
want and need. (In chapter 3, we’ll see how to import data from external sources. And
in chapter 5, we’ll discuss how to clean real-world data so we can use it reliably.)

0

84,079,811357,0224

67,897,000248,5733

38,654,7389,984,6702

67,326,56993,6281

331,893,7459,833,520

PopulationArea (sq km)
Column
names

Germany

France

Canada

United
Kingdom

United
States

Country
Index

String column Integer columns

Rows

Figure 2.1 Table 2.1 as
a pandas data frame

39■CHAPTER 2 Data frames
 We’ll also practice creating, modifying, and updating data frames. Sometimes we’ll
do that because we have new information and want the data frame to reflect that
change. And sometimes we’ll do it because we need to clean our data, removing or
modifying bad values.

 After this chapter, you’ll be comfortable doing the most common tasks associated
with data frames. We’ll build on these basics in later chapters so you can organize your
data in more sophisticated and interesting ways.

Table 2.2 What you need to know

Concept What is it? Example To learn more

DataFrame Returns a new data frame
based on two-dimensional data

DataFrame([[10, 20],
[30, 40], [50, 60]])

http://mng.bz/d1xz

s.loc Accesses elements of a series
by labels or a boolean array

s.loc['a'] http://mng.bz/rWPE

df.loc Accesses one or more rows of a
data frame via the index

df.loc[5] http://mng.bz/V1Pr

s.iloc Accesses elements of a series
by position

s.iloc[0] http://mng.bz/x4lq

df.iloc Accesses one or more rows of a
data frame by position

df.iloc[5] http://mng.bz/AoNE

[] Accesses one or more columns
in a data frame

df['a'] http://mng.bz/Zqej

df.assign Adds one or more columns to a
data frame

df.assign(a=df['x']*
3)

http://mng.bz/OPln

str.format Method that works much like f-
strings

'ab{0}'.format(5) http://mng.bz/YR5N

s.quantile Gets the value at a particular
percentage of the values

s.quantile(0.25) http://mng.bz/RxPn

pd.concat Joins together two data frames df = pd.concat([df,
new_products])

http://mng.bz/2DJN

df.query Writes an SQL-like query df.query('v > 300') http://mng.bz/1qwZ

pd.read_csv Returns a new series based on
a single-column file

s = pd.read_csv
('filename.csv')
.squeeze()

http://mng.bz/PzO2

interpolate Returns a new data frame with
NaN values interpolated

df =
df.interpolate()

http://mng.bz/Jgzp

df.dropna Returns a new data frame with-
out any NaN values

df.dropna() http://mng.bz/o1PN

s.isin Returns a boolean series indi-
cating whether each element
of a series is in the provided
argument

s.isin([10, 20, 30]) http://mng.bz/9D08

40 CHAPTER 2 Data frames
Brackets or dots?
When we’re working with a series, we can retrieve values several ways: using the index
(and loc), using the position (and iloc), and using square brackets, which are equiv-
alent to loc for simple cases. When we work with data frames, though, we must use
loc or iloc to retrieve rows. That’s because square brackets refer to the columns.

For example, let’s create a data frame:

df = DataFrame([[10, 20, 30, 40],
[50, 60, 70, 80],
[90, 100, 110, 120]],

index=list('xyz'),
columns=list('abcd'))

Given this data frame and the fact that square brackets refer to columns, we can
understand how df['a'] returns the a column; and df[['a', 'b']], passing a list
of columns inside the square brackets (that is, double square brackets), returns a
new, two-column data frame based on df. If we ask for df['x'], pandas will look for
a column x, not see one, and raise a KeyError exception. To retrieve the row at
index x, we must say df.loc['x'] or, if we prefer to retrieve it positionally,
df.iloc[0].

But there is an exception to the “square brackets mean columns” rule: if we use a
slice, pandas will look at the data frame’s rows, rather than its columns. This means
we can retrieve rows from x through y with df['x':'y']. The slice tells pandas to
use the rows rather than the
columns. Moreover, the slice
will return rows up to and
including the endpoint, which
is unusual for Python (but typi-
cal when using loc in pandas).

Another way to work with col-
umns is to use dot notation.
That is, if you want to retrieve
the column colname from data
frame df, you can say
df.colname.

This syntax appeals to many people for a variety of reasons: it’s easier to type, it has
fewer characters and is thus easier to read, and it seems to flow a bit more naturally.

But there are reasons to dislike it, as well. Columns with spaces and other illegal-in-
Python identifier characters don’t work. And it’s confusing to try to remember whether
df.whatever is a column named whatever or an attribute named whatever. There
are so many pandas methods to remember, I’ll take any help I can get.

So, I use bracket notation and will use it throughout this book. If you prefer dot nota-
tion, you’re in good company—but keep in mind that there are places you won’t be
able to use it.

100

20

12011090z

80706050y

403010

d

x

cba

df['a'] df[['a', 'b']]

df['x':'y']

df.loc['x']

Our data frame

41EXERCISE 8 ■ Net revenue
EXERCISE 8 ■ Net revenue
For many pandas users, it’s rare to create a new data frame from scratch. We import a
CSV file, or we perform transformations on an existing data frame (or several existing
series). But sometimes we need to create a new data frame—for example, when assem-
bling data from nonstandard sources or experimenting with new pandas techniques—
and knowing how to do so can be useful.

 For this exercise, I want you to create a data frame that represents a company’s
inventory of five products. Each product has a unique ID number (a two-digit integer
will do), name, wholesale price, retail price, and number of sales in the last month.
You’re making it up, so if you’ve always wanted to be a profitable starship dealer, this is
your chance! Once you have created this data frame, calculate the total net revenue
from all your products.

Working it out

The first part of this task involved creating a new data frame by passing values to the
DataFrame class. There are four ways to do this:

 Pass a list of lists (figure 2.2). Each inner list represents one row. The inner lists
must all be the same length and fill the columns positionally.

 Pass a list of dictionaries (dicts) (figure 2.3). Each dict represents one row, and
the keys indicate which columns should be filled.

Figure 2.3 Creating a data frame from a list of dicts. Each dict is a row, and the keys indicate
column values.

df = DataFrame([

 [10, 20, 30, 40],

 [50, 60, 70, 80],

 [90, 100, 110, 120]],

 index = list('xyz'),

 columns=list('abcd'))

100

20

12011090z

80706050y

403010

d

x

cba

Figure 2.2 Creating a data frame from a list of lists. Each inner list represents
one row. Column names are taken positionally.

df = DataFrame([

 {'a':10, 'b':20, 'c':30, 'd':40},

 {'a':50, 'b':60, 'c':70, 'd':80},

 {'a':90, 'b':100, 'c':110, 'd':120}],

 index = list('xyz'))

'c':30,

'c':70,

'c':110,

'd':40},

'd':80},

'd':120}]
100

20

12011090z

80706050y

403010

d

x

cba

'b':20,

'b':60,

'b':100,

'a':10,

'a':50,

'a':90,

42 CHAPTER 2 Data frames
 Pass a dict of lists (figure 2.4). Each key represents one column, and the values
(lists) are each column’s values.

 Pass a two-dimensional NumPy array (figure 2.5).

Figure 2.4 Creating a data frame from a dict of lists. Each dict key is a column
name, and the list contains values for that column.

Figure 2.5 Creating a data frame from a two-dimensional NumPy array

Which of these techniques is most appropriate depends on the task at hand. In this
case, because we want to create and describe individual products, we decide to use a
list of dicts.

 One advantage of a list of dicts is that we don’t need to pass column names; pandas
can infer their names from the dict keys. And the index is the default positional index,
so we don’t have to set that.

 With our data frame in place, how can we calculate our products’ total revenue?
Doing so requires that for each product, we subtract the wholesale price from the
retail price, aka the net revenue:

df['retail_price'] - df['wholesale_price']

Here, we are retrieving the series df['retail_price'] and subtracting from it the
series df['wholesale_price']. Because these two series are parallel to one another,

100

20

12011090z

80706050y

403010

d

x

cba

df = DataFrame([

 {'a': [10, 50, 90],

 'b': [20, 60, 100],

 'c': [30, 70, 110],

 'd': [40, 80, 120]},

 index = list('xyz'))

{'a': [10, 50, 90],

 'b': [20, 60, 100],

 'c': [30, 70, 110],

'd': [40, 80, 120]},

df = DataFrame(

 np.random.randint(0, 10, [3, 4]),

 columns = list('abcd'),

 index = list('xyz'))

100

20

12011090z

80706050y

403010

d

x

cba

43EXERCISE 8 ■ Net revenue
with identical indexes, the subtraction takes place for each row and returns a new
series with the same index but with the difference between them.

 Once we have that series, we multiply it by the number of sales for each product:

(df['retail_price'] - df['wholesale_price']) * df['sales']

This results in a new series that shares an index with df but whose values are the total
sales for each product. We can sum this series with the sum method (figure 2.6):

((df['retail_price'] - df['wholesale_price']) * df['sales']).sum()

Without parentheses, the * operator
would have had precedence.

Parentheses tell pandas to call sum
on the series returned from * rather

than directly on df['sales'].

3.0

0.5

35

35

500

wholesale_price

5

1

75

75

1000

retail_price

4

3

2

1

0

-

300

200

500

1000

100

sales

*

600

100

20000

40000

50000

total sales

-

sum

110700.0

30053.0sandwich874

20010.5banana153

5007535Pandas
Workout972

10007535Python
Workout961

1001000500computer230

salesretail_pricewholesale_pricenameproduct_id

Figure 2.6 Graphical depiction of the solution for exercise 8

44 CHAPTER 2 Data frames
Solution

df = DataFrame([{'product_id':23, 'name':'computer', 'wholesale_price': 500,
'retail_price':1000, 'sales':100},
{'product_id':96, 'name':'Python Workout', 'wholesale_price': 35,
'retail_price':75, 'sales':1000},
{'product_id':97, 'name':'Pandas Workout', 'wholesale_price': 35,
'retail_price':75, 'sales':500},
{'product_id':15, 'name':'banana', 'wholesale_price': 0.5,
'retail_price':1, 'sales':200},
{'product_id':87, 'name':'sandwich', 'wholesale_price': 3,
'retail_price':5, 'sales':300},
])

((df['retail_price'] - df['wholesale_price']) * df['sales']).sum()

You can explore this in the Pandas Tutor at http://mng.bz/0lAx.

Beyond the exercise

 For what products is the retail price more than twice the wholesale price?
 How much did the store make from food versus computers versus books? (You

can retrieve based on the index values, not anything more sophisticated.)
 Because your store is doing so well, you can negotiate a 30% discount on the

wholesale price of goods. Calculate the new net income.

EXERCISE 9 ■ Tax planning
In the previous exercise, you created a data frame representing your store’s products
and sales. In this exercise, you will extend that data frame (literally). It’s pretty com-
mon to add columns to an existing data frame, either to add new information you’ve
acquired or to store the results of per-row calculations—which is what you’ll do now. A
common reason to add a column is to hold intermediate values as a convenience.

 The backstory for this exercise is as follows. Your local government is thinking
about imposing a sales tax and is considering 15%, 20%, and 25% rates. Show how
much less you would net with each of these tax amounts by adding columns to the
data frame for your net income under each of the proposed rates, as well as your cur-
rent net income.

Working it out

If two series share an index, we can perform various arithmetic operations on them.
The result is a new series with the same index as each of the two inputs to the opera-
tion. Often, as in exercise 8, we perform the operation on two of the columns in our
data frame (which are both series, after all) and view the result.

 But sometimes we want to keep that result around, either because we want to use it
in further calculations or because we want to reference it. In such a case, it’s helpful to
add one or more new columns to our data frame.

Returns
110700

http://mng.bz/0lAx

45EXERCISE 9 ■ Tax planning
 How can we do that? It’s surprisingly simple: we assign to the data frame, using the
name of the column that we want to spring into being. It’s typical to assign a series,
but we can also assign a NumPy array or list, as long as it is the same length as the
other, existing columns. Column names are unique—so just as with a dictionary,
assigning to an existing column replaces it with the new one.

 In the previous exercise, we calculated the total sales for each product. To solve the
first part of this exercise, we take that calculation and assign the resulting series to a
new column in the data frame:

df['current_net'] = ((df['retail_price'] - df['wholesale_price'])
* df['sales'])

What happens if we’re taxed at 15%? This reduces our net by 15%, which we can cal-
culate and then assign to a new column:

df['after_15'] = df['current_net'] * 0.85

We can then repeat this assignment into two additional columns for the other tax
amounts:

df['after_20'] = df['current_net'] * 0.80
df['after_25'] = df['current_net'] * 0.75

Adding columns with assign
Another way to add a column to a pandas data frame is the assign method, which
returns a new data frame rather than modifying an existing one. For example, instead
of saying

df['current_net'] = ((df['retail_price'] - df['wholesale_price']) *
df['sales'])

we can use

df.assign(current_net = (df['retail_price'] - df['wholesale_price']) *
df['sales'])

Keyword arguments passed to df.assign result in a new column (with the same
name as the keyword argument) whose values are the keyword argument’s values.

Using assign is often useful if we open parentheses before a query and then chain
methods, each on a line by itself, to get a solution. Some people prefer this style,
saying that they find it more readable and reproducible than assignment. I personally
find that complex queries with numerous steps are often easier to understand using
this chained style and that assign simplifies writing such queries. Many of the solu-
tions in this book are written using such a multilined, chained style. I encourage you
to try writing your queries in this way; many pandas users have found that it results
in clearer, easier-to-debug code.

46 CHAPTER 2 Data frames
Now our data frame has nine columns: product_id, name, wholesale_price,
retail_price, sales, current_net, after_15, after_20, and after_25. Because the
final four columns (where we show our net income) are all numeric, we can grab
them (with fancy indexing), returning a data frame with the four columns we selected
and our five products’ rows:

df[['current_net', 'after_15', 'after_20', 'after_25']]

When we run sum on this data frame, we get back the sum of each column. The result
is returned as a series in which the column names serve as the index:

current_net 110700.0
after_15 94095.0
after_20 88560.0
after_25 83025.0
dtype: float64

We can now clearly see how much we would earn under each tax plan. We can even
show the difference between our current net and each of the tax plans, broadcasting
the subtraction operation:

df['current_net'].sum() - df[['current_net',
'after_15', 'after_20', 'after_25']].sum()

Solution

df['current_net'] = ((df['retail_price'] - df['wholesale_price'])
* df['sales'])

df['after_15'] = df['current_net'] * 0.85
df['after_20'] = df['current_net'] * 0.80
df['after_25'] = df['current_net'] * 0.75
df[['current_net', 'after_15', 'after_20', 'after_25']].sum()

You can explore this in the Pandas Tutor at http://mng.bz/K98K.

Beyond the exercise

 An alternative tax plan would charge a 25% tax, but only on products from
which you would net more than 20,000. In such a case, how much would you
make?

 Yet another alternative tax plan would charge a 25% tax on products whose
retail price is greater than 80, a 10% tax on products whose retail price is
between 30 and 80, and no tax on other products. Implement and calculate the
result of such a tax scheme.

 These long floating-point numbers are getting hard to read. Set the float_
format option in pandas such that floating-point numbers will be displayed with
commas every three digits before the decimal point and only two digits after the
decimal point. Note that this is tricky because it requires understanding Python
callables and the str.format method.

http://mng.bz/K98K

47EXERCISE 9 ■ Tax planning
Retrieving and assigning with loc
It’s pretty straightforward to retrieve an entire row from a data frame or even replace
a row’s values with new ones. For example, we can grab the values in the row with
index abcd with df.loc['abcd']. If we prefer to use the numeric (positional) index,
we can use df.iloc[5] instead. In both cases, we get back a series created on the
fly from the values in that row. By contrast, if we retrieve a column, nothing new needs
to be created because each column is stored as a series in memory.

What if we want to retrieve only part of a row? More significantly, how can we set val-
ues on only part of a row?

We can do this several ways, but I prefer loc, with two arguments in square brackets.
The first argument describes the row(s) we want to retrieve (row selector), and the
second describes the column(s) we want to retrieve (column selector).

Let’s assume we have a 5x5 data
frame with index a-e, columns v-z,
and values from 10 through 250.
To retrieve row a, we can say
df.loc['a']. But to retrieve the
item at index a in column x, we
can say

df.loc['a', 'x']

Especially as the arguments
become longer and more com-
plex, it can be easier to put them
on separate lines:

df.loc['a',
'x']

Graphical depiction of df.loc['a', 'x']

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

Our sample data frame

Row selector

Column
selector

Row selector

Column selector Result

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

50402010a

230

180

130

80

x

30

48 CHAPTER 2 Data frames
(continued)

Once you understand this syntax, you can use it in more sophisticated ways. For
example, let’s retrieve rows a and c from column x:

df.loc[['a', 'c'],
'x']

Notice that we can use fancy indexing to describe the rows we want to retrieve and a
regular index (as the second value in the square brackets) to describe the column we
want. We can similarly retrieve more than one column. In this example, we retrieve
row a from columns v and y:

df.loc['a',
['v','y']]

Graphical depiction of df.loc['a', ['v', 'y']]

Row selector

Column selector Result

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

50402010a

230

180

80

x

30

150140120110c 130

Row selector

Graphical depiction of df.loc[['a', 'c'], 'x']

Column
selector

Row selector

Column
selector

Row selector

Column selector

Result

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

503020a

240

190

140

90

y

40

210

160

110

60

v

10

49EXERCISE 9 ■ Tax planning
What if we combine these, retrieving rows a and c from columns v and y?

df.loc[['a', 'c'],
['v','y']]

But wait, it gets even better: we can describe rows using a boolean index. We can
create a boolean series using a conditional operator (for example, < or ==) and apply
it to the rows and/or the columns. For example, we can find all rows in which x is
greater than 200:

df.loc[df['x']>200]

Graphical depiction of df.loc[df['x']>200]

Now we can add a second value boolean index after the comma, indicating which col-
umns we want:

df.loc[df['x']>200,1((CO9-1))
df.loc['c'] > 135]

Row selector Column
selector

Row selector

Column selector
Result

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

503020a

240

190

90

y

40

210

160

60

v

10

150130120 140c 110

Graphical depiction of df.loc[['a', 'c'], ['v', 'y']]

Row selector,
no column selector

Row
selector

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

True

False

False

False

False

230

180

130

80

30

x

>200

250240230220210e

Row selector

Column
selector

50 CHAPTER 2 Data frames
Graphical depiction of df.loc[df['x']>200, df.loc['c'] > 135]

This expression returns all rows from df in which column x is greater than 200 and
all columns from df in which c is greater than 135.

We can also dial it back, saying we’re interested in row b, but only where c is greater
than 135:

df.loc['b',
df.loc['c']>135]

(continued)

Column selector

Row
selector

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

True

False

False

False

False

230

180

130

80

30

x

>200

Result

>135

150140130120110c

TrueTrueFalseFalseFalse

230220210e

200190

150140

10090

5040

zy

250240

Row selector Column
selector

Column selector

Row
selector

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

Result

>135

150140130120110c

TrueTrueFalseFalseFalse

807060b

250240

200190

150140

5040

zy

10090

Graphical depiction of df.loc['b', df.loc['c'] > 135]

51EXERCISE 9 ■ Tax planning
Of course, our conditions can be far more complex than these. But as long as you
keep in mind that you want to select based on rows before the comma and based on
columns after the comma, you should be fine.

In all these examples, we retrieve values from the data frame. What if we want to
modify these values? We can do so by putting the retrieval query on the left side of
an assignment statement. The only catch is that the value on the right must either
be a scalar (in which case it is broadcast and assigned to all matching elements) or
have a matching shape (that is, rows and columns).

For example, let’s say we want to set the element in row b, column y, to 123. We can
do that as follows:

df.loc['b',
'y'

] = 123

What if we want to set new values in row b, where row c is greater than 125? We can
assign a list (or NumPy array or pandas series) of three items, matching the three
elements our query matches:

df.loc['b',
df.loc['c'] > 125

] = [123, 456, 789]

Row selector

Column
selector

Row
selector

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

240

190

140

40

y Replace the current
value with 123.

100807060b 90

Column selector

Graphical depiction of df.loc['b', 'y'] = 123

Row selector Column
selector

Column selector

Row
selector

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

250240230

200190180

150140130

504030

zyx Replace these
three values with
[123, 456, 789].

7060b 1009080

Graphical depiction of df.loc['b', df.loc['c'] > 125] = [123, 456, 789]

52 CHAPTER 2 Data frames
(continued)

Of course, this requires knowing precisely how many values will be needed. In many
cases, you won’t know that in advance but will assign based on another column—or
even the selection values themselves! For example, the following code doubles the
value in row b whenever the corresponding value in row c is divisible by 3:

df.loc['b',
df.loc['c'] % 3 == 0
] *= 2

Graphical depiction of df.loc['b', df.loc['c'] % 3 == 0] *= 2<3>

We can assign a scalar value to the elements described by loc:

df.loc[df['v'] > 100,
df.loc['d'] > 180

] = 987

Row selector Column
selector

In-place multiplication
using *=

Row
selector

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv
Double these
values, and replace
the existing ones.

%3==0

150140130120110c

TrueFalseFalseTrueFalse

60b 9080

250

200

150

50

z

100

220

170

120

20

w

70

Column selector

Row selector Column
selector

53EXERCISE 10 ■ Adding new products
EXERCISE 10 ■ Adding new products
Good news! Your store is making money, and you have decided to add some new prod-
ucts. I’d like you to do that by creating a new data frame and adding it to the existing
one. This new data frame should contain three products (including product ID,
name, wholesale price, and retail price):

 Phone, with an ID of 24, a wholesale price of 200, and a retail price of 500
 Apple, with an ID of 16, a wholesale price of 0.5, and a retail price of 1
 Pear, with an ID of 17, a wholesale price of 0.6, and a retail price of 1.2

Because these are new products, don’t include the sales column. And to avoid prob-
lems and conflicts, ensure that the indexes of these new products are different from
existing product indexes. (In chapter 4, we’ll look at some ways to handle index prob-
lems more elegantly.)

 Once you have added these new products, assign sales figures to each of them.
Finally, recalculate the store’s total net income, including the new products.

Graphical depiction of df.loc[df['v'] > 100, df.loc['d'] > 150] = 987

It takes a while to get used to this syntax. But once you internalize it, it becomes fairly
straightforward and flexible. Moreover, this approach is efficient and avoids potential
problems you may encounter when applying square brackets to the result of previous
square brackets.

Column selector

Row
selector

250240230220210e

200190180170160d

150140130120110c

10090807060b

5040302010a

zyxwv

230220210eTrue

True

True

False

False

210

160

110

60

10

v

>100 10090

5040

zy

250240

>180

200190180170160d

TrueTrueFalseFalseFalse

130120110c 150140

180170160d 200190

Assign 987 to all six elements
covered by this combination
of row and column selectors.

54 CHAPTER 2 Data frames
Working it out

We often think of data frames as representing data we’ve already collected or
imported from a file. But data frames are much more fluid than that, allowing us to
represent data in various ways and formats. We should expect to modify a data frame
over its lifetime, either as we gather data or simply because we want to analyze data
from different sources.

 In this exercise, I first asked you to create a new data frame representing three new
products. This new data frame needs to have all the same values as the previous one,
except for the sales column.

 The first step is the easiest because it resembles creating a data frame at the start of
the chapter. The only difference is that we set the index manually, using Python’s
built-in range, to avoid collisions between the indexes in our original data frame and
this one. Pandas doesn’t care whether our index repeats, but we often will care about
such a thing, so I decided to include it in the exercise.

 We create a new data frame this way:

new_products = DataFrame([{'product_id':24, 'name':'phone',
'wholesale_price': 200, 'retail_price':500},
{'product_id':16, 'name':'apple', 'wholesale_price': 0.5,
'retail_price':1},
{'product_id':17, 'name':'pear', 'wholesale_price': 0.6,
'retail_price':1.2}], index=range(5,8))

With this new data frame in hand, we want to add it to the previously existing one.
The pd.concat function does this, and it works a bit differently than you may expect:
it’s a top-level pandas function and takes a list of data frames to concatenate.

 The result of pd.concat is a new data frame, which we then assign back to df
(figure 2.7):

df = pd.concat([df, new_products])

NaN1.20.6pear17

NaN1.00.5apple16

NaN500.0200.0phone245

300.05.03.0sandwich4

200.01.50.5banana

500.075.035Pandas
Workout

1000.075.035Python
Workout

100.01000.0500computer

salesretail_pricewholesale_pricename

7

6

87

23

153

972

961

0

product_id

300.05.03.0sandwich4

200.01.50.5banana

500.075.035Pandas
Workout

1000.075.035Python
Workout

100.01000.0500computer

87

23

153

972

961

0

NaN1.20.6pear17

NaN1.00.5apple16

NaN500.0200.0phone245

7

6

df

new_products

Figure 2.7 Graphical depiction of pd.concat([df, new_products])

55EXERCISE 10 ■ Adding new products
Now we have a data frame containing all our products. But because we didn’t include
the sales column in new_products, sales is missing some data:

product_id name wholesale_price retail_price sales
0 23 computer 500.0 1000.0 100.0
1 96 Python Workout 35.0 75.0 1000.0
2 97 Pandas Workout 35.0 75.0 500.0
3 15 banana 0.5 1.0 200.0
4 87 sandwich 3.0 5.0 300.0
5 24 phone 200.0 500.0 NaN
6 16 apple 0.5 1.0 NaN
7 17 pear 0.6 1.2 NaN

The challenge is to fill in those sales numbers. We can do this several ways. My pre-
ferred method is to use loc on the data frame, passing a list of rows as the row selector
and the sales column’s name as the column selector:

df.loc[[5,6,7], 'sales']

This returns

5 NaN
6 NaN
7 NaN
Name: sales, dtype: float64

Sure enough, we have identified and retrieved all three NaN values. Also note that the
dtype for this column has been changed to float64. That’s because NaN is a float
value; whenever pandas wants to use NaN, it needs to set the column to have a floating-
point dtype.

NOTE In NumPy, assigning a float value to an array with an integer dtype results
in the float being truncated silently. And trying to assign NaN (which is a float,
albeit a weird float) to an array with an integer dtype results in an error, with
NumPy indicating that there is no integer value for NaN. Pandas, by contrast,
tries to accommodate you, changing the dtype to float64 to accommodate
your NaN value. It doesn’t warn you about this, though! You won’t lose data, but
you may be surprised by the change in dtype you didn’t explicitly ask for.

How can we set these NaN values to integers? One way is to use our loc-based retrieval
to set values (figure 2.8):

df.loc[[5,6,7], 'sales'] = [100, 200, 75]

This one line of code is hiding a lot of complexity, so let’s go through it:

1 df.loc accesses one or more rows from our data frame. In this case, we’re using
fancy indexing, retrieving three rows based on their indexes.

2 If we stopped here, we would get all the columns for these three rows—mean-
ing we would get back a data frame. But instead, we pass a second argument,
which describes the column(s) we want to get back.

56 CHAPTER 2 Data frames
3 Because it’s only one column, we end up with a three-element series of NaN
values.

4 Assigning to this df.loc selection results in the data frame being updated and
the NaN values replaced by these numbers.

Note that the dtype does not change back to np.int64 automatically.

Figure 2.8 Graphical depiction of df.loc[[5,6,7],
'sales'] = [100, 200, 75]

If you’re uncomfortable with such en masse assignments, you can do the equivalent in
three lines:

df.loc[5, 'sales'] = 100
df.loc[6, 'sales'] = 200
df.loc[7, 'sales'] = 75

Either way, when we’re done with all this, we have ensured that we have sales figures
for all our products. And once we’ve done that, we can calculate the total sales, as
we’ve done before:

(df['retail_price'] - df['wholesale_price']) * df['sales'].sum()

NaN1.20.6pear17

NaN1.00.5apple16

NaN500.0200.0phone245

300.05.03.0sandwich4

200.01.50.5banana

500.075.035Pandas
Workout

1000.075.035Python
Workout

100.01000.0500computer

salesretail_pricewholesale_pricename

7

6

87

23

153

972

961

0

product_id

1.20.6pear17

1.00.5apple16

500.0200.0phone245

7

6

300.0

200.0

500.0

1000.0

100.0

sales

NaN

NaN

NaN

Assign [100, 200, 75]
to these three cells.Row selector

Column selector

57EXERCISE 10 ■ Adding new products
Solution

new_products = DataFrame([{'product_id':24, 'name':'phone',
'wholesale_price': 200, 'retail_price':500},

{'product_id':16, 'name':'apple',
'wholesale_price': 0.5, 'retail_price':1},

{'product_id':17, 'name':'pear',
'wholesale_price': 0.6, 'retail_price':1.2}],
index=range(5,8))

df = pd.concat([df, new_products])

df.loc[[5,6,7], 'sales'] = [100, 200, 75]

(df['retail_price'] - df['wholesale_price']) * df['sales'].sum()

You can explore this in the Pandas Tutor at http://mng.bz/9Q4l.

Beyond the exercise

 Add one new product to the data frame without using pd.concat. What’s the
advantage of pd.concat, and when should you use it?

 Add a new column, department, to the data frame. Place each product in a
department. For example, in our data, we would have three departments:
electronics, books, and food. Calculate current_net on the data frame, and
then show descriptive statistics for the current_net on food products.

 Use the query method (see the following sidebar) to get the descriptive statis-
tics for food items.

Getting answers with the query method
As we have seen, the traditional way to select rows from a data frame is via a boolean
index. But there is another way to do it: the query method. This method may feel
especially familiar if you have previously used SQL and relational databases.

The basic idea behind query is simple: we provide a string that pandas turns into a
full-fledged query. We get back a filtered set of rows from the original data frame. For
example, let’s say we want all the rows in which column v is greater than 300. Using
a traditional boolean index, we would write

df[df['v'] > 300]

Using query, we can instead write

df.query('v > 300')

These two techniques return the same results. When using query, though, we can
name columns without the clunky square brackets or even dot notation. It becomes
easier to understand.

Creates the data frame
of new products

Adds the old and new products
together into a single data frame

Assigns sales values for
the three new products

Calculates the total net
income from all products

http://mng.bz/9Q4l

58 CHAPTER 2 Data frames
EXERCISE 11 ■ Bestsellers
You’re going to use the online store for one final exercise. This time, I want you to
find the IDs and names of products that have sold more than the average number of
units.

Working it out

Pandas is all about analyzing data. And a major part of the analysis we do in pandas can
be expressed as “Where this is the case, show me that.” The possibilities are endless:

 Show me the stocks in our portfolio that have performed poorly this year.
 Show me the people on our team who have fixed the most bugs.
 Show me the three highest-scoring sports teams in the league.

In this exercise, I asked you to show the product_id and name columns for products
that have sold better than average. As usual with pandas, there are several ways to do
this—but I believe the easiest system to remember and work with involves the use of
loc. (See “Retrieving and assigning with loc,” earlier in this chapter.)

 When we work with loc, we are, by definition, starting with the rows. We are inter-
ested in rows whose sales values are greater than the minimum. We can thus create a
boolean series with the following query:

df['sales'] > df['sales'].mean()

We can then use that series as a boolean index on our data frame, returning only
those rows where the sales figures were better than average:

df.loc[df['sales'] > df['sales'].mean()]

(continued)

What if we want a more complex query, such as one in which column v is greater than
300 and column w is odd? We can write it as follows:

df.query('v > 300 & w % 2 == 1')

It’s not necessary, but I still like to use parentheses to make the query more read-
able:

df.query('(v > 300) & (w % 2 == 1)')

Note that query cannot be used on the left side of an assignment.

On smaller data frames, query can not only be overkill but also slow your code. How-
ever, when you work on data frames with more than 10,000 rows, query can be sig-
nificantly faster than the traditional way of writing queries. Moreover, it can use far
less memory. We’ll look at query in greater depth in chapter 12.

& is used for "and"
in the query string.

Uses the boolean
series as a row selector

59EXERCISE 11 ■ Bestsellers
However, we aren’t interested in all the columns in the data frame. We only want the
product_id and name columns. We list the columns we want in the second argument
to loc in our column selector:

df.loc[
df['sales'] > df['sales'].mean(),
['product_id', 'name']
]

Sure enough, this produces the desired output (figure 2.9).

Figure 2.9 Graphical depiction of df.loc[df['sales'] > df['sales'].mean(),
['product_id', 'name']]

It’s also possible to solve this problem with the query method. Here’s how we can get
the appropriate rows:

df.query('sales > sales.mean()')

To get only the product_id and name columns, we need to apply square brackets to
the result of df.query:

df.query('sales > sales.mean()')[['product_id', 'name']]

The boolean series
is our row selector.

The list of columns
is our column selector.

NaN1.20.6pear17

NaN1.00.5apple16

NaN500.0200.0phone245

300.05.03.0sandwich4

200.01.50.5banana

500.075.035Pandas
Workout

1000.075.035Python
Workout

100.01000.0500computer

salesretail_pricewholesale_pricename

7

6

87

23

153

972

961

0

product_id

500.075.035

1000.075.035

2

1

pear17

apple16

phone24

sandwich

banana

87

15

computer

name

23

product_id

Pandas
Workout

Python
Workout

97

96

75

200

100

300.0

200.0

500.0

1000.0

100.0

sales

False

False

False

False

False

True

True

False

Returned values

Column selector

Row
selector

>
mean

60 CHAPTER 2 Data frames
Solution

df.loc[
df['sales'] > df['sales'].mean(),
['product_id', 'name']

]

You can explore this in the Pandas Tutor at http://mng.bz/j1zx.

Beyond the exercise

Here are some additional exercises that go beyond the task here. In each case, prac-
tice using both loc and query:

 Show the ID and name of products whose net income is in the top 25%
quantile.

 Show the ID and name of products with lower-than-average sales numbers and
whose wholesale price is greater than the average.

 Show the name and wholesale and retail prices of products with IDs between 80
and 100 and that sold fewer than 400 units.

EXERCISE 12 ■ Finding outliers
We’ve already seen how the mean, standard deviation, and median can help us under-
stand our data. They describe the bulk of our data, trying to summarize where most
values lie. But sometimes it’s useful to look at the unusual values:

 Which users had an unusually high number of unsuccessful login attempts?
 Which products were the most popular?
 On which days and at what times are our sales the lowest?

These questions aren’t unique to data science. For example, bars have been offering
“happy hour” for many years, discounting their products at a time when they have
fewer customers. Data science allows us to ask these questions more formally, to get
more precise answers, and then to check whether our changes have had the desired
results.

NOTE The term outliers doesn’t have a precise, standard definition. Many peo-
ple define it using the interquartile range (IQR), which is the value at the 75%
point (aka quantile(0.75)) minus the value at the 25% point (aka
quantile(0.25)). Outliers are then values below the 25% point –1.5 * IQR or
values above the 75% + 1.5 * IQR. We use that definition here, but you may
find that a different definition—say, anything below the mean – two standard
deviations, or above the mean + two standard deviations—is a better fit for
your data.

In this exercise, you are to create a two-column data frame from the taxi data we
looked at in exercise 6. The first column will contain the passenger count for each

http://mng.bz/j1zx

61EXERCISE 12 ■ Finding outliers
trip, and the second column will contain the distance (in miles) for each trip. Once
you have created this data frame, I want you to

 Count how many trip distances were outliers.
 Calculate the mean number of passengers for outliers. Is it different from the

mean number of passengers for all trips?

Working it out

We have to do four things:

1 Create the data frame based on the individual series.
2 Calculate the IQR.
3 Find the outliers.
4 Use the outliers we have found to analyze passenger counts.

To start, we want to create the data frame based on two separate series. We’ve already
seen how to create each of these series, which we here assign to two separate variables:

trip_distance = pd.read_csv('data/taxi-distance.csv', header=None).squeeze()
passenger_count = pd.read_csv('data/taxi-passenger-count.csv',

header=None).squeeze()

How can we turn these series into a data frame? The easiest technique is to create the
data frame as a dict in which the keys are strings naming the columns and the values
are the series themselves (figure 2.10). This technique works well when (as here) we
have several lists or series containing data. Note that the series must be the same
length, as is the case here.

Creating the data frame thus requires the following code:

df = DataFrame({'trip_distance': trip_distance,
'passenger_count': passenger_count})

411.90

11.80

1.40

1.40

2.13

0.87

0.46

1

1

1

1

1

11.63

7

6

5

4

3

2

1

0

passenger_counttrip_distanceDict keys become
column names.

Each dict value (a series)
becomes a column.

Figure 2.10 Graphical
depiction of creating a data
frame via a dictionary

62 CHAPTER 2 Data frames
With the data frame in place, we can calculate the IQR and thus find our outliers.
Remember that the IQR is the difference between the 75th percentile and 25th per-
centile values. This means if we were to line up all the values, from smallest to largest,
we would be looking for the values 25% of the way through and 75% of the way
through.

 We can find these values using the quantile method and pass the point we want to
get either 0.25 or 0.75. However, don’t make the mistake of calling quantile on the
data frame! Doing so will return the quantiles for each column; we’re only interested
in the IQR for the trip_distance column. We can thus say

iqr = (
df['trip_distance'].quantile(0.75) -
df['trip_distance'].quantile(0.25)

)

Of course, we didn’t have to define an iqr variable, but it makes the later calculations
easier to understand and read. And with the iqr variable defined, we can now find
outliers. Let’s start with outliers on the low end: distances less than the 25% quantile
by at least 1.5 * the IQR. This is how that looks in pandas:

df[df['trip_distance'] < df['trip_distance'].quantile(0.25) - 1.5*iqr]

The result? There are no outliers! That’s probably because so many trips go a short
distance, and the lowest distance you can go in a taxi ride is zero miles.

 However, there are several outliers at the high end:

df[df['trip_distance'] > df['trip_distance'].quantile(0.75) + 1.5*iqr]

Of these 10,000 taxi rides, there are 1,889 outliers on the high end! This means about
19% of taxi rides are much longer than the mean ride length.

 Notice that we get this result by creating a boolean series and applying it as an
index to df. However, we don’t have to apply it to the entire data frame; we can apply
it to a single column. For example, we can apply it to the passenger_count column,
thus finding the number of passengers in each of the extra-long rides:

df['passenger_count'][df['trip_distance'] >
df['trip_distance'].quantile(0.75) + 1.5*iqr]

What if we want to get the mean of these values? This expression returns a series on
which we can run the mean method:

df['passenger_count'][df['trip_distance'] > df['trip_distance'].quantile(
0.75) + 1.5*iqr].mean()

We end up with a value of about 1.70, almost identical to the mean of the entire
passenger_count column.

63EXERCISE 12 ■ Finding outliers
Solution

trip_distance = pd.read_csv('data/taxi-distance.csv',
header=None).squeeze()

passenger_count = pd.read_csv('data/taxi-passenger-count.csv',
header=None).squeeze()

df = DataFrame({'trip_distance': trip_distance,
'passenger_count': passenger_count})

iqr = (df['trip_distance'].quantile(0.75)
- df['trip_distance'].quantile(0.25))

df[df['trip_distance']
< df['trip_distance'].quantile(0.25) - 1.5*iqr]

df[df['trip_distance']
> df['trip_distance'].quantile(0.75) + 1.5*iqr]

df['passenger_count'][df['trip_distance']
> df['trip_distance'].quantile(0.75) + 1.5*iqr].mean()

You can explore an abridged version of this in the Pandas Tutor at http://mng
.bz/W1R0.

Beyond the exercise

As I said earlier, there are several ways to define and find outliers. Let’s try a few differ-
ent techniques:

 If you define outliers to be the lowest 10% and highest 10% of values, how
many were there? Why is (or isn’t) this a good measure?

 How many short, medium, and long trips had only one passenger? Note that data
for passenger count and trip length are from the same data set, meaning the
indexes are the same. If you’re only interested in removing the non-outlier val-
ues, you can use the scipy.stats.trimboth function on your series. It takes a
second argument: the proportion you want to cut from both the top and bottom.

 The scipy.stats.zscore function rescales and centers (that is, normalizes)
the data set. In this case, the mean is set to 0, and values can be above and below
that value. Find all the distances for which the absolute value of the z-score is
greater than 3.

NaN and missing data
So far, we have seen that analyzing data with pandas isn’t overly difficult. We need
to know what questions to ask and which methods to apply in a given situation—but
it’s easy to imagine that a data analyst’s job isn’t too rough.

The time has come to give you some bad news: most data is incomplete. Perhaps
the computer responsible for collecting data was down last week. Or maybe the sen-
sors were off. Or possibly we surveyed our users and many decided not to answer.

There are no
low outliers.

There are 1,889
high outliers.

Mean passenger
count for outliers

http://mng.bz/W1R0
http://mng.bz/W1R0
http://mng.bz/W1R0

64 CHAPTER 2 Data frames
NOTE The count method on a series returns the number of non-NaN values. If
there are no NaN values, the result is the same as the size of the series. The
count method on a data frame returns a series with the columns’ names as
the index. If any of the columns have a lower count result than the others, it’s
because they contain NaN values.

(continued)

Whatever the reason, it’s common for analysts to contend with missing values. (I’ve
often heard analysts and data scientists say that 70%–80% of their job involves
cleaning, scaling, and otherwise manipulating data so they can use it.) Although it
would be nice to simply ignore those missing values, that’s not always possible. If
we remove any record with any missing data, we may find ourselves without any data
at all, which is a problem.

How do we represent missing values in pandas? It’s tempting to use 0, but as you
can imagine, that would cause trouble when we tried to calculate mean values.
Instead, pandas uses something known as NaN, aka not a number. You can say either
np.nan or np.NaN; pandas traditionally prefers the second. No matter how you write
it, it’s still np.nan. This strange value is a float that cannot be converted into an inte-
ger and is not equal to itself.

Note that, as of this writing, the pandas core developers are suggesting that they will
switch from NaN to their own pd.NA value in the future as part of a larger move to
using internal pandas data types that will be more flexible than those from NumPy.
However, we continue to use the traditional NaN value in this book.

In NumPy, we typically search for NaN values with the isnan function. Pandas has a
different approach, though: we can replace the NaN values in a series (or data frame)
with the fillna method, and we can drop any row with NaN values with the dropna
method.

These methods return a new series or data frame rather than modifying the original
object. However, the new object we get back may not have copied the data, meaning
assigning to it may produce the famous, dreaded SettingWithCopyWarning. If you
plan to modify the series or data frame that you get back from df.dropna, you should
probably invoke the copy method, just to be safe:

df = df.dropna().copy()

This ensures that you can modify df without suffering from that warning.

As you can imagine, removing any row containing even a single NaN value may be
extreme. For that reason, the dropna method has a thresh parameter to which we
can pass an integer: the number of good, non-NaN values that a row must contain for
it to be kept. You may need to seriously consider how strictly you want to filter your data.

We’ll look more closely at how to clean data in chapter 5. For now, remember to look
for NaN in your data and decide what you want to do with it. Sometimes you’ll want
to remove the NaN values, but other times, such as in exercise 13, you’ll want to
assign values based on their neighbors.

65EXERCISE 13 ■ Interpolation
EXERCISE 13 ■ Interpolation
When data contains missing values, we can remove any row containing even one miss-
ing value—but that may be too heavy-handed and may also remove useful data. One
alternative is interpolation: replacing NaN with plausible values. The values may be
wrong, but they will be roughly in the right ballpark.

 In this exercise, we load some basic temperature data from New York City from the
end of 2018 and the start of 2019. We then simulate a simple recurring equipment fail-
ure at 3:00 and 6:00 a.m. preventing us from getting temperature readings at those
hours. How well does interpolation help us, and how far off are the interpolated mean
and median calculations from the original, true values?

 Here are the steps I want you to take:

1 Load the temperature data from New York City (from the nyc-temps.txt file)
into a series. The measurements are in degrees Celsius.

2 Create a data frame with two columns: temp, with the temperatures, and hour,
representing the hours at which the measurements were taken. The hour values
should be 0, 3, 6, 9, 12, 15, 18, and 21, repeated for all 728 data points.

3 Calculate the mean and median values. These are the real values, which we
hope to replicate via interpolation.

4 Set all values from 3:00 and 6:00 a.m. to NaN.
5 Interpolate the values with the interpolate method.
6 What are the mean and median of the interpolated data frame? Are they similar

to the real values? Why or why not?

Working it out

The first task in this exercise is to read the data into a series. We’ve done this before,
but it can’t hurt to review the code:

s = pd.read_csv('data/nyc-temps.txt').squeeze()

We read the one-column data from nyc-temps.txt and then tell pandas we want it back
as a series. (This will change in the next chapter when we start to read in complete
data frames.) We can then use that series as one column in a series.

 The other column, hour, needs to contain the values 0, 3, 6, 9, 12, 15, 18, and 21,
repeated for the length of the data. Because the data contains 728 rows and there are
8 different hours, we can take advantage of some core Python functionality: we multi-
ply the 8-element list of integers by 91 and get a list of 728 elements.

 Once we have created our data frame, we remove some of the data to simulate out-
ages at 3:00 and 6:00 a.m. We do this by selecting (with loc) the rows we want along
with the temp column and replacing values with NaN with assignment:

df.loc[
df['hour'].isin([3,6]),)
'temp'

] = NaN

Row selector, where
the hour is 3 or 6Column

selector

https://github.com/reuven/pandas-workout

66 CHAPTER 2 Data frames
Notice that this query has several pieces:

 We look for df['hour'] to be either 3 or 6 using isin, getting a boolean series
back.

 After the comma, where we choose columns, we pass temp.
 We then use loc not to retrieve rows but rather to assign NaN to them en masse.

Finally, we call df.interpolate, which returns a new data frame (figure 2.11). In the-
ory, all the columns will be interpolated—but in reality, there is missing data only in
the temp column. We then assign the new data frame back to df.

Figure 2.11 Graphical depiction of interpolate

By default, interpolate fills any NaN value with the average of the numbers that come
before and after it. So if row 3 has a temperature of –1, row 4 is NaN, and row 5 has a
temperature of 5, interpolate will replace NaN with a value of 2.0. If you have two NaN
values in a row, interpolate will replace each NaN with half the distance between the
preceding non-NaN value and the succeeding non-NaN value.

NOTE By passing a value to the method parameter, you can instruct interpolate
to use a different system for interpolation. For example, if you pass
method='nearest', NaN values will be replaced by the closest non-NaN value.
Other methods are discussed in the documentation at http://mng.bz/MBo7.

Because temperature values don’t vary much from hour to hour and can be assumed
to rise and fall on a continuum, we use the default linear method, which is probably
close to the actual values. By contrast, hourly temperature readings from the oven in
your kitchen cannot be interpolated reliably this way. Before you use interpolate,
consider whether it’s an appropriate way to fill in NaN values.

NaN is replaced by 1,
the mean of −1 and 3.

−1.0 and 5 are 6 apart,
so we replace the two
NaN values with −1.0 +
2 and −1.0 + 4, for a
smooth interpolation.

1836

15NaN5

12−1.04

953

6NaN2

3NaN1

0

hour

−1.00

temp

1836

1515

12−1.04

953

632

311

0

hour

−1.00

temp

http://mng.bz/MBo7

67EXERCISE 14 ■ Selective updating
Solution

s = pd.read_csv('data/nyc-temps.txt').squeeze()
df = DataFrame(

{'temp': s,
'hour': [0,3,6,9,12,15,18,21] * 91})

df.loc[
df['hour'].isin([3,6]),
'temp'

] = NaN

df = df.interpolate()

df['temp'].describe()

You can explore an abridged version of this in the Pandas Tutor at http://mng
.bz/84vP.

Beyond the exercise

 How does the behavior of interpolate change if you use method='nearest'?
 Let’s assume the equipment works fine around the clock but fails to record

readings at –1 degrees and below. Are the interpolated values similar to the real
(missing) values they replace? Why or why not?

 A cheap solution to interpolation is to replace NaN values with the column’s
mean. Do this (with the missing values from –1 and below), and compare the
new mean and median. Again, why are (or aren’t) these values similar to the
original ones?

EXERCISE 14 ■ Selective updating
In this exercise, I want you to create the same two-column data frame as in the last
exercise. Then, update the values in the temp column so that any value less than 0 is
set to 0.

Working it out

If you’re like many pandas users, you may have thought about an approach like this:

1 Get a boolean index for when df['temp'] is less than 0.
2 Apply that boolean index to the data frame.
3 Retrieve the column by using ['temp'] on the data frame.
4 Assign the new value.

The code would look like this:

df[df['temp'] < 0]['temp'] = 0

Reads the disk
file into a series

Creates a data frame using
the series and the hours

Sets everything at
hours 3 and 6 to NaN

Runs df.interpolate,
and assigns back to df

Gets the descriptive statistics to check
the mean and median (among others)

http://mng.bz/84vP
http://mng.bz/84vP
http://mng.bz/84vP

68 CHAPTER 2 Data frames
Logically, this makes perfect sense. There’s just one problem: you cannot know in
advance whether it will work. That’s because pandas does a lot of internal analysis and
optimization when it’s putting together queries. Thus, you cannot know whether your
assignment will change the temp column on df, or—and this is the important thing—
whether pandas has decided to cache the results of your first query, applying ['temp']
to that cached, internal value rather than to the original one.

 As a result, it’s common—and maddening!—to get a SettingWithCopyWarning
from pandas. It looks like this:

<ipython-input-2-acedf13a3438>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

When you get this warning, it’s because pandas is trying to be helpful, telling you that
your assignment may have no effect. The warning, by the way, isn’t telling you that the
assignment won’t work, because it may. It all depends on the amount of data you have
and how pandas thinks it can or should optimize things.

 The telltale sign that you may get this warning is the use of double square brack-
ets—not nested, with one pair inside the other, but with one right after the other.
Whenever you see][in pandas queries, you should try hard to avoid it because it may
spell trouble when you assign to it. Retrieving with this syntax will also be less efficient
than using loc with the “row selector, column selector” selection syntax we’ve seen
and discussed.

 So, how should we set these values? It’s pretty straightforward:

1 Use df.loc to start.
2 Put our boolean index for the rows inside the square brackets, as before.
3 Put our column selector, which is 'temp' in this case, inside the same square

brackets, following a comma.
4 Assign to that value.

Here it is, broken up across lines:

df.loc[
df['temp'] < 0,
'temp'

] = 0

If you use this syntax for all your assignments, you will never see that dreaded
SettingWithCopyWarning message. You’ll be able to use the same syntax for retrieval
and assignment. And you can even be sure things are running pretty efficiently.

Solution

df.loc[df['temp'] < 0, 'temp'] = 0

You can explore an abridged version of this in the Pandas Tutor at http://mng.bz/
E9zJ.

Row selector:
a boolean series

Column selector:
a column name

http://mng.bz/E9zJ
http://mng.bz/E9zJ
http://mng.bz/E9zJ

69EXERCISE 14 ■ Selective updating
Beyond the exercise

 Set all the odd temperatures to the mean of all the temperatures.
 Set the even temperatures at hours 9 and 18 to 3.
 If the hour is odd, set the temperature to 5.

Summary
In this chapter, we started to work with data frames—creating them, adding data to
them, retrieving data from them, analyzing them, and even cleaning up when data is
missing. These techniques and those from the previous chapter are the building
blocks on which we work with data in pandas. In the next chapter, we’ll tackle more
complex scenarios using data from the real world.

Importing and
exporting data
So far, we’ve been creating data frames manually or using random values. In the real
world, data frames contain actual, useful values, typically imported from CSV files,
Excel spreadsheets, or relational databases. Similarly, when we’re done analyzing
data, we want to share our analysis by saving data to files in those (or other) formats.

 In this chapter, we explore how to import data from various formats, emphasiz-
ing CSV files because they’re so common. We look at ways in which we can not only
read from such files but also customize the reading either to improve the quality of
our data or optimize the process.

Table 3.1 What you need to know

Concept What is it? Example To learn more

pd.read_csv Returns a new data
frame based on CSV
input

df = pd.read_csv
('myfile.csv')

http://mng.bz/wvl7

df.to_csv Writes a data frame to a
CSV-formatted file or
string

df.to_csv
('myfile.csv')

http://mng.bz/7Dzx

pd.read_json Returns a new data
frame based on JSON
input

df = pd.read_json
('myfile.json')

http://mng.bz/mV4n

df.corr Shows the correlations
among the columns

df.corr() http://mng.bz/6DQG

df.dropna Returns a new data
frame without any NaN
values

df.dropna() http://mng.bz/o1PN
70

http://mng.bz/o1PN
http://mng.bz/6DQG
http://mng.bz/mV4n
http://mng.bz/7Dzx
http://mng.bz/wvl7

71■CHAPTER 3 Importing and exporting data
Table 3.1 What you need to know (continued)

Concept What is it? Example To learn more

df.loc Retrieves selected rows
and columns

df.loc[df['trip_
distance'] > 10,
'passenger_count']

http://mng.bz/nWPv

pd.read_html Returns a list of data
frames based on HTML
input

df = df.read_html
('https://a-
site.com')

http://mng.bz/vnxx

s.value_counts Returns a sorted (descend-
ing frequency) series
counting how many times
each value appears in s

s.value_counts() http://mng.bz/yQyJ

s.round Returns a new series
based on s in which the
values are rounded to the
specified number of deci-
mals.

s.round(2) http://mng.bz/QPym

df.memory_usage Indicates how many bytes
are being used by a data
frame and its associated
data

df.memory_usage() http://mng.bz/XNPY

pd.Series.idxmin Returns the index of the
lowest value in a series

s.idxmin() http://mng.bz/ZR6Z

pd.Series.idxmax Returns the index of the
highest value in a series

s.idxmax() http://mng.bz/RmrP

pd.DataFrame.agg Invokes one or more aggre-
gation methods on a data
frame

df.idxmax(['min',
'max'])

http://mng.bz/27QX

CSV, the nonstandard standard
Computer scientist Andrew S. Tanenbaum once said, "The good thing about stan-
dards is that there are so many to choose from." In many ways, the same can be said
for files in comma-separated values (CSV) format, which are the overwhelming favor-
ite in the world of data. Sure, plenty of people use Excel and relational databases,
but if you download a data set from the internet, odds are it’s a CSV file.

At its heart, CSV assumes that your data can be described as a two-dimensional
table. The rows are represented as rows in the file, and the columns are separated
by . . . well, they’re separated by commas, at least by default. CSV files are text files,
meaning you can read (and edit) them without special tools.

For all its popularity, CSV doesn’t have a formal specification. There is a Request for
Comments (RFC; 4110, available at https://datatracker.ietf.org/doc/html/rfc4180),

https://datatracker.ietf.org/doc/html/rfc4180
http://mng.bz/27QX
http://mng.bz/RmrP
http://mng.bz/ZR6Z
http://mng.bz/XNPY
http://mng.bz/QPym
http://mng.bz/yQyJ
http://mng.bz/vnxx
http://mng.bz/nWPv

72 CHAPTER 3 Importing and exporting data
(continued)

but it’s informational, from 2005. And although we can generally agree on what con-
stitutes legal CSV, many variants and gray areas make writing and parsing CSV diffi-
cult or at least ambiguous.

Rather than take a stand on how CSV files should be formatted, pandas tries to be
open and flexible. When we read from a CSV file (with pd.read_csv) or write a data
frame to CSV (with df.to_csv), we can choose from many, many parameters, each
of which can affect how it is written. Among the most common are these:

 sep—The field separator, which is (perhaps obviously) a comma by default
but can often be a tab ('\t')

 header—Whether there are headers describing column names and on which
line of the file they appear

 index_col—Which column, if any, should be set to be the index of our data
frame

 usecols—Which columns from the file should be included in the data frame

For example, we can say

pd.read_csv('mydata.csv',
sep='\t',
index_col='w',

usecols=['w', 'x', 'z'],
header=0)

It’s worth looking through the documentation for pd.read_csv, in no small part
because the sheer number of parameters will likely overwhelm you the first time you
try to understand what you can configure and how. We’ll explore several of these
parameters in this book, but many that we don’t cover may be useful in your work.

Names the CSV
file to read Uses a tab as a

separator character

Sets the index
to the w column

Only reads columns
w, x, and z from the file

The file’s first
line contains the
column names.

6512d

8887c

219b

6747a

zx

pd.read_csv('mydata.csv',
 sep='\t',
 index_col='w',
 usecols=['w', 'x', 'z'],
 header=0)

w x y z
0 a 87 46 88
1 b 37 25 77

2 c 9 20 80
3 d 79 47 64

a
b

c
d

87
37

9
79

88
77

80
64

y w x z

Graphical
depiction of
reading a CSV file
with common
keyword
arguments

73EXERCISE 15 ■ Weird taxi rides
NOTE When teaching data science, I often use the phrase “know your data.”
That’s because it’s important to know as much about your data as possible
before willy-nilly reading it into memory. You probably don’t want to load all
the columns into pandas. And you may want to specify the type of data in each
column rather than let pandas just guess. Most data sets come with a “data dic-
tionary,” a file that describes the columns, their types, their meanings, and
their ranges. It’s almost always worth your while to examine a data dictionary
when starting to analyze the data. In many cases, the dictionary will give you
insights that will help you decide what and how you want to read into pandas.

EXERCISE 15 ■ Weird taxi rides
When I was growing up, taking a taxi in New York City was pretty simple: you hailed a
cab and told the driver where you wanted to go. When you got there, you paid whatever
was on the meter, added a tip, and got a receipt. Of course, the payment was in cash.

 Nowadays, things are a bit different: New York taxis have TV screens on which they
show advertisements and something resembling entertainment. But those screens
aren’t just there to annoy you; they also function as credit card terminals, allowing you
to use your card to pay for your trip and even add a tip. The screens are also comput-
ers, storing information about the trip and sending it to the Taxi and Limousine Com-
mission (TLC), the city department that regulates taxis. The TLC then uses this
information to make decisions regarding transportation policy.

 Fortunately for the world of data science, the data collected by New York taxis is also
available to us, the general public. We can retrieve information about every trip made
over the last decade or so, learning where people went, how much they spent, how they
paid, and even how much they tipped. This is one of my favorite data sets, so we’ll use
it quite a bit in this book. In particular, we’ll look at several columns from the data set:

 passenger_count—The number of passengers who took that taxi ride.
 trip_distance—The distance traveled in miles.
 total_amount—The total owed to the driver, including the fare, tolls, taxes,

and tip.
 payment_type—An integer number describing how the passenger paid for the

trip. The most important values are 1 (credit card) and 2 (cash).

For this exercise, I want you to create a data frame from the CSV data for January 2019:

1 Load the CSV file into a data frame using only the four columns mentioned ear-
lier: passenger_count, trip_distance, payment_type, and total_amount.

2 How many taxi rides had more than eight passengers?
3 How many taxi rides had zero passengers?
4 How many taxi rides were paid for in cash and cost over $1,000?
5 How many rides cost less than $0?
6 How many rides traveled a below-average distance but cost an above-average

amount?

74 CHAPTER 3 Importing and exporting data
NOTE Why do we read CSV files with the pd.read_csv function rather than
with a method on an existing data frame? Because the goal of read_csv is to
create (and return) a new data frame based on the contents of the CSV file,
not to modify or update the contents of an existing one.

Working it out

To solve this problem, we first need to create a new data frame from the CSV file. For-
tunately, the data is formatted in such a way that pd.read_csv works fine with its
defaults, returning a data frame with named columns. But this file contains a lot of
data—7,667,792 rides, to be exact—and if we only keep the columns we need, we
reduce the memory footprint a lot. (I found that loading only the columns I asked for
reduced memory usage from 2.4 GB to 234 MB. We’ll talk more about optimizing and
measuring memory usage in Chapter 10.)

 The usecols parameter to pd.read_csv allows us to select which columns from
the CSV file will be kept around. The parameter takes a list as an argument, which can
either contain integers (indicating the numeric index of each column) or strings rep-
resenting the column names. I generally prefer to use strings because they’re more
readable, and that’s what I did here.

 The result was a data frame with four columns and more than 7.6 million rows,
each representing one taxi ride in New York City during January 2019. With that data
in hand, we can start answering the questions asked by this exercise.

 For starters, we wanted to know how many taxi rides had more than eight passen-
gers. The standard way to get this information is to create a boolean series with our
query and then apply it as an index. We can find all rows in which there were more
than eight passengers with

df['passenger_count'] > 8

We can then apply the boolean series as a mask index to the entire data frame via the
loc accessor:

df.loc[df['passenger_count'] > 8]

We can even run the count method on every column in the data frame:

df.loc[df['passenger_count'] > 8].count()

Counting (and ignoring) NaN
When we run count on a series, we get back a single integer indicating how many
non-NaN values are in that series. When we run it on a data frame, we get back a
series in which the index represents the data frame’s columns and the numbers indi-
cate how many non-NaN values are in each column. For example:

s = Series([10, 20, np.NaN, 40, 50])
s.count()

75EXERCISE 15 ■ Weird taxi rides
Right now, we’re only interested in the passenger_count column and in calculating
how many such rides there were. We can thus trim the columns by using loc:

df.loc[df['passenger_count'] > 8,
'passenger_count'
].count()

Sure enough, this tells us that in January 2019, there were nine trips with more than eight
people, as we can see in figure 3.1. (I hope they took place in larger-than-usual taxis.)

The result of this code is 4. However, the result of the following code is a series:

df = DataFrame([[10, 20, np.NaN, 40],
[50, np.NaN, np.NaN, np.NaN],
[np.NaN, 60, 70, 80]],

index=list('abc'),
columns=list('wxyz'))

df.count()

The series shows the number of non-NaN values in each column:

w 2
x 2
y 1
z 2
dtype: int64

Row selector: only
rows with more than
nine passengers

Column selector: only
the passenger_count
column

How many non-NaN
values are there?

>8

7

9

8

7

8

7

8

7

7

9

passenger_count

False

True

True

False

False

False

False

False

False

False

Row
selector

Column selector
sum

 2

total_amount

6992096 7 4.57 1 101.14

4534691 9 0.00 1 110.76

49225 8 5.08 1 109.56

3527872 7 0.00 2 7.30

5531663 8 11.38 1 78.00

2718854 7 23.79 1 136.95

2961303 8 0.00 1 85.80

1040601 7 0.00 1 65.80

3800828 7 0.06 2 7.30

2883943 9 0.00 1 12.25

payment_typetrip_distancepassenger_count

7

8

7

8

7

8

7

7

passenger_count

4534691 0.00 1 110.769

2883943 0.00 1 12.259

Figure 3.1 Graphical depiction of
selecting rows where passenger_count
> 8 and then invoking sum.

76 CHAPTER 3 Importing and exporting data
Next, how many taxi rides in January 2019 had zero passengers? I would guess that if
there aren’t any passengers, the taxi is being used as a package-delivery service. Or
perhaps the driver simply neglected to enter that information; the data dictionary
provided by New York City indicates that the number of passengers is entered manu-
ally by the driver, which makes it far more error-prone.

 Once again, we can query passenger_count:

df['passenger_count'] == 0

This gives us a boolean series, which we can use in another query that uses loc and a
column selector, along with a call to count:

df.loc[df['passenger_count'] == 0,
'passenger_count'
].count()

There were 117,381 such rides. This sounds like a lot, but it turns out to be only 1.5%
of all rides taken that month.

 Although it’s true that most people pay for taxi rides using credit cards, some still
pay cash for various reasons. How many rides that month were paid for in cash and
had a total_amount of more than $1,000?

 This question is a bit harder to answer because we need to combine two different
boolean series. The first will find rides in which the payment method was cash (i.e., 2),
and the second will find total_amount greater than 1,000. We can then join the two
together using &:

(df['payment_type'] == 2) & (df['total_amount'] > 1000)

This returns a boolean series with a value of True for every index where both are True
and False everywhere else. We can apply it to the data frame using loc, retrieving the
total_amount column via the second argument and then calling count on it (figure
3.2):

df.loc[(df['payment_type'] == 2) & (df['total_amount'] > 1000),
'passenger_count'

].count()

I got a result of 5. I may be extreme in using very little cash, but I was still shocked to
discover that there were any rides paid for in cash with such a large amount of money.
Granted, it’s only a handful of taxi rides, but still—can you imagine pulling $1,000 out
of your wallet to pay for a taxi?

 But I digress.

Row selector, looking
for zero passengers

Column selector: just
passenger_countHow many non-NaN

values are there?

Row selector: looking for cash
payments of at least $1,000

Column selector: looking
for passenger countHow many non-NaN

values are there?

77EXERCISE 15 ■ Weird taxi rides
Figure 3.2 Graphical depiction of selecting rows where payment_type == 2 and total_amount > 1000, and
counting the elements of passenger_count

Next, I asked you to find rides that cost less than $0. This would presumably mean the
rider got a refund, but there could be other reasons, such as overpayment for a previ-
ous ride. How many such rides took place in January 2019?

 Once again, we use a query to create a boolean series:

df['total_amount'] < 0

We apply this boolean series as a mask index on the total_amount column and run
count:

df.loc[df['total_amount'] < 0, 'total_amount'].count()

The total is 7,131, meaning only .01% of all taxi rides gave money back. These are better
odds than the lottery, but probably not a good idea if you’re looking for a new career.

Row selector

Column selector

&

False

False

False

False

False

False

True

False

False

False

count

1

total_amount

4794470 1 0.00 3 400.30

6234627 1 57.70 1 403.57

3715690 1 0.00 2 1079.40

876394 3 33.46 1 463.30

6617225 1 0.00 4 580.30

6953848 1 0.10 1 450.30

7099014 4 0.01 2 415.30

4964859 1 0.00 2 419.03

571772 1 0.00 1 602.76

1892715 0 0.00 1 34674.65

payment_typetrip_distancepassenger_count

0.00 2 1079.403715690

3

1

1

4

1

1

1

1

0

passenger_count

1

False

False

False

False

False

False

True

False

False

True

True

True

>1000

total_amount

400.30

403.57

1079.40

463.30

580.30

450.30

415.30

419.03

602.76

34674.65

False

False

False

False

False

False

False

True

True

TrueTrue

True

payment_type

3

1

2

1

4

1

2

2

1

1

==2

True

78 CHAPTER 3 Importing and exporting data

s n
 Finally, I asked how many trips traveled a below-average distance but cost an above-
average amount. To solve this, we once again need to find all the trips that traveled a
below-average distance:

df['trip_distance'] < df['trip_distance'].mean()

Then we find all the trips that cost an above-average amount:

df['total_amount'] > df['total_amount'].mean()

We combine them using & to get a new boolean series:

(df['trip_distance'] < df['trip_distance'].mean()) &
(df['total_amount'] > df['total_amount'].mean())

Finally, we use loc on this boolean series, applying it to trip_distance and then
counting the results (figure 3.3):

df.loc[(df['trip_distance'] < df['trip_distance'].mean()) &
(df['total_amount'] > df['total_amount'].mean()),
'trip_distance'
].count()

We get a total of 411,255 rides, which is about 5% of the total rides in the data set.

Solution

df = pd.read_csv('../data/nyc_taxi_2019-01.csv',
usecols=['passenger_count', 'trip_distance',

'total_amount', 'payment_type'])

df.loc[df['passenger_count'] > 8, 'passenger_count'].count()
df.loc[df['passenger_count'] == 0, 'passenger_count'].count()
df.loc[(df['payment_type'] == 2) & (df['total_amount'] > 1000),

'passenger_count'].count()
df.loc[df['total_amount'] < 0, 'total_amount'].count()
df.loc[(df['trip_distance'] < df['trip_distance'].mean()) &

(df['total_amount'] > df['total_amount'].mean()), 'trip_distance'].cou
nt()

You can explore this in the Pandas Tutor at http://mng.bz/0lvN.

Beyond the exercise

 Repeat this exercise using the query method rather than a boolean index and
loc.

 How many rides that cost less than $0 involved either a dispute (payment_type
of 4) or a voided trip (payment_type of 6)?

 I stated earlier that most people pay for taxi rides using a credit card. Show this,
and find what percentage normally pays in cash versus a credit card.

First part of row selector:
trip_distance is less than the mean

Second part of row
selector, total_amount i
more than the mean

column selector,
trip_distance column

Count the
on-NaN value

http://mng.bz/0lvN

79EXERCISE 16 ■ Pandemic taxis
EXERCISE 16 ■ Pandemic taxis
Not surprisingly, the coronavirus pandemic that caused widespread illness, death, and
economic havoc around the world starting in early 2020 affected taxi rides in New
York. In this exercise, we look at how we can load data from multiple files into a single

Row selector

Column selector

count

1

&

False

True

False

False

False

False

False

False

False

False

True

False

True

True

False

False

True

False

True

TrueTrue

True

trip_distance

2.14

0.00

0.90

1.90

1.20

3.12

0.94

5.60

2.49

2.00

<

True

True

True

True

2.03

mean

True

True

False

True

True

False

False

True

False

False

True

True

>

total_amount

14.75

3.30

11.16

17.16

9.35

15.30

8.30

24.35

13.30

11.80

True

True

True12.875

total_amount

2756071 2 2.14 1 l

7250511 1 0.00 2 3.30

1675779 2 0.90 1 11.16

1862830 1 1.90 1 17.16

2700815 1 1.20 1 9.35

6596777 1 3.12 1 15.30

416220 2 0.94 2 8.30

2311323 1 5.60 1 24.35

952483 5 2.49 1 13.30

7376585 1 2.00 1 11.80

payment_typetrip_distancepassenger_count

1 17.161862830 1

1.20

3.12

0.94

5.60

2.49

2.14

0.00

0.90

2.00

trip_distance

1.90

mean

Figure 3.3 Graphical depiction of counting rows
where trip_distance is less than the mean but
total_amount is greater than the mean

80 CHAPTER 3 Importing and exporting data
data frame and then make some simple comparisons between data before the pan-
demic and while New York was in the middle of it.

 In this exercise, I want you to create a data frame from two different CSV files con-
taining New York taxi data: one from July 2019 (before the pandemic) and a second
from July 2020 (near the height of the pandemic, at least in New York). The data
frame should contain three columns from the files: passenger_count, total_amount,
and payment_type. It should also include a fifth column, year, which should be set to
2019 or 2020, depending on the file from which the data was loaded.

 With that data in hand, I want you to answer a few questions:

 How many rides were taken in 2019 and 2020, and what is the difference
between these two figures?

 How much money (in total) was collected in 2019 and 2020, and what was the
difference between these two figures?

 Did the proportion of trips with more than one passenger change dramatically?
 Did people use cash (i.e., payment_type of 2) less in 2020 than in 2019?

NOTE There are some great techniques in pandas having to do with grouping
and date-time parsing that would make it easier to solve these problems. We’ll
discuss those techniques in chapters 6, 7, and 10, respectively. For now, see if
you can answer the questions without such assistance.

Working it out

There are countless ways to measure the pandemic’s effect on our lives and our world.
I find that this data set provides some interesting insights.

 For starters, I wanted you to take information from two different files and join
them into a single data frame. We saw in Chapter 1 how to use pd.concat to combine
two existing series objects into a single series. It turns out you can also use pd.concat
on data frames, which is what we want to do here. We can load the data into two sepa-
rate data frames and combine them:

df_2019_jul = pd.read_csv('../data/nyc_taxi_2019-07.csv',
usecols=['passenger_count',

'total_amount', 'payment_type'])

df_2020_jul = pd.read_csv('../data/nyc_taxi_2020-07.csv',
usecols=['passenger_count',

'total_amount', 'payment_type'])

df = pd.concat([df_2019_jul, df_2020_jul])

If we were only interested in getting aggregate answers, that would be enough. But we
want to separate the answers by year via a year column. My preferred solution is to
add a new column to each of the file-based data frames and then concatenate them
(figure 3.4):

df_2019_jul = pd.read_csv('../data/nyc_taxi_2019-07.csv',
usecols=['passenger_count',

81EXERCISE 16 ■ Pandemic taxis
'total_amount', 'payment_type'])
df_2019_jul['year'] = 2019

df_2020_jul = pd.read_csv('../data/nyc_taxi_2020-07.csv',
usecols=['passenger_count',

'total_amount', 'payment_type'])
df_2020_jul['year'] = 2020

df = pd.concat([df_2019_jul, df_2020_jul])

Figure 3.4 Concatenating two data frames into a single one

Once we have done that, we have a single data frame, df, to ask questions. For starters,
we want to know how many rides were taken in 2019 versus 2020. That can be done by
invoking count on any of our columns, subtracting the 2020 count from the 2019
count (figure 3.5):

(
df.loc[df['year'] == 2019, 'total_amount'].count() -
df.loc[df['year'] == 2020, 'total_amount'].count()

)

Adds a year column
with a value of 2019
to all rows from 2019

Adds a year column
with a value of 2020
to all rows from 2020

passenger_count payment_type total_amount year

4913760 3.0 1.0 17.76 2019

57553 1.0 1.0 20.76 2019

2910004 1.0 1.0 25.55 2019

252848 2.0 1.0 10.30 2020

615945 1.0 2.0 9.80 2020

349982 1.0 1.0 22.77 2020

passenger_count payment_type total_amount year

252848 2.0 1.0 10.30 2020

615945 1.0 2.0 9.80 2020

349982 1.0 1.0 22.77 2020

passenger_count payment_type total_amount year

4913760 3.0 1.0 17.76 2019

57553 1.0 1.0 20.76 2019

2910004 1.0 1.0 25.55 2019

252848 2.0 1.0 10.30 2020

615945 1.0 2.0 9.80 2020

349982 1.0 1.0 22.77 2020

4913760 3.0 1.0 17.76 2019

57553 1.0 1.0 20.76 2019

2910004 1.0 1.0 25.55 2019pd.concat

4913760 3.0 1.0 17.76 2019

57553 1.0 1.0 20.76 2019

2910004 1.0 1.0 25.55 2019

252848 2.0 1.0 10.30 2020

615945 1.0 2.0 9.80 2020

349982 1.0 1.0 22.77 2020

Creates df,
combining both
data frames

Number of
rides in 2019

Number of
rides in 2020

82 CHAPTER 3 Importing and exporting data
Figure 3.5 Comparing the number of rides in 2019 with 2020

The result is 5,510,007. That’s right—in July 2020, New Yorkers took 5.5 million fewer
taxi rides than in 2019. That’s a lot of taxi rides. But how much less money did taxi
drivers make as a result? Instead of using count, we use sum to total the numbers
before we subtract them:

(
df.loc[df['year'] == 2019, 'total_amount'].sum() -
df.loc[df['year'] == 2020, 'total_amount'].sum()

)

The answer that I get is 108848979.24000001, or more than $108 million. I don’t know
about you, but I look at that huge number and am simply astonished. (You can see a
graphical depiction of this in figure 3.6.)

It makes sense that the number of trips declined during the pandemic. However, we
may ask if people’s behavior changed, as well. For example, given that the pandemic
was in full swing during July 2020 and there wasn’t yet a vaccine, people were avoiding

Rounding floats
If you’re bothered by the long number of numbers after the decimal point, you can
use the round method on a series to limit it to two digits:

df.loc[df['year'] == 2019, 'total_amount'].sum().round(2) -
df.loc[df['year'] == 2020, 'total_amount'].sum().round(2)

252848 2.0 1.0 10.30 2020

615945 1.0 2.0 9.80 2020

349982 1.0 1.0 22.77 2020

passenger_count payment_type total_amount year

4913760 3.0 1.0 17.76 2019

57553 1.0 1.0 20.76 2019

2910004 1.0 1.0 25.55 2019

count

count

-

Column selector

Row selector
for 2019

Row selector
for 2020

2020

2020

2020

252848 2.0 1.0

615945 1.0 2.0

349982 1.0 1.0

4913760 3.0 1.0

57553 1.0 1.0

2910004 1.0 1.0

2019

2019

2019

10.30

9.80

22.77

total_amount

17.76

20.76

25.55

Total earned
in 2019

Total earned
 in 2020

83EXERCISE 16 ■ Pandemic taxis

Tot

Tot
each other to a large degree. As a result, we may wonder whether people were less
likely to take taxis with other people. The next question asked you to compare the
proportion (not a raw number) of multiperson taxi rides in 2019 with those in 2020.
To do that, we can divide the number of multiperson rides by the number of overall
rides. Here’s how we do that:

df.loc[
(df['year'] == 2019) &
(df['passenger_count'] > 1), 'passenger_count'].count() /

df.loc[df['year'] == 2019, 'payment_type'].count()

df.loc[
(df['year'] == 2020) &
(df['passenger_count'] > 1), 'passenger_count'].count() /

df.loc[df['year'] == 2020, 'payment_type'].count()

I get about 28% in 2019 and 21% in 2020, meaning people were less likely to share a
taxi during the pandemic. Another interpretation would be that there were fewer fam-
ily vacations and trips in New York, raising the proportion of single passengers com-
muting to work.

 Finally, we want to know whether people were more or less likely to use cash
during the pandemic, given that we were trying to avoid physical contact. Here’s how
we can calculate that (figure 3.7):

df.loc[
(df['year'] == 2019) &

252848 2.0 1.0 10.30 2020

615945 1.0 2.0 9.80 2020

349982 1.0 1.0 22.77 2020

passenger_count payment_type total_amount year

4913760 3.0 1.0 17.76 2019

57553 1.0 1.0 20.76 2019

2910004 1.0 1.0 25.55 2019

sum

sum

-

Column selector

Row selector
for 2019

Row selector
for 2020

2020

2020

2020

252848 2.0 1.0

615945 1.0 2.0

349982 1.0 1.0

2019

2019

2019

4913760 3.0 1.0

57553 1.0 1.0

2910004 1.0 1.0

10.30

9.80

22.77

total_amount

17.76

20.76

25.55

21.2

64.07

42.87

Figure 3.6 Comparing the total amount earned in 2019 with 2020

Number of rides in 2019
with > 1 passenger

al number of
rides in 2019

Number of rides in 2020
with > 1 passenger

al number of
rides in 2020

84 CHAPTER 3 Importing and exporting data

Tot

Tot
(df['payment_type'] == 2), 'payment_type'].count() /
df.loc[df['year'] == 2019, 'payment_type'].count()

df.loc[
(df['year'] == 2020) &
(df['payment_type'] == 2), 'payment_type'].count() /

df.loc[df['year'] == 2020, 'payment_type'].count()

Figure 3.7 Comparing the number of cash payments in 2019 with 2020

Here, the answer is a bit surprising. In July 2019, about 29% of the trips were paid for
in cash. But in July 2020, that number went up to 32%—exactly the opposite direction
of what I expected, given that many people preferred contactless payment. One the-
ory, floated by members of my family, is that the only people going to work during the
pandemic were those who had to do so, the so-called “essential workers.” They tend to
earn less money and use more cash. Regardless of the reason, the numbers bear out
the increased use of cash.

Solution

df_2019_jul = pd.read_csv('../data/nyc_taxi_2019-07.csv',
usecols=['passenger_count',

'total_amount', 'payment_type'])
df_2019_jul['year'] = 2019

df_2020_jul = pd.read_csv('../data/nyc_taxi_2020-07.csv',
usecols=['passenger_count’,

'total_amount', 'payment_type'])
df_2020_jul['year'] = 2020

Number of rides paid
 for with cash in 2019

al number of
rides in 2019

Number of rides paid
for with cash in 2020

al number of
rides in 2020

252848 2.0 1.0 10.30 2020

615945 1.0 2.0 9.80 2020

349982 1.0 1.0 22.77 2020

passenger_count payment_type total_amount year

4913760 3.0 1.0 17.76 2019

57553 1.0 1.0 20.76 2019

2910004 1.0 1.0 25.55 2019

count

count

-

Column selector

Row selector for 2019,
payment_type 2 (0 rows)

Row selector for 2020,
payment_type 2 (1 row)

9.80 2020615945 1.0

1.0

1.0

payment_type

1.0

1.0

1.0

2.0

0

1

85EXERCISE 16 ■ Pandemic taxis
df = pd.concat([df_2019_jul, df_2020_jul])

df.loc[df['year'] == 2019, 'total_amount'].count() – df.loc[df['year'] ==
2020, 'total_amount'].count()
df.loc[df['year'] == 2019, 'total_amount'].sum() – df.loc[df['year'] ==
2020, 'total_amount'].sum()

df.loc[(df['year'] == 2019) &
(df['passenger_count'] > 1), 'passenger_count'].count() /

df.loc[df['year’] == 2019, 'payment_type'].count()
df.loc[(df['year'] == 2020) &

(df['passenger_count'] > 1), 'passenger_count'].count() /
df.loc[df['year'] == 2020, 'payment_type'].count()

df.loc[(df['year'] == 2019) &
(df['payment_type'] == 2), 'payment_type'].count() /

df.loc[df['year'] == 2019, 'payment_type'].count()
df.loc[(df['year'] == 2020) &

(df['payment_type'] == 2), 'payment_type'].count() /
df.loc[df['year'] == 2020, 'payment_type'].count()

You can explore this in the Pandas Tutor at http://mng.bz/g7jE.

Beyond the exercise

 Use the corr method on df to find the correlations among the columns. How
would you interpret these results?

 Show, with a single command, the difference in descriptive statistics for
total_amount between 2019 and 2020. Round values to use no more than two
digits after the decimal point.

 If we assume that zero-passenger trips are for delivering packages, how were
those affected during the pandemic? Show the proportion of such trips in 2019
versus 2020.

Data frames and dtype
In Chapter 1, we saw that every series has as dtype describing the type of data it
contains. We can retrieve this data using the dtype attribute, and we can tell pandas
what dtype to use when creating a series using the dtype parameter when we invoke
the Series class.

In a data frame, each column is a separate pandas series and thus has its own dtype.
By retrieving the dtypes (notice the plural!) attributes from a data frame, we can deter-
mine the dtype of each column. This information and additional details about the data
frame are also available by invoking the info method on our data frame.

When we read data from a CSV file, pandas tries to infer each column’s dtype.
Remember that CSV files are really text files, so pandas has to examine the data to
choose the best dtype. It will choose one of three types:

 If the values can all be turned into integers, it chooses int64.

http://mng.bz/g7jE

86 CHAPTER 3 Importing and exporting data
(continued)

 If the values can all be turned into floats—which includes NaN—it chooses
float64.

 Otherwise, it chooses object, meaning core Python objects.

However, there are several problems with letting pandas analyze and choose the data
this way. First, although these default choices aren’t bad, they can be overly large for
many values. We often don’t need 64-bit numbers, so choosing int64 or float64
will waste memory.

The second problem is much more subtle: if pandas is to correctly guess the dtype
for a column, it must examine all the values in that column. But if a column has mil-
lions of rows, that process can use a huge amount of memory. For this reason,
read_csv reads the file into memory in pieces, examining each piece in turn and then
creating a single data frame from all of them. You normally won’t know it’s happen-
ing; pandas does this to save memory.

This can potentially lead to a problem, if pandas finds (for example) values that look
like integers at the top of the file and values that look like strings at the bottom. In
such a case, you end up with a dtype of object and with values of different types.
This is almost certainly bad, and pandas warns you about it with a DtypeWarning. If
you load the New York City taxi data from January 2020 into pandas without specify-
ing usecols, you may well get this warning—I often did, on my computer.

One way to avoid this mixed-dtype problem is to tell pandas not to skimp on memory
and that it’s okay to examine all the data. You can do that by passing a False value
to the low_memory parameter in read_csv. By default, low_memory is set to True,
resulting in the behavior I’ve described here. But remember that setting low_memory
to False may use lots of memory, a potentially big problem if your data set is large.

A better solution is to tell pandas that you don’t want it to guess the dtype and that
you would rather tell it explicitly. You can do that by passing a dtype parameter to
read_csv with a Python dictionary as its argument. The dict’s keys will be strings,
the names of the columns being read from disk, and the values will be the data types
you want to use. It’s typical to use data types from pandas and NumPy, but if you
specify int or float, pandas will simply use np.int64 or np.float64. And if you
specify str, pandas will store the data as Python strings, assigning a dtype of object.

For example:

df_2019_jul = pd.read_csv('../data/nyc_taxi_2019-07.csv',
usecols=['passenger_count',

'total_amount', 'payment_type'],
dtype={'passenger_count':np.int8,

'total_amount':np.float32,
'payment_type':np.int8})

Finally, it’s often tempting to set an integer dtype. But remember that if the column
contains NaN, it cannot be defined as an integer dtype. Instead, you’ll need to read
the column as floating-point data, remove or interpolate the NaN values, and then con-
vert the column (using astype) to the integer type you want.

87EXERCISE 17 ■ Setting column types
EXERCISE 17 ■ Setting column types
Once again, I want you to create a data frame based on New York taxi data from Janu-
ary 2020. This time, however, I want to ensure that the data is in the most appropriate
and compact form it can be and will use as little memory as possible when being
loaded. So, I want you to do the following:

 Specify the dtype for each column as you read it in.
 Identify rows containing NaN values. Which columns are NaN, and why?
 Remove any rows containing any NaN values.
 Set the dtype for each column to the smallest, most appropriate value.

Working it out

Although this exercise is ostensibly about setting the dtype when reading from files,
there is much more to it—in particular, we begin to see that cleaning data and setting
appropriate data types can be a multistep process.

 We start by reading the data from January 2020, much as we did before, with
read_csv. However, this time I want you to specify the dtype of each column. In the-
ory, the best choices for the dtype assignments are int8 for both passenger_count
and payment_type, because both are integers that won’t ever go above 128.

 But if we try to set the dtype for passenger_count and payment_type to int8, we
quickly discover a problem: pandas raises an error, indicating that there are NaN values
in those columns. Because NaN is a float that cannot be converted into an integer, we
need to keep those columns as floats. So, we can use float32 for now and then switch
it back to int8 when we’re done removing NaN values.

 It may seem odd to set the dtype to a not-quite-correct value. Why not just let pan-
das guess, as we have done so far, and then change it afterward? Because in a large
data set, we risk having multiple dtype values for a single column. That’s a result of
pandas reading our file in chunks and choosing a dtype for each chunk. If all chunks
have the same dtype, the entire column matches. If not, the column is set to a dtype
of object, meaning a collection of Python objects.

NOTE The chunking I’m describing here is done automatically as pandas
reads data from the file. Separate functionality allows us to read files in
chunks; we’ll discuss that in Chapter 12.

Why would passenger_count and payment_type contain NaN values? Perhaps because
both of them are manually set by the driver. However, it doesn’t happen very often:
out of 6.4 million taxi rides in our data set, only 65,441 had NaN values, which works
out to about 1%. It doesn’t seem unreasonable for drivers to neglect to indicate the
number of passengers in 1 out of every 100 rides.

 Regardless, to change those two columns’ dtype to be int8, we need to remove the
NaN values. We can do that with df.dropna(), which returns a new data frame identical

88 CHAPTER 3 Importing and exporting data
to df but without rows containing NaN. We can assign the result of df.dropna() back to
df (figure 3.8):

df = df.dropna()

Figure 3.8 Removing rows containing NaN with dropna

Even though df.dropna() returns a new data frame, its data may be shared with other
data frames for the sake of efficiency. Modifying our data frame may thus result in a
SettingWithCopyWarning. To avoid that, we can use the copy method on our data
frame to ensure that there isn’t any shared data behind the scenes:

df = df.dropna().copy()

If you don’t use copy, you may get the warning, which may be harmless, but it also may
mean any changes you make won’t stick.

total_amountpayment_typepassenger_count

1989781 1.0 1.0 10.296875

6234861 1.0 1.0 75.812500

4320340 1.0 1.0 16.562500

1847070 3.0 1.0 9.296875

211378 2.0 1.0 25.703125

3581544 1.0 1.0 15.359375

3568409 1.0 1.0 15.953125

1057067 1.0 2.0 5.300781

5894087 2.0 1.0 23.156250

dropna()

total_amountpayment_typepassenger_count

1989781 1.0 1.0 10.296875

6355241 NaN NaN 25.546875

6234861 1.0 1.0 75.812500

4320340 1.0 1.0 16.562500

1847070 3.0 1.0 9.296875

211378 2.0 1.0 25.703125

3581544 1.0 1.0 15.359375

3568409 1.0 1.0 15.953125

1057067 1.0 2.0 5.300781

5894087 2.0 1.0 23.156250

6355241 NaN NaN 25.546875

89EXERCISE 18 ■ passwd to df
 Now that we have removed all the NaN values, we can finally assign the dtype values
we wanted to use all along:

df['passenger_count'] = df['passenger_count'].astype(np.int8)
df['payment_type'] = df['payment_type'].astype(np.int8)

=== Solution

df = pd.read_csv('../data/nyc_taxi_2020-01.csv',
usecols=['passenger_count',

'total_amount' , 'payment_type'],
dtype={'passenger_count':float32,

'total_amount':float32,
'payment_type':float32})

df.count() 2((CO11-2))
df = df.dropna().copy()

df['passenger_count'] = df['passenger_count'].astype(np.int8)
df['payment_type'] = df['payment_type'].astype(np.int8)

You can explore this in the Pandas Tutor at http://mng.bz/eEKv.

Beyond the exercise

 Create a data frame from four other columns (VendorID, trip_distance,
tip_amount, and total_amount), specifying the dtype for each. What types are
most appropriate? Can you use them directly, or must you first clean the data?

 Instead of removing NaN values from the VendorID column, set it to a new value:
3. How does that affect your specifications and cleaning of the data?

 We’ll talk more about this in Chapter 11, but the memory_usage method allows
you to see how much memory is being used by each column in a data frame. It
returns a series of integers in which the index lists the columns, and the values
represent the memory used by each column. Compare the memory used by the
data frame with float16 (which you’ve already used) and when you use
float64 instead for the final three columns.

EXERCISE 18 ■ passwd to df
As we’ve seen, CSV is a very flexible format. Many files that you wouldn’t necessarily
think of as being CSV files can be imported into pandas with read_csv, thanks to a
huge number of parameters that you can assign.

 In this exercise, I want you to create a data frame from a file that you wouldn’t nor-
mally think of as CSV but that fits the format fine: the Unix passwd file. This file,
which is standard on Unix and Linux systems, contains usernames and passwords.
Over the years, it has evolved such that it no longer contains the actual passwords.
Although MacOS is based on Unix, it doesn’t use the passwd file for most user logins.

We use float32 for all
columns because two of
them contain NaN values

Uses df.count to
determine which
columns may
contain NaN

Removes all rows containing even
one NaN, copies into a new data
frame, and assigns back to df

Uses the loc
assignment with
: to indicate
“all rows”

http://mng.bz/eEKv

90 CHAPTER 3 Importing and exporting data
 Specifically, do the following:

1 Create a data frame based on linux-etc-passwd.txt. Notice that this file contains
comment lines (starting with #) and blank lines (which you should ignore).
The field separator is :.

2 Add column names: username, password, userid, groupid, name, homedir, and
shell.

3 Make the username column the data frame’s index.

Don’t worry if you know nothing about Unix or the passwd file—the point is to
explore read_csv and its many options.

Working it out

For this exercise, we pull out all the stops, passing more arguments to read_csv than
ever before. Each is necessary to parse the passwd file correctly, turning it into a data
frame we can query. Over time, you’ll discover that certain parameters to read_csv
are used in nearly every project, making it easier to remember them.

 Let’s review each keyword argument that we pass to read_csv, look at what it does,
and see how the value we pass allows us to read passwd into a data frame. For starters,
CSV files are named for the default field separator, the comma. By default, pandas
assumes that we have comma-separated values. It’s fine if we want to use another char-
acter, but then we need to specify that in the sep keyword argument. In this case, our
separator is :, so we pass sep=':' to read_csv.

 Next, we deal with the fact that this passwd file contains comments. Comments all
start with # characters and extend to the end of the line. Not many companies put
comments in their passwd files, but given that some do, we should handle them. And
read_csv does this elegantly, letting us specify the string that marks the start of a com-
ment line. By passing it comment='#', we indicate that the parser should ignore such
lines.

 The next keyword argument is header. By default, read_csv assumes that the first
line of the file is a header containing column names. It also uses that first line to fig-
ure out how many fields will be on each line. If a file contains headers but not on its
first line, we can set header to an integer value, indicating which line read_csv should
look for them. But /etc/passwd isn’t really a CSV file, and it definitely doesn’t have
headers. Fortunately, we can tell read_csv that there is no header with header=None.

 What about the blank lines? We get off easy here because read_csv ignores blank
lines by default. If we want to treat blank lines as NaN values, we can pass
skip_blank_lines=False rather than accepting the default value of True.

 The final keyword argument we pass is names. If we don’t give any names, the data
frame’s columns will be labeled with integers starting with 0. There’s nothing techni-
cally wrong with this, but it’s harder to work with data. Besides, it’s easy to pass the
names we want to give our columns as a list of strings. Here, we pass the same list of
strings we described in the exercise description (figure 3.9).

https://github.com/reuven/pandas-workout

91EXERCISE 18 ■ passwd to df
Figure 3.9 Turning the passwd file into a data frame

With this in place, the passwd file can easily be turned into a data frame. And along
the way, I hope your conception of a CSV file has become more flexible.

Solution

df = pd.read_csv('../data/linux-etc-passwd.txt',
sep=':', comment='#', header=None,

names=['username', 'password', 'userid', 'groupid', 'name',
'homedir', 'shell'])

Field separators and regular expressions
I’m often asked if we can specify more than one separator. For example, what if fields
can be separated by either : or by ,? What do we do then?

Pandas has a great solution: if sep contains more than one character, it is treated
as a regular expression. So if you want to allow for either colons or commas, you can
pass a separator of [:,]. If that looks reasonable to you, congratulations: you prob-
ably know about regular expressions. If you don’t know them, I strongly encourage
you to learn! Regular expressions are extremely useful to anyone working with text,
which is nearly every programmer. If you’re interested, I have a free tutorial on regular
expressions using Python at https://RegexpCrashCourse.com.

Normally, pandas parses CSV files using a library written in C. If your field separator
uses regular expressions, it needs to use a parser written in Python, which executes
more slowly and uses more memory. Consider whether you need this functionality
and the performance hit the Python-based parser creates.

This is a comment
You should ignore me
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin

shellhomedirnamegroupiduseridpasswordusername

1 daemon x 1 1 daemon /usr/sbin /usr/sbin/nologin

2 bin x 2 2 bin /bin /usr/sbin/nologin

0 root x 0 0 root /root /bin/bash

Ignored as
comments names

: is a
separator.

https://RegexpCrashCourse.com

92 CHAPTER 3 Importing and exporting data
You can explore an abridged version of this in the Pandas Tutor at http://mng
.bz/G9lv.

Beyond the exercise

Now that we’ve seen how parameters to read_csv can help us turn CSV files into data
frames, here are a few exercises to further help you understand how to massage
passwd file into various types of data frames:

 Ignore the password and groupid fields so they don’t appear in the data frame.
 Unix systems typically reserve user IDs below 1000 to special accounts. Show the

nonspecial usernames in this passwd file.
 Immediately after logging into a Unix system, a command interpreter known as

a shell fires up. What are the different shells in this file?

EXERCISE 19 ■ Bitcoin values
When we think about CSV files, it’s often in the context of data that has been col-
lected once and that we now want to examine and analyze. But there are numerous
examples of computer systems that publish updated data regularly and make their
findings known via CSV files. It thus shouldn’t come as a surprise to discover that
read_csv’s first argument, which we normally think of as a filename, can contain sev-
eral different types of values:

 Strings containing filenames (as we have already seen in this chapter)
 Readable file-like objects, typically the result of calling open, but also including

StringIO objects
 Path objects, such as instances of pathlib.Path
 Strings containing URLs

This last case is the most interesting and will be the focus of this exercise. We can pass
a URL to read_csv, and assuming the URL returns a CSV file, pandas will return a new
data frame. The rest of the parameters are the same as any other call to read_csv. The
only difference is that we’re reading from a URL rather than from a file on a filesystem.

 Why is this important and useful? Because numerous systems produce hourly or
hourly reports, publishing in CSV format to a URL that doesn’t change. If we retrieve
data from that URL, we’re guaranteed to get a CSV file reflecting the latest and great-
est data. Thanks to the URL provisions of read_csv, we can include pandas in our
daily reporting routine, summarizing and extracting the most important data from
this report.

Using “requests”
In many cases, CSV files published to a URL require authentication via a username
and password. In some cases, sites allow you to include such authentication details

http://mng.bz/G9lv
http://mng.bz/G9lv
http://mng.bz/G9lv

93EXERCISE 19 ■ Bitcoin values
In this exercise, I want you to retrieve the dates and values for Bitcoin over the most
recent year as of when you read this. (For that reason, your results will look different
from mine, even if you use the same code.) Once you have retrieved this data, I want
you to produce a report showing

 The closing price for the most recent trading day
 The lowest historical price and the date of that price
 The highest historical price and the date of that price

As of this writing, you can retrieve Bitcoin’s price history in CSV format at
https://api.blockchain.info/charts/market-price?format=csv.

NOTE Many stock-history sites require that you register and log in before
retrieving data, but as of this writing, the URL I provided here does not.

Working it out

What always amazes me about using pd.read_csv is how easy it is to read CSV data
from a URL. Other than the fact that the data comes from the network, it works the
same as reading from a file. Among other things, we can select which columns we
want to read using the usecols parameter.

 We can read the CSV file into memory by passing a URL to pd.read_csv. There
are only two columns to read, but there are no headers—so we have to say
header=None. Then we give names to the columns, date and value:

df = pd.read_csv('https://api.blockchain.info/charts/market-price?format=csv',
header=None,
names=['date', 'value'])

Once we have created our data frame, we want to retrieve the closing price for the
most recent day. Given that this kind of program can be run daily to automatically
summarize market information, it’s important to standardize how we retrieve the most

in the URL. For those that don’t, you can’t retrieve directly via read_csv. Rather, you
need to retrieve the data separately, perhaps using the excellent third-party
requests package, and then create a StringIO with the contents of the retrieved
data.

For example, you can say

import requests
from io import StringIO

r = requests.get('https://data_for_you.com/data.csv')
s = StringIO(r.content.decode())
df = pd.read_csv(s)

Example URL

Turns the content into a string
and uses it to create a StringIOPasses the StringIO to

read_csv, returning
a data frame

https://api.blockchain.info/charts/market-price?format=csv

94 CHAPTER 3 Importing and exporting data
recent information. A quick look at the data, especially via pd.head() and pd.tail(),
shows that the file is in chronological order with the newest data at the end. We can
thus retrieve the most recent record with pd.tail(1). If we run this program every
day, pd.tail(1) will always contain the most recent data.

 But I didn’t ask you to display all the data from the most recent update. Rather, we
only want to see the value. How can we get that? By realizing that we get a data frame
back from df.tail(1). We can request a particular column from that data frame: value.

Next, I asked you to find the minimum and maximum values and to show the corre-
sponding date and value. We can use a boolean index to find the rows—or, more likely,
a single row—that matches the minimum closing price. We then pass a second value to
.loc, allowing us to choose which columns are displayed. Notice that we look for the
minimum value of value and then find all the rows equal to that, effectively finding the
row with the min value. In theory, two rows may both have the same value, in which case
we show both of them. We then repeat this for the max value (figure 3.10):

df.loc[df['value'] == df['value'].min(), ['date', 'value']]
df.loc[df['value'] == df['value'].max(), ['date', 'value']]

However, there is another, more elegant approach: if we turn the date column into
the data frame’s index, we can then invoke idxmin and idxmax on the data frame.
These method calls return not just the minimum/maximum values but also the
indexes associated with these values—that is, the dates:

df.set_index('date').idxmin()
df.set_index('date').idxmax()

Want just the value?
df.tail(1) returns the final row of df, which contains both the date and value col-
umns. What if we only want value?

One option is to think of df.tail(1) as a one-row data frame. Each column of a data
frame is a series, so we can retrieve the value with

df.tail(1)['value']

Sure enough, we get a one-element series back. But remember that we can retrieve
more than one column from a data frame by passing a list of columns—that is, in
double square brackets. What if we use double square brackets but list only one
column?

df.tail(1)[['value']]

The result is a data frame containing one row (same as df.tail(1)) and one column
(value).

Which syntax you choose depends on what you want to do with the data. In this par-
ticular case, it doesn’t matter.

95EXERCISE 19 ■ Bitcoin values
Figure 3.10 Selecting the minimum value from a data frame with a mask index

But why stop there? We can use the agg method to invoke more than one aggregation
method on a data frame, passing the methods as a list of strings. We can set the data
frame’s index to be the date column and then run agg for both idxmin and idxmax in
a single line:

df.set_index('date').agg(['idxmin', 'idxmax'])

date value

361
2022-11-20

00:00:00 16687.80

362
2022-11-21

00:00:00 16260.41

363
2022-11-22

00:00:00 15759.61

364 2022-11-23
00:00:00 16194.75

365
2022-11-24

00:00:00
16606.77

min =
15759.61

value

16687.80

16260.41

15759.61

16194.75

16606.77

==

False

True

False

False

False

363
2022-11-22

00:00:00 15759.61True

96 CHAPTER 3 Importing and exporting data

Solution

import pandas as pd
from pandas import Series, DataFrame

df = pd.read_csv('https://api.blockchain.info/charts/market-price?format=csv',
header=None,
names=['date', 'value'])

df.tail(1)[['value']]
df.set_index('date').agg(['idxmin', 'idxmax'])

You can explore an abridged version of this in the Pandas Tutor at http://mng
.bz/YRXB.

Beyond the exercise

Pandas is full of amazing functionality that lets us retrieve data from the internet in
various formats. Here are a few additional exercises for you to try to see how this works
and how you can integrate it into your workflow:

 In this exercise, you downloaded the information into a data frame and then
performed calculations on it. Without assigning the downloaded data to an
interim variable, can you return the current value? Your solution should consist
of a single line of code that includes the download, selection, and calculation.

 The pd.read_html function, like pd.read_csv, takes a file-like object or a URL.
It assumes that it will encounter HTML-formatted text containing at least one
table. It turns each table into a data frame and then returns a list of those data
frames. With this in mind, retrieve one year of historical S&P 500 data from
Yahoo Finance (https://finance.yahoo.com/quote/%5EGSPC/history?p=%
5EGSPC), looking only at the Date, Close, and Volume columns. Show the date
and volume of the days with the highest and lowest Close values. Note that
Yahoo seems to look at the User-Agent header in the HTTP request, which can-
not be set in read_html. So you’ll need to use requests to retrieve the data, set-
ting User-Agent to a string equal to 'Mozilla 5.0'. Turn the content of the
result into a StringIO, and then feed that to read_html and retrieve the data.

 Create a two-row data frame with the highest and lowest closing prices for the
S&P 500. Use the to_csv function to write this data to a new CSV file.

EXERCISE 20 ■ Big cities
There’s no doubt that CSV is an important, useful, and popular format. But in some
ways, it has been eclipsed by another format: JSON, aka JavaScript Object Notation.
JSON allows us to store numbers, text, lists, and dictionaries in a text format that’s
both readable and writable with various programming languages. Because it’s easier to

Names the columns
date and value

Retrieves the value column
from the final row of df

Sets date to be the index and then
find the rows (index + value)
with the min and max values

http://mng.bz/YRXB
http://mng.bz/YRXB
http://mng.bz/YRXB
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC

97EXERCISE 20 ■ Big cities
work with, smaller than XML, and more expressive than CSV, it’s no surprise that
JSON has become a common format for storing and exchanging data. JSON has also
become the standard format for internet APIs, allowing us to access various services in
a cross-platform manner.

 Just as we can retrieve CSV-formatted data with pd.read_csv, we can retrieve
JSON-formatted data with pd.read_json. In this exercise, I want you to read in data
about the 1,000 largest cities in the United States. (This data is from 2013, so if your
hometown doesn’t appear here, I apologize.) Once you have created a data frame
from this city data, I want you to answer the following questions:

 What are the mean and median populations for these 1,000 largest cities? What
does that tell you?

 Along these lines, if you remove the 50 most populous cities, what happens to
the mean population? What happens to the median?

 What is the northernmost city, and where does it rank?
 Which state has the largest number of cities on this list?
 Which state has the smallest number of cities on this list?

Working it out

Reading a JSON file into a data frame doesn’t have to be difficult; in this case, it’s easy.
That’s partly because this particular JSON file is an array of objects, or what Python
people call a “list of dicts.” When read_json sees this file, it sees each dict as a record,
using the keys as column names. In many ways, reading this kind of JSON file is similar
to creating a data frame with a list of dicts, something we saw in chapter 2. Once we
have created the data frame, we can work with it like any other.

 First, I asked you to compare the mean and median city populations. We can do
that with describe in the population column, which returns a series. Because we’re
only interested in two elements from that series, we can limit the output to the mean
and 50% (i.e., median) values:

df['population'].describe()[['mean', '50%']]

The mean population is 131,132, and the median is 68,207. This means a few big val-
ues pull the mean higher than the median. And indeed, the United States has a few
very large cities and many medium- and small-size cities. By definition, half of these
1,000 cities have populations less than 68,207.

 The next question asks, what if we ignore the 50 largest cities? What does that do to
the mean and median? For that, we use a slice along with loc:

df.loc[50:, 'population'].describe()[['mean', '50%']]

Remember that when we pass loc two values, the first describes what rows we want,
and the second describes what columns we want. Here, we indicate that we want all
the rows starting with index 50. And we only want one column: population. Once
again, we run describe and then grab only the mean and median values. We find that

98 CHAPTER 3 Importing and exporting data
the mean has dropped a lot, to 87,027, and the median has dropped to 65,796—a
much smaller difference. This shows the power of the median; it isn’t affected nearly
as much as the mean if there are a few large or small values in the data set.

 Next, I asked you to find the northernmost city. That means the maximum positive
value for latitude. We can find that by getting the max latitude and finding which
rows of df have that value. Once again, we use loc to retrieve only those rows and
then pass a list of columns to retrieve only those values:

df.loc[df['latitude'] == df['latitude'].max(), ['city', 'state', 'rank']]

The result, not surprisingly, is Anchorage, Alaska, which is the 63rd largest city in the
United States—a much higher rank than I expected!

 Finally, I asked you to find the states with the largest and smallest number of cities
on this list. This is a perfect use of value_counts on the state column. California,
with 212 cities, is the clear winner:

df['state'].value_counts().head(1)

Remember that, by default, value_counts sorts the results from most common to
least common. We thus know that the item at head(1) is the most popular, assuming
the next-most-common state doesn’t have the same value. (As far as I know, there isn’t
a good way to avoid such problems.)

 What about the states with the fewest cities on this list? We use tail(10) to look at
the 10 lowest-ranked states and find that the bottom 5 states (including Washington,
DC) all have a single city in the list:

df['state'].value_counts().tail(5)

Solution

filename = '../data/cities.json'
df = pd.read_json(filename)

df['population'].describe()[['mean', '50%']]
df.loc[50:, 'population'].describe()[['mean', '50%']]
df.loc[df['latitude'] == df['latitude'].max(), ['city', 'state', 'rank']]
df['state'].value_counts().head(1)
df['state'].value_counts().tail(5)

You can explore an abridged version of this in the Pandas Tutor at http://mng
.bz/z0oB.

Beyond the exercise

 Convert the growth_from_2000_to_2013 column into a floating-point number.
Then find the mean and median changes in city size between 2000 and 2013. If
a city has no recorded growth, set it to 0.

Grabs just the mean
and 50% values for

the population
descriptive statistics

Grabs just the mean and
50% values for the

population descriptive
statistics for rows 50 and up

Finds the maximum latitude
value and gets only the city,

state, and rank for it
One state has the
most cities, which

we can see here.
Five states have only 1
city in the top 1,000.

http://mng.bz/z0oB
http://mng.bz/z0oB
http://mng.bz/z0oB

99EXERCISE 20 ■ Big cities
 How many cities had positive growth in this period, and how many had negative
growth?

 Find the city or cities with latitudes more than two standard deviations from the
mean.

Summary
In this chapter, we started to work with real-world data. We read data from CSV, JSON,
and even HTML tables and saw how pandas provides parameters that can control and
modify how file inputs are parsed and read. Given that the overwhelming majority of
our data comes from such files, it’s worthwhile to learn how to read data from them—
specifying the dtype for each column and even which columns we want to see.

Indexes
My parents introduced me to the wonders of the public library at a young age. It
held an immense number of books on every subject you could imagine.

 But wait: with so many books on so many subjects by so many authors, how can
you possibly find what you want or even know what’s available? The answer is an
index. In those days, libraries typically had three different indexes found in the
card catalog (hundreds of drawers full of index cards). These cards allowed you to
find books (a) by author, (b) by title, or (c) by subject. Beyond that, the books were
shelved according to their subjects, using either the Dewey decimal system or the
Library of Congress system. If you were familiar with these systems, you could easily
find what you were looking for: a particular book that had been mentioned in the
newspaper, books written by your favorite author, or books on a particular subject
you were researching for school. Nowadays, of course, the indexes are computer-
ized, allowing you to find books more flexibly and easily than we ever imagined in
the days of the card catalog.

 Could you have a library without an index? Yes, but it would be much less useful.
It would be harder to find what you want, and every search would take significantly
longer. How to best catalog information so it’s easily findable is so important that
an entire branch of academia, library science, is dedicated to it.

 Just as an index can help us find books in a library, it can help us find data in
pandas. We’ve already seen that a series has one index (for its elements) and a data
frame has two (one for the rows and a second for the columns). We’ve seen how
.loc, along with row selectors and column selectors, can be powerful.

 But indexes in pandas are far more flexible than we’ve seen so far: we can make
an existing column into an index or turn an index back into a regular column. We
100

101■CHAPTER 4 Indexes
can combine multiple columns into a hierarchical multi-index and then perform
searches on specific parts of that hierarchy. Indeed, knowing how to create, query, and
manipulate multi-indexed data frames is key to fluent work with pandas. We can also
create pivot tables in which the rows and columns reflect not our original data, but
rather aggregate summaries of that data.

 In this chapter, we’ll practice using all these techniques to better understand how
to create, modify, and manipulate various types of indexes. After working through
these exercises, you’ll know how to use pandas indexes to retrieve data more flexibly
and easily.

Table 4.1 What you need to know

Concept What is it? Example To learn more

pd.set_index Returns a new data frame
with a new index

df = df.set_index
('name')

http://mng.bz/MBd2

pd.reset_index Returns a new data frame
with a default (numeric,
positional) index

df =
df.reset_index()

http://mng.bz/a1RJ

df.loc Retrieves selected rows
and columns

df.loc[:,
'passenger_count'] =
df['passenger_
count']

http://mng.bz/e1QJ

s.value_counts Returns a sorted
(descending frequency)
series counting how many
times each value appears
in s

s.value_counts() http://mng.bz/Y1r7

s.isin Returns a boolean series
indicating whether a value
in s is an element of the
argument

s.isin(['A', 'B',
'C')

http://mng.bz/9D08

df.pivot Creates a pivot table
based on a data frame
without aggregation

df.pivot(index='mont
h', columns=
'year', values='A')

http://mng.bz/zXjZ

df.pivot_table Creates a pivot table
based on a data frame,
with aggregation, if
needed

df.pivot_table(index
='month', columns=
'year', values='A')

http://mng.bz/0K4z

s.is_monotonic
_increasing

Contains True if values in
the series are sorted in
increasing order

s.is_monotonic_
increasing

http://mng.bz/Ke2n

slice Python builtin for creating
slices

slice(10, 20, 2) http://mng.bz/278g

http://mng.bz/MBd2
http://mng.bz/a1RJ
http://mng.bz/e1QJ
http://mng.bz/Y1r7
http://mng.bz/9D08
http://mng.bz/zXjZ
http://mng.bz/0K4z
http://mng.bz/Ke2n
http://mng.bz/278g

102 CHAPTER 4 Indexes
EXERCISE 21 ■ Parking tickets
We have already seen numerous examples of retrieving one or more rows from a data
frame using loc. We don’t necessarily need to use the index to select rows from a data
frame, but it does make things easier to understand and yields clearer code. For this
reason, we often want to use one of a data frame’s existing columns as an index. Some-
times we want to do this permanently, and other times we want to do it briefly to clar-
ify our queries.

 In this exercise, I’ll ask you to perform some queries on another data set from New
York City: one that tracked all parking tickets during the year 2020—more than 12
million of them. You could, in theory, perform these queries without modifying the
data frame’s index. However, I want you to get some practice setting and resetting the
index. We’re going to do that a lot in this chapter, and you’ll likely do it a great deal as
you work with pandas with real-life data sets.

 With that in mind, I want you to do the following:

1 Create a data frame from the file nyc-parking-violations-2020.csv. We are only
interested in a handful of the columns:
– Date First Observed
– Plate ID
– Registration State
– Issue Date (a string in MM/DD/YYYY format, always followed by 12:00:00

AM)
– Vehicle Make
– Street Name
– Vehicle Color

2 Set the data frame’s index to the Issue Date column.
3 Determine what three makes were most frequently ticketed on January 2, 2020.
4 Determine the five streets on which cars got the most tickets on June 1, 2020.
5 Set the index to Vehicle Color.
6 Determine the most common make of vehicles that were either red or blue.

df.xs Returns a cross-section
from a data frame

df.xs(2016,
level='Year')

http://mng.bz/jPg9

df.dropna Returns a new data frame
without any NaN values

df.dropna() http://mng.bz/o1PN

IndexSlice Produce an object for eas-
ier querying of data
frames using xs

IndexSlice[:, 2016] http://mng.bz/WzPX

Table 4.1 What you need to know (continued)

Concept What is it? Example To learn more

http://mng.bz/jPg9
http://mng.bz/o1PN
http://mng.bz/WzPX
https://github.com/reuven/pandas-workout

103EXERCISE 21 ■ Parking tickets
Working it out

We have already seen that to retrieve rows from a data frame that meet a particular
condition, we can use a boolean series as a mask index. Often, especially if we are
looking for specific values from a column, it makes more sense to turn that column
into the data frame’s index, reducing our code’s complexity and length. Pandas
makes it easy to do this with the set_index method. In this exercise, I asked you to
make several queries against the data set of New York City parking tickets in 2020 and
set the index to do this.

 First, we read the data from a CSV file, limiting the columns from the input file:

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,
usecols=[

'Date First Observed',
'Registration State', 'Plate ID',
'Issue Date', 'Vehicle Make',
'Street Name', 'Vehicle Color'])

Once the data frame is loaded, we perform several queries based on the parking tick-
ets’ issue date. So, it makes sense to set the index to the Issue Date column, as shown
in figure 4.1:

df = df.set_index('Issue Date')

Notice that set_index returns a new data frame based on the original one, which we
assign back to df. As of this point, if we make queries that involve the index (typically
using loc), they will be based on the value of the issue date. Also, as far as the data
frame is concerned, there is no longer an Issue Date column! Its identity as a named
column is largely gone. Some pandas methods (e.g., groupby) can find and work with
an index via its original name, but many others cannot.

NOTE As of this writing, the set_index method (along with many others in
pandas) supports the inplace parameter. If you call set_index and pass
inplace=True, the method will return None and will modify the data frame on
which it was invoked. The core pandas developers have warned that this is a
bad idea because it makes incorrect assumptions about memory and perfor-
mance. They say there is no benefit to using inplace=True. Moreover, getting
a new data frame back allows for method chaining, making long queries more
readable. As a result, the inplace parameter will probably go away in a future
version of pandas. Thus, although it may seem wasteful to call set_index and
then assign its result back to df, this is the preferred, idiomatic way to do
things.

With this index in place, it’s relatively straightforward to find all the tickets issued on
January 2:

df.loc['01/02/2020 12:00:00 AM']

104 CHAPTER 4 Indexes
Figure 4.1 Graphical depiction of turning Issue Date from a column into the index

Plate ID Registration
State Issue Date Vehicle Make Street Name Date First

Observed
Vehicle

Color

725518 JFG4137 NY 07/16/2019
12:00:00 AM DODGE PACIFIC STREET 0 WHT

247136 DPH1199 NY 07/01/2019
12:00:00 AM NISSA 160th St 0 BK

1628916 8D45B NY 08/06/2019
12:00:00 AM FORD NB BAYCHESTER

AVE @ 0 YW

6757299 67974JV NY 12/11/2019
12:00:00 AM ISUZU 95th St 0 WHITE

4482906 JBN3055 NY 10/13/2019
12:00:00 AM DODGE SWINTON AVE 0 GRY

12331922 CKS1861 GA 06/17/2020
12:00:00 AM Jeep NB OCEAN PKWY @

AVE 0 GRAY

1723597 58388MG NY 08/08/2019
12:00:00 AM CHEVR E 38th St 20190808 WH

2474539 AP628T NJ 08/26/2019
12:00:00 AM INTER 1st Ave 0 WHITE

Issue date

Plate ID Registration
State Vehicle Make Street Name Date First

Observed
Vehicle

Color

JFG4137 NY DODGE PACIFIC STREET 0 WHT

DPH1199 NY NISSA 160th St 0 BK

8D45B NY FORD NB BAYCHESTER
AVE @ 0 YW

67974JV NY ISUZU 95th St 0 WHITE

JBN3055 NY DODGE SWINTON AVE 0 GRY

CKS1861 GA Jeep NB OCEAN PKWY @
AVE 0 GRAY

58388MG NY CHEVR E 38th St 20190808 WH

AP628T NJ INTER 1st Ave 0 WHITE

07/16/2019
12:00:00 AM
07/01/2019

12:00:00 AM

08/06/2019
12:00:00 AM

12/11/2019
12:00:00 AM

10/13/2019
12:00:00 AM

06/17/2020
12:00:00 AM

08/08/2019
12:00:00 AM

08/26/2019
12:00:00 AM

set_index('Issue
date')

105EXERCISE 21 ■ Parking tickets
However, this also returns all the columns. And the first question we’re trying to
answer with this newly reindexed data frame is which vehicle makes received the most
tickets on January 2. Let’s limit the results of our query to the Vehicle Make column:

df.loc['01/02/2020 12:00:00 AM', 'Vehicle Make']

Once again, we see that the two-argument form of loc means first passing a row selec-
tor and then passing a column selector. In this case, we’re only interested in a single
column, Vehicle Make.

 But we’re still not done: how can we find the three most commonly ticketed vehi-
cle makes on January 2? We use the value_counts method:

df.loc['01/02/2020 12:00:00 AM', 'Vehicle Make'].value_counts()

This returns a series in which the index contains the different vehicle makes and the
values are the counts, sorted from highest to lowest. We can limit our results to the
three most common makes by adding head(3) to our call:

df.loc['01/02/2020 12:00:00 AM', 'Vehicle Make'].value_counts().head(3)

Once we have this information, we can also check other columns. For example, on
what five streets were the most tickets issued on June 1?

df.loc['06/01/2020 12:00:00 AM', 'Street Name'].value_counts().head(5)

Again, we select rows via the index and then select a column. We pass this to
value_counts and get the top five results.

 But now we want to make queries against the Vehicle Color column. We thus need
to remove Issue Date as the index and put Vehicle Color in its place. We could, in
theory, do this in two lines of code:

df = df.reset_index()
df = df.set_index('Vehicle Color')

Thanks to method chaining, we can do it in a single line of code:

df = df.reset_index().set_index('Vehicle Color')

We could equivalently split it up across several lines, using parentheses (see figure 4.2):

df = (
df
.reset_index()
.set_index('Vehicle Color')
)

The information in our data frame hasn’t changed, but the index has—thus giving us
easier access to the data from this perspective. That will come in handy when answer-
ing the next question, which asks which vehicle make received the most parking tick-
ets, if we only consider blue and red cars.

106 CHAPTER 4 Indexes
Figure 4.2 Graphical depiction of returning Issue Date from the index to a column and making
Vehicle Color the new index

reset_index()

Plate ID

725518 JFG4137

247136 DPH1199

1628916 8D45B

6757299 67974JV

4482906 JBN3055

12331922 CKS1861

1723597 58388MG

2474539 AP628T

NB OCEAN PKWY @
AVE

Registration State

NY

NY

NY

NY

NY

GA

NY

NJ

Issue Date
07/16/2019

12:00:00 AM
07/01/2019

12:00:00 AM
08/06/2019

12:00:00 AM
12/11/2019

12:00:00 AM
10/13/2019

12:00:00 AM
06/17/2020

12:00:00 AM
08/08/2019

12:00:00 AM
08/26/2019

12:00:00 AM

Vehicle Make

DODGE

NISSA

FORD

ISUZU

DODGE

Jeep

CHEVR

INTER

Street Name

PACIFIC STREET

160th St

NB BAYCHESTER
AVE @

95th St

SWINTON AVE

E 38th St

1st Ave

Date First Observed

0

0

0

0

0

0

20190808

0

Vehicle Color

WHT

BK

YW

WHITE

GRY

GRAY

WH

WHITE

set_index
('Vehicle
Color')

Plate ID

JFG4137

DPH1199

8D45B

67974JV

JBN3055

CKS1861

58388MG

AP628T

Registration State

NY

NY

NY

NY

NY

GA

NY

NJ

Issue Date

07/16/2019
12:00:00 AM
07/01/2019

12:00:00 AM
08/06/2019

12:00:00 AM
12/11/2019

12:00:00 AM
10/13/2019

12:00:00 AM
06/17/2020

12:00:00 AM
08/08/2019

12:00:00 AM
08/26/2019

12:00:00 AM

Vehicle Make

DODGE

NISSA

FORD

ISUZU

DODGE

Jeep

CHEVR

INTER

Street Name

NB OCEAN PKWY @
AVE

PACIFIC STREET

160th St

NB BAYCHESTER
AVE @

95th St

SWINTON AVE

E 38th St

1st Ave

Date First Observed

0

0

0

0

0

0

20190808

0

Vehicle Color

WHT

BK

YW

WHITE

GRY

GRAY

WH

WHITE

Plate ID

JFG4137

DPH1199

8D45B

67974JV

JBN3055

CKS1861

58388MG

AP628T

Registration State

NY

NY

NY

NY

NY

GA

NY

NJ

Issue Date
07/16/2019

12:00:00 AM
07/01/2019

12:00:00 AM
08/06/2019

12:00:00 AM
12/11/2019

12:00:00 AM
10/13/2019

12:00:00 AM
06/17/2020

12:00:00 AM
08/08/2019

12:00:00 AM
08/26/2019

12:00:00 AM

Vehicle Make

DODGE

NISSA

FORD

ISUZU

DODGE

Jeep

CHEVR

INTER

Street Name

NB OCEAN PKWY @
AVE

PACIFIC STREET

160th St

NB BAYCHESTER
AVE @

95th St

SWINTON AVE

E 38th St

1st Ave

Date First Observed

0

0

0

0

0

0

20190808

0

Vehicle Color

WHT

BK

YW

WHITE

GRY

GRAY

WH

WHITE

107EXERCISE 21 ■ Parking tickets
First, we need to find only those cars that are blue or red. We can do that by passing a
list to loc:

df.loc[['BLUE', 'RED']]

Once we’ve done that, we can apply a column selector:

df.loc[['BLUE', 'RED'], 'Vehicle Make']

This returns all the rows in the data frame that have a blue or red car, but only the
Vehicle Make column. With that in place, we can use value_counts to find the most
common make and restrict it to the top-ranking brand with head(1):

(
df
.loc[['BLUE', 'RED'], 'Vehicle Make']
.value_counts()
.head(1)

)

Solution

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,
usecols=['Date First Observed', 'Registration State', 'Plate ID',

'Issue Date', 'Vehicle Make', 'Street Name', 'Vehicle Color'])
df = df.set_index('Issue Date')
df.loc['01/02/2020 12:00:00 AM',

'Vehicle Make'].value_counts().head(3)
df.loc['06/01/2020 12:00:00 AM',

'Street Name'].value_counts().head(5)
df = df.reset_index().set_index('Vehicle Color')
df.loc[['BLUE', 'RED'],

'Vehicle Make'].value_counts().head(1)

You can explore a version of this in the Pandas Tutor at http://mng.bz/1JWX.

Beyond the exercise

Just as changing your perspective on a problem can often help you solve it, setting (or
resetting) the index on a data frame can dramatically simplify the code you need to
write. Here are some additional problems based on the data frame we created in this
exercise:

 What three car makes were most often ticketed from January 2 through January
10?

Sets the data frame’s index
to be the Issue Date column

Finds all rows on January 2
and just the Vehicle Make

column, then gets the first
three elements from the

resulting series

Finds all rows on January 2 and
just the Street Name column,
then gets the first five elements
from the resulting series

Removes Vehicle Make from
being an index and then sets
Vehicle Color to be the index

Finds all rows with a color of
red or blue and gets the Vehicle

Make column, then gets the
most common make

http://mng.bz/1JWX

108 CHAPTER 4 Indexes
 How many tickets did the second-most-ticketed car get in 2020? (And why am I
not interested in the most-ticketed plate?) What state was that car from, and was
it always ticketed in the same location?

Working with multi-indexes
Every data frame has an index, giving labels to the rows. We have already seen that
we can use the loc accessor to retrieve one or more rows using the index. For exam-
ple, we can say

df.loc['a']

to retrieve all the rows with the index value a. Remember that the index doesn’t
necessarily contain unique values; loc['a'] may return a series of values represent-
ing a single row, but it also may return a data frame whose rows all have the index
value a.

This sort of index often serves us well. But in many cases it’s not enough. That’s
because the world is full of hierarchical information, or information that is easier to
process if we make it hierarchical.

For example, every business wants to know its sales figures. But getting a single
number doesn’t let you analyze the information in a useful way. So you may want to
break it down by product to know how well each product is selling well and which con-
tributes the most to the bottom line. (We saw a version of this in exercise 8.) How-
ever, even that isn’t enough; you probably want to know how well each product is
selling per month. If your store has been around for a while, you may want to break
it down even further than that, finding the quantity of each product sold per month,
per year. A multi-index will let you do precisely that.

For example, let’s create some random sales data for three products (cleverly called
A, B, and C) over the 36 months from January 2018 through December 2020:

let's assume 3 products * 3 years * 12 months = 108 sales figures

g = np.random.default_rng(0)
df = DataFrame(g.integers(0, 100, [36,3]),

columns=list('ABC'))
df['year'] = [2018] * 12 + [2019] * 12 + [2020] * 12
df['month'] = """Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec""".split() * 3

We could set the index, based on the year column, as follows:

df = df.set_index('year')

But that wouldn’t give us any special access to the month data, which we would like
to have part of our index. We can create a multi-index by passing a list of columns to
set_index:

df = df.set_index(['year', 'month'])

Triple-quoted
strings allow

newlines in strings

109EXERCISE 21 ■ Parking tickets
Remember that when creating a multi-index, we want the most general part to be on
the outside and thus be mentioned first. If you create a multi-index with dates, you
use year, month, and day, in that order. If you create a multi-index for your company’s
sales data, you might use region, country, and city to retrieve all rows for a given
region, country, or city relatively easily. Usually (but not always), a multi-index reflects
a hierarchy.

df.set_index(
['year',
'month'])

47 64 Jan

67 9 Feb

21 36 Mar

70 88 Apr

12 58 May

39 87 Jun

88 81 Jul

25 77 Aug

9 20 Sep

A

0 44

1 67

2 83

3 87

4 88

5 65

6 46

7 37

B C year month

8 72

2018

2018

2018

2018

2018

2018

2018

2018

2018

A B

47

67

21

70

12

39

88

25

9

C

64

9

36

88

58

87

81

77

20

44

67

83

87

88

65

46

37

72

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

year month

2018

2018

2018

2018

2018

2018

2018

2018

2018

Graphical depiction of creating a
multi-index from the year and
month columns

110 CHAPTER 4 Indexes
(continued)

With this in place, we can retrieve one or more parts of the data frame in a variety of
different ways. For example, we can get the sales data for all products in 2018:

df.loc[2018]

We can get all sales data for just products A and C in 2018:

df.loc[2018, ['A', 'C']]

Notice that we’re still applying the same rule we’ve always used with loc: the first
argument describes the row(s) we want, and the second argument describes the col-
umn(s) we want. Without a second argument, we get all the columns.

We have a multi-index on this data frame, which means we can break the data down
not just by year but also by month. For example, what did it look like for all three prod-
ucts in June 2018?

df.loc[(2018, 'Jun')]

We’re still invoking loc with square brackets. However, the first (and only) argument
is a tuple (i.e., round parentheses). Tuples are typically used in a multi-index situation
when we want to specify a specific combination of index levels and values. For exam-
ple, we’re looking for 2018 and June—the outermost level and the inner level—so
we use the tuple (2018, 'Jun'). We can, of course, retrieve the sales data just for
products A and C:

df.loc[(2018, 'Jun'), ['A', 'C']]

month

A B C

44 47 64

67 67 9

83 21 36

87 70 88

88 12 58

65 39 87

46 88 81

37 25 77

72 9 20

2018

2018

2018

2018

2018

2018

2018

2018

2018

year

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

A

44

67

83

87

88

65

46

37

72

C

64

9

36

88

58

87

81

77

20

Results: [65, 87]

Row selector:
(2018, 'Jun')

Column selector:
['A', 'C']

Graphical depiction
of retrieving rows
from June 2018,
columns A and C,
from a multi-index

111EXERCISE 21 ■ Parking tickets
What if we want to see more than one year at a time? For example, let’s say we want
all data for 2018 and 2020:

df.loc[[2018, 2020]]

And if we want all data for 2018 and 2020, but only products B and C?

df.loc[[2018, 2020], ['B', 'C']]

What if we want to get all the data from June in both 2018 and 2020? It’s a little
complicated:

 We use square brackets with loc.
 The first argument in the square brackets describes the rows we want (i.e., a

row selector).
 We want all columns, so there isn’t a second argument to loc.
 We want to select multiple combinations from the multi-index, so we need a

list.
 Each year-month combination is a separate tuple in the list.

The result is

df.loc[[(2018, 'Jun'), (2020, 'Jun')]]

What if we want to look at all values from June, July, or August across all three years?
We could, of course, do it manually:

df.loc[[(2018, 'Jun'), (2018, 'Jul'), (2018, 'Aug'),
(2019, 'Jun'), (2019, 'Jul'), (2019, 'Aug'),
(2020, 'Jun'), (2020, 'Jul'), (2020, 'Aug')]]

This works well, but it seems wordy. Is there another, shorter way? You might guess
that we could tell pandas we want all the years (2018, 2019, and 2020) and only
three months (June, July, and August) by writing the following:

df.loc[([2018, 2019, 2020], ['Jun', 'Jul', 'Aug'])]

But this won’t work! It’s rather surprising and confusing to find that it doesn’t work,
when it seems obvious and intuitive, given everything else we know about pandas.
What’s missing is an indicator of which columns we want:

df.loc[([2018, 2019, 2020], ['Jun', 'Jul', 'Aug']),
['A', 'B', 'C']]

Although the second argument (our column selector) is generally optional when using
loc, here it isn’t: we need to indicate which column, or columns, we want, along with
the rows. Typically, you won’t want all the columns because the analysis you’ll want
to do will involve a subset of the full data frame.

We can do this explicitly, as we did earlier, or we can use Python’s “slice” syntax:

df.loc[([2018, 2019, 2020], ['Jun', 'Jul', 'Aug']),
'A':'C']

112 CHAPTER 4 Indexes
EXERCISE 22 ■ State SAT scores
Setting the index can make it easier to create queries about our data. But sometimes
our data is hierarchical in nature. That’s where the pandas concept of a multi-index
comes into play. With a multi-index, we can set the index not just to a single column
but rather to multiple columns. Imagine, for example, a data frame containing sales
data: we may want sales broken down by year and then further broken down by
region. Once you use the phrase “further broken down by,” a multi-index is almost
certainly a good idea. (See the earlier sidebar “Working with multi-indexes” for a
fuller description.)

 In this exercise, we look at a summary of scores from the SAT, a standardized uni-
versity admissions test widely used in the United States. The CSV file (sat-scores.csv)
has 99 columns and 577 rows describing all 50 US states and three nonstates (Puerto
Rico, the Virgin Islands, and Washington, DC) from 2005 through 2015.

 In this exercise, I want you to

1 Read in the scores file, only keeping the Year, State.Code, Total.Math,
Total.Test-takers, and Total.Verbal columns.

2 Create a multi-index based on the year and the two-letter state code.
3 Determine how many people took the SAT in 2005.
4 Determine the average SAT math score in 2010 from New York (NY), New Jersey

(NJ), Massachusetts (MA), and Illinois (IL).

(continued)

For all columns, use a colon by itself:

df.loc[([2018, 2019, 2020], ['Jun', 'Jul', 'Aug']),
:]

Assuming the index is sorted, we can even select the years using a slice:

df.loc[(:, ['Jun', 'Jul', 'Aug']), 'A':'B']

Oh, wait—actually, we can’t do that here, because Python only allows the colon within
square brackets. We tried to use the colon within a tuple, which uses regular, round
parentheses. Instead, we can use the builtin slice function with None as an argu-
ment for the same result:

df.loc[(slice(None), ['Jun', 'Jul', 'Aug']), 'A':'B']

And sure enough, that works. You can think of slice(None) as a way of indicating
to pandas that you are willing to have all values as a wildcard.

As you can see, loc is extremely versatile, allowing us to retrieve from a multi-index
various ways.

This won’t
work!

113EXERCISE 22 ■ State SAT scores
5 Determine the average SAT verbal score in 2012–2015 from Arizona (AZ), Cali-
fornia (CA), and Texas (TX).

Working it out

In this exercise, you begin to discover the power and flexibility of a multi-index. I
asked you to load the CSV file and create a multi-index based on the Year and
State.Code columns. We can do this in two stages, first reading the file, including the
columns we want, into a data frame and then choosing two columns to serve as our
index:

filename = '../data/sat-scores.csv'

df = pd.read_csv(filename,
usecols=['Year', 'State.Code',
'Total.Math', 'Total.Test-takers',
'Total.Verbal'])

df = df.set_index(['Year', 'State.Code'])

As always, the result of set_index is a new data frame, which we assign back to df.
 You may remember that read_csv also has an index_col parameter. If we pass an

argument to that parameter, we can tell read_csv to do it all in one step—reading in
the data frame and setting the index as the column we request. We can pass a list of
columns as the argument to index_col, thus creating the multi-index as the data
frame is collected. For example:

filename = '../data/sat-scores.csv'

df = pd.read_csv(filename,
usecols=['Year', 'State.Code',
'Total.Math', 'Total.Test-takers',
'Total.Verbal'],
index_col=['Year', 'State.Code'])

Now that we have loaded our data frame, we can explore our data and answer some
questions.

 First, we want to know how many people took the SAT in 2005. This means finding
all rows from 2005 and the column Total.Test-takers, which tells us how many peo-
ple took the test in each year, for each state, and summing those values:

df.loc[2005,
'Total.Test-takers'
].sum()

Next, we want to determine the mean math score for students in four states—New
York, New Jersey, Massachusetts, and Illinois—in 2010. As usual, we can use loc to
retrieve the data that’s of interest to us. But we need to combine three things to create
the right query:

 From the first part (Year) of the multi-index, we only want 2010.

Row selector

Column
selector

114 CHAPTER 4 Indexes
 From the second part (State.Code) of the multi-index, we only want NY, NJ, MA,
and IL.

 From the columns, we are interested in Total.Math.

When retrieving from a multi-index, we need to put the parts together inside a
tuple. Moreover, we can indicate that we want more than one value by using a list. The
result is

df.loc[(2010, ['NY', 'NJ', 'MA', 'IL']),
'Total.Math'].mean()

This query retrieves rows with a year of 2010 coming from any of those four states. We
only get the Total.Math column, on which we then calculate the mean (figure 4.3).

The next question asks for a similar calculation but on several years and several states.
Once again, that’s not a problem if we think carefully about how to construct the query:

 From the first part (Year) of the multi-index, we want 2012, 2013, 2014, and 2015.
 From the second part (State.Code) of the multi-index, we want AZ, CA, and TX.
 From the columns, we are again interested in Total.Math.

The query then becomes

df.loc[([2012,2013,2014,2015], ['AZ', 'CA', 'TX']),
'Total.Math'].mean()

Notice how pandas figures out how to combine the parts of our multi-index so we get
only the rows matching both parts.

Solution

filename = '../data/sat-scores.csv'

df = pd.read_csv(filename,
usecols=['Year',

'State.Code',
'Total.Math',

Multi-index row selector for rows
in 2010 from four specific states

Column selector, indicating
just the Total.Math column

df.loc[
 (2010,
 ['NY', 'NJ', 'MA', 'IL']),
 'Total.Math']

Row selector; tuple indicates
two levels of a multi-index

Column selectorState.Code can be
any value in the list.

Year must == 2010

Figure 4.3 Graphical
breakdown of .loc
with a multi-index

Multi-index row selector
for rows in 2012–2015
and three specific states

Column selector, indicating
just the Total.Math column

115EXERCISE 22 ■ State SAT scores
'Total.Test-takers',
'Total.Verbal'])

df = df.set_index(['Year', 'State.Code'])
df.loc[2005, 'Total.Test-takers'].sum()

df.loc[(2010, ['NY', 'NJ', 'MA', 'IL']),
'Total.Math'].mean()

df.loc[([2012,2013,2014,2015],
['AZ', 'CA', 'TX']),

'Total.Math'].mean()

You can explore a version of this in the Pandas Tutor at http://mng.bz/PRpw.

Beyond the exercise

 What were the average math and verbal scores for Florida, Indiana, and Idaho
across all years? (Don’t break out the values by state.)

 Which state received the highest verbal score, and in which year?
 Was the average math score in 2005 higher or lower than that in 2015?

Sorting by index
When we talk about sorting in pandas, we’re usually referring to sorting the data. For
example, we may want the rows in our data frame sorted by price or regional sales
code. We’ll talk more about that kind of sorting in Chapters 6 and 7.

But pandas also lets us sort data frames based on the index. We can do that with
the sort_index method, which (like so many others) returns a new data frame with
the same content as the original, with rows sorted based on the index’s values. We
can thus say

df = df.sort_index()

If your data frame contains a multi-index, the sorting will be done primarily along the
first level, then along the second level, and so forth.

In addition to having some aesthetic benefits, sorting a data frame by index can make
certain tasks easier or possible. For example, if you try to retrieve a slice, such as
df.loc['a':'c'], pandas will insist that the index be sorted, to avoid problems if
a and c are interspersed.

If your data frame is unsorted and has a multi-index, performing some operations may
result in a warning:

PerformanceWarning: indexing past lexsort depth may impact performance

This is pandas trying to tell you that the combination of large size, multi-index, and
an unsorted index is likely to cause you trouble. You can avoid the warning by sorting
your data frame via its index.

Sets the index to be
a combination of
Year and State.code

Retrieves rows with 2005 and the column
Total.Test-takers and then sums those values

Retrieves rows with 2010 and any of
those four states and the column
Total.Math and then gets the average

Retrieves rows from 2012–2015 with
those three states and the column
Total.Math and then gets the average

http://mng.bz/PRpw

116 CHAPTER 4 Indexes
EXERCISE 23 ■ Olympic games
The modern-day Olympic games have been around for more than a century, and even
people like me who rarely pay attention to sports are often excited to see a variety of
international competitions take place. Fortunately, the Olympics aren’t only about
sports; they also generate a great deal of data, which we can enjoy and analyze using
pandas.

 In the previous exercise, we initially looked at building and using a multi-index. A
multi-index doesn’t have to stop at just two levels; pandas will, in theory, allow us to set
as many as we want. Consider a large corporation that has broken down sales reports
by region, country, and department; a multi-index would make it possible to retrieve
that data in a variety of different ways, be it from the top of the hierarchy or by reach-
ing “inside” the multi-index and creating a cross-regional departmental report.

 In this exercise, we’re going to build a deep multi-index, allowing us to retrieve data
from various levels and in several ways. Specifically, I want you to do the following:

1 Read the data file (olympic_athlete_events.csv) into a data frame. We only care
about some of the columns: Age, Height, Team, Year, Season, City, Sport,
Event, and Medal. The multi-index should be based on Year, Season, Sport,
and Event.

2 Answer these questions:

– What is the average age of winning athletes in summer games held between
1936 and 2000?

– What team has won the most medals in all archery events?
– Starting in 1980, what is the average height of the “Table Tennis Women’s

Team” event?
– Starting in 1980, what is the average height of both “Table Tennis Women’s

Team” and “Table Tennis Men’s Team”?
– How tall was the tallest-ever tennis player in Olympic games from 1980 until

2016?

(continued)

If you want to check whether a data frame is sorted, you can check this attribute:

df.index.is_monotonic_increasing

Saying that the index is “monotonically increasing,” by the way, simply means it only
goes up. Similarly, if the values only go down, we say it’s “monotonically decreasing,”
which we can check with is_monotonic_decreasing. Note that these are not meth-
ods but rather boolean attributes. They exist on all series objects, not just on
indexes. Some older documentation and blogs mention the method is_lexsorted,
which has been deprecated in recent versions of pandas.

117EXERCISE 23 ■ Olympic games

r
x

Working it out

In this exercise, we create a multi-index with four levels and then use those levels to
ask and answer a variety of questions. The exercise shows you how powerful multi-
indexes can be.

 First, we have to load the data. As before, we load a subset of the columns and use
four of them as a multi-index:

filename = '../data/olympic_athlete_events.csv'

df = pd.read_csv(filename,
index_col=['Year', 'Season',

'Sport', 'Event'],
usecols=['Age', 'Height', 'Team',

'Year', 'Season', 'City',
'Sport', 'Event', 'Medal'])

df = df.sort_index()

By passing a list of columns to the index_col parameter, we create the multi-index while
creating the data frame, rather than doing it in a separate second step (see figure 4.4).

Figure 4.4 Graphical depiction of our data frame with four columns in its multi-index

Specifies the components
and order of the multi-
index in index_col

Reads the CSV file into a data
frame with nine columns, fou
of which are used in our inde

Sorts the rows of the data
frame according to the index

Age Height Team City Medal

Year Season Sport Event

1996 Summer Athletics Athletics Men's
10,000 meters

27.0 178.0 United States Atlanta NaN

1992 Winter Biathlon Biathlon Women's
15 kilometers

22.0 NaN China Albertville NaN

2012 Summer Fencing Fencing Men's Foil,
Team

29.0 180.0 China London NaN

1988 Winter Cross-Country
Skiing

Cross-Country
Skiing Men's 50

kilometers
24.0 174.0 Sweden Calgary NaN

1900 Summer Rowing Rowing Men's
Coxed Eights

21.0 NaN Germania Ruder
Club, Hamburg

Paris NaN

2006 Winter Biathlon
Biathlon Men's 4 x

7.5 kilometers
Relay

28.0 180.0 Czech Republic Torino NaN

2004 Summer Cycling
Cycling Men's
Mountainbike,
Cross-Country

22.0 178.0 Spain Athina NaN

1912 Summer Gymnastics Gymnastics Men's
Team All-Around 20.0 NaN Germany Stockholm NaN

1952 Summer Rowing Rowing Men's
Coxless Fours

26.0 186.0 Norway Helsinki NaN

1994 Winter Ski Jumping Ski Jumping Men's
Large Hill, Team

23.0 175.0 Italy Lillehammer NaN

Multi-index

118 CHAPTER 4 Indexes
We then use sort_index, which returns a new data frame containing the same data we
read from the CSV file but with the rows ordered according to the multi-index. When
running sort_index on a multi-indexed data frame, we first index on the first level
(i.e., Year), then on Season, then on Sport, and finally on Event.

NOTE You can invoke set_index with inplace=True. If you do, set_index
will modify the existing data frame object and return None. But as with all
other uses of inplace=True in pandas, the core developers strongly recom-
mend against doing this. Instead, you should invoke it regularly (i.e., with a
default value of inplace=False) and then assign the result to a variable—
which could be the variable already referring to the data frame, as we do here.

Although we don’t necessarily need to sort our data frame by its index, certain pandas
operations will work better if we do. Moreover, if we don’t sort the data frame, we may
get the PerformanceWarning mentioned earlier in this chapter. So, especially when we’re
doing operations with a multi-index, it’s a good idea to sort by the index at the outset.

 Now that we have our data frame, we can answer the questions I posed. For start-
ers, I asked you to find the average age of winning athletes who participated in sum-
mer games held between 1936 and 2000. This means we want a subset of the years
(i.e., the first level of our multi-index) and a subset of the seasons (i.e., just the games
for which the second level of the multi-index, the Season column, has a value of
Summer). We want all the values from the third and fourth levels of the multi-index,
which means we can ignore them in our query; by ignoring them, we get all the values.

 In other words, we want our query to retrieve the following (see figure 4.5):

 All years from 1936 to 2000, which we can express as slice(1936,2000)
 All games in which Season is set to Summer
 The Age column from the resulting data frame

Finally, we want to find the mean of those ages. We can express this as

df.loc[(slice(1936,2000), 'Summer'),
'Age'
].mean()

The answer is a float, 25.026883940421765.
 Next, I asked you to find which team won the most medals in all archery events. How

do we construct this query? We need to think through each level in our multi-index:

 We’re interested in all years, so we specify slice(None) for the first index level.
 Archery is only a summer sport, so we can either indicate Summer for the second

level or use slice(None).
 In the third level, we explicitly specify Archery so we only get rows for archery

events.
 We ignore the fourth level, effectively making it a wildcard.

Row selector: years 1936–2000, and
summer games from the first two
parts of the multi-index

Column selector: we
only want the Age column.

Applies mean to the
resulting series

119EXERCISE 23 ■ Olympic games
Figure 4.5 Graphical depiction of applying our multi-index row selector

We’re interested in calculating which team won the most medals. So, we ask for the
Team column. Then we can run value_counts to identify which team won the most
events. The query thus looks like this:

df.loc[(slice(None), 'Summer', 'Archery'),
'Team'
].value_counts()

But wait: this counts all participants in archery events. We are only interested in the
medalists. We can thus start our query by removing all rows in which Medal contains a
NaN value, calling dropna and passing subset='Medal'. It’s probably easier to under-
stand if we use method-chaining syntax and formatting:

Column selector: Age

Age Height Team City Medal

Year Season Sport Event

1996 Summer Athletics Athletics Men's
10,000 meters

27.0 178.0 United States Atlanta NaN

1992 Winter Biathlon Biathlon Women's
15 kilometers

22.0 NaN China Albertville NaN

2012 Summer Fencing Fencing Men's Foil,
Team

29.0 180.0 China London NaN

1988 Winter Cross-Country
Skiing

Cross-Country
Skiing Men's 50

kilometers
24.0 174.0 Sweden Calgary NaN

1900 Summer Rowing Rowing Men's
Coxed Eights

21.0 NaN Germania Ruder
Club, Hamburg

Paris NaN

2006 Winter Biathlon
Biathlon Men's 4 x

7.5 kilometers
Relay

28.0 180.0 Czech Republic Torino NaN

2004 Summer Cycling
Cycling Men's
Mountainbike,
Cross-Country

22.0 178.0 Spain Athina NaN

1912 Summer Gymnastics Gymnastics Men's
Team All-Around

20.0 NaN Germany Stockholm NaN

1952 Summer Rowing Rowing Men's
Coxless Fours

26.0 186.0 Norway Helsinki NaN

1994 Winter Ski Jumping Ski Jumping Men's
Large Hill, Team

23.0 175.0 Italy Lillehammer NaN

1900 Summer Rowing Rowing Men's
Coxed Eights

21.0 NaN Germania Ruder
Club, Hamburg

Paris NaN

1952 Summer Rowing Rowing Men's
Coxless Fours

26.0 186.0 Norway Helsinki NaN

Row selector:
Summer
1936 to 2000

1996 Summer Athletics Athletics Men's
10,000 meters

27.0 178.0 United States Atlanta NaN

Row selector: all years, summer
games, all competitions within archeryColumn selector:

we only want the
Team column.Applies value_counts to

the resulting series

120 CHAPTER 4 Indexes
(
df
.dropna(subset='Medal')
.loc[(slice(None), 'Summer', 'Archery'), 'Team']
.value_counts()

)

Here are the first five results:

Team
South Korea 69
Belgium 52
France 48
United States 41
China 19

Because value_counts sorts its values in descending order, we see that South Korea
has had the most archery medalists, with Belgium, France, the US, and China in the
next few places.

 Next, I asked you to find the average height of athletes in one specific event: “Table
Tennis Women’s Team.” Again, we can consider all the parts of our multi-index:

 We want to get results from 1980 onward.
 Table tennis is only played in the summer games, so we can specify either

Summer or slice(None).
 The sport is “Table tennis,” so we can specify that if we want to—but given that

all these events fall under the same sport, we can also leave it as a wildcard with
slice(None).

 We specify “Table Tennis Women’s Team” for the event.

We are only interested in the Height column, so our query looks like this:

df.loc[(slice(1980, None),
'Summer',
slice(None),
"Table Tennis Women's Team"),
'Height'
].mean()

The answer from our data set is the float 165.04827586206898, or just over 165 cm.
 For the next query, we expand our population, looking at not just the women’s

team version of table tennis but also the men’s version. Our first three selectors are
identical to what we did before, but the final (fourth) multi-index selector is a list
rather than a string:

df.loc[(slice(1980, None),
'Summer',

Row selector:
1980 and onward Row selector, part 2:

summer games

Row
selector,

part 3: all
sports

Row selector, part 4: only one event,
"Table Tennis Women's Team"Column selector:

Height column

Applies mean to the
resulting series

Row selector:
all years from 1980 Row selector, part 2:

summer games

121EXERCISE 23 ■ Olympic games

r
slice(None),
["Table Tennis Men's Team",
"Table Tennis Women's Team"]),

'Height'
].mean()

Given that men are generally taller than women, it’s not a surprise that adding men’s
events has greatly increased the average athlete’s height. The answer is
171.26643598615917.

 Finally, I was curious to know the height of the tallest-ever tennis player from 1980
until 2020. Once again, let’s go through our query-building process:

 We want years from 1980 through 2016. This can be handled most easily with
slice(1980,2016).

 Because tennis is only at summer games, it doesn’t matter whether we specify
the Season selector as Summer or use slice(None).

 We specify “Tennis” as the sport
 We’ll allow any events, so we don’t need to pass a fourth element in the tuple.

Finally, we’re looking for the Height column, so we specify that in our query. And we
want the maximum value for Height, so we use the max method. The final query looks
like this:

df.loc[(slice(1980,2016),
'Summer',
'Tennis'),
'Height'
].max()

The tallest-ever tennis player was 208 cm tall—known in some countries as 6 feet, 10
inches. That’s pretty tall!

Solution

filename = '../data/olympic_athlete_events.csv'

df = pd.read_csv(filename,
index_col=['Year', 'Season',

'Sport', 'Event'],
usecols=['Age', 'Height', 'Team',

'Year', 'Season', 'City',
'Sport', 'Event', 'Medal'])

df = df.sort_index()
df.loc[(slice(1936,2000), 'Summer'), 'Age'].mean()
df.dropna(subset='Medal').loc[

(slice(None), 'Summer', 'Archery'),
'Team'].value_counts()

df.loc[(slice(1980, None), 'Summer', slice(None),
"Table Tennis Women's Team"),

Row
selector,

part 3:
all sports

Row selector, part 4: two events: "Table Tennis
Women's Team" and "Table Tennis Men's Team"

Column selector:
Height columnApplies mean to the

resulting series

Row selector:
years 1980–2016 Row selector, part 2:

summer games

Row
selector,

part 3:
only tennis

Column selector:
Height columnApplies max to the

resulting series

Reads the CSV file into a
data frame with nine total
columns, four of which are
used in our index

Sorts the rows of the
data frame according
to the index

Gets the average age of summe
athletes from 1936 to 2000

Which teams got the most
medals in all archery events?

122 CHAPTER 4 Indexes
'Height'].mean()
df.loc[(slice(1980, None),

'Summer', slice(None),
["Table Tennis Men's Team",
"Table Tennis Women's Team"]),
'Height'].mean()

df.loc[(slice(1980,2016),
'Summer',
'Tennis'), 'Height'].max()

You can explore a version of this in the Pandas Tutor at http://mng.bz/JdXo.

Going deep
As we have already seen, loc makes retrieving data from multi-indexed data frames
pretty straightforward. However, sometimes we may want to use a multi-index differ-
ently. Pandas provides two other methods: xs and IndexSlice.

Because multi-indexed data frames are both common and important, pandas pro-
vides several ways to retrieve data from them. Let’s start with xs, which lets us
accomplish what we did in exercise 23: find matches for certain levels within a multi-
index. For example, one question in the previous exercise asked you to find the mean
height of participants in the “Table Tennis Women’s Team” event from all Olympics
years. Using loc, we had to tell pandas to accept all values for Year, all values for
Season, and all values for Sport—in other words, we only checked the fourth level
of the multi-index: the event. Our query looked like this:

df.loc[(slice(None),
'Summer',
slice(None),
"Table Tennis Women's Team"),
'Height'
].mean()

Using xs, we can shorten that query to

df.xs("Table Tennis Women's Team",
level='Event'
).mean()

You may have noticed that I lied when I said we didn’t search by season. As you can
see in the loc-based query, we did include that in our search. Fortunately, we can
handle that by passing a list of levels to the level parameter and a tuple of values
as the first argument:

df.xs(('Summer', "Table Tennis Women's Team"),
level=['Season', 'Event']).mean()

What was the average height of
participants in "Table Tennis
Women's Team" events from 1980?

What was the average height of participants
in both "Table Tennis Women's Team" and
"Table Tennis Men's Team" events from 1980?

How tall was the tallest tennis
player from 1980 to 2016?

Row selector:
all years Row selector, part 2:

summer games Row selector,
part 3: all sports

Row selector, part 4:
one event: "Table Tennis
Women's Team"

Column selector:
Height columnApplies mean to the

resulting series

Finds rows matching "Table
Tennis Women's Team"

The match should come in the
multi-index level called Event.Applies mean to the

resulting series

Passes a two-element
tuple to match two levels
of the multi-index

The argument passed to level
indicates which levels need to match.

http://mng.bz/JdXo

123EXERCISE 23 ■ Olympic games
Beyond the exercise

 Events occur in either summer or winter Olympic games, but not both. As a
result, the "Season" level in our multi-index is often unnecessary. Remove the
"Season" level, and then find (again) the height of the tallest tennis player
between 1980 and 2016.

 In which city were the most gold medals awarded from 1980 onward?
 How many gold medals were received by the United States since 1980? (Use the

index to select the values.)

Notice that xs is a method and is thus invoked with round parentheses. By contrast,
loc is an accessor attribute and is invoked with square brackets. And yes, it’s often
hard to keep track of these things.

You can, by the way, use integers as the arguments to level rather than names. I
find column names far easier to understand, though, and I encourage you to use
them.

A more general way to retrieve from a multi-index is IndexSlice. Remember when I
mentioned earlier that we cannot use : inside round parentheses and thus need to
say slice(None)? Well, IndexSlice solves that problem: it uses square brackets
and can use slice syntax for any set of values. For example, we can say

from pandas import IndexSlice as idx
df.loc[idx[1980:2016, :, 'Swimming':'Table tennis'], :]

This code allows us to select a range of values for each level of the multi-index. We
no longer need to call the slice function. Now we can use the standard Python :
syntax for slicing within each level. The result of calling IndexSlice (or idx, as we
aliased it here) is a tuple of Python slice objects:

(slice(1980, 2016, None),
slice(None, None, None),
slice('Swimming', 'Table tennis', None))

In other words, IndexSlice is syntactic sugar, allowing pandas to look and feel more
like a standard Python data structure, even when the index is far more complex.

One final note: a data frame can have a multi-index on its rows, its columns, or both.
By default, xs assumes the multi-index is on the rows. If and when you want to use
it on multi-index columns, pass axis='columns' as a keyword argument.

Pivot tables
So far, we have seen how to use indexes to restructure our data, making it easier to
retrieve different slices of the information it contains and thus answer particular
questions more easily. But the questions we have been asking have all had a single

Years 1980–2016, all seasons,
and all sports from "Swimming"

to "Table tennis"

124 CHAPTER 4 Indexes
(continued)

answer. We often want to apply a particular aggregate function to many different com-
binations of columns and rows. One of the most common and powerful ways to
accomplish this is with a pivot table.

A pivot table allows us to create a new table (data frame) from a subset of an existing
data frame. Here’s the basic idea:

 Our data frame contains two columns with categorical, repeating, nonhierar-
chical data. For example: years, country names, colors, and company
divisions.

 Our data frame has a third column that is numeric.
 We create a new data frame from those three columns, as follows:

– All unique values from the first categorical column become the index or row
labels.

– All unique values from the second categorical column become the column
labels.

– Wherever the two categories match, we get either the single value where
those two intersect or the mean of all values where they intersect.

It takes a while to understand how a pivot table works. But once you get it, it’s hard
to un-see: you start finding uses everywhere.

For example, consider this simple data frame:

g = np.random.default_rng(0)
df = DataFrame(g.integers(0, 100, [8,3]),

columns=list('ABC'))
df['year'] = [2018] * 4 + [2019] * 4
df['quarter'] = 'Q1 Q2 Q3 Q4'.split() * 2

This table shows the sales of each product per year and quarter. And you can cer-
tainly understand the data if you look at it a certain way. But what if we were inter-
ested in seeing sales figures for product A? It may make more sense, and be easier
to parse, if we use the quarters (a categorical, repeating value) as the rows, the years
(again, a categorical, repeating value) as the columns, and the figures for product A
as the values. We can create such a pivot table as follows:

df.pivot_table(index='quarter',
columns='year',
values='A')

The result, on my computer, is a data frame that looks like this:

year 2018 2019
quarter
Q1 44 88
Q2 67 65
Q3 83 46
Q4 87 37

Rows (index) are unique
values from quarter. Columns are unique

values from year.

Values are the mean of each
year—quarter intersection.

125EXERCISE 23 ■ Olympic games
Graphical depiction of creating a pivot table with index quarter, columns year, and values A

The quarters are sorted in alphabetical order, which is fine here. In some cases, such
as using month names for your index, you can pass sort=False.

What if more than one row has the same values for year and month? By default,
pivot_table runs the mean aggregation method on all values. (Pandas also offers a
pivot method, which doesn’t do aggregation and cannot handle duplicate values for
index-column combinations. I never use it.) To use a different aggregation function,
pass an argument to aggfunc in your call to pivot_table. For example, you can
count the values in each intersection box by passing the size function:

df.pivot_table(index='quarter',
columns='year',
values='A',
sort=False,
aggfunc='size')

Note that here, it doesn’t matter whether we use size or count, because there aren’t
any NaN values. Generally speaking, size includes all values, including NaN, and
count ignores them.

2018

A B C year quarter

0 44 47 64 Q1

1 67 67 9 2018 Q2

2 83 21 36 2018 Q3

3 87 70 88 2018 Q4

4 88 12 58 2019 Q1

5 65 39 87 2019 Q2

6 46 88 81 2019 Q3

7 37 25 77 2019 Q4

year 2018 2019

quarter

Q1 44 88

Q2 67 65

Q3 83 46

Q4 87 37

pivot_table(
index='quarter',
columns='year',
values='A')

Index (rows): unique
values from quarter Columns: unique

values from year

Values: from
column A

Don’t sort
the values. Use size on

the values.

126 CHAPTER 4 Indexes
EXERCISE 24 ■ Olympic pivots
In this exercise, we examine the Olympic data one more time—but using pivot tables,
so we can examine and compare more information at a time than we could before.
Pivot tables are a popular way to summarize information in a larger, more complex
table.

 I want you to do the following:

1 Read in our Olympic data again.

– Only use these columns: Age, Height, Team, Year, Season, Sport, Medal.
– Only include games from 1980 to the present.
– Only include data from these countries: Great Britain, France, United States,

Switzerland, China, and India.

2 Answer these questions:

– What was the average age of Olympic athletes? In which country do players
appear to consistently be the youngest?

– How tall were the tallest athletes in each sport in each year?
– How many medals did each country earn each year?

Working it out

The first challenge in this exercise is to create the data frame on which to base our
pivot tables. We load the same CSV file as in the previous exercise, but we’re inter-
ested in fewer rows and columns.

 The first step is to read the CSV file into a data frame, limiting the columns we
request:

(continued)

The result of this data frame isn’t very interesting because there aren’t any repeated
intersections:

year 2018 2019
quarter
Q1 1 1
Q2 1 1
Q3 1 1
Q4 1 1

Remember that a pivot table will have one row for each unique value in your first cho-
sen column and a column for each unique value in your second chosen column. If
there are hundreds of unique values in either (or, even worse, in both), you could end
up with a gargantuan pivot table. This will be hard to understand and analyze and also
will consume large amounts of memory. Moreover, if your data isn’t very lean (see
Chapter 5), you may find junk values in your pivot table’s index and columns.

127EXERCISE 24 ■ Olympic pivots
df = pd.read_csv(filename,
usecols=['Age', 'Height',

'Team', 'Year',
'Season', 'Sport',
'Medal'])

Notice that we don’t set the index. That’s because we ignore the index in this exercise,
focusing instead on pivot tables. Because the pivot tables are constructed based on
actual columns and not the index, we’ll stick with the default numeric index that pan-
das assigns to every data frame.

 Now we want to remove all the rows that aren’t from the countries we’ve named. (I
chose these countries because I traveled there in the months before the pandemic.
This is not meant to be any sort of representative sample, except where I’ve done cor-
porate training in Python and data science.) We often keep (or remove) rows with a
particular value, but how can we keep rows whose Team column is one of several val-
ues? We could use a query with | (the boolean “or” operator), but it would be long
and complex.

 Instead, we can use the isin method, which allows us to pass a list of possibilities
and get a True value whenever the Team column equals one of those possible strings.
In my experience, the isin method is one of those things that seems obvious when
you start to use it but is far from obvious until you know to look for it.

 We can keep only those countries this way:

df = df.loc[df['Team'].isin(['Great Britain', 'France',
'United States', 'Switzerland',
'China', 'India'])]

Now we remove any rows in which Year is before 1980. This is a more standard opera-
tion, one we’ve done many times before:

df = df.loc[df['Year'] >= 1980]

With our data frame in place, we can create pivot tables to examine our data from a
new perspective. I first asked you to compare the average age of players for each team,
for all sports and all years. As usual, when creating pivot tables, we need to consider
what will be the rows, columns, and values:

 The rows (index) will be the unique values from the Year column.
 The columns will be the unique values from the Team column.
 The values will be from the Age column.

Sure enough, we can create our pivot table as follows:

df.pivot_table(index='Year',
columns='Team',
values='Age')

Index: unique
values of Year in df Columns: unique

values of Team in df

Values: mean of Age for each
year—team combination

128 CHAPTER 4 Indexes
These numbers are across all sports, and not every country has entrants in every sport.
But if we take the numbers at face value, we see that China consistently has younger
athletes at Olympic games. Here is the output from the query:

Team China France Great India Switzerland United
Britain States

Year
1980 21.868421 23.524590 22.882507 25.506667 24.557823 22.770992
1984 22.076336 24.369830 24.445423 24.905660 23.589744 24.437118
1988 22.358447 24.520076 25.439560 24.000000 26.218868 24.904977
1992 21.955752 25.140187 25.584055 24.184615 25.413194 25.474866
1994 20.627907 24.601307 25.282051 NaN 25.500000 24.976744
1996 22.021531 25.296629 26.746032 24.629630 27.122093 26.273277
1998 21.784091 25.462069 27.243902 16.000000 25.641509 25.146154
2000 22.515306 25.982833 26.406948 25.400000 27.376812 26.576203
2002 23.127451 25.737805 26.833333 20.000000 26.238710 25.726316
2004 23.006122 26.139073 26.303977 24.728395 27.343284 26.439093
2006 23.457143 26.303226 26.851852 25.200000 26.284848 25.637288
2008 23.903955 26.285714 25.200969 25.402985 27.312500 26.225806
2010 23.239669 25.911458 26.147059 25.666667 26.548387 25.841584
2012 23.894168 26.606635 25.922619 25.637363 27.172131 26.461883
2014 23.400000 25.708995 25.628571 25.000000 25.855814 26.189189
2016 23.873706 27.095238 26.653191 26.100000 25.891892 26.217454

Next, we want to find the tallest players in each sport from each year. Given that we
are looking at a large number of sports and a relatively small number of years, it is wise
to use the years in the columns this time:

 The rows (index) will be the unique values from the Sport column.
 The columns will be the unique values from the Year column.
 The values will come from the Height column. We’re interested in the highest

value and will thus provide a function argument to the aggfunc parameter: max.

NOTE In previous versions of pandas, it was common to specify the aggrega-
tion method by passing a NumPy method, such as np.max or np.size. How-
ever, pandas now prefers to get a string (e.g., 'max' or 'size'), which
translates into an internal function name or reference.

In the end, we create the pivot table as follows:

df.pivot_table(index='Sport',
columns='Year',
values='Height',
aggfunc='max')

From the large number of NaN values, we can see that height information isn’t as read-
ily available for all sports and teams as many other measurements. This is not an
unusual problem to face with real-world data; sometimes you have to make do with
the data that is available, even if it’s far from reliable and complete.

Index: unique
values of Sport in df Columns: unique

values of Year in df

Values: maximum
value for Height

We use max as our
aggregation function.

129EXERCISE 24 ■ Olympic pivots
 Finally, I asked you to determine how many medals each country received at each
game. Once again, let’s do a bit of planning before creating our pivot table:

 The rows (index) will be the unique values from the Year column.
 The columns will be the unique values from the Team column.
 We want to count the number of medals, not get their average values (as if

that’s even possible). This means we must provide a function argument to the
aggfunc parameter. This can usually be a string referring to a method, such as
'max'. We first have to remove all rows for which Medal has a NaN value indicat-
ing that no medal was won.

Our code to create the pivot table can look like this:

pd.pivot_table(df.dropna(subset='Medal'),
index='Year',
columns='Team',
values='Medal',
aggfunc='max')

Solution

filename = '../data/olympic_athlete_events.csv'

df = pd.read_csv(filename,
usecols=['Age', 'Height', 'Team',

'Year', 'Season',
'Sport', 'Medal'])

df = df.loc[df['Team'].isin(['Great Britain', 'France',
'United States', 'Switzerland',
'China', 'India'])]

df = df.loc[df['Year'] >= 1980]

df.pivot_table(index='Year', columns='Team',
values='Age')

df.pivot_table(index='Sport',
columns='Year', values='Height',
aggfunc='max')

pd.pivot_table(df.dropna(subset='Medal'),
index='Year',
columns='Team',
values='Medal',
aggfunc='size')

You can explore a version of this, in color, in the Pandas Tutor at https://pandastutor
.com/vis.html#.

Beyond the exercise

 Create a pivot table that shows the number of medals each team won per year,
with the index including the year and the season in which the games took place.

Index: unique
values of Sport in df

Only uses the
subset of df where
Medal isn’t NaN

Columns: unique
values of Team in df Values: sum of values

in the Medal columnWe use max as our
aggregation function.

Loads only five columns;
we ignore the index

Removes rows in which
the team isn’t one of the
six we’re looking for

Removes rows in which
the year is before 1980

Pivot table from Year (index),
Team (columns), and mean Age

Pivot table from Sport (index), Year
(columns), and the max value of Height

Pivot table from Year (index), Team
(columns), and the number of medals

https://pandastutor.com/vis.html#
https://pandastutor.com/vis.html#
https://pandastutor.com/vis.html#

130 CHAPTER 4 Indexes
 Create a pivot table that shows both the average age and the average height per
year per team.

 Create a pivot table that shows the average age and the average height per year,
per team, broken up by year and season.

Summary
In this chapter, we saw that a data frame’s index is not just a way to keep track of the
rows but one that can be used to reshape a data frame, making it easier to extract use-
ful information. This is particularly true when we create pivot tables, choosing values
from an existing data frame for comparison.

Cleaning data
In the late 1980s, my employer wanted to know how much rain had fallen in various
places. Their solution? They gave me a list of cities and phone numbers and asked
me to call each in sequence, recording the previous day’s rainfall in an Excel
spreadsheet. Nowadays, getting that sort of information—and many other types—is
pretty easy. Many governments provide data sets for free, and numerous companies
make data available for a price. No matter what topic you’re researching, data is
almost certainly available. The only questions are where you can get it, how much it
costs, and what format it comes in.

 You should ask another question, too: how accurate is the data you’re using? It’s
easy to assume that a CSV file from an official-looking website contains good data.
But all too often, it will have problems. That shouldn’t surprise us, given that the
data comes from people (who can make mistakes) and machines (which make dif-
ferent types of mistakes). Maybe someone accidentally misnamed a file or entered
data into the wrong field. Maybe the automatic sensors whose inputs were used in
collecting the data were broken or offline. Maybe the servers were down for a day,
or someone misconfigured the XML feed-reading system, or the routers were being
rebooted, or a backhoe cut the internet line.

 All this assumes there was data to begin with. Often, we’ll have missing data
because there wasn’t any data to record.

 This is why I’ve heard data scientists say that 80% of their job involves cleaning
data. What does it mean to “clean data”? Here is a partial list:

 Rename columns.
 Rename the index.
 Remove irrelevant columns.
131

132 CHAPTER 5 Cleaning data
 Split one column into two.
 Combine two or more columns into one.
 Remove nondata rows.
 Remove repeated rows.
 Remove rows with missing data (aka NaN).
 Replace NaN data with a single value.
 Replace NaN data via interpolation.
 Standardize strings.
 Fix typos in strings.
 Remove whitespace from strings.
 Correct the types used for columns.
 Identify and remove outliers.

We have discussed some of these techniques in previous chapters. But the importance
of cleaning your data, and thus ensuring that your analysis is as accurate as possible,
cannot be overstated.

 In this chapter, we’ll look at pandas techniques for cleaning data. We’ll see a few
ways to handle NaN values. We’ll consider how to preserve as much data as possible,
even when it’s pretty dirty. We’ll discuss how to better understand our data and its lim-
itations. And we’ll look at a some more advanced techniques for massaging data into a
form that’s more easily analyzed.

Table 5.1 What you need to know

Concept What is it? Example To learn more

df.shape A two-element tuple indicating
the number of rows and col-
umns in a data frame

df.shape http://mng.bz/8rpg

len(df) or
len(df.index)

Gets the number of rows in a
data frame

len(df) or
len(df.index)

http://mng.bz/EQdr

s.isnull Returns a boolean series indi-
cating where there are null
(typically NaN) values in the
series s

s.isnull() http://mng.bz/N2KX

s.notnull Returns a boolean series indi-
cating where there are non-
null values in the series s

s.notnull() http://mng.bz/D420

df.isnull Returns a boolean data frame
indicating where there are null
(typically NaN) values in the
data frame df

df.isnull() http://mng.bz/lWGz

df.replace Replaces values in one or
more columns with other val-
ues

df.replace('a':{'
b':'c'), 'd')

http://mng.bz/Bm2q

http://mng.bz/8rpg
http://mng.bz/EQdr
http://mng.bz/N2KX
http://mng.bz/D420
http://mng.bz/lWGz
http://mng.bz/Bm2q

133■CHAPTER 5 Cleaning data
s.map Applies a function to each ele-
ment of a series, returning the
result of that application on
each element

s.map(lambda x:
x**2)

http://mng.bz/d1yz

df.fillna Replaces NaN with other
values

df.fillna(10) http://mng.bz/rWrE

df.dropna Removes rows with NaN
values

df = df.dropna() http://mng.bz/V1gr

s.str Works with textual data df['colname'].str http://mng.bz/x4Wq

str.isdigit Returns a boolean series, indi-
cating which strings contain
only the digits 0–9

df['colname']
.str.isdigit()

http://mng.bz/AoAE

pd.to_numeric Returns a series of integers or
floats based on a series of
strings

pd.to_numeric
(df['colname'])

http://mng.bz/Zq2j

df.sort_index Reorders the rows of a data
frame based on the values in
its index in ascending order

df = df.sort_
index()

http://mng.bz/RxAn

pd.read_excel Creates a data frame based
on an Excel spreadsheet

df = pd.read_
excel('myfile
.xlsx')

http://mng.bz/2DXN

pd.read_csv Returns a new data frame
based on CSV input

df = pd.read_
csv('myfile
.csv')

http://mng.bz/wvl7

s.value_counts Returns a sorted (descending
frequency) series counting
how many times each value
appears in s

s.value_counts() http://mng.bz/1qzZ

s.unique Returns a series with the
unique (i.e., distinct) values in
s, including NaN (if it occurs
in s)

s.unique() http://mng.bz/PzA2

s.mode Returns a series with the
most commonly found values
in s

s.mode() http://mng.bz/7vBm

How much is missing?
We’ve already seen, on several occasions, that data frames (and series) can contain
NaN values. One question we often want to answer is, how many NaN values are in a
given column? Or, for that matter, in a data frame?

Table 5.1 What you need to know (continued)

Concept What is it? Example To learn more

http://mng.bz/d1yz
http://mng.bz/rWrE
http://mng.bz/V1gr
http://mng.bz/x4Wq
http://mng.bz/AoAE
http://mng.bz/Zq2j
http://mng.bz/RxAn
http://mng.bz/2DXN
http://mng.bz/wvl7
http://mng.bz/1qzZ
http://mng.bz/PzA2
http://mng.bz/7vBm

134 CHAPTER 5 Cleaning data
NOTE Pandas defines both isna and isnull for both series and data frames.
What’s the difference between them? There is no Difference. If you look at
the pandas documentation, you’ll find that they’re identical except for the
name of the method being called. In this book, I use isnull, but if you prefer
to go with isna, be my guest. Note that both are different from np.isnan, a
method defined in NumPy, on top of which pandas is defined. I try to stick
with the methods that pandas defines, which in my experience integrate bet-
ter into the rest of the system. Rather than using ~, which pandas uses to

(continued)

One solution is to calculate things yourself. There is a count method you can run on
a series, which returns the number of non-null values in the series. That, combined
with the shape of the series, can tell you how many NaN values there are:

s.shape[0] - s.count()

This is tedious and annoying. And besides, shouldn’t pandas provide a way to do
this? Indeed it does, in the form of the isnull method. If you call isnull on a col-
umn, it returns a boolean series with True where there is a NaN value and False in
other places. You can then apply the sum method to the series, which will return the
number of True values, thanks to the fact that Python’s boolean values inherit from
integers and can be in place of 1 (True) and 0 (False) if needed:

s.isnull().sum()

If you run isnull on a data frame, you get a new data frame back, with True and
False values indicating whether there is a null value in that particular row-column
combination. And, of course, you can run sum on the resulting data frame to find out
how many NaN values are in each column:

df.isnull().sum()

Finally, the df.info method returns a wealth of information about the data frame on
which it’s run, including the name and type of each column, a summary of the number
of columns of each type, and the estimated memory usage. (We’ll talk more about
this memory usage in Chapter 12.) If the data frame is small enough, it will also show
you how many null values are in each column. However, this calculation can take
some time. Thus, df.info will only count null values below a certain threshold. If
you’re above that threshold (the pd.options.display.max_info_columns option),
you need to tell pandas explicitly to count by passing show_counts=True:

df.info(show_counts=True)

Returns an integer: the
number of null elements

Calculates the number
of NaN values in s

Calculates the number of
NaN values in each column

Gets full information about the data
frame df, including the number of
null values in each column

135EXERCISE 25 ■ Parking cleanup
invert boolean series and data frames, you can often use the notnull methods
for both series and data frame.

EXERCISE 25 ■ Parking cleanup
In chapter 4, we looked at parking tickets given in New York City in 2020. We were able
to analyze that data and draw some interesting conclusions from it. But let’s consider
that this data was entered by a police officer, a parking inspector, or another person,
which means there is a good chance it sometimes has missing or incorrect data. That
may seem like a minor problem, but it can mean everything from cars being ticketed
incorrectly to bad statistics in the system to people getting out of fines due to incorrect
information. (A side note: when you’re issued a parking ticket in Israel, it includes a pho-
tograph of your car and license plate, taken by the inspector when they issued the ticket.
That makes it a bit harder to wriggle out of fines, but people manage to do it anyway.)

 In this exercise, we will identify missing values, one of the most common problems
you will encounter. We’ll see how often values are missing and what effect they may
have. Note that for this exercise, we’re going to assume that a parking ticket that is
missing data may be dismissed; don’t blame me if this defense doesn’t work when
appealing any tickets you get in New York.

 I want you to do the following:

1 Create a data frame from the file nyc-parking-violations-2020.csv. We are only
interested in a handful of the columns:
– Plate ID

– Registration State

– Vehicle Make

– Vehicle Color

– Violation Time

– Street Name

How many rows are in the data frame when it is read into memory?

2 Remove rows with any missing data (i.e., a NaN value). How many rows remain
after doing this pruning? If each parking ticket brings $100 into the city, and
missing data means the ticket can be successfully contested, how much money
may New York City lose due to such missing data?

3 Let’s instead assume that a ticket can only be dismissed if the license plate,
state, car make, and/or street name are missing. Remove rows that are missing
one or more of these. How many rows remain? Assuming $100/ticket, how
much money would the city lose as a result of this missing data?

4 Now let’s assume that tickets can be dismissed if the license plate, state, and/or
street name are missing—that is, the same as the previous question, but without
requiring the make of car. Remove rows that are missing one or more of these.
How many rows remain? Assuming $100/ticket, how much money would the
city lose as a result of this missing data?

https://github.com/reuven/pandas-workout

136 CHAPTER 5 Cleaning data
Working it out

When you’re first starting with data analytics, it’s reasonable to think you can just toss
out imperfect data. After all, if something is missing, you cannot use it, right? In this
exercise, I hope you saw not only how to remove rows with missing data but also the
potential problems associated with doing that.

 For starters, let’s load the CSV file into a data frame. We are only interested in a
few columns, so loading looks like this:

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,
usecols=['Plate ID',

'Registration State',
'Vehicle Make',
'Vehicle Color',
'Violation Time',
'Street Name'])

We can determine the number of rows in our data frame by getting the first element
(i.e., index 0) from the shape attribute:

df.shape[0]

It turns out there’s a better way, though: we can invoke the Python builtin len on our
data frame, thus getting the number of rows:

len(df)

Not only does this give the same answer, but in my testing, I found that len was twice
as fast as shape[0]. But we can do even better by running len on df.index:

len(df.index)

In my tests, I found that len(df.index) runs about 45% faster than len(df) and
about 65% faster than df.shape[0].

Counting values
The count method often seems like the most natural, obvious way to count rows. But
it has several problems:

 It ignores NaN values
 On a large data frame, it takes a long time to run

If you want to know the number of all values, including NaN, you can use the size
attribute (not a method), which works on both series and data frames. Or invoke
np.size on the series, as in np.size(s).

However, as I said earlier, I prefer to call len(df.index), which gives me the total
length and seems to run fastest.

137EXERCISE 25 ■ Parking cleanup
With that data frame in place, we can start to make a few queries, looking for tickets
that could potentially be dismissed for lack of data. Our first query will apply the
naive (but well-meaning) approach, in which we remove any rows that have missing
data. We can do this with the df.dropna method. That method returns a new data
frame, identical to our original df, but without any rows that have any NaN values
(figure 5.1):

all_good_df = df.dropna()

Figure 5.1 Sample of df, including NaN values

This means, by the way, that if every row in a data frame contains a single NaN value,
the result of calling df.dropna will be an empty data frame. Its columns will be identi-
cal to your existing data frame but have zero rows (figure 5.2).

2752511

964568

5049760

4248515

353397

2703401

1434853

9585754

8915985

2868914

Plate ID

LHLP99

JXJ1561

S82HUN

HYK8920

KMF8349

XHXE40

TRD7943

76654MK

HJD9647

JHM3686

Registration State

FL

PA

NJ

NY

PA

NJ

OH

NY

NY

99

Vehicle Make

HYUN

TOYOT

HONDA

FORD

NaN

NaN

NaN

INTER

ME/BE

NaN

Violation Time

0230P

0119P

0846A

1151A

0850P

1039A

0937A

NaN

NaN

NaN

Street Name

JACOB RIIS PARK

E 58th St

SB UNIVERSITY AVE
@

NB PARK AVE @ E
83RD

S/S SEAVIEW AVE

W 43 ST

BASSETT AVE

6TH AVE

29TH ST

NaN

Vehicle Color

RED

BLUE

BK

GY

WHITE

WH

WH

RED

WH

NaN

138 CHAPTER 5 Cleaning data
Figure 5.2 Running dropna on a data frame removes all NaN values and the rows containing them.

dropna()

2752511

964568

5049760

4248515

353397

2703401

1434853

9585754

8915985

2868914

Plate ID

LHLP99

JXJ1561

S82HUN

HYK8920

KMF8349

XHXE40

TRD7943

76654MK

HJD9647

JHM3686

Registration State

FL

PA

NJ

NY

PA

NJ

OH

NY

NY

99

Vehicle Make

HYUN

TOYOT

HONDA

FORD

NaN

NaN

NaN

INTER

ME/BE

NaN

Violation Time

0230P

0119P

0846A

1151A

0850P

1039A

0937A

NaN

NaN

NaN

Street Name

JACOB RIIS PARK

E 58th St

SB UNIVERSITY AVE
@

NB PARK AVE @ E
83RD

S/S SEAVIEW AVE

W 43 ST

BASSETT AVE

6TH AVE

29TH ST

NaN

Vehicle Color

RED

BLUE

BK

GY

WHITE

WH

WH

RED

WH

NaN

2752511

964568

5049760

4248515

Plate ID

LHLP99

JXJ1561

S82HUN

HYK8920

Registration State

FL

PA

NJ

NY

Vehicle Make

HYUN

TOYOT

HONDA

FORD

Violation Time

0230P

0119P

0846A

1151A

Street Name

JACOB RIIS PARK

E 58th St

SB UNIVERSITY AVE
@

NB PARK AVE @ E
83RD

Vehicle Color

RED

BLUE

BK

GY

139EXERCISE 25 ■ Parking cleanup
Just how many rows did we remove when we used dropna? We can calculate that:

len(df.index) - len(all_good_df.index)

We get a large number as a result: 447,359. That represents about 3.5% of the data in
the original data frame—which doesn’t sound like much until we consider the next
question: how much money New York City would lose if all those tickets were thrown
out. Assuming that each parking ticket costs $100, we can calculate the total as follows:

(len(df.index) - len(all_good_df.index)) * 100

That works out to a shockingly high number: $44.7 million. I decided to display this
result as a string, taking advantage of the fact that Python’s f-strings have a special ,
format code that, when put after : on an integer, puts commas before every three
digits:

f'${(len(df.index) - len(all_good_df.index)) * 100:,}'

As we can see in this (somewhat contrived) example, removing bad data can give us a
better sense of confidence—but even when we remove a small amount (3.5%!), it can
add up very quickly.

 Next, I asked you to apply a slightly lighter standard, removing rows only if they
have NaN in one of four columns: Plate ID, Registration State, Vehicle Make, or
Street Name. But this raises another question: how can we select only particular
columns?

 One approach is to remember that each column is a series, and we can apply
notnull to that series, giving us a boolean series. We can combine those four series
with &, giving us a boolean series in which True indicates that all values are non-null.
Finally, we can apply that boolean series to our original df, giving us a data frame in
which most (but not all) data is non-null:

semi_good_df = df[df['Plate ID'].notnull() &
df['Registration State'].notnull() &
df['Vehicle Make'].notnull() &
df['Street Name'].notnull()]

This works. But there’s a better way to do things, using dropna. Normally, as we just
saw, dropna removes rows that contain any NaN values. But we can tell it to look in only
a subset of the columns, ignoring NaN values in any other columns. The result is a
much cleaner query (figure 5.3):

semi_good_df = df.dropna(subset=['Plate ID',
'Registration State',
'Vehicle Make',
'Street Name'])

140 CHAPTER 5 Cleaning data
Figure 5.3 Running dropna on a data frame, looking at only a subset of columns

Plate ID Registration State Vehicle Make Violation Time Street Name

NB PARK AVE @ E
83RD

Vehicle Color

2752511 LHLP99 FL HYUN 0230P JACOB RIIS PARK RED

964568 JXJ1561 PA TOYOT 0119P E 58th St BLUE

5049760 S82HUN NJ HONDA 0846A SB UNIVERSITY AVE
@ BK

4248515 HYK8920 NY FORD 1151A GY

353397 KMF8349 PA NaN 0850P S/S SEAVIEW AVE WHITE

2703401 XHXE40 NJ NaN 1039A W 43 ST WH

1434853 TRD7943 OH NaN 0937A BASSETT AVE WH

9585754 76654MK NY INTER NaN 6TH AVE RED

8915985 HJD9647 NY ME/BE NaN 29TH ST WH

2868914 JHM3686 99 NaN NaN NaN NaN

df[df['Plate ID'].notnull()
&

df['Registration
State'].notnull()

&
df['Vehicle Make'].notnull()

&
df['Street Name'].notnull()]

Plate ID Registration State Vehicle Make Violation Time Street Name

NB PARK AVE @ E
83RD

Vehicle Color

2752511 LHLP99 FL HYUN 0230P JACOB RIIS PARK RED

964568 JXJ1561 PA TOYOT 0119P E 58th St BLUE

5049760 S82HUN NJ HONDA 0846A SB UNIVERSITY AVE
@ BK

4248515 HYK8920 NY FORD 1151A GY

353397 KMF8349 PA NaN 0850P S/S SEAVIEW AVE WHITE

2703401 XHXE40 NJ NaN 1039A W 43 ST WH

141EXERCISE 25 ■ Parking cleanup
How many rows did we remove? And how much money may New York give up if we
only remove these rows?

f'${(len(df.index) - len(semi_good_df.index)) * 100:,}

According to this calculation, the result is $6,378,500. Still a fair amount of money, but
a far cry from what we would have lost had we removed any and all problematic records.

 But let’s make the rules looser still, mandating only that three of the columns lack
NaN values: Plate ID, Registration State, and Street Name. Once again, we can use
df.dropna along with its subset parameter to remove only those rows that lack all
three of these columns:

loosest_df = df.dropna(subset=['Plate ID',
'Registration State',
'Street Name'])

This removes only 1,618 rows from our original data frame. How much money would
that translate into?

f'${(len(df.index) - len(loosest_df.index)) * 100:,}

According to this calculation, it works out to $161,800, which seems like a far more
reasonable amount of lost revenue.

Solution

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,
usecols=['Plate ID',

'Registration State',
'Vehicle Make',
'Vehicle Color',
'Violation Time',
'Street Name'])

Using “thresh” with “dropna”
In this case, we want to ensure that all four columns have non-NaN values. However,
passing an integer to the thresh keyword argument while we’re also passing a list
of columns to subset allows us to indicate that only some of these columns must be
non-NaN. For example, if we’re OK with any three of these four columns having non-
NaN in them, we can say

semi_good_df = df.dropna(subset=['Plate ID',
'Registration State',
'Vehicle Make',
'Street Name'],

thresh=3)

Of course, this means we’ll still have some NaN values in the resulting data frame.
But often that is a reasonable trade-off.

Reads the CSV file using
only a handful of columns

142 CHAPTER 5 Cleaning data

D

D
w
an
all_good_df = df.dropna()
len(df.index) - len(all_good_df.index)
f'${(len(df.index) - len(all_good_df.index)) * 100:,}'

semi_good_df = df.dropna(subset=['Plate ID',
'Registration State',
'Vehicle Make',
'Street Name'])

len(df.index) - len(semi_good_df.index)
f'${(len(df.index) - len(semi_good_df.index)) * 100:,}'

loosest_df = df.dropna(subset=['Plate ID',
'Registration State',
'Street Name'])

len(df.index) - len(loosest_df.index)
f'${(len(df.index) - len(loosest_df.index)) * 100:,}'

You can explore a version of this in the Pandas Tutor at http://mng.bz/6nlo.

Beyond the exercise

 So far, you have specified which columns must be all non-null. But sometimes
it’s OK for some columns to have null values, as long as it’s not too many. How
many rows would you eliminate if you required at least three non-null values
from the four columns Plate ID, Registration State, Vehicle Make, and
Street Name?

 Which of the columns you’ve imported has the greatest number of NaN values?
Is this a problem?

 Null data is bad, but there is plenty of bad non-null data, too. For example,
many cars with BLANKPLATE as a plate ID were ticketed. Turn these into NaN val-
ues, and rerun the previous query.

Combining and splitting columns
A common aspect of data cleaning involves creating one new column from several
existing columns, as well as the reverse—creating multiple columns from a single
existing column. For example, back in exercise 8, we saw how to create a new col-
umn, current_net, by calculating the net price of each product and then multiplying
that by the quantity sold:

df['current_net'] = ((df['retail_price'] -
df['wholesale_price']) * Df['sales'])

This may not seem like “cleaning” to you, but it’s a common way to make data clearer
and easier to understand. Plus, we can then identify holes and problems in our data
and fix them accordingly.

Removes rows containing
any NaN values How many rows

did we remove?

Uses an f-string to
display potentially lost
revenue with commas

rops rows with NaN in
any of four columns How many rows did

we remove now?

Uses an f-string to
display potentially lost
revenue with commas

rops rows
ith NaN in
y of three
columns

How many rows did
we remove this time?

Uses an f-string to
display potentially lost
revenue with commas

http://mng.bz/6nlo

143EXERCISE 26 ■ Celebrity deaths
EXERCISE 26 ■ Celebrity deaths
Sometimes, as in the previous exercise, only a small fraction of the data is unreadable,
missing, or corrupt. In other cases, a much larger proportion is problematic—and if
you want to use the data set, you’ll need to not only remove bad data but also massage
and salvage the good data.

 For this exercise, we’ll look at a (slightly morbid) data set: a list of celebrities who
died in 2016 and whose passing was recorded in Wikipedia, including the date of
death, a short biography, and the cause of death. The problem is that this data set is
messy, with some missing data and some erroneous data that will prevent us from
working with it easily.

I’ll add something I often told my children when they were studying math in school: a
large part of mathematics involves finding ways to rewrite problems so they’re easier
to understand and then solve. The same is true about data structures in program-
ming. And it’s also true in data science, where having columns that are clearer and
more easily understood can help clarify our analysis.

Perhaps even more frequently, though, cleaning data involves turning one complex
column into one or more simpler columns. For example, you can imagine taking a col-
umn with a float64 dtype and turning it into two int64 columns, one with the integer
portion and one with the floating-point portion.

This is especially true in the case of two complex data structures, which we’ll have
much more to say about in chapters 9 and 10. Let’s look at a particularly common
example: when we have string data and want to grab certain substrings from within
that data. In a normal Python program, we would use a slice to retrieve a substring.
For example:

s = '00:11:22'
print(s[3:5]) # prints '11'

Remember that Python slices are always of the form [start:end+1]. So if we want
the characters at index 3 and index 4, we ask for 3:5, which means “starting at 3,
up to and not including 5.”

Let’s assume that s isn’t a single string but a series containing strings. To retrieve
the slice 3:5 from each of those strings, we can use the str accessor on the series
followed by the slice method. The syntax is a bit different than with Python strings,
but it should still feel familiar:

s.str.slice(3,5)

The result of this code is a new series of string objects, of same length as s, contain-
ing two-element strings taken from indexes 3 and 4 of each row in s.

It’s common to slice and dice the columns of a data frame this way, retrieving only
those parts that are of interest to us. This makes the problem easier to see, under-
stand, and solve and allows us to remove the original (larger) column, saving memory
and improving computation speed.

144 CHAPTER 5 Cleaning data
 The goal of this exercise is to find the average age of celebrities who died Febru-
ary–July 2016. Getting there will take several steps:

1 Create a data frame from the file celebrity_deaths_2016.csv. For this exercise,
we’ll use only two columns:

– dateofdeath
– age

2 Create a new month column containing the month from the dateofdeath
column.

3 Make the month column the index of the data frame.
4 Sort the data frame by the index.
5 Clean all nonintegers from the age column.
6 Turn the age column into an integer value.
7 Find the average age of celebrities who died during that period.

Working it out

In this exercise, we create and clean up a two-column data frame. Each column needs
to be cleaned differently for us to answer the question I asked: what was the average
age of celebrities who died in February through July?

 We start by loading the CSV file into a data frame. We are only interested in two of
the columns, so we load the file as follows:

filename = '../data/celebrity_deaths_2016.csv'

df = pd.read_csv(filename,
usecols=['dateofdeath', 'age'])

With that in place, we must tackle our two cleaning tasks.

Finding numeric strings
Normally, we can turn a string column into an integer column with

df['colname'] = df['colname'].astype(np.int64)

However, this will fail if any of the rows in df['colname'] cannot be turned into inte-
gers. That’s because the strings either are empty or contain nondigit characters.

We can determine which rows in a column can be successfully turned into integers
by applying the isdigit method via the str accessor:

df['colname'].str.isdigit()

This returns a boolean series in which True values correspond with NaN in
df['colname'] and False values correspond to non-NaN values in df['colname'].
This boolean series can then be applied as a mask index to the original column. This
technique comes in handy when working with dirty data—as we are doing here.

https://github.com/reuven/pandas-workout

145EXERCISE 26 ■ Celebrity deaths
 Because we’re only interested in celebrity deaths during particular months, we
need to grab the month value from the dateofdeath columns. (There are other ways
to attack this problem; in chapter 9, we’ll discuss a few.) Because dateofdeath is a
string column, we can use the slice method of the str accessor to get the months—
which happen to be in indexes 5 and 6 of the date string. This means we can retrieve
the two-digit month as

df['dateofdeath'].str.slice(5,7)

and we can assign that value to a new column, month, as follows (and figure 5.4):

df['month'] = df['dateofdeath'].str.slice(5,7)

Notice that we aren’t turning the column into an integer. We could, but the leading 0
on the two-digit months makes it trickier. Besides, we don’t need to do that, and the
data set is relatively small, so we don’t have to worry about the memory implications.

Figure 5.4 Adding a new month column to our data frame based on the month in dateofdeath

dateofdeath age

1277 2016-03-03 82

5555 2016-11-02 61

1022 2016-02-19 80

3302 2016-06-21 87

2214 2016-04-19 87

4890 2016-09-23 96

48 2016-01-03 83

751 2016-02-04 94

1106 2016-02-24 86

3915 2016-07-26 85

dateofdeath

2016-03-03

2016-11-02

2016-02-19

2016-06-21

2016-04-19

2016-09-23

2016-01-03

2016-02-04

2016-02-24

2016-07-26

str.slice(5,7)

month

07

02

02

01

09

04

06

02

03

11

146 CHAPTER 5 Cleaning data
Now that we have created the month column, we want to turn it into the index:

df = df.set_index('month')

I next asked you to sort the data frame by the index, meaning we should sort the rows
so the index is in ascending order. We do this because we want to retrieve several rows
via a slice, and when an index contains repeated values, it needs to be sorted before
we can retrieve slices from it. So let’s sort by the index:

df = df.sort_index()

We are now set to retrieve rows from a single month or a range of months. But we’re
not done yet, because we want to find the average age at which celebrities died in
2016. To do that, we need to turn the age column into a numeric value, most likely an
integer. We can try like this:

df['age'] = df['age'].astype(np.int64)

However, this will fail for two reasons: first, some values contain characters other than
digits. Second, some values are NaN, which, as floating-point values, cannot be coerced
into integers. Before willy-nilly removing the NaN values, though, we should probably
check to see how many there are. We can do that with the isnull().sum() trick we’ve
already seen and combine that with the shape method to find the percentage of null
values:

df['age'].isnull().sum() / len(df['age'])

We get the answer 0.004, meaning 0.4% of the values are NaN. We can sacrifice that
many rows and not worry about how much data we’re losing. As a result, we can
remove the NaN values:

df = df.dropna(subset=['age'])

Notice that we’re again using the subset parameter. Not that there are any rows in the
index with NaN values, but it’s always a good idea to be specific, just in case.

 How can we remove the rest of the troublesome data, though? That is, how can we
remove rows that contain nondigit characters? One way would be to rely on the
str.isdigit method, which returns True if a string contains only digits (and isn’t
empty). (It returns False if there is a – sign or decimal point, so it’s not a failsafe for
finding numbers, but it will work with ages.) We can apply that to df['age'] as follows:

df['age'].str.isdigit()

We can then use this boolean series as a mask index to remove rows in df whose ages
cannot be turned into integers:

df = df[df['age'].str.isdigit()]

But, as is often the case, pandas has a more elegant solution: the pd.to_numeric func-
tion. This function—which is defined at the top pd level rather than on a series or data

147EXERCISE 26 ■ Celebrity deaths
frame—tries to create a new series with numeric values. The function attempts to turn
the values into integers, but if it cannot, it returns floats instead:

df['age'] = pd.to_numeric(df['age'])

But wait: it turns out pd.to_numeric has some additional functionality, allowing us to
skip the step of using str.isdigit. By default, pd.to_numeric will raise an exception
if it encounters a string that cannot be turned into an int or float. But if we pass the
keyword argument errors='coerce', it will turn any values it can’t convert into NaN.
We can thus ignore all use of str.isdigit and simply say

df['age'] = pd.to_numeric(df['age'], errors='coerce')

Before we go any further, let’s check the numbers we got using describe:

df['age'].describe()

Here’s the result:

count 6505.000000
mean 100.960338
std 413.994127
min 7.000000
25% 69.000000
50% 81.000000
75% 89.000000
max 9394.000000
Name: age, dtype: float64

I don’t know about you, but a mean age of 100 seems suspicious. And a maximum age
of 9,394 seems a bit high, even if you exercise regularly. This is the result of a string
containing the value '9394', which pd.to_numeric happily converted into a number.

 Let’s keep only those people younger than 120 years old:

df = df.loc[df['age'] < 120]

Our data frame is now ready for our final calculation, which we’ve been working up to
this entire time:

df.loc['02':'07', 'age'].mean()

Notice that because our index uses strings, we need to specify the slice with strings
from '02' to '07'. The answer we get is 77.1788.

Solution

filename = '../data/celebrity_deaths_2016.csv'

df = pd.read_csv(filename,
usecols=['dateofdeath', 'age'])

df['month'] = df['dateofdeath'].str.slice(5,7)
df = df.set_index('month')

Loads the CSV into a
two-column data frame

Turns month data from
dateofdeath into a new column

Turns the month
column into an index

148 CHAPTER 5 Cleaning data
df = df.sort_index()

df = df.dropna(subset=['age'])
df['age'] = pd.to_numeric(df['age'], errors='coerce')
df.loc['02':'07', 'age'].mean()

You can explore a version of this in the Pandas Tutor at http://mng.bz/or7d.

Beyond the exercise

 Add a new column, day, from the day of the month in which the celebrity died.
Then create a multi-index (from month and day). What was the average age of
death from Feb. 15 through July 15?

 The CSV file contains another column, causeofdeath. Load it into a data
frame, and find the five most common causes of death. Now replace any NaN val-
ues in that column with the string 'unknown', and again find the five most com-
mon causes of death.

 If someone asked whether cancer is in the top 10 causes, what would you say?
Can you be more specific than that?

EXERCISE 27 ■ Titanic interpolation
When our data contains NaN values, we have a few options:

 Remove them
 Leave them
 Replace them with something else

What is the right choice? The answer, of course, is “it depends.” If you’re getting data
ready to feed into a machine-learning model, you’ll likely need to get rid of the NaN
values, either by removing those rows or by replacing them with something else. If
you’re calculating basic sales information, you may be okay with null values because
they aren’t going to affect your numbers too much. And of course, there are many
variations on these approaches.

 If you choose option 3, “replace them with something else,” that raises another
question: what do you want to replace the NaN values with? A value you have chosen?
Something calculated from the data frame itself? Something calculated on a per-col-
umn basis? Any and all of these are appropriate under different circumstances.

 In this exercise, we will fill in missing data from the famous Titanic data set: a table
of all passengers on that famous, doomed ship. Many of the columns in this file are
complete, but some are missing data. It will be up to you to decide whether and how
to fill in that missing data. We saw in exercise 13 how to use the interpolate method
on a data frame to perform this task automatically.

Sorts the data frame
by the index

Removes NaN
values in age Gets a numeric column

from the strings in age

Gets the mean age from
February through July

http://mng.bz/or7d

149EXERCISE 27 ■ Titanic interpolation
 For this exercise, I would like you to do the following:

1 Load the titanic3.xls data into a data frame. Note that this file is an Excel
spreadsheet, so you won’t be able to use read_csv. Rather, you’ll have to use
read_excel.

2 Determine which columns contain null values.
3 For each column containing null values, decide whether you will fill it with a

value—and if so, with what value, calculated or otherwise.

Unlike many of the exercises in this book, this one has no obvious right or wrong
answer. There are, of course, techniques for calculating values—such as the mean and
mode for a column—but I hope you’ll consider not just how to make such calcula-
tions but also why you would do so and when it’s most appropriate.

Working it out

This exercise is practical, but it’s also philosophical. That’s because there often is no
“right” answer to the question of what you should do with missing data. As I often tell
my corporate training clients, you have to know your data, which means being familiar
with it and how it will be analyzed and used. You also may choose incorrectly or dis-
cover that a decision you made was appropriate for one type of analysis but not for
another type.

 That’s one reason it’s useful to have your work in a Jupyter notebook or a similar,
reproducible format. When you need to, you can modify part of the code, keeping the
rest intact.

 Let’s go through each of the steps in this exercise and see what decisions we could
make, as well as the actual decision I made. First, I asked you to create a data frame
based on the Excel file titanic3.xls. We do this with the read_excel method:

filename = '../data/titanic3.xls'
df = pd.read_excel(filename)

NOTE Like read_csv, read_excel is a method we run on pd rather than on
an individual data frame object. That’s because we’re not trying to modify an
existing data frame but rather to create a new one. Also like read_csv, the
read_excel method has index_col, usecols, and names parameters, allowing
us to specify which columns should be used for the data frame, what they
should be called, and whether one or more should be used as the data
frame’s index.

Now that we have created our data frame, we should check for null values. We do that
two different ways. First, we use isnull.sum() to find out how many NaN values are in
each column of the data frame. We can then check to see which columns have a non-
zero number of NaN values. This returns a boolean series, which we can then apply as a
mask index to df.columns:

df.columns[df.isnull().sum() > 0]

https://github.com/reuven/pandas-workout

150 CHAPTER 5 Cleaning data
We get the following result:

Index(['age', 'fare', 'cabin', 'embarked',
'boat', 'body', 'home.dest'],

dtype='object')

Notice that the column names are stored in an Index object, which works similarly to
a series object.

 We can also run df.isnull().sum() by itself to see how many NaN values are in
each column:

df.isnull().sum()

We get the following result (fig-
ure 5.5):

pclass 0
survived 0
name 0
sex 0
age 263
sibsp 0
parch 0
ticket 0
fare 1
cabin 1014
embarked 2
boat 823
body 1188
home.dest 564
dtype: int64

Deciding what to do with each
NaN-containing column depends
on various factors, including the
type of data the column con-
tains. Another factor is how
many rows have null values. Two
cases, fare and embarked, have
one and two null rows, respec-
tively. Given that our data frame
has more than 1,300 rows, miss-
ing 1 or 2 of them won’t make a
significant difference. So, I sug-
gest that we remove those rows
from the data frame (figure
5.6):

df = df.dropna(subset=['fare', 'embarked'])

206

agename

Minahan, Dr.
William Edward

44.0

945 Lam, Mr. Ali NaN

1156 Rosblom, Miss. Salli
Helena

2.0

1183 Salonen, Mr. Johan
Werner

39.0

98
Douglas, Mrs.
Walter Donald

(Mahala Dutton)
48.0

isnull().sum()

1

Figure 5.5 Finding the number of NaN values in a column
by summing the result of isnull()

151EXERCISE 27 ■ Titanic interpolation
Figure 5.6 Removing rows in which a column contains NaN

When it comes to the age column, though, we want to consider our steps carefully. I’m
inclined to use the mean here, but we could use the mode. We could also use a more
sophisticated technique, using the mean from within a particular cabin. We could
even try to get the complete set of ages on the Titanic and choose from a random dis-
tribution built from it.

 Using the mean age has some advantages: it won’t affect the mean age, although it
will reduce the standard deviation. It’s not necessarily wrong, even though we know
it’s not totally right. In another context, such as sales of a particular product in an
online store, replacing missing values with the mean can sometimes work, especially if
we have similar products with a similar sales history.

 In any event, we can replace NaN in the age column as follows (figure 5.7):

df['age'] = df['age'].fillna(df['age'].mean())

Let’s break this into several parts, starting with the expression on the right side:

1 Calculate df['age'].mean(). Pandas ignores NaN values by default, which
means this calculation is based on the non-null numeric values in that column.
We get a single float value back from this calculation: 29.8811345124283.

2 Run fillna on df['age']. And what value should we put instead of NaN? What
we just calculated as the mean of df['age']. And yes, it looks confusing to use
df['age'] twice. The result of invoking fillna is a new series identical to

notnull()

age

44.0

NaN

2.0

39.0

48.0

206

agename

Minahan, Dr.
William Edward

44.0

1156 Rosblom, Miss. Salli
Helena

2.0

1183 Salonen, Mr. Johan
Werner

39.0

98
Douglas, Mrs.
Walter Donald

(Mahala Dutton)
48.0

206

agename

Minahan, Dr.
William Edward

44.0

945 Lam, Mr. Ali NaN

1156 Rosblom, Miss. Salli
Helena

2.0

1183 Salonen, Mr. Johan
Werner

39.0

98
Douglas, Mrs.
Walter Donald

(Mahala Dutton)
48.0True

True

True

False

True 1156 Rosblom, Miss. Salli
Helena

2.0

1183 Salonen, Mr. Johan
Werner

39.0

98
Douglas, Mrs.
Walter Donald

(Mahala Dutton)
48.0

206 Minahan, Dr.
William Edward

44.0

152 CHAPTER 5 Cleaning data
df['age'], except the NaN values are replaced with 29.8811345124283, the float
we got back in the previous step.

3 The result of df['age'].fillna is a new series, which we assign back to
df['age'], replacing the original values.

In the end, we’ve replaced any NaN values in df['age'] with the mean of the existing
values.

 Finally, we want to set the home.dest column similarly to what we did with the age
column—but instead of using the mean, we’ll use the mode (i.e., the most common
value). We’ll do this for two reasons: first, we can only calculate the mean from a
numeric value, and the destination is a categorical/textual value. Second, given no
other information, we may be able to assume that a passenger is going where most
others are going. We may be wrong, but this is the least wrong choice we can make. We
could, of course, be more sophisticated, choosing the mode of home.dest for all pas-
sengers who embarked at the same place, but we’ll ignore that for now.

 Our code looks very similar to what we did for the age column, but using mode
instead of mean. And because mode always returns a series, we need to grab its first
value with [0] rather than just pass it to fillna:

206

agename

Minahan, Dr.
William Edward

44.0

1156 Rosblom, Miss. Salli
Helena

2.0

1183 Salonen, Mr. Johan
Werner

39.0

98
Douglas, Mrs.
Walter Donald

(Mahala Dutton)
48.0

206

agename

Minahan, Dr.
William Edward

44.0

945 Lam, Mr. Ali NaN

1156 Rosblom, Miss. Salli
Helena

2.0

1183 Salonen, Mr. Johan
Werner

39.0

98
Douglas, Mrs.
Walter Donald

(Mahala Dutton)
48.0

206

agename

Minahan, Dr.
William Edward

44.0

945 Lam, Mr. Ali 33.25

1156 Rosblom, Miss. Salli
Helena

2.0

1183 Salonen, Mr. Johan
Werner

39.0

98
Douglas, Mrs.
Walter Donald

(Mahala Dutton)
48.0

33.25

mean()

98
Douglas, Mrs.
Walter Donald

(Mahala Dutton)
48.0

1156 Rosblom, Miss. Salli
Helena

2.0

1183 Salonen, Mr. Johan
Werner

39.0

206 Minahan, Dr.
William Edward

44.0

Figure 5.7 Replacing NaN in the age column with the mean of age

153EXERCISE 27 ■ Titanic interpolation
df['home.dest'] = df['home.dest'].fillna(df['home.dest'].mode()[0])

Let’s break this apart:

1 Calculate df['home.dest'].mode(), which returns the most common value
from this column. Another way to get the same value would be to invoke
df['home.dest'].value_counts().index[0], which counts how often each
value appears in home.dest and returns a series with this information. We get
the index from that series (the different data points from df['home.dest'] and
then get the first (i.e., most common) item from the index.

2 After grabbing the most common destination, we pass it as an argument to
fillna, which we invoke on df['home.dest']. In other words, we replace all
null values in home.dest with the non-null mode from home.dest.

3 Because fillna returns a series, we assign the result back to df['home.dest'],
replacing the original column with the new, null-free, column.

Solution

filename = '../data/titanic3.xls'

df = pd.read_excel(filename)

df.columns[df.isnull().sum() > 0]
df.isnull().sum()

df['age'] = df['age'].fillna(df['age'].mean())
df = df.dropna(subset=['fare', 'embarked'])
df['home.dest'] = df['home.dest'].fillna(df['home.dest'].mode())[0]

You can explore a version of this in the Pandas Tutor at http://mng.bz/n17a.

Beyond the exercise

In these tasks, we will do something I mentioned earlier: replace NaN values in the
home.dest column with the most common value from that person’s embarked column.
This will take several steps:

1 Create a series (most_common_destinations) in which the index contains the
unique values from the embarked column and the values are the most common
destination for each value of embarked.

2 Replace NaN values in the home.dest column with values from embarked.
(Because values in embarked and home.dest are distinct, this is an OK middle
step.)

3 Use the most_common_destinations series to replace values in home.dest with
the most common values for each embarkation point.

Loads all columns
from Excel

Which columns
contain NaN values?

Shows how many
NaN values each
column contains

Replaces NaN values in the
age column with the mean age

Removes null values in
fare and embarked

Replaces NaN values in
home.dest with the mode

http://mng.bz/n17a

154 CHAPTER 5 Cleaning data
EXERCISE 28 ■ Inconsistent data
Missing data is a common problem you must deal with when importing data sets. But
equally common is inconsistent data, when the same value is represented by several
different values.

 I once encountered this while doing a project for a university’s fundraising depart-
ment. Their database had been written years before and was a mess. In particular, I
remember that the database column for “country” contained all of the following
values:

 United States of America
 USA
 U.S.A.
 U.S.A
 United States
 US
 U.S.

Although people understand that these refer to the same country, a computer
doesn’t. If your data is inconsistent, it will be hard for you to analyze it in any sort of
serious way. Thus, a big part of cleaning real-world data involves making it more con-
sistent—or, to use a term from the world of databases, normalizing it.

 In this exercise, we return to the parking tickets database, trying to make it more
consistent and thus easier to analyze. (I am sure that even after this exercise, a data set
this large will still have some inconsistencies.) Here is what I want you to do:

1 Create a data frame from the file nyc-parking-violations-2020.csv. We are only
interested in a handful of the columns:
– Plate ID

– Registration State

– Vehicle Make

– Vehicle Color

– Street Name

2 Determine how many different vehicle colors (the Vehicle Color column)
there are.

3 Look at the 30 most common colors, and identify colors that appear multiple
times but are written differently. For example, the color WHITE is also written WT,
WT., and WHT.

4 Prepare a Python dict in which the keys represent the various color-name inputs
and the values represent the values you want them to have in the end. I suggest
using longer names, such as WHITE, rather than shorter ones.

5 Replace the existing (old) colors with your translations. How many colors are
there now?

6 Look through the top 50 colors now that you have removed a bunch of them.
Are there any you could still clean up? Are there any you cannot figure out?
Can you identify some consistent typos and errors in the colors?

https://github.com/reuven/pandas-workout

155EXERCISE 28 ■ Inconsistent data
Working it out

We’re all guilty of typos—but if you make a mistake writing an e-mail, your friend or
colleague will (hopefully) forgive you. In the case of data science, typos and other
errors are often more insidious, because they take place one at a time as a small and
unnoticed drip. When you start to analyze the data, you discover how many mistakes
occurred and how many repeated themselves. This is especially true when we’re get-
ting data from people rather than from sensors and other automated equipment,
although those can cause all sorts of interesting and weird problems, too.

 In this exercise, I asked you to look at the colors of the vehicles that received park-
ing tickets in New York City in 2020. As it turns out, there are many opportunities for
the people issuing tickets to make mistakes, potentially affecting our analysis
(although it’s unlikely we would do any serious analysis of the vehicle colors).

 Before we can fix the color names, we need to understand what we’re dealing with.
After all, maybe it isn’t even a problem. After reading the data into a data frame, we
can quickly check to see how many distinct vehicle colors are listed in the parking-
ticket database:

len(df['Vehicle Color'].value_counts().index)

value_counts is a fantastic method for getting the unique values from a series, deter-
mining how often each value appears, and sorting them from most to least common.
Because value_counts returns a series, we can ask for its index and call len on it.

 We find 1,896 different colors recorded for parking tickets. Color experts may
argue that this is a small number of colors compared to what the human eye can dis-
tinguish, but it seems a bit high for the purposes of distinguishing cars that have been
ticketed.

 What were the 30 most common colors in 2020 parking tickets? Let’s take a look:

df['Vehicle Color'].value_counts().head(30)

We can already see that there is little or no standardization and the people giving tick-
ets are wildly inconsistent in how they describe colors. And that’s just from looking at
the first 30 colors—they’ve described colors almost 1,900 other ways we haven’t even
looked at.

 To clean this up, we’ll create a regular Python dictionary. We could also use a
series, but a dict seems like the easiest and most straightforward solution:

colormap = {'WH': 'WHITE', 'GY':'GRAY', 'BK':'BLACK',
'BL':'BLUE', 'RD':'RED', 'SILVE':'SILVER',
'GR':'GRAY', 'TN':'TAN', 'BR':'BROWN',
'YW':'YELLO', 'BLK':'BLACK', 'GRY':'GRAY',
'WHT':'WHITE', 'WHI':'WHITE', 'OR':'ORANGE',
'BK.':'BLACK', 'WT':'WHITE', 'WT.':'WHITE'}

This dict has 18 key-value pairs to standardize 18 color names.
 In this dict, the keys are the strings we found describing the colors and the values

are the strings that we want to see. This sort of translation table is pretty common in

156 CHAPTER 5 Cleaning data
data-cleaning pipelines, and over time, you’ll likely find yourself adding new key-value
pairs as you discover new (and surprisingly creative) ways for people to misspell color
names.

 By applying the replace method to our series (i.e., the Vehicle Color column),
we can get back a new series. That new series can then be assigned back to
df['Vehicle Color'], replacing our existing one:

df['Vehicle Color'] = df['Vehicle Color'].replace(colormap)

NOTE Any values not in colormap remain unchanged. The match in colormap
must be precise, including whitespace, punctuation, and case.

If we check the number of distinct colors again

len(df['Vehicle Color'].value_counts().index)

we get 1,880, which is 16 less than before. That means at two of the colors didn’t
change anything. How can that be? Well, it turns out we made two mistakes.

 First, we said to look for the shortened color name SILVE and turn it into SILVER.
The problem is, the backend system into which parking tickets are entered limits the
Vehicle Color field to five characters. So changing SILVE to SILVER didn’t combine
two color designations into one, because there were no cars with SILVER in the origi-
nal data set. We can thus remove SILVER from the colormap dictionary because it isn’t
shortened.

 What about OR? When we mapped OR to ORANGE, we accidentally used a six-letter
color name. So OR was a duplicate, but of ORANG rather than ORANGE. By changing
colormap to switch from OR to ORANG, we reduced the number of different colors by
one, uniting all the orange cars under one (very bright and tacky) roof.

 Our final working replacement dictionary is as follows:

colormap = {'WH': 'WHITE', 'GY':'GRAY',
'BK':'BLACK', 'BL':'BLUE',
'RD':'RED', 'GR':'GRAY',
'TN':'TAN', 'BR':'BROWN',
'YW':'YELLO', 'BLK':'BLACK',
'GRY':'GRAY', 'WHT':'WHITE',
'WHI':'WHITE', 'OR':'ORANG',
'BK.':'BLACK', 'WT':'WHITE',

'WT.':'WHITE'}

We can then apply colormap to the colors using replace:

df['Vehicle Color'] = df['Vehicle Color'].replace(colormap)

The call to replace returns a new series in which any value in df['Vehicle Color']
that matches a key in colormap is changed to be the corresponding value in colormap.
After doing this, we can check to see how many different colors we’re now tracking:

len(df['Vehicle Color'].value_counts().index)

157EXERCISE 28 ■ Inconsistent data
The result is 1,879. If we take the problem of color standardization seriously, we still
have a lot of work cut out for us. And this is just for one column in one data set—you
can see why data cleaning is both important and time-consuming.

Solution

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,
usecols=['Plate ID',

'Registration State',
'Vehicle Make',
'Vehicle Color',
'Street Name'])

len(df['Vehicle Color'].value_counts().index)
df['Vehicle Color'].value_counts().head(30)

colormap = {'WH': 'WHITE', 'GY':'GRAY',
'BK':'BLACK', 'BL':'BLUE',
'RD':'RED', 'GR':'GRAY',
'TN':'TAN', 'BR':'BROWN',
'YW':'YELLO', 'BLK':'BLACK',
'GRY':'GRAY', 'WHT':'WHITE',
'WHI':'WHITE', 'OR':'ORANG',
'BK.':'BLACK', 'WT':'WHITE',

'WT.':'WHITE'}

df['Vehicle Color'] = df[
'Vehicle Color'].replace(colormap)

len(df['Vehicle Color'].value_counts().index)
df['Vehicle Color'].value_counts().head(50)

You can explore a version of this in the Pandas Tutor at http://mng.bz/M9EW.

Beyond the exercise

 Run value_counts on the Vehicle Make column, and look at some vehicle
names. (There are more than 5,200 distinct makes, which almost certainly indi-
cates a lot of inconsistency in this data.) What problems do you see? Write a
function that, given a value, cleans up the data: putting the name in all caps,
removing punctuation, and standardizing whatever names you can. Then use
the apply method to fix the column. How many distinct vehicle makes are
there when you’re done?

 How standardized are the street names in the data set? What changes could you
apply to improve things?

 Would you need to clean up the Registration State column? Why or why not?

How many different
colors are listed?

What are the 30 most commonly
listed colors on parking tickets?

Creates a dict for translating
bad color names to good ones

Uses replace to apply our colormap
dict, assigning it back to the column

Sees that the number of
colors has indeed declined

Looks at the top 50 colors and finds
other potential cleanup targets

http://mng.bz/M9EW

158 CHAPTER 5 Cleaning data
Summary
Cleaning data is one of the most important parts of data analysis, although it’s not
glamorous. In this chapter, we saw that effective data cleaning requires not just know-
ing the techniques, but also applying judgment—knowing when you can allow null or
duplicate values and what you should do with them. pandas comes with a wide variety
of tools we can use to clean our data, from removing NaN values to replacing them,
replacing existing values, and running custom functions on each row in a series or
data frame. The techniques we explored in this chapter, along with the interpolate
method we saw in exercise 13, are important tools in your data-cleaning toolbox and
will likely come up in many of the projects you work on.

Grouping, joining,
and sorting
So far, we have looked at how to create data frames, read data into them, clean the
data, and then analyze that clean, imported data in a number of ways. But analysis
sometimes requires more than just the basics: we often need to break our input
data apart, zoom in on particularly interesting subsets, combine data from different
sources, transform the data into a new format or value, and then sort it according
to a variety of criteria. This type of action is known in the pandas world as split-apply-
combine, and it is our focus in this chapter. If you have experience with SQL and
relational databases, you’ll find many similarities, in both principle and name, to
functionality in pandas.

 For example, a company may want to determine its total sales in the last quarter.
It may also want to learn which countries have done particularly well (or poorly).
Or perhaps the head of sales would like to see how much each individual salesper-
son has brought in, or how much each product has contributed to the company’s
income.

 These types of questions can be answered using a technique known as grouping.
Much like the GROUP BY clause in an SQL query, we can use grouping in pandas to
ask the same question for various subsets of our data.

 Another common SQL technique is joining, which lets us keep our data in small,
specific data frames and combine them only when we need to. For example, one
data frame may list each sales region and that region’s manager, and a second may
contain this quarter’s regional sales results. To show the monthly sales results for
each region along with each region’s manager, we’ll want to join the data frames
together.

 A third technique, which you have likely seen in other languages and frame-
works, is sorting. In chapter 5, we saw how to use sort_index to order a data frame’s
159

160 CHAPTER 6 Grouping, joining, and sorting
rows by the values in the index. In this chapter, we’ll look at sort_values, which reor-
ders the rows based on the values in one or more columns.

 You’ll want to have these techniques—grouping, joining, and sorting—at your fin-
gertips when solving problems with pandas. In this chapter, you’ll see how to use them
to solve some of the most common types of problems you’ll encounter. These topics
are so central to data analysis that one chapter wasn’t enough; the next chapter builds
on the techniques you’ll practice here, showing more advanced uses of the split-apply-
combine paradigm.

Table 6.1 What you need to know

Concept What is it? Example To learn more

s.isnull Returns a boolean series
indicating where there
are null (typically NaN)
values in the series s

s.isnull() http://mng.bz/Jgyp

df.sort_index Reorder the rows of a
data frame based on the
values in its index, in
ascending order

df = df.sort_index() http://mng.bz/wvB7

df.sort_values Reorder the rows of a
data frame based on the
values in one or more
specified columns

df = df.sort_values
('distance')

http://mng.bz/qrMK

df.transpose()
or df.T

Returns a new data
frame with the same val-
ues as df but with the
columns and index
exchanged

df.transpose() or df.T http://mng.bz/7DXx

df.expanding Lets us run window func-
tions on an expanding
(growing) set of rows

df.expanding().sum() http://mng.bz/mVBn

df.rolling Lets us run window func-
tions on a fixed-size win-
dow that moves through
the data frame

df.rolling(3).mean() http://mng.bz/5wp4

df.pct_change For a given data frame,
indicates the percent-
age difference between
each cell and the corre-
sponding cell in the pre-
vious row

df.pct_change() http://mng.bz/4DBB

df.diff For a given data frame,
indicates the difference
between each cell and
the corresponding cell in
the previous row

df.diff() http://mng.bz/OPDE

http://mng.bz/OPDE
http://mng.bz/4DBB
http://mng.bz/5wp4
http://mng.bz/mVBn
http://mng.bz/7DXx
http://mng.bz/qrMK
http://mng.bz/wvB7
http://mng.bz/Jgyp

161■CHAPTER 6 Grouping, joining, and sorting
df.groupby Allows us to invoke one
or more aggregate meth-
ods for each value in a
particular column.

df.groupby('year') http://mng.bz/vn9x

df.loc Retrieves selected rows
and columns

df.loc[:, 'passenger_
count'] = df
['passenger_count']

http://mng.bz/nWzv

s.iloc Accesses elements of a
series by position

s.iloc[0] http://mng.bz/QPxm

df.dropna Removes rows with NaN
values

df = df.dropna() http://mng.bz/XN0Y

s.unique Gets the unique values
in a series (Pandas’
drop_duplicates is
better)

s.unique() http://mng.bz/yQrJ

df.join Joins two data frames
based on their indexes

df.join(other_df) http://mng.bz/MBo2

df.merge Joins two data frames
based on any columns

df.merge(other_df) http://mng.bz/a1wJ

df.corr Shows the correlation
between the numeric
columns of a data frame

df.corr() http://mng.bz/gBgR

s.to_frame Turns a series into a one-
column data frame

s.to_frame() http://mng.bz/5wp1

s.removesuffix Returns a new string with
the same contents as s
but without a specified
suffix (if it’s there)

s.removesuffix
('.csv')

http://mng.bz/6DAD

s.removeprefix Returns a new string with
the same contents as s
but without a specified
prefix (if it’s there)

s.removeprefix
('abcd')

http://mng.bz/o1Rr

s.title Returns a new string
based on s in which
each word starts with a
capital letter

s.title('hello out
there')

http://mng.bz/nWzg

pd.concat Returns one new data
frame based on a list of
data frames passed to
pd.concat

pd.concat([df1, df2,
df3])

http://mng.bz/vn9J

df.assign Adds one or more col-
umns to a data frame

df.assign(a=
df['x']*3)

http://mng.bz/YR2A

Table 6.1 What you need to know (continued)

Concept What is it? Example To learn more

http://mng.bz/YR2A
http://mng.bz/vn9J
http://mng.bz/nWzg
http://mng.bz/o1Rr
http://mng.bz/6DAD
http://mng.bz/5wp1
http://mng.bz/gBgR
http://mng.bz/a1wJ
http://mng.bz/MBo2
http://mng.bz/yQrJ
http://mng.bz/XN0Y
http://mng.bz/QPxm
http://mng.bz/nWzv
http://mng.bz/vn9x

162 CHAPTER 6 Grouping, joining, and sorting
EXERCISE 29 ■ Longest taxi rides
When I first started to work with relational (SQL) databases, I was surprised that data
isn’t stored in any particular order. As I soon learned, there are several reasons for this:

 The order in which the rows are stored doesn’t affect many queries.
 It’s more efficient for the database itself to figure out the order in which rows

should be stored.
 There are so many ways in which we may want to sort the data that the database

shouldn’t guess. Rather, it should allow us to choose how we want to sort and
extract the information.

Pandas does keep the rows of our data frame ordered, so it’s not exactly like a rela-
tional database. But for many types of analysis, the order of the rows doesn’t matter.
After all, if we’re calculating a column’s mean, it doesn’t matter where we start or end.

 If we want to display data—say, sales records, network statistics, or inflation projec-
tions—we’ll likely want to order it. How we order it depends on the context, though.
Sales records may need to be ordered by department, network statistics may need to be
ordered by subnets, and inflation projections may need to be ordered chronologically.

 Another reason to sort is to get the highest or lowest values from a particular column
in the data frame. And in this exercise, I’m asking you to do exactly that. Specifically, I
want you to make a few queries using the New York City taxi data from January 2019:

1 Load the CSV file nyc_taxi_2019-01.csv into a data frame using only the col-
umns passenger_count, trip_distance, and total_amount.

DataFrame-
GroupBy.agg

Applies multiple aggrega-
tion methods to a
groupby

df.groupby('a')['b'].
agg(['mean', 'std'])

http://mng.bz/G90O

DataFrame-
GroupBy.filter

Keeps those rows whose
group results in True
from an outside function

df.groupby('a').filte
r(filter_func)

http://mng.bz/z0BQ

DataFrameGroup
By.transform

Modifies those rows
based on an outside
function

df.groupby('a').trans
form(transform_func)

http://mng.bz/0l26

df.rename Renames columns in a
data frame

df.rename(columns={'a
':'b', 'c':'d'})

http://mng.bz/K9W0

df.drop_duplic
ates

Returns a data frame
whose rows contain dis-
tinct values

df.drop_duplicates() http://mng.bz/9Qv1

df.drop Removes rows or col-
umns from a data frame,
returning a new one

df.drop('a',
axis='columns')

http://mng.bz/j1eP

Table 6.1 What you need to know (continued)

Concept What is it? Example To learn more

http://mng.bz/j1eP
http://mng.bz/9Qv1
http://mng.bz/K9W0
http://mng.bz/0l26
http://mng.bz/z0BQ
http://mng.bz/G90O
https://github.com/reuven/pandas-workout

163EXERCISE 29 ■ Longest taxi rides
2 Using a descending sort, find the average cost of the 20 longest (in distance) taxi
rides in January 2019.

3 Using an ascending sort, find the average cost of the 20 longest (in distance) taxi
rides in January 2019. Are the results any different?

4 Sort by ascending passenger count and descending trip distance. (So, start with
the longest trip with 0 passengers and end with the shortest trip with 9 passen-
gers.) What is the average price paid for the top 50 rides?

Working it out

When we want to sort a data frame in pandas, we first have to decide whether to sort it
via the index or the values. We’ve already seen that if we invoke sort_index on a data
frame, we get back a new data frame whose rows are identical to the existing data
frame but ordered such that the index is ascending.

 In this exercise, we again want to sort the rows of our data frame—but we want to
do it based on the values in a particular column rather than the index. You could
argue that there isn’t much difference between the two; we could take a column, tem-
porarily make it the index, sort by the index, and then return the column back to the
data frame. But the difference between sort_index and sort_values isn’t just techni-
cal. We’re thinking about our data and how to access it in different ways.

 sort_values is also different from sort_index in that we can sort by any number
of columns. Again, imagine that a data frame contains sales data. We may want to sort
it by price, region, or salesperson—or even a combination of these. When we sort by
the index, by contrast, we’re effectively sorting by a single column.

 In the first part of the exercise, I asked you to create a data frame with our favorite
(and familiar) columns, passenger_count, trip_distance, and total_amount:

filename = '../data/nyc_taxi_2019-01.csv'

df = pd.read_csv(filename,
usecols=['passenger_count',

'trip_distance',
'total_amount'])

With the data frame in place, we can start to analyze the data. The first task is to find
the 20 longest (in distance) taxi rides in our data set and then find their average cost.
We thus need to sort our data set by distance—and I asked you to do that via a
descending sort.

 To sort our data frame by the trip_distance column, we can say

df.sort_values('trip_distance')

This returns a new data frame identical to df, but with the rows sorted according to
trip_distance in ascending order. Although we could (and will) work with the data
in this form, I find it easier in such cases to sort in descending order. We can do that
by passing False as an argument to the ascending parameter (figure 6.1):

df.sort_values('trip_distance',
ascending=False)

164 CHAPTER 6 Grouping, joining, and sorting
Figure 6.1 Running sort_values on a data frame returns a new data frame with the same rows but ordered
according to the named column.

Our analysis is of the total_amount column. With the data already sorted by trip_
distance, we can now retrieve just that one column using square brackets (figure 6.2):

df.sort_values('trip_distance',
ascending=False
)['total_amount']

Figure 6.2 Running sort_values on a data frame, keeping only one column

passenger_count trip_distance total_amount

3626666 0 1.50 8.80

974073 1 0.48 6.80

6370644 1 1.90 13.30

2125992 2 2.10 13.80

4959601 5 1.76 12.25

sort_values('trip_
distance',

ascending=False)

passenger_count trip_distance total_amount

2125992 2 2.10 13.80

6370644 1 1.90 13.30

4959601 5 1.76 12.25

3626666 0 1.50 8.80

974073 1 0.48 6.80

passenger_count trip_distance total_amount

3626666 0 1.50 8.80

974073 1 0.48 6.80

6370644 1 1.90 13.30

2125992 2 2.10 13.80

4959601 5 1.76 12.25

sort_values('trip_
distance',

ascending=False)

total_amount

2125992 13.80

6370644 13.30

4959601 12.25

3626666 8.80

974073 6.80

165EXERCISE 29 ■ Longest taxi rides
But we’re not interested in calculating the mean of all rows in total_amount, only
those from the 20 longest trips. How can we retrieve the top 20 rows? One way would
be to use head(20). Another possibility, which we use here, is to retrieve the first 20
rows via iloc (figure 6.3):

df.sort_values('trip_distance',
ascending=False
)['total_amount'].iloc[:20]

Figure 6.3 Running sort_values on a data frame, then keeping only one column, and then getting only the first
rows with iloc

Notice that we have to use iloc here, not loc. That’s because loc works with the
actual index values—which, now that we’ve sorted the data frame by trip_distance,
are unordered. Asking for loc[:20] will return many more than 20 rows.

 Having retrieved total_amount from the 20 longest-distance taxi rides, we can
finally calculate the mean value:

df.sort_values('trip_distance',
ascending=False
)['total_amount'].iloc[:20].mean()

We get a result of 290.00999999999993, which I think we can reasonably round to an
average of $290 for those 20 longest taxi rides. We could even use the round method
to round it to two digits. Here, we rewrite it using line-by-line method chaining for eas-
ier reading:

(
df

.iloc[:3]

passenger_count trip_distance total_amount

3626666 0 1.50 8.80

974073 1 0.48 6.80

6370644 1 1.90 13.30

2125992 2 2.10 13.80

4959601 5 1.76 12.25

sort_values('trip_
distance',

ascending=False)

total_amount

2125992 13.80

6370644 13.30

4959601 12.25

3626666 8.80

974073 6.80

2125992 13.80

6370644 13.30

4959601 12.25

166 CHAPTER 6 Grouping, joining, and sorting
.sort_values('trip_distance',
ascending=False)

['total_amount']
.iloc[:20]
.mean()
.round(2)

)

Next I asked you to make the same calculation but this time do an ascending sort. First
we sort our data frame by values:

df.sort_values('trip_distance')

Remember that, by default, sort_values sorts in ascending order, so we don’t need to
specify anything there. We keep only the total_amount column:

df.sort_values('trip_distance')['total_amount']

And again, we’re only interested in the 20 longest trips. This time, however, we sort in
ascending order, which means the 20 longest trips are at the end of the series rather
than at the top.

 As before, we have two basic ways to do this. One would be to use tail(20) to
retrieve the final 20 elements. But we’re going to again use iloc and get the 20 final
rows from our new data frame:

df.sort_values('trip_distance')[
'total_amount'].iloc[-20:]

Remember that in Python, a negative index means we count from the end of the data
structure rather than from the beginning. Thus index –1 gives us the final element, –2
the second-to-final element, and so forth. Moreover, our slice can be empty on one
side, indicating that we want to go through the end of that side. Here, the use of
iloc[-20:] means we want the final 20 elements in the series.

NOTE Wondering whether it’s faster to run tail or iloc with a slice? Some
performance checks I did showed that they were almost exactly the same.

Finally, we invoke mean() on the 20 longest-ride fares:

df.sort_values('trip_distance')[
'total_amount'].iloc[-20:].mean()

And the result is . . . 290.01000000000005, which is, let’s face it, basically the same as
290, our result from before. We can round this result as well, again rewritten to use
method chaining:

(
df
.sort_values('trip_distance')
['total_amount']
.iloc[-20:]

167EXERCISE 29 ■ Longest taxi rides
.mean()

.round(2)
)

Again, the rounded result is 290.01.
 But let’s ignore the rounded results and look at the original results,

290.00999999999993 and 290.0100000000001. The differences are slight, but they’re
real. What is going on here?

 The answer, simply put, is that floating-point math is strange and can surprise you.
Check out https://0.30000000000000004.com for a good, full explanation of floating-
point problems; but is there anything we can do to avoid such problems?

 The answer is: sort of. If we use longer (i.e., more bits) floats, such problems will
crop up less often. For example, we can instruct pandas to read the total_amount col-
umn into 128-bit floats, rather than 64-bit floats, which are the default:

df = pd.read_csv(filename,
usecols=['passenger_count',

'trip_distance',
'total_amount'],

dtype={'total_amount':np.float128})

With this in place, both of our calculations—forward and backward—give the same
result: 290.01000000000000076. But, of course, now our column consumes twice as
much memory as before.

NOTE If 128-bit floats are the most accurate, why not always use them? First,
because they’re very large, at 16 bytes (!) per number. If you have 1 million
floats, that translates into about 16 MB of data. Not every problem you’re try-
ing to solve needs such extreme accuracy. But 128-bit floats can also cause
some problems. On my Mac, some pandas methods don’t work when my col-
umns have a dtype of np.float128. And it seems that np.float128 doesn’t
even exist on computers running Windows. So if you need the precision and
if you’re on a platform that supports them, and if the pandas methods you
need can use them, then sure—use np.float128. But keep in mind that
doing so will make your program less portable.

Next, I asked you to sort by two columns. This is something we do naturally all the
time without thinking about it. For example, telephone books are—or “were,” I
guess—sorted first by last name and then by first name, so the names appear in alpha-
betical order by last name. If more than one person has the same last name, we order
the people by first name.

 The sort that I asked you to do primarily looked at passenger_count, meaning we
should sort the rows of df in ascending order from the smallest number of passengers
to the greatest number of passengers. And in resolving ties between rows with the
same passenger count, I asked you to use the trip_distance column. However,

https://0.30000000000000004.com

168 CHAPTER 6 Grouping, joining, and sorting
whereas passenger_count is sorted in ascending order, I asked you to sort
trip_distance in descending order.

 Pandas allows us to do this by passing a list of columns as the first argument to
sort_values. We then pass a list of boolean values to ascending, with each element in
the list corresponding to one of the sort columns (figure 6.4):

df.sort_values(['passenger_count', 'trip_distance'],
ascending=[True, False])

Figure 6.4 Sorting a data frame by passenger_count (ascending order) and then trip_distance
(descending order)

This code returns a new data frame with three columns in which the rows are first
sorted by (ascending) passenger_count and then by (descending) trip_distance.
The first row of the returned data frame has the longest trip for the fewest passengers,
and its final row has the shortest trip for the most passengers.

 We then retrieve the total_amount column from the returned data frame, grab its
first 50 rows using iloc (although we could just as easily use head(50) and calculate
the mean using method-chaining syntax):

(
df
.sort_values(['passenger_count',

'trip_distance'],
ascending=[True, False])

['total_amount']
.iloc[:50]
.mean()

)

We get a result of 135.4974000000001.

passenger_count trip_distance total_amount

3626666 0 1.50 8.80

974073 1 0.48 6.80

6370644 1 1.90 13.30

2125992 2 2.10 13.80

4959601 5 1.76 12.25

passenger_count trip_distance total_amount

3626666 0 1.50 8.80

6370644 1 1.90 13.30

974073 1 0.48 6.80

2125992 2 2.10 13.80

4959601 5 1.76 12.25

sort_values(['pas
senger_count',

'trip_distance'],
ascending=

[True, False])

169EXERCISE 29 ■ Longest taxi rides
Solution
filename = '../data/nyc_taxi_2019-01.csv'

df = pd.read_csv(filename,
usecols=['passenger_count',

'trip_distance',
'total_amount'],

dtype={'total_amount':np.float128})

df.sort_values('trip_distance',
ascending=False)[

'total_amount'].iloc[:20].mean()
df.sort_values('trip_distance')[

'total_amount'].iloc[-20:].mean()

(
df
.sort_values(['passenger_count',

'trip_distance'],
ascending=[True, False])

['total_amount']
.iloc[:50]
.mean()

)

You can explore a version of this in the Pandas Tutor at http://mng.bz/W1Z1.

Beyond the exercise

 In which five rides did people pay the most per mile? How far did people go on
those trips?

 Let’s assume that multipassenger rides are split evenly among the passengers.
Given that assumption, in which 10 multipassenger rides did each individual
pay the greatest amount?

 In the exercise solution, I showed that we needed to use iloc or head/tail to
retrieve the first/last 20 rows because the index was scrambled after our sort
operation. But you can pass ignore_index=True to sort_values: then the
resulting data frame has a numeric index starting at 0. Use this option and loc
to get the mean total_amount for the 20 longest trips.

Grouping
We’ve already seen how aggregate functions, such as mean and std, allow us to bet-
ter understand our data. But sometimes we want to run an aggregate function on
each piece of our data. For example, we may want to know the number of sales per
region, the average cost of living per city, or the standard deviation for each age group
in a population. We could, of course, run the aggregate function numerous times,
each time retrieving a different group from the data frame. But that gets tedious—
and why work hard, when pandas can do it for us?

This functionality, known as grouping, should also be familiar if you’ve worked with
relational databases. In this exercise, we’ll try to learn whether the number of people

Sorts by descending values of
trip_distance, gets only the
total_amount column, grabs
the first 20 rows, and then
calculates their mean

Sorts by ascending values
of trip_distance, gets only
the total_amount column,
grabs the final 20 rows, and
then takes their mean

Sorts by ascending passenger_count and then
descending trip_distance, gets the total_amount
column, grabs the first 50 rows, and takes their mean

http://mng.bz/W1Z1

170 CHAPTER 6 Grouping, joining, and sorting
(continued)

taking a taxi affects, on average, the distance the taxi has to travel. In other words,
if we’re a taxi driver who moonlights as a data analyst (or if you prefer, a data analyst
who moonlights as a taxi driver), and we can choose between one rider and a group
of riders, which is likelier to go farther—and thus pay us more?

As an example, let’s go back to the data frame of products that we created back in
chapter 2:

df = DataFrame([{'product_id':23, 'name':'computer',
'wholesale_price': 500,
'retail_price':1000, 'sales':100,
'department':'electronics'},

{'product_id':96, 'name':'Python Workout',
'wholesale_price': 35,
'retail_price':75, 'sales':1000,
'department':'books'},

{'product_id':97, 'name':'Pandas Workout',
'wholesale_price': 35,
'retail_price':75, 'sales':500,
'department':'books'},

{'product_id':15, 'name':'banana',
'wholesale_price': 0.5,
'retail_price':1, 'sales':200,
'department':'food'},

{'product_id':87, 'name':'sandwich',
'wholesale_price': 3,
'retail_price':5, 'sales':300,
'department': 'food'},

])

As you may have noticed, we’ve modified the data frame ever so slightly by adding a
new column, department, that contains a string value. We’ll use it in a moment.

To determine how many products we sell in a store (i.e., how many rows are in the
data frame), we can use the count method:

df.count()

This is certainly interesting and useful information, but we may want to break it down
further. For example, how many products are we selling in each department? To
answer that question, we use the groupby method on our data frame:

df.groupby('department')

Notice that the argument to groupby needs to be the name of a column. And the
result of running the groupby method?

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x13174f970>

We get a DataFrameGroupBy object, which is useful because of the aggregate meth-
ods we can invoke on it. For example, we can call count and thus determine how
many items we have in each department:

171EXERCISE 29 ■ Longest taxi rides
df.groupby('department').count()

The result of this code is a data frame whose columns are the same as df and whose
rows are the different values in the department column. Because there are three dis-
tinct departments in our store, there are three rows: electronics, books, and food.

Much of the time we don’t want all the columns returned to us, just a subset of them.
We could, in theory, use square brackets on the result of this code. For example, we
could count product_id:

df.groupby('department').count()['product_id']

The result is a series whose index contains the different values in department and
whose values contain the count of items per department. And the answer is accurate.

However, this code is unnecessarily wasteful. We first apply count to the Data-
FrameGroupBy object and only after that remove all columns by product_id. It’s far
more efficient, especially with a large data frame, to apply the square brackets to the
DataFrameGroupBy object and then invoke our method:

df.groupby('department')['product_id'].count()

You can see this visually at http://mng.bz/84nw. Again, we get the same results—
but this second version runs more quickly.

Although we’ve used count in the examples here, we can use any aggregation
method when grouping, such as mean, std, min, max, or sum. So we can get the aver-
age product price per department in our store as follows:

df.groupby('department')['retail_price'].mean()

What if we want to know both the mean and the standard deviation of prices in our
store, grouped by department? We can do that by altering the syntax somewhat:
instead of calling an aggregation method directly, we can apply the agg method to
our DataFrameGroupBy object. That method takes a list of methods, each of which
is applied to the GroupBy object:

df.groupby('department')['retail_price'].agg(['mean', 'std'])

Notice that we pass a list of strings to agg. It used to be common to pass methods,
such as np.mean and np.std, but that has fallen out of favor in recent years; the
current standard is to pass strings and let pandas apply the appropriate methods.

Using agg this way returns a data frame with two columns (mean and std) and three
rows (for each of the departments in our data frame). We can now determine the
mean and standard deviation for the retail prices in each department. You can see
this visually in Pandas Tutor at http://mng.bz/E9GO.

What if we want to run multiple aggregations on separate columns? In such a case,
we don’t need to filter columns via square brackets. Rather, we can pass the entire
DataFrameGroupBy object to agg. We then pass multiple keyword arguments to agg:

 The key of each keyword argument is the name of an output column.

http://mng.bz/E9GO
http://mng.bz/84nw

172 CHAPTER 6 Grouping, joining, and sorting
EXERCISE 30 ■ Taxi ride comparison
So far, we have taken several looks at our January 2019 taxi data. But we’ve always exam-
ined the overall data or effectively done manual grouping. In this exercise, we’re going
to use grouping to get a better understanding of the data. Specifically, I’d like you to

1 Load taxi data from January 2019 into a data frame using only the columns
passenger_count, trip_distance, and total_amount.

2 For each number of passengers, find the mean cost of a taxi ride. Sort this
result from lowest (i.e., cheapest) to highest (i.e., most expensive).

3 Sort the results again by increasing the number of passengers.
4 Create a new column, trip_distance_group, in which the values are short (< 2

miles), medium (2 miles and 10 miles), and long (> 10 miles). What is the
average number of passengers per trip length category? Sort this result from
highest (most passengers) to lowest (fewest passengers).

Working it out

Grouping is a simple idea, but it has profound implications. It means we can measure
different parts of our data in a single query, producing a data frame that can itself
then be analyzed, sorted, and displayed. In this exercise, we load the CSV file
nyc_taxi_2019-01.csv into a data frame:

filename = '../data/nyc_taxi_2019-01.csv'

df = pd.read_csv(filename,

(continued)

 The value of each keyword argument is a two-element tuple:
– The first element in the tuple is a string: the name of the column in the

original data frame we want to analyze.
– The second element in the tuple is also a string: the name (yes, as a

string) of an aggregation method we wish to run on that column.

For example, we can get the mean and standard deviation of retail_price per
department as well as find the max sales for each department:

df.groupby('department').agg(mean_price=('retail_price', 'mean'),
std_price=('retail_price', 'std'),

max_sales=('sales', 'max'))

Unsorting group keys
Normally, groupby sorts the group keys. If you don’t want to see this, or if you are
concerned that it’s making your query too slow, you can pass sort=False to
groupby:

df.groupby('department', sort=False)['retail_price'].agg(['mean', 'std'])

https://github.com/reuven/pandas-workout

173EXERCISE 30 ■ Taxi ride comparison

retr
pass
usecols=['passenger_count',
'trip_distance',
'total_amount'])

I then asked you to find the mean cost of a taxi ride for each number of passengers.
When using groupby, we have to keep several things in mind:

 On what data frame are we operating?
 Which column will supply the groups? This column is almost always categorical

in nature, either with a limited number of string values or with a limited set of
integers (as is the case here). The distinct values from this column are the rows
in the output from our aggregation method.

 Which column(s) do we analyze? That is, on which columns will we run our
aggregation methods?

 Which aggregation method(s) will we be running?

In this case, the question provides all the answers:

 We’ll work on the data frame df.
 We’ll get our groups from passenger_count.
 We’ll analyze total_amount.
 We’ll run the mean method.

In other words, we’re going to do the following:

df.groupby('passenger_count')['total_amount'].mean()

This returns a series. The index in the series contains each of the unique values in the
passenger_count column. The values in the series are the result of running mean on
each subset of df['total_amount']. You can think of this as similar to the following:

for i in range(df['passenger_count'].max() + 1):
print(i,

df.loc[df['passenger_count'] == i,
'total_amount'

].mean())

This code uses a Python for loop to iterate over each value in df['passenger_
count'] and then runs mean on that subset of the total_amount column. It calculates
the same results, but it’s far less efficient than using groupby. Moreover, it doesn’t put
the results in a data structure that we can use easily. For these and other reasons, it’s
almost never a good idea to use a for loop on pandas data structures—you should aim
to use groupby and other native pandas functionality instead. That said, seeing this
for loop can give us an idea of what’s happening inside of the groupby and what val-
ues we get in the series it returns (figure 6.5).

Prints the current value
of passenger_count

Our row selector
ieves rows where
enger_count is i.

Our column selector retrieves
the total_amount column.

Calculates the mean of total_amount
for one value of passenger_count

174 CHAPTER 6 Grouping, joining, and sorting

passenger_count trip_distance total_amount

7457997 1 0.30 5.80

5176884 5 0.78 7.80

3808538 1 2.09 13.00

4746439 6 0.74 5.80

6897983 1 2.66 16.56

3093558 1 2.70 16.00

3354288 1 2.61 18.30

5492350 1 1.70 13.00

6451927 1 0.76 8.80

3070078 1 2.20 13.50

502287 2 1.00 11.62

1924539 1 2.11 14.76

858620 3 4.10 17.80

7037227 1 0.95 10.70

2237791 1 2.11 10.30

2805107 1 2.70 11.80

3601249 1 1.21 6.30

4306225 1 1.90 16.56

1934421 2 6.30 32.56

4333172 3 0.78 9.96

mean(total_amount)

13.880000

22.090000

12.527143

5.8000006

7.8000005

4

3

2

passenger_count

1

Figure 6.5 Graphical depiction of how groupby
and then mean work together

175EXERCISE 30 ■ Taxi ride comparison
Now that we have the mean price of a taxi fare for each number of passengers, we
want to sort it by value in ascending order. We can do that by applying sort_values to
the resulting series (figure 6.6):

df.groupby('passenger_count')[
'total_amount'].mean().sort_values()

Figure 6.6 Graphical depiction of how you can run sort_values on the groupby result

The next request was for you to perform the same calculation but to sort the result by
the number of passengers in ascending order. Remember that when we invoke mean
on the grouped result, we get a series. The index of the series contains the unique val-
ues from df['passenger_count']. To sort by the number of passengers, we need to
sort this series by its index:

df.groupby('passenger_count')[
'total_amount'].mean().sort_index()

Next, I asked you to create a new column, trip_distance_group, whose values are
short, medium, and long, corresponding to trips up to 2 miles, from 2 to 10 miles, and
greater than 10 miles. We can accomplish this with pd.cut, which takes our column

passenger_count mean(total_amount)

13.880000

22.090000

12.527143

5.8000006

7.8000005

4

3

2

1

22.092

13.8800003

12.5271431

7.85

5.8

mean(total_amount)passenger_count

6

sort_values

176 CHAPTER 6 Grouping, joining, and sorting

Our

m
10

and lets us set the values we want to set as separators and the strings to assign to each
category:

df['trip_distance_group'] = pd.cut(
df['trip_distance'],
[df['trip_distance'].min(), 2, 10,
df['trip_distance'].max()],

labels=['short', 'medium', 'long'],
include_lowest=True)

With this new column in place, we can use it in a groupby query. Specifically, I asked
you to find the average number of passengers for each passenger group. We can do
this as follows:

df.groupby('trip_distance_group')[
'passenger_count'].mean().sort_values(ascending=False)

This says that we want to get the mean passenger count for each distinct value of
trip_distance_group. We get those results back in a series, where the index is the dis-
tinct values of trip_distance_group and the values are the means we calculated for
each trip-distance category.

 Once we’re done with those calculations, we sort the values of the resulting data
frame in descending order. And in doing so, we find that there’s very little difference
between these averages. In other words, our moonlighting data scientist/taxi driver
has no financial incentive to pick up a large group versus a small one because they’ll
likely get paid the same.

Solution

filename = '../data/nyc_taxi_2019-01.csv'

df = pd.read_csv(filename,
usecols=['passenger_count',

'trip_distance',
'total_amount'])

df.groupby('passenger_count')['total_amount'
].mean().sort_values()

df.groupby('passenger_count')['total_amount'
].mean().sort_index()

df['trip_distance_group'] = pd.cut(
df['trip_distance'],

[df['trip_distance'].min(), 2, 10,
df['trip_distance'].max()],

labels=['short', 'medium', 'long'])
df.groupby('trip_distance_group')['passenger_count'

].mean().sort_values(ascending=False)

Runs pd.cut to get categorical
values from numeric ones

Bases the categories on
the trip_distance column

 cut points
are the

inimum, 2,
, and max.

Puts values into one of three
categories: short, medium, or long

Ensures that the first
category includes the left side

Returns the mean value of total_amount
for each value of passenger_count and
then sorts the resulting series by value
(i.e., mean of total_amount)

Returns the mean value of
total_amount for each value of
passenger_count and then sorts
the resulting series by index
(i.e., value of passenger_count)

Uses pd.cut to get a series of strings
back from trip_distance, and assigns it
to df['trip_distance_group']

For each value of
trip_distance_group, gets the
mean of passenger_count and sorts
the values in descending order

177EXERCISE 30 ■ Taxi ride comparison
You can explore a version of this in the Pandas Tutor at http://mng.bz/NVN1.

Beyond the exercise

 Create a single data frame containing rides from both January 2019 and Janu-
ary 2020, with a column year indicating which year the ride comes from. Use
groupby to compare the average cost of a taxi in January from each of these two
years.

 Create a two-level grouping, first by year and then by passenger_count.
 The corr method allows us to see how strongly two columns correlate with one

another. Use corr and then sort_values to find which columns have the high-
est correlation.

Joining
Like grouping, joining is a concept you may have encountered previously when work-
ing with relational databases. The joining functionality in pandas is similar to that sort
of a database, although the syntax is different.

Consider, for example, the data frame we looked at earlier in this chapter:

df = DataFrame([{'product_id':23, 'name':'computer',
'wholesale_price': 500,
'retail_price':1000, 'sales':100,
'department':'electronics'},

{'product_id':96, 'name':'Python Workout',
'wholesale_price': 35,
'retail_price':75, 'sales':1000,
'department':'books'},

{'product_id':97, 'name':'Pandas Workout',
'wholesale_price': 35,
'retail_price':75, 'sales':500,
'department':'books'},

{'product_id':15, 'name':'banana',
'wholesale_price': 0.5,
'retail_price':1, 'sales':200,
'department':'food'},

{'product_id':87, 'name':'sandwich',
'wholesale_price': 3,
'retail_price':5, 'sales':300,
'department': 'food'},

])

But now consider that instead of keeping track of sales numbers in this data frame,
we instead break the data into two parts:

 One data frame will describe each of the products we sell.
 A second data frame will describe each sale we make.

Here is a simple example of how we can divide the data:

http://mng.bz/NVN1

178 CHAPTER 6 Grouping, joining, and sorting
(continued)
products_df = DataFrame([{'product_id':23, 'name':'computer',

'wholesale_price': 500,
'retail_price':1000,
'department':'electronics'},

{'product_id':96, 'name':'Python Workout',
'wholesale_price': 35,
'retail_price':75, 'department':'books'},

{'product_id':97, 'name':'Pandas Workout',
'wholesale_price': 35,
'retail_price':75, 'department':'books'},

{'product_id':15, 'name':'banana',
'wholesale_price': 0.5,
'retail_price':1, 'department':'food'},

{'product_id':87, 'name':'sandwich',
'wholesale_price': 3,
'retail_price':5, 'department': 'food'},

])

sales_df = DataFrame([{'product_id': 23, 'date':'2021-August-10',
'quantity':1},

{'product_id': 96, 'date':'2021-August-10',
'quantity':5},

{'product_id': 15, 'date':'2021-August-10',
'quantity':3},

{'product_id': 87, 'date':'2021-August-10',
'quantity':2},

{'product_id': 15, 'date':'2021-August-11',
'quantity':1},

{'product_id': 96, 'date':'2021-August-11',
'quantity':1},

{'product_id': 23, 'date':'2021-August-11',
'quantity':2},

{'product_id': 87, 'date':'2021-August-12',
'quantity':2},

{'product_id': 97, 'date':'2021-August-12',
'quantity':6},

{'product_id': 97, 'date':'2021-August-12',
'quantity':1},

{'product_id': 87, 'date':'2021-August-13',
'quantity':2},

{'product_id': 23, 'date':'2021-August-13',
'quantity':1},

{'product_id': 15, 'date':'2021-August-14',
'quantity':2}

])

What have we done here? We’ve put all our product information, which is less likely
to change, in products_df. Every time we add a new product to the store or change
the name or price of an existing product, we update that data frame. But each time
we make a sale, we don’t touch products_df. Rather, we add a new row to
sales_df, describing which product was sold, how many we sold, and when we sold
it. You can see these data frames in the following figures.

179EXERCISE 30 ■ Taxi ride comparison
This is all well and good, but how
can we describe how much of
each product has been sold? This
is where joining comes in: we can
combine products_df and
sales_df into a new, single data
frame that contains all the col-
umns from both of the input data
frames.

But wait a second—how does pan-
das know which rows on the left
should be joined with which rows
on the right? The answer, at least
by default, is that it uses the
index. Wherever the index of the
left side matches the index of the
right side, it joins them together,
giving them a new row that con-
tains all columns from both left
and right.

product_id name wholesale_
price

retail_price department

0 23 computer 500.0 1000 electronics

1 96 Python
Workout

35.0 75 books

2 97 Pandas
Workout

35.0 75 books

3 15 banana 0.5 1 food

4 87 sandwich 3.0 5 food Graphical depiction of
products_df

product_id date quantity

0

1

2

3

4

5

6

7

8

9

10

11

12

23

96

15

87

15

96

23

87

97

97

87

23

15

2021-August-10

2021-August-10

2021-August-10

2021-August-10

2021-August-11

2021-August-11

2021-August-11

2021-August-12

2021-August-12

2021-August-12

2021-August-13

2021-August-13

2021-August-14

1

5

3

2

1

1

2

2

6

1

2

1

2

Graphical depiction of sales_df

180 CHAPTER 6 Grouping, joining, and sorting
(continued)

This means we need to change our data frames such that both are using the same
values for their indexes. The obvious choice here is product_id, which appears in
both products_df and sales_df (see the following two figures):

products_df = products_df.set_index('product_id')
sales_df = sales_df.set_index('product_id')

Now that our data frames have a common ref-
erence point in the index, we can create a new
data frame combining the two:

products_df.join(sales_df)

The result of this join is a new table with 13
rows and 6 columns. The columns combine all
the columns from products_df and then all
the columns from sales_df:

 name

 wholesale_price

 retail_price

 department

 date
 quantity

Graphical depiction
of sales_df with

product_id as the index

name wholesale_price retail_price department

computer

Python Workout

Pandas Workout

banana

sandwich

500.0

35.0

35.0

0.5

3.0

1000

75

75

1

5

electronics

books

books

food

food

product_id

23

96

97

15

87

Graphical depiction of
products_df with
product_id as the index

product_id date quantity

23

96

15

87

15

96

23

87

97

97

87

23

15

2021-August-10

2021-August-10

2021-August-10

2021-August-10

2021-August-11

2021-August-11

2021-August-11

2021-August-12

2021-August-12

2021-August-12

2021-August-13

2021-August-13

2021-August-14

1

5

3

2

1

1

2

2

6

1

2

1

2

181EXERCISE 30 ■ Taxi ride comparison
Each row is the result of a match between the index (product_id) on the left (from
products_df) and the index (product_id) on the right (from sales_df). Because
several products have multiple sales, we end up with more rows than either of the
original tables contained. The join is shown in the following figure.

Graphical depiction of joining products_df and sales_df

We can now perform whatever queries we like on this new, combined data frame. For
example, we can determine how many of each product have been sold:

products_df.join(sales_df).groupby(
'name')['quantity'].sum()

Or we can determine how much income we get from each product and then sort the
products from lowest to highest source of income:

products_df.join(sales_df).groupby(
'name')['retail_price'].sum().sort_values()

We can even determine how much income we had on each individual day:

products_df.join(sales_df).groupby(
'date')['retail_price'].sum().sort_index()

name wholesale_price retail_price depart-
ment date

quanti-
ty

product_id

15 banana 0.5 1 food
2021-

August-
10

3

15 banana 0.5 1 food
2021-

August-
11

1

15 banana 0.5 1 food
2021-

August-
14

2

23 comput-
er 500.0 1000 electro-

nics

2021-
August-

10
1

23 comput-
er 500.0 1000 electro-

nics

2021-
August-

11
2

23 comput-
er 500.0 1000 electro-

nics

2021-
August-

13
1

87 sand-
wich 3.0 5 food

2021-
August-

10
2

87
sand-
wich 3.0 5 food

2021-
August-

12
2

87 sand-
wich 3.0 5 food

2021-
August-

13
2

96 Python
Workout 35.0 75 books

2021-
August-

10
5

96 Python
Workout 35.0 75 books

2021-
August-

11
1

97 Pandas
Workout 35.0 75 books

2021-
August-

12
6

97 Pandas
Workout 35.0 75 books

2021-
August-

12
1

name wholesale_price retail_price depart-
ment

comput-
er 500.0 1000 electro-

nics

Python
Workout 35.0 75 books

Pandas
Workout 35.0 75 books

banana 0.5 1 food

sand-
wich 3.0 5 food

product_id

23

96

97

15

87

product_id date quanti-
ty

23
2021-

August-
10

1

96
2021-

August-
10

5

15
2021-

August-
10

3

87
2021-

August-
10

2

15
2021-

August-
11

1

96
2021-

August-
11

1

23
2021-

August-
11

2

87
2021-

August-
12

2

97
2021-

August-
12

6

97
2021-

August-
12

1

87
2021-

August-
13

2

23
2021-

August-
13

1

15
2021-

August-
14

2

182 CHAPTER 6 Grouping, joining, and sorting
EXERCISE 31 ■ Tourist spending per country
Before the Covid-19 pandemic, I traveled internationally on a regular basis, both for
work (giving classes to companies around the world) and for pleasure. The pandemic,
of course, changed all that, with many countries restricting who could enter and leave
and under what circumstances.

 This was certainly a serious problem for corporate Python trainers. But it was an
even bigger problem for the tourism industry. That’s because tourists generate a great
deal of money to countries around the world. In this exercise, we’ll look at prepan-
demic data from the OECD (Organization for Economic Cooperation and Develop-
ment), which the Economist describes as “a club of mostly-rich countries,” to see how
much they were earning in tourist dollars. As we’ll see, the data covers countries
beyond the OECD itself.

 Here’s what I would like you to do:

1 Load the OECD tourism data (from oecd_tourism.oecd) into a data frame.
We’re interested in the following columns:
– LOCATION—A three-letter abbreviation for the country name
– SUBJECT—Either INT_REC (for tourist funds received) or INT-EXP (for tourist

expenses).

(continued)

And although our data set is tiny, we can determine how much each product contrib-
uted to our income per day:

products_df.join(sales_df).groupby(
['date','name'])['retail_price'].sum().sort_index()

Separating data into two or more pieces so each piece of information appears only a
single time is known as normalization. There are all sorts of formal theories and
descriptions of normalization, but it boils down to keeping the information in separate
places and joining data frames when necessary.

Sometimes you’ll normalize your own data. But other times, you’ll receive data that
has been normalized and then separated into separate pieces. For example, many
data sets are distributed in separate CSV files, which almost always means you’ll
need to join two or more data frames to analyze the information. Or you may want to
normalize the data yourself to gain flexibility or performance.

One final point: the join I’ve shown you here is known as a left join because values
of product_id on the left (i.e., in products_df) drive which rows are selected on the
right (i.e., sales_df). More advanced joins called outer joins allow us to tell pandas
that even if there isn’t a corresponding row on the left or the right, we want to have
a row in the result, albeit one filled with null values. We’ll explore those in exercise
35 in the next chapter.

https://github.com/reuven/pandas-workout

183EXERCISE 31 ■ Tourist spending per country
– TIME—A year (integer)
– Value—A float indicating thousands of dollars

2 Find the five countries that received the greatest amount of tourist dollars, on
average, across years in the data set.

3 Find the five countries whose citizens spent the least amount of tourist dollars,
on average, across years in the data set.

4 The separate CSV file oecd_locations.csv has two columns: one contains the
three-letter abbreviated location name from the first CSV file, and the second is
the full country name. Load this into a data frame, using the abbreviated data
as an index.

5 Join these two data frames together into a new one. In the new data frame,
there is no LOCATION column. Instead, there is a name column with the full
name of the country.

6 Rerun the queries from steps 2 and 3, finding the five countries that spent and
received the most, on average, from tourism. But this time, get the name of
each country, rather than its abbreviation, for your reports.

7 Ignoring the names, did you get the same results as before? Why or why not?

NOTE The column names and values in this data set demonstrate the type of
inconsistency that can creep into a project. The SUBJECT column can contain
one of two strings, INT_REC or INT-EXP. Why does one use an underscore and
the other a hyphen? Good question! Similarly, why are all column names in
all caps, whereas Value has only its first letter capitalized? Another good ques-
tion! This happens in many real-world data sets. Be on the lookout for these
sorts of problems when you first see a data set. And if you’re creating a data
set for others, try to keep things as consistent as possible.

Working it out

In this exercise, we create two separate data frames and then join them. In so doing,
we create a report that uses countries’ full names rather than three-letter abbrevia-
tions. Let’s walk through each of the steps to achieve that.

 For starters, I asked you to load the OECD tourism data into a data frame. This
CSV file includes a number of columns that wouldn’t help with our analysis, so I asked
you to select a subset of them:

tourism_filename = '../data/oecd_tourism.csv'
tourism_df = pd.read_csv(tourism_filename,

usecols=['LOCATION',
'SUBJECT',
'TIME',
'Value'])

This data frame, tourism_df, contains information about the total amount spent and
the total amount received by a number of countries over about a decade. For exam-
ple, if we want to determine how much money the French economy received in total

https://github.com/reuven/pandas-workout

184 CHAPTER 6 Grouping, joining, and sorting
from tourists during 2016, we can look at the row in which SUBJECT is INT_REC,
LOCATION is FRA, and TIME is 2016. That returns a single row from the data frame; if we
retrieve the Value column in that row, we learn the total amount of tourism income.

 What if we want to determine the average amount of income that countries
received in our data set? We can say, using method-chaining syntax,

(
tourism_df
.loc[tourism_df['SUBJECT'] == 'INT_REC']
['Value']
.mean()

)

But this isn’t very useful. (You could even say it isn’t very “meaningful”.) That’s
because countries differ in how much tourist income they receive. Breaking it apart by
country gives many more insights than an overall mean.

 How can we get the mean tourist income per country? By grouping the call to mean
by the LOCATION column:

(
tourism_df
.loc[tourism_df['SUBJECT'] == 'INT_REC']
.groupby('LOCATION')['Value']
.mean()

)

Here’s what we do in this code:

1 Select rows in which SUBJECT is INT_REC, for received tourism funds.
2 Group by LOCATION, meaning we’ll get one result per value of LOCATION, aka

country.
3 Ask for only the Value column.
4 Invoke the mean method on each location’s values.

This produces a series: a single column in which the index contains the three-letter
country abbreviations and with the values being the mean income per country.

 I then asked you to find the five countries that received the most (on average per
year) from tourism. To do this, we sort our results in descending order and then use
head to get the five top-grossing locations:

(
tourism_df
.loc[tourism_df['SUBJECT'] == 'INT_REC']
.groupby('LOCATION')['Value']
.mean()
.sort_values(ascending=False)
.head()

)

185EXERCISE 31 ■ Tourist spending per country
Next, I asked you to perform a second, similar query, finding the countries that spent
the least amount on tourism. In other words, we’re now interested in the INT-EXP
value from SUBJECT, and we want to look at the five lowest-spending (on average, per
year) tourism countries. The solution is

(
tourism_df
.loc[tourism_df['SUBJECT'] == 'INT-EXP']
.groupby('LOCATION')['Value']
.mean()
.sort_values()
.head()

)

Beyond the difference in the string we’re matching in SUBJECT, we also reverse the call
to sort_values, using the default of an ascending sort. This way, head retrieves the
five least-spending countries.

 With these initial queries out of the way, we can now use join to make an easier-to-
read report from what we’ve created. To help with that, we create a two-column CSV
file that we can read. However, this CSV file needs massaging if we’re going to use it.
For one thing, there isn’t a header row, so we need to state that and provide our own
names.

 But we’re also planning to use the imported data for joining with tourism_df.
We’ll want to use the three-letter country abbreviation for joining, so we may as well
make that the index of locations_df. Here’s what we do:

locations_filename = '../data/oecd_locations.csv'
locations_df = pd.read_csv(locations_filename,

header=None,
names=['LOCATION', 'NAME'],

index_col='LOCATION')

Now we’ll bring this all together by creating a new data frame, the result of joining
locations_df and tourism_df. The problem is that although the three-letter abbrevi-
ation (i.e., LOCATION) is the index of locations_df, it’s just a plain ol’ column in
tourism_df. And yes, you can join non-index columns in pandas, but having the data
frames share index values makes the code shorter and clearer.

 We’ll thus do the following:

1 Create a new (anonymous) data frame based on tourism_df, whose index is set
to LOCATION.

2 Run join on locations_df and the new LOCATION-indexed version of
tourism_df.

3 Assign this to a new data frame, which we call fullname_df.

You can see the setting of the indexes for our join in figures 6.7 and 6.8:

fullname_df = locations_df.join(tourism_df.set_index('LOCATION'))

186 CHAPTER 6 Grouping, joining, and sorting
Figure 6.7 Graphical depiction of making the LOCATION column the index of tourism_df

NOTE fullname_df is significantly smaller than tourism_df—364 rows
instead of 1,234. That’s because the joined data frame’s rows are the result of
finding a match between the left and right sides of the join. locations_df
doesn’t include all the countries listed in tourism_df, so the result is smaller.

set_index(
'LOCATION')

1229 SRB INT-EXP 2015 1253.644

1230 SRB INT-EXP 2016 1351.098

1231 SRB INT-EXP 2017 1549.183

1232 SRB INT-EXP 2018 1837.317

1233 SRB INT-EXP 2019 1999.313

LOCATION SUBJECT TIME Value

0 AUS INT_REC 2008 31159.8

1 AUS INT_REC 2009 29980.7

2 AUS INT_REC 2010 35165.5

3 AUS INT_REC 2011 38710.1

4 AUS INT_REC 2012 38003.7

SRB INT-EXP 2015 1253.644

SRB INT-EXP 2016 1351.098

SRB INT-EXP 2017 1549.183

SRB INT-EXP 2018 1837.317

SRB INT-EXP 2019 1999.313

LOCATION SUBJECT TIME Value

AUS INT_REC 2008 31159.8

AUS INT_REC 2009 29980.7

AUS INT_REC 2010 35165.5

AUS INT_REC 2011 38710.1

AUS INT_REC 2012 38003.7

187EXERCISE 31 ■ Tourist spending per country
Figure 6.8 Graphical depiction of making the LOCATION column the index of locations_df

The index of fullname_df is the three-character country codes. Its columns are

 NAME—The full name, which we get from locations_df
 SUBJECT—Tells us whether we’re dealing with income or expenses
 TIME—Tells us the year in which the measurement was taken
 Value—Tells us the dollar amount that was measured

By using NAME for our grouping operations, we can get a report that displays each
country’s full name rather than the three-letter abbreviation. And indeed, I asked you
to rerun our earlier queries on the result of our join (figure 6.9).

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

LOCATION NAME

Australia

Austria

Belgium

Canada

Denmark

Finland

France

Germany

Hungary

Italy

Japan

Korea

United Kingdom

United States

Brazil

Israel

AUS

AUT

BEL

CAN

DNK

FIN

FRA

DEU

HUN

ITA

JPN

KOR

GBR

USA

BRA

ISR

set_index(
'LOCATION')

LOCATION NAME

United Kingdom

United States

Australia

Austria

Belgium

Canada

Denmark

Finland

France

Germany

Hungary

Italy

Japan

Korea

Brazil

Israel

AUS

AUT

BEL

CAN

DNK

FIN

FRA

DEU

HUN

ITA

JPN

KOR

GBR

USA

BRA

ISR

188 CHAPTER 6 Grouping, joining, and sorting

SRB

SRB

SRB

SRB

SRB

LOCATION

AUS

AUS

AUS

INT-EXP

INT-EXP

INT-EXP

INT-EXP

INT-EXP

SUBJECT

INT_REC

INT_REC

INT_REC

2015

2016

2017

2018

2019

TIME

2010

2011

2012

1253.644

1351.098

1549.183

1837.317

1999.313

Value

35165.5

38710.1

38003.7

AUS INT_REC 2008 31159.8

AUS INT_REC 2009 29980.7

NAME

Belgium

Canada

Denmark

Finland

France

Germany

Hungary

Italy

Japan

Korea

United Kingdom

United States

Brazil

Israel

LOCATION

BEL

CAN

DNK

FIN

FRA

DEU

HUN

ITA

JPN

KOR

GBR

USA

BRA

ISR

AustraliaAUS

AustriaAUT

LOCATION

AUS

AUS

AUS

SUBJECT

INT_REC

INT_REC

INT_REC

TIME

2010

2011

2012

Value

35165.5

38710.1

38003.7

AUS INT_REC 2008 31159.8 Australia

NAME

AUS INT_REC 2009 29980.7 Australia

Australia

Australia

Australia

join

Figure 6.9 Graphical depiction of joining locations_df and
tourism_df. Notice that any rows referring to a country not in
locations_df are dropped from the result.

189EXERCISE 31 ■ Tourist spending per country
Here’s how we can get the five countries with the greatest income from tourism, on
average, during the years of the data set:

(
fullname_df
.loc[fullname_df['SUBJECT'] == 'INT_REC']
.groupby('NAME')['Value']
.mean()
.sort_values(ascending=False)
.head()

)

And here are the five countries that spent the least on tourism, on average, during the
years of the data set:

(
fullname_df
.loc[fullname_df['SUBJECT'] == 'INT-EXP']
.groupby('NAME')['Value']
.mean()
.sort_values()
.head()

)

Finally, I asked whether the results are the same as before. Besides the obvious, that
these results give the countries’ full names rather than their abbreviations, the coun-
tries themselves are different. That’s a result of locations_df not including all the
countries in tourism_df. We lose some data as a result of our join.

Solution

tourism_filename = '../data/oecd_tourism.csv'
tourism_df = pd.read_csv(tourism_filename,

usecols=['LOCATION',
'SUBJECT', 'TIME', 'Value'])

(
tourism_df
.loc[tourism_df['SUBJECT'] == 'INT_REC']
.groupby('LOCATION')['Value']
.mean()
.sort_values(ascending=False)
.head()

)

(
tourism_df
.loc[tourism_df['SUBJECT'] == 'INT-EXP']
.groupby('LOCATION')['Value']
.mean()
.sort_values()
.head()

)

Creates a data frame
from four columns in
the tourism data

Chooses rows where SUBJECT is INT_REC; for each location (i.e.,
country), gets the mean value in the data set.; sorts those
values in descending order, and takes the top five values

Chooses rows where SUBJECT is INT-EXP; for each location
(i.e., country), gets the mean value in the data set; sorts those
values in ascending order, and takes the top five values

190 CHAPTER 6 Grouping, joining, and sorting

.

locations_filename = '../data/oecd_locations.csv'
locations_df = pd.read_csv(locations_filename,

header=None,
names=['LOCATION', 'NAME'],

index_col='LOCATION')
fullname_df = locations_df.join(

tourism_df.set_index('LOCATION'))

(
fullname_df
.loc[fullname_df['SUBJECT'] == 'INT_REC']
.groupby('NAME')['Value']
.mean()
.sort_values(ascending=False)
.head()

)

(
fullname_df
.loc[fullname_df['SUBJECT'] == 'INT-EXP']
.groupby('NAME')['Value']
.mean()
.sort_values()
.head()

)

You can explore a version of this in the Pandas Tutor at http://mng.bz/D9Yw.

Beyond the exercise

 What happens if you perform the join in the other direction? That is, what if
you invoke join on tourism_df, passing it an argument of locations_df? Do
you get the same result?

 Get the mean tourism income per year rather than by country. Do you see any
evidence of less tourism income during the time of the Great Recession, which
started in 2008?

 Reset the index on locations_df such that it has a (default) numeric index and
two columns (LOCATION and NAME). Now run join on locations_df, specifying
that you want to use the LOCATION column on the caller rather than its index. (The
data frame passed as an argument to join will always be joined on its index.)

Summary
Once you’ve read data into a data frame, there are many ways in which you can split,
combine, and analyze it. In this chapter, we looked at some of the most common
tasks—from grouping for analysis, to grouping for including/excluding rows, to join-
ing and merging data frames. Having these skills at your fingertips makes it easy to
perform particularly complex types of analysis. The exercises in this chapter showed
you how and when you can use these tools to explore your data in ways that analysts
perform on a regular basis, with the “split-apply-combine” approach that’s pervasive in
pandas. In the next chapter, we’ll build on what we’ve done here, using these tech-
niques in more advanced ways.

Creates a data frame from the
locations data, setting column
names to LOCATION and NAME
and making LOCATION the index

Creates a new data frame, the
result of joining tourism_df
and locations_df

In the joined data, chooses rows where SUBJECT is INT_REC; for each
location (i.e., country), gets the mean value in the data set; sorts
those values in descending order, and takes the top five values

Chooses rows where SUBJECT is INT-EXP; for each location
(i.e., country), gets the mean value in the data set; sorts those
values in ascending order, and takes the top five values

http://mng.bz/D9Yw

Advanced grouping,
joining, and sorting
In the previous chapter, we used three of the central tools in pandas: grouping data
across different columns, joining multiple data frames, and sorting a data frame by
its index or one or more columns. As we saw, each of these techniques gives us a
powerful way to manipulate our data into a form that allows for better understand-
ing and interpretation.

 In this chapter, we’ll explore deeper ways to use these techniques, both by them-
selves and together. We’ll turn multiple CSV files into a single data frame, we’ll
group and sort by multiple columns, and we’ll use the filter method to keep and
reject rows based on group properties. After going through the exercises in this
chapter, you’ll have an even stronger understanding of these techniques, how they
can help you solve problems, and when it’s appropriate to use them.

Table 7.1 What you need to know

Concept What is it? Example To learn more

s.isnull Returns a boolean series
indicating where there are null
(typically NaN) values in the
series s

s.isnull() http://mng.bz/ngYe

df.sort_index Reorders the rows of a data
frame based on the values in its
index, in ascending order

df = df.sort_
index()

http://mng.bz/wvB7

s.isnull Returns a boolean series indi-
cating where there are null (typi-
cally NaN) values in the series s

s.isnull() http://mng.bz/Jgyp
191

http://mng.bz/wvB7
http://mng.bz/ngYe
http://mng.bz/Jgyp

192 CHAPTER 7 Advanced grouping, joining, and sorting
Table 7.2 What you need to know (continued)

Concept What is it? Example To learn more

df.sort_index Reorders the rows of a data
frame based on the values in
its index, in ascending order

df = df
.sort_index()

http://mng.bz/wvB7

df.sort_values Reorders the rows of a data
frame based on the values in
one or more specified columns

df = df.sort_
values('distance')

http://mng.bz/qrMK

df.transpose()
or df.T

Returns a new data frame with
the same values as df but
with the columns and index
exchanged

df.transpose() or
df.T

http://mng.bz/7DXx

df.expanding Lets us run window functions
on an expanding (growing) set
of rows

df.expanding()
.sum()

http://mng.bz/mVBn

df.rolling Lets us run window functions
on an expanding (growing) set
of rows

df.rolling(3)
.mean()

http://mng.bz/5wp4

df.pct_change For a given data frame, indi-
cates the percentage differ-
ence between each cell and
the corresponding cell in the
previous row

df.pct_change() http://mng.bz/4DBB

df.diff For a given data frame, indi-
cates the difference between
each cell and the correspond-
ing cell in the previous row

df.diff() http://mng.bz/OPDE

df.groupby Allows us to invoke one or
more aggregate methods for
each value in a particular
column

df.groupby('year') http://mng.bz/vn9x

df.loc Retrieves selected rows and
columns

df.loc[:, 'passen-
ger_count'] = df
['passenger_count']

http://mng.bz/nWzv

s.iloc Accesses elements of a series
by position

s.iloc[0] http://mng.bz/QPxm

df.dropna Removes rows with NaN
values

df = df.dropna() http://mng.bz/XN0Y

s.unique Gets the unique values in a
series (drop_duplicates is
better)

s.unique() http://mng.bz/yQrJ

df.join Joins two data frames based
on their indexes

df.join(other_df) http://mng.bz/MBo2

http://mng.bz/wvB7
http://mng.bz/qrMK
http://mng.bz/7DXx
http://mng.bz/mVBn
http://mng.bz/5wp4
http://mng.bz/4DBB
http://mng.bz/OPDE
http://mng.bz/vn9x
http://mng.bz/nWzv
http://mng.bz/QPxm
http://mng.bz/XN0Y
http://mng.bz/yQrJ
http://mng.bz/MBo2

193■CHAPTER 7 Advanced grouping, joining, and sorting
df.merge Joins two data frames based
on any columns

df.merge(other_df) http://mng.bz/a1wJ

df.corr Shows the correlation between
the numeric columns of a data
frame

df.corr() http://mng.bz/gBgR

s.to_frame Turns a series into a one-
column data frame

s.to_frame() http://mng.bz/5wp1

s.removesuffix Returns a new string with the
same contents as s but
without a specified suffix
(if it’s there)

s.removesuffix
('.csv')

http://mng.bz/6DAD

s.removeprefix Returns a new string with the
same contents as s but
without a specified prefix
(if it’s there)

s.removeprefix
('abcd')

http://mng.bz/o1Rr

s.title Returns a new string based
on s in which each word
starts with a capital letter

s.title('hello out
there')

http://mng.bz/nWzg

pd.concat Returns one new data frame
based on a list of data frames
passed to pd.concat

pd.concat([df1, df2,
df3])

http://mng.bz/vn9J

df.assign Adds one or more columns
to a data frame

df.assign
(a=df['x']*3)

http://mng.bz/1J1V

DataFrameGroupB
y.agg

Applies multiple aggregation
methods to a groupby

df.groupby('a')
['b'].agg(['mean',
'std'])

http://mng.bz/v8o1

DataFrameGroupB
y.filter

Keeps rows whose group
results in True from an
outside function

df.groupby('a')
.filter
(filter_func)

http://mng.bz/z0BQ

DataFrameGroupB
y.transform

Modifies rows based on an
outside function

df.groupby('a')
.transform
(transform_func)

http://mng.bz/0l26

df.rename Renames columns in a data
frame

df.rename(columns=
{'a':'b', 'c':'d'})

http://mng.bz/K9W0

df.drop_
duplicates

Returns a data frame
whose rows contain distinct
values

df.drop_
duplicates()

http://mng.bz/9Qv1

df.drop Removes rows or columns
from a data frame, returning
a new one

df.drop('a',
axis='columns')

http://mng.bz/j1eP

Table 7.2 What you need to know (continued)

Concept What is it? Example To learn more

http://mng.bz/a1wJ
http://mng.bz/gBgR
http://mng.bz/5wp1
http://mng.bz/6DAD
http://mng.bz/o1Rr
http://mng.bz/nWzg
http://mng.bz/vn9J
http://mng.bz/1J1V
http://mng.bz/v8o1
http://mng.bz/z0BQ
http://mng.bz/0l26
http://mng.bz/K9W0
http://mng.bz/9Qv1
http://mng.bz/j1eP

194 CHAPTER 7 Advanced grouping, joining, and sorting
EXERCISE 32 ■ Multicity temperatures
Grouping is one of the most useful and common functions we use when analyzing
data. That’s because although it’s helpful to get an overall view of a data set, it’s even
more useful to learn about the different pieces of the data set so we can compare them
with one another. For example, we may want to know how many people voted in the
most recent election. But if we’re interested in running a campaign that encourages
more people to vote, we’ll want to count voters from each age range, location, or eth-
nicity, to target our campaign more effectively.

 In this exercise, we’re going to get some additional practice with grouping. But
I’ve added another challenge: creating the data frame on which you’ll perform the
grouping. That’s because I want you to create the data frame based on eight different
CSV files, each of which contains weather data from a different city. Moreover, the
eight cities come from four different US states—and we want the data frame to con-
tain city and state columns so we can work with them individually in that way.

 Each of the files you’ll load has the same column names and format. Take advan-
tage of that when loading the data into a data frame.

 Specifically, I’d like you to

1 Take the eight CSV files I’ve provided, containing weather data from eight dif-
ferent cities (spanning four states), and turn them into a data frame. The files
are san+francisco,ca.csv, new+york,ny.csv, springfield,ma.csv, boston,ma.csv,
springfield,il.csv, albany,ny.csv, los+angeles,ca.csv, and chicago,il.csv.

2 We are only interested in the first three columns from each CSV file: the date
and time, the max temperature, and the min temperature.

3 Add city and state columns that contain the city and state from the filename
and allow us to distinguish between rows.

Once you’ve done all that, answer the following questions:

 Does the data for each city and state start and end at (roughly) the same time?
How do you know?

 What is the lowest minimum temperature recorded for each city in the data set?
 What is the highest maximum temperature recorded in each state in the data set?

Working it out

One of the most important things I tell newcomers to programming is that your
choice and design of data structures has a huge effect on the programs you write.
When you’re working with Python, you should think carefully about whether you’ll
use a list, a tuple, a dictionary, or some combination of those.

 The pandas analog to this advice is that you should design your data frames such that
they include all the information you need to simplify your queries. This sometimes
means you’ll need to do some additional manipulations and calculations when loading
data from files—but for the most part, having your data in a clear and organized data
frame opens the door to straightforward, easy-to-understand, and efficient queries.

https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout

195EXERCISE 32 ■ Multicity temperatures
 In this exercise, we need columns for city and state (where the temperature
reports were made), the date and time of the reading, the maximum temperature
recorded, and the minimum temperature recorded. We can get the city and state
from the filename and the final three values from the rows of the CSV files. We’ll aim
to create a data frame with these columns from each of the cities and then combine
them into one large data frame.

 Let’s first consider how we can create a data frame from the combination of all
these CSV files. We already know how to read in a single CSV file using read_csv:

one_filename = 'new+york,ny.csv'
one_df = pd.read_csv(one_filename)

However, we aren’t interested in every column in the CSV file. We thus pass a number
of key-value pairs:

 usecols, specifying which columns we want to read and use from the CSV file.
Here, we specify them using integers.

 names, indicating what column names we want in the data frame, ensuring that
the names are the same across all files.

 header, indicating that the first row (i.e., line 0) of the file contains the header
information—mostly so we can ignore the names and replace them with our
own.

Our call to read_csv ends up like this:

one_df = (
pd
.read_csv(one_filename,

usecols=[0, 1, 2],
names=['date_time', 'max_temp',

'min_temp'],
header=0)

)

This code gives us the three columns we want from CSV-file data. However, we still
need to extract the city and state info from the filename and add that to the data
frame.

 First, we remove the .csv suffix:

base_filename = one_filename.removesuffix('.csv')

The filenames, at least as I’ve defined them for the Jupyter notebooks we’re using for
this book, are all in a parallel directory called ../data. So the real filename is
../data/new+york,ny.csv, which means we need to remove both the prefix and the suf-
fix. We can do that in one line via method chaining:

one_filename.removeprefix('../data/').removesuffix('.csv')

This whole expression returns a string that we could assign to a new variable. But we
want to get the city and state from the string, so we’ll run the Python str.split

196 CHAPTER 7 Advanced grouping, joining, and sorting
method, which returns a list of strings based on breaking a string into multiple parts.
All we have to do is indicate what character serves as a field delimiter in this string—in
this case, a comma:

one_filename.removeprefix('../data/').removesuffix('.csv').split(',')

Given that we know how these files are named, we can be sure that the result of calling
str.split is a two-element list in which the first element is the city name and the sec-
ond element is the two-letter state abbreviation. Thanks to Python’s “tuple unpacking”
feature, we can assign the elements of this list to two variables:

city, state = (
one_filename
.removeprefix('../data/')
.removesuffix('.csv')
.split(',')

)

Just like that, the city variable contains the city name from the filename, and the
state variable contains the state abbreviation.

 We now have one_df (a variable containing a data frame) and both city and
state. How can we put the values from the variables city and state into columns
city and state in one_df?

 One way is to assign a scalar value to a new column, which has the effect of assign-
ing that value to every row in the column:

one_df['city'] = city
one_df['state'] = state

But there’s something wrong here: the city names contain + signs instead of space
characters and are written in lowercase letters. Similarly, the state abbreviations are in
lowercase letters. We can fix that, using some additional Python string methods:

one_df['city'] = city.replace('+', ' ').title()
one_df['state'] = state.upper()

Although this code works, we should use method chaining when importing the files.
We can do that by using assign, which temporarily adds one or more new columns to
a data frame. We can say this, using method-chaining syntax:

one_df = (
pd
.read_csv(one_filename,

usecols=[0, 1, 2],
names=['date_time', 'max_temp',

'min_temp'],
header=0)

.assign(city=city.replace('+', ' ').title(),
state=state.upper())

)

197EXERCISE 32 ■ Multicity temperatures
In other words: read_csv returns a new data frame based on the city’s CSV file. Before
returning that data frame to the caller, we add city and state columns. The result,
assigned to one_df, is a data frame with the five columns we want.

 How can we use this template to read data from all eight CSV files into a single
data frame? We can use pd.concat, which takes a list of data frames and returns a sin-
gle, combined data frame. If we can create a list of data frames, each based on a differ-
ent CSV file, we’ll have the data as we need it.

 To do that, we use a for loop, iterating over the list of filenames returned by
glob.glob, a function in Python’s standard library. We iterate over each filename we
get back from glob.glob, create a data frame from its contents, add the city and state,
and append that data frame to our list. After all the iterations are done, we can use
pd.concat to combine them:

import glob

all_dfs = []

for one_filename in glob.glob('../data/*,*.csv'):
print(f'Loading {one_filename}...')

city, state = (
one_filename
.removeprefix('../data/')
.removesuffix('.csv')
.split(',')

)

one_df = (
pd
.read_csv(one_filename,

usecols=[0, 1, 2],
names=['date_time', 'max_temp',

'min_temp'],
header=0)

.assign(city=city.replace('+', ' ').title(),
state=state.upper())

)

all_dfs.append(one_df)

In this code, we iterate over each filename that matches the pattern *,*.csv. We cre-
ate a new data frame from that CSV file and add (with assign) a new city column
(based on the city name, which we get from one_filename) and a new state column
(again, based on the state abbreviation, which we also get from one_filename).

 We append each data frame to all_dfs, a list, such that we’ll grow the list with one
new element per CSV file. When we’re done with all the data frames, we then create
df, the result of concatenating them (figure 7.1). We can then run pd.concat and get
a single data frame from the list.

198 CHAPTER 7 Advanced grouping, joining, and sorting
Figure 7.1 Graphical depiction of using pd.concat to join separate data frames into a single one

Put that all together, and we have our loading code:

df = pd.concat(all_dfs)

Now that we have created our five-column data frame with information from all eight
cities, we can start to tackle the questions I raised in the exercise. First, I asked

576

282

350

495

573

556

237

278

505

date_time

2019-02-21
00:00:00

2019-01-15
06:00:00

2019-01-23
18:00:00

2019-02-10
21:00:00

2019-02-20
15:00:00

2019-02-18
12:00:00

2019-01-09
15:00:00

2019-01-14
18:00:00

2019-02-12
03:00:00

max_temp

11

11

12

1

1

1

16

12

16

min_temp

5

10

7

-5

-10

-1

10

10

7

city

San
Francisco

San
Francisco

San
Francisco

Boston

Boston

Boston

Los
Angeles

Los
Angeles

Los
Angeles

state

CA

CA

CA

MA

MA

MA

CA

CA

CA

pd.concat

date_time max_temp min_temp city state

495

573

556

2019-02-10
21:00:00

2019-02-20
15:00:00

2019-02-18
12:00:00

1

1

1

-5

-10

-1

Boston

Boston

Boston

MA

MA

MA

date_time

2019-02-21
00:00:00

2019-01-15
06:00:00

2019-01-23
18:00:00

576

282

350

max_temp

11

11

12

min_temp

5

10

7

city

San
Francisco

San
Francisco

San
Francisco

state

CA

CA

CA

date_time max_temp min_temp city state

237

278

505

2019-01-09
15:00:00

2019-01-14
18:00:00

2019-02-12
03:00:00

16

12

16

10

10

7

Los
Angeles

Los
Angeles

Los
Angeles

CA

CA

CA

199EXERCISE 32 ■ Multicity temperatures
whether the data for each city and state starts at roughly the same time. How can we
know such a thing? Well, each row has a date_time column indicating when the tem-
perature readings were taken. If we can get the minimum and maximum values for
each city’s rows, we can do a quick comparison.

 This, of course, is precisely what groupby was designed to do: take a data frame and
run an aggregation method (e.g., min or max) for each of the distinct values in one
column.

 However, there’s a twist. Although we could group by city alone, we’re going to
group by two different columns: first state and then city. Why not just city? Because
several of the city names appear twice. If we grouped results only by city, the informa-
tion from Springfield, Illinois would be mixed up with that from Springfield, Massa-
chusetts. Also, grouping by both state and city ensures that we get a nice report of our
data. The query looks like this:

(
df.groupby(['state', 'city'])['date_time'].min()
.sort_values()

)

In this code, we tell pandas that we want to get the minimum value of date_time for
each distinct combination of state and city. We then want to sort the values so we
can easily find the earliest one—as well as find out if they’re all from the same period
of time. We can similarly run max on the values, to find the highest one:

(
df.groupby(['state', 'city'])['date_time'].max()
.sort_values()

)

In running these queries, we see that all the data files are from the same period, start-
ing on December 11, 2018, and going through March 11, 2019. As we’ll see in chapter
9, pandas allows us to work with actual dates and times, performing calculations and
comparisons on them. Here, the date_time column is a string, which makes it possi-
ble to do some basic queries, but nothing as sophisticated as what we can do with
timestamp objects, as you’ll see.

 I then asked you to find the lowest minimum temperature recorded for each city
in our data set. Again, we run a groupby query, but this time we’re interested in the
actual values, not just in comparing them with one another. The minimum tempera-
ture is located in the min_temp column. So if we want to get the lowest minimum tem-
perature for each city-state combination, we can say

df.groupby(['state', 'city'])['min_temp'].min()

This returns a series in which the index is the combination of state and city and the
values are the minimum temperatures in each city. We can see that the data was taken
in the winter, given how many of the temperatures are below 0 Celsius.

200 CHAPTER 7 Advanced grouping, joining, and sorting

d

 Finally, I asked you to find the highest maximum temperature recorded during
this period, but on a per-state basis rather than a per-city basis. This means grouping
just by state:

df.groupby('state')['max_temp'].max()

Sure enough, we get the maximum temperature for each state. Notice that because we
have eight cities but that they’re spread across only four states, we get four results
rather than eight. The number of results we get from a grouping action reflects the
number of unique values in the grouping column (or columns).

 Of course, we can also use the agg method to ask for both results:

(
df.groupby(['state', 'city'])['date_time']
.agg(['min', 'max'])

)

Solution

import glob

all_dfs = []

for one_filename in glob.glob('../data/*,*.csv'):
print(f'Loading {one_filename}...')

city, state = (
one_filename
.removeprefix('../data/')
.removesuffix('.csv')
.split(',')

)

one_df = (
pd
.read_csv(one_filename,

usecols=[0, 1, 2],
names=['date_time',

'max_temp',
'min_temp'],

header=0)
.assign(city=city.replace('+', ' ').title(),

state=state.upper())
)

all_dfs.append(one_df)

df = pd.concat(all_dfs)

df.groupby(['state', 'city'])[
'date_time'].min().sort_values()

df.groupby(['state', 'city'])[
'date_time'].max().sort_values()

Creates an
empty list Uses glob.glob to get all

filenames matching this
pattern, and iterates over them

Uses str.split to get
separate variables

We only care about the first
three columns in each CSV file.

Assigns names to the three
columns we loadedThe file’s first row (index

0) contains headers.

Adds a city column
to the data frameAdds a state column

to the data frame

Appends
the new

ata frame
to all_dfs

Creates one data frame from each
of the city-specific data frames

Gets the earliest value of
date_time for each city and state

Gets the latest value of
date_time for each city and state

201EXERCISE 32 ■ Multicity temperatures
df.groupby(['state', 'city'])['min_temp'].min()
df.groupby('state')['max_temp'].max()

You can explore a version of this in the Pandas Tutor at http://mng.bz/ddQO.

Beyond the exercise

 Run describe on the minimum and maximum temperature for each state-city
combination.

 Running describe works, but we only see the first and last few rows from each
result. Using pd.set_option to change the value of display_max_rows makes it
possible to see all the results in Jupyter. Then reset the option to 10 rows.

 What is the average difference in temperature (i.e., max – min) for each of the
cities in our data set?

Window functions
Let’s assume that a data frame contains sales information for last year:

df = DataFrame({'sales':[100, 150, 200, 250,
200, 150, 300, 400,
500, 100, 300, 200],

'quarters':'Q1 Q2 Q3 Q4'.split()_ 3})

We’ve already seen how we can evaluate the data here a few different ways:

 We can get the mean (and other aggregate information) for all sales quarters
by applying mean to the sales column.

 We can use groupby on the quarters column and then run mean on the Data-
FrameGroupBy object we get back to find out how well we did, on average, in
each quarter.

These are important, common, and useful analyses. But what if we want to determine
how much we sold, total, through the current quarter? That is, we want to know how
much we sold in Q1, then in Q1+Q2, then Q1+Q2+Q3, and so on, until the final result
is df['sales'].sum().

To perform this kind of operation, pandas provides window functions. There are sev-
eral different types of window functions, but the basic idea is that they allow us to
run an aggregate function, such as mean, on subsections of our data frame.

What I described earlier—that we would like to know, for each quarter, how much rev-
enue we had through that quarter—is a classic example of a window function. This
is known as an expanding window because we run the function with an ever-expand-
ing number of lines—first one line, then two, then three . . . all the way up to the
entire data frame.

For example, we could run

df['sales'].expanding().sum()

Gets the minimum
temperature for
each city

Gets the maximum
temperature for
each state

http://mng.bz/ddQO

202 CHAPTER 7 Advanced grouping, joining, and sorting
(continued)

This returns a series whose values are the cumulative sum of values in sales up to
that point. Because the first four values in the sales column are 100, 150, 200, and
250, the output of our call to expanding is 100, 250, 450, and 700.

Graphical depiction of an expanding window function with sum

Perhaps we don’t want to get a cumulative total, but rather a running average of how
much we’ve sold per quarter. We can run mean or any other aggregation method:

df['sales'].expanding().mean()

In this case, the output from expanding is 100, 125, 150, and 175.

We can also use a rolling window function. In this case, we determine how many rows
are considered part of the window. For example, if the window size is 3, we run the
aggregation function on row index 0-2, then 1-3, then 2-4, and so on, until we get to
the end of the data frame. For example, if we want to determine the mean of rows
that are close to each other, we can do it as follows:

df['sales'].rolling(3).mean()

sales quarters

0 100 Q1

1 150 Q2

2 200 Q3

3 250 Q4

4 200 Q1

5 150 Q2

0 100

1 250

2 450

3 700

4 900

5 1050

sales

sum()

sum()

sum()

sum()

sum()

sum()

203EXERCISE 32 ■ Multicity temperatures
Graphical depiction of a rolling window function (looking at three
lines) with sum

In this code, rolling is how we indicate that we want to run a rolling window func-
tion, and the argument 3 indicates that we want three rows in each window. We thus
invoke mean on rows 0-2, then 1-3, then 2-4, then 3-5, and so on. The series we get
back from this call puts the result of mean in the same location as the third (and final)
row in our rolling window. This means row indexes 0 and 1 have NaN values.

A third type of window function is pct_change. When we run this on a series, we get
back a new series with NaN at row index 0. The remaining rows indicate the percent-
age change from the previous row to the current one:

df['sales'].pct_change()

For example, the output from this code is

0 NaN
1 0.500000
2 0.333333
3 0.250000

The result is calculated as (later_row - earlier_row) / earlier_row:

 Index 0 is always NaN.
 Index 1 is the result of calculating (150 – 100) / 100.

0 NaN

1 NaN

2 450

3 600

4 650

5 600

sales

sum()

sum()

sum()

sum()

sales quarters

0 100 Q1

1 150 Q2

2 200 Q3

3 250 Q4

4 200 Q1

5 150 Q2

204 CHAPTER 7 Advanced grouping, joining, and sorting
EXERCISE 33 ■ SAT scores, revisited
Back in exercise 22, we looked at SAT scores. There have long been accusations that
the SAT isn’t a fair test for college admissions, because wealthier students generally do
better than poorer students. Given the data we have about the SAT, can we conclude
that wealthier students do indeed, on average, score better? We will examine the math
portion of the SAT, seeing if we can see any such problems in the data.

 Here’s what I would like you to do:

1 Read in the scores file (sat-scores.csv). This time, you want the following col-
umns: Year, State.Code, Total.Math, Family Income.Less than 20k.Math,
Family Income.Between 20-40k.Math, Family Income.Between 40-60k.Math,
Family Income.Between 60-80k.Math, Family Income.Between 80-100k.Math,
and Family Income.More than 100k.Math.

2 Rename the income-related column names to something shorter. I recommend
income<20k, 20k<income<40k, 40k<income<60k, 60k<income<80k, 80k<income
100k, and income>100k.

3 Find the average SAT math score for each income level, grouped and then
sorted by year.

4 For each year in the data set, determine how much better each income group
did, on average, than the next-poorer group of students. Do you see (just by
looking at the data) any income group that did worse, in any year, than the
next-poorer students?

5 Which income bracket, on average, had the greatest advantage over the next-
poorer income bracket?

6 Can we find, in a calculated and automated way, which income levels consis-
tently (i.e., across all years) do worse than the next-poorest group?

Working it out

In this exercise, we use data to gain insight into a real-world problem. (What we do
with this analysis is another question entirely.) For starters, we need to load data from
our CSV file into a data frame. We’re only interested in the math scores—but actually,
we’re more interested in the math scores when broken down by family income. As a
result, we load the CSV file as follows:

(continued)

 Index 2 is the result of calculating (200 – 150) / 150.
 Index 3 is the result of calculating (250 – 200) / 200.

pct_change is great for finding how much values go up or down from row to row. If
we want to get the raw changes across rows, rather than the percentage changes,
we can use the diff method, instead.

https://github.com/reuven/pandas-workout

205EXERCISE 33 ■ SAT scores, revisited
df = pd.read_csv(filename,
usecols=['Year', 'State.Code', 'Total.Math',

'Family Income.Less than 20k.Math',
'Family Income.Between 20-40k.Math',
'Family Income.Between 40-60k.Math',
'Family Income.Between 60-80k.Math',
'Family Income.Between 80-100k.Math',
'Family Income.More than 100k.Math'])

What I find particularly interesting here is what we don’t include in the call to
pd.read_csv: first and foremost, we don’t assign an index. Although it’s often useful
to set an index, the analyses we do here all use grouping. And although we can still
use groupby on a column we’ve set to be the index, there’s no added value. For that
reason, we stick with the default numeric index starting at 0.

 I also asked you to change the names of the columns from long, unwieldy names to
something easier to type and read. In theory, we could do so by giving a value to the
name parameter. But if we give names to columns, we need to use integers to indicate
which columns should be imported from CSV. And to be honest, I always find that
hard to read, debug, and understand.

 So instead, we load the columns with their full, original names, as per the file. We
then change the column names by assigning to df.columns:

df.columns = ['Year', 'State.Code', 'Total.Math',
'income<20k',
'20k<income<40k',
'40k<income<60k',
'60k<income<80k',
'80k<income<100k',
'income>100k',
]

However, in some older versions of pandas, assigning to df.columns this way runs the
risk of getting the order wrong. As a result, it’s better to rename columns using
df.rename, passing the columns keyword argument a dict value in which the keys are
the old column names and the values are the new ones:

df = df.rename(
columns={
'Family Income.Less than 20k.Math':'income<20k',
'Family Income.Between 20-40k.Math':'20k<income<40k',
'Family Income.Between 40-60k.Math':'40k<income<60k',
'Family Income.Between 60-80k.Math':'60k<income<80k',
'Family Income.Between 80-100k.Math':'80k<income<100k',
'Family Income.More than 100k.Math':'income>100k'
})

Now that our data frame has the rows and columns we want and the columns have
easy-to-understand names, we can start to analyze things. First, I asked you to find the
average SAT math score for each income level, grouped and then sorted by year:

df.groupby('Year').mean(numeric_only=True).sort_index()

206 CHAPTER 7 Advanced grouping, joining, and sorting
This query is similar to what we’ve done before: we want to invoke mean on every col-
umn in df, grouping the results by year. We can thus say, for each income bracket,
what the average SAT math score was across the United States in each year.

 Because we’re grouping by the Year column, it isn’t included in our output. But
why isn’t State.Code included in the output? Because we pass numeric_only=True,
thus removing any non-numeric columns. In previous versions of pandas, non-
numeric columns were silently ignored. Now, however, we need to either explicitly
choose numeric columns or ask mean to do it for us with this keyword argument.

 Moreover, because we group by Year, the index of the resulting data frame has an
index of Year. Because the data set comes sorted by Year, the results appear to be
sorted. But just to be on the safe side, we invoke sort_index on the data frame, ensur-
ing that the result we get back is sorted from the earliest year in the data set through
the final year in the data set.

 But then I asked you to do something else: to find how much better each income
bracket did than the next-poorer income bracket. That is, first find the average SAT
math score for students in the lowest bracket: income<20k. Then determine how
much better (or worse) the next bracket (i.e., 20k<income<40k) did. Perhaps we’ll see
that there’s a negligible difference between them, in which case we can say, to some
degree, that SAT scores aren’t correlated with student income.

 How can we make this comparison? We use pct_change, described in the “Window
functions” sidebar.

 We want to compare the scores by year and income brackets. But pct_change
works on rows, not columns—and right now, our data frame has the brackets as col-
umns. We thus need to flip the data frame on its side so the years are the columns and
the income brackets are the rows.

 The solution is to use the transpose method, more easily abbreviated as T, which
returns a new data frame in which the rows and columns have exchanged places (fig-
ure 7.2):

df.groupby('Year')[['income<20k',
'20k<income<40k',
'40k<income<60k',
'60k<income<80k',
'80k<income<100k',
'income>100k']].mean().T

T, a shortcut for “transpose”
The transpose method is invoked like any other method in pandas, using
parentheses:

df.transpose()

Its convenient alias, T, is not a method and thus should not be invoked with
parentheses:

df.T

In both cases, we get a new data frame back; the original data frame is unmodified.

207EXERCISE 33 ■ SAT scores, revisited
Figure 7.2 Example of using T to transpose a data frame

We can now invoke pct_change on this new data frame:

(
df
.groupby('Year')
[['income<20k',

'20k<income<40k',
'40k<income<60k',
'60k<income<80k',
'80k<income<100k',
'income>100k']]

.mean()

.T

.pct_change()
)

Year State.Code Total.Math income<20k 20k<income<40k 40k<income<60k 60k<income<80k 80k<income<100k income>100k

162 2008 CO 572 555 567 571 578 533 583

428 2013 GA 488 451 470 484 496 426 530

263 2010 AZ 527 491 506 523 531 472 553

490 2014 ME 471 494 520 535 555 468 569

334 2011 MI 605 549 565 590 609 528 626

162 428 263 490 334

Year 2008 2013 2010 2014 2011

State.Code CO GA AZ ME MI

Total.Math 572 488 527 471 605

income<20k 555 451 491 494 549

20k<income<40k 567 470 506 520 565

40k<income<60k 571 484 523 535 590

60k<income<80k 578 496 531 555 609

80k<income<100k 533 426 472 468 528

income>100k 583 530 553 569 626

T

208 CHAPTER 7 Advanced grouping, joining, and sorting
We get back a data frame in which
the columns are years (2005 to 2015)
and the rows are income brackets. The
values in the data frame are floats, with
each number indicating the percentage
by which the math scores for that
income bracket, in that year, differed
from the next-poorer income bracket.
The lowest income bracket has NaN val-
ues, because there is no previous row
(figure 7.3).

From a visual scan of the data, we
can see that most income brackets did
better than the next-lower bracket.
Thus, families with an income between
$20,000 and $40,000 per year did about
3% to 7% better on their math SAT than
people in the lowest bracket. And in
families making $40,000 to $60,000 per
year, they generally did 2% to 3% better
than those in the next-lower bracket.

 However, across the years, those
earning between $80,000 and $100,000
per year did slightly worse than those
than those in the next-lowest income
bracket (i.e., between $60,000 and
$80,000 per year). What’s the reason for
this? I’m not sure, but it is consistently
true across all the years.

Next, I asked you to determine which income bracket, on average, had the greatest
advantage over the next-poorer income bracket. To do this, we start with the result of
our call to pct_change. But we want to determine how much better, on average, each
bracket did than the next-poorer bracket. To do this, we use mean—but not on the
data frame we get back from pct_change. Rather, we retranspose the data frame such
that the income brackets are the columns and the years are the rows:

(
df
.groupby('Year')
[['income<20k',

'20k<income<40k',
'40k<income<60k',
'60k<income<80k',
'80k<income<100k',
'income>100k']]

162 428 263 490 334

Year 2008 2013 2010 2014 2011

State.Code CO GA AZ ME MI

Total.Math 572 488 527 471 605

income<20k 555 451 491 494 549

20k<income<40k 567 470 506 520 565

40k<income<60k 571 484 523 535 590

60k<income<80k 578 496 531 555 609

80k<income<100k 533 426 472 468 528

income>100k 583 530 553 569 626

mean

162 428 263 490 334

583 530 553 569 626

Figure 7.3 Get the mean after transposing.

209EXERCISE 33 ■ SAT scores, revisited
.mean()

.T

.pct_change()

.T

.mean()
)

We now know how much each income bracket did better, on average, than the next-
poorer bracket. Where was the greatest jump in SAT math performance? We can find
out by invoking sort_values and asking for the values to be in descending order.
Then we can invoke head() to see the top-ranking income brackets:

(
df
.groupby('Year')
[['income<20k',

'20k<income<40k',
'40k<income<60k',
'60k<income<80k',
'80k<income<100k',
'income>100k']]

.mean()

.T

.pct_change()

.T

.mean()

.sort_values(ascending=False)

.head()
)

All this is fine, but relying on a visual scan of the data is not a good way to go about
things. Rather, we’d like an automated way to find which, if any, of the income brack-
ets did worse than the next-lower bracket. How can we do that?

 Well, we know that the result of calling pct_change is a data frame. As such, we
have all our pandas analysis tools at our disposal. We can, for example, assign the
result of pct_change to a data frame and then look for values that are 0:

Changing the axis
Another option would be to pass mean the axis keyword argument:

df.mean(axis='columns')

The default value for axis is 'rows', giving us a new row with the mean from each
column. If we pass axis='columns', we get a new column back with the same index
as the data frame.

If the data set isn’t too large, I’m fine with transposing twice, which I see as a way
to return to the earlier state. But if you feel more comfortable passing the axis key-
word argument, or if your data set is large enough that transposing will take too much
time or memory, you can try that.

210 CHAPTER 7 Advanced grouping, joining, and sorting
change = (
df
.groupby('Year')
[['income<20k',

'20k<income<40k',
'40k<income<60k',
'60k<income<80k',
'80k<income<100k',
'income>100k']]

.mean()

.T

.pct_change()
)

change <= 0

We’re applying a comparison operator to a data frame, which means we get back a
boolean data frame. Just as applying a boolean series to a series only shows the ele-
ments corresponding to True values, applying a data frame to a boolean data frame
shows the items corresponding to True values. The difference is that the data frame
has the same shape—and thus any filtered-out values are replaced with NaN:

change[change <= 0]

We can then remove any rows that contain any NaN values, showing only rows in which
we consistently see a change for the worse as the income level rises:

change[change <= 0].dropna()

Sure enough, we see that every single income bracket did better, on average, than the
income bracket below it.

Solution

filename = '../data/sat-scores.csv'

df = pd.read_csv(filename,
usecols=['Year', 'State.Code', 'Total.Math',

'Family Income.Less than 20k.Math',
'Family Income.Between 20-40k.Math',
'Family Income.Between 40-60k.Math',
'Family Income.Between 60-80k.Math',
'Family Income.Between 80-100k.Math',
'Family Income.More than 100k.Math'])

df = df.rename(
columns={
'Family Income.Less than 20k.Math':'income<20k',
'Family Income.Between 20-40k.Math':'20k<income<40k',
'Family Income.Between 40-60k.Math':'40k<income<60k',
'Family Income.Between 60-80k.Math':'60k<income<80k',
'Family Income.Between 80-100k.Math':'80k<income<100k',
'Family Income.More than 100k.Math':'income>100k'
})

Reads data from
the CSV file

Renames the
columns as per the
dict, with old names
as the keys and new
names as the values

211EXERCISE 33 ■ SAT scores, revisited
df.groupby('Year').mean(
numeric_only=True).sort_index()

(
df
.groupby('Year')
[['income<20k',

'20k<income<40k',
'40k<income<60k',
'60k<income<80k',
'80k<income<100k',
'income>100k']]

.mean()

.T

.pct_change()
)

(
df
.groupby('Year')
[['income<20k',

'20k<income<40k',
'40k<income<60k',
'60k<income<80k',
'80k<income<100k',
'income>100k']]

.mean()

.T

.pct_change()

.T

.mean()

.sort_values(ascending=False)

.head()
)

change = (
df
.groupby('Year')
[['income<20k',

'20k<income<40k',
'40k<income<60k',
'60k<income<80k',
'80k<income<100k',
'income>100k']]

.mean()

.T

.pct_change()
)

change[change <= 0].dropna()

You can explore a version of this in the Pandas Tutor at http://mng.bz/rj9D.

Calculates the mean value of
each column for each year
and then sorts by year

Transposes the result of grouping and getting the
mean, and then uses pct_change to check how much
better each income group did than the previous one

Which income bracket had the
greatest advantage over the
next-highest income bracket?

Assigns the
previous output to
a variable, change Finds all rows of change in

which all columns did worse
than the previous value

http://mng.bz/rj9D

212 CHAPTER 7 Advanced grouping, joining, and sorting
Beyond the exercise

 Calculate descriptive statistics for all the changes in income brackets. Where do
you see the largest difference between income brackets?

 Which five states have the greatest gap in SAT math scores between the richest
and poorest students?

 You analyzed math scores. If you perform the same analysis on verbal SAT
scores, will you similarly see that wealthier students generally do better than
poorer students? Do any income brackets do worse than the next-poorer
bracket?

Filtering and transforming
We’ve already seen how we can use groupby to run aggregate methods on each por-
tion of our data to get the average rainfall per city or the total sales figures per quar-
ter. We’ve also seen, in earlier chapters, how to use a boolean index to filter out rows
that fail to match particular criteria.

For example, consider a data frame containing the year-end math scores for each stu-
dent. The rows of the data frame describe the students. The columns of the data
frame, name, year, and score, describe those three student attributes. Here’s how
we can create a simple form of this data frame:

import numpy as np
np.random.seed(0)

df = DataFrame({'name': list('ABCDEFGHIJ'),
'year': [2018, 2019, 2020]_ 3 + [2021],

'score':np.random.randint(80, 100, 10)})

Our data frame is

name year score
0 A 2018 92
1 B 2019 95
2 C 2020 80
3 D 2018 83
4 E 2019 83
5 F 2020 87
6 G 2018 89
7 H 2019 99
8 I 2020 98
9 J 2021 84

We can perform a number of calculations:

 We can get the mean score by running df['score'].mean(). This returns a
single floating-point value, 89.0.

 We can get all the students who scored above 90 with df.loc[df['score']
> 90]. This returns the original data frame minus students who got less than
90—in our case, row indexes 0, 1, 7, and 8.

213EXERCISE 33 ■ SAT scores, revisited
 We can get the mean score per year by running df.groupby('year')
['score'].mean(). If the school has eight grades, the result of this query is
a series whose index contains the distinct values of year from df and whose
values are the average grades for each year. Here, we get four different results
(one for each year).

So far, so good. But consider this: we want to determine which years in our school
had an average score of at least 90, and see all the students in those years. We want
to filter out specific groups of students based on a per-year aggregate calculation.
How can we do that?

The answer, it turns out, is to apply the filter method to our DataFrameGroupBy
object. All we need is to pass filter a function that, given a group of rows, returns
either True or False, to indicate whether those rows should be in the result data frame.

In other words,

 We want to decide whether to include or exclude rows based on the year, so
we run df.groupby('year')

 On that DataFrameGroupBy object, we run the filter method.
 filter takes a function as an argument.
 The function we pass is invoked once per group. It receives a data frame—a

subset of df—as its argument.
 The function must return True or False to indicate whether rows from that

group should be included or excluded in the resulting data frame.
 The function can be a full-fledged Python function (i.e., one defined with def),

or we can use lambda for an inline, anonymous function.

Here’s an example of such a function, as well as how we could invoke it:

def year_average_is_at_least_90(df):
return df['score'].mean() > 90

df.groupby('year').filter(year_average_is_at_least_90)

The result of running this code is a data frame whose rows all come from df, from
years in which the average final-exam math score was at least 90. That is only the
year 2019, so we get the rows with indexes 1, 4, and 7.

Here are some examples of how to use filter in real-world data sets:

 Show all products coming from factories that brought in more than $1 million
last year.

 List the staff working for divisions with below-average salaries.
 Find networks whose segments have had more than 10 outages in the last

week.

Another, related method we can use on a GroupBy object is transform. In this case,
the point is not to remove rows from the original data frame but rather to transform
them in some way. For example, let’s say we want to turn the score into a percentage
expressed as a float. We can say

df.groupby('year')['score'].transform(lambda x: x/100)

214 CHAPTER 7 Advanced grouping, joining, and sorting
(continued)

In this example we’re grouping by year, so the function is run once for each year:

 It’s invoked with a three-element series with all rows from 2018.
 It’s invoked with a three-element series with all rows from 2019.
 It’s invoked with a three-element series with all rows from 2020.
 It’s invoked with a one-element series with the only row from 2021.

The function is expected to return a series with the same dimensions as the input,
which happens naturally in our example because our lambda function invokes the
division (/) operator on the series. Thanks to broadcasting (i.e., that an operation on
a series and a scalar is repeated on each element of the series), we’re guaranteed
to get a result of the correct dimensions. We can then replace the original score col-
umn with our transformed column:

df['score'] = (
df.groupby('year')['score']
.transform(lambda x: x/100)
)

But we can do much more than this. After all, our lambda function has access to all
the rows from each year. This means we can run aggregate functions, such as sum
or mean. For example, let’s say that we pass np.max as our function:

df.groupby('year')['score'].transform(np.max)

We want to invoke our function (np.max) once for each value of year in the data
frame. And the input to our function is the column score, with the rows for each year.
The result is as follows:

0 92
1 99
2 98
3 92
4 99
5 98
6 92
7 99
8 98
9 84
Name: score, dtype: int64

In the resulting series, the value in each row is the highest value of score from that
particular year. In other words, we have replaced every score with the maximum score
for that year. (This is probably not the best way to evaluate students, I’ll admit.)

We can then assign the transformed row back to our data frame:

df['score'] = df.groupby('year')['score'].transform(np.max)

As you can see, the grouped version of transform is useful when we want to trans-
form values in a data frame on a group-by-group basis, much as the grouped version
of filter is useful when we want to filter values on a group-by-group basis.

215EXERCISE 34 ■ Snowy, rainy cities
NOTE In the case of both filter and transform, an attribute name is added
to the df parameter with the name of the current group.

NOTE The filter method for GroupBy is very similar to Python’s builtin
filter function, and the transform method for GroupBy is very similar to
Python’s builtin map function. They work differently because they’re acting on
data frames rather than simple iterables, but the usage is similar.

EXERCISE 34 ■ Snowy, rainy cities
One constant theme, wherever I’ve lived, is that people complain about the weather.
In a hot climate, people complain that it’s too hot. In a cold climate, people complain
that it’s too cold. In a city with hot summers and cold winters, they complain about
both. And, of course, people tell visitors and newcomers that their city’s weather is
worse than anywhere else. There isn’t much that we can do about people’s com-
plaints. But maybe we can use data to determine which city does indeed have the most
extreme weather. Because, you know, if someone is complaining about the weather,
they want nothing more than to be corrected with hard data.

 The calculations we’ll make in this exercise all take advantage of the filter and
transform methods on DataFrameGroupBy objects. These methods allow us to condi-
tionally keep (filter) and modify (transform) rows in a data frame while having
access to all rows of the group when deciding and calculating.

NOTE The DataFrameGroupBy versions of filter and transform are, in my
experience, among the most complex pieces of functionality that pandas pro-
vides. It may take you a while to think through what calculation you want to
perform and then find the right way to express it in pandas.

In this exercise, I want you to

1 Read in the data frames for the city weather as in exercise 32, reading three col-
umns: max_temp, min_temp, and precipMM.

2 Determine which cities had, on at least three occasions, precipitation of 15 mm
or more.

3 Find cities that had at least three measurements of 10 mm of precipitation or
more when the temperature was at or below 0° Celsius.

4 For each precipitation measurement, calculate the proportion of that city’s
total precipitation.

Here are some ways to use transform with real-world data sets:

 Find the difference between each value in a group and the group’s mean.
 Find the proportion that each value in the group has versus the group’s sum.
 Calculate the z-score (i.e., the number of standard deviations) that each value

is from its group’s mean.

216 CHAPTER 7 Advanced grouping, joining, and sorting
5 For each city, determine the greatest proportion of that city’s total precipitation
to fall in a given period.

Working it out

In this exercise, we use filter and transform on DataFrameGroupBy objects to work
with rows according to their aggregate properties. We start by loading the weather
data from six different cities, similarly to how we did it in exercise 32. We want to load
three columns: max_temp, min_temp, and precipMM (i.e., the amount of precipitation
that fell, in millimeters). Because it’s so similar to what we did before, I’ll show the
code here without comment:

import glob

all_dfs = []

for one_filename in glob.glob('../data/*,*.csv'):
print(f'Loading {one_filename}...')

city, state = (
one_filename
.removeprefix('../data/')
.removesuffix('.csv')
.split(',')

)

one_df = (
pd
.read_csv(one_filename,

usecols=[0, 1, 2],
names=['max_temp',

'min_temp',
'precipMM'],

header=0)
.assign(city=city.replace('+', ' ').title(),

state=state.upper())
)

all_dfs.append(one_df)

df = pd.concat(all_dfs)

Once we have our data frame in place, we can start to analyze it. For starters, we want
to find cities that had measured precipitation of 15 mm or more on at least three
occasions. This means

 We need to check measurements on a per-city basis (via groupby).
 We’ll only keep cities that reported 15 mm of precipitation at least three times

(via filter).

Let’s start with our groupby. Because we want to find the precipitation on a per-city
basis, you may think we should group by city name:

df.groupby('city')

217EXERCISE 34 ■ Snowy, rainy cities
However, we can’t do this, because there are two different cities with the name
“Springfield”—one in Illinois and the other in Massachusetts. For that reason, we
need to group not just by city but also by state. We can do so by passing a list of col-
umns to groupby rather than just one:

df.groupby(['city', 'state'])

This gives us our GroupBy object, which we’ve previously used to apply aggregate func-
tions on distinct subsets of our data. But here we’ll use the groupby object a different
way, to include and exclude rows from df based on properties of their city and state.
That is, we want to filter out rows, but we want to do it by group—such that for each
group, all the rows are included or excluded. (You can think of this as the collective
punishment feature of pandas.)

 We do this by calling filter on our GroupBy object. filter on a GroupBy works on
a group-by-group basis. The argument to filter is a function that expects to get a
data frame as its argument. The function is called once for each group in the groupby,
and the data frame passed to it is a subset of the original data frame, containing only
those rows in the current group.

 The function passed to filter should return True or False. If the function
returns True, the rows from this subframe are kept. If the function returns False, the
rows from this subframe are not included. Because its argument is a data frame with
all the rows in the current group, filter can perform all sorts of calculations in deter-
mining whether to return True or False.

 In this case, we want to preserve rows from cities that had 15 mm of precipitation
on at least three occasions. Our function thus needs to determine whether the sub-
frame it is passed contains at least three such rows. Our function can look like this:

def has_multiple_readings_at_least(mini_df):
return mini_df.loc[

mini_df['precipMM'] >= 15,
'precipMM'
].count() >= 3

If we were to invoke this function on a data frame, it would return a single True or
False value indicating whether the complete data frame had recorded at least 15 mm
of precipitation on at least three occasions. By running it via filter, though, we can
determine which cities had such records:

(
df
.groupby(['city', 'state'])
.filter(has_multiple_readings_at_least)

)

The result of this query is a subset of our original data frame. But my question to you
wasn’t which rows would pass the filter. Rather, I asked you which cities had such

218 CHAPTER 7 Advanced grouping, joining, and sorting
precipitation. One way to do this would be to retrieve just the city and state col-
umns from the resulting data frame:

(
df.groupby(['city', 'state'])
.filter(has_multiple_readings_at_least)
[['city', 'state']]

)

However, this gives us the city and state for each row. That’s more than we need. We
can just run the drop_duplicates method on the result, instead:

(
df
.groupby(['city', 'state'])
.filter(has_multiple_readings_at_least)
[['city', 'state']]
.drop_duplicates()

)

This works and gives us the answer we want—namely, that only New York and Los
Angeles had three occasions on which at least 15 mm of precipitation fell. However, if
you’ve been programming for any length of time, the has_multiple_readings_
at_least function may seem odd. Do we really want to hard-code the values “15 mm”
and “3 times” into the function? It may make more sense to write a generic function
that can take additional arguments.

 But how can we do that? After all, we’re not calling has_multiple_readings_
at_least directly. Rather, we’re passing it to filter, which calls the function on our
behalf. There isn’t an obvious way for us to pass arguments to our function when it’s
being invoked via filter.

 Here, pandas does something clever: any additional arguments passed to filter
are passed along to our function. This is done using the standard Python constructs of
*args and **kwargs, for arbitrary positional and keyword arguments. (For a tutorial
on this subject, check out my blog post at https://lerner.co.il/2021/06/07/python-
parameters-primer.)

 We can thus rewrite our function as follows:

def has_multiple_readings_at_least(mini_df, min_mm, times):
return mini_df.loc[

mini_df['precipMM'] >= min_mm,
'precipMM'
].count() >= times

Now it looks more like a regular Python function, taking three arguments. The first is
still the subframe that was passed before, containing all the rows in the current group.
But the second two arguments are assigned indirectly, via filter, when it calls our
function. We can then say

(
df

https://lerner.co.il/2021/06/07/python-parameters-primer
https://lerner.co.il/2021/06/07/python-parameters-primer

219EXERCISE 34 ■ Snowy, rainy cities
.groupby(['city', 'state'])

.filter(has_multiple_readings_at_least,
min_mm=10,
times=3)

[['city', 'state', 'precipMM']]
.drop_duplicates()

)

In this code, we call filter and pass it our function, has_multiple_readings_at_
least. In theory, we could then pass values for min_mm and times as positional argu-
ments. But if we do that, we’ll also have to pass a second positional argument to
filter, called dropna. Rather than calling filter(func, True, 10, 3), we call filter
(func, min_mm=10, times=3). This is an aesthetic choice, rather than a technical one,
but I think it makes sense here.

 Next, I asked you to find cities that had

 At least three measurements of 10 mm precipitation . . .
 . . . when the temperature was below 0° Celsius

We again use groupby and then filter, using a slightly modified version of our has_
multiple_readings_at_least function from before:

def has_multiple_readings_at_least(mini_df, min_mm, times):
return mini_df.loc[

((mini_df['precipMM'] >= min_mm) &
(mini_df['min_temp'] <= 0)),

'precipMM'
].count() >= times

We can then perform our grouping and filtering in the following way:

(
df
.groupby(['city', 'state'])
.filter(has_multiple_readings_at_least, min_mm=10, times=3)
[['city', 'state']]
.drop_duplicates()

)

Next, I asked you to find the proportion of that city’s precipitation that fell with each
measurement. If our data frame contains two precipitation measurements for a given
city, and we see that 3 mm fell on the first day and 7 mm fell on the second day, we
want to find that 30% fell in the first measurement and 70% fell in the second.

 In other words, we’ll calculate one value for each row. But the value we calculate
for each row will depend on an aggregate calculation for the row’s group. It’s precisely
for these situations that pandas provides the transform method. Similar to what we
did with filter, we’ll pass a function as the first argument to transform. This func-
tion is invoked once per group, and the function is passed a series: the column we
want to transform. The function must then return a series, of the same length and
with the same index, as its argument.

220 CHAPTER 7 Advanced grouping, joining, and sorting
 Let’s assume that we have a series of numbers, each representing one measure-
ment of precipitation. What function can we write that will return a new series with
the same length and index as the original, but whose values indicate the proportion of
the whole? It may look like this:

def proportion_of_city_precip(s):
return s / s.sum()

Our function takes a series s as input and then returns the result of dividing each row
by the sum total of all rows. This is how we would do it if all the values were from the
same city. How can we do it, then, if we have many different cities? That’s part of the
magic—the groupby version of transform takes care of it for us. The rows from each
group are passed, one at a time, to the function proportion_of_city_precip. The
return value is then a series in which the parallel rows from the input series have their
new values. We can assign the resulting series back to the column from which it was
transformed, add a new column to a data frame, or just save the transformed column.

 The difference between the standard transform method and the groupby version
of transform is that in the latter, we have access to the entire series and can thus make
calculations using aggregation functions.

 Here’s how we can write this:

df['precip_pct'] = df.groupby('city')[
'precipMM'].transform(proportion_of_city_precip)

Notice that, in this example, we assign the returned series to the data frame as a new
column. With this column in place, we can then answer the final question for this
exercise: for each city, what was the greatest proportion of that city’s total precipita-
tion to fall in a given period? In other words, which measurement reflected the great-
est proportion of precipitation we measured?

 To answer this question, we use a simple, classic groupby: we apply an aggregate
function (max) to each city in our system. Of course, because we have a duplicate city
name, we group on both city and state. That gives the following:

df.groupby(['city', 'state'])['precip_pct'].max()

Solution

import glob

all_dfs = []

for one_filename in glob.glob('../data/*,*.csv'):
print(f'Loading {one_filename}...')

city, state = (
one_filename
.removeprefix('../data/')
.removesuffix('.csv')
.split(',')

)

221EXERCISE 34 ■ Snowy, rainy cities
one_df = (
pd
.read_csv(one_filename,

usecols=[0, 1, 2],
names=['max_temp',

'min_temp',
'precipMM'],

header=0)
.assign(city=city.replace('+', ' ').title(),

state=state.upper())
)

all_dfs.append(one_df)

df = pd.concat(all_dfs)

def has_multiple_readings_at_least(mini_df):
return mini_df.loc[

mini_df['precipMM'] >= 15,
'precipMM'
].count() >= 3

(
df
.groupby(['city', 'state'])
.filter(has_multiple_readings_at_least)
[['city', 'state']]
.drop_duplicates()

)

def has_multiple_readings_at_least(mini_df, min_mm, times):
return mini_df.loc[

((mini_df['precipMM'] >= min_mm) &
(mini_df['min_temp'] <= 0)),

'precipMM'
].count() >= times

(
df
.groupby(['city', 'state'])
.filter(has_multiple_readings_at_least, min_mm=10, times=3)
[['city', 'state']]
.drop_duplicates()

)

def proportion_of_city_precip(s):
return s / s.sum()

df['precip_pct'] = df.groupby('city')[
'precipMM'].transform(proportion_of_city_precip)

df.groupby(['city', 'state'])['precip_pct'].max()

Appends, one by one, the
data frames we load to a list

Creates one data frame from
all the loaded data frames

This function returns True if there are at
least three rows with precipMM >= 15.

Grouping by city and state, we apply
the filter to keep the rainiest cities.

Gets the unique combinations
of city and state

This function returns True if precipitation
of min_mm has fallen at least times times.

Uses the new version of
has_multiple_readings_at_
least to find rainiest cities

Gets the unique
combinations
of city and state

This function returns the proportion of a city’s
precipitation that fell in one reading.

Adds a new column,
precip_pct, showing the
proportion for each city

Finds the reading showing the greatest
proportion of precipitation for that city

222 CHAPTER 7 Advanced grouping, joining, and sorting
You can explore a version of this in the Pandas Tutor at http://mng.bz/VRA0.

Beyond the exercise

 Implement the first version of has_multiple_readings_at_least, which takes
a single argument (df), but with lambda.

 Implement the second version of has_multiple_readings_at_least, which
takes three arguments (df, min_mm, and times), but with lambda.

 Implement our transformation, but replace proportion_of_city_precip with
a lambda. Then find the reading that represented the greatest proportion of
rainfall for each city.

EXERCISE 35 ■ Wine scores and tourism spending
Earlier in this chapter, we used join to combine two data frames into a single one. In
this exercise, we go deeper into uses for join, exploring how we can join more than
two data frames, how we can combine joining with grouping, and the different types
of joins we can perform. We’ll also look for correlations among our joined data sets.

 This time, we’ll combine several data sets to answer a question I’m sure you’ve
often thought about: does a country that spends more on tourism also make better
wines? Our data will come not only from the OECD tourism data we’ve previously
explored but also from more than 150,000 rankings of wines.

 To perform this analysis, I’d like you to do the following:

1 Create a data frame, oecd_df, from oecd_locations.csv, containing a subset of
all OECD countries. The resulting data set should have a single column called
country. The index should be based on the country’s abbreviation.

2 Create a second data frame, oecd_tourism_df, from oecd_tourism.csv. You’re
only interested in four columns: LOCATION (which will serve as the index), TIME
(containing the year in which the measure was taken), SUBJECT (the type of
spending), and Value (the amount spent in each year). You’re also only inter-
ested in rows where SUBJECT has the value 'INT-EXP', meaning spending. Once
you’ve kept only the rows with 'INT-EXP', you can remove the SUBJECT column.

3 Create a new series, tourism_spending, in which the index reflects the country
names (i.e., not abbreviations) and the value contains the average tourism
spending for that country.

4 Create a third data frame, wine_df, based on winemag-150k-reviews.csv. You
only need two columns: country and points.

5 Get the mean wine score for each country, across all wine reviews, sorted in
descending order.

6 Perform a standard join between the average wine scores per country and the
average tourism spending per country. Where do you see NaN values? What do
those NaN values mean?

http://mng.bz/VRA0
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout

223EXERCISE 35 ■ Wine scores and tourism spending
7 Perform an outer join between the average wine scores per country and the
average tourism spending per country. Where do you see NaN values? What do
they mean now?

8 Find the correlation between average wine score and average tourism spending.
What can you say about these two values? Is there any correlation?

Working it out

This exercise is meant to demonstrate how we can bring together many of the ideas
we’ve seen in this chapter on a grander scale—joining multiple data frames, moving
between series and data frames, and even finding correlations across different data
sets. The first thing I asked you to do was create oecd_df, a data frame with a subset of
OECD members. The input CSV file, as we saw in exercise 31, contains just two col-
umns and doesn’t have any headers, which means we need to set the column names to
abbrev and country. I asked you to set the input data frame’s index column to be
abbrev. To do all this, we can use the following code:

oecd_df = pd.read_csv('../data/oecd_locations.csv',
header=None,
names=['abbrev', 'country'],
index_col='abbrev')

Let’s take a look at oecd_df.head():

abbrev country
AUS Australia
AUT Austria
BEL Belgium
CAN Canada
DNK Denmark

This data frame isn’t that useful on its own. The point of loading this is to get a trans-
lation table between the country names (the country column) and the country abbre-
viations (the abbrev column). We will need the country names to work with the wine
ratings, but we will need the country abbreviations to work with the tourism spending
data. It’s not uncommon to have such data frames when working with data from dif-
ferent sources.

 With this data frame created and in place, we can create the second one, which we
call oecd_tourism_df. This data frame comes from a CSV file that does have headers,
so we don’t need to name them. However, we are only interested in four of the input
columns, so we need to select them using usecols. Then we use one column
(SUBJECT) to keep only those rows that have to do with tourist expenses; once we’re
done with it, we drop it. Finally, I asked that you set the LOCATION column (i.e., the
country abbreviation) as the index.

 We can do all this with the following code:

oecd_tourism_df = (
pd

224 CHAPTER 7 Advanced grouping, joining, and sorting
.read_csv('../data/oecd_tourism.csv',
usecols=['LOCATION', 'TIME',

'Value', 'SUBJECT'],
index_col='LOCATION')

.loc[lambda df_: df_['SUBJECT'] == 'INT-EXP']

.drop('SUBJECT', axis='columns')
)

Notice that, in this code, we use lambda as an argument to .loc. Wherever the lambda
expression returns True, the row from the original data frame is kept. We use df_ as
the parameter in the lambda expression to indicate that it’s a temporary value and to
ensure that we don’t confuse it with df, which is often used for other data frames.
Besides, when the lambda is being run, the data frame created by read_csv hasn’t yet
been assigned to a variable, so we need to give it a temporary name.

 Once we’re done using the SUBJECT column to keep only tourist expenses, we can
remove it with drop. Don’t forget that drop defaults to using the index; to drop one or
more columns, we need to specify that with axis='columns'.

 Here’s the result of invoking oecd_tourism_df.head():

TIME Value
LOCATION
AUS 2008 27620.0
AUS 2009 25629.6
AUS 2010 31916.5
AUS 2011 39381.5
AUS 2012 41632.8

We now have two data frames, both of which use the same country abbreviations for
their indexes. Never mind that in oecd_tourism_df, the index contains repeat values,
whereas in oecd_df, the index contains unique values; the join system knows what to
do in such cases and will handle things just fine. The key (no pun intended) thing
here is that the two data frames’ indexes contain the same elements. (What happens if
one or both of them contains values that aren’t in the other? We’ll deal with that later
in this exercise.)

 I next asked you to find the mean tourist spending per country in the OECD sub-
set. That is, we have tourist spending figures from a number of different OECD coun-
tries across several years. We want to determine how much each country spent on
tourism, on average, across all years in the data set. Moreover, we want the results to
show the countries’ names, not their abbreviations.

 Finding the mean tourist spending per country across all years is a classic use of
grouping. We could, for example, do it as follows:

oecd_tourism_df.groupby('LOCATION')['Value'].mean()

This code says that we want to get the mean of the Value column for each distinct
LOCATION. (Notice that even though LOCATION is now the index of this data frame, we
can still use it for grouping.) However, we don’t want LOCATION, containing the coun-
try abbreviations. Rather, we want to use the country names, which are in oecd_df.

Keeps rows where the
subject is 'INT-EXP'

Removes the
SUBJECT column

225EXERCISE 35 ■ Wine scores and tourism spending
 We thus need to join these two data frames. Both use the abbreviations as an index,
which makes this possible. (It doesn’t matter that the columns have different names;
joining typically works on the data frames’ indexes.) When we join, we basically say
that we want to create a new, wider data frame containing all the columns from the
first and all the columns of the second, with the indexes overlapping. So the resulting
data frame has a total of four columns: an index containing the location abbrevia-
tions, as before, a country column (from oecd_df), and TIME and Value columns
(from oecd_tourism_df). The left and right sides are joined wherever the index of
oecd_df matches the index of oecd_tourism_df, which means it’s not a problem to
have repeated values in the indexes of one or both data frames.

 We can join them this way:

oecd_df.join(oecd_tourism_df)

We invoke join on oecd_df, which is seen as the left data frame, and we pass oecd_
tourism_df as an argument to join. It is, of course, the right data frame in the join.
The result is a new data frame. We run groupby on this data frame, grouping by
country—the full names of the countries we’re looking at. We then retrieve only the
Value column and calculate the mean:

(
oecd_df
.join(oecd_tourism_df)
.groupby('country')['Value'].mean()

)

This way, we’ve again calculated and retrieved the mean tourism spending, per coun-
try, over all years in the data set. But the result we get back uses the full country
names, rather than the abbreviations. Moreover, because the result has an index
(country names) and a single value column, it’s returned as a series, rather than as a
data frame. I asked you to assign the resulting series to a variable, tourism_spending,
for easier manipulation later:

tourism_spending = (
oecd_df
.join(oecd_tourism_df)
.groupby('country')['Value'].mean()

)

Here is the result of invoking tourism_spending.head():

country
Australia 36727.966667
Austria 11934.563636
Belgium 20859.883455
Brazil 21564.351833
Canada 40984.633333
Name: Value, dtype: float64

226 CHAPTER 7 Advanced grouping, joining, and sorting
Now it’s time to load our third CSV file into a data frame. In this case, we’re only inter-
ested in two columns from the CSV file, country and points:

wine_df = pd.read_csv(
'../data/winemag-150k-reviews.csv',
usecols=['country', 'points'])

Here’s the result of running wine_df.head():

country points
0 US 96
1 Spain 96
2 US 96
3 US 96
4 France 95

As soon as we’ve created this data frame, we want to calculate the mean score (points)
that each country received. Once again, we can perform a grouping operation:

country_points = (
wine_df
.groupby('country')['points'].mean()

)

Here’s the result of running country_points.head():

country
Albania 88.000000
Argentina 85.996093
Australia 87.892475
Austria 89.276742
Bosnia and Herzegovina 84.750000
Name: points, dtype: float64

This returns a series in which the index contains the country names and the values are
the mean points per country. We assign this to a variable, country_points, so we can
use it in additional tasks.

 The first task we want to do with it is to sort the average scores from highest to low-
est. This can be done with a call to sort_values, passing ascending=False to ensure
that we sort the values in descending order:

country_points.sort_values(ascending=False)

We get back a new series showing which countries had the highest average wine scores
and which had the lowest. Here are the first five rows from my result:

country
England 92.888889
Austria 89.276742
France 88.925870
Germany 88.626427
Italy 88.413664

227EXERCISE 35 ■ Wine scores and tourism spending
Now we come to the climax of this exercise: joining the wine scores and the tourism
spending. How can we do that?

 Well, it makes sense that we want to use join again, with country_points on the
left (i.e., as the data frame on which we invoke join) and tourism_spending on the
right (i.e., as the data frame passed as an argument to join). There’s just one prob-
lem: country_points is a series, and we can only invoke join on a data frame. (We
can pass a series as the argument to join, though—so a series can be the right side,
but not the left side, of a pandas join.)

 Fortunately, we can call the to_frame method on our series and get back a single-
column data frame with the same index we had in the series:

country_points.to_frame()

With our new data frame in place, we can invoke join, passing tourism_spending as
the argument:

country_points.to_frame().join(tourism_spending)

Again, it’s important to remember that a join links the left data frame with the right
one, connecting them along their indexes. In this case, we end up with three columns:
country, the index column that is shared by the left and right, points from the left,
and Value from the right.

 Here’s what the first five rows look like after performing this join:

country points Value
Albania 88.0 NaN
Argentina 85.9960930562955 NaN
Australia 87.89247528747227 37634.433333333334
Austria 89.27674190382729 16673.886363636364
Bos and Herz 84.75 NaN

The good news is that this join worked. But as you look at it, you’ll likely notice that
there are NaN values in many rows of the Value column. That’s because the index of

Avoiding duplicate column names
What happens if the left and right data frames have identically named columns? After
all, although pandas indexes don’t need to have unique elements, column names
must be unique. If you try to join frames such that you’ll end up with more than one
column with the same name, you’ll get a ValueError exception saying “columns
overlap but no suffix specified.” And indeed, pandas allows you to specify what the
suffixes should be for the left side (lsuffix) and right side (rsuffix) when you
invoke join. For example, we can join oecd_df with itself (already a wild idea known
as a “self join,” for which there are practical uses) with

oecd_df.join(oecd_df, lsuffix='_l', rsuffix='_r')

The data frame we get back has the abbrev index and two identical columns named
country_l and country_r.

228 CHAPTER 7 Advanced grouping, joining, and sorting
the left data frame (in this case, country_points.to_frame()) dictates the index of
the resulting data frame. As a result, this is known as a left join. In a left join, columns
from the right frame are missing values (and thus have NaN) wherever there was no
corresponding row for the left’s index.

 For example, after performing this join, although we have both points and Value
for Australia and Austria, there is a NaN in Value (i.e., tourism information) for Alba-
nia, Bulgaria, and Chile (among others). That’s because although we had wine-quality
information for these countries (and thus an entry in the left side’s index), we didn’t
have tourism information (in the right side’s index).

 There are other types of joins, too. If we want to use the right data frame’s index in
the result, we can use a right join. We can accomplish that in pandas by passing
how='right' to the join method. (By default, the method assumes how='left'.) In
such a case, we get NaN values on columns from the left frame wherever it has no index
entry corresponding to the right.

 We can also be fancy and do an outer join, in which case the output frame’s index is
the combination of the left’s index and the right’s index. We may thus end up with
NaN values in columns from both the left and right, depending on which index value
was missing. And so, for the final part, I asked you to perform an outer join:

country_points.to_frame().join(tourism_spending,
how='outer')

The resulting data frame has 54 rows rather than 48, reflecting the union of the
indexes from the left and right. And we now have NaN values from the left, such as for
Belgium and Denmark, along with NaN values from the right. Outer joins ensure that
you don’t lose any data when combining data sources, but they don’t automatically
interpolate values—so you will almost certainly end up with some null values, which
(as we’ve seen in chapter 5) need cleaning in various ways.

 Here are the first five rows from this outer join. Notice that Belgium now appears,
with a NaN for points:

points Value
country
Albania 88.000000 NaN
Argentina 85.996093 NaN
Australia 87.892475 36727.966667
Austria 89.276742 11934.563636
Belgium NaN 20859.883455

Finally, I asked you to determine whether there’s any correlation between the scores a
country received from the wine magazine’s judges and the amount its citizens spend
on tourism. To find this, we can use the corr method:

country_points.to_frame().join(
tourism_spending, how='outer').corr()

This finds how highly correlated each column is to the other columns in the data set.
A score of 1 indicates that it’s 100% positively correlated, meaning when one column

229EXERCISE 35 ■ Wine scores and tourism spending
goes up, the other column goes up by the same degree. A score of –1 indicates that it’s
100% negatively correlated, meaning when one column goes up, the other goes down
by the same degree. A score of 0 indicates that there is no correlation at all. Generally
speaking, the closer to 1 (or –1) the score, the more highly correlated the two col-
umns are. By default, corr uses the Pearson correlation, but you can change that by
passing another value to the “method” keyword argument.

 The output from corr is a data frame with an identical index and columns. We can
thus see how highly correlated (or not) any two columns are by finding one along the
index and the other along the columns. (The data is duplicated; we can do it either
way.) Along the diagonal, we always see a correlation of 1, because a column is 100%
positively correlated with itself.

 Our result? We get 0.288, which points to a weak positive correlation between the
two. So yes, countries that spend more on tourism are more likely to have highly rated
wines. But the relationship is far from strong, so don’t select wine based on tourism
expenditures.

Solution

oecd_df = pd.read_csv('../data/oecd_locations.csv',
header=None,
names=['abbrev', 'country'],
index_col='abbrev')

oecd_tourism_df = pd.read_csv(
'../data/oecd_tourism.csv',
usecols=['LOCATION', 'TIME', 'Value'],
index_col='LOCATION')

tourism_spending = (
oecd_df
.join(oecd_tourism_df)
.groupby('country')['Value'].mean()

)

wine_df = pd.read_csv(
'../data/winemag-150k-reviews.csv',
usecols=['country', 'points'])

country_points = (
wine_df
.groupby('country')['points'].mean()

)

country_points.sort_values(ascending=False)
country_points.to_frame().join(tourism_spending)
country_points.to_frame().join(tourism_spending,

how='outer')
country_points.to_frame().join(tourism_spending,

how='outer').corr()

You can explore a version of this in the Pandas Tutor at http://mng.bz/A8eK.

http://mng.bz/A8eK

230 CHAPTER 7 Advanced grouping, joining, and sorting
Beyond the exercise

 Read in the three data frames, but without setting an index. Ensure that the col-
umn names in oecd_tourism_df are abbrev, TIME, and Value and that the
dtype of the Value column is np.int64.

 Perform the same joins as before, but using merge rather than join.
 How is the default merge different from the default join when it comes to NaN

values?

Summary
In this chapter, we dove even further into the world of split-apply-combine, looking at
grouping, joining, and sorting from a variety of new perspectives. It’s a rare project
that doesn’t use these techniques at least a little, so I hope you took the time to review
these exercises and compare your answers with mine.

Midway project
Congratulations! You’ve made it halfway through this book. If you’ve been doing
the exercises, I hope you’ve found your pandas skills improving, little by little. (And
if you opened the book to this chapter without doing the exercises first, shame on
you!)

 Are you forgetting some of the syntax, method names, and parameter names?
Are you making frustrating, “stupid” mistakes? That’s only natural, and it happens
to everyone, no matter how long they’ve been using pandas or any other large soft-
ware library. Over time, though, it will become more natural and more obvious, at
least when using the functionality that’s most common in your work.

 The whole point of this book is to gain experience and fluency through prac-
tice. Such gains happen incrementally and over time. But they do happen, even if it
doesn’t always feel that way.

 In this chapter, we’re taking a break from exercises that concentrate on particu-
lar topics and themes. Instead, I’m going to ask you to do a small project that
requires you to use many of the parts of pandas that you’ve learned about in the
last few chapters. I hope this project gives you a chance to integrate the different
skills you’ve learned so far.

 We’ll look at data from the 2020 Python Developer Survey alongside the 2021
survey from Stack Overflow. The Python survey, which is run by JetBrains (the com-
pany behind the popular PyCharm editor for Python, among others), is our best
snapshot of the global Python community—who they are and what they do. Sepa-
rately, the well-known programming Q&A site Stack Overflow runs an annual sur-
vey of programmers of all types, including those using Python.
231

232 CHAPTER 8 Midway project
Problem
Here is what I’d like you to do:

1 Load the CSV file (called 2020_sharing_data_outside.csv) with results from the
Python survey into a data frame. Let’s call that py_df.

2 Turn the columns into a multi-index. How you do this depends on the column:
– Most of the columns have the form first.second.third, with two or more

words separated by . characters. Divide the column name into two parts, one
before the final . and one after. The multi-index column for this example
would then be ('first.second', 'third'). If there were only two parts, it
would be ('first', 'second').

– In the case of about 20 columns, the top level should be general, and the
second level should be the original column name. The columns you should
treat this way are
– age,
– are.you.datascientist,
– is.python.main,
– company.size,
– country.live,
– employment.status,
– first.learn.about.main.ide,
– how.often.use.main.ide,
– is.python.main,
– main.purposes

– missing.features.main.ide

– nps.main.ide,
– python.version.most,

Table 8.1 What you need to know

Concept What is it? Example To learn more

pd.MultiIndex
.from_tuples

Returns a multi-index
object from a list of tuples

pd.MultiIndex.from_tup
les(a_list)

http://mng.bz/ZqnZ

str.split Breaks strings apart,
returns a list, and puts
extra items on the right

'abc def
ghi'.split(None, 1) #
returns ['abc', 'def
ghi']

http://mng.bz/aR4z

str.rsplit Breaks strings apart,
returns a list, and puts
extra items on the left

'abc def
ghi'.rsplit(None, 1) #
returns ['abc def',
'ghi']

http://mng.bz/aR4z

http://mng.bz/aR4z
http://mng.bz/aR4z
http://mng.bz/ZqnZ
https://github.com/reuven/pandas-workout

233■ Problem
– python.years,
– python2.version.most,
– python3.version.most,
– several.projects,
– team.size,
– use.python.most,
– years.of.coding

– Use the function pd.MultiIndex.from_tuples to create the multi-index,
and then reassign it back to df.columns. (Hint: A function, along with a
Python for loop or list comprehension, will come in handy here.)

3 Sort the columns so they’re in alphabetical order. (This isn’t technically neces-
sary, but it makes the data easier to see and understand.)

4 Answer these questions:

– What are the 10 most popular Python IDEs?
– Which 10 other programming languages (other.lang) are most commonly

used by Python developers?
– What were the 10 most common countries from which survey participants

came?
– According to the Python survey, what proportion of Python developers have

each level of experience?
– Which country has the greatest number of Python developers with 11+ years

of experience?
– Which country has the greatest proportion of Python developers with 11+

years of experience?

5 Load the Stack Overflow data (so_2021_survey_results.csv) into a data frame.
Let’s call that so_df.

6 Show the average salary for different types of employment. Contractors and
freelancers like to say that they earn more than full-time employees. What does
the data here show you?

7 Create a pivot table in which the index contains countries, the columns are edu-
cation levels, and the cells contain the average salary for each education level
per country.

8 Create this pivot table again, only including countries in the OECD subset. In
which of these countries does someone with an associate’s degree earn the
most? In which of them does someone with a doctoral degree earn the most?

9 Remove rows from so_df in which LanguageHaveWorkedWith is NaN.
10 Remove rows from so_df in which Python isn’t included as a commonly used

language (LanguageHaveWorkedWith). How many rows remain?
11 Remove rows from so_df in which YearsCode is NaN. How many rows remain?
12 Replace the string value Less than 1 year in YearsCode with 0. Replace the

string value More than 50 years with 51.

https://github.com/reuven/pandas-workout

234 CHAPTER 8 Midway project
13 Turn YearsCode into an integer column.
14 Create a new column in so_df, called experience, which will categorize the val-

ues in the YearsCode. Values can be
– Less than 1 year
– 1–2 years
– 3–5 years
– 6–10 years
– 11+ years

15 According to the Stack Overflow survey, what proportion of Python developers
have each level of experience?

Working it out

This project is all about understanding the world of Python developers better, using
data from two different surveys. There are hundreds, if not thousands, of other ques-
tions we could ask (and answer) using this data; if you find this project of interest, I
encourage you to continue the analysis on your own.

LOAD PYTHON SURVEY RESULTS INTO A DATA FRAME

We start by loading the data from the Python community survey into a data frame. On
the face of it, this shouldn’t be too hard:

py_filename = '../data/2020_sharing_data_outside.csv'
py_df = pd.read_csv(py_filename)

If you load the data in this way, you’ll likely get a warning from pandas indicating that
some columns had mixed types. We’ve seen this problem before; pandas does a good
job of guessing a column’s dtype, but that consumes a great deal of memory. We can
either explicitly specify the dtypes of our columns in our call to pd.read_csv or (if we
have sufficient memory) let pandas read all the data in and guess.

 We won’t be using many columns in this project, so the real-life, practical solution
is to specify columns with usecols. However, I want you to get some practice creating
a multi-index and also have the data available for further exploration after this project
is complete. Thus, we read all the data in and tell pandas to use as much memory as it
needs to guess the dtype correctly:

py_filename = '../data/2020_sharing_data_outside.csv'
py_df = pd.read_csv(py_filename, low_memory=False)

NOTE I’m assuming that your computer has enough memory to load all the
columns. If not, you should indeed pass usecols to read_csv, specifying only
the columns used in this exercise. That will reduce the memory usage enough
to let pandas guess correctly without over-burdening your computer.

There’s nothing technically wrong with using the data frame as is. However, it con-
tains 264 (!) columns, too many for most people to understand and think about.

235■ Problem
Moreover, although a CSV file cannot have hierarchical column names, the names
were clearly designed to give us a sense of hierarchy. For example, we have
other.lang.Java, other.lang.JavaScript, other.lang.C/C++, and so forth—all of
which could fit under an other.lang category.

 Can we take a flat list of columns and turn it into a multi-index, thus making it eas-
ier to think about and work with? Yes, but it will take a little work. Notice that each col-
umn name is of the type first.second.third. If we break the column name apart at
the final . character, we can create a multi-index in which the primary column
becomes first.second and the secondary column third. We end up with a top-level
column of other.lang and second-level columns of Java, JavaScript, C/C++, and so
on (figure 8.1).

Figure 8.1 Turning a single index row into a multi-index

How can we create such a multi-index and then apply it to our data frame? We can use
pd.MultiIndex.from_tuples, a function that pandas provides for precisely this pur-
pose. If we pass a list of tuples to this function, it returns a multi-index object, which
we can then assign to a data frame’s index or columns attribute, as appropriate. In our
case, we want to assign it to columns, replacing the existing index object used on the
columns.

 First, we create the list of tuples. Each tuple’s first element contains the text up to
the final . in the column name, and the second element is the word following that
final .. We can do this using Python’s str.rsplit method, which works similarly to
str.split but from the right rather than the left. By itself, str.rsplit won’t make a
difference. But if we pass a second, integer argument of 1, it returns a list of two ele-
ments split from the final .:

s = 'abcd.efgh.ijkl'
s.rsplit('.', 1)

other.lang.HTML/CSSother.lang.Groovyother.lang.Goother.lang.CoffeeScriptother.lang.Clojureother.lang.C/C++other.lang.C#

GroovyGoCoffeeScriptClojureC/C++

other.lang

HTML/CSSC#

236 CHAPTER 8 Midway project
This code returns ['abcd.efgh', 'ijkl'], perfect for our purposes. (Except that it’s
a list, not a tuple.)

 However, some of the column names don’t belong in an overall category. For
those, we give a top-level column of general. We define those columns in a list:

general_columns = ['age',
'are.you.datascientist',
'is.python.main',
'company.size',
'country.live',
'employment.status',
'first.learn.about.main.ide',
'how.often.use.main.ide',
'is.python.main',
'main.purposes'
'missing.features.main.ide'
'nps.main.ide',
'python.version.most',
'python.years',
'python2.version.most',
'python3.version.most',
'several.projects',
'team.size',
'use.python.most',
'years.of.coding'

]

We write a function, column_multi_name, that takes a single column name (i.e., a
string). If the column name is one of those that gets a general top-level column, we
return a two-element tuple containing general and then the existing column name.
In all other cases, we return a two-element tuple based on a list we get back from
str.rsplit:

def column_multi_name(column_name):
if column_name in general_columns:

return ('general', column_name)
else:

first, rest = column_name.rsplit('.', 1)
return (first, rest)

We invoke this function on each column name in py_df and then pass the result to
pd.MultiIndex.from_tuples. We use a list comprehension:

(
pd
.MultiIndex.from_tuples([
column_multi_name(one_column_name)
for one_column_name in py_df.columns])

)

We then assign the resulting list to py_df.columns, replacing the original columns
with our multi-index:

Should this column
have a general prefix?

Returns a two-element tuple
starting with general

Splits the
tuple into

a two-
element list

Returns the
elements as a tuple

Runs column_multi_name
on the current column name

Goes through each
column name in py_df

237■ Problem
py_df.columns = (
pd
.MultiIndex.from_tuples([
column_multi_name(one_column_name)
for one_column_name in py_df.columns])

)

SORT THE COLUMNS ALPHABETICALLY

Most of the time, it doesn’t matter whether columns are sorted. But I’ve found that
when working with a multi-index, it’s often best to sort the column names, if only to
make it easier to skim through them. To do this, we take advantage of the fact that we
can pass a list of columns to py_df to get those columns back. If we sort the list before
we apply it, we can get the columns back in a particular order. Assigning that back to
py_df will thus sort the columns:

py_df = py_df[sorted(py_df.columns)]

WHAT ARE THE 10 MOST POPULAR PYTHON IDES?
We can determine what IDEs Python developers use most often from the ide top-level
column and the main second-level column, by passing a tuple:

py_df[('ide', 'main')]

We can count how often each IDE appears using value_counts, limiting the output to
the 10 top results:

(
py_df[('ide', 'main')]
.value_counts()
.head(10)

)

WHICH 10 OTHER PROGRAMMING LANGUAGES (OTHER.LANG) ARE MOST COMMONLY USED BY

PYTHON DEVELOPERS?
I asked you to find what other languages are most commonly used by Python develop-
ers. Non-Python languages were listed under the other.lang top-level index, with the
particular language that each developer uses as a second-level index entry. Asking for
py_df['other.lang'] thus returns all columns under other.lang as a data frame—
one with 54,462 rows (one for each survey respondent) and 24 columns (one for each
non-Python language). Each cell contains either the name of the language or NaN
(indicating that the survey respondent does not use this language). With this data,
how can we calculate the number of people who use each of these languages?

 The answer is easier than it may at first appear: the count method returns the num-
ber of non-NaN values in a series. When applied to a data frame, the count method
returns a series whose indexes are the data frame’s columns and whose values are the
number of non-null values in that column. In other words, we can run

py_df['other.lang'].count()

238 CHAPTER 8 Midway project
The result is the following series:

Bash / Shell 13793
C# 4460
C/C++ 11623
Clojure 361
CoffeeScript 319
Go 3398
Groovy 719
HTML/CSS 15469
Java 8109
JavaScript 16662
Kotlin 1384
None 6402
Objective-C 583
Other 3592
PHP 4060
Perl 886
R 2465
Ruby 1165
Rust 1853
SQL 13391
Scala 927
Swift 854
TypeScript 3717
Visual Basic 1604
dtype: int64

With this series, we can sort the values in descending order:

(
py_df['other.lang']
.count()
.sort_values(ascending=False)

)

Finally, we get the 10 first values:

(
py_df['other.lang']
.count()
.sort_values(ascending=False)
.head(10)

)

WHAT ARE THE 10 MOST COMMON COUNTRIES FROM WHICH SURVEY PARTICIPANTS CAME?
This information is in the general top-level index and the country.live second-level
index:

py_df[('general', 'country.live')]

This returns the country name for each survey respondent. To count the number of
times each country appears, we can use value_counts:

py_df[('general', 'country.live')].value_counts()

239■ Problem
Because value_counts sorts results by descending value, we can use head(10) to
retrieve the 10 most commonly named countries in the survey:

py_df[('general', 'country.live')].value_counts().head(10)

WHAT PROPORTION OF PYTHON DEVELOPERS HAVE EACH LEVEL OF EXPERIENCE?
Once again, we can turn to value_counts, passing normalize=True to get the percent-
age for each level:

py_df[
('general', 'python.years')
].value_counts(normalize=True)

The greatest proportion of developers have three to five years of experience, followed
by those with less than one year, followed by those with between one and two years. All
told, about 75% of the respondents to the survey have been using Python for up to
five years, and half of them have been using it for less than two years.

WHICH COUNTRY HAS THE GREATEST NUMBER OF PYTHON DEVELOPERS WITH 11+
YEARS OF EXPERIENCE?
What about the most experienced Python developers? In particular, what countries
have the greatest number of Python developers with 11+ years of experience using the
language? To find out, we first need to get only those rows of py_df in which the expe-
rience is 11+ years:

py_df[py_df[
('general','python.years')] == '11+ years']

But wait: we want to group by country.live, whose top-level index is general—the
same as python.years. We can thus restrict our query, applying our boolean index
only to those columns within general:

py_df['general'][py_df[
('general','python.years')] == '11+ years']

Now that we only have the columns in general, we can prepare a new query that gives
us results on a per-country basis:

py_df['general'][py_df[
('general','python.years')] == '11+ years'
].groupby('country.live')

This sets up the grouping query to operate on a per-country basis but doesn’t ask any
questions. Let’s determine how many non-null values each column has for each country:

py_df['general'][
py_df[('general','python.years')] == '11+ years'
].groupby('country.live').count()

The resulting data frame’s rows are country names, and its columns are from general.
Values are integers indicating how many non-null rows there are for each column for

240 CHAPTER 8 Midway project
each country. The difference in counts reflects occasional null values. We’re inter-
ested in finding super-experienced Python developers in each country, allowing us to
cut our result down to one column only, python.years:

(
py_df['general']
[py_df[('general','python.years')] == '11+ years']
['python.years']
.groupby('country.live')
.count()

)

This returns a series in which the index contains country names and the values are
integers: the number of 11+ year veterans of Python.

 To find which country has the most experienced Python developers, we call
sort_values, asking for results in descending order. Then we apply head(1), return-
ing the name of the country with the most developers, as well as the number itself:

(
py_df['general']
[py_df[('general','python.years')] == '11+ years']
.groupby('country.live')
['python.years']
.count()
.sort_values(ascending=False)
.head(1)

)

WHICH COUNTRY HAS THE GREATEST PROPORTION OF PYTHON DEVELOPERS WITH 11+ YEARS OF

EXPERIENCE?
The US, somewhat naturally, has the greatest number of experienced developers. A
more interesting question is which country has the greatest proportion of Python devel-
opers with 11+ years of experience.

 We need to find out how many developers are in each country. To do that, we cre-
ate a new variable called country_experience, taken from py_df['general'] and
consisting of two columns—country.live and python.years:

country_experience = (
py_df['general']
[['country.live', 'python.years']]

)

all_per_country = (
country_experience
['country.live']
.value_counts()

)

We also need to get the number of senior Python developers in each country. We did
that in a previous part of this exercise, but with country_experience in place, we have
another method for determining this:

241■ Problem
expert_per_country = (
country_experience
.loc[country_experience['python.years'] == '11+ years',

'country.live']
.value_counts()

)

We now have two series (expert_per_country and all_per_country) with matching
indexes (country names). We can take advantage of the fact that pandas will use the
index when dividing one series by another:

(expert_per_country / all_per_country
).sort_values(ascending=False).dropna().head(10)

In this code, we first divide the number of experts by the total number of Python
developers per country. We then sort the values in descending order so we can find
the country with the greatest proportions of experienced Python developers. To avoid
null values, we use dropna on the resulting series, getting

Norway 0.265432
Ireland 0.225490
Australia 0.225420
Belgium 0.225108
Slovenia 0.224490
New Zealand 0.197917
Sweden 0.194030
Finland 0.190141
United Kingdom 0.186486
Austria 0.186170
Name: country.live, dtype: float64

Although the United States certainly has a very large number of senior Python devel-
opers, it’s not in the top 10 when we take country size into account.

 But is the data an accurate portrait of the modern Python community? After all, do
one quarter of Norwegian Python developers really have more than a decade of expe-
rience? Maybe it’s just me, but I’m skeptical. I wonder whether the type of person who
fills out such a survey is also more enthusiastic than the average Python developer—
and thus skews to a more experienced population.

LOAD THE STACK OVERFLOW DATA INTO A DATA FRAME, SO_DF

Next, we switch gears and look at the Stack Overflow survey. We load the CSV file into
a data frame:

so_filename = '../data/so_2021_survey_results.csv'
so_df = pd.read_csv(so_filename, low_memory=False)

Once again, we pass low_memory=False, telling pandas that it should use as much
memory as it needs to guess the dtype correctly.

SHOW THE AVERAGE SALARY FOR DIFFERENT TYPES OF EMPLOYMENT

The Stack Overflow survey includes a great deal of information about people’s jobs and
salaries. I asked you to verify whether, based on the data collected here, freelancers and

242 CHAPTER 8 Midway project
contractors earn more than full-time employees, as is often assumed to be the case. To
find this out, we take the data frame and run groupby on Employment:

so_df.groupby('Employment')

This means whatever query we run, the rows are the distinct values in the Employment
column. We’re interested in the mean annual salary, reported here in dollars as
ConvertedCompYearly, per type of employment, which we can calculate as follows:

so_df.groupby('Employment')['ConvertedCompYearly'].mean()

This is good, but we can make it easier to compare the data points by sorting them:

(
so_df
.groupby('Employment')['ConvertedCompYearly'].mean()
.sort_values(ascending=False)

)

We can see from these results that according to this survey, people who are employed
full time earn the most, followed by retirees, followed by contractors:

Employed full-time 129913.094086
Retired 120252.500000
Independent contractor, freelancer, or self-employed 111160.260190
I prefer not to say 44589.437500
Employed part-time 43344.532974
Not employed, and not looking for work NaN
Not employed, but looking for work NaN
Student, full-time NaN
Student, part-time NaN
Name: ConvertedCompYearly, dtype: float64

I find this hard to believe and especially wonder whether it’s accurate to say that retir-
ees are earning almost as much as full-time employees.

 There’s nothing technically wrong with this result, but it’s hard to read. We may
want to remove the NaN values. Plus, dollar figures can generally be rounded to two
digits after the decimal point. And maybe we can add commas before every group of
three digits.

 Dropping NaN is easy with dropna. But how can we format floating-point values? I
would normally use an f-string:

x = 12345.6789
print(f'{x:,.2f}')

We can’t use an f-string directly on each element of a series, but we can use a function
to do it for us. In particular, we can use apply to run a function on each element and
then use lambda to create an anonymous function that applies the f-string to each
one, thus giving a column of strings:

(
so_df

Prints
12,345.68

243■ Problem
.groupby('Employment')['ConvertedCompYearly'].mean()

.sort_values(ascending=False)

.dropna()

.apply(lambda n: f'{n:,.2f}')
)

If you’re one of the many Python developers who dislike lambda, you can hand
str.format to apply:

(
so_df
.groupby('Employment')['ConvertedCompYearly'].mean()
.sort_values(ascending=False)
.dropna()
.apply('{:,.2f}'.format)

)

Notice that we’re not invoking the method, but passing it to apply, where it is invoked
on each value. There isn’t any value preceding the : in the curly braces; that’s because
str.format implicitly handles positional arguments.

 To display all floats this way, we can set pd.options.display.float_format:

pd.options.display.float_format = '{:,.2f}'.format

This does what we did with apply, telling pandas to invoke this method whenever it
sees a floating-point value.

 Now let’s ask a different question: rather than looking at average salaries for differ-
ent types of work, let’s instead look at average salaries for different levels of education.
Moreover, let’s further divide that by country. What I’m asking for, of course, is a pivot
table—one in which the index contains country names, the columns contain the dis-
tinct values from EdLevel, and the cells contain the mean of ConvertedCompYearly
for each country-education combination:

so_df.pivot_table(index='Country',
columns='EdLevel',
values='ConvertedCompYearly')

CREATE THIS PIVOT TABLE AGAIN, ONLY INCLUDING COUNTRIES IN THE OECD SUBSET

Next, I asked you to load the subset of OECD countries into a data frame:

oecd_filename = '../data/oecd_locations.csv'
oecd_df = pd.read_csv(oecd_filename,

header=None, index_col=1,
names=['abbrev', 'Country'])

The data frame we create in this code uses the country name for the index. That’s
because we’re next going to use it in a join with so_df, so the indexes need to be
aligned. The country names will act as indexes.

 We join our OECD subset data frame with the Stack Overflow data and then re-
create our pivot table. The effect is to reduce the number of rows (i.e., countries) in

244 CHAPTER 8 Midway project
our output. And indeed, once we run our join, we get back only 13 rows, one for each
country in the OECD subset:

(
oecd_df
.join(so_df

.set_index('Country'))
.pivot_table(index='Country',

columns='EdLevel',
values='ConvertedCompYearly')

)

Notice that we call so_df.set_index('Country') to temporarily set the country to be
the index of so_df. That allows us to join it with oecd_df—and then create the pivot
table, which is our ultimate goal.

 Now that we know average salaries in all these countries and for all education lev-
els, we can ask some questions of the data. For example, I asked you to determine in
which country someone with an associate’s degree can expect to earn the most. We
could have stored the pivot table to a variable, but instead we chain the relevant meth-
ods together:

(
oecd_df
.join(so_df.set_index('Country'))
.pivot_table(index='Country',

columns='EdLevel',
values='ConvertedCompYearly')

['Associate degree (A.A., A.S., etc.)']
.sort_values(ascending=False)

)

After creating the pivot table, we retrieve the column for associate’s degrees and sort
them from highest to lowest. From the results we see here, it looks like the country
that offers the best pay for people with an associate’s degree is Australia, followed by
Germany and Israel.

 What about PhDs? Do countries that pay well for an associate’s degree also pay well
if you have a PhD or similar post-graduate degree? We can perform a similar query:

(
oecd_df
.join(so_df.set_index('Country'))
.pivot_table(index='Country',

columns='EdLevel',
values='ConvertedCompYearly')

['Other doctoral degree (Ph.D., Ed.D., etc.)']
.sort_values(ascending=False)

)

There does seem to be some overlap; the highest-paying countries for PhDs are Japan,
Australia, France, Israel, and Germany.

245■ Problem
 There may also be some reason to suspect that this data isn’t totally accurate; is it
really possible that the mean salary in Hungary for someone with an associate’s degree
is $63,000/year, whereas with a PhD it’s only $52,000/year? Or that there is a salary
difference of only $12,000/year between Germans with an associate’s degree and a
PhD?

 My point is that data analysis requires more than just number crunching—you also
have to ask whether the numbers make sense. And if they don’t, you should ask your-
self why that may be the case. For example, perhaps the sample sizes are so small that
the data isn’t truly representative of the total population.

REMOVE ROWS FROM SO_DF IN WHICH LANGUAGEHAVEWORKEDWITH IS NAN
Next we want to analyze Python programmers in the Stack Overflow survey. The
LanguageHaveWorkedWith column allows us to identify who they are—but that column
contains text, with languages separated from one another with ; characters. So, some-
one who works with both Python and JavaScript could have a value of Python;Java-
Script. If we want people who work with Python, we need to find those who have
“Python” in that column. For that, we can use str.contains to look inside the string.
But there’s a problem: some survey respondents didn’t fill out this information, which
means it’s NaN. And trying to run str.contains on a NaN value will result in an error.

 We thus need to first remove all rows that contain NaN for LanguageHaveWorked-
With. We can do that by running dropna, telling it to only look at the LanguageHave-
WorkedWith column:

so_df = (
so_df
.dropna(subset=['LanguageHaveWorkedWith'])

)

REMOVE ROWS FROM SO_DF IN WHICH PYTHON ISN’T IN LANGUAGEHAVEWORKEDWITH

Once we’ve done that, we can be sure all values in LanguageHaveWorkedWith are
strings. We apply str.contains and look for “Python”:

so_df = (
so_df
.loc
[so_df['LanguageHaveWorkedWith'].str.contains('Python')]

)

We end up with nearly 40,000 people who use Python—a smaller sample than the
54,000 who responded to the Python survey, but still a substantial sample size. Also,
although the survey asked what languages people had used in the last year, we don’t
know whether they used Python once in the last year, every day, or somewhere in
between.

 Now that we have found the Python developers from Stack Overflow, we would like
to compare them with the respondents to the Python community survey. In particular,
we’d like to know if they have similar levels of experience. But in the data’s original

246 CHAPTER 8 Midway project
form, it’s not possible to determine that: whereas the Python community survey lumps
people into categories (e.g., “Less than 1 year” and “1–2 years”), the Stack Overflow
survey asks for a specific number of years of experience.

REMOVE ROWS FROM SO_DF IN WHICH YEARSCODE IS NAN
To do this, we first remove all rows in which YearsCode is NaN:

so_df = so_df.dropna(subset=['YearsCode'])

IN YEARSCODE, REPLACE “LESS THAN 1 YEAR” WITH 0 AND “MORE THAN 50 YEARS” WITH 51
I asked you to create a new column called experience in the Stack Overflow data
frame, which turns the raw year numbers into categories. We know we can use pd.cut
to accomplish this, but pd.cut works only if all values in a column are numeric—and
in this case, two options are non-numeric: Less than 1 year and More than 50 years.
Our first task is thus to turn those into numbers:

so_df.loc[so_df['YearsCode'] ==
'Less than 1 year', 'YearsCode'] = 0

so_df.loc[so_df['YearsCode'] ==
'More than 50 years', 'YearsCode'] = 51

With these integer values in place, we can turn YearsCode into an integer column:

so_df['YearsCode'] = so_df['YearsCode'].astype(int)

CREATE A NEW COLUMN CALLED “EXPERIENCE” IN SO_DF, CATEGORIZING VALUES IN YEARSCODE

Now we can use pd.cut to re-create the same categories we had in the Python commu-
nity survey:

so_df['experience'] = pd.cut(so_df['YearsCode'],
bins=[-1, 1, 2, 5, 10, 100],

labels=['Less than 1 year',
'1-2 years',
'3-5 years',
'6-10 years',
'11+ years'])

Remember that pd.cut uses the numbers passed to the bins keyword argument as the
extreme edges of the bins it defines—which means if we want to give the first label to
a number of 0, we should start the bin at –1. And yes, there is the option of including
values on the left (or right), but I decided this is easier and ensures that bins don’t
overlap.

ACCORDING TO THE STACK OVERFLOW SURVEY, WHAT PROPORTION OF PYTHON DEVELOPERS HAVE

EACH LEVEL OF EXPERIENCE?
Next, we want to see the distribution of experience levels in the Stack Overflow survey.
We again use value_counts:

11+ years 0.373388
6-10 years 0.318589
3-5 years 0.222530

247■ Solution
1-2 years 0.047440
Less than 1 year 0.038054
Name: experience, dtype: float64

From this, we can see that Stack Overflow respondents are much more experienced
than Python survey respondents. As you may recall, 75% of the Python survey respon-
dents have been using Python for up to five years, whereas in the Stack Overflow sur-
vey, the number of new programmers is about 25%. Half of the Python survey
respondents have been using it for less than two years, whereas that’s true for less than
10% of the Stack Overflow group.

 However, we need to think before we say anything too sweeping when comparing
these surveys. After all, the Stack Overflow survey asked about all the experience the
respondent has had as a programmer, whereas the Python survey asked how long the
person had been programming in Python. The same person, filling out both surveys,
might have been programming in Java for 20 years and Python for only 2 and would
thus have answered the questions differently on each survey. Making such compari-
sons and integrating data from different sources can be tricky and requires some
thought; just joining two data frames isn’t sufficient. That said, it is interesting to see
just how heavily the Python survey skewed toward newcomers and how heavily Stack
Overflow skewed toward experienced developers. The Python community survey
might do well to include an “overall programming experience” question in the future,
to help with such analysis and to better understand how much Python plays a role in
the members of its community.

Solution
py_filename = '../data/2020_sharing_data_outside.csv'
py_df = pd.read_csv(py_filename, low_memory=False)

general_columns = ['age', 'are.you.datascientist',
'is.python.main', 'company.size',
'country.live', 'employment.status',
'first.learn.about.main.ide',
'how.often.use.main.ide',
'is.python.main', 'main.purposes'
'missing.features.main.ide'
'nps.main.ide',
'python.version.most',
'python.years',
'python2.version.most',
'python3.version.most',
'several.projects',
'team.size',
'use.python.most',
'years.of.coding'

]

def column_multi_name(column_name):
if column_name in general_columns:

return ('general', column_name)

248 CHAPTER 8 Midway project
else:
first, rest = column_name.rsplit('.', 1)
return (first, rest)

py_df.columns = pd.MultiIndex.from_tuples(
[column_multi_name(one_column_name)
for one_column_name in py_df.columns])

py_df = py_df[sorted(py_df.columns)]

py_df[('ide', 'main')].value_counts().head(10)

py_df['ide'].value_counts().head(10)

py_df['other.lang'].count().sort_values(ascending=False).head(10)

py_df['general', 'country.live'].value_counts().head(10)

py_df[('general', 'python.years')].value_counts(normalize=True)

(
py_df['general']
[py_df[('general','python.years')] == '11+ years']
.groupby('country.live')['python.years'].count()
.sort_values(ascending=False)
.head(1)

)

country_experience = (
py_df['general']
[['country.live', 'python.years']]

)

all_per_country = (
country_experience['country.live']
.value_counts()

)

expert_per_country = (
country_experience
.loc[

country_experience['python.years'] == '11+ years',
'country.live']

.value_counts()

(expert_per_country / all_per_country).sort_values(
ascending=False).dropna().head(10)

Is that it? No, not at all! But our printing and formatting system requires that we take
a break after 60 lines. And hey, if you’ve been reading more than 60 lines of code,
maybe you should take a break before continuing.

 All set? Here’s the rest of the code:

so_filename = '../data/so_2021_survey_results.csv'
so_df = pd.read_csv(so_filename, low_memory=False)

249■ Solution
so_df.pivot_table(index='Country', columns='EdLevel',
values='ConvertedCompYearly')

oecd_filename = '../data/oecd_locations.csv'
oecd_df = pd.read_csv(oecd_filename, header=None,

index_col=1, names=['abbrev', 'Country'])

(
oecd_df
.join(so_df

.set_index('Country'))
.pivot_table(index='Country',

columns='EdLevel',
values='ConvertedCompYearly')

)

(
oecd_df
.join(so_df.set_index('Country'))
.pivot_table(index='Country',

columns='EdLevel',
values='ConvertedCompYearly')

['Associate degree (A.A., A.S., etc.)']
.sort_values(ascending=False)

)

(
oecd_df
.join(so_df.set_index('Country'))
.pivot_table(index='Country',

columns='EdLevel',
values='ConvertedCompYearly')

['Other doctoral degree (Ph.D., Ed.D., etc.)']
.sort_values(ascending=False)

)

so_df = so_df.dropna(subset=['LanguageHaveWorkedWith'])
so_df = so_df[so_df['LanguageHaveWorkedWith'].str.contains('Python')]

so_df.shape

so_df = so_df.dropna(subset=['YearsCode'])

so_df.shape

so_df.loc[so_df['YearsCode'] ==
'Less than 1 year', 'YearsCode'] = 0

so_df.loc[so_df['YearsCode'] ==
'More than 50 years', 'YearsCode'] = 51

so_df['YearsCode'] = so_df['YearsCode'].astype(int)

so_df['experience'] = pd.cut(so_df['YearsCode'],
bins=[-1, 1, 2, 5, 10, 100],

250 CHAPTER 8 Midway project
labels=['Less than 1 year',
'1-2 years',
'3-5 years',
'6-10 years',
'11+ years'])

so_df['experience'].value_counts(normalize=True)

Summary
Whew! This was a big, long exercise, meant to help you integrate and use many of the
ideas and techniques we’ve discussed in this book so far. Of course, there are many
pieces of pandas that we didn’t use in this project—but to be honest, it’s a rare project
that uses all the capabilities pandas has to offer. That said, we did a lot of things here:
loading and cleaning data, joining data frames, analyzing data, and even comparing
different data sets and thinking critically about how trustworthy they are. If you felt
comfortable with all the techniques in this project, I’d say you’re well on your way to
internalizing the way pandas does things and using it productively in your projects.

Strings
When most people think of pandas or data analysis in general, they think of num-
bers. And indeed, much of the work that people do with pandas is with numbers.
That’s why pandas is built on top of NumPy, which takes advantage of C’s fast, effi-
cient integers and floats. And that’s why so many of the exercises in this book
involve working with numbers.

 However, we often have to work with textual data—usernames, product names,
sales regions, business units, ticker symbols, and company names are just a few
examples. Sometimes the text is central to the analysis you’re doing—such as when
you’re preparing data for a text-based machine-learning model—and other times,
it’s secondary to the numbers and used as a description or categorical data.

 It turns out that pandas is also well-equipped to handle text. It does this not by
storing string data in NumPy but rather by using fully fledged string objects: either
those that come with Python or (more recently) a pandas-specific string class that
reduces both ambiguity and errors. (I’ll have more to say about these two string
types and when to use each one later in the chapter.) In either case, we can apply a
wide variety of string methods to our data.

 This is normally done via the str accessor, available on every pandas series that
contains strings. When we invoke a method via str, we get back a new series. The
returned series can replace the existing one, be assigned to a new variable, or be
assigned as a new column alongside the original one.

 In this chapter, you’ll work through exercises that help you identify and under-
stand how to work with textual data and the str accessor in pandas. After going
through these exercises, you’ll know which string methods are available, feel more
comfortable using them, and know how to apply your own custom functions to
string columns.
251

252 CHAPTER 9 Strings
Text data types
For many years, pandas used Python’s internal string type to store text. This was a
big improvement over NumPy, which stores characters in C arrays—more efficient
than Python strings but with much more limited functionality. To refer to such Python
strings, pandas assigned a dtype of object. The good news is that this worked fairly
well, giving great string functionality within pandas. The bad news was that a series
could contain any type of Python object, not just strings. This led to bugs because we
could accidentally store a list, dictionary, or None into such a column without noticing.
After all, these are all Python objects, so there was no way for pandas to stop us from
adding them.

Pandas 1.0.0 added a new pd.StringDtype to solve such problems. As the name
indicates, it is meant to be used as a dtype on a series. Because it’s specific to
textual data, we cannot mix it up with other types of objects. Further, the pandas doc-
umentation indicates that this will, at some point, be the standard string type for
pandas.

But wait—previously, a series with a dtype of object could be a string and could
also be NaN. What happens now? After all, NaN isn’t an instance of pd.StringDtype
but rather of float. The answer is that if you’re going to use pd.StringDtype, you
should also use pd.NA instead of NaN. You can think of pd.NA as a more flexible ver-
sion of NaN that is compatible with all pandas dtypes.

Should you use pd.StringDtype? As of this writing, the pandas documentation is
inconsistent: on the one hand, it lists several benefits of pd.StringDtype. On the
other hand, it says “StringDType is considered experimental. The implementation
and parts of the API may change without warning.”

In this chapter, I’ll assume that you are using the old-fashioned (and definitely stable)
object type in your columns. However, you will likely need (and want) to switch to
pd.StringDType in the future. If all goes well, doing so will mean no changes to your
programs other than better checking of your values and potentially even better
performance.

Table 9.1 What you need to know

Concept What is it? Example To learn more

s.explode Returns a new series with
each element on its own
line

s.explode() http://mng.bz/RxDP

str.contains Returns a series of bool-
eans, indicating which ele-
ments of the input series
contain the target string

s.str.contains('a'
)

http://mng.bz/2D2X

str.get_dummies Returns a data frame con-
taining 1s and 0s based
on a categorical series

s['country'].get_d
ummies(sep=';')

http://mng.bz/1q2g

http://mng.bz/RxDP
http://mng.bz/2D2X
http://mng.bz/1q2g

253■CHAPTER 9 Strings
str.index Returns a series of inte-
gers, each indicating
where the target string
was found in the corre-
sponding element of the
input series

s.str.index('a') http://mng.bz/PzEP

str.len Returns a series of inte-
gers indicating the length
of each element

s.str.len() http://mng.bz/Jg0v

str.replace Returns a series based on
an existing series, replac-
ing the first argument with
the second

s.str.replace('a',
'e')

http://mng.bz/wv6Q

str.split Returns a series in which
each element is a list of
strings; the argument
specifies the delimiter
used to perform the split

s.str.split(';') http://mng.bz/qrD2

str.strip Returns a series of Python
strings without the argu-
ment’s characters on
either side

s.str.strip('.!?') http://mng.bz/7D2y

s.isin Returns a boolean series
indicating whether a value
in s is an element of the
argument

s.isin(['A', 'B',
'C'])

http://mng.bz/mVW2

i.intersection Returns a new index object
containing elements in two
existing index objects

i.intersection(i2) http://mng.bz/5w21

The str accessor
Traditional Python strings support a large number of methods and operators ranging
from search (str.index) to replacement (str.replace) to substrings (slices) to
checks of the string’s content (e.g., str.isdigit and str.isspace). But if we have
a series containing strings, how can we invoke such a method on every element?

Experienced Python developers would normally use a for loop or perhaps a list com-
prehension. But in pandas, we do whatever we can to avoid such loops because of
their inefficiency. We could use the apply method, invoking a function to every ele-
ment of a series. And indeed, apply is needed if we want to use a custom function.

In many cases, though, there’s a better way: the str accessor. Using str gives us
access to a variety of string methods—including, but not limited to, standard Python

Table 9.1 What you need to know (continued)

Concept What is it? Example To learn more

http://mng.bz/PzEP
http://mng.bz/Jg0v
http://mng.bz/wv6Q
http://mng.bz/qrD2
http://mng.bz/7D2y
http://mng.bz/mVW2
http://mng.bz/5w21

254 CHAPTER 9 Strings
(continued)

string methods. A method invoked via str is applied to every element in the series.
It returns a new series of the same length and with the same index, whose values
are the results of invoking the method on each element. For example, we can get the
length of a string by invoking the len method on the str accessor:

s = Series('this is a test 123 456'.split())
s.str.len()

The result is a new series containing the lengths of the values in s:

0 4
1 2
2 1
3 4
4 3
5 3
dtype: int64

Getting the lengths of all strings in a series with .str.len()

What if we want to find all values in s that can be turned into integers?

s.str.isdigit()

The result is a boolean series indicating which values contain only the characters
0–9:

0 False
1 False
2 False

6

5

4

3

2

1

456

123

test

a

is

this

str.len()

3

3

4

1

2

6

5

4

3

2

1 4

255■CHAPTER 9 Strings
3 False
4 True
5 True
dtype: bool

Because it contains only booleans and shares an index with s, it’s suitable for use
as a boolean (mask) index on s to find numeric values:

s.loc[s.str.isdigit()]

Finding which elements of a series contain only digits

The str accessor supports methods beyond those available in Python’s str class.
For example, we can search in a string using contains. However, contains allows
us to use a regular expression. We can thus find all words containing either a or e:

s.str.contains('[ae]')

This query returns the following series:

0 False
1 False
2 True
3 True
4 False
5 False
dtype: bool

6

5

4

3

2

1

456

123

test

a

is

this

str.isdigit()

False

False

False

False

False

6

5

4

3

2

1 False

256 CHAPTER 9 Strings
EXERCISE 36 ■ Analyzing Alice
In this exercise, we’ll look at the famous book Alice in Wonderland, the text of which is
made freely available via Project Gutenberg and included with the data files for this
book. Here is what I’d like you to do:

(continued)

Finding which elements of a series contain either a or e:

Applied to our original series s, we can find all words that contain either a or e:

s.loc[s.str.contains('[ae]')]

This results in

2 a
3 test
dtype: object

Note that although str.contains currently (as of this writing) defaults to treating its
argument as a regular expression, there are plans for that default value to change.
It’s thus a good idea to be explicit about your intentions by passing regex=True so
the string isn’t taken literally:

s[s.str.contains('[ae]', regex=True)]

The str accessor makes it easy to use pandas to call string methods and work with
textual data. However, you should spend some time reviewing the list of string meth-
ods in the pandas documentation to get a good sense of what they are and what they
can do.

6

5

4

3

2

1

456

123

test

a

is

this

False

False

True

True

False

6

5

4

3

2

1 False

str.contains
('[ae]')

257EXERCISE 36 ■ Analyzing Alice
1 Open the file alice-in-wonderland.txt, and read it into a pandas series or data
frame such that each word is a separate value. (If you choose to read it as a
data frame, that’s fine. I’ll refer to the “series” or “column” when describing the
data in this exercise.)

2 Answer these questions:

– What are the 10 most common words in the book?
– Does this change if you count the words without regard to case?
– Does this change if you remove all the punctuation (as defined in string

.punctuation) from the beginning and end of each word?
– How many capitalized words does the book contain?
– If you ignore punctuation and quotes before the start of a word, how many

capitalized words does the book contain?
– Count the number of vowels (a, e, i, o, and u) in each word. What is the aver-

age number of vowels per word?

Working it out

In this exercise, we use the string functionality in pandas in a variety of ways. To begin,
I asked you to read the contents of Alice in Wonderland into a series. Normally, we don’t
read text files into pandas—although to be honest, a library such as pandas has so
many users and use cases that it’s possible people do this on a regular basis. If you
were to feed open(filename) into Series, the series would contain the lines from
alice-in-wonderland.txt. Instead of that, I asked you to create a series containing the
separate words from the file.

 To turn the file into a series of words, we need to do the following:

1 Read the entire file into Python as a string with the read method.
2 Break the string into a list of strings with the str.split method.
3 Turn the resulting list into a series.

Here’s the code we use to do this:

filename = '../data/alice-in-wonderland.txt'
s = Series(open(filename).read().split())

NOTE The read method returns a string containing the contents of the file.
What if the file contains several terabytes of data? Unless the IT department at
your company is unusually generous, you’ll find yourself running out of mem-
ory. Normally, I suggest that people not read an entire file into memory at
once and instead iterate over its lines. In this particular case, I know the file is
small and there won’t be any problems with reading it all at once.

With our series in place, we can analyze the text it contains. First, I asked you to find
the most common words. As we’ve seen countless times before, value_counts will
help us here. Invoking it on our series returns a new series whose index contains our
words (i.e., the values from s) and whose values (sorted in descending order) are inte-
gers describing how many times each word appears in s:

https://github.com/reuven/pandas-workout

258 CHAPTER 9 Strings
s.value_counts()

Not surprisingly, the most common words are the, and, a, and to. But what if these
words appeared at the start of a sentence? They would be capitalized and wouldn’t be
included in our count. How can we transform all the words to lowercase and then find
how common they are? We can use the str accessor to run the lower method on our
series. That returns a new series of strings on which we can run value_counts:

s.str.lower().value_counts().head(10)

But wait a second—because of the way we create our series, using whitespace charac-
ters to indicate the boundary between words, it’s possible that the words have punctu-
ation marks before or after their letters. I thus asked you to repeat the query for the 10
most common words, but only after removing/ignoring punctuation characters. This
turns out to be easier than you may imagine using the str.strip method. This
method is typically use to remove whitespace from the start or end of a string:

s = ' abc '
s.strip()

But we can also pass a string argument to str.strip, removing any characters that
appear in that argument from the start or end of the string:

s = ':;:;abc:;:;'
s.strip(':;')

The string module provides a number of predefined strings, including
string.punctuation, which comes in handy on such occasions:

import string
s = ':;:;abc:;:;'
s.strip(string.punctuation)

Given a series s containing strings, we can get a new series containing those same
strings, but without leading and trailing punctuation, by invoking split via the str
accessor:

s.str.strip(string.punctuation)

To find the 10 most common words in s, ignoring punctuation, we can thus say

(
s
.str
.strip(string.punctuation)
.value_counts()
.head(10)

)

And although I didn’t ask you to do this, we could get the 10 most common words,
ignoring both case and punctuation:

Returns 'abc'

Returns 'abc' after removing all occurrences
of : and ; from the start and end of s

Returns 'abc'

259EXERCISE 36 ■ Analyzing Alice
(
s
.str
.lower()
.str
.strip(string.punctuation)
.value_counts()
.head(10)

)

Notice that we use str twice here: once to run lower on the original series s and a sec-
ond time to run strip on the series of strings returned by str.lower. We’ll see more
examples of this as we review the other parts of this exercise.

 Next, I asked you to count the number of capitalized words in the book. This
means finding all words that begin with a capital letter, from A through Z. There are
several ways to do this, but my favorite is to use a regular expression. Given that the
pandas string method str.contains supports regular expressions, we can say the
following:

s.str.contains('^[A-Z]\w*$',
regex=True)

This returns a boolean series with the same index as s. The value is True whenever the
word starts with a capital letter (anchored to the start of the string with ^) and con-
tains zero or more alphanumeric characters (\w*) through the end of the word. (We
have to allow for zero or more characters because of single-letter capitalized words
such as A and I.)

 With this in hand, we can apply the boolean series to s:

(
s
.loc[s.str.contains('^[A-Z]\w*$', regex=True)]

)

Then we can apply the count method to find how many values the series contains:

(
s
.loc[s.str.contains('^[A-Z]\w*$', regex=True)]
.count()

)

But wait: what if the word has a punctuation mark, such as quotes, before the initial
capital letter? To get an accurate count, we need to remove punctuation from both
ends of the words and look for which are capitalized. Here’s how we can do that:

(
s
.loc[s.str.strip(string.punctuation)
.str

Words starting with a capital
letter followed by zero or more
alphanumeric characters

260 CHAPTER 9 Strings
.contains('^[A-Z]\w*$', regex=True)]

.count()
)

Here we first remove punctuation from the start and end of each word and feed the
resulting series into str.contains with our regular expression. That returns a bool-
ean series we can apply back to s, thus finding the total number of capitalized words.

 Next, I asked you to calculate the mean number of vowels in each word. This
requires first finding a way to calculate the number of vowels in each word and then
calculating the mean value. The easiest way to do this is with the apply method, which
lets us run a function of our choice on each element of the series. We start by writing a
function that counts vowels:

def count_vowels(one_word):
total = 0
for one_letter in one_word.lower():

if one_letter in 'aeiou':
total += 1

return total

This is a simple Python function that takes a string as an argument, counts the vowels
in it, and returns an integer. We can apply this function to every element of our series
s, getting a new series back:

s.apply(count_vowels)

I asked for the mean number of vowels in each word. Because we now have a series of
integers, we can get that back with

s.apply(count_vowels).mean()

Solution

filename = '../data/alice-in-wonderland.txt'
s = Series(open(filename).read().split())

s.value_counts().head(10)
s.str.lower().value_counts().head(10)
s.str.strip(string.punctuation).value_counts().head(10)

(
s
.loc[s.str.contains('^[A-Z]\w*$', regex=True)]

)

(
s
.loc[s.str.contains('^[A-Z]\w*$', regex=True)]
.count()

)

Creates a series based
on the words in the file

Which 10 words
appear most often?

If we ignore case,
which 10 words
appear most often?

If we ignore punctuation before
and after the word, which 10

words appear most often?

How many capitalized
words appear in the book?

Ignoring leading and trailing
punctuation, how many
capitalized words appear?

261EXERCISE 37 ■ Wine words
def count_vowels(one_word):
total = 0
for one_letter in one_word.lower():

if one_letter in 'aeiou':
total += 1

return total

s.apply(count_vowels).mean()

You can explore a version of this in the Pandas Tutor at http://mng.bz/y82d.

Beyond the exercise

 What is the mean of all integers in Alice?
 What words in Alice don’t appear in the dictionary? Which are the five most

common such words? (For the purposes of this exercise, I used a version of
Linux’s dictionary file available from http://mng.bz/MZWB.)

 What are the minimum and maximum number of words per paragraph?

EXERCISE 37 ■ Wine words
If you’re like me, you may enjoy having a glass of wine with your dinner. On occasion,
you may even read the wine’s description on the back of the bottle, where the wine-
maker uses flowery language to describe the winemaking process and the flavors you
may detect when drinking the wine. I know I’m not the only person who sometimes
raises an eyebrow at the words used in these descriptions. I decided to use pandas to
better understand what words are used in describing wine and whether we can find
any interesting insights from these words.

 We looked at the wine-review database earlier, in exercise 35. In this exercise, we’ll
examine the words that reviewers use to describe the wines and see if particular words
are more likely to occur related to specific provinces and varieties. Along the way, we’ll
find ways to use pandas to analyze text in some new ways. Here’s what I want you to do:

1 Open the file winemag-150k-reviews.csv, and read it into a data frame. You only
need the columns country,province,description, and variety.

2 Answer these questions:

– What are the 10 most common words containing five or more letters in the
wine descriptions? Turn all words into lowercase and remove all punctuation
and symbols at the start or end of each word for easier comparison. Also
remove the words flavors, aromas, finish, palate, and drink.

– What are the 10 most common words for non-California wines?
– What are the 10 most common words for French wines?
– What are the 10 most common words for white wines? For our purposes,

look for Chardonnay, Sauvignon Blanc, and Riesling.

Defines a function that returns the
number of vowels in a given string

What is the mean number
of vowels in our words?

http://mng.bz/y82d
http://mng.bz/MZWB
https://github.com/reuven/pandas-workout

262 CHAPTER 9 Strings
– What are the 10 most common words for red wines? For our purposes, look
for Pinot Noir, Cabernet Sauvignon, Syrah, Merlot, and Zinfandel.

– What are the 10 most common words for rosé wines?

3 Show the 10 most common words for the five most common wine varieties.

Working it out

First, I asked you to create a data frame with the wine information. We only need four
columns, so we can load just those:

filename = '../data/winemag-150k-reviews.csv'
df = pd.read_csv(filename,

usecols=['country','province',
'description', 'variety'])

Next I wanted to start performing some analysis on the words. But because we’ll be
running the same type of analysis on different subsets of the data frame, we can bene-
fit from writing a function. What does this function need to do?

 Accept a series of text (i.e., wine descriptions)
 Turn the text into lowercase (for easier comparison)
 Turn that into a series of individual words
 Remove leading and trailing punctuation
 Remove words with fewer than five letters
 Remove common wine-related words
 Find the 10 most commonly occurring words

Fortunately, it’s not difficult to write such a function, which we call top_10_words. The
function expects to receive one argument, a pandas series of strings, which we call s.
Each string in the series is assumed to contain multiple words separated by
whitespace.

 The first thing we want to do is turn all the strings in the series to lowercase for eas-
ier counting. We can do that using the str accessor and the lower method:

words = (
s
.str
.lower()
)

We next want to turn our series of sentences into a series of words. That is, instead of
having multiple words in each row, we want a single word in each row. This means
we’ll create a series that’s larger—potentially much larger—than the input series s.

 If you’re familiar with Python string methods, you won’t be surprised that we use
the split method here via the str accessor. (Note that this means we need to specify
str a second time so we can run split on each element of the series returned from
str.lower().) split takes a string and breaks it apart wherever it encounters a

263EXERCISE 37 ■ Wine words
delimiter such as : or ,. In this case, we don’t specify a delimiter, so split uses any
whitespace—space, tab, newline, carriage return, or vertical tab—to break the strings
apart:

words = (
s
.str
.lower()
.str
.split()

)

The good news is that we have separated the words from one another. The bad news is
that our series still contains the same number of rows as before. Now each row con-
tains a list of strings rather than a single string.

 Fortunately, the explode method takes a series containing an iterable of objects
(e.g., a list of strings) and returns a new series in which each object has its own row.
We can thus get each word in its own row as follows:

words = (
s
.str
.lower()
.str
.split()
.explode()

)

We could stop there, but let’s clean things up a bit more by removing any punctuation
characters at the beginning or end of any word. That will avoid problems when count-
ing words that come at the start or end of a sentence; otherwise we might include
leading and trailing punctuation. The easiest way to do this is with the Python
str.strip method. We normally think of strip as a method that removes whitespace
at the start or end of a string, but that’s just the default behavior. We can pass a string
containing characters we want to remove from the beginning and end of each string.
The result is a new series in which the strings don’t have any of these characters at
their start or end:

words = (
s
.str
.lower()
.str
.split()
.explode()
.str
.strip(',$.?!$%')

)

We now have in words a series containing individual, lowercase words without any
leading or trailing punctuation. Next we want to remove words that have fewer than

264 CHAPTER 9 Strings
five letters. We can do that using a boolean index based on the output from the len
method on the str accessor:

words.loc[(words.str.len()>=5)]

But that’s not the only filter we want to put on words. We also want to remove a num-
ber of common words that crop up in nearly every wine description or review. We can
use the isin method in a series, passing a list of strings as an argument, to determine
which rows are and aren’t in that list:

common_wine_words = ['flavors', 'aromas', 'finish', 'drink', 'palate']
~words.isin(common_wine_words)

We can combine these two mask indexes to get only words that contain at least five
characters and don’t appear in common_wine_words:

(
words
.loc[(words.str.len()>=5) &

(~words.isin(common_wine_words))]
)

Note that we use ~, the boolean “not” operator in pandas, to flip the boolean index
that we get back from words.isin.

 Our function is called top_10_words because it’s supposed to return the 10 most
common words found in the wine reviews. Given that words is now a series of words,
we can run value_counts, followed by head(10), and return the 10 words most com-
monly found:

return (
words
.loc[(words.str.len()>=5) &

(~words.isin(common_wine_words))]
.value_counts()
.head(10)

)

With this, we have a complete function, top_10_words, that we can apply to any series
of words:

def top_10_words(s):
common_wine_words = ['flavors', 'aromas',

'finish', 'drink', 'palate']

words = s.str.lower().str.split(
).explode().str.strip(',$.?!$%')

return (
words
.loc[(words.str.len()>=5) &

(~words.isin(common_wine_words))]
.value_counts()

265EXERCISE 37 ■ Wine words
.head(10)
)

We can apply our function to all wines in the review database:

top_10_words(df['description'])

I asked you to find the 10 most common words used in French wine reviews. We need
to extract the description column for wines made in France:

df.loc[df['country'] == 'France', 'description']

We can pass the resulting series to top_10_words:

top_10_words(
df
.loc[df['country'] == 'France',

'description']
)

Next, I asked you to find the words most commonly associated with wines made out-
side of California. We need to search on the province column and then apply the !=
operator to find those from outside of that state:

top_10_words(
df
.loc[df['province'] != 'California',
'description']
)

Notice that in this data set, you have to pay attention to the province column, which is
distinct from the country column. Additional columns allow you to zero in on a par-
ticular region within a country; as you may know, different regions are known for pro-
ducing not only different types of wines but also distinctive flavors specific to those
regions.

 Next, I thought it would be interesting to compare the words used most often for
white, red, and rosé wines. I gave a (very nondefinitive) list of wines of each type and
asked you to find the top 10 words used in each of their descriptions. The queries are
identical except for the lists:

top_10_words(
df.loc[df['variety']

.isin(['Chardonnay',
'Sauvignon Blanc',
'Riesling']),

'description'])

top_10_words(
df.loc[df['variety']

.isin(['Pinot Noir',
'Cabernet Sauvignon',
'Syrah', 'Merlot',

266 CHAPTER 9 Strings
'Zinfandel']),
'description'])

top_10_words(
df.loc[df['variety'] == 'Rosé',

'description'])

Notice how the isin method allows us to perform an “or” search—one that we could
certainly do with pandas boolean operators and a mask index but that is shorter and
more readable with isin.

 Finally, I asked you to find the 10 most common words for the five most commonly
mentioned wine varieties. To do that, we first need to determine the five most-men-
tioned varieties:

(
df['variety']
.value_counts()
.head(5)
.index

)

Here we run value_counts on the varieties to determine how common each variety is
in the database. We use head(5) to find the five most common varieties. We can then
find all reviews for one of these varieties using isin:

(
df
.loc[df['variety']

.isin(df['variety']
.value_counts()
.head(5)
.index),

'description']
)

Notice that we couldn’t just use isin on the values we got back from value_counts,
because those would be numbers. Instead, we have to check the index of the resulting
series, which contains words.

 Finally, we can find the top 10 words used in reviews for these varieties by again
applying our function, top_10_words:

top_10_words(
df
.loc[df['variety']

.isin(df['variety']
.value_counts()
.head(5)
.index),

'description']
)

267EXERCISE 37 ■ Wine words
Solution

filename = '../data/winemag-150k-reviews.csv'
df = pd.read_csv(filename,

usecols=['country','province',
'description', 'variety'])

def top_10_words(s):
common_wine_words = ['flavors', 'aromas',

'finish', 'drink', 'palate']

words = (
s
.str.lower()
.str.split()
.explode()
.str.strip(',$.?!$%')
)

return (
words
.loc[(words.str.len()>=5) &

(~words.isin(common_wine_words))]
.value_counts()
.head(10)

)

top_10_words(df['description'])
top_10_words(df.loc[df['country'] ==

'France', 'description'])

top_10_words(df.loc[df['province'] !=
'California', 'description'])

top_10_words(
df.loc[df['variety']

.isin(['Chardonnay',
'Sauvignon Blanc',
'Riesling']),

'description'])

top_10_words(
df.loc[df['variety']

.isin(['Pinot Noir',
'Cabernet Sauvignon',
'Syrah', 'Merlot',
'Zinfandel']),

'description'])

top_10_words(
df.loc[df['variety'] == 'Rosé',

'description'])

top_10_words(
df
.loc[df['variety']

.isin(df['variety']

268 CHAPTER 9 Strings
.value_counts()

.head(5)

.index),
'description']

)

You can explore a version of this in the Pandas Tutor at http://mng.bz/aE4m.

Beyond the exercise

 Which country’s wines got the highest average score?
 Create a pivot table in which the index contains countries, the columns contain

varieties, and the cells contain mean scores. Include only the top 10 varieties.
 What is the correlation between the number of wines offered by a country and

the mean score for that country? That is, does a country that submits more
wines to competitions get, on average, a higher score than one that submits
fewer wines to competitions?

EXERCISE 38 ■ Programmer salaries
In the Stack Overflow survey we examined in chapter 8, developers indicated which
programming languages they’re currently using. Unfortunately, the languages are in a
single text column separated by semicolons. In this exercise, you’ll work with that
data, extracting and analyzing it in a variety of ways:

1 Open the file so_2021_survey_results.csv, and read it into a data frame. You only
need the columns LanguageHaveWorkedWith, LanguageWantToWorkWith,
Country, and CompTotal.

2 Answer these questions:
– What are the different programming languages that developers currently use?
– What are the 10 programming languages most commonly used today?
– What are the 10 programming languages people most want to use?
– What languages are on both top-10 lists?
– What languages in the top 10 have people worked with but don’t want to work

with in the future?
– What is the most popular (current) language used by people in each country?
– What is the mean number of languages used in the last year?
– What is the greatest number of languages people listed as having used in the

last year?
– How many people chose that largest number?
– How many people in the survey claim salaries of $2 million or more?

3 Remove rows in which salaries are less than $2 million.
4 Turn the LanguageHaveWorkedWith column into “dummy” columns in df such

that each language is its own column.

http://mng.bz/aE4m
https://github.com/reuven/pandas-workout

269EXERCISE 38 ■ Programmer salaries
5 Determine what combination is best if you want to maximize your salary and
have to choose two languages from Python, JavaScript, and Java.

Working it out

In this exercise, we look at one of the most useful and interesting parts of the Stack
Overflow survey: the list of programming languages that participants marked them-
selves as having used in the last year. The good news is that we have rich data that can
give us insights into developers from around the world. The bad news is that these lan-
guages are all in a single column of the original CSV, making the data challenging to
work with. This exercise uses a number of techniques to work with such data.

 To begin with, we load the Stack Overflow data by reading it all into a data frame:

filename = '../data/so_2021_survey_results.csv'
df = pd.read_csv(filename,

usecols=['LanguageHaveWorkedWith',
'LanguageWantToWorkWith',
'Country', 'CompTotal'])

To reduce memory usage and allow pandas to correctly determine what type of data
should be in each column, we specify which columns we want to load into the data frame.

 The first question we want to answer is which programming languages program-
mers currently use. The answers are all in LanguageHaveWorkedWith, a text (string)
column. However, people answering the survey could provide more than one
answer—which explains why this field contains numerous subfields separated by semi-
colons. For example, here are five rows from the file:

0 C++;HTML/CSS;JavaScript;Objective-C;PHP;Swift
9 C++;Python
11 Bash/Shell;HTML/CSS;JavaScript;Node.js;SQL;Typ...
12 C;C++;Java;Perl;Ruby
16 C#;HTML/CSS;Java;JavaScript;Node.js

Notice that in the third row, the respondent indicated so many programming lan-
guages that pandas doesn’t even display all of them by default, ending the string with
… (an elipsis).

Pandas display options
You can change the maximum width of a column displayed by pandas by setting the
display.max_colwidth option. For example:

pd.set_option('display.max_colwidth', 100)

You can set it back to the original value with pd.reset_option:

pd.reset_option('display.max_colwidth')

Full documentation about pandas display options is at http://mng.bz/gvYv.

http://mng.bz/gvYv

270 CHAPTER 9 Strings
To query the data frame based on which programming language(s) people used, we
need to be able to treat these strings as separate fields, not just as large strings. The
best way to do that, as we saw in exercise 37, is to first run split on our string column
(resulting in a series of Python lists) and run the explode method on the result
(figure 9.1):

(
df['LanguageHaveWorkedWith']
.str.split(';')
.explode()

)

C++;HTML/CSS;JavaScript;Objective-C;PHP;Swift

C++;Python

Bash/Shell;HTML/CSS;JavaScript;Node.js;SQL;TypeScript

['C++', 'HTML/CSS', 'JavaScript', 'Objective-C', 'PHP', 'Swift']

0

9

11

0

9

11

['C++', 'Python']

['Bash/Shell', 'HTML/CSS', 'JavaScript', 'Node.js', 'SQL',
'TypeScript']

.str.split(';')

0

0

0

0

0

0

9

9

11

11

11

11

11

11

C++

HTML/CSS

JavaScript

Objective-C

PHP

Swift

C++

Python

Bash/Shell

HTML/CSS

JavaScript

Node.js

SQL

TypeScriptFigure 9.1 We can use split and explode to turn a
series of text into a series of individual words.

271EXERCISE 38 ■ Programmer salaries
The result of this query is a series of strings—all the different strings the Language-
HaveWorkedWith column contained. But now, each programming language is in a sep-
arate row. This allows us to count them using value_counts:

(
df['LanguageHaveWorkedWith']
.str.split(';')
.explode()
.value_counts()

)

This way, we can see how many times each language was mentioned, sorted from the
most popular (JavaScript) to the least popular (APL). We’re only interested in the 10
most commonly found languages, so we cut off the result after the top 10:

(
df['LanguageHaveWorkedWith']
.str.split(';')
.explode()
.value_counts()
.head(10)

)

We’re actually less interested in the numbers than in the names of those languages.
We can thus request the index from the returned series:

(
df['LanguageHaveWorkedWith']
.str.split(';')
.explode()
.value_counts()
.head(10)
.index

)

Finally, we assign that to a variable, have_worked_with, because we’ll need these val-
ues shortly and it’s easier to work with them from a variable than a long, repeated
query:

have_worked_with = (
df['LanguageHaveWorkedWith']
.str.split(';')
.explode()
.value_counts()
.head(10)
.index

)

Next, we perform the same query on the column LanguageWantToWorkWith contain-
ing the answers to the question “What language do you hope to work with in the next
year?” Other than the name of the column and the variable to which we assign the
results, the query is the same:

272 CHAPTER 9 Strings
want_to_work_with = (
df['LanguageWantToWorkWith']
.str.split(';')
.explode()
.value_counts()
.head(10)
.index

)

Next, I asked what languages are on both top-10 lists. Because pandas index objects
are similar to series, we could run the isin method, asking which elements of
want_to_work_with are in have_worked_with and using the resulting boolean index
on want_to_work_with:

(
want_to_work_with
.loc[want_to_work_with.isin(have_worked_with)]

)

But it turns out that pandas makes it easy to do this with the intersection method.
Note that this method works on index objects and not on series:

want_to_work_with.intersection(have_worked_with)

Next, I asked you to determine which languages in the top 10 people have worked
with but don’t want to work with in the coming year. We can again use isin to find
which elements of have_worked_with are in want_to_work_with:

have_worked_with.isin(want_to_work_with)

This returns a boolean index. We can reverse it with ~ to find which elements of
have_worked_with are not in want_to_work_with:

~have_worked_with.isin(want_to_work_with)

Now we can apply the resulting boolean index to have_worked_with:

(
have_worked_with
[~have_worked_with.isin(want_to_work_with)]

)

And we discover that despite their current popularity, people aren’t excited about
working with either shell scripts or C++ in the future. (I understand and agree!)

 Next, I asked you to find out which language is most popular in each country. That
is, we’ve already found that JavaScript is the most popular programming language
overall—is this universally true? Our data frame has a Country column, so it stands to
reason that we can use groupby to find the most popular language per country. But
there’s a problem: the languages are all in the LanguageHaveWorkedWith column. If
we use explode to put each language on its own row, the resulting series is a different
length than df, meaning we cannot add it as a new column.

273EXERCISE 38 ■ Programmer salaries
 However, the series we get back from explode has the same index as the original
series on which it was run. So if the original column had an index of 0 and mentioned
both Python and JavaScript, the resulting series has two rows, both with an index of 0,
one with Python and the other with JavaScript. This means although we cannot assign
the exploded series as a column, we can use join to merge the series onto the data
frame.

 First, let’s create a new series, all_languages, containing the programming lan-
guages. We don’t need to do this, but it will make the join easier to understand:

all_languages = (
df
['LanguageHaveWorkedWith']
.str.split(';')
.explode()

)

Then we can perform our join. Note that although join is a method on data frames
(not series), we can pass either a data frame or a series as the argument to it. In other
words, we can say

df.join(all_languages)

Actually, this code doesn’t work: we get an error because the data frame that results
from this join would have two columns named LanguageHaveWorkedWith. There are
several ways to solve this problem: we could set LanguageHaveWorkedWith.name to a
different value, or we could pass a value to one or both of the lsuffix or rsuffix
parameters, adding a suffix to joined columns from the left or right and thus avoiding
a clash. But I think the easiest approach is to realize that we really only care about the
Country column in the data frame, meaning we can run join on it and it alone:

df[['Country']].join(all_languages)

Notice that we use double square brackets around 'Country' to ensure that the result
is a data frame rather than a series. Now that we’ve created this new data frame, we
can use groupby on it:

(
df[['Country']]
.join(all_languages)
.groupby('Country')

)

This gives us a groupby object, but now we have to apply a method. And what aggrega-
tion method should we use? The normal choices are mean, count, and std, but here
we want the value that appears the most, often known as the mode. However, there isn’t
any mode method we can apply—at least, no such method is provided directly. How-
ever, we can use the method pd.Series.mode, applying it by passing it to the agg
method on our groupby object:

274 CHAPTER 9 Strings
(
df[['Country']]
.join(all_languages)
.groupby('Country')
.agg(pd.Series.mode)

)

The result is a one-column data frame whose index contains country names and
whose values represent the most popular language in each country. We can even find
the relative popularity of different languages with value_counts:

(
df[['Country']]
.join(all_languages)
.groupby('Country')
.agg(pd.Series.mode)
.value_counts()

)

Next, I asked you to find the mean number of languages that developers used in the
last year. What we can do is break LanguageHaveWorkedWith into pieces and then run
len on that list. That gives us a series of integers on which we can run mean:

(
df['LanguageHaveWorkedWith']
.str.split(';')
.str.len()
.mean()

)

Notice that we have to use the str accessor twice here: first to run the split method,
turning our series of strings into a series of lists, and a second time to run len on each
element, giving us a series of integers—on which we can run mean. And yes, we’re
using the str accessor to run len on lists; the accessor will try to run the method on
whatever data it has, and because lists also support len, we’re fine.

 Next, I wanted you to determine the greatest number of languages anyone indi-
cated they used in the last year. We can do that by running max:

(
df['LanguageHaveWorkedWith']
.str.split(';')
.str.len()
.max()

)

At least one person said they worked with 38 different programming languages in the
last year—out of the 38 listed on the survey questionnaire. This leads me to wonder if
they simply checked all the boxes. Maybe others did the same thing. I asked you to
determine how many people marked that same number of languages:

(
df

275EXERCISE 38 ■ Programmer salaries
.loc[df['LanguageHaveWorkedWith']
.str.split(';')
.str.len() == 38,

'LanguageHaveWorkedWith']
.count()

)

Here we use the length of the post-split list in a comparison, resulting in a boolean
index. We apply the boolean index to the column LanguageHaveWorkedWith and
apply count to find out how many rows match.

 Next, I asked you to look at developer salaries as reported in the survey. First, how
many developers are making more than $2 million/year?

(
df
.loc[df['CompTotal'] >= 2_000_000]
['CompTotal']
.count()

)

Wow—2,369 people reported that kind of salary! Let’s remove them from our data,
because otherwise it will be skewed:

df = (
df
.loc[df['CompTotal'] < 2_000_000]

)

We’ll get back to salaries in a moment. Now we take the LanguageHaveWorkedWith col-
umn and turn it into multiple columns to so we can analyze the individual languages
more easily. Doing this is known as creating dummy columns. Instead of a column con-
taining the string 'JavaScript;Python', we create one column called JavaScript
and another called Python, putting 1s where the person marked themselves as using
JavaScript and 0s where they indicated they did not.

 We can create a new data frame of dummy values based on LanguageHaveWorked-
With using the str.get_dummies method:

(
df['LanguageHaveWorkedWith']
.str.get_dummies(sep=';')

)

But how can we integrate this new data frame into our existing one? The answer is
pd.concat, which we’ve used before. The difference is that we want to join the data
frames horizontally (i.e., combining them left and right, rather than top and bottom).
To tell pd.concat this, we need to indicate axis='columns', similar to what we’ve
done with other methods in the past, such as df.drop. We can then assign the result of
the concatenation back to df:

df = (
pd.concat([df,

276 CHAPTER 9 Strings
df['LanguageHaveWorkedWith']
.str.get_dummies(sep=';')],

axis='columns')
)

With these dummy columns in place, we can ask questions about salaries and lan-
guage knowledge. First, what was the average salary of someone who knows Python
and JavaScript but not Java?

df['CompTotal'][(df['Python'] == 1) &
(df['JavaScript'] == 1) &
(df['Java'] == 0)].mean()

We get a result of $126,817.
 What about someone who knows Python and Java but not JavaScript?

df['CompTotal'][(df['Python'] == 1) &
(df['JavaScript'] == 0) &
(df['Java'] == 1)].mean()

Here we get a result of $162,737.
 Finally, what about someone who knows Java and JavaScript but not Python?

Java and Javascript, not Python
df['CompTotal'][(df['Python'] == 0) &

(df['JavaScript'] == 1) &
(df['Java'] == 1)].mean()

This results in $140,867.

Solution

filename = '../data/so_2021_survey_results.csv'
df = pd.read_csv(filename,

usecols=['LanguageHaveWorkedWith',
'LanguageWantToWorkWith',
'Country', 'CompTotal'])

df['LanguageHaveWorkedWith'
].str.split(';').explode().value_counts().index

have_worked_with = df['LanguageHaveWorkedWith'
].str.split(';').explode(
).value_counts().head(10).index

want_to_work_with = df['LanguageWantToWorkWith'
].str.split(';').explode(
).value_counts().head(10).index

want_to_work_with.intersection(have_worked_with)
have_worked_with[~have_worked_with.isin(want_to_work_with)]

all_languages = df['LanguageHaveWorkedWith'

277EXERCISE 38 ■ Programmer salaries
].str.split(';').explode()

df[['Country']].join(all_languages).groupby('Country'
).agg(pd.Series.mode)

df['LanguageHaveWorkedWith'].str.split(';').str.len().mean()
df['LanguageHaveWorkedWith'].str.split(';').str.len().max()

df['LanguageHaveWorkedWith'][
df['LanguageHaveWorkedWith'].str.count(';') == 38].count()

(
df
.loc[df['CompTotal'] >= 2_000_000]
['CompTotal']
.count()

)

df = (
df
.loc[df['CompTotal'] < 2_000_000]

)

df = (
pd.concat(
[df,
df['LanguageHaveWorkedWith']
.str.get_dummies(

sep=';')], axis='columns')

df['CompTotal'][(df['Python'] == 1) &
(df['JavaScript'] == 1) &
(df['Java'] == 1)].mean()

df['CompTotal'][(df['Python'] == 1) &
(df['JavaScript'] == 0) &
(df['Java'] == 1)].mean()

df['CompTotal'][(df['Python'] == 0) &
(df['JavaScript'] == 1) &
(df['Java'] == 1)].mean()

You can explore a version of this in the Pandas Tutor at http://mng.bz/4JvR.

Beyond the exercise

 When developers are stuck (as indicated in the column NEWStuck), what are the
three things they’re most likely to do?

 What proportion of the survey respondents marked their gender as Man? Does
that proportion seem similar to your real-life experiences?

 On average, what proportion of their years coding have been done
professionally?

http://mng.bz/4JvR

278 CHAPTER 9 Strings
Summary
In this chapter, we looked at various ways pandas lets us work with textual data, espe-
cially via the str accessor. The combination of Python’s rich string methods along
with the various ways pandas lets us manipulate series and data frames gives us a great
deal of flexibility and lets us ask a wide variety of sophisticated questions that aren’t
directly numerical. Many data sets, such as the ones we looked at in this chapter, con-
tain a mix of numeric and textual data, and being able to work with the text alongside
the numbers is especially useful.

Dates and times
Programming languages’ core data structures reflect the types of information we
work with on a regular basis. It makes sense that we’ll have numbers, because we
use numbers a lot. We use lots of text, so strings make sense, as well. And of course
we need collections of various sorts, so every language provides some of those—in
the case of Python, we have lists, tuples, dictionaries, and sets, for starters.

 Modern programming languages also support another type of data, one that we
(as people) use on a regular basis but that wasn’t part of the programming canon
when I started my career: dates and times. It seems obvious in retrospect that dates
and times, which are such essential parts of our lives, should be a main part of our
programming languages. But it turns out that dealing with dates and times is hard,
with all sorts of tricky problems—from leap years, to time zones, to the odd data
structures we need to computerize a calendar that wasn’t exactly designed with
computers in mind.

 Both the Python language and pandas handle time data with two different data
structures. The first is a timestamp, also known as a datetime in many languages and
systems. A timestamp refers to a specific point in time that you can point to using a
calendar. A timestamp happens once and only once—when you were born, when
your plane will take off, when you and your date will meet at a restaurant, or when
the meeting was scheduled to end. You can describe a timestamp with a particular
year, month, day, hour, minute, and second.

 A second, complementary data type is the timedelta, known in some systems as an
interval. A timedelta represents a time span—the distance between two timestamp
objects. So a meeting’s scheduled start and end can be represented as timestamps,
but the time the meeting takes is a timedelta (figure 10.1).
279

280 CHAPTER 10 Dates and times
Figure 10.1 My schedule, illustrated with timestamps and timedeltas

Not surprisingly, lots of the data we want to analyze contains time and date informa-
tion. And thus it’s good to know that pandas can handle dates and times flexibly. We
can read data in from files, turning columns into timestamps. We can also convert
existing values—both individual values and series objects—into timestamps. We can
perform calculations with timedeltas and perform comparisons with them.

 But pandas goes further than that, allowing us to use date and time information in
indexes. This makes it easier to search for data that took place during specific periods.
Even better, we can perform resampling, which is most easily described as grouping by
time periods.

 This chapter’s exercises all take advantage of these capabilities in pandas to
explore information that has to do with dates and times. Along the way, you’ll get
experience working with a variety of date formats and input types, as well as produc-
ing reports based on those types.

Table 10.1 What you need to know

Concept What is it? Example To learn more

pd.to_datetime If passed a series of
strings, returns a series
of Timestamp objects

pd.to_datetime
(s['when'])

http://mng.bz/6D2D

Timestamps

Time 09:00 10:00 11:00 12:00

What Meeting
with client Course on Pandas grouping

13:00 14:00 15:00

Course on Pandas sorting Course on Python asyncio

08:00

Chinese class

Timedeltas

http://mng.bz/6D2D

281■CHAPTER 10 Dates and times
pd.to_timedelta If passed a series of
strings, returns a series
of Timedelta objects

pd.to_timedelta(s
['how_long'])

http://mng.bz/o1Er

pd.read_csv Returns a new data
frame based on CSV
input

df = pd.read_csv
('myfile.csv')

http://mng.bz/nW8g

time.strftime Produces a string based
on a time value

time.strftime(a_time,
a_format)

http://mng.bz/vn5J

time.strptime Parses a string into a
time object

time.strptime
(time_string)

http://mng.bz/4D2a

df.to_csv Writes a CSV file based
on a data frame

df.to_csv('mydata
.csv')

http://mng.bz/QPNw

df.resample Performs a time-based
groupby operation on a
specified period of time

df.resample('1M') http://mng.bz/XN6G

s.diff Returns a new series
with the same index as s
but whose values indi-
cate the difference
between that value and
the previous value

s.diff() http://mng.bz/yQnG

s.pct_change Returns a new series
with the same index as s
but whose values indi-
cate the percentage dif-
ference between that
value and the previous
value

s.pct_change() http://mng.bz/MBj7

Creating datetime and timedelta objects
As we’ve repeatedly seen, pandas largely avoids built-in Python data structures in
favor of its own types or those defined by NumPy. This is also the case when it comes
to dates and times: to represent a specific point in time, we use the Timestamp class
instead of either the datetime.datetime class that comes with Python or the
np.datetime64 class that comes with NumPy.

The standard way to create Timestamp objects is with the module-level function to_
datetime, which takes a variety of argument types. If passed a single argument, it
returns one Timestamp. For example, we can get the current date and time by pass-
ing it the string 'now':

pd.to_datetime('now')

Table 10.1 What you need to know (continued)

Concept What is it? Example To learn more

http://mng.bz/MBj7
http://mng.bz/yQnG
http://mng.bz/XN6G
http://mng.bz/QPNw
http://mng.bz/4D2a
http://mng.bz/vn5J
http://mng.bz/nW8g
http://mng.bz/o1Er

282 CHAPTER 10 Dates and times
(continued)

It’s far more common and useful to call pd.to_datetime on an existing series of
strings containing date and time information. For example:

s = Series(['1970-07-14', '1972-03-01', '2000-12-16',
'2002-12-17', '2005-10-31'])

pd.to_datetime(s)

This code returns a new series:

0 1970-07-14
1 1972-03-01
2 2000-12-16
3 2002-12-17
4 2005-10-31
dtype: datetime64[ns]

Don’t be confused by the indication that the dtype is datetime64, a type from
NumPy; the values are all of type Timestamp, a pandas type.

In this example, the strings we feed to to_datetime are unambiguous and easy to
parse. But what if we have slightly different strings, using month names instead of
numbers?

s = Series(['1970-Jul-14', '1972-Mar-01', '2000-Dec-16',
'2002-Dec-17', '2005-Oct-31'])

pd.to_datetime(s)

Actually, this works fine: that’s because pd.to_datetime is fairly smart and flexible
and can parse a number of different date formats. So this format works, as does this
one:

s = Series(['14-Jul-1970', '01-Mar-1972', '16-Dec-2000',
'17-Dec-2002', '31-Oct-2005'])

pd.to_datetime(s)

But what if we pass dates that are more ambiguous? For example, what if the months
are all numbers?

s = Series(['14-07-1970', '01-03-1972', '16-12-2000',
'17-12-2002', '31-10-2005'])

pd.to_datetime(s)

Once again, it works fine. However, sometimes dates are less obvious and human
culture and tradition play a role. For example, take the following:

s = Series(['01/03/1972', '05/12/1995'])
pd.to_datetime(s)

Should pandas interpret these dates as March 1 or January 3, and as December
5 or May 12? By default, ambiguous date formats are assumed to have the month

283■CHAPTER 10 Dates and times
first, as in the United States. However, you can override that by passing
dayfirst=False to pd.to_datetime:

s = Series(['01/03/1972', '05/12/1995'])
pd.to_datetime(s, dayfirst=False)

These examples have only included dates, but we can include time information, as well:

s = Series(['1970-07-14 8:00', '1972-03-01 10:00 pm',
'2000-12-16 12:15:28', '2002-12-17 18:17', '2005-10-31 23:51'])

pd.to_datetime(s)

This code returns

0 1970-07-14 08:00:00
1 1972-03-01 22:00:00
2 2000-12-16 12:15:28
3 2002-12-17 18:17:00
4 2005-10-31 23:51:00
dtype: datetime64[ns]

Notice that we sometimes include seconds and in one case indicate a.m./p.m. rather
than using a 24-hour clock. Pandas tries hard to understand all these formats and
interpret them as well as possible.

What if we have several series representing the year, month, and date? We can use
pd.to_datetime to get a new Timestamp series based on those inputs. This is espe-
cially useful if we’re trying to create a Timestamp column from a data frame:

df = DataFrame([s.split('-')
for s in ['14-07-1970', '01-03-1971',

'16-12-2000', '17-12-2002',
'31-10-2005']],

columns='day month year'.split())
pd.to_datetime(df[['year', 'month', 'day']])

This code results in

0 1970-07-14
1 1971-03-01
2 2000-12-16
3 2002-12-17
4 2005-10-31
dtype: datetime64[ns]

All this is fine, but it ignores a common use case: loading a CSV file in which one or
more columns are datetime information. How can we ensure that these columns are
interpreted as Timestamp data and not as strings? We need to tell pandas to do this,
using the parse_dates parameter in the read_csv function. We can pass a list of
columns, either as names (strings) or as integers (indexes). For example:

pd.read_csv(filename,
parse_dates=['birthday', 'anniversary'])

284 CHAPTER 10 Dates and times
(continued)

We can pass various parameters to influence the parsing process. One of them is
dayfirst, which works as we saw earlier to indicate that the dates being read start
with days (as in Europe) rather than with months (as in the United States).

Once we have a Timestamp series, we can use the dt accessor to retrieve different
parts of each object. For example:

s.dt.month # month number
s.dt.month_name # month name
s.dt.hour # hour
s.dt.day_of_week # day of week
s.dt.is_leap_year # is it a leap year?

Some of these attributes return numbers, and others return boolean values. You can
retrieve the full list of attributes via the dt accessor at http://mng.bz/j1wa.

Finally, I mentioned at the start of this chapter that when we work with dates and
times, we need two distinct data types. We’ve spent some time looking at the first
one: timestamps. But what about timedeltas, also known as intervals? We can gen-
erally say

datetime - datetime = interval
datetime + interval = datetime
datetime - interval = datetime

In other words, given two datetime objects, we can get an interval object representing
the time between them. For example, given a birth date and a death date, we can
calculate the length of someone’s life. And given a datetime and an interval, we can
get the datetime on the other side of that interval. For example, given a meeting start
time and its length, we can find out when it ends—or similarly, if given a meeting end
time and its length, we can calculate when it started.

Pandas allows us to perform precisely this type of calculation. For example, if we have
two timestamp series, subtracting one from the other gives us a timedelta series.
For example:

s = Series(['1970-07-14 8:00', '1972-03-01 10:00 pm',
'2000-12-16 12:15:28', '2002-12-17 18:17',
'2005-10-31 23:51'])

s = pd.to_datetime(s)
pd.to_datetime('2021-July-01') - s

The subtraction operation is broadcast to every element in s, returning a series of
timedelta64 objects:

0 18614 days 16:00:00
1 18018 days 02:00:00
2 7501 days 11:44:32
3 6770 days 05:43:00
4 5721 days 00:09:00
dtype: timedelta64[ns]

http://mng.bz/j1wa

285EXERCISE 39 ■ Short, medium, and long taxi rides
EXERCISE 39 ■ Short, medium, and long taxi rides
We have already looked at taxi rides and have even (in exercise 30) looked at short,
medium, and long taxi rides. However, in that exercise, we considered the distance
traveled. In this exercise, we look at taxi rides from the perspective of how much time
the ride took. Specifically, I want you to

1 Load taxi data from July 2019 into a data frame, using only the columns tpep_
pickup_datetime, tpep_dropoff_datetime, passenger_count, trip_distance,

Subtracting a timestamp from a timestamp gives us a timedelta.

To create a timedelta object or series, we can also call pd.to_timedelta much as
we can call pd.to_timestamp. The function’s argument is typically a string or series
of strings, each describing a time span, such as '1 hour' or '2 days'.

The pieces of a timedelta can be retrieved using the components attribute. For
example:

pd.to_timedelta('2 days 3:20:10').components

This returns

Components(days=2, hours=3, minutes=20, seconds=10,
milliseconds=0, microseconds=0, nanoseconds=0)

If we have a timedelta object, we can use the days, seconds, microseconds, and
nanoseconds attributes to retrieve those calculations.

Now that you’ve seen how you can create and retrieve from timestamp and time-
delta objects, you’re all set to work through the exercises in this chapter, which use
these skills to answer questions about a number of data sets.

1972-03-01 22:00:00

2000-12-16 12:15:28

2002-12-17 18:17:00

2005-10-31 23:51:00

1970-07-14 08:00:000

1

2

3

4

2021-July-01 00:00:00

18018 days 02:00:00

7501 days 11:44:32

6770 days 05:43:00

5721 days 00:09:00

18614 days 16:00:000

1

2

3

4

=-

286 CHAPTER 10 Dates and times
and total_amount, making sure to load tpep_pickup_datetime and tpep_
dropoff_datetime as datetime columns.

2 Create a new column, trip_time, containing the amount of time each taxi ride
took as a timedelta.

3 Determine the number and percentage of rides that took less than 1 minute.
4 Determine the average fare paid by people taking these short trips.
5 Determine the number and percentage of rides that took more than 10 hours.
6 Create a new column, trip_time_group, in which the values are short (< 10

minutes), medium (between 10 minutes and 1 hour), and long (> 1 hour).
7 Determine the proportion of rides in each group.
8 For each value in trip_time_group, determine the average number of

passengers.

Working it out

This exercise starts similarly to many others involving the taxi data. But whereas we
were previously willing to let pandas determine the dtype of each column on its own,
here we need to tell it to parse two of the columns as Timestamp objects. We could, of
course, have imported them as text (i.e., the default) and then run pd.to_timestamp
on them, but the following approach makes the process easier and cleaner. We can say

filename = '../data/nyc_taxi_2019-07.csv'

df = (
pd
.read_csv(filename,

usecols=['tpep_pickup_datetime',
'tpep_dropoff_datetime',
'trip_distance',
'passenger_count',
'total_amount'],

parse_dates=['tpep_pickup_datetime',
'tpep_dropoff_datetime'])

)

Notice that we need to include the two timestamp columns, tpep_pickup_datetime
and tpep_dropoff_datetime, both in the usecols list and in the parse_dates list. In
addition, this only works without any additional hints or tuning because the taxi dates
are all stored in an unambiguous format of YYYY-MM-DD.

 We can double-check that the columns have been interpreted correctly by invok-
ing the dtypes method on our data frame:

df.dtypes

The result makes it clear that the parsing succeeded:

tpep_pickup_datetime datetime64[ns]
tpep_dropoff_datetime datetime64[ns]

287EXERCISE 39 ■ Short, medium, and long taxi rides
passenger_count float64
trip_distance float64
total_amount float64
dtype: object

If we had not parsed the two timestamp columns, they would be listed as object,
which as we’ve seen indicates that pandas is leaving them as Python objects—most
often, as strings.

 With these timestamp columns in place, we can create a new timedelta column
called trip_time by subtracting the pickup time from the dropoff time:

df['trip_time'] = (
df['tpep_dropoff_datetime'] -
df['tpep_pickup_datetime']

)

With this timedelta column in place, we can now ask questions about our data. For
example, how many of the taxi rides in July 2019 took less than 1 minute?

 To answer this, we need to perform a comparison with our trip_time column. We
could create a timestamp object with pd.to_timestamp, but it turns out that pandas
takes pity on us and allows us to compare a timestamp column with a string by doing
the conversion behind the scenes:

df['trip_time'] < '1 minute'

This returns a new boolean series indicating when the trip took less than 1 minute. We
can (as always) apply the boolean series to df.loc as a mask index, getting only those
short trips:

df.loc[
df['trip_time'] < '1 minute',
'trip_time'
].count()

We find that 70,212 taxi rides were less than 1 minute long. This seems like a large
number of taxi rides to be taking so little time, but New York is a big city. What per-
centage of rides does this represent? We can find out by dividing this into the total
number of rides in our data set:

df.loc[
df['trip_time'] < '1 minute',

'trip_time'
].count() / df['trip_time'].count() * 100

Just over 1% of taxi rides take less than a minute. That seems high to me, but maybe
people enjoy taking a taxi for one or two blocks when they’re in New York.

Row selector, for trips that
took less than 1 minute

Column selector, asking
for only trip_timeReturns the number

of non-NaN rows

288 CHAPTER 10 Dates and times
 How much, on average, did people pay for those super-short taxi rides? To calcu-
late that, we apply the mask index to total_amount and then calculate the mean
(figure 10.2):

df.loc[
df['trip_time'] < '1 minute',
'total_amount'
].mean()

The result? More than $30! The only thing odder about so many people taking 1-min-
ute taxi rides is the fact that they had to pay more than $30 for the privilege.

Figure 10.2 Illustration of how we got the mean of rides less than one minute long

Next, I asked you to find taxi rides that took more than 10 hours. I cannot imagine
spending 10 hours in the back of a New York City taxi (or any other taxi, for that mat-
ter), but I thought it might be interesting to determine just how many such rides exist
in this data set. Once again, we compare the trip_time column to a string:

df['trip_time'] > '10 hours'

trip_time

0 0 days 00:00:29

1 0 days 00:19:42

2 0 days 00:35:47

3 0 days 00:00:55

4 0 days 00:12:10

< '1
minute'

trip_time

True

False

False

True

False

mask
index

trip_time total_amount

0 0 days 00:00:29 4.94

1 0days 00:19:42 20.30

2 0days 00:35:47 70.67

3 0 days 00:00:55 66.36

4 0days 00:12:10 15.30

mean
=

35.65

289EXERCISE 39 ■ Short, medium, and long taxi rides
We apply the resulting boolean series as a mask index and get all the long rides, which
we then count:

df.loc[df['trip_time'] > '10 hours', 'trip_time].count()

Our data set contains 16,698 rides that took more than 10 hours. Seems high to me,
but maybe it’s a reasonable percentage. Let’s calculate that:

df.loc[df[
'trip_time'] > '10 hours',
'trip_time].count() / df['trip_time'].count() * 100

These rides constitute only 0.2% of all taxi rides. Even so, that means 2 out of every
1,000 taxi rides in New York take more than 10 hours.

 Next, we want to group taxi rides into three categories: short, medium, and long.
To do that, we can use pd.cut, a method we’ve already used to perform a similar task.
But for this to work, we need to pass a bins value to pd.cat consisting of values that
can be compared with our series.

 Our intermediate cut points are 10 minutes and 1 hour: we call “short” trips those
up to 10 minutes long, “medium” trips between 10 minutes and 1 hour, and “long”
trips longer than 1 hour. However, pd.cut won’t let us use strings to compare with our
timedelta column. We thus need to create a Python list (or pandas series) of time-
delta objects. We do this with a list comprehension, a standard Python technique that
is used more rarely by data analysts:

[pd.to_timedelta(arg)
for arg in ['0 seconds', '10 minutes',

'1 hour', '100 hours']]

In short, this list comprehension does the following:

1 Iterates over a list of strings
2 Converts each string to a timedelta
3 Returns a list of four timedelta objects based on the strings

We can then pass this list to pd.cut:

df['trip_time_group'] = (
pd.cut(

df['trip_time'],
bins=[pd.to_timedelta(arg)

for arg in ['0 seconds',
'10 minutes',
'1 hour',
'100 hours']],

labels=['short', 'medium', 'long'])
)

Notice that to have three labels, we need four cut points, or bins as they’re known here.
And although we don’t have to provide labels, we definitely should do so. The result of
invoking pd.cut is a new series, which we then assign to df['trip_time_group'].

290 CHAPTER 10 Dates and times
 With those categories in place, we can perform a groupby query to see if there’s
any substantial difference in the number of passengers between short, medium, and
long trips:

df.groupby('trip_time_group')['passenger_count'].mean()

Although short and medium trips both have average passenger counts of 1.5, there’s a
slightly larger average (1.7) for longer trips. That may imply that trips longer than 1
hour have more passengers, although it’s hard to say why.

Solution

filename = '../data/nyc_taxi_2019-07.csv'

df = pd.read_csv(filename,
usecols=['tpep_pickup_datetime',

'tpep_dropoff_datetime',
'trip_distance', 'passenger_count',
'total_amount'],

parse_dates=['tpep_pickup_datetime',
'tpep_dropoff_datetime'])

df['trip_time'] = df['tpep_dropoff_datetime'
] - df['tpep_pickup_datetime']

df.loc[df['trip_time'] < '1 minute', 'trip_time'].count()
df.loc[df['trip_time'] < '1 minute', 'trip_time'

].count() / df['trip_time'].count()_ 100
df.loc[df['trip_time'] < '1 minute', 'total_amount'].mean()

df.loc[df['trip_time'] > '10 hours', 'trip_time'].count()
df.loc[df['trip_time'] > '10 hours', 'trip_time'

].count() / df['trip_time'].count()_ 100

df['trip_time_group'] = (
pd.cut(

df['trip_time'],
bins=[pd.to_timedelta(arg)

for arg in ['0 seconds',
'10 minutes',
'1 hour',
'100 hours']],

labels=['short', 'medium', 'long'])
)

df.groupby('trip_time_group')['passenger_count'].mean()

You can explore a version of this in the Pandas Tutor at http://mng.bz/W1og.

Loads the file,
parsing two columns
as timestamps

Subtracts one timestamp
from another, assigning to
a new timedelta column

Counts trips
less than
1 minute long

Calculates the
percentage of trips less
than 1 minute long

Applies the boolean
index to the amount
and takes the mean

Counts trips
more than
10 hours long

Calculates the percentage of
trips more than 10 hours long

Uses a list comprehension with
to_timedelta to create bins

Assigns three labels
for four edges in pd.cut

What was the mean number
of passengers for short,
medium, and long trips?

http://mng.bz/W1og

291EXERCISE 40 ■ Writing dates, reading dates
Beyond the exercise

 The data set you loaded is supposed to be for July 2019. How many trips are not
from July 2019? That is, how many records are in the wrong file?

 What was the mean trip time for each number of passengers?
 Load taxi data from July 2019 and 2020. For each year, and then for each num-

ber of passengers, what was the mean amount paid?

EXERCISE 40 ■ Writing dates, reading dates
In the previous exercise, we saw how easily we can read a CSV file into pandas, even if
it includes date and time information. Generally speaking, we can tell the parse_
dates keyword argument which columns should be passed to pd.to_datetime, and
we don’t have to think about it any more. Sometimes, though, we’re forced to deal
with nonstandard date and time formats. We may be asked to write data using a partic-
ular format or (even more commonly) to read data that doesn’t conform to a stan-
dard that pandas recognizes.

 Fortunately, we can customize the ways in which datetime information is written to
disk as well as how it is parsed when we read it into pandas. In this exercise, we’ll prac-
tice doing exactly that:

1 Load taxi data from July 2019 into a data frame, using only the columns
tpep_pickup_datetime, passenger_count, trip_distance, and total_amount,
making sure to load tpep_pickup_datetime as datetime.

2 Export this data frame to a tab-delimited CSV file. However, the datetime infor-
mation should be written in the format day/month/year HHh:MMm:SSs. That is,

– The day should be a two-digit number.
– The month should be a two-digit number.
– The year should be a four-digit number.
– The hours should be a two-digit number, using a 24-hour clock, followed by

the letter h.
– The minutes should be a two-digit number followed by the letter m.
– The seconds should be a two-digit number followed by the letter s.
– Read the CSV file you just created into a data frame. Be sure to parse the

datetime column appropriately.

Using this weird format, the datetime February 3, 2023 at 10:11:12 is formatted as

03/02/23 10h:11m:12s

Working it out

This exercise is meant to give you some practice exporting and importing CSV files
using alternative date formats. Most of the times I’ve had to read (or write) CSV files,

292 CHAPTER 10 Dates and times
dates have been in standard formats that pandas could parse without trouble. But
there are always oddball logfiles that need parsing, typically written by custom pro-
grams, that use nonstandard formats. The good news is, we can use a custom format
when working with CSV files.

 I’ve had occasion to use this functionality in pandas just to translate files from one
datetime format to another. In other words, I used pandas not for data analysis but
instead as a very fancy date-translation service. That may feel like using a sledgeham-
mer to swat a fly, but it got the job done and required me to write almost no code.

 We started the exercise by importing New York taxi data from July 2019, including
the tpep_pickup_datetime column. To ensure that tpep_pickup_datetime is treated
as a datetime column, we specify parse_dates to read_csv:

filename = '../data/nyc_taxi_2019-07.csv'
df = pd.read_csv(

filename,
usecols=['tpep_pickup_datetime',

'trip_distance',
'passenger_count',
'total_amount'],

parse_dates=['tpep_pickup_datetime'])

With the data frame in place, we can export the data to a CSV file containing only
these four columns, but with the oddball datetime format that we used above. In the-
ory, we could create a new column based on tpep_pickup_datetime but with the for-
mat we want and then export that new column to the CSV file. But it turns out pandas
is one step ahead of us here, allowing us to specify the format in which datetime col-
umns are written by passing a value to the date_format parameter.

 The format is specified using % signs, using the format specifiers from time
.strftime and described at http://mng.bz/84DK. Our output can contain any combi-
nation of hours, minutes, months, days, time zones, and other elements. The format I
described for the output is unusual in that dates are specified as %d/%m/%Y, meaning
two digits for the day, two digits for the month, and four digits for the year, followed by
a space character, and then the time in 24-hour format, but with h after the hours, m
after the minutes, and s after the seconds. We can specify that as follows:

'%d/%m/%Y %Hh:%Mm:%Ss'

We can then write to our CSV file as follows:

df.to_csv('ex40_taxi_07_2019.csv',
sep='\t',
columns=['tpep_pickup_datetime', 'passenger_count',

'trip_distance', 'total_amount'],
date_format='%d/%m/%Y %Hh:%Mm:%Ss')

In this code, we write to the file named ex40_taxi_07_2019.csv and specify (with the
sep keyword argument) that we will use tabs to separate the fields. Pandas uses the

http://mng.bz/84DK
https://github.com/reuven/pandas-workout

293EXERCISE 40 ■ Writing dates, reading dates
date_format parameter to indicate how all datetime columns (only tpep_pickup_
datetime, in our case) should be written.

 Given that we’re going to use this special datetime format in a number of places in
our program, it’s wiser to define it as a global string variable, dt_format. Then we can
access that variable both within our call to df.to_csv and also later, in our date-pars-
ing function. In such a case, the code looks like this:

dt_format='%d/%m/%Y %Hh:%Mm:%Ss'

df.to_csv('ex40_taxi_07_2019.csv',
sep='\t',
columns=['tpep_pickup_datetime',

'passenger_count',
'trip_distance',
'total_amount'],

date_format=dt_format)

Once the file is written, I asked you to import it back into pandas, into a new data
frame, and then to check that the reloaded tpep_pickup_datetime column remains a
datetime column despite its weird date format.

NOTE Previous to pandas 2.0, you were encouraged to handle odd date for-
mats in read_csv by passing a function to the date_parser keyword argu-
ment. That has been deprecated in favor of passing a string to date_format.

We can do that by invoking df.read_csv, specifying the filename, separator, columns,
which column requires parsing as a date, and the date format (dt_format) we defined
earlier:

df = pd.read_csv('ex40_taxi_07_2019.csv',
sep='\t',
usecols=['tpep_pickup_datetime',

'passenger_count',
'trip_distance',
'total_amount'],

parse_dates=['tpep_pickup_datetime'],
date_format=dt_format)

Solution

filename = '../data/nyc_taxi_2019-07.csv'
df = pd.read_csv(filename,

usecols=['tpep_pickup_datetime',
'trip_distance',
'passenger_count', 'total_amount'],

parse_dates=['tpep_pickup_datetime'])

dt_format='%d/%m/%Y %Hh:%Mm:%Ss'

df.to_csv('ex40_taxi_07_2019.csv',
sep='\t',

Reads in the CSV file, including
the datetime column

Specifies the format for
 reading and writing

Writes the
CSV file

294 CHAPTER 10 Dates and times
columns=['tpep_pickup_datetime',
'passenger_count',
'trip_distance',
'total_amount'],

date_format=dt_format)

import time

def parse_weird_format(s):
return pd.to_datetime(s, format=dt_format)

df = (
pd
.read_csv('ex40_taxi_07_2019.csv',

sep='\t',
usecols=['tpep_pickup_datetime',

'passenger_count',
'trip_distance',
'total_amount'],

parse_dates=['tpep_pickup_datetime'],
date_format=dt_format)

)

You can explore a version of this in the Pandas Tutor at http://mng.bz/E9Mq.

Beyond the exercise

 Export the tpep_pickup_datetime date in Unix time—i.e., the number of sec-
onds since 1 January 1970. This is an integer value.

 Read the data frame from this question back into a data frame. Read the
tpep_pickup_datetime column into a string column, and use pd.to_datetime
to convert it into a datetime column.

 Compare the speed of parsing time in read_csv versus doing so in a separate
to_datetime step.

Time series
We have seen that a data frame’s index can be an integer or string. But things get
really exciting when we set a timestamp column to be our index. In the pandas world,
we call that a time series. When we create a time series, we can take advantage of
a number of useful pandas features.

First, let’s create a time series. We create a data frame with the dates and designa-
tions of NASA’s Apollo program missions, grabbed from Wikipedia:

all_dfs = pd.read_html('https://en.wikipedia.org/wiki/Apollo_program')
df = all_dfs[2].copy()[['Date', 'Designation']]

Here is what the Wikipedia page looks like for me, with the table we want to
retrieve:

This function takes a string argument
and returns a datetime object.

Reads the CSV file, parsing
dates with our function

date_format expects a string
it can use for parsing

http://mng.bz/E9Mq

295EXERCISE 40 ■ Writing dates, reading dates
Some of the dates describe a single day (e.g., “Jul 5, 1966”) but others have ending
dates, as well (e.g., “Jan 22–23, 1968”). We remove the ending dates where they
appear in the text, to create a series of Apollo launch dates:

df['Date'] = pd.to_datetime(df['Date'].str.replace(
'(–.+)?,', '', regex=True))

We then set the Date column to be the data frame’s index:

df = df.set_index('Date')

From this point on, df is a time series. We can see this by looking at df.index:

DatetimeIndex(['1966-02-26', '1966-07-05',
'1966-08-25', '1967-02-21',
'1967-11-09', '1968-01-22',
'1968-04-04', '1968-10-11',

Wikipedia page about
the Apollo program

296 CHAPTER 10 Dates and times
(continued)
'1968-12-21', '1969-03-03',
'1969-05-18', '1969-07-16',
'1969-11-14', '1970-04-11',
'1971-01-31', '1971-07-26',
'1972-04-16', '1972-12-07'],

dtype='datetime64[ns]', name='Date', freq=None)

The index contains a number of datetime objects. With this in place, we can retrieve
a row on a particular date, just as we would with a normal index:

df.loc['1970-04-11']

Better yet, we can specify the smaller (i.e., more specific) parts of a date. That is, we
can leave out the day, thus retrieving all values in a single month:

df.loc['1970-07']

Or we can specify just a year, thus getting all missions in that year:

df.loc['1971']

df.loc['1971']

Designation

AS-204 (Apollo 1)

Date

1966-02-26

1966-07-05

1966-08-25

1967-02-21

1967-11-09

1968-01-22

1968-04-04

1968-10-11

1968-12-21

1969-03-03

1969-05-18

1969-07-16

1969-11-14

1970-04-11

1971-01-31

1971-07-26

1972-04-16

1972-12-07

AS-201

AS-203

AS-202

Apollo 4

Apollo 5

Apollo 6

Apollo 7

Apollo 8

Apollo 9

Apollo 10

Apollo 11

Apollo 12

Apollo 13

Apollo 14

Apollo 15

Apollo 16

Apollo 17

Designation

Date

1971-01-31 Apollo 14

1971-07-26 Apollo 15

Retrieving rows of a time series via the year

297EXERCISE 41 ■ Oil prices
EXERCISE 41 ■ Oil prices
In this exercise, we work with a CSV file containing oil prices—specifically, West Texas
Intermediate oil prices. These prices have been reported and updated daily, at least in
our data set, from January 2, 1986 through the present day. (I constructed the CSV file
using a Python program downloaded from https://github.com/datasets/oil-prices,
which retrieves publicly available oil-price information from the US government.) In
this exercise, we’ll look at historical oil prices, using the datetime functionality in pan-
das to make such queries easier. Specifically, I want you to

1 Import the wti-daily.csv file into a data frame in which the Date column is
treated as a datetime value and is set to be the index.

2 Answer these questions:

– What was the average price of a barrel of oil in June 1992?
– What was the average price of a barrel of oil in all of 1987?
– What was the average price from September 2003 through July 2014?

3 Show the price of oil at the end of each quarter in the data set.
4 For each year in the data set, show the average price.
5 On which date were oil prices the highest? When were they the lowest?

Working it out

We’ve already seen that by using the dt accessor, we can retrieve various parts of a
datetime column. With that tool at our disposal, we can query our data in all sorts of
ways. But we’ve also seen that certain queries can be easier to read and write when we
change the index. This is particularly true when we set the index to be a datetime
value. In this exercise, we explore a number of these functions while looking at histor-
ical oil prices.

We can also retrieve a set of rows with a slice by specifying starting and ending dates:

df.loc['1968-07-01':'1972-08-31']

Perhaps the most interesting and powerful feature of a time series is resampling.
Resampling is similar to a groupby query, except that instead of producing one result
per value of a categorical column, we get one result per chunk of time, starting at the
earliest point in time and ending with the latest one. For example, resampling allows
us to retrieve the mean value for every day, or every 2 weeks, or every 6 months, or
every year of a data frame. For example, we can determine how many missions there
were in every 6-month period covered by our data set:

df.resample('6M').count()

If the data is numeric, we can also run other aggregation methods, such as mean and
std.

https://github.com/datasets/oil-prices

298 CHAPTER 10 Dates and times
 The first task, as always, is to load the data from a CSV file into a data frame. In this
case, the CSV file contains only two columns named Date and Price. In loading the
CSV file into memory, we ask pandas to treat the Date column as (not surprisingly) a
datetime value. We also ask it to make that column the index, via the index_col
parameter:

filename = '../data/wti-daily.csv'

df = pd.read_csv(filename,
parse_dates=['Date'],
index_col=['Date'])

With that in place, we can make some queries. For starters, we want to determine the
average price of oil during the month of June 1992. As usual, we can retrieve items
from the data frame by using the loc accessor along with the index value that’s of
interest to us. But because it’s a time series, we can provide a subset of the date, remov-
ing more specific parts to match a larger number of rows. We can thus say

df.loc['1992-06-15']

and get back the row for June 15, 1992. (If there were more than one row, we would
get all of them back. But we know that each date in this data set is unique.) However,
we’re interested in all days in June 1992. We can thus say

df.loc['1992-06']

By leaving off the day, pandas matches and retrieves all rows in which the date is some-
time in June 1992. To get the mean price during that period, we can say

df.loc['1992-06'].mean()

We get a result of just over $22.38.
 I similarly asked you to find the mean price during 1987. Just as we can leave off

the day to find all rows from a particular year and month, we can leave off the day and
month to get all rows from a particular year:

df.loc['1987'].mean()

This retrieves all rows with a year of 1987. We then run mean on the Price column,
which returns a number just over $19.20.

 Next, I asked you to find the average price from September 2003 through July
2014. The easiest way to do this, when we have a time series, is to use a slice. Normally,
Python slices are specified as a starting value and then 1 past the final value. For exam-
ple, if we have a sequence (string, list, or tuple) named s and request s[10:20], the
slice retrieves values from the index 10 up to (but not including) 20.

 Slices with a time series are similar, but as with other non-numeric indexes in pan-
das, we include the end of the slice. We can specify the date on which we want to start
and also the date on which we want to end:

df.loc['2003-09':'2014-07']

299EXERCISE 41 ■ Oil prices
This retrieves all rows from df starting September 1, 2003, and going through July 31,
2014. We can then run mean on the values we get back:

df.loc['2003-09':'2014-07'].mean()

This returns a value of just over $76.45.
 Next, I asked you to find the price of oil at the end of each quarter in the data set.

Pandas makes this easy to do with the is_quarter_end attribute on the dt accessor for
datetime series. In our case, the datetime values aren’t exactly in a series; they’re on
our index. How can we invoke is_quarter_end on our datetime index?

 It turns out that we can invoke it directly on the index, getting a boolean series
back:

df.index.is_quarter_end

This boolean series can then be applied as a mask index to df:

df.loc[df.index.is_quarter_end]

The result is a one-column data frame whose index values are the final days of each
quarter, regardless of whether it’s the 30th or 31st of the month in question.

 I also asked you to find the mean price of oil for each year in our data set. This is
most easily accomplished by using resample, which is a kind of groupby but for time
series: it lets us run an aggregation method (e.g., mean) for all the values in a given
time period. If the time period doesn’t exist in the data frame or is cut off, it still
appears in the output to ensure that we have all the periods from start to finish.

 When we run resample, we tell it what time-period granularity we want, giving a
number and a letter representing the measurement. For example, we can run our
aggregation method on a weekly basis with 1W or on a bimonthly basis with 2M. In this
exercise, I asked to see annual average prices, which means specifying 1Y. The result-
ing query is

df.resample('1Y').mean()

The result from a resample query is always a data frame in which the index contains
the values from the end of each period. The index in our result thus starts at 1986-12-
31 and goes through 2021-12-31. Note that even if we only have partial values for a
year, we get the average amount for that year.

 Finally, I asked you to determine on which dates we had the historically highest
and lowest oil prices. There are numerous ways to accomplish this, but I think it’s eas-
iest to sort the values in the Price column and then retrieve the first and last values
from the resulting sorted series. Remember that we can retrieve more than one value
by passing a list of indexes to loc or iloc and that if we use iloc (which retrieves by
position), we can ask for index 0 (the first item) and –1 (the final item):

df['Price'].sort_values().iloc[[0, -1]]

You may be surprised that the lowest price of oil in this data set is –$36.98, meaning
you could get paid to accept a barrel of oil. If this sounds odd, you’re right; it was the

300 CHAPTER 10 Dates and times
result of a dramatic drop in oil demand at the start of the Covid-19 pandemic. There
wasn’t enough storage space for the oil that had already been extracted from the
ground, resulting in this bizarre situation. Look it up—it’s just one of the many eco-
nomic oddities of the pandemic.

 Note that if we want the dates on which the minimum and maximum values were
found but not the prices themselves, we can use

df['Price'].agg(['idxmin', 'idxmax'])

The idxmin and idxmax return the index corresponding to the minimum and maxi-
mum values, respectively. The agg method lets us invoke more than one aggregation
method. So this query asks to see the indexes for the lowest and highest values in
Price. We get the indexes (i.e., dates) but not the values themselves.

Solution
filename = '../data/wti-daily.csv'

df = pd.read_csv(filename,
parse_dates=['Date'],
index_col=['Date'])

df.loc['1992-06'].mean()
df.loc['1987'].mean()
df.loc['2003-09':'2014-07'].mean()
df.loc[df.index.is_quarter_end]
df.resample('1Y').mean()
df['Price'].sort_values().iloc[[0, -1]]

You can explore a version of this in the Pandas Tutor at http://mng.bz/NVlE.

Beyond the exercise

 Use resample to find, for each quarter, the mean and standard deviations in
price.

 In which quarter did you see the biggest increase in mean price from the previ-
ous quarter?

 What was the biggest percentage increase in oil prices across quarters?

EXERCISE 42 ■ Best tippers
We’ve looked at New York taxi data a number of times, and now we’ll use our time-
related knowledge to study them again. This time, we’ll try to understand when peo-
ple tip their taxi drivers more generously. (If you’re not from the United States, you
may not be familiar with the custom of tipping, often 15% or 20%, in addition to
whatever a taxi meter says you officially need to pay. In many other countries, this
practice is unexpected, rare, or even illegal.) In particular, I’d like you to

1 Import the taxi info from both January and July 2019. Include the following col-
umns: tpep_pickup_datetime, passenger_count, trip_distance, fare_amount,

http://mng.bz/NVlE

301EXERCISE 42 ■ Best tippers
extra, mta_tax, tip_amount, tolls_amount, improvement_surcharge, total_
amount, and congestion_surcharge.

2 Create a new column, pre_tip_amount, with all the payment columns except
total_amount and tip_amount. (Note that total_amount is the sum of all the
other payment columns, including tip_amount. It should be equivalent to cal-
culating total_amount - tip_amount.)

3 Create a new column, tip_percentage, showing the percentage of pre_
tip_amount that the tip was.

4 Answer these questions:

– What was the mean tip percentage across all trips in the data set?
– How many times did people tip more than the pretip amount?
– On which day of the week do people tip the greatest percentage of the fare,

on average?
– At which hour do people tip the greatest percentage?
– Do people typically tip more in January or July?
– What was the 1-day period in our data set when people tipped the greatest

percentage?

Working it out

In this exercise, we ask the same question—when do people tip taxi drivers the
most?—in a number of different ways. All of them use the extensive support for dates
and times that pandas offers.

 For starters, we load the data from both January and July 2019. As we’ve done
before, we use a list comprehension along with pd.read_csv. This creates a list of data
frames that we can turn into a single data frame with pd.concat:

filenames = ['../data/nyc_taxi_2019-01.csv',
'../data/nyc_taxi_2019-07.csv']

all_dfs = [pd.read_csv(one_filename,
usecols=['tpep_pickup_datetime',

'passenger_count',
'trip_distance',
'fare_amount','extra','mta_tax',
'tip_amount','tolls_amount',
'improvement_surcharge',
'total_amount','congestion_surcharge'],

parse_dates=['tpep_pickup_datetime'])
for one_filename in filenames]

df = pd.concat(all_dfs)

I asked you to include a large number of columns when creating the data frame so we
can calculate the tip percentage more accurately. I considered not asking you to spec-
ify usecols but rather to read all the data anyway—but as tempting as it may be to do

302 CHAPTER 10 Dates and times
that, it’s not a good habit to get into. You should specify the columns you want in your
data frame; otherwise, you’ll find yourself running out of memory when you work with
large data sets.

 With our data frame in place, we want to calculate the pretip amount—that is, the
amount on which the tip is based—for each ride. It’s not always obvious what should
(and shouldn’t) be included in the tip. For example, do we include tolls for bridges
and tunnels in our calculation? How about the surcharge that’s sometimes added
because the streets of New York are extra congested during those hours? For our pur-
poses, we included all these fees and charges.

 I thus asked you to create a new column, pre_tip_amount, that is the sum of six
columns. How can we do that?

 One possibility is to explicitly name those columns and add them together:

df['pre_tip_amount'] = (df['fare_amount'] +
df['extra'] +
df['mta_tax'] +
df['tolls_amount'] +
df['improvement_surcharge'] +
df['congestion_surcharge'])

This will certainly work, but it seems wordy. Perhaps there’s a way to name the col-
umns and sum them. The sum method would seem to be a perfect way to do this,
except that it sums the rows rather than the columns. But wait! Many pandas methods
allow us to specify the axis on which they run—and sure enough, sum is one of them.
We can thus sum our selected columns by specifying axis='columns':

df['pre_tip_amount'] = df[['fare_amount',
'extra',
'mta_tax',
'tolls_amount',
'improvement_surcharge',
'congestion_surcharge']

].sum(axis='columns')

Notice that we select our six columns with a list of strings. We then run sum on these
columns, producing a new pandas series. We assign this series back to
df['pre_tip_amount'].

 With that in hand, we’re ready to create another column, tip_percentage, which
contains the percentage of the pretip charge the user added as a tip:

df['tip_percentage'] = df['tip_amount'] / df['pre_tip_amount']

Our data frame now has all the information we need to answer our questions about
tipping in New York taxis. For starters, what was the mean tipping rate across all taxi
rides in our data set? We can find that by running the mean method on our tip_
percentage column:

df['tip_percentage'].mean()

303EXERCISE 42 ■ Best tippers
The answer is 13%. That seems low to me, so perhaps we’re calculating the pretip base
amount differently than others do. But maybe the data set is more complex than a
straight percentage. For example, does anyone tip more than 100%? We can find out:

(df['tip_percentage'] > 1).value_counts()

Here, we use value_counts to find how many people tipped more than 100% of the
pretip amount. By applying value_counts to a boolean series, we’re able to determine
how often the True value is returned, meaning how often our condition is met.

 The number of people giving above-and-beyond tips isn’t overwhelming. But it’s
not zero, either, which came as a surprise to me. However, this number will skew the
average tip upward. Perhaps there are people who aren’t tipping at all, which will skew
things downward. Let’s take a look, calculating the percentage of riders who don’t tip:

(df['tip_percentage'] == 0).value_counts(normalize=True)

Again, we use value_counts—but this time, we pass it normalize=True to get a percent-
age answer. And the results are surprising, at least to me: about 32% of taxi riders in
New York don’t tip at all! This almost certainly has an effect on the mean tipping rate.

 Next, we were curious to know whether people tip more on any particular day of
the week. To do this, we combine groupby with the dt accessor’s day_of_week attri-
bute, which returns the integer for the day of the week, with Monday being 0 and Sun-
day being 6. You may think we need to define a new day_of_week column in our data
frame so we can run a groupby on it. But no, the pandas developers make it possible
to run a groupby not only on a column but also on the result we get back from
dt.day_of_week:

df.groupby(df['tpep_pickup_datetime'].dt.day_of_week)

For each day of the week, we want to get the mean tip percentage. We thus run the fol-
lowing query:

df.groupby(df['tpep_pickup_datetime'].dt.day_of_week
)['tip_percentage'].mean()

This gives us values, one for each day of the week. Just to make sure we get the right
data, we then sort the resulting values from highest to lowest:

df.groupby(df['tpep_pickup_datetime'].dt.day_of_week
)['tip_percentage'].mean().sort_values(ascending=False)

Much to my surprise, the tipping percentages aren’t that different from one another. I
was sure, before analyzing this data, that people tip more on weekends, but the data
doesn’t support that. On the contrary, it shows that people tip the least on Fridays and
Saturdays and the most on Tuesdays and Wednesdays. However, the difference isn’t that
great, so I’m not sure if we can draw significant conclusions. Certainly if I were a taxi
driver deciding which shifts to take, the tip amount on a given day wouldn’t make much
difference. (And besides, one-third of passengers aren’t going to tip anything, right?)

304 CHAPTER 10 Dates and times
 But maybe the hour of the day makes a difference: that is, perhaps people tip bet-
ter in the mornings or afternoons. I thus asked you to create such a query, to find out
at which hour of the day people tip the most on average:

df.groupby(df['tpep_pickup_datetime'].dt.hour
)['tip_percentage'].mean().sort_values(ascending=False)

The query in this case is similar to the previous one. Here, however, we get more inter-
esting results: people tip about 11% early in the morning (between 3:00 and 6:00
a.m.) and nearly 14% at night (from 8:00 to 11:00 p.m.). We see similar, if slightly
lower, rates from 7:00 to 9:00 a.m.—so if you’re unsure whether to take the 5:00 a.m.
or 9:00 a.m. slot as a taxi driver, I’d suggest, based on average tips alone, choosing the
latter.

 Let’s ask another question, which our data set can help us answer: do people tip
more during the winter or the summer? (Or is there no difference?) We have data
from both January and July, which should provide useful insights. We can say

df.groupby(df['tpep_pickup_datetime'].dt.month
)['tip_percentage'].mean().sort_values(ascending=False)

The highest tips (20% on average) are given in May, followed by August, March, and
September, respectively.

 But wait a moment: our data set is supposed to contain data from January and July.
How did other months get in there? The answer, of course, is that no data set is com-
pletely clean. Whether the dates are wrong, were reported late, or were otherwise
scrambled along the way, our data contains information from other months. If we only
compare January with July from this data set, we see a slight difference between the
months, with tipping in January at 13.7% but in July at 12.1%. Whether that’s because
of summer tourists (who may—I’m just guessing—tip less) or people feeling more
open with their cash during the winter months, I’m not sure.

 Next, I asked what one-day period in the data set had the highest average percent-
age of tipping. This type of problem is most easily solved with a time series, meaning
we use a datetime value as the index:

df = df.set_index('tpep_pickup_datetime')

With that in place, we can use resample with an argument of 1D (i.e., one day) to find
the day on which people tipped the most. First, we find the mean tipping percentage
for each day in the time series:

df.resample('1D')['tip_percentage'].mean()

That works, but we’d like to sort these values so we can find the highest-tipping day.
We do this by running sort_values on our results and then listing only the top 10
dates:

df.resample('1D')['tip_percentage'
].mean().sort_values(ascending=False).head(10)

305EXERCISE 42 ■ Best tippers
The results include zero days from either January or July. Let’s try this again but first
get rid of dates that aren’t in January or July:

df = pd.concat([df['2019-01-01':'2019-01-31'],
df['2019-07-01':'2019-07-31']])

df.resample('1D')['tip_percentage'].mean().sort_values(
ascending=False).head(10)

Having cleaned the data from non-January/July rows, we can see that all 10 of the
highest-tipping days are in January. In our data sample, at least, people are more likely
to tip better in the winter than in the summer. We can double-check by resampling at
one-month granularity:

df.resample('1M')['tip_percentage'].mean().dropna()

Because we have only two months of data, but they’re in January and July, using
resample means we get NaN values for February, March, April, May, and June. We thus
remove those with dropna. And we see that the average tipping rate in January is
13.7%, whereas in July it’s 12.1%—a finding I hadn’t anticipated.

Solution

filenames = ['../data/nyc_taxi_2019-01.csv',
'../data/nyc_taxi_2019-07.csv']

all_dfs = [pd.read_csv(one_filename,
usecols=['tpep_pickup_datetime',

'passenger_count',
'trip_distance',
'fare_amount','extra',
'mta_tax','tip_amount',
'tolls_amount',
'improvement_surcharge',
'total_amount','congestion_surcharge'],

parse_dates=['tpep_pickup_datetime'])
for one_filename in filenames]

df = pd.concat(all_dfs)

df['pre_tip_amount'] = df[['fare_amount', 'extra',
'mta_tax', 'tolls_amount',
'improvement_surcharge',
'congestion_surcharge']].sum(

axis='columns')

df['tip_percentage'] = df[
'tip_amount'] / df['pre_tip_amount']

df['tip_percentage'].mean()

(df['tip_percentage'] > 1).value_counts()

(df['tip_percentage'] == 0).value_counts(

Runs read_csv
on each filename

Our list
comprehension
returns a list of

data frames.
Combines the list of data
frames into a single one

Creates the column
pre_tip_amount

Calculates the
tip percentage

What was the mean tip
percentage across all trips?

How many trips tipped
more than 100%?

306 CHAPTER 10 Dates and times
normalize=True)

df.groupby(df[
'tpep_pickup_datetime'].dt.day_of_week)[
'tip_percentage'].mean().sort_values(ascending=False)

df.groupby(df[
'tpep_pickup_datetime'].dt.hour)[
'tip_percentage'].mean().sort_values(

ascending=False).head(5)

df.groupby(df[
'tpep_pickup_datetime'].dt.month)[

'tip_percentage'].mean().sort_values(
ascending=False)

df = df.set_index('tpep_pickup_datetime')

df.resample('1D')[
'tip_percentage'].mean().sort_values(

ascending=False).head(10)

df = pd.concat([df['2019-01-01':'2019-01-31'],
df['2019-07-01':'2019-07-31']])

df.resample('1D')[
'tip_percentage'].mean().sort_values(

ascending=False).head(10)

You can explore a version of this in the Pandas Tutor at http://mng.bz/lW42.

Beyond the exercise

 You saw that 32% of riders don’t tip at all. Of those who do, what percentage do
they tip, on average?

 How many of the rides in the data set, supposedly from January and July 2019,
are from outside of those dates?

 Looking only at dates in January and July, in what week did passengers tip the
greatest percentage?

Summary
In this chapter, we explored various ways pandas lets us examine data that includes a
date-and-time component. We saw how to read datetime information into a data
frame, extract datetime information from an existing column, break such a column
apart, and interpret odd datetime formats. We also learned to create and work with a
time series—a data frame in which a datetime column serves as our index—and how
to query it in various ways, including resampling, letting us run aggregation methods
over particular time periods.

What percentage of taxi
riders give no tip at all? Grouping by the day of week,

calculates the mean tip
percentage and then sorts

Grouping by the hour of the
day, calculates the mean tip
percentage and then sorts

Grouping by month,
finds the mean
tip percentage

Sets the data frame’s index,
making it a time series

Finds, for each day, the
mean tip percentage

Excludes dates that aren’t
from January or July 2019

http://mng.bz/lW42

Visualization
Data analysis, as you’ve seen throughout this book, is largely about numbers. A typ-
ical pandas data frame contains columns and rows full of numbers, and data analy-
sis involves lots of mathematical methods and statistical techniques.

 That’s fine, except that we humans are typically bad at understanding large col-
lections of numbers. We’re generally much better at comprehending visual depic-
tions of numbers, especially if we’re trying to understand relationships among our
data. So, although we often think of visualization as a way to explain technical ideas
in simple terms to non-experts, the fact is that visualization can also be helpful for
the experts working on a problem. Seeing a chart or graph can help us put the
numbers in perspective, improve our understanding of a problem we’re working
on, and thus inform the very analysis that created the visualization.

 The 900-pound gorilla in the world of Python data visualization is Matplotlib.
There’s no doubt that Matplotlib is powerful—but it’s also overwhelming to many
people. Fortunately, pandas provides a visualization API that allows us to create
plots from our data without having to use Matplotlib explicitly. We thus get the best
of both worlds: the ability to plot information in our data frame, without having to
learn too much about Matplotlib’s API. However, if and when you need more
power, Matplotlib is there, under the hood.

 In this chapter, we’ll look at how to visualize data using the pandas wrapper for
Matplotlib. We’ll explore a number of different plots that can help make your data
come alive.

 We’ll also spend some time looking at Seaborn, a popular alternative to Mat-
plotlib. There are a number of such alternatives; some (like Seaborn) are wrappers
around the Matplotlib library, and others are full-blown alternatives written from
the ground up. It’s worth learning what your options are so you can find a system
307

308 CHAPTER 11 Visualization
with which you feel comfortable. I’ve grown to like Seaborn’s API as well as its ability
to create attractive plots with little or no customization.

 This chapter also provides you with the opportunity to explore one of Jupyter’s best
features: the fact that it keeps images inline (figure 11.1). The ability to have data, code,
and plots in the same document is a game-changer for many projects, making it possible
for data scientists to both share information and get input from less technical colleagues.

Figure 11.1 Screenshot of a Jupyter notebook combining code and plots

Table 11.1 What you need to know

Concept What is it? Example To learn more

pd.read_csv Returns a new data frame
based on CSV input

df = df.read_
csv('myfile.csv')

http://mng.bz/a1az

df.groupby Allows us to invoke one or
more aggregate methods
for each value in a particu-
lar column

df.groupby('year') http://mng.bz/gBGl

df.loc Retrieves selected rows
and columns

df.loc[:, 'passenger_
count'] = df
['passenger_count']

http://mng.bz/pPNG

http://mng.bz/a1az
http://mng.bz/gBGl
http://mng.bz/pPNG

309EXERCISE 43 ■ Cities
EXERCISE 43 ■ Cities
Back in exercise 20, we worked with a JSON file describing the 1,000 largest cities in
the United States. In this exercise, we look at the same file—but instead of printing
the analysis as a bunch of numbers, we visualize some of the most interesting numbers
and trends in the file. Specifically, I want you to

1 Load data from cities.json into a data frame.
2 Create a bar plot showing how many of the top 1,000 cities are in each state.

There should be one vertical bar per state (with a few extra for nonstates such as
Washington, DC). The plot should be ordered such that the state with the fewest
cities in this list is on the left and the state with the most cities is on the right.

3 Create a bar plot comparing the growth of all cities in the state of Pennsylvania.
There should be one vertical bar per city, ordered with the slowest-growing city
on the left and the fastest-growing city on the right.

df.plot Plotting object for a data
frame

df.plot.box() http://mng.bz/Ox8n

df.corr Produces a data frame
describing correlations
among each pair of numeric
columns

df.corr() http://mng.bz/Y1oN

s.quantile Gets the value at a
particular percentage of
the values

s.quantile(0.25) http://mng.bz/GyYq

df.join Joins two data frames
based on their indexes

df.join(other_df) http://mng.bz/zXva

pandas.plotting
.scatter_matrix

Creates scatter plots com-
paring every pair of numeric
columns

pandas.plotting.scat
ter_matrix

http://mng.bz/0Kqx

Matplotlib Python library for plotting
data

import matplotlib
.pyplot as plt

http://mng.bz/9D6l

Seaborn Python library for plotting
data

import seaborn as sns http://mng.bz/jPKx

df.reset_index Gets a data frame identical
to our current one, but with
a new numeric index start-
ing at 0

df.reset_index(drop=
True)

http://mng.bz/Wz50

pd.concat Returns a list of data
frames combined as a
single new data frame

df = pd.concat(df1,
df2)

http://mng.bz/8r5P

Table 11.1 What you need to know (continued)

Concept What is it? Example To learn more

http://mng.bz/Ox8n
http://mng.bz/Y1oN
http://mng.bz/GyYq
http://mng.bz/zXva
http://mng.bz/0Kqx
http://mng.bz/9D6l
http://mng.bz/jPKx
http://mng.bz/Wz50
http://mng.bz/8r5P

310 CHAPTER 11 Visualization
4 Create a pie plot showing how much each Massachusetts city in the list contrib-
utes to the overall population. (And no, I’m not trying to say that 100% of the
population of that state resides in large cities.) There should be one pie seg-
ment per city in the list, and its size should indicate how much it contributes to
the total.

5 Create a scatter plot of the cities, putting the longitude on the x axis and lati-
tude on the y axis. What does the resulting plot look like?

Working it out

Matplotlib offers a wide variety of plotting formats, and we use this exercise to explore
a number of them, trying different techniques to understand our data in a variety of
ways. Visualization isn’t just about choosing a type of plot; we often need to clean,
arrange, and modify the data before we can do so.

 First, I asked you to create a bar plot showing how many of the top 1,000 cities in
the United States are in each state. The data frame we create from the JSON has sev-
eral columns, one of which is state. We use that column, along with a call to groupby,
to find the number of cities per state:

df.groupby('state').count()

This works, but it gives a result for every column in the data frame. Because we’re only
interested in the number of cities, we can choose a single column—in this case, the
city column:

df.groupby('state')['city'].count()

With that in place, we can create a bar plot. But wait: the question asks for the bar to
be sorted from the smallest value to the largest. This means before producing the
plot, we need to sort the values in the series returned by the groupby call. Fortunately,
sorting a series is easily done with sort_values:

(
df
.groupby('state')['city'].count()
.sort_values()

)

With that in place, we can produce our bar plot:

(
df
.groupby('state')['city'].count()
.sort_values()
.plot.bar()

)

NOTE Another way to invoke this plot would be to invoke plot as a function,
passing kind='bar' as a keyword argument. I prefer the other syntax, but
either is considered standard and acceptable.

311EXERCISE 43 ■ Cities
This works, but with 50 states (plus Washington, DC), we end up with a plot that’s
small. We thus pass the figsize keyword argument to bar, which is in turn passed to
the Matplotlib backend. By giving figsize a value of (10, 10), we can set it to be a 10-
inch by 10-inch square:

(
df
.groupby('state')['city'].count()
.sort_values()
.plot.bar(figsize=(10,10))

)

It’s probably not particularly surprising that California has the most large cities, but
the sheer number (and thus very tall bar in our plot) was still striking to me when pro-
ducing this plot (figure 11.2).

Figure 11.2 Bar plot showing how many large cities are in each state

A
la

sk
a

V
er

m
on

t
D

is
tri

ct
 o

f C
ol

um
bi

a
M

ai
ne

H
aw

ai
i

W
yo

m
in

g
W

es
t V

irg
in

ia
S

ou
th

 D
ak

ot
a

D
el

aw
ar

e
N

ew
 H

am
ps

hi
re

N
eb

ra
sk

a
M

on
ta

na
N

or
th

 D
ak

ot
a

K
en

tu
ck

y
N

ev
ad

a
M

is
si

ss
ip

pi
R

ho
de

 Is
la

nd
M

ar
yl

an
d

N
ew

 M
ex

ic
o

Id
ah

o
Lo

ui
si

an
a

A
rk

an
sa

s
K

an
sa

s
O

kl
ah

om
a

S
ou

th
 C

ar
ol

in
a

A
la

ba
m

a
P

en
ns

yl
va

ni
a

Io
w

a
O

re
go

n
C

on
ne

ct
ic

ut
M

is
so

ur
i

N
ew

 Y
or

k
V

irg
in

ia
Te

nn
es

se
e

G
eo

rg
ia

U
ta

h
W

is
co

ns
in

In
di

an
a

C
ol

or
ad

o
N

or
th

 C
ar

ol
in

a
N

ew
 J

er
se

y
M

in
ne

so
ta

A
riz

on
a

W
as

hi
ng

to
n

M
ic

hi
ga

n
O

hi
o

M
as

sa
ch

us
et

ts
Ill

in
oi

s
Fl

or
id

a
Te

xa
s

C
al

ifo
rn

ia

312 CHAPTER 11 Visualization
Next, I asked you to create a bar plot showing growth in Pennsylvania cities, sorted
from lowest to highest. For this task, we took data from the growth_from_2000_
to_2013 column, along with the city column, all from rows in which state equals to
'Pennsylvania'. I decided it would be easiest to turn these rows and columns into a
separate, smaller data frame using df.loc:

df.loc[df['state']=='Pennsylvania',
['city','growth_from_2000_to_2013']

]

As we’ve seen on many occasions, we select rows in which the state is equal to
'Pennsylvania' and then the two columns that are of interest. Then, because we
want to show the city names in our plot’s x index, we make it the index of the data
frame:

(
df.loc[

df['state']=='Pennsylvania',
['city','growth_from_2000_to_2013']]

.set_index('city')
)

At this point, it would be nice to produce the plot. But there’s a problem: the growth
is a string ending with a '%' sign. If we want to plot it, we need to turn it into a num-
ber. How can we do that?

 We could use the str accessor to run a method on our string. But before we can do
so, we need to turn our data frame into a series. That’s because str only works on a
series. Fortunately, the index from a data frame remains when we extract one column
as a series:

(
df.loc[

df['state']=='Pennsylvania',
['city','growth_from_2000_to_2013']]

.set_index('city')
['growth_from_2000_to_2013']

)

With our data now in a series, we can remove the '%' in a variety of ways. I decided to
use str.replace, turning all occurrences of '%' into the empty string, ''. But we
could have used a slice to keep all but the final character or str.rstrip to remove
'%' from the right side. Using str.replace, we end up with the following code:

(
df.loc[

df['state']=='Pennsylvania',
['city','growth_from_2000_to_2013']]

.set_index('city')

Row selector: only rows
describing Pennsylvania cities

Column selector: only two columns,
the city name and its growth

Sets the city name
to be the index

Retrieves the
growth column

313EXERCISE 43 ■ Cities
['growth_from_2000_to_2013']
.str.replace('%', '')

)

The result is still a series of strings. However, these strings can all be turned into float-
ing-point values using astype:

(
df.loc[

df['state']=='Pennsylvania',
['city','growth_from_2000_to_2013']]

.set_index('city')
['growth_from_2000_to_2013']
.str.replace('%', '')
.astype(np.float16)

)

We now have every city in Pennsylvania along with its growth percentage. We can plot
it, but before doing so, I asked you to sort the values from lowest to highest. Once
again, we invoke sort_values:

(
df.loc[

df['state']=='Pennsylvania',
['city','growth_from_2000_to_2013']]

.set_index('city')
['growth_from_2000_to_2013']
.str.replace('%', '')
.astype(np.float16)
.sort_values()

)

And with that in place, we create a bar plot, setting a size of (10, 10) to see it more
easily in our notebook (figure 11.3):

(
df.loc[

df['state']=='Pennsylvania',
['city','growth_from_2000_to_2013']]

.set_index('city')
['growth_from_2000_to_2013']
.str.replace('%', '')
.astype(np.float16)
.sort_values()
.plot.bar(figsize=(10,10))

)

Next, I asked you to find all cities in Massachusetts and create a pie plot with all these
cities. This will allow us to see what proportion of the urban population of Massachu-
setts lives in each city. Remember that a pie plot takes all the values, sums them, and
produces a pie “slice” of that item’s proportion of the total.

Removes the % sign from
each growth string

Gets a float16 column
from the growth string

314 CHAPTER 11 Visualization
Figure 11.3 Bar plot showing growth in Pennsylvania cities

We first need to get names and populations of cities in Massachusetts. We can do that
using the following query:

(
df
.loc[

df['state'] == 'Massachusetts',
['city','population']]

.set_index('city')
['population']

)

This is similar to what we did for Pennsylvania: we retrieved only two columns (city
and population) from the data frame and only for those rows in which the state was

Row selector: Only
cities in Massachusetts

Column selector: Two
columns, city and population

Uses the city name
as the indexRetrieves only

the population column

315EXERCISE 43 ■ Cities
Massachusetts. We set the index of our data frame to be city and then retrieved the
only remaining column, population, as a series.

 Next, we draw a pie plot based on this data, giving it a size of 10 inches by 10 inches:

(
df
.loc[

df['state'] == 'Massachusetts',
['city','population']]

.set_index('city')
['population']
.plot.pie(figsize=(10,10))

)

Sure enough, we see that Massachusetts has many different cities—but of the urban
population in the state, Boston clearly dominates, followed distantly by Worcester and
Springfield (figure 11.4).

Figure 11.4 Pie chart showing the population of Massachusetts cities

Worcester
Springfield

Brockton

Quincy

Lynn

Fall River

po
pu

la
tio

n

Newton

Taunton Chicopee
Revere

Weymouth
Town

Peabody

Fitchburg

Holyoke

Marlborough

Woburn

Chelsea

Boston

Leominister

Beverly

Salem

Everett

Pittsfield

Attleboro

Barnstable Town
MethuenMalden

Medford

Haverhill

Waltham

Lawrence

Somerville

New Bedford

Cambridge

Lowell

Westfield

316 CHAPTER 11 Visualization
Finally, I asked you to create a scatter plot with the longitude and latitude of the 1,000
cities in the data frame. We can do that by invoking plot.scatter on the data frame,
indicating which column should be used for the x axis and which should be used for
the y axis:

df.plot.scatter(x='longitude', y='latitude')

What does the scatter plot look like? Well, we’re plotting the 1,000 most populous cit-
ies in the United States, which means the plot will look like . . . a map of the United
States, at least the most densely populated areas (figure 11.5).

Figure 11.5 Scatter plot of cities’ longitude and latitude

Solution

filename = '../data/cities.json'
df = pd.read_json(filename)

(
df
.groupby('state')['city'].count()
.sort_values()
.plot.bar(figsize=(10,10))

)

(
df.loc[

df['state']=='Pennsylvania',

Reads the JSON
into a data frame

Gets the number of cities grouped by state,
sorts the values, and creates a bar plot

Gets all cities
in Pennsylvania

317EXERCISE 43 ■ Cities
['city','growth_from_2000_to_2013']]
.set_index('city')
['growth_from_2000_to_2013']
.str.replace('%', '')
.astype(np.float16)
.sort_values()
.plot.bar(figsize=(10,10))

)

(
df
.loc[

df['state'] == 'Massachusetts',
['city','population']]

.set_index('city')
['population']
.plot.pie(figsize=(10,10))

)

df.plot.scatter(x='longitude', y='latitude')

Beyond the exercise

Now that you’ve gotten your feet wet with visualization, let’s create some more plots:

 Create a histogram of the growth rates among cities in both Texas and Michigan.
 Create a histogram of the growth rates among cities in both Texas and

California.
 Create a bar plot from the average growth per state.

Box-and-whisker plots
When I took introductory statistics in graduate school, the professor started to tell us
about plots. I was wondering why he felt the need to explain plots that we had seen
since middle school—line plots, bar plots, and even pie plots. But then he got to box-
plots, more formally known as box-and-whisker plots, and I was intrigued.

We frequently use the describe method to describe data. The describe method
includes the Tukey five-number summary—minimum, 0.25 quartile, median, 0.75
quartile, and maximum—along with the mean and standard deviation, which together
help us understand our data.

The “Tukey” in this name refers to John Tukey, a famous mathematician and statis-
tician. Tukey developed not only the five-number summary but also a graphical depic-
tion of that summary: the boxplot. (He also invented the words bit, for binary digit,
and software, which . . . well, if you’re reading this book, you probably know what soft-
ware is.)

For example, let’s create a simple series:

s = Series([10, 15, 17, 20, 25])

Only columns city and
growth_from_2000_to_2013

Removes
the % sign

Turns into a float, sorts values,
and creates a bar plot

Gets all cities in Massachusetts,
columns city and population

Creates a pie plot of
the cities’ populations

Creates a scatter plot from
cities’ longitude and latitude

318 CHAPTER 11 Visualization
(continued)

We can get all the descriptive statistics, including the five-number summary with
s.describe():

count 5.00000
mean 17.40000
std 5.59464
min 10.00000
25% 15.00000
50% 17.00000
75% 20.00000
max 25.00000
dtype: float64

A boxplot shows us this five-figure summary, but in graphical form. We can create box-
plots in pandas using plot.box on a series (for a single plot) or a data frame (for
one plot for each numeric column). We create a boxplot from s with

s.plot.box()

Boxplot from our series s

The central “box” in the boxplot has three parts:

 The top of the box indicates the 75% value.
 The middle line, often highlighted in a different color, indicates the median, the

50% value.
 The bottom of the box indicates the 25% value.

319EXERCISE 43 ■ Cities
Extending above and below the box are two lines, sometimes known as whiskers. The
top whisker ends at the maximum value, and the bottom whisker ends at the mini-
mum value. Thus, at a glance, we get a graphical depiction of the five-figure summary.

A boxplot often has circles above and below the whiskers. These represent the outli-
ers, defined in the case of our boxplots to be 1.5 * IQR (interquartile range) below
the first quartile (25% mark) or 1.5 * IQR above the third quartile (75% mark).

For example, here’s another series:

s = Series([-20, 10, 15, 17, 20, 25, 40])

The descriptive statistics are as follows:

count 7.000000
mean 15.285714
std 18.273061
min -20.000000
25% 12.500000
50% 17.000000
75% 22.500000
max 40.000000
dtype: float64

And the boxplot?

Boxplot from our series s with outliers

Boxplots allow us, at a glance, to better understand our data. They can be especially
useful when it comes to comparing data sets; we can quickly see if they’re on the

320 CHAPTER 11 Visualization
EXERCISE 44 ■ Boxplotting weather
One of the phrases I often use when teaching data analytics is that you need to “know
your data.” And one of the best ways to know your data is with a boxplot. In this exer-
cise, we use boxplots to understand the weather during the winter of 2018–2019,
using data in three different US cities. We start with Chicago and then add Los Ange-
les and Boston to emphasize the differences between these locations (and to assure
Chicago residents that yes, their winters really are that cold).

 Do the following:

1 Load the weather data for Chicago. We only care about three columns: date_
time, min temp, and max temp. Make date_time the index, and set the names of
the min and max temp columns to mintemp and maxtemp.

2 Create a boxplot of Chicago’s minimum temperatures during this period.
3 Find the values that are represented as dots on that boxplot.
4 Create a boxplot of Chicago’s minimum temperatures in February.
5 Create a side-by-side boxplot of Chicago’s minimum and maximum tempera-

tures in February and March.
6 Read in data from Los Angeles and Boston, as well. Create a single data frame

with data from all three cities, along with a new city column containing the
name of the city.

7 Get descriptive statistics for mintemp and maxtemp grouped by city.
8 Create side-by-side boxplots showing minimum and maximum temperatures for

each of the three cities.

Working it out

In this exercise, we combine techniques we’ve seen previously: specifically, using
read_csv with a variety of parameters, combining several CSV files into a single data
frame, and using a datetime column as an index. But the main point of this exercise
is to create a number of different boxplots and, in so doing, better understand the
shape and nature of our data.

(continued)

same scale and whether (and where) they overlap. Plotting the different columns from
a data frame can be particularly useful when creating machine-learning models, when
having all the data in the same range increases the model’s accuracy. Note that if
you put all the columns in the same boxplot, they share a y axis, which is perfect for
checking that they’re in the same range. You can, however, have a separate y axis
for each column if you pass subplots=True to your call:

df.plot.box(subplots=True)

Note that nowhere in the boxplot do we see the mean value. I personally think that’s
a shame, because the mean can also be a useful measure, imperfect though it may be.

321EXERCISE 44 ■ Boxplotting weather
 First, I asked you to load Chicago weather into a data frame, using the date_time
column as the index of type datetime. I also asked you to load the columns with the
minimum and maximum temperatures found on each day. We do that using the
following code:

filename = '../data/chicago,il.csv'
df = pd.read_csv(filename,

usecols=[0, 1,2],
header=0,
names=['date_time','mintemp', 'maxtemp'],

parse_dates=['date_time'],
index_col=['date_time'])

We’ve used each of these options to read_csv in the past, but here we use them all at
once. For starters, we indicate that we’re interested in only the first three columns. In
previous exercises, we often referred to these columns by name, using the names pro-
vided by the index. But here, we refer to the columns by number. That’s because we
want to give them names of our own, specified in the names parameter. We thus
choose them by number and rename them in names. We also indicate that date_time
should be parsed as a datetime column and used as the index of the data frame.
Finally, just to be on the safe side, we pass header=0 to indicate that the first row of the
file contains headers and thus shouldn’t be treated as data.

 At the conclusion of this process, we end up with a data frame with 728 rows and 2
columns. The values start at midnight on December 12, 2018, and end at 9:00 p.m. on
March 11, 2019, with new measures taken every three hours.

 I then asked you to create a boxplot for the minimum temperatures found in Chi-
cago throughout the period in the data frame. We can do this by running the follow-
ing code (figure 11.6):

df['mintemp'].plot.box()

Figure 11.6
Boxplot of minimum
temperatures in Chicago

322 CHAPTER 11 Visualization
A boxplot is supposed to visualize the five-number summary: minimum, 0.25, median,
0.75, and maximum. The result shows us that most of the temperatures were between
–20 and 5 degrees Celsius. However, we also see a number of circles at the bottom of
the plot, indicating outlier values. In the pandas implementation of boxplots, outliers
are defined as those at least 1.5 * IQR below the 0.25 mark or at least 1.5 * IQR above
the 0.75 mark. Just to double check that the plot is showing them correctly, I asked
you to find those values:

iqr = df['mintemp'].quantile(0.75) - df['mintemp'].quantile(0.25)

(
df.loc[

df['mintemp'] < df['mintemp'].mean() - (iqr_ 1.5),
'mintemp'
]

)

Sure enough, we see a number of temperature readings (on January 30 and 31) when
the temperature was –27 and –28 degrees Celsius—not only cold, but unusually cold,
even for a Chicago winter. Our boxplot is thus right to show them as outliers.

 Next, I asked you to create a boxplot for Chicago’s minimum temperatures in Feb-
ruary. We solve this as follows:

(
df
.loc[

'01-Feb-2019':'28-Feb-2019',
'mintemp']

.plot.box()
)

Our row selector is the slice from February 1 through February 28. Here we take
advantage of the fact that our data frame’s index contains date and time values and
that we can always use a slice to retrieve rows. We choose the mintemp column and
feed the resulting one-column data frame to plot.box (figure 11.17). The median
temperature during February 2019 was –5 degrees Celsius, which does indeed sound
right for a Chicago winter.

 Next, I asked you to create boxplots for both minimum and maximum tempera-
tures in February and March. We again use a slice to select the appropriate rows,
stretching from February 1 through March 30:

(
df
.loc['01-Feb-2019':'30-Mar-2019',

['mintemp','maxtemp']]
.plot.box()

)

Row selector in
February 2019

Column selector
of mintemp

Row selector, all of
February and March

Column selector, both
mintemp and maxtemp

323EXERCISE 44 ■ Boxplotting weather
Figure 11.7 Boxplot for minimum Chicago temperatures in February

Once again, we select rows using a slice. But the column selector needs to be a list of
strings: the names of the columns that we want to plot. We then pass these to
plot.box and get two boxplots displayed on the same scale, next to one another
(figure 11.8).

Figure 11.8 Boxplot for minimum and maximum Chicago temperatures in February and March

324 CHAPTER 11 Visualization
Having experienced, if only on paper, the cold Chicago winter, I thought it would be
nice to add data from two other cities. I thus asked you to read data from Los Angeles
and Boston as well, creating a single data frame from all three of the CSV files. To dis-
tinguish data from the various cities, I asked you to add a city column with the city’s
name as you read them in. Because df already contains information for Chicago, we
set that value right away:

df['city'] = 'Chicago'

To load the other data, we use a for loop—typical in day-to-day Python programming,
but unusual in pandas. Here, the loop runs not over a series or data frame but rather
over a list of filenames containing city data:

for city_stem in ['los+angeles,ca', 'boston,ma']:
new_df = pd.read_csv(f'../data/{city_stem}.csv',

usecols=[0, 1,2],
header=0,
names=['date_time','maxtemp', 'mintemp'],

parse_dates=['date_time'],
index_col=['date_time'])

new_df['city'] = city_stem.split(',')[0].replace('+', ' ').title()
df = pd.concat([df, new_df])

Let’s break down what we do here:

1 We set up a list with the filenames (minus the 'csv' suffix) over which we want
to run.

2 We use a for loop to iterate over those filenames.
3 We reuse the read_csv call that we used earlier, passing the complete filename.
4 As before, we select specific columns, indicating that date_time should be

parsed as a datetime and set to the index.
5 We add a value to city for each of the loaded cities using a bunch of string

methods to convert city_stem into a useful string:

– We use str.split on city_stem, getting a list—from which we take the ini-
tial part.

– We replace the character '+' with a space, ' '.
– We invoke str.title, capitalizing each word.

Finally, we use pd.concat to add the new data frame to the existing one. The end
result is a single data frame with weather data from all three cities and with the city
column indicating the source of the data.

 With this data loaded, I asked you to get descriptive statistics for mintemp and
maxtemp, grouped by city:

df.groupby('city')[['mintemp', 'maxtemp']].describe()

The data frame we get back has three rows, one for each city. The columns are in a
multi-index, with all measurements for mintemp and then all measurements for

325EXERCISE 44 ■ Boxplotting weather
maxtemp. But although these details may be interesting and useful, they’re not as com-
pelling as a boxplot. I thus asked you to create a boxplot showing minimum and max-
imum temperatures for all three cities, grouped together. We solve it as follows:

(
df
.plot.box(column=['mintemp', 'maxtemp'],

by='city')
)

This produces two side-by-side boxplots, one for mintemp and the second for maxtemp.
In each plot, we see the five-number summary for each city, side by side (figure 11.9).
It isn’t a surprise to find that although Boston’s winter months are warmer than Chi-
cago’s, Los Angeles is far warmer than either of them.

Figure 11.9 Boxplot for minimum and maximum temperatures in several cities

Solution

filename = '../data/chicago,il.csv'
df = pd.read_csv(filename,

usecols=[0, 1,2],
header=0,
names=['date_time','maxtemp', 'mintemp'],
parse_dates=['date_time'],
index_col=['date_time'])

Loads only
three columns

Explicitly tells pandas
that the first line
contains header infoNames the three

columns we load

The date_time column should
be parsed as a datetime.Sets date_time

to be an index

326 CHAPTER 11 Visualization
df['mintemp'].plot.box()

iqr = df['mintemp'].quantile(0.75) - df['mintemp'].quantile(0.25)

(
df.loc[

df['mintemp'] < df['mintemp'].mean() - (iqr * 1.5),
'mintemp'
]

)

(
df
.loc['01-Feb-2019':'28-Feb-2019',
'mintemp']
.plot.box()

)

(
df
.loc['01-Feb-2019':'30-Mar-2019',

['mintemp','maxtemp']]
.plot.box()

)

df['city'] = 'Chicago'

for city_stem in ['los+angeles,ca', 'boston,ma']:
new_df = pd.read_csv(f'../data/{city_stem}.csv',

usecols=[0, 1,2],
header=0,
names=['date_time','mintemp', 'maxtemp'],
parse_dates=['date_time'],
index_col=['date_time'])

new_df['city'] = city_stem.split(',')[0].replace('+', ' ').title()
df = pd.concat([df, new_df])

df.groupby('city')[['mintemp', 'maxtemp']].describe()

(
df
.plot.box(column=['mintemp', 'maxtemp'],

by='city')
)

Beyond the exercise

 Rather than starting with data from Chicago, begin with an empty data frame
and use a for loop to load data from all three cities.

 For each city, calculate the mean and median for mintemp and maxtemp. Are
they the same (or even close)? If they’re different, in which direction are they
pulled?

Creates a boxplot of
min temp in Chicago

Finds the outliers, assuming
2.5*std above/below mean

Boxplot of February
min temp in Chicago

Boxplot of Feb–March
min+max temps in Chicago

New column, city, all
with 'Chicago' values

Loads additional
cities

Loads the CSV for
each new city

Uses Python string
methods to set the

city name from
the filename

Adds the new data
frame to the
existing ones

Gets descriptive
statistics for

temps by city

Boxplot of min and
max temps by city

327EXERCISE 45 ■ Taxi fare breakdown
 Create a line plot showing the minimum temperatures in each city. The x axis
should show dates, the y axis should show temperatures, and each line should
represent a different city.

EXERCISE 45 ■ Taxi fare breakdown
We’ve looked at New York City taxi fares a number of times in this book. This time,
we’re going to look at this data set visually, plotting the data from a variety of perspec-
tives. It’s hard to exaggerate not just how much of an effect a good plot can have when
presenting it to others, but how much better it can help you understand the data set
yourself. You’ll see new relationships in the data and know how to answer questions
you already asked as well as what new questions you should be asking.

 I’d like you to do the following:

1 Load data from all four NYC taxi files into a single data frame. We need a bunch
of different columns: tpep_pickup_datetime, passenger_count, trip_

distance, fare_amount, extra, mta_tax, tip_amount, tolls_amount,
improvement_surcharge, total_amount, and congestion_surcharge.

2 Create a bar plot showing how many rides took place during each month and
year of our data set. (It’s fine if there are "holes" in the bar plot.)

3 Create a bar plot showing the total amount paid in taxi rides for every year and
month of the data set.

4 Create a bar plot showing fare_amount, extra, mta_tax, tip_amount, and
tolls_amount paid in taxi rides per month and year, with the various compo-
nents stacked in a single bar per year/month.

5 Create a bar plot showing fare_amount, extra, mta_tax, tip_amount, and
tolls_amount paid in taxi rides per number of passengers, stacked in a single
bar per number of passengers.

6 Create a histogram showing the frequency of each tipping percentage between
(and including) 0% and 50%.

Working it out

This exercise is all about visualizing our taxi data. To make the data more interesting
and varied, I asked you to load all four of the CSV files I’ve made available: from Janu-
ary 2019, July 2019, January 2020, and July 2020. We load them, as we’ve done before,
most recently in exercise 42, via a list comprehension:

filenames = ['../data/nyc_taxi_2019-01.csv',
'../data/nyc_taxi_2019-07.csv',
'../data/nyc_taxi_2020-01.csv',
'../data/nyc_taxi_2020-07.csv']

all_dfs = [pd.read_csv(one_filename,
usecols=['tpep_pickup_datetime',

'passenger_count',

328 CHAPTER 11 Visualization
'trip_distance',
'fare_amount',
'extra',
'mta_tax',
'tip_amount',
'tolls_amount',
'improvement_surcharge',
'total_amount',
'congestion_surcharge'],

parse_dates=['tpep_pickup_datetime'])
for one_filename in filenames]

In this case, we pass usecols the list of columns I asked for in the question. We also
pass parse_dates a single value, the column tpep_pickup_datetime. (In this exer-
cise, I didn’t see a need for us to have the dropoff datetime.) This create a list of data
frames, which we can then concatenate into a single data frame using pd.concat:

df = pd.concat(all_dfs)

With our data frame in place, we can now begin to perform our analysis.
 I first asked you to create a bar plot showing how many rides there were in each

year and month of our data set. To do this, we run a groupby, grouping by two col-
umns—first by year, and then by month:

(
df
.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
)

This, of course, gives us a groupby object on which we can perform the query. For this
part of the exercise, I asked you to find the total amount paid in each year-month
period of our data set. We run the query as follows:

(
df
.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
['total_amount'].sum()

)

This produces a numeric result, showing the total amount paid for each year-month
combination of our data set. Given that we only loaded four files, each supposedly
containing one month of data, it may seem strange that we have data from other
months and years. Some of that data may not have been stored in New York’s data-
bases when it was first created. Or the computer wasn’t set to the right date. Or the
data may be corrupt. Likely it’s a combination of these and other factors; even in a
fully automated system, you shouldn’t be surprised to have some bad data.

 I then asked you to create a bar plot from this data:

(
df

329EXERCISE 45 ■ Taxi fare breakdown
.groupby([df['tpep_pickup_datetime'].dt.year,
df['tpep_pickup_datetime'].dt.month])

['total_amount'].sum()
.plot.bar(figsize=(10,10))

)

The call to plot.bar creates the bar plot based on the data frame we get from the
groupby (figure 11.10). That data frame’s index serves as the plot’s x axis and the val-
ues determine the y axis, which we allow to be generated automatically.

Figure 11.10 Bar plot showing how much money was paid to taxis in each month and year

330 CHAPTER 11 Visualization
Next, I asked you to create a bar plot showing, again for every year-month combina-
tion, the number of taxi rides per month. Once again, we start with a groupby query:

(
df
.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
['passenger_count'].count()
.plot.bar(figsize=(10,10))

)

Here, we’re not interested in totaling the receipts but rather in counting the rows.
Although we could run count, the aggregation method that counts rows, on the entire
data frame, that would give us the count for every column. (So if a data frame has 10
columns, running df.count() will give you 10 results, one for each column.)

NOTE Because count only counts the number of non-NaN values, it can some-
times come in handy, allowing you to see which columns contain more (or
fewer) NaN values.

We don’t really need that. So we chose to select a single column, passenger_count—
although we really could have chosen any of them:

(
df
.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
['passenger_count'].count()

)

Finally, we take this data frame and turned it into a bar plot. As before, we called
plot.bar with a keyword argument of figsize=(10, 10), ensuring that the image is a
10-inch square (figure 11.11):

(
df
.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
['passenger_count'].count()
.plot.bar(figsize=(10,10))

)

Although the x axis is the same in this plot and the previous one, and although we see
bars in the same places, the values are obviously different. Moreover, although July
2019 was the month with the greatest amount of revenue, it had the third-most rides.
We can also see (as we’ve discussed in previous exercises) that in July 2020—at the
height of the pandemic—there were significantly fewer rides and also significantly less
taxi revenue.

331EXERCISE 45 ■ Taxi fare breakdown
Figure 11.11 Bar plot showing how many taxi rides occurred per month and year

We’ve generally talked about the total_amount column when it comes to taxi reve-
nue. But total_amount is the final dollar figure that a taxi passenger has to pay at the
end of the ride. Although passengers don’t often think about this, that fare can be
broken down into a number of different pieces. In this question, I asked you to plot
the amount of revenue each month in the data set and to break that bar down into
segments, thus allowing us to see how much of each month’s revenue came from each
source.

332 CHAPTER 11 Visualization
 Once again, we use groupby on the year and month columns:

(
df.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
)

Because we want to produce the plot with input from five columns—fare_amount,
extra, mta_tax, tip_amount, and tolls_amount—we name them in a list of column
names after the groupby:

(
df.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
[['fare_amount','extra','mta_tax',

'tip_amount','tolls_amount']]
)

We then run the sum method, which gives us a separate sum for each of these five col-
umns in each of the months for which we have data:

(
df.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
[['fare_amount','extra','mta_tax',

'tip_amount','tolls_amount']].sum()
.plot.bar(stacked=True, figsize=(10,10))

)

Finally, we ask pandas to create a bar plot:

(
df.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
[['fare_amount','extra','mta_tax',

'tip_amount','tolls_amount']].sum()
.plot.bar(stacked=True, figsize=(10,10))

)

However, there’s a difference between our previous calls to plot.bar and this one:
normally we would get a separate plot for each column for each month. But because
we specified stacked=True, we get all the bars for a given month stacked on top of
one another. Moreover, each portion of the bar is in a different color, and pandas pro-
vides a legend, as well. In this way, we can see visually not just how much revenue taxis
brought in each month but also how much of that revenue came from the fare itself,
as opposed to taxes, tips, and tolls (figure 11.12). We can see that although the fare is
by far the greatest proportion of the total taxi revenue, tips constitute a fairly large
proportion, followed by extra charges, taxes, and tolls.

333EXERCISE 45 ■ Taxi fare breakdown
Figure 11.12 Stacked bar plot showing the relative components that go into the total fare per year
and month

Next, I asked for a similar stacked bar plot with the same five columns as components
in each bar. However, rather than grouping by the year and month, I asked you to
group by the passenger_count column. We can do that with a query similar to the
previous one, grouping on passenger_count rather than by year-month combination
(figure 11.13):

(
df

334 CHAPTER 11 Visualization
.groupby(df['passenger_count'])
[['fare_amount','extra','mta_tax',

'tip_amount','tolls_amount']].sum()
.plot.bar(stacked=True, figsize=(10,10))

)

Figure 11.13 Stacked bar plot showing the relative components that go into the total fare per number
of passengers

Finally, I asked you to create a histogram showing the frequency of each tipping per-
centage between (and including) 0 and 50. To do this, we need to find the tipping
percentage for each ride and keep only those between 0 and 50. The easiest thing

335EXERCISE 45 ■ Taxi fare breakdown
would be to create a new column, tip_percentage, by dividing tip_amount by
fare_amount. But the real world includes all sorts of surprises, including NaN values
and records in which the fare_amount is equal to zero—thus giving us an infinite
(known as np.inf) value. To avoid this, we first get rid of any ride in which the fare
was less than or equal to 0:

df = df[df['fare_amount'] > 0]

Then we create a new column, tip_percentage, knowing we won’t get any np.inf
values:

df['tip_percentage'] = df['tip_amount'] / df['fare_amount']

Finally, we plot all the values less than or equal to 50%:

(
df
.loc[

df['tip_percentage'] <= .50,
'tip_percentage']

.plot.hist()
)

The resulting histogram has a huge bar—the largest—for 0% tips, indicating that a
plurality of New York taxi riders don’t tip at all. But other than that bar, we see a fairly
normal distribution, centered around 20% or 25% (figure 11.14).

Figure 11.14 Histogram showing, across all rides, what nonzero percentage
New York riders tip

Row
selector

Column
selector

336 CHAPTER 11 Visualization
We can create this histogram another way, using method chaining along with .loc,
assign, and lambda:

(
df
.loc[lambda df_: df_['fare_amount'] > 0]
.assign(tip_percentage =

lambda df_: df_['tip_amount'] / df_['fare_amount'])
.loc[lambda df_: df_['tip_percentage'] <= 0.5,

'tip_percentage']
.plot.hist()

)

It’s easiest to understand this code if you read it one line at a time:

1 We use .loc to find all rows of df where fare_amount is more than 0. We use a
lambda here, along with a temporary variable of df_, which is typical when
chaining methods because it ensures that we’re working with the data frame we
get rather than the original df.

2 We use assign to create a new column, tip_percentage. Its value is the result
of running a function, defined with lambda, that takes each row and divides
tip_amount by fare_amount. The column created by assign isn’t actually
added to df; it’s only on the data frame we’re building via method chaining.

3 We again use .loc to keep only those rows where tip_percentage is less than
0.5. But here we use the two-argument value of .loc, filtering rows via the
lambda and columns by explicitly naming the one we want: tip_percentage.

4 We call plot.hist and get a histogram.

Solution

filenames = ['../data/nyc_taxi_2019-01.csv',
'../data/nyc_taxi_2019-07.csv',
'../data/nyc_taxi_2020-01.csv',
'../data/nyc_taxi_2020-07.csv']

all_dfs = [pd.read_csv(one_filename,
usecols=['tpep_pickup_datetime',

'passenger_count',
'trip_distance',
'fare_amount',
'extra',
'mta_tax',
'tip_amount',
'tolls_amount',
'improvement_surcharge',
'total_amount',
'congestion_surcharge'],

parse_dates=['tpep_pickup_datetime'])
for one_filename in filenames]

df = pd.concat(all_dfs)

337EXERCISE 45 ■ Taxi fare breakdown
(
df
.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
['total_amount'].sum()
.plot.bar(figsize=(10,10))

)

(
df
.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
['passenger_count'].count()
.plot.bar(figsize=(10,10))

)

(
df.groupby([df['tpep_pickup_datetime'].dt.year,

df['tpep_pickup_datetime'].dt.month])
[['fare_amount','extra','mta_tax','tip_amount','tolls_amount']].sum()
.plot.bar(stacked=True, figsize=(10,10))

)

(
df
.groupby(df['passenger_count'])
[['fare_amount','extra','mta_tax',

'tip_amount','tolls_amount']].sum()
.plot.bar(stacked=True, figsize=(10,10))

)

df = df[df['fare_amount'] > 0]
df['tip_percentage'] = df['tip_amount'] / df['fare_amount']

df.loc[df['tip_percentage'] <= .50,
'tip_percentage'].plot.hist()

(
df
.loc[lambda df_: df_['fare_amount'] > 0]
.assign(tip_percentage = lambda df_: df_['tip_amount'] / df_['fare_amount
'])

.loc[lambda df_: df_['tip_percentage'] <= 0.5,
'tip_percentage']

.plot.hist()
)

Beyond the exercise

 Create a bar plot showing the average distance traveled per day of the week in
July 2020. The x axis should show the name of each day.

 Create a scatter plot with the taxi data from July 2020, comparing trip_
distance with total_amount. Ignore all rides in which either value was less
than or equal to 0 or greater than 500.

338 CHAPTER 11 Visualization
 Create a scatter plot with the taxi data from July 2020, comparing trip_
distance with passenger_count. Ignore all rides in which trip_distance was
less than or equal to 0 or greater than 500.

Correlation isn’t causation. But what is it?
No matter where you are in your data-analysis career, you’re bound to hear someone
say “correlation isn’t causation.” What does that mean? Moreover, what is
correlation?

Loosely speaking, two measurements are correlated when movement in one is gen-
erally accompanied by movement in another. If the measurements rise and fall
together, they’re considered positively correlated. If one goes up when the other goes
down (and vice versa), they’re said to be negatively correlated.

In addition to being positive or negative, correlation can be weak or strong. There’s
probably a strong correlation between your annual income and the size of your house.
There’s probably a weak correlation between your annual income and your shoe size.
(Although to be fair, higher income correlates with better nutrition and better health,
so the correlation may be stronger than you’d expect.)

Let’s take a simple example. The more electric power you use, the higher your electric
bill. If you use more electricity, your bill goes up. If you use less electricity, your bill
goes down. We can thus say that your electric consumption and your electric bill are
positively correlated.

Here’s another example: the wealthier you are, the more likely you are to own a pri-
vate jet. If you’re a multibillionaire, you probably have a jet or several. (At least, that’s
what I’ve learned from watching Succession.) So we can say that as your income goes
up, the number of private jets you own goes up. And as your income goes down, the
number of private jets you can afford to keep on hand will probably go down, as well.

It’s very tempting, when we see data that is correlated, to say that one thing causes
another. And in some cases, that’s certainly true: we can safely say that your higher
electric bill is caused by greater consumption.

But just because two data points are correlated doesn’t mean one causes the other.
And even if one does, you have to be careful to determine just what causes what. For
example, if there is a causal relationship between private-jet ownership and billion-
aire status, perhaps I should buy a private jet. That’ll raise the likelihood of my
becoming a billionaire, right?

There are numerous examples of correlations without causation. For some terrific
examples, check out the Spurious Correlations website by Tyler Vigen: https//
tylervigen.com/spurious-correlations.

This difference between correlation and causation was most famously used by the
tobacco industry. True, they said, people who smoke cigarettes are more likely to
have cancer. But just because there’s a correlation doesn’t mean it’s a causal effect.
Can we really know whether cigarettes cause cancer? After many studies and many
years, it became clear that the answer is “yes”: we can know, and the effect is
causal.

https//tylervigen.com/spurious-correlations
https//tylervigen.com/spurious-correlations
https//tylervigen.com/spurious-correlations

339EXERCISE 45 ■ Taxi fare breakdown
Finding a causal relationship is hard and generally requires doing an experiment. You
divide the population into two parts, giving one half the treatment and the other half
no treatment (or a placebo). Then you measure the difference in effects on the two
populations.

Fortunately, in the world of data analytics, we’re often less interested in causation
than in finding correlations. If I find that my online store gets more sales between
12:00 noon and 1:00 p.m., I don’t really care what’s causing it—but I do want to
know about it and take advantage of it.

This raises the question, though: What exactly does it mean for two sets of numeric
values to be correlated? Let’s take two sets of numbers, the high and low tempera-
tures for the city of Modi’in over the coming week:

df = DataFrame(
{'high':[19,21,24,17,14,16,16,19,16,16,15,16,18,18],
'low':[12,9,11,12,11,11,10,8,10,8,8,6,6,7]})

What would correlation mean?

 If the columns are positively correlated, days with the highest high tempera-
tures will also have the highest low temperatures. And days with the lowest
high temperatures will have the lowest low temperatures.

 If the columns are negatively correlated, days with the highest high tempera-
tures will have the lowest low temperatures. And days with the lowest high tem-
peratures will have the highest low temperatures.

If the two are strongly correlated, a large change in one is accompanied by a large
change in the other. If they’re weakly correlated, a large change in one will be accom-
panied by a small change in the other.

The most common measurement for correlation, and what we use in this book, is
called Pearson’s correlation coefficient and is often abbreviated as r. It’s a number
between –1 (indicating the strongest possible negative correlation) and 1 (indicating
the strongest possible positive correlation), with 0 indicating no correlation. A correla-
tion is always calculated between two data sets, which in the case of pandas means
two different columns.

We can find the correlation for the expected high and low temperatures with the corr
method:

df.corr()

The result is a data frame in which each of our original column names appears both
as a column and a row. Along the diagonal, where columns meet themselves, there
will always be a value of 1.0, indicating (not very usefully) that a column has a perfect
positive correlation with itself. More interesting is the intersection between different
column names, showing the correlation between each of those pairs of columns. In
this case, our data frame only has two columns, so the result is underwhelming:

high low
high 1.000000 0.105603
low 0.105603 1.000000

340 CHAPTER 11 Visualization
(continued)

We see that there is a correlation of 0.105603 between our high and low tempera-
tures, meaning there’s a positive correlation between the two, but a very weak one.
With more data over a longer period of time, we would probably find a higher correla-
tion. In fact, we can do that by loading the weather data for New York City, with 728
weather measurements:

filename = '../data/new+york,ny.csv'

df = pd.read_csv(filename, usecols=[1, 2],
header=0,

names=['high', 'low'])

If we run df.corr() on this data frame, we see a different type of result:

high low
high 1.000000 0.874205
low 0.874205 1.000000

This is a very strong positive correlation. It raises the question, how can it be that in
one data set the correlation is very strong, whereas in another one it’s very weak?

There are numerous possible answers. Perhaps Modi’in’s temperatures are harder
to predict. Perhaps the data we input was from a particularly turbulent time with a
high degree of variability. But I think the real reason is that the sample from Modi’in
is extremely small, with only 13 data points. It’s hard to establish any correlations
based on such a small sample.

Why are we interested in correlation? First and foremost, because it can inform our
understanding and thus our behavior. If I know that my store gets a huge number of
requests at lunchtime each day, perhaps I’ll provision additional servers during that
time. Or perhaps I’ll offer discounts outside of that window to encourage sales during
otherwise dead times.

We can also use correlations to hint at underlying similarities and relationships in our
data. If two things are correlated, perhaps there’s some behavior that explains the
connection between the two. If that behavior or relationship isn’t obvious, it can point
to a topic worth investigating or understanding better.

Although correlations are normally measured mathematically, it’s often possible to
see correlations via a scatter plot. In such a plot, we choose one column as the x
axis and a second column as the y axis. We then plot each of the points. We cannot
expect to see a perfect diagonal line, but such a line starting at (0,0) and moving up
and to the right points to a strong positive correlation in the columns. One that starts
high up on the y axis and moves down to the right indicates a strong negative correla-
tion. Using a scatter plot is a great way to better understand the data. In pandas, we
can create such a plot based on a data frame with the plot.scatter method:

df.plot.scatter(x='high', y='low')

In this case, we see a strong positive correlation matching the numeric calculations
we performed earlier.

341EXERCISE 46 ■ Cars, oil, and ice cream
EXERCISE 46 ■ Cars, oil, and ice cream
In this exercise, we’ll try to answer a question that has probably occurred to you on
many occasions: when the price of oil goes up, do people drive their cars more or less?
And while we’re at it, we’ll also attempt to answer another question: whether the price
of ice cream is correlated with the price of oil.

 This exercise will not only try to identify these correlations but also use many of
the techniques we’ve discussed in the book so far, including parsing dates, selecting
appropriate rows and columns, removing bad data, and joining data frames. Specifi-
cally, I want you to

1 Load the oil data (wti-daily.csv, as in exercise 41) into a data frame. Set the
names of the columns to date and oil, with the date column parsed as a date
and set to be the index.

2 Load historical ice cream prices in the United States (for a half gallon, aka 1.9
liters) into a separate data frame from the file ice-cream.csv. Set the column
names to be date and icecream. The date column should be parsed as a date
and set to be the index.

3 Set the icecream column to be a floating-point value, removing any rows that
stop you from accomplishing that.

4 Load historical US “miles traveled per month” data (from the file miles-traveled
.csv) into a separate data frame. Name the columns date and miles, parsing
date as a date and setting it to be the index.

Scatter plot showing high vs. low Modi’in temperatures

https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout

342 CHAPTER 11 Visualization
5 Create a single data frame from these three data frames. The index should be
the date, and the new data frame should have three columns: oil, icecream,
and miles. Only dates that are common to all three should be included.

6 Get the numeric correlations among the columns.
7 Create a scatter plot looking at the relationship between oil and icecream.
8 Create a scatter plot looking at the relationship between oil and miles.
9 Create a scatter matrix among all three columns.

Working it out

In this exercise, we take three distinct data sets, merge them to make a new data
frame, and then find correlations among the various columns. And the results are . . .
not what I was expecting, to say the least.

 Before we can calculate the correlations, we have to load the data. I always like to
create separate data frames and join them. This lets us do things step by step and
ensures that we can debug, improve, and rerun our steps more easily.

 The first data frame I asked you to create is similar to one we looked at in exercise
41. To make our join operation run more smoothly later, I asked you to standardize
some parts of the naming. For example, we want to parse the date column as a datetime
and also set it to be the index. We also rename the columns, calling them date and oil.

 Most of the time, and especially when a CSV file has headers indicating the column
names, I like to use those names in calls to read_csv. That makes the function call eas-
ier to read and debug. But when we want to rename the columns with the names
parameter, we need to describe them numerically. Moreover, to avoid having the
header row read as data, we need to indicate which row contains the header (0, in this
case), effectively causing it to be ignored.

 In the end, we load the oil data as follows:

oil_filename = '../data/wti-daily.csv'
oil_df = pd.read_csv(oil_filename,

parse_dates=[0],
header=0,
index_col=0,
names=['date', 'oil'])

A brief check (with oil_df.head() and oil_df.dtypes) shows that we successfully cre-
ated the data frame with the correct dtype. With the oil data in hand, it’s time to create
the next data frame based on the monthly ice cream price data from the US government.

 This file is in a format very similar to the oil data, in a CSV file containing two columns.
The first column is a date—the final date of each month, when the ice cream pricing
data is recorded. We can thus load it with our usual combination of keyword arguments:

ice_cream_filename = '../data/ice-cream.csv'
ice_cream_df = pd.read_csv(ice_cream_filename,

parse_dates=[0],
index_col=0,
header=0,

names=['date','icecream'])

343EXERCISE 46 ■ Cars, oil, and ice cream
However, running ice_cream_df.dtypes shows that the icecream column didn’t load
as a floating-point value. Rather, it loaded as object. That’s usually a good sign that
one or more values tripped up the system that pandas uses to identify and assign
dtypes on CSV files. We can see where the problem is by trying to turn the column
into an np.float64 value:

ice_cream_df['icecream'].astype(np.float64)

Sure enough, it fails, telling us that it choked on a line containing nothing more than
. instead of a price.

 We decide to keep only those lines of ice_cream_df that contain at least one digit,
on the assumption that such values can be turned into a floating-point value. First, we
create a boolean series based on ice_cream_df['icecream'] with True wherever the
value contains at least one digit. We do this using str.contains along with a regular
expression, making sure to pass regex=True. We then convert the resulting value to
np.float64 using astype:

ice_cream_df = (
ice_cream_df
.loc[ice_cream_df['icecream'].str.contains(r'\d', regex=True)]
.astype(np.float64)

)

Notice that we use a raw string (i.e., a string with an r before the opening quote). Raw
strings are Python’s way of automatically doubling backslashes, thus ensuring that
Python doesn’t predigest our backslashes before they get to the regular expression
engine.

 Next, I asked you to create a data frame containing the US government’s report on
total miles traveled during each calendar month. My naive assumption was that when
oil prices are high, people will drive less, but that when they’re low, they’ll drive more.
We create the new data frame using arguments similar to those we’ve already seen:

miles_filename = '../data/miles-traveled.csv'
miles_df = pd.read_csv(miles_filename,

parse_dates=[0],
index_col=0,
header=0,
names=['date', 'miles'])

With these three data frames in place, it’s time to join them. We’ve already seen how
we can join two data frames using the join method. But here I asked you to join three
data frames. How can we do that?

 The answer, once you see it, is straightforward: we join two data frames, getting a
new one. We join this new data frame with the third to get a final new one. As long as
all the data frames share an index, we should be fine:

df = oil_df.join(ice_cream_df).join(miles_df)

344 CHAPTER 11 Visualization
If we do things this way, we discover a hitch: oil price data was recorded once per day,
as opposed to the ice cream and travel data, which were recorded once per month.
Joining our data frames this way will result in a new row for each index value in oil_df
and NaN values in all but one row per month.

 There are a few ways to solve this problem. One is to perform the join as we did
previously and use dropna to remove all NaN-containing rows:

df = oil_df.join(ice_cream_df).join(miles_df).dropna()

A second method would be to perform the join on ice_cream_df, thus constraining
the index values:

df = ice_cream_df.join(oil_df).join(miles_df)

But my preferred solution is to use an inner join, meaning our index will only contain
values that existed in all three data frames. We can do this by passing the keyword
argument how='inner' to each call to join:

df = (
oil_df
.join(ice_cream_df, how='inner')
.join(miles_df, how='inner')

)

The result is a data frame whose index contains 275 distinct values, from April 1986
through December 2021. With all these values in place, we can (finally) start to look
for correlations in our data. First, we can run corr on our data frame to find the cor-
relations across all columns:

df.corr()

The resulting data frame has three columns (oil, icecream, and miles) and identical
rows. The intersection of the column names gives us the correlation, ranging from –1
to 1. We can see that oil prices and the number of miles traveled per month are posi-
tively correlated, with a value of 0.64. The correlation between gas prices and ice
cream prices is not only positive but much larger, at 0.77.

 But the biggest correlation of all is between the price of ice cream and the number
of miles driven per month, with a value of 0.818. That’s a large correlation factor, indi-
cating that whenever ice cream prices decline, people drive less and vice versa.

 Can we realistically say that there is a causal relationship here? I highly doubt it; I
don’t think you are likely to drive more because you ate more ice cream or that you eat
more ice cream because you drove more. A more likely explanation, at least to me, is
that people both drive more and eat more ice cream in the summer months and that
both prices rise when there’s more demand. I haven’t done any serious analysis to see
if this is the case, but it seems more likely than either random chance or a causal effect.

 Next, I asked you to produce two scatter plots. The first is between oil and ice-
cream (figure 11.15):

df.plot.scatter(x='oil', y='icecream')

345EXERCISE 46 ■ Cars, oil, and ice cream
Figure 11.15 Scatter plot comparing oil prices and ice cream consumption

The second scatter plot I asked you to make is between oil and miles (figure 11.16):

df.plot.scatter(x='oil', y='miles')

Figure 11.16 Scatter plot comparing oil prices and miles driven

346 CHAPTER 11 Visualization
Although you may be able to identify from these scatter plots whether there is a posi-
tive correlation here, I think the output from corr() gives a much clearer indication
of the strength of that correlation.

 Finally, I asked you to create a single scatter matrix plot, showing all numeric col-
umns plotting against one another (figure 11.17):

from pandas.plotting import scatter_matrix
scatter_matrix(df)

Figure 11.17 Scatter matrix

The scatter matrix is a great way to get a quick look at all the correlations in a data set.
The diagonal, which always contains 1.00 values in the call to df.corr(), is a histo-
gram in the scatter matrix, indicating the distribution of values in each column.

Solution

oil_filename = '../data/wti-daily.csv'
oil_df = pd.read_csv(oil_filename,

parse_dates=[0],
header=0,

Ignores the header row because
we are naming the columns

347EXERCISE 46 ■ Cars, oil, and ice cream
index_col=0,
names=['date', 'oil'])

ice_cream_filename = '../data/ice-cream.csv'
ice_cream_df = pd.read_csv(ice_cream_filename,

parse_dates=[0],
index_col=0,
header=0,
names=['date','icecream'])

ice_cream_df = (
ice_cream_df
.loc[ice_cream_df['icecream']

.str.contains(r'\d', regex=True)]
.astype(np.float64)

)

miles_filename = '../data/miles-traveled.csv'
miles_df = pd.read_csv(miles_filename,

parse_dates=[0],
index_col=0,
header=0,
names=['date', 'miles'])

df = (
oil_df
.join(ice_cream_df, how='inner')
.join(miles_df, how='inner')

)

df.corr()

df.plot.scatter(x='oil', y='icecream')
df.plot.scatter(x='oil', y='miles')

from pandas.plotting import scatter_matrix
scatter_matrix(df)

Beyond the exercise

 Is the month correlated with any of these three values?
 Create a scatter plot of icecream versus miles.
 Instead of using an inner join, you could remove all rows from oil_df that

weren’t on the final day of the month. How could you do that?

Seaborn
Matplotlib is without a doubt the leading plotting system for Python. Many people find
it hard to learn and use, however, which has led to the creation of several alterna-
tives. One of the best-known, Seaborn (http://seaborn.pydata.org), was written by
data scientist Michael Waskom and acts as an API on top of Matplotlib.

Sets the index
based on column 0 Names the two

columns in the file

Uses a regular expression to exclude
rows lacking even one digit

Sets the dtype
to be np.float64

Performs two inner joins, creating a
single data frame with three columns

Gets a correlation matrix
comparing all columns

Creates a scatter plot
of oil vs. ice cream

Creates scatter plots of
all possible combinations

http://seaborn.pydata.org

348 CHAPTER 11 Visualization
(continued)

So far, this book has focused on the pandas plotting API, which (like Seaborn) uses
Matplotlib to produce its plots. The pandas API tries to simplify things, papering over
much of the configuration that needs to happen to create a plot but otherwise keep-
ing Matplotlib’s approach and API intact. By contrast, Seaborn rethinks how plotting
should be done, replacing the original Matplotlib and pandas calls with a distinct set
of functions and parameters.

Just as we typically import numpy as np and import pandas as pd, we also import
Seaborn with an alias:

import seaborn as sns

Whereas pandas visualization is done via the plot attribute followed by the type of
plot we want to create, Seaborn is organized more conceptually around the different
types of insights we may be trying to draw from our plots. We can choose from four
functions defined within sns:

 To visualize relationships among numeric columns, use sns.relplot.
 To visualize relationships that include categorical columns, use sns.catplot.
 To understand the distribution of data, use sns.displot.
 To visualize regression models, use sns.regplot.

To explore this more fully, let’s load the temperature and precipitation data from our
weather CSV files:

import glob

all_dfs = []

all_filenames = glob.glob('../data/*,*.csv')

for one_filename in all_filenames:
print(f'Loading {one_filename}...')
city, state = one_filename.removeprefix('../data/').

removesuffix('.csv').split(',')
one_df = pd.read_csv(one_filename,

usecols=[1, 2, 19],
names=['max_temp', 'min_temp', 'precipMM'],
header=0)

one_df['city'] = city.replace('+', ' ').title()
one_df['state'] = state.upper()
all_dfs.append(one_df)

df = pd.concat(all_dfs)

We’ve already seen how line and scatter plots can give us insights into the relation-
ship between two numeric columns. Seaborn puts both of them in its relplot func-
tion. Let’s first look at how we can create a scatter plot for min versus max
temperatures in Chicago:

349EXERCISE 46 ■ Cars, oil, and ice cream
sns.relplot(x='max_temp',
y='min_temp',
data=df.loc[df['city'] == 'Chicago'])

Our call to sns.relplot includes three mandatory keyword arguments:

 x indicates which column from our data frame is used for the x axis.
 y indicates which column from our data frame is used for the y axis.
 data is a data frame containing both of those columns.

Scatter plot with Chicago weather

In this case, we provide only a subset of the data from df so we only see Chicago
weather. But what if we want to see all the data from all the cities?

sns.relplot(x='max_temp',
y='min_temp',
data=df)

The good news is that this is much easier to write. But the bad news is that it’s not
nearly as useful. We’ve mixed all the weather reports from all the cities! Fortunately,
Seaborn provides a number of different ways to make the data more useful and
interesting.

350 CHAPTER 11 Visualization
(continued)

For example, we can ask Seaborn to use a different color for each city by passing a
column name to the hue keyword argument:

sns.relplot(x='max_temp',
y='min_temp',
data=df,
hue='city')

Scatter plot with all cities

Scatter plot
with all cities,
with a different
hue per city

351EXERCISE 46 ■ Cars, oil, and ice cream
We can have each city’s dots use a different marker, as well, by giving the same city
argument to the style parameter:

sns.relplot(x='max_temp',
y='min_temp',
data=df,
hue='city', style='city')

Scatter plot with all cities, with a different hue and marker per city

We don’t have to use the same categorical data for hue and style. For example, we
can set the hue per state:

sns.relplot(x='max_temp',
y='min_temp',
data=df,
hue='state', style='city')

352 CHAPTER 11 Visualization
(continued)

Scatter plot with all cities, with a different hue per state and marker per city

However, it’s messy to see all these
plots on the same axes. We can ask
Seaborn to do the visual equivalent
of a groupby, with one plot per value
of city. There are two different ways
to do this, actually, by setting row
(i.e., each row is a different value for
the named column) or col (i.e., each
column is a different value for the
named column). For example:

sns.relplot(x='max_temp',
y='min_temp',
data=df,
hue='state',
row='city')

Although scatter plots are extremely
useful, we can also see the relation-
ship between two numeric columns
with line plots. The most obvious dif-
ference between the two kinds of
plots is that Seaborn draws a line
between the dots. For example:

Put each city on a different row.

353EXERCISE 46 ■ Cars, oil, and ice cream
sns.relplot(x='max_temp',
y='min_temp',
data=df,
hue='state', kind='line')

This call is fine, except it won’t work. In my case, I got both a warning from pandas
and an error message from Seaborn. Both of them told me they could not handle my
data frame as it stood, because its index contained nonunique values.

We can fix this easily with reset_index:

df = df.reset_index(drop=True)

Note that we pass drop=True to avoid having the old index added as a column to the
data frame. We’re happy to throw out the old index and replace it with a new one, so
we pass drop=True.

With a new index in place, we can again ask Seaborn to create our line plot:

sns.relplot(x='max_temp',
y='min_temp',
data=df,
hue='state', kind='line')

The good news is that we see all the values, and thanks to our value for hue, we have
a different-colored line for each state. The bad news is that two of the cities in our
data set are from the same state. And besides, it’s hard to read this plot, with all the
data squashed.

Line plot with
temperatures
per city

354 CHAPTER 11 Visualization
(continued)

We can once again ask Seaborn to put each city in a separate row:

sns.relplot(x='max_temp',
y='min_temp',
data=df,
hue='state',
kind='line',
row='city')

Seaborn supports a wide variety of other plots, as well. For example, what if we want
to see all the values of max_temp for a given city? You can think of this as a set of
one-dimensional scatter plots:

sns.catplot(x='city', y='max_temp', data=df)

Notice how the x axis is for the categories, whereas the y axis describes which value
we’re seeing. This plots each of the values in the data set.

Line plot with temperatures per
city, one city per row

355EXERCISE 46 ■ Cars, oil, and ice cream
If we instead want to summarize our data, we can ask for a boxplot, instead:

sns.catplot(x='city', y='max_temp', data=df, kind='box')

This shows a boxplot for each of the cities’ values of max_temp, all side by side on
the same y axis.

Plotting all
temperatures
for a city

Boxplot for
max_temp
in each city

356 CHAPTER 11 Visualization
(continued)

Finally, Seaborn offers the chance to create histograms. Because histograms allow
us to understand the distribution of our data, we use the sns.displot function. For
example, we can get a histogram of all maximum temperatures:

sns.displot(x='max_temp', data=df)

This, of course, shows the distribution of all values of max_temp.

We can also give each city its own colored bars by setting hue:

sns.displot(x='max_temp', data=df, hue='city')

Histogram of max_temp
in all cities

Histogram of
max_temp in all
cities, each city in a
different hue

357EXERCISE 46 ■ Cars, oil, and ice cream
And we can see them in a single column, with only one city per row, by saying

sns.displot(x='max_temp', data=df, hue='city', row='city')

These are just some of Seaborn’s many capabilities. If you’re interested in seeing
everything Seaborn can do, I strongly recommend checking out the documentation at
https://seaborn.pydata.org. I’ve grown to really like the Seaborn approach to visual-
ization—not only does it produce very nice-looking plots, but I find the API easier to
understand and work with than many others.

city = Albany
300

250

200

150

100

50

0

C
ou

nt

300

250

200

150

100

50

0

C
ou

nt

300

250

200

150

100

50

0

C
ou

nt

300

250

200

150

100

50

0

C
ou

nt
city = San Francisco

300

250

200

150

100

50

0

C
ou

nt

300

250

200

150

100

50

0

C
ou

nt

300

250

200

150

100

50

0

C
ou

nt

city = New York

city = Springfield

city = Boston

city = Los Angeles

city = Chicago

max_temp
−20 −10 0 10 20

city
San Francisco
New York
Springfield
Boston
Albany
Los Angeles
Chicago

Histogram of
max_temp in all
cities, each city in a
different hue and in
a separate plot

https://seaborn.pydata.org

358 CHAPTER 11 Visualization
EXERCISE 47 ■ Seaborn taxi plots
In this exercise, we’re going to revisit our New York City taxi data from 2020, creating
some visualizations with Seaborn rather than with the built-in pandas plotting system.
Specifically, I want you to

1 Load data from NYC taxis in 2020 (i.e., both nyc_taxi_2020-01.csv and nyc_taxi_
2020-07.csv), only loading the columns tpep_pickup_datetime, passenger_
count, trip_distance, and total_amount.

2 Add month and year columns from tpep_pickup_datetime. Keep only those
data points in which the year is 2020 and the month is either January or July.

3 Set a new numeric range index numbered starting at 0.
4 Assign df to a random sample of 1% of the elements in the original df.
5 Using Seaborn, create a scatter plot in which the x axis shows trip_distance

and the y axis shows total_amount, with the plot colors set by passenger_
count. Use the 1% sample of the data.

6 Determine why there are colors for passenger_count values of 1.5, 4.5, and 7.5.
7 Create a line plot showing the distance traveled on each day of January and July.

The x axis should be the day of the month, and the y axis is the average trip dis-
tance. There should be two lines, one for each month.

8 Using Seaborn, show the number of trips taken on each day (1–31) of both
months (January and July). The x axis should refer to the day of the month, and
the y axis should show the number of trips taken.

9 Using Seaborn, create a boxplot of total_amount with one plot for each
month.

Working it out

In this exercise, I asked you to create plots of 2020 New York City taxi data from Janu-
ary and July and then to use Seaborn to plot that data. We start by creating a data
frame based on the 2020 taxi files, loading four of our favorite columns:

filenames = ['../data/nyc_taxi_2020-01.csv',
'../data/nyc_taxi_2020-07.csv']

all_dfs = [pd.read_csv(one_filename,
usecols=['tpep_pickup_datetime',

'passenger_count',
'trip_distance',
'total_amount'],

parse_dates=['tpep_pickup_datetime'])
for one_filename in filenames]

df = pd.concat(all_dfs)

Notice that we once again use parse_dates to turn the tpep_pickup_datetime col-
umn into a datetime column, leaving the three others to be detected as floating-point
values. This code creates a list of data frames using a list comprehension. The list is

https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout
https://github.com/reuven/pandas-workout

359EXERCISE 47 ■ Seaborn taxi plots
passed to pd.concat, which returns a new data frame that combines all the input data
frames.

 I then asked you to create three new columns from various parts of each row’s
date:

df['year'] = df['tpep_pickup_datetime'].dt.year
df['month'] = df['tpep_pickup_datetime'].dt.month
df['day'] = df['tpep_pickup_datetime'].dt.day

I asked you to ensure that all the data we look at is from January or July 2020. As we’ve
seen, the taxi data is “dirty,” including a number of rows from other years and months.
To avoid having our plots come out odd looking, I thought it would be wise to remove
rows that aren’t from January and July 2020. We can do that by using a combination of
mask indexes:

df = df.loc[(df['month'].isin([1, 7])) &
(df['year'] == 2020)]

Next, I asked you to ensure that the new data frame’s index doesn’t contain duplicate
values—something that is almost certainly the case at this point, given that we created
df from two previous data frames. We can check whether a data frame’s index con-
tains repeated values with the code:

df.index.is_unique

If this returns True, the values are already unique. If not, some Seaborn plots will give
you errors. We could renumber the index on our own, but why work so hard when
pandas includes this functionality? We can just say

df = df.reset_index(drop=True)

Yes, this is the same reset_index that we’ve used before to get rid of a “special” index
we’ve created, such as from a data column. By passing drop=True, we tell reset_index
not to make the just-ousted index column a regular column in the data frame but
rather to drop it entirely.

 We could begin to plot our data. But the data set is large, with many millions of
data points. To speed up our plotting, albeit at the cost of some accuracy, I asked you
to keep a random 1% of the original df’s values and assign it to df:

df = df.sample(frac=0.01)

We’re now finally ready to plot our data with Seaborn. First, I asked you to create a
scatter plot comparing trip_distance (x axis) with total_amount (y axis) on the df
containing 1% of our original data:

sns.relplot(x='trip_distance',
y='total_amount',
data=df,
hue='passenger_count')

360 CHAPTER 11 Visualization
The relplot function shows relationships among numeric columns, and the default
way to do that is with a scatter plot. Here, we tell relplot the following:

 The x axis should use values from the trip_distance column.
 The y axis should use values from the total_amount column.
 We use df as our data frame.
 We use passenger_count as the basis for coloring the lines and dots.

Sure enough, this works, giving us a nice scatter plot (figure 11.18).

Figure 11.18 Scatter plot comparing trip_distance with total_amount

Next, I asked you to show a line plot in which the x axis indicates days of the month
(1–31) and the y axis shows the value of trip_distance on that date. As before, we use
relplot to get that plot:

 The x axis is from the day column.
 The y axis is from the trip_distance column.
 We have to indicate that kind='line' to get the line plot.
 We say that data comes from the df data frame.
 We color each of the lines by month.

sns.relplot(x='day', y='trip_distance', kind='line',
data=df, hue='month')

361EXERCISE 47 ■ Seaborn taxi plots
By asking Seaborn to use separate colors for each value of month, we are able to plot
two different lines on the same chart.

 Notice, though, that there are gray lines around each plot. Those indicate the con-
fidence interval for each calculation. Confidence intervals are a statistical tool to indi-
cate how likely a value is to fall within a certain range. We can disable the confidence
intervals by passing ci='None' on a relplot (figure 11.19):

sns.relplot(x='day', y='trip_distance', kind='line',
data=df, hue='month', ci=None)

Next, I asked you to show the number of trips taken on each day of these months. This
requires another line plot:

 The x axis is the day of each month.
 The y axis reflects how many trips were taken on that day.
 We have to indicate that kind='line' to get a line plot.

But wait a second: how will we get the number of trips taken each day? To do that, we
need to use the count aggregation method. And indeed, here I suggest getting data
back not from df but rather from the result of a groupby on df. If we count by both
month and day and count in the year column, we have access to month and day and
also to the number of rides per day. (Using year is weird because we aren’t counting
the year—but we need to pick a column.) After performing this groupby, we reset the
index, making month and day back into regular columns from which they can be
retrieved:

Figure 11.19
Line plot showing
trip_distance per
day, separated by month

362 CHAPTER 11 Visualization
sns.relplot(x='day', y='year', hue='month', kind='line',
data=df.groupby(['month', 'day'])[['year']].count()
.reset_index(), ci=None)

This is a complex query, and it’s used in a complex plot. So let’s walk through it a step
at a time:

1 We want to know how many rides there were on each day of each month. That
requires groupby(['month', 'day']).

2 We run the count aggregation method on the groupby object.
3 The result gives us a count for each remaining column in the data frame. We

only need one, and we choose year.
4 We run reset_index to take month and day, which are part of the index of the

aggregation data frame, and put them back into the main data frame.
5 We pass the result from reset_index as the argument to data in our call to

relplot.
6 We tell relplot that the x axis should be based on day and the y axis should be

based on year, the count of rides.
7 We tell relplot to distinguish between months by color.
8 We ask for a line plot.
9 We ask for ci='None' to avoid showing any confidence intervals.

We then see, rather dramatically (figure 11.20), that there were fewer rides per day in
July (in the middle of the pandemic) than there were in January (before it started).

Figure 11.20 Line plot
showing trip_distance
per day, separated by month

363EXERCISE 47 ■ Seaborn taxi plots
Finally, we ask to see a boxplot of the total_amount column, separated by month.
Boxplots are, in the world of Seaborn, categorical plots because they allow us to com-
pare the distribution of values across multiple categories. We thus need to use the
catplot function:

 The x axis is the categories we’re comparing: month.
 The y axis is the values we want to see graphically: total_amount.
 We’re looking at data from df.
 We want to see a boxplot and thus specify kind='box'.

The code is as follows (figure 11.21)

sns.catplot(x='month', y='total_amount', data=df, kind='box')

The mean values for total_amount weren’t that different in January and July of 2020.
And sure enough, we can see this numerically:

df.groupby('month')['total_amount'].mean()

Solution

filenames = ['../data/nyc_taxi_2020-01.csv', '../data/nyc_taxi_2020-07.csv']

all_dfs = [pd.read_csv(one_filename,
usecols=['tpep_pickup_datetime', 'passenger_count',

'trip_distance', 'total_amount'],

Figure 11.21 Boxplot for
total_amount per month

364 CHAPTER 11 Visualization
parse_dates=['tpep_pickup_datetime'])
for one_filename in filenames]

df = pd.concat(all_dfs)

df['year'] = df['tpep_pickup_datetime'].dt.year
df['month'] = df['tpep_pickup_datetime'].dt.month
df['day'] = df['tpep_pickup_datetime'].dt.day

df = df.loc[(df['month'].isin([1, 7])) & (df['year'] == 2020)]

df = df.reset_index(drop=True)

df = df.sample(frac=0.01)

sns.relplot(x='trip_distance', y='total_amount', data=df,
hue='passenger_count')

sns.relplot(x='day', y='trip_distance', kind='line',
data=df, hue='month', ci=None)

sns.relplot(x='day', y='year', hue='month', kind='line',
data=df.groupby(['month', 'day'])[['year']].count()
.reset_index(), ci=None)

sns.catplot(x='month', y='total_amount', data=df, kind='box')

Beyond the exercise

 Load NYC taxi data from both 2019 and 2020, January and July. Remove data
from outside of those years and months. Now display the number of trips on
each day of the month in four separate graphs: the top row in 2019 and the bot-
tom row in 2020, the left column for January and the right column for July.

 Add a trip_length column for short, medium, and long trips, as we did in
exercise 7. Show the trip distance per day of month in three plots alongside one
another, with one for each category.

 Create a bar plot showing how many rides take place in each hour (0–24) in
each month (January and July). Each month should appear in a different color,
and they should appear side by side with January on the left and July on the
right.

Summary
Visualization is a key part of data science. We often think of it as a way to help non-
experts to better understand our data, but it’s also a powerful way to better under-
stand our own data, getting insights from a new perspective. In this chapter, we saw a
number of the ways pandas can perform visualizations using a simplified API to Mat-
plotlib. We also saw, in the final exercise, how the Seaborn package can create attrac-
tive plots using data frames with its own separate API on top of Matplotlib.

Performance
It’s hard to fathom just how powerful modern computers are. They perform bil-
lions of calculations per second, allowing us to have video chats with people around
the world, predict the weather with incredible accuracy, and search through entire
libraries of documents in the blink of an eye. An office worker from 100 years ago
would be awestruck by how much data we can process and how little time it takes us
to do so.

 But let’s be honest: when were you last satisfied by your computer’s speed? If
you’re like me, you spend very little time amazed by the speed with which our com-
puters operate and a lot of time frustrated by how long they take to do things.

 I often say that Python is the perfect language for an age in which computers are
cheap and people are expensive. By that, I mean Python optimizes for programmer
productivity, often at the expense of efficient execution. Things aren’t all bad; the
fact that pandas uses NumPy under the hood makes it far faster and slimmer than
would be the case with standard Python objects. The more we stay in the high-pow-
ered world of NumPy and away from built-in Python objects, the better it will be.

 Beyond that general rule of thumb, though, there are numerous techniques for
keeping your pandas data frames slim and your queries fast. Many of these come
down to the simple rule of only using the data you need for a data frame. Because
pandas keeps all data in memory, less data means faster processing and results.

 In this chapter, we’ll explore a number of topics having to do with pandas per-
formance. We’ll talk about how to measure the memory usage of a data frame and
why pandas sometimes lies to us about it. We’ll see how we can measure how much
time it takes to perform tasks using timeit. We’ll look at saving memory by using
categories. And we’ll explore how to speed up performance using PyArrow, the
365

366 CHAPTER 12 Performance
Python implementation of the Arrow library, both for loading CSV files and as a back-
end replacement for NumPy.

 By the end of this chapter, you’ll understand many of the problems surrounding
pandas performance as well as how you can (and should) address them.

Table 12.1 What you need to know

Concept What is it? Example To learn more

df.info Gets information about a
data frame, including its
memory usage

df.info() http://mng.bz/D4eE

df.memory_usage Gets information about a
data frame’s memory
usage

df.memory_usage
(deep=True)

http://mng.bz/lWjy

Categorical data Pandas documentation
for categorical data

df['a'].astype('cat
egorical')

http://mng.bz/BmaJ

df.to_feather Writes a data frame to
feather format

df.to_feather('myda
ta.feather')

http://mng.bz/d1pQ

pd.read_feather Creates a data frame
based on a feather-
formatted file on disk

df = pd.read_
feather('mydata
.feather')

http://mng.bz/rWlX

pd.read_csv Returns a new data frame
based on CSV input

df = df.read_csv
('myfile.csv')

http://mng.bz/V1r5

pd.read_json Returns a new data frame
based on JSON input

df = df.read_json
('myfile.json')

http://mng.bz/x4qB

time.perf_counter Gets the number of sec-
onds (useful for timing
programs)

time.perf_
counter()

http://mng.bz/AonW

df.query Writes an SQL-like query df.query('v > 300') http://mng.bz/ZqBZ

df.eval Performs actions and que-
ries on a data frame

df.eval('v + 300') http://mng.bz/Rx9P

pd.eval Performs a variety of
pandas actions in an eval-
uated string

pd.eval('df.v >
300')

http://mng.bz/2D9X

timeit Python module for bench-
marking code speed, and
a Jupyter “magic com-
mand” for invoking it

%timeit 3+2 http://mng.bz/1qKg

isin Checks whether a value is
in a Python sequence

df['a'].isin([10,
20, 30])

http://mng.bz/Pz0P

pd.CategoricalDtype Returns a new categorical
dtype

pd.CategoricalDtype
(['a', 'b', 'c',
'd'])

http://mng.bz/Jgev

http://mng.bz/D4eE
http://mng.bz/lWjy
http://mng.bz/BmaJ
http://mng.bz/d1pQ
http://mng.bz/rWlX
http://mng.bz/V1r5
http://mng.bz/x4qB
http://mng.bz/AonW
http://mng.bz/ZqBZ
http://mng.bz/Rx9P
http://mng.bz/2D9X
http://mng.bz/1qKg
http://mng.bz/Pz0P
http://mng.bz/Jgev

367■CHAPTER 12 Performance
Saving memory with categories
Let’s say we want to work with data from our Olympics CSV file:

filename = '../data/olympic_athlete_events.csv'
df = pd.read_csv(filename)

How much memory does this data set consume? That’s an important question when
working with pandas, because all our data needs to fit into memory. We can find out
by running the memory_usage method on our data frame:

df.memory_usage()

This returns a series telling us how many bytes are consumed by each column. (The
column names from df constitute the index of the returned series.) We can get the
total memory usage by summing the values:

df.memory_usage().sum()

On my computer, this comes up as 32,534,048 bytes or just over 31 MB of RAM.

But you know what? This number is completely wrong. That’s because pandas, by
default, ignores the size of any Python objects contained in a data frame. Given that
these objects are generally strings and can be any length, the difference between the
actual memory usage and what is reported here can be big.

We can tell pandas to include all the objects in its size calculation by passing the
deep=True keyword argument:

df.memory_usage(deep=True).sum()

On my computer, the same data frame gives me a result of 186,408,012 bytes, or
about 182 MB of RAM—five times the originally calculated amount.

But wait: this is a lot of memory, and the data set is relatively small. A much larger
data set will obviously consume much more memory, potentially more than I can fit
into my computer. How can I cut down the size of the data set, thus allowing me to
potentially work with more data? We’ve already talked about several of them in past
chapters:

 Limit which columns are imported, by passing a value to usecols
 Explicitly specify the dtype for each column, allowing us to choose types with

fewer bits while simultaneously speeding up the loading of data

However, the majority of the memory is being used by strings. We can see this by
running df.memory_usage(deep=True).sort_values(). The columns using the
most memory contain strings, not numbers. This means we need to somehow reduce
the size or number of the text strings in our data frame.

One way to do this is with a special pandas data type known as a category. In the
case of a category, each distinct string value is stored a single time and then referred
to multiple times. This replacement is completely transparent to us, as users of the
data frame: we can continue to pretend that the column contains strings, including
use of the str accessor to apply string methods to every element of the column.

368 CHAPTER 12 Performance
(continued)

We’ve often used astype to create a new series based on an existing one. We can
do the same thing to create a new categorical column based on one containing text
strings.

We demonstrate this using the Games column, which contains a different string for
each time the Olympics were held. Running df['Games'].value_counts()
.head(10) gives the following output:

Games
2000 Summer 13821
1996 Summer 13780
2016 Summer 13688
2008 Summer 13602
2004 Summer 13443
1992 Summer 12977
2012 Summer 12920
1988 Summer 12037
1972 Summer 10304
1984 Summer 9454
Name: count, dtype: int64

In other words, the string 2000 Summer appears in the Games column 13,821 times.
By creating a category, we can create a single string with that value, assign an integer
to represent that string, and then store the integer in the column rather than the string
(or, more accurately, a reference to the Python string object containing that value).
Assuming that the integer is smaller than the reference, this can save a lot of memory.

id

0

1

2

3

4

5

6

7

8

9

Games

1992 Summer

2012 Summer

1920 Summer

1900 Summer

1988 Winter

1988 Winter

1992 Winter

1992 Winter

1994 Winter

1994 Winter

id

0

1

2

3

4

5

6

7

8

9

Games

0

1

2

3

4

4

5

5

6

6

id

0

1

2

3

4

5

6

Games

1992 Summer

2012 Summer

1920 Summer

1900 Summer

1988 Winter

1992 Winter

1994 Winter

Ten rows from Games, before
and after being turned into a
category

369■CHAPTER 12 Performance
We can create our category this way:

df['Games'].astype('category')

However, this doesn’t do anything useful, because it doesn’t store our new series
anywhere. It’s often easiest to just assign the newly created categorical series back
to the original column, replacing it with an equivalent-but-slimmer version:

df['Games'] = df['Games'].astype('category')

How much memory does that action save us? We can find out by running memory_
usage again:

df.memory_usage(deep=True).sum()

Sure enough, memory usage has gone down to 168,248,812 bytes, or more than
160 MB. In other words, we’ve trimmed 15 MB of storage from our data frame simply
by turning the Games column from a string into a category.

Which columns should we attack first? Well, we want those in which the same strings
are often repeated. Consider this code:

(df.count() / df.nunique()).sort_values(ascending=False)

Here, we divide the number of non-null rows in each column by the number of distinct
values in that column. The higher the number, the more times the same string is
repeated, and thus the greater the memory savings we can achieve by switching the
column to a category. We then use sort_values(ascending=false) to sort the
rows in order of priority.

I decided to choose all categories with a dtype of object in which a value is repeated
at least 100 times. This leads to the following code:

for column_name in ['Sex', 'Season', 'Medal', 'City', 'Games',
'Sport', 'NOC', 'Event', 'Team']:

print(column_name)
df[column_name] = df[column_name].astype('category')

The result? A data frame that’s just over 33 MB in size. After only a handful of lines
of code that took several seconds to execute, we’ve cut the memory requirement to
about 20% of its original value. That seems like an extremely worthwhile use of our
time.

But wait a second: this method creates the category based on the data that’s already
in the series. What if we know the series may include other values in the future, even
if they’re not in the original data set? Here’s a simple example:

s = Series(['a', 'b', 'c', 'a', 'b', 'c', 'c', 'c']).astype('category')

We now try to set one of the values to 'd':

s.loc[7] = 'd'

This fails with a TypeError exception, telling us that we cannot set a value that
wasn’t included in the category.

370 CHAPTER 12 Performance
EXERCISE 48 ■ Categories
We’ve explored New York City’s parking tickets on several previous occasions in this
book, but we were always concerned by how much memory the full data set would
require. Indeed, if I load the entire data set onto my computer, it uses a lot of mem-
ory—about 18 GB. We’d like to crunch that down to a much smaller number by turn-
ing many of the columns into categories.

NOTE Because I realize that not everyone reading this book has many giga-
bytes of RAM to spare, you’ll limit the number of columns you load for this
exercise. If you are fortunate enough to have such a computer, though, I
encourage you to load the entire data set into memory and pare the columns
down using the same techniques. If you’re like me, you’ll be amazed by how
much memory categories can save you. If your computer cannot load even
the subset of columns I specify for this exercise, feel free to cut them down
even further.

1 Read the NYC parking violations data into a data frame. Only load the following
columns: Plate ID, Registration State, Vehicle Make, Vehicle Color, Vehicle
Body Type, Violation Time, Street Name, and Violation Legal Code.

2 Determine how much memory is being used by the data frame you’ve created.
3 Turn each column into a category.
4 Answer these questions:

– What types are your columns now?
– How much memory does your data consume now?

(continued)

We can solve this problem by creating the category before creating the series (or col-
umn of the data frame), including all possible values it may contain. Then we can ask
pandas not to create the category with astype but rather to assign the specific cat-
egory type that we’ve defined, with all its values. Let’s first see how this may work
with the earlier series:

abcd_category = pd.CategoricalDtype(['a', 'b', 'c', 'd'])
s = Series(['a', 'b', 'c', 'a', 'b',

'c', 'c', 'c']).astype(abcd_category)
s.loc[7] = 'd' # Success!

In this code, we create a new category with all its values by calling pd.Categorical-
Dtype. Then, when we call astype, we pass the category we created rather than ask-
ing pandas to create a new, anonymous category. We can do the same in our
Olympics data frame:

medals_category = pd.CategoricalDtype(['Gold', 'Bronze', 'Silver'])
df['Medal'] = df['Medal'].astype(medals_category)

371EXERCISE 48 ■ Categories
– How much memory have you saved thanks to using categories?

Working it out

This exercise has fewer steps than many of the recent ones we’ve done, for two rea-
sons. First, I want to show you how easily we can create and work with categories. Sec-
ond, when we’re dealing with large amounts of memory, even the fastest and most
tricked-out computers can take a while to calculate things.

 With that in mind, let’s go through the code and see what we can do. First, we load
the data set, limiting ourselves to the eight columns I asked for:

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,
usecols=['Plate ID',

'Registration State',
'Vehicle Make',
'Vehicle Color',
'Vehicle Body Type',
'Violation Time',
'Street Name',
'Violation Legal Code'])

You’ll likely get a DtypeWarning from pandas because one or more columns have
mixed types. We’ve seen this warning before, and we’ll soon be turning this column
into a category, so we can ignore this warning.

 Next, I asked you to calculate how much total memory the data frame is using.
There are actually two ways to do this. The first is to run the memory_usage method,
passing the keyword argument deep=True. This returns a series in which the index
contains the data frame’s column names and the values show how much memory is
being used by each column:

df.memory_usage(deep=True)

On my computer, I get the following result:

Index 128
Plate ID 798282162
Registration State 737248306
Vehicle Body Type 758166224
Vehicle Make 768611575
Violation Time 774726961
Street Name 879156216
Violation Legal Code 515644296
Vehicle Color 735089399
dtype: int64

According to this report, each column requires more than half a gigabyte of RAM.
Even in our modern era of cheap, plentiful RAM, this is still a large data set—and
given the alternative, there’s no reason for us to use all this memory.

372 CHAPTER 12 Performance
 I want to remind you that it’s important to always use deep=True if you truly want
to know the size of your data frame. If we hadn’t passed deep=True, we would have
gotten something like this:

Index 128
Plate ID 99965872
Registration State 99965872
Vehicle Body Type 99965872
Vehicle Make 99965872
Violation Time 99965872
Street Name 99965872
Violation Legal Code 99965872
Vehicle Color 99965872
dtype: int64

Notice how all the columns, aside from the index, have the same size: 99,965,872
bytes—basically 100 MB. Not a small amount of memory, but far less than the actual
size of our data, whose size we calculated using deep=True.

 Why does pandas not run deep=True all the time? Because instead of just checking
the size of the memory allocated by the NumPy backend, pandas has to go through
each object in Python and ask for its size. That can take substantially longer, so we
have to ask for it explicitly.

 Calling memory_usage returns a series: the size of each column. We can add the val-
ues using sum:

df.memory_usage(deep=True).sum()

On my computer, the result is 5,966,925,267, or about 6 GB.
 Next, I asked you to turn each of these columns into a category. Remember that

given a column named colname, we can turn it into a category with

df['colname'] = df['colname'].astype('category')

When we do this, pandas removes NaN values in the column, looks at the remaining
unique values, builds a new category object from it, and then uses that category to
assign values. Although the values still appear to be there, as before, pandas has
replaced them with much-smaller integers, storing each string a single time.

 Before transforming the columns into categories, we keep track of how much
memory our original version of the data frame is using:

orig_mem = df.memory_usage(deep=True).sum()

Next, we do the transformation itself, using a for loop. You may be surprised to see
this suggestion, given that I often point out that if you’re using a for loop in pandas,
you’re almost certainly doing something wrong. But that’s if you’re trying to perform
a calculation on each row; for such purposes, pandas has a lot of functionality that is
generally faster than any loop. Because so much of the backend data uses NumPy,
pulling the data into Python data structures uses significantly more memory than tak-
ing advantage of its vectorized, compiled, and optimized systems.

373EXERCISE 48 ■ Categories
 But this case is different: we’re interested in performing one vectorized operation
per column. There isn’t any vectorizing to be done across the columns. For this rea-
son, a for loop is perfectly reasonable. The index object we get back from df.columns
is iterable, allowing us to get each column name, one at a time. We thus write

for one_colname in df.columns:
print(f'Categorizing {one_colname}...')
df[one_colname] = df[one_colname].astype('category')
print('\tDone.')

Notice that we put two calls to print inside the for loop: once before starting the
transformation and once after. This is because the creation of a category can take
some time, and it would be useful to know when pandas is starting to work on a col-
umn and when it has finished. In addition, if something goes wrong while creating the
columns, we know exactly where we were when the problem took place.

 After performing this transformation, we want to get confirmation that things
changed. By retrieving dtypes on our data frame, we can see precisely what type each
column has:

df.dtypes

Sure enough, pandas shows that all the columns have been changed to have category
types. But what effect does that have on the memory usage? As before, we can ask for a
deep memory check:

new_mem = df.memory_usage(deep=True).sum()

This time, on my computer, I get the value 574,455,678—still half a gigabyte of RAM,
but a far cry from the original value of 6 GB. In other words, we have cut down our
memory usage by about 90%! And indeed, if we perform a quick calculation

new_mem / orig_mem

we get a result of 0.096, meaning we are indeed using approximately 10% of the origi-
nal data frame’s memory while still using the same data and enjoying the same bene-
fits from it.

How much memory?
The df.info method returns a summary of information about the data frame, includ-
ing the total memory usage. By default, it doesn’t do a “deep” memory check; in such
cases, and if there are object columns, the memory is returned with a + sign following
the number. You can avoid the + and get a precise calculation by passing memory_
usage='deep' as a keyword argument to info:

df.info(memory_usage='deep')

This gives you a summary of the total memory used.

374 CHAPTER 12 Performance

Solution

filename = '../data/nyc-parking-violations-2020.csv'

df = pd.read_csv(filename,
usecols=['Plate ID', 'Registration State',

'Vehicle Make', 'Vehicle Color',
'Vehicle Body Type', 'Violation Time',
'Street Name', 'Violation Legal Code'])

orig_mem = df.memory_usage(deep=True).sum()

for one_colname in df.columns:
print(f'Categorizing {one_colname}...')
df[one_colname] = df[one_colname].astype('category')
print('\tDone.')

df.dtypes()

new_mem = df.memory_usage(deep=True).sum()

print(new_mem / orig_mem)

Beyond the exercise

 Without calculating: Of the columns you loaded, which would make less sense
to turn into categories? Once you’ve thought about it, calculate how many
repeated values are in each column and determine (more formally) which
would give the biggest improvement when using categories.

 In exercise 25, we saw that the vehicle makes and colors were far from standard-
ized, with numerous misspellings and variations. If you were to standardize the
spellings before creating categories, would that have any effect on the memory
savings you gain from categorization? Why or why not?

 Read only the first 10,000 lines from the CSV file, but all columns. Show the 10
columns that will most likely benefit greatest from using categories.

Apache Arrow
For nearly all of this book, I’ve assumed that pandas acts as something of a wrapper
around NumPy. Sure, it provides a great deal of functionality, but the actual storage
is handled by NumPy, which means the dtype of a column is nearly always defined
by NumPy. The major exceptions are strings (stored as an object dtype) and catego-
ries (discussed elsewhere in this chapter).

An open source project known as Apache Arrow may change all that. Arrow is
designed to be a highly efficient in-memory storage mechanism for data. Some basic
facts about Arrow:

 Arrow works not only with pandas but also with other languages and systems
such as R and Apache Spark.

Gets the memory usage
of each column, sums
them, and stores the
result in orig_mem

Goes through each
column in df

Turns each column into
a category columnGets the dtype

of each column Gets the memory usage of each
column after categorization
and stores it in new_mem

Shows how much memory
we are using now

375EXERCISE 48 ■ Categories
 The Python bindings for Arrow are known as PyArrow.
 Arrow has its own data types, similar to but distinct from those defined by

NumPy.
 Arrow’s types are nullable, meaning if we have an integer column with a single

NaN value, the column’s dtype doesn’t need to change to a floating-point type.
 Arrow supports two file formats, feather and parquet, which are binary, thus

consuming less disk space and taking less time to read and write.
 Arrow can also read and write CSV files.

Let’s start with this final point: by default, pandas reads CSV files using its own inter-
nal engine. We can speed up the loading of CSV files by asking pandas to instead
use PyArrow:

df = pd.read_csv(filename, engine='pyarrow')

I’ve found that using the PyArrow engine for loading CSV is 20 times faster than the
built-in engine. Unless you’re working with very small data sets, it’s probably worth
always using this option with read_csv.

What about Arrow’s binary formats? The feather format, as I mentioned, combines
compression and binary storage to give us smaller files that are faster to read and
write than either CSV or JSON.

To write a pandas data frame to a feather-formatted file, we can use the to_feather
method, which works similarly to to_csv and to_json:

df.to_feather('mydata.feather')

We can similarly read from a feather-formatted file into a data frame using the
pd.from_feather method, which works similarly to from_csv and from_json:

df = pd.from_feather('mydata.feather')

As of pandas 2.0, there is also experimental support for using PyArrow for backend
storage, rather than NumPy. When we read a CSV file into pandas, we can specify
that it should use PyArrow by passing the dtype_backend='pyarrow' keyword
argument:

df = pd.read_csv(filename, dtype_backend='pyarrow')

If you check the dtypes attribute on your data frame, you’ll find that the types are all
from PyArrow and not from NumPy.

Note that the use of dtype_backend is separate from the engine used to read the
CSV file. You can use one or both of these keyword arguments.

The use of PyArrow as a pandas backend is still experimental as of this writing, and
it’s also not guaranteed to be faster. In some experiments that I ran just after pandas
2.0 was released, simple comparisons were faster with PyArrow, but more sophisti-
cated queries, such as grouping and joins, took longer than the NumPy backend. I
have no doubt that this will improve over time, but for now you shouldn’t assume that
PyArrow will always be faster. That said, it’s worth doing some experiments to see
how it works on your data and your queries.

376 CHAPTER 12 Performance
EXERCISE 49 ■ Faster reading and writing
Each file format has its own advantages and disadvantages, among them being the
speed with which you can read and write data. Given a data frame, is it faster to write it
as a CSV, JSON, or feather file? (If you read the side bar on Apache Arrow and feather,
you may have a good sense of the answer.) How much of a difference is there? And is
there a significant difference in speed when reading CSV, JSON, and feather files into
a data frame?

 To understand that, I’m asking you to do the following:

1 Load the New York parking data CSV file into a data frame.
2 Write the data frame out to the filesystem in each of three different formats:

CSV, JSON, and feather. Time the writing of each format, and print the format
along with the number of seconds it took to write to it.

3 Check the size of the files you’ve created.
4 Read each file you created into a data frame. Once again, time how long the

loading takes and print that timing alongside the format name.

NOTE The New York parking data set is large and may overwhelm computers
with less than 32 GB of free memory. If you’re working on such a computer, I
encourage you to use the usecols keyword parameter to reduce the number
of columns read into the data frame at the start of the exercise. You may see
less of a difference between writing to and then reading from the various for-
mats, but at least you’ll be able to finish the exercise.

Working it out

The first thing I asked you to do was load the New York parking violations data set for
2020. We’ll assume that your computer has enough memory to load the entire thing,
which we do as follows:

filename = '../data/nyc-parking-violations-2020.csv'
df = pd.read_csv(filename, low_memory=False)

Notice that we pass the low_memory=False keyword argument. This tells pandas that
we have enough RAM that it can look through all the rows in the data set when trying
to determine what dtype to assign to each column.

 With the data frame in place, we can begin writing to different formats, timing how
long each takes. But, of course, that means we need some way to keep track of time.
Python’s time module, part of the standard library, provides a number of different
methods that could theoretically be used, but it’s generally considered best to use
time.perf_counter(). This function uses the highest-resolution clock available and
returns a float indicating a number of seconds. The number returned by perf_
counter should not be relied on for calculating the current date and time; but within
the same program, it can be used to measure the passage of time, which is precisely
what we want to do.

377EXERCISE 49 ■ Faster reading and writing
NOTE Python’s standard library also includes the timeit module
(http://mng.bz/67OA), which includes a number of utilities for benchmark-
ing. I’m generally a big fan of timeit, and we’ll use it in exercise 50. But
timeit runs code several times and reports the mean time after those runs. In
this case, where the code will take a long time to run, we run it a single time—
and thus opt to use perf_counter.

We want to try writing to CSV, JSON, and feather formats. In theory, we could write
code that looks like this:

df.write_json('parking-violations.json')
df.write_csv('parking-violations.csv')
df.write_feather('parking-violations.feather')

But, of course, we want to determine how long each one takes. So we add some bench-
marking code above and below each format:

start_time = time.perf_counter()
df.write_json('parking-violations.json')
end_time = time.perf_counter()
total_time = end_time - start_time
print(f'\tWriting JSON: {total_time=}')

start_time = time.perf_counter()
df.write_csv('parking-violations.csv')
end_time = time.perf_counter()
total_time = end_time - start_time
print(f'\tWriting CSV: {total_time=}')

start_time = time.perf_counter()
df.write_feather('parking-violations.feather')
end_time = time.perf_counter()
total_time = end_time - start_time
print(f'\tWriting feather: {total_time=}')

This code works and does the job. But it also violates an important rule of program-
ming: “Don’t repeat yourself,” often abbreviated DRY. We’re basically doing the same
thing three times. If we can consolidate that code into a loop, our code will be cleaner,
easier to read, easier to debug, and easier to extend. But how can we do that? After all,
we’re calling three different methods.

 This is where some knowledge and understanding of Python, not just pandas,
comes in handy: we can create a dictionary in which the keys are the file formats and
the values are the methods we want to use to write the data frame. That’s right—we
can store any Python object, including a function or method—as the value in a dict.
We can thus say

root = 'parking-violations'
write_methods = {'JSON': df.to_json,

'CSV': df.to_csv,

Gets the time at the
start of the JSON run

Gets the time at
the end of the run

Calculates
the run time

Repeats
for CSV

Repeats
for JSON

http://mng.bz/67OA

378 CHAPTER 12 Performance
'feather': df.to_feather
}

for one_format, method in write_methods.items():
print(f'Saving in {one_format}')
start_time = time.perf_counter()
method(f'parking-violations.{one_format.lower()}')
end_time = time.perf_counter()

total_time = end_time - start_time
print(f'\tWriting {one_format}: {total_time=}')

The for loop here iterates over the dict, getting each key (a string, stored in one_
format) and value (method, containing the method to be run) from the write_methods
dict. We print the current format, just for debugging purposes, and then run time
.perf_counter(), getting back the current time (more or less) in seconds. We then
invoke method on the filename via an f-string. After writing the file to disk, we call time
.perf_counter() again, storing the difference in total_time, which we then print.

 On my computer, I get the following results from running this code:

Saving in JSON
Writing JSON: total_time=46.29149689315818

Saving in CSV
Writing CSV: total_time=114.35314526595175

Saving in feather
Writing feather: total_time=7.929971480043605

In other words, it took about 114 seconds (nearly two minutes) to write our data
frame to a CSV file. It took 46 seconds to write the same data to JSON. But it took just
under 8 seconds—about 14 times faster!—to write the same data to feather. If that
doesn’t convince you to consider using feather, I’m not sure what will.

 Notice that for this code to work, we have to define df, the data frame, before the
write_methods dictionary is defined. We also use one_format.lower() to take the for-
mat name and ensure that it is only in lowercase letters.

 How big are the files we’ve created? We again rely on Python’s standard library.
We’ve seen the glob.glob function in previous exercises; here we use it to retrieve all
filenames that start with the value of our root variable. But we then want to get the
size of each file, something we can do easily with os.stat. This function returns a spe-
cial data structure that’s modeled on Unix’s stat functionality. In Python, we can get
the size of the file in bytes by retrieving the st_size attribute from the value we get
back from os.stat:

for one_filename in glob.glob(f'{root}*'):
print(f'{one_filename:27}: {os.stat(one_filename).st_size:,}')

Inside the f-string, we use two tricks to adjust the way the values are formatted:

 We tell the f-string to pad one_filename with spaces so each filename uses 27
characters. This help ensure that the results line up.

379EXERCISE 49 ■ Faster reading and writing
 We tell the f-string to add commas before every three digits in the integer it dis-
plays, making them more readable.

The result, on my computer, is

parking-violations.json : 8,820,247,015
parking-violations.csv : 2,440,860,181
parking-violations.feather : 1,466,535,674

We can see here that the CSV file is about 2 GB in size, the JSON file is about 8 GB (!),
and Apache Arrow’s feather format is just over 1 GB. This isn’t the only reason writing
feather files is faster, but it’s certainly one of them; at the end of the day, pandas has to
write one-eighth as much data to disk.

 However, I also wanted you to benchmark reading these files back from the filesys-
tem. We use the same technique as before: creating a dictionary (this time called
read_methods) containing the file extensions and the methods we want to run. The
code is as follows:

read_methods = {'JSON': pd.read_json,
'CSV': pd.read_csv,
'feather': pd.read_feather

}

for one_format, method in read_methods.items():
print(f'Reading from {one_format}')
start_time = time.perf_counter()
df = read_methods[one_format](

f'parking-violations.{one_format.lower()}')
end_time = time.perf_counter()

total_time = end_time - start_time
print(f'\tReading {one_format}: {total_time=}')

As before, we iterate over a dictionary, getting each key (a string, stored in one_
format) and value (method) from the read_methods dict. We print the current format
and then run time.perf_counter(). We retrieve the appropriate read method with
read_methods[one_format] and invoke the method we get on the appropriate file-
name. After reading the file into a data frame, we call time.perf_counter() again,
storing the difference in total_time, which we then print.

 If you’re like me, you’ll likely get the DtypeWarning we’ve previously discussed. (As
a reminder, this warning crops up when pandas is trying to figure out the type of data
contained in a column, doesn’t read all the rows to avoid using too much memory, and
then worries that it may guess the dtype incorrectly. This doesn’t happen in other for-
mats because the type of data we’re reading into each column is more explicit.) For our
purposes, we can ignore it, in no small part to avoid having to worry about which
method and which format are being read. But the benchmarking results are as follows:

Reading from JSON
Reading JSON: total_time=469.92014819500037

380 CHAPTER 12 Performance
Reading from CSV
Reading CSV: total_time=35.20077076088637

Reading from feather
Reading feather: total_time=9.132312984904274

This time the JSON file takes the longest to read into memory, at a hefty 469 seconds,
or nearly 8 minutes. In second place, and taking less than 10% of the time, is CSV, at
35 seconds. But the speed champion remains feather, taking just over 9 seconds.

 From this simple demonstration, it seems pretty clear that Apache Arrow and its
feather format are significantly faster for reading and writing than both CSV and
JSON. This doesn’t mean you can or should move everything to feather—but it has a
number of clear advantages, both in terms of speed and in its footprint on the
filesystem.

Solution

import glob
import os

filename = '../data/nyc-parking-violations-2020.csv'
df = pd.read_csv(filename, low_memory=False)

root = 'parking-violations'
write_methods = {'JSON': 'to_json',

'CSV': 'to_csv',
'feather': 'to_feather' }

for one_format, method in write_methods.items():
print(f'Saving in {one_format}')
start_time = time.perf_counter()
method(f'parking-violations.{one_format.lower()}')
end_time = time.perf_counter()

total_time = end_time - start_time
print(f'\tWriting {one_format}: {total_time=}')

for one_filename in glob.glob(f'{root}*'):
print(f'{one_filename:27}: {os.stat(one_filename).st_size:,}')

read_methods = {'JSON': 'read_json',
'CSV': 'read_csv',
'feather': 'read_feather' }

for one_format, method in read_methods.items():
print(f'Reading from {one_format}')
start_time = time.perf_counter()
df = read_methods[one_format](

f'parking-violations.{one_format.lower()}')
end_time = time.perf_counter()

total_time = end_time - start_time
print(f'\tReading {one_format}: {total_time=}')

Dict of formats
and methods

Iterates over formats
and write methods

Invokes the method
on the filename

Goes through each
filename we created

Uses os.stat to display
the size of each file

Iterates over formats
and read methods

Invokes the
appropriate read
method for the format

381EXERCISE 49 ■ Faster reading and writing
Beyond the exercise

 If you read the CSV file using the pyarrow engine, do you see any speedup? That
is, can you read CSV files into memory any faster if you use a different engine?

 If you specify the dtypes to read_csv, does it take more time or less than without
doing so?

 How much memory does the data frame use with a NumPy backend versus a
PyArrow backend?

Speeding things up with eval and query
Over the course of this book, I’ve emphasized a number of techniques that you
should use to speed up your pandas performance:

 Never use standard Python iterations (for loops and comprehensions) on a
series or data frame.

 Take advantage of broadcasting.
 Use the str accessor for anything string related.
 Use the smallest dtype you can without sacrificing accuracy.
 Avoid double square brackets when setting and retrieving values.
 Load only those columns that you really need for your analysis.
 Columns with repeated values should be turned into categories.
 Use a binary format, such as feather, for data you’ll repeatedly save or load.

Even after using all these techniques, we may find that our queries are still running
slowly or using lots of memory. This often occurs when performing an arithmetic oper-
ation on two columns, each of which contains many rows. A related problem is when
broadcasting an operation on a scalar and a series. Although pandas takes advan-
tage of the high-speed calculations in NumPy, much of the work is still done within
the Python language, which is slower to execute than C.

Another problem occurs when creating a boolean series for use as a mask index
based on several conditions. It’s certainly convenient to use & and | to combine con-
ditions with logical “and” and “or,” but behind the scenes, pandas has to create mul-
tiple boolean series, which are then combined. If we have 1 million rows in your
original column, combining three conditions creates at least 3 million rows in tempo-
rary series before combining and applying them together.

We can avoid these problems, as well as make our queries more readable, using the
query method that I introduced back in chapter 2, as well as two versions of the more
general eval method. These reduce the memory required in queries using | and &
and can often execute expressions in a library known as numexpr. The combination
of reduced memory and increased speed can sometimes give dramatically faster
results while also using fewer resources.

However, it’s important to understand that these methods are not cure-alls for per-
formance problems:

 Using them on small data frames with fewer than 10,000 rows will often result
in slower performance, not faster performance.

382 CHAPTER 12 Performance
(continued)

 Often, the bottleneck in performance is in the assignment or retrieval of ele-
ments, not in the calculation. There won’t be a speed boost in such cases.

 You’ll need to install the numexpr package from PyPI and then explicitly tell
pandas to use it. If you don’t make this explicit, pandas will use its default
Python-based engine for parsing the query string, resulting in no speedup.

 Anything that doesn’t involve calculations, comparisons, and boolean opera-
tors will either raise an exception or run at the standard (non-enhanced)
speed.

Let’s start by looking at the query for data frames. We’ll then talk about two versions
of eval that are part of the same family.

Given a data frame df, the method df.query allows us to describe which rows you
we want to get back from df. The description is passed as an SQL-like string in which
the columns can be named as if they were variables. The result of the query is a data
frame, a subset of df, with all the columns from df and those rows for which the com-
parison returned a True value. For example, given a data frame df with numeric col-
umns a and b in which we want all rows where a is greater than 100 and b is less
than 700, we would normally say

np.random.seed(0)
df = DataFrame(np.random.randint(0, 1000, [5,5]),

index=list('vwxyz'),
columns=list('abcde'))

df.loc[((df['a'] > 100) &
(df['b'] < 700))]

But using df.query, we can instead write

df.query('a > 100 & b < 700')

The version using query will sometimes run faster, but it will almost always use less
memory. That’s because it doesn’t need to create two separate, temporary boolean
series, one for a > 100 and another for b < 700. We may not see these boolean
series when running a traditional query, but they’re there and can use a great deal of
memory without us realizing it. I should add that some people prefer to use df.query
for all their pandas work because of its readability and reduced memory use.

A related data frame method is df.eval, which allows us to retrieve from a data
frame (as in df.query) as well as perform other actions, including broadcasting and
assigning. For example:

df.eval('(a + b)* 3')

This code adds columns a and b and multiplies the new series by 3 via broadcasting.
The returned value is a series. What if we were to pass the same code we used
before, with df.query?

df.eval('a > 100 & b < 700')

383EXERCISE 49 ■ Faster reading and writing
This returns a boolean series. Whereas df.query applies that boolean series to df,
df.eval returns the boolean series itself and allows us to apply it if and when we
want to do so. We can even add a new column (or update an existing one) by assign-
ing to a column name:

df.eval('f = d + e - c')

Using a triple-quoted string, we can perform multiple assignments with df.eval:

df.eval('''
f = d + e - c
g = a * 2
h = a * b
''')

In general, df.eval can be used for either conditions or assignments. However,
when we pass a triple-quoted string to df.eval, it is only for assignments; conditions
aren’t allowed.

The third and final method that allows us to use less memory, speed up computation,
and write more readable queries is pd.eval. Notice that this is a top-level function
in the pd namespace rather than a method we run on a specific data frame. We can
use pd.eval instead of df.eval, although we need to explicitly state the name of
the data frame we’re working on. For example, we can say

pd.eval('df[df.a > 100 & df.b < 700]')

When using pd.eval, you’ll probably want to use the dot syntax to reference col-
umns, rather than the square-bracket syntax that I have generally used in this book,
to avoid too much syntactic messiness. To retrieve column a from data frame df, we
say df.a rather than df['a']. This also means column names cannot contain
spaces.

This code returns all rows of df in which a is greater than 100 and b is less than 700,
as before. However, we have written the query as a string, which is passed to
numexpr. That package will, as we’ve seen, use less memory and (usually) result in
better performance. Note that a call to df.eval is translated into a call to pd.eval,
which means you can probably get better performance if you just call pd.eval. That
said, the convenience of the syntax in df.eval is hard to beat.

As with df.eval, we can assign to one or more columns in the string we pass to
pd.eval. But because we’re invoking pd.eval, the data frame on which the assign-
ment should take place isn’t known to the system. We must set it by passing the
target keyword argument. The assignment is reflected in the data frame that is
returned:

pd.eval('f = df.d + df.e - df.c', target=df)

So, when should you use each of these? Again, the biggest wins are likely to be with
compound queries (using & and |) on large data frames. The larger the data frame
and the more complex the query, the bigger the speed boost you may see—but even
if you don’t, you’ll almost certainly be using less memory.

384 CHAPTER 12 Performance
EXERCISE 50 ■ “query” and “eval”
In this exercise, we’ll look through New York parking tickets one final time, running
queries using the traditional df.loc accessor and also using df.query and df.eval. For
each of these questions, I’d like you to run the query via timeit, allowing us to compare
the executing time needed for the various types of queries. Specifically, I’d like you to

1 Load the New York parking data CSV file into a data frame. You’ll only need the
following columns: Plate ID, Registration State, Plate Type, Feet From Curb,
Vehicle Make, and Vehicle Color.

2 Rename the columns to pid, state, ptype, make, color, and feet. (This will
make it easier to use df.eval.)

3 Find all cars whose registration state is from New York (NY), New Jersey (NJ), or
Connecticut (CT) using .loc.

4 Find all cars whose registration state is New York, New Jersey, or Connecticut
using df.query.

5 How much faster is it to use query?
6 Use isin to search for the states. How does this technique compare?
7 Perform each of the following queries using df.loc, df.query, and df.eval, all

within timeit. In each case, which type of query runs the fastest?
– Find cars from New York.
– Find cars from New York with passenger (PAS) plates.
– Find white cars from New York with passenger (PAS) plates.
– Find white cars from New York with passenger (PAS) plates that were parked

> 1 foot from the curb.
– Find white Toyota-brand cars from New York with passenger (PAS) plates that

were parked > 1 foot from the curb.
8 Which type(s) of query appears to run the fastest?

Working it out

In this exercise, I want you to learn several things:

1 How to formulate the same query using .loc, df.query, and df.eval
2 How to use timeit to time your queries and thus compare their relative speeds

(continued)

Meanwhile, here’s a quick recap on each of these three functions:

 To retrieve selected rows from a data frame, use df.query.
 To assign multiple columns or to perform either queries or assignments on a

data frame, use df.eval.
 To work on multiple data frames, use pd.eval. But it doesn’t handle multiline

assignments, and the syntax makes it uglier.

385EXERCISE 50 ■ “query” and “eval”
3 What may lead a query to be slower
4 Some of the syntactic problems associated with alternative query mechanisms

The first thing I asked you to do was load a number of columns from the New York
parking-ticket dataset, much as we’ve often done in this book:

df = pd.read_csv(filename,
 usecols=['Plate ID', 'Registration State',

'Plate Type',
'Vehicle Make', 'Vehicle Color', 'Feet From Curb'])

There is nothing inherently wrong with loading the data this way. However, when we
use pd.query and pd.eval, it’s often annoying to have column names that include
spaces. Yes, we can use backticks, but it’s more convenient to give them names that
allow us to treat them as variables inside the query string. So although there’s nothing
technically wrong with loading the data as we do here, we then want to set the headers
to be single-word names. We can do that by assigning a list of strings to df.columns:

df.columns = ['pid', 'state', 'ptype', 'make', 'color', 'feet']

You may be thinking that it would be more effective to set these names as part of the
call to read_csv. After all, read_csv has a names parameter, which takes a list of strings
that are assigned to the newly created data frame. However, things get tricky if we want
to rename the columns (with names) and also load a subset of the columns (with
usecols). That’s because passing a value to names means we need to use those names
rather than the original ones from the file when choosing columns in usecols. And
we can only do that if we name all the columns, which is annoying.

 Actually, there is another way to do it: we can specify which columns we want by
passing a list of integers to usecols. Pandas selects the columns at those indexes. We
can then assign them names by passing a value to the names parameter. Here’s how to
do that:

df = pd.read_csv(filename,
usecols=[1, 2, 3, 7, 33, 37],
names=['pid', 'state', 'ptype',

'make', 'color', 'feet'])

Will this work? Yes, it will, and in many cases it may be the preferred way to go. How-
ever, I have two problems with it. First, I find it somewhat annoying to find the integer
positions for the columns we want to load. And second, when I ran this code on my
computer, I got the “low memory” warning that we’ve sometimes seen in previous
examples. I thus decided to avoid the annoyance of finding the desired columns’
numeric locations and the low-memory warning and to use the two-step column
renaming that appears in the solution.

 With our data frame in place, we can start to perform some queries. One of the
main points of this exercise is to get comfortable timing queries, to find out how
quickly they run. Python provides the timeit module, which we can use in standard

386 CHAPTER 12 Performance
programs, but Jupyter provides a special %timeit magic method that can be used
inside Jupyter cells. We can say

%timeit myfunc(2, 3, 4)

In this example, timeit runs myfunc(2,3,4) a number of times, reporting the mean
execution time along with the variation it detects. Just how many loops timeit runs is
determined by the code speed; something that takes a fraction of a second may run
hundreds or even thousands of times, whereas something that takes more than a few
seconds may be run only a handful of times.

NOTE When using the %timeit magic command in Jupyter, don’t forget:
your code must be written on a single line, just after the %timeit magic com-
mand. If you have more than one line, wrap it into a function and invoke that
function. Or use the related %%timeit command, which works on an entire
cell rather than a single line. Also, if you’re timing a function, don’t forget to
put () after the function’s name.

For the first task, I asked you to find all rows in df that were for parking tickets issued
in New York ('NY'), New Jersey ('NJ'), or Connecticut ('CT'), using both the tradi-
tional loc accessor and the query method. I also asked you to time each of these for
comparison.

 We start with the traditional .loc accessor, combining three separate queries:

%%timeit

df.loc[(df['state'] == 'NY') |
(df['state'] == 'NJ') |
(df['state'] == 'CT')]

On my computer, this query took 1.84 seconds. (As usual, the timing will vary slightly
with each run.)

 Consider everything that pandas has to do for this query:

 Compare each element in df['state'] with 'NY'
 Compare each element in df['state'] with 'NJ'
 Compare each element in df['state'] with 'CT'
 Perform an “or” operation on the first two (New York and New Jersey) boolean

series
 Perform an “or” operation on the result of this “or” and the Connecticut series
 Apply that final boolean series to df.loc as a mask index

There’s no doubt that with so many rows, each comparison will take some time. More-
over, the “or” operations, resulting in a single boolean series, will also take a while.
Using the query method won’t help with the first part; we still need to perform the
comparisons. However, by using query, we can dramatically reduce the number of
“or” operations involved. That’s because query uses the numexpr backend to perform

387EXERCISE 50 ■ “query” and “eval”
such operations, which does them far more efficiently. How much more? Here’s how
we rewrite things to use query:

%timeit df.query("state == 'NY' or state == 'NJ' or state == 'CT'")

On my computer, using query took only 1.03 seconds, about 0.8 seconds (or 45%) less
than the original query. That’s a pretty dramatic speed improvement and points to
how much query can improve performance for certain queries.

 However, the comparisons with each of the three state abbreviations also takes
some time. Can we cut down on the number of comparisons? Yes, if we use the isin
method on our column to search for a match within a Python list:

%timeit df.loc[df['state'].isin(['NY', 'NJ', 'CT'])]

This query took even less time than the previous one, clocking in at 0.77 seconds on
my computer. That represents a 58% speedup from the original query.

 But wait: maybe we can enjoy an even greater speedup if we use query and isin
together. Let’s give it a try:

%timeit df.query('state.isin(["NY", "NJ", "CT"])')

Unfortunately, this didn’t seem to improve things; it took 0.80 ms on my computer—
still better than the original queries, but not as good as simply using isin.

 From this small comparison, we see that optimization of queries is rarely a matter
of always using one particular technique. It requires thinking about what we’re doing,
considering what pandas is doing behind the scenes, and then performing some tests
to check our assumptions. That said, we can conclude at least two things from these
queries. First, if you’re combining queries with | or &, you’ll likely get a decent
improvement by using query rather than loc, thanks to the speedups provided by
numexpr. Second, using isin will almost always be faster than combining multiple que-
ries because you’re making a single comparison per row, rather than three.

 Following this first set of queries, I asked you to perform a number of increasingly
complex queries, each in three different ways: using the traditional loc accessor, then
using df.query, and finally using df.eval. I did this not only to give you some prac-
tice building queries in different ways and comparing the time each takes but also to
see that the improvements using query and eval become more pronounced as the
query becomes more complex.

 For starters, I asked you to find all parking tickets given to cars with New York
license plates. Here are the three queries together:

%timeit df.loc[(df['state'] == 'NY')]
%timeit df.query('state == "NY"')
%timeit df[df.eval('state == "NY"')]

On my computer, these gave me timings of 903 ms, 733 ms (19% faster), and 758 ms
(17% faster), respectively. We thus already see that loc is the slowest of the three, with
the use of df.query and df.eval coming in almost the same.

388 CHAPTER 12 Performance
 But wait—the result of df.eval is a boolean series, which we then apply to df. Per-
haps, instead of using a mask index on df, we should do so on df.loc. Using %timeit,
we can find out pretty quickly:

%timeit df.loc[df.eval('state == "NY"')]

Sure enough, we get the fastest result, albeit by just a hair, when using df.loc here:
729 ms. In other words, it would seem that selecting via df.loc and a mask index gives
better performance than just df and a mask index—something I’ve seen elsewhere,
too. The rest of my solutions in this exercise all use df.loc for a fairer comparison.

 Next, I asked you to find passenger cars (i.e., with ptype equal to 'PAS') from New
York. Here are the three solutions:

%timeit df.loc[((df['state'] == 'NY') & (df['ptype'] == 'PAS'))]
%timeit df.query('state == "NY" & ptype == "PAS"')
%timeit df.loc[df.eval('state == "NY" & ptype == "PAS"')]

I got timings of 1.27 seconds for the traditional use of df.loc versus 965 ms for
df.query (24% faster) and 924 ms for df.eval (27% faster). Here we use & to com-
bine the two boolean series we get back from each comparison. Although we were
able to speed up our “or” query using isin, there isn’t an exact equivalent for “and”
queries.

 Next, I asked you to expand the query further, thus narrowing the potential
results, looking for white passenger cars from New York that had been ticketed. Again,
we can compare the queries:

%%timeit
df.loc[((df['state'] == 'NY') &

(df['ptype'] == 'PAS') &
(df['color'] == 'WHITE'))]

%%timeit
df.query(

'state == "NY" & ptype == "PAS" & color == "WHITE"')

%%timeit
df.loc[df.eval(

'state == "NY" & ptype == "PAS" & color == "WHITE"')]

This time, I got timings of 1.34 seconds, 728 ms for df.query (45% faster), and 727
ms for df.eval (also 45% faster). We can see that adding another condition slows the
traditional query a bit but actually results in faster queries when using the numexpr
backend. I’m not sure why this is the case, except that perhaps numexpr is only acti-
vated once the query reaches a certain size threshold.

 Next, I asked you to find tickets for white passenger cars from New York that were
parked more than 1 foot from the curb. Here are the queries:

%%timeit
df.loc[((df['state'] == 'NY') & (df['ptype'] == 'PAS') &

(df['color'] == 'WHITE') & (df['feet'] > 1))]

389EXERCISE 50 ■ “query” and “eval”
%%timeit
df.query('state == "NY" & ptype == "PAS" &

color == "WHITE" & feet > 1')

%%timeit
df.loc[df.eval('state == "NY" & ptype == "PAS" &

color == "WHITE" & feet > 1')]

In this case, I got timings of 1.31 seconds for the traditional query, 712 ms for df.query
(45% faster), and 706 ms for df.eval (46% faster). Again, we can see that when the
queries are complex, using the numexpr backend gives us a big speed advantage.

 Finally, I asked you to find tickets given to white Toyota passenger cars with license
plates from New York state that were parked more than 1 foot from the curb. Here is
how we write those queries:

%%timeit
df.loc[((df['state'] == 'NY') &

(df['ptype'] == 'PAS') &
(df['color'] == 'WHITE') &
(df['feet'] > 1) &
(df['make'] == 'TOYOT'))]

%%timeit
df.query('state == "NY" & ptype == "PAS" &

color == "WHITE" & feet > 1 &
make == "TOYOT"')

%%timeit
df.loc[df.eval('state == "NY" & ptype == "PAS" &

color == "WHITE" & feet > 1 &
make == "TOYOT"')]

I got timings of 1.75 seconds for the traditional query, 896 ms for df.query (49%
faster), and 899 ms for df.eval (48% faster). The added condition slowed all the que-
ries, but the numexpr backend continued to prove its worth, giving us the same answer
at nearly twice the speed.

 Does this mean it’s always worth using df.query or df.eval? I know there are pan-
das users who would say “yes,” given that even in the simplest of cases, we see a
speedup. And in the most complex cases, the speedup is dramatic. So you could argue
that because it doesn’t matter much for simple queries on a short data set but it mat-
ters a lot for complex queries on large ones, you should always use these techniques.

 However, focusing on speed before you’ve thought hard about the problem and
potential bottlenecks can be misleading. Remember that df.query returns all the col-
umns from a data frame—so if a data frame contains more columns than we want to get
back, it may end up using lots of memory unnecessarily. By contrast, df.loc provides
not only a row selector but also a column selector for more flexibility. I thus tend to use
df.loc for my queries while I’m still putting them together. When I’m done, I can then
experiment with these techniques to see how to reduce memory and speed things up.

390 CHAPTER 12 Performance
Solution

filename = '../data/nyc-parking-violations-2020.csv'
df = pd.read_csv(filename,

usecols=['Plate ID', 'Registration State',
'Plate Type', 'Feet From Curb',

'Vehicle Make', 'Vehicle Color'])
df.columns = ['pid', 'state', 'ptype',

'make', 'color', 'feet']

%timeit df.loc[(df['state'] == 'NY') |
(df['state'] == 'NJ') |
(df['state'] == 'CT')]

%timeit df.query("state == 'NY' or
state == 'NJ' or
state == 'CT'")

%timeit df.loc[df['state'].isin(['NY', 'NJ', 'CT'])]

%timeit df.loc[(df['state'] == 'NY')]
%timeit df.query('state == "NY"')
%timeit df.loc[df.eval('state == "NY"')]

%timeit df.loc[((df['state'] == 'NY') &
(df['ptype'] == 'PAS'))]

%timeit df.query('state == "NY" & ptype == "PAS"')
%timeit df.loc[df.eval('state == "NY" & ptype == "PAS"')]

%timeit df.loc[((df['state'] == 'NY') &
(df['ptype'] == 'PAS') &
(df['color'] == 'WHITE'))]

%timeit df.query(
'state == "NY" & ptype == "PAS" & color == "WHITE"
')

%timeit df.loc[df.eval(
'state == "NY" & ptype == "PAS" & color == "WHITE"')
]

%timeit df.loc[((df['state'] == 'NY') &
(df['ptype'] == 'PAS') &
(df['color'] == 'WHITE') &
(df['feet'] > 1))]

%timeit df.query(
'state == "NY" & ptype == "PAS" & color == "WHITE" & feet > 1'
)

%timeit df.loc[df.eval('state == "NY" & ptype == "PAS" &
color == "WHITE" & feet > 1')]

%timeit df.loc[((df['state'] == 'NY') &
(df['ptype'] == 'PAS') &
(df['color'] == 'WHITE') &
(df['feet'] > 1) &
(df['make'] == 'TOYOT'))]

%timeit df.query(
('state == "NY" & ptype == "PAS" & color == "WHITE"' +

391EXERCISE 50 ■ “query” and “eval”
'& feet > 1 & make == "TOYOT"')
)

%timeit df.loc[df.eval(
('state == "NY" & ptype == "PAS" & color == "WHITE"' +
'& feet > 1 & make == "TOYOT"')

)]

Beyond the exercise

In this exercise, we ran a number of queries using plain ol’ .loc as well as df.query
and df.eval, comparing their performance times. Here are some additional chal-
lenges for you to try along these lines:

 In df.query, you can use the words and and or, rather than the symbols & and |,
thanks to the numexpr library. Rewrite the final query using the words. Does this
change the speed at all?

 I prefer measuring distance in meters rather than feet. I thus want to find all
cars that were ticketed when they were more than 1 meter from the curb.
(Every 1 meter is 3.28 feet.) Perform this query using the traditional df.loc
and also using df.query. Which one runs faster?

 What if you modify the query to look for cars that are more than 1 meter from
the curb and for which the state is New York? Which query runs faster and by
how much?

Summary
Calculations and analysis with pandas are much faster than they would be in pure
Python. Even so, when you’re working with a large data set, you’ll often want or need
to reduce the memory footprint of your data frame and use techniques that can
improve performance. In this chapter, we reviewed a number of techniques you can
use to speed up your queries and also use fewer resources:

 Choosing columns carefully
 Reducing memory usage with categories
 Reading data from feather format rather than CSV
 Speeding up complex queries with df.query and df.eval

If you’ve reached this part of the book, congratulations! You’ve successfully gone
through all 50 exercises! I have no doubt that if you’ve made it this far, you have a
much better, deeper understanding of pandas, what it can do, and how you can use it
in a variety of situations. You should feel good about yourself and confident about
your ability to use pandas at work.

 But before you stop reading: the next chapter contains a large project in which I’ll
ask you to use all the techniques from this book to analyze a large real-world data set. I
hope you’ll take the time to do the project, which will help cement the lessons you’ve
learned and help you use pandas even more effectively in the future.

Final project
Congratulations! You’ve finished all the exercises in this book. If you’ve gone
through each one—and especially if you’ve gone through the “Beyond the exer-
cise” questions—I’m sure you have improved your pandas skills a lot.

 But before you go, I want to give you a final project. We’ll explore the “college
scorecard,” a data set assembled by the US Department of Education about post-
secondary (i.e., after high school) educational programs. The college scorecard
allows us to see what programs schools offer, how many students they admit, what
those students pay in tuition and fees, how many students graduate, and how much
they can expect to earn after graduation. From looking at this data, we can better
understand many different aspects of university education in the United States. I
should add that with a data set this large and rich, there are many different ques-
tions that you could ask. After you finish answering the questions I pose here, I
strongly suggest that you also explore the data set on your own, asking (and answer-
ing) questions that you think are interesting and relevant.

Problem
Here is what I’d like you to do:

1 Create a data frame (institutions_df) from the college scorecard cohorts-
institutions CSV file (Most-Recent-Cohorts-Institution.csv.gz). You only need
to load the following columns: OPEID6, INSTNM, CITY, STABBR, FTFTPCTPELL,
TUITIONFEE_IN, TUITIONFEE_OUT, ADM_RATE, NPT4_PUB, NPT4_PRIV, NPT41_
PUB, NPT41_PRIV, NPT45_PUB, NPT45_PRIV, MD_EARN_WNE_P10, and C100_4.
392

https://github.com/reuven/pandas-workout

393■Problem
2 Load the CSV file for fields of study (FieldOfStudyData1718_1819_PP.csv.gz)
into another data frame (fields_of_study_df). Here, load the columns
OPEID6, INSTNM, CREDDESC, CIPDESC, and CONTROL.

3 Answer the following questions:
– What state has the greatest number of universities in this database?
– What city, in which state, has the greatest number of universities in this data-

base?
– How much memory can you save if you set the CITY and STABBR columns in

institutions_df to be categories?
– Create a histogram showing how many bachelor programs universities offer.
– Determine which university offers the greatest number of bachelor programs.
– Create a histogram showing how many graduate (master’s and doctoral) pro-

grams universities offer.
– Determine which university offers the greatest number of different graduate

(master + doctoral) programs.
4 Answer these questions:

– How many universities offer bachelor’s degrees but not master’s or doctorates?
– How many universities offer master’s and doctoral degrees but not bachelor’s?
– How many institutions offer bachelor’s degrees whose name contains the

term “Computer Science”?
– The CONTROL field describes the types of institutions in the database. How

many of each type offer a computer science program?
5 Create a pie chart showing the different types of institutions that offer CS (short

for “computer science”) degrees.
6 Determine the minimum, median, mean, and maximum tuitions for an under-

grad CS degree. (We define this as a bachelor’s program with the phrase “Com-
puter Science” in the name.) When comparing tuition, use TUITIONFEE_OUT for
all schools.

7 Describe the tuition again, but grouped by the different types of universities
(CONTROL).

8 Determine the correlation between admission rate and tuition cost. How would
you interpret this?

9 Create a scatter plot with tuition on the x axis, admission rate on the y axis, and
median earnings after 10 years are used for colorizing. Use the “Spectral” color-
map. Where do the lowest-paid graduates show up on the graph?

10 Determine which universities are in the top 25% of tuition and also the top
25% with Pell grants (i.e., government assistance to lower-income students).
Print only the institution name, city, and state, ordered by institution name.

https://github.com/reuven/pandas-workout

394 CHAPTER 13 Final project
11 NPT4_PUB indicates the average net price for public institutions (in-state tuition)
and NPT4_PRIV for private institutions. NPT41_PUB and NPT45_PUB show the aver-
age price paid by people in the lowest income bracket (1) versus the highest
income bracket (5) at public institutions. NPT41_PRIV and NPT45_PRIV show the
average price paid by people in the lowest income bracket (1) versus the high-
est income bracket (5) at private institutions. At how many institutions does the
bottom quintile receive money (i.e., the value is negative)?

12 Determine the average proportion that the bottom quintile pays versus the top
quintile at public universities.

13 Determine the average proportion that the bottom quintile pays versus the top
quintile at private universities?

14 Let’s try to figure out which universities offer the best overall return on invest-
ment (ROI) (across all disciplines):
– For which schools in the cheapest 25% do their students have the top 25% of

salaries 10 years after graduation?
– How about private institutions?
– Is there a correlation between admission rates and completion rates? That is:

If a school is highly selective, are students more likely to graduate?
– Ten years after graduating, from what kinds of schools (private, for-profit, pri-

vate nonprofit, or public) do people earn, on average, the greatest amount?
– Do people who graduate from “Ivy Plus” schools (the Ivy League as well as

MIT, Stanford, and the University of Chicago) earn more than the average
private-school university graduate? If so, how much more?

– Do people studying at universities in particular states earn, on average, more
after 10 years?

15 Create a bar plot for the average amount earned, per state, sorted by ascending
pay.

16 Create a boxplot for the earnings by state.

Column names and meanings
The column names in the two CSV files we’re examining in this chapter are terse, as
shown in tables 13.1 and 13.2.

Table 13.1 Column names in the “Cohorts and institutions” file

Column name Explanation Sample value

OPEID6 Unique ID (integer) for each educational institution 1002

INSTNM Institution name "Alabama A & M
University"

CITY Institution’s city "Normal"

395■Column name and meanings
STABBR Institution’s state name (abbreviated) "AL"

FTFTPCTPELL Percentage of Pell-grant recipients 0.6925

TUITIONFEE_IN In-state tuition 10024.0

TUITIONFEE_OUT Out-of-state tuition 18634.0

ADM_RATE Admission rate 0.8965

NPT4_PUB Net price (for public institutions; NaN if a private
institution)

15529.0

NPT4_PRIV Net price (for private institutions; NaN if a public
institution)

NaN

NPT41_PUB Average price paid by people in the lowest income
bracket (for public institutions; NaN if a private
institution)

14694.0

NPT41_PRIV Average price paid by people in the lowest income
bracket (for private institutions; NaN if a public
institution)

NaN

NPT45_PUB Average price paid by people in the highest income
bracket (for public institutions; NaN if a private
institution)

20483.0

NPT45_PRIV Average price paid by people in the highest income
bracket (for private institutions; NaN if a public
institution)

NaN

MD_EARN_WNE_P10 Median income for graduates 10 years following
graduation

36339.0

C100_4 Completion rates after four years 0.1052

Table 13.2 Column names in the “Fields of study” file

Column name Explanation Sample value

OPEID6 Unique ID (integer) for each educational institution 1002

INSTNM Institution name "Alabama A & M
University"

CREDDESC Degree being offered "Bachelors Degree"

CIPDESC Education program "Agriculture,
General."

CONTROL What type of institution is this? "Public"

Table 13.1 Column names in the “Cohorts and institutions” file (continued)

Column name Explanation Sample value

396 CHAPTER 13 Final project
Working it out

As I said, the college scorecard data set includes a large number of facts and figures
about American higher education, describing both the institutions and the students
who learn there. To answer this set of questions, we only need to look at two CSV files:
(1) information about the most recent cohorts of students who enrolled at and gradu-
ated from these institutions and (2) the fields of study that each institution offers.
Some of our questions require just one of these data sources, and others require that
we combine them into a single data frame.

CREATE A DATA FRAME FROM THE COLLEGE SCORECARD COHORTS-INSTITUTIONS CSV FILE

To start, I asked you to load each of the CSV files into a data frame. You may have
noticed that the files I’ve provided have a .csv.gz suffix. This means they are com-
pressed with gzip—but you don’t need to uncompress them before loading because
pandas is smart enough to automatically do so when we run read_csv. Load the first
data frame as follows, defining institutions_df:

institutions_filename = '../data/Most-Recent-Cohorts-Institution.csv.gz'
institutions_df = pd.read_csv(institutions_filename,

usecols=['OPEID6',
'INSTNM', 'CITY', 'STABBR',
'FTFTPCTPELL', 'TUITIONFEE_IN',
'TUITIONFEE_OUT', 'ADM_RATE',
'NPT4_PUB', 'NPT4_PRIV',
'NPT41_PUB', 'NPT41_PRIV',
'NPT45_PUB', 'NPT45_PRIV',
'MD_EARN_WNE_P10', 'C100_4'])

LOAD THE CSV FILE FOR FIELDS OF STUDY INTO ANOTHER DATA FRAME

We load the other CSV file with information about fields of study for the last few years
as follows, assigning it to fields_df:

fields_filename = '../data/FieldOfStudyData1718_1819_PP.csv.gz'
fields_of_study_df = pd.read_csv(fields_filename,

usecols=['OPEID6', 'INSTNM',
'CREDDESC', 'CIPDESC', 'CONTROL'])

With these two data frames defined and in memory, we can start performing some
queries.

WHAT STATE HAS THE GREATEST NUMBER OF UNIVERSITIES IN THIS DATABASE?
First, I wanted to know which state has the greatest number of universities in this data-
base. This is a classic example of when to use grouping. We can group on the STABBR
(state abbreviation) column, running the count method. This will tell us how often
each state appears in the data set. We also have to provide a second column, which is
where the count is reported. The choice doesn’t matter, so we go with OPEID6, the
unique ID used for each institution:

(
institutions_df

397■Column name and meanings
.groupby('STABBR')['OPEID6'].count()
)

This query tells us how often each state appears in the data set. But we’re interested in
finding which states have the greatest number of universities. To find that, we sort the
series by the values we get back in descending order. The first row in this series is, by
definition, the state with the largest number—which we retrieve using head(1):

(
institutions_df
.groupby('STABBR')['OPEID6'].count()
.sort_values(ascending=False)
.head(1)

)

According to this data, California has the greatest number of universities—a large
number, at 705.

WHAT CITY, IN WHICH STATE, HAS THE GREATEST NUMBER OF UNIVERSITIES IN THIS DATABASE?
I then decided to ask a slightly different question: which city has the greatest number
of universities? At first glance, it may seem that this query is identical to the previous
one, grouping by the CITY column rather than STABBR. But that would combine cities
of the same name in different states, combining Springfield, Illinois with Springfield,
Massachusetts. The solution requires that we group by two columns: first STABBR and
then CITY. The combination allows us to find which city, in which state, has the great-
est number of universities:

(
institutions_df
.groupby(['STABBR', 'CITY'])['OPEID6'].count()
.sort_values(ascending=False)
.head(1)

)

Once again, we ask for the count method to be run on OPEID6 because we need to
count on a nongrouping column. And again we sort in descending order and grab the
top value. The answer is New York City, with 81 institutions of higher learning.

HOW MUCH MEMORY CAN WE SAVE IF WE SET THE CITY AND STABBR COLUMNS IN INSTITU-
TIONS_DF TO BE CATEGORIES?
Considering that both state and city names are text data and that they repeat so often,
it makes sense to consider how much memory we may save by turning the STABBR and
CITY columns into categories. But as always when trying to optimize, we should measure
before and after taking such an action, to know whether our efforts were worthwhile.

 I thus asked you to determine how much memory our data frame was already using.
The easiest way to find this is to run memory_usage on a data frame. Don’t forget to pass
the deep=True keyword argument. This returns the total memory usage of each col-
umn, including the objects to which it refers. (As we saw in chapter 12, that argument
can make a huge difference!) Here’s how we can calculate that and then print it:

398 CHAPTER 13 Final project
pre_category_memory = (
institutions_df
.memory_usage(deep=True)
.sum()

)

print(f'{pre_category_memory:,}')

First, we calculate the total memory usage and assign it to pre_category_memory.
Then, to print the number with commas between the digits—and yes, we’re showing
off here—we print it in an f-string, using a single comma (,) as the format specifier
after the colon (:).

 We then turn both the STABBR and CITY columns into categories:

institutions_df['CITY'] = (
institutions_df['CITY']
.astype('category')

)

institutions_df['STABBR'] = (
institutions_df['STABBR']
.astype('category')

)

Now that this has been done, how much memory did we save?

post_category_memory = (
institutions_df
.memory_usage(deep=True)
.sum()

)

savings = pre_category_memory - post_category_memory
print(f'{savings:,}')

savings = pre_category_memory - post_category_memory
print(f'{savings:,}')

On my computer, the savings is calculated as 579,371 bytes—meaning we reduced
memory usage by approximately one-third by turning these two columns into catego-
ries. Not a bad gain for a few seconds of coding, I’d say.

CREATE A HISTOGRAM SHOWING HOW MANY BACHELOR’S PROGRAMS UNIVERSITIES OFFER.
Next, I asked you to create a histogram indicating how many programs are offered by
each university. That is, we’d like to know how many universities offer 10 programs,
how many offer 20, how many offer 30, and so forth.

 To create such a histogram, we first need to count the number of different bache-
lor’s programs each university offers. We start by looking at fields_of_study_df and
retrieving only those rows for which the CREDDESC value is 'Bachelors Degree':

(
fields_of_study_df
.loc[fields_of_study_df['CREDDESC'] == 'Bachelors Degree']

399■Column name and meanings
With that in hand, we can run groupby on the INSTNM (institution name) column. This
means our aggregation method (count, in this case) runs once for each distinct value
of INSTNM. To avoid getting a result for each column, we restrict our output to CIPDESC:

(
fields_of_study_df
.loc[fields_of_study_df['CREDDESC'] == 'Bachelors Degree']
.groupby('INSTNM')['CIPDESC'].count()
.plot.hist()

)

This returns a series in which the index contains the institution name and the value
contains the number of bachelor-level degrees offered by each institution. Finally, we
can feed that into the histogram-plotting method (figure 13.1):

(
fields_of_study_df
.loc[fields_of_study_df['CREDDESC'] == 'Bachelors Degree']
.groupby('INSTNM')['CIPDESC'].count()
.plot.hist()

)

The result shows that a very large number of institutions (more than 1,400!) offer
fewer than 20 bachelor-level programs, fewer than 600 institutions offer between 20
and 50 programs, and 200 or fewer institutions offer more than 50 programs.

WHICH UNIVERSITY OFFERS THE GREATEST NUMBER OF BACHELOR’S PROGRAMS?
Now that we’ve counted the number of programs offered by each institution in this data
set, we can ask which universities offer the greatest number of programs. We already

Figure 13.1
Histogram showing
how many schools
offer different
numbers of
bachelor’s programs

400 CHAPTER 13 Final project
have their counts, thanks to the groupby we ran before. We can thus rerun that query,
sorting the resulting values in descending order and keeping only the top 10 results:

(
fields_of_study_df
.loc[fields_of_study_df['CREDDESC'] == 'Bachelors Degree']
.groupby('INSTNM')['CIPDESC'].count()
.sort_values(ascending=False)
.head(10)

)

When I ran this, I found that the institution with the greatest number of programs was
Westminster College (with 165 bachelor-level programs), followed by Pennsylvania
State University’s main campus (141) and the University of Washington’s Seattle
campus (137).

CREATE A HISTOGRAM SHOWING HOW MANY GRADUATE (MASTER’S AND DOCTORAL)
PROGRAMS UNIVERSITIES OFFER.
Now that we’ve counted bachelor’s programs, how about graduate programs offering
either a master’s or doctoral degree? That query is trickier because we can no longer
compare CREDDESC with a single string. Rather, we need to check if the value is one of
two different strings. For that, we use the isin method, which takes a list of strings
and returns True if the value in that row matches one or more of the values in the list.

 To start, we can get all schools that offer master’s and doctoral degrees:

(
fields_of_study_df
.loc[fields_of_study_df['CREDDESC']

.isin(["Master's Degree", "Doctoral Degree"])]
)

With that in hand, we can repeat our groupby query, using count as our aggregation
method:

(
fields_of_study_df
.loc[fields_of_study_df['CREDDESC']

.isin(["Master's Degree", "Doctoral Degree"])]
.groupby('INSTNM')['CIPDESC'].count()

)

Finally, having grouped by INSTNM using count and knowing how many programs each
institution offers, we can create the histogram (figure 13.2):

(
fields_of_study_df
.loc[fields_of_study_df['CREDDESC']

.isin(["Master's Degree", "Doctoral Degree"])]
.groupby('INSTNM')['CIPDESC'].count()
.plot.hist()

)

401■Column name and meanings
Here we see that the vast majority of schools offer fewer than 25 different graduate
programs, with more offering fewer than 50. The number of schools offering more
than 50 master’s and doctoral degrees declines even more precipitously, although a
handful offer more than 200.

WHICH UNIVERSITY OFFERS THE GREATEST NUMBER OF DIFFERENT GRADUATE
(MASTER + DOCTORAL) PROGRAMS?
I next asked you to find just which schools offer the greatest number of different grad-
uate programs. As before, this means sorting the results from our groupby and count:

(
fields_of_study_df
.loc[fields_of_study_df['CREDDESC']

.isin(["Master's Degree", "Doctoral Degree"])]
.groupby('INSTNM')['CIPDESC'].count()
.sort_values(ascending=False)
.head(10)

)

The University of Washington’s Seattle campus has the most programs (237), followed
by Penn State’s main campus (230) and New York University (226).

NOTE The number of programs a university offers at any level shouldn’t be
taken as an indication of how good the university is or whether the program is
appropriate for you. Especially when it comes to graduate studies, the import-
ant thing is whether the specific program is good for you and (perhaps even
more importantly) whether your advisor is someone you can trust to help you
through the program. So don’t take these questions as anything other than a
numeric exercise; I’m certainly not trying to imply that the more programs a
university offers, the better it is.

Figure 13.2
Histogram showing
how many schools
offer different
numbers of graduate
programs

402 CHAPTER 13 Final project
HOW MANY UNIVERSITIES OFFER BACHELOR’S DEGREES BUT NOT MASTER’S OR DOCTORATES?
Although the universities I attended all offered degree programs at all levels, some
focus exclusively on either undergraduate or graduate education. I asked you to find
how many universities offer bachelor’s degrees but not master’s or doctorates, followed
by the reverse—how many offer master’s or doctoral degrees but not bachelor’s.

 To answer these questions, we first find all schools offering bachelor’s programs
and those offering master’s and doctoral programs. These queries are identical to
what we did before. However, here we store them in two separate variables so we can
make calculations based on them:

ug_schools = (
fields_of_study_df
.loc[fields_of_study_df['CREDDESC'] == 'Bachelors Degree',
'INSTNM']

)

grad_schools = (
fields_of_study_df
.loc[fields_of_study_df['CREDDESC']

.isin(["Master's Degree", "Doctoral Degree"]),
'INSTNM']

)

Both ug_schools and grad_schools are pandas series with the values containing the
names of the universities. However, because we retrieved the university names from
fields_of_study_df, there are plenty of repeats, with one row for each program
offered by the institution. We will leave things as they are rather than apply the unique
method because apply returns a NumPy array and we want to use some additional
pandas functionality.

 Now that we have defined these two series, how can we determine which schools
offer bachelor’s degrees but not master’s or doctoral degrees? We can again rely on
isin. That is, to find all undergraduate institutions that are also graduate schools, we
can say

ug_schools.isin(grad_schools)

This code returns a boolean series. But we want the opposite of this: the undergradu-
ate schools that are not graduate schools. So we use ~ to flip the logic:

~ug_schools.isin(grad_schools)

This gives the opposite boolean series from what we had before. If we apply that bool-
ean series to ug_schools, we get the rows corresponding to undergraduate schools
that aren’t graduate schools:

ug_schools[~ug_schools.isin(grad_schools)]

However, there is a problem with this result: the school names are repeated. This is
where we can use the drop_duplicates method, getting distinct values back:

ug_schools[~ug_schools.isin(grad_schools)].drop_duplicates()

403■Column name and meanings
We can retrieve size from the result:

ug_schools[~ug_schools.isin(grad_schools)].drop_duplicates().size

The database has 923 undergraduate schools that don’t offer graduate degrees.

HOW MANY UNIVERSITIES OFFER MASTER’S AND DOCTORAL DEGREES BUT NOT
BACHELOR’S?
We can apply similar logic to this to flip the question around:

grad_schools[~grad_schools.isin(ug_schools)].drop_duplicates().size

The result is 404 institutions that offer master’s and doctoral degrees but don’t offer
bachelor’s degrees.

HOW MANY INSTITUTIONS OFFER BACHELOR’S DEGREES WHOSE NAME CONTAINS THE
TERM “COMPUTER SCIENCE”?
Next, I thought it would be interesting to determine how many institutions offer bach-
elor’s degrees in computer science. Every institution calls its department and degree
something slightly different, which means we’ll likely miss many possibilities. But if we
look for programs containing the term 'Computer Science', how many will we find?

 First, we need to find all those rows in which CIPDESC contains the string
'Computer Science':

fields_of_study_df['CIPDESC'].str.contains('Computer Science')

But that isn’t enough because we’re specifically looking for bachelor’s programs in
computer science. We thus need to have two conditions joined with &:

fields_of_study_df['CIPDESC'].str.contains('Computer Science') &
fields_of_study_df['CREDDESC'] == 'Bachelors Degree'

This combined query returns a boolean series. We can then apply that boolean series
to fields_of_study_df with .loc:

(
fields_of_study_df
.loc[(fields_of_study_df['CIPDESC']

.str.contains('Computer Science')) &
(fields_of_study_df['CREDDESC'] == 'Bachelors Degree')]

)

The thing is, we’re not interested in all the columns. We just want to see the institu-
tion names so we can count them. We can do this by adding a column selector to .loc,
indicating that we want to see INSTNM:

(
fields_of_study_df
.loc[(fields_of_study_df['CIPDESC']

.str.contains('Computer Science')) &
(fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),
'INSTNM']

)

404 CHAPTER 13 Final project
This returns a series of 824 institution names. But, as before, the names aren’t neces-
sarily unique, given that there may be more than one degree program with “Com-
puter Science” in its name. For this reason, we take the results, invoke unique() on
them, and then get the size of the resulting array:

(
fields_of_study_df
.loc[(fields_of_study_df['CIPDESC']

.str.contains('Computer Science')) &
(fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),
'INSTNM']

.unique()

.size
)

The result, on my system, is 762.

HOW MANY TYPES OF INSTITUTIONS IN THE DATABASE OFFER A COMPUTER-SCIENCE PROGRAM?
The college scorecard data set puts each university into one of four categories listed in
the CONTROL column: public, private and nonprofit, private and for-profit, or foreign.
In my next question, I asked you to show how many institutions of each type offer
computer science as a bachelor-level degree.

 We start with our previous query before the call to unique:

(
fields_of_study_df
.loc[(fields_of_study_df['CIPDESC']

.str.contains('Computer Science')) &
(fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),

['CONTROL','INSTNM']].groupby('CONTROL').count()
)

We then run a groupby on CONTROL because we want to know how many institutions of
each type offer undergraduate CS programs. For this to work, our column selector
needs to include not just INSTNM, as before, but also CONTROL:

fields_of_study_df.loc[(fields_of_study_df[
'CIPDESC'].str.contains('Computer Science')) &
(fields_of_study_df['CREDDESC'] ==

'Bachelors Degree'), ['CONTROL',
'INSTNM']].groupby('CONTROL')

This query gives us a groupby object on which we can then invoke count:

fields_of_study_df.loc[(fields_of_study_df[
'CIPDESC'].str.contains('Computer Science')) &
(fields_of_study_df['CREDDESC'] ==

'Bachelors Degree'),
['CONTROL', 'INSTNM']].groupby('CONTROL').count()

With this query, I find 32 foreign universities, 18 private for-profit universities, 501 pri-
vate nonprofit universities, and 273 public universities, all offering undergraduate CS
programs.

405■Column name and meanings
CREATE A PIE CHART SHOWING THE DIFFERENT TYPES OF INSTITUTIONS THAT OFFER CS DEGREES.
Seeing this information in a table, however accurate, isn’t as striking as a graphical dis-
play would be. I thus asked you to take these results and put them into a pie chart. For-
tunately, that’s easy. We start with this query and then retrieve only the INSTNM column:

(
fields_of_study_df
.loc[(fields_of_study_df['CIPDESC']

.str.contains('Computer Science')) &
(fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),

['CONTROL','INSTNM']]
.groupby('CONTROL').count()['INSTNM']

)

That returns a single series of values along with the index (i.e., the different institu-
tion categories). We can turn that into a pie chart by invoking .plot.pie() at the end
(figure 13.3):

(
fields_of_study_df
.loc[(fields_of_study_df['CIPDESC']

.str.contains('Computer Science')) &
(fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),

['CONTROL','INSTNM']]
.groupby('CONTROL').count()['INSTNM']
.plot.pie()

)

Next, we want to start looking at the cost of getting a computer science degree from
an American university. To do this, we first need to find all universities at which com-
puter science is taught at the undergraduate level. This query is identical to one we’ve
already seen, except that we’re looking for three different columns: OPEID6 (a unique

Figure 13.3 Pie chart comparing
the types of institutions that offer
computer science

406 CHAPTER 13 Final project
ID number for each university in the system), CONTROL (the category of institution
we’ve already seen), and INSTNM (the name of the institution):

comp_sci_universities = (
fields_of_study_df
.loc[(fields_of_study_df['CIPDESC']

.str.contains('Computer Science')) &
(fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),

['OPEID6','CONTROL','INSTNM']]
)

The good news is that we now have these rows and have put them into a new data
frame, comp_sci_universities. However, the index contains the same values we had
in fields_of_study_df. This isn’t inherently bad, except that to answer our ques-
tions, we need to join this data frame with institutions_df. Joining requires that
the indexes match up. For that reason, we modify our creation of comp_sci_
universities so it sets the index to be OPEID6:

comp_sci_universities = (
fields_of_study_df
.loc[(fields_of_study_df['CIPDESC']

.str.contains('Computer Science')) &
(fields_of_study_df['CREDDESC'] == 'Bachelors Degree'),

['OPEID6','CONTROL','INSTNM']]
.set_index('OPEID6')

)

Now let’s make sure institutions_df has the index we need to join them:

institutions_df[['OPEID6', 'TUITIONFEE_OUT']].set_index('OPEID6')

Note that this doesn’t change institutions_df; rather, it returns a new data frame
with OPEID6 as its index.

 Now that we have two data frames with a common index, we can join them:

(
comp_sci_universities
.join(institutions_df[['OPEID6', 'TUITIONFEE_OUT']]

.set_index('OPEID6'))
)

But this query gives us the entire new data frame. We don’t really want that; we only
need the TUITIONFEE_OUT column:

(
comp_sci_universities
.join(institutions_df[['OPEID6', 'TUITIONFEE_OUT']]

.set_index('OPEID6'))
['TUITIONFEE_OUT']

)

The result of this query, short as it is, packs a real punch: we retrieve the tuition at
each university with an undergraduate CS program in the data set.

407■Column name and meanings
WHAT ARE THE MINIMUM, MEDIAN, MEAN, AND MAXIMUM TUITIONS FOR AN
UNDERGRAD CS DEGREE?
I asked you to find the minimum, median, mean, and maximum values for tuition. We
could, of course, calculate each of these individually. But when we want to perform a
number of aggregate calculations, the easiest thing to do is invoke describe, which
gives them all:

(
comp_sci_universities
.join(institutions_df[['OPEID6', 'TUITIONFEE_OUT']]

.set_index('OPEID6'))
['TUITIONFEE_OUT']
.describe()

)

DESCRIBE THE TUITION AGAIN, BUT GROUPED BY THE DIFFERENT TYPES OF UNIVERSITIES

Next, I asked you to describe the tuition again, but grouped by the different types of
universities (i.e., the CONTROL column). We can accomplish this by invoking
groupby('CONTROL') on the result of the join, retrieving TUITIONFEE_OUT, and then
invoking describe on the result:

comp_sci_universities.join(institutions_df[
['OPEID6', 'TUITIONFEE_OUT']].set_index('OPEID6')).groupby(

'CONTROL')['TUITIONFEE_OUT'].describe()

However, I find two problems with this result. First, foreign-owned universities give
results of 0 or NaN for each column. Second, it’s weird to have the university types in
the index and the results from describe in the columns. Both of these are problems
of aesthetics, but if we’re already playing with the data, let’s see how we can clean it
up.

 We can use dropna to remove the Foreign row, the only one in which we have any
NaN values:

(
comp_sci_universities
.join(institutions_df[['OPEID6', 'TUITIONFEE_OUT']]

.set_index('OPEID6'))
.groupby('CONTROL')['TUITIONFEE_OUT'].describe()
.dropna()

)

What about my preference that the values of describe be in the rows rather than the
columns? We can transpose rows and columns in a pandas data frame with the
transpose method:

(
comp_sci_universities
.join(institutions_df[['OPEID6', 'TUITIONFEE_OUT']]

.set_index('OPEID6'))
.groupby('CONTROL')['TUITIONFEE_OUT'].describe()

408 CHAPTER 13 Final project
.dropna()

.transpose()
)

However, because this is used so often, we can instead invoke it with T:

(
comp_sci_universities
.join(institutions_df[['OPEID6', 'TUITIONFEE_OUT']]

.set_index('OPEID6'))
.groupby('CONTROL')['TUITIONFEE_OUT'].describe()
.dropna()
.T

)

NOTE Whereas transpose is a method and needs to be invoked with paren-
theses after its name, T is a Python property and should not have parentheses.
Using T() will result in an error. They are otherwise equivalent to one
another.

WHAT IS THE CORRELATION BETWEEN ADMISSION RATE AND TUITION COST? HOW WOULD
YOU INTERPRET THIS?
We often hear that the most expensive universities are also the hardest to get into. Is
this true? Do we see a correlation in the data? To find out, we can invoke corr on
institutions_df, looking at the ADM_RATE and TUITIONFEE_OUT columns:

institutions_df[['ADM_RATE', 'TUITIONFEE_OUT']].corr()

As always, a correlation of 0 means there’s no correlation between the two values, 1
means they’re perfectly aligned, and –1 means they’re completely opposite. In this
case, we see a correlation of –0.3: slightly negative. This means as the tuition fee goes
up, the admission rate goes (slightly) down—which does indeed describe many Amer-
ican universities. Another way to say this is that the universities that are hardest to get
into are, in general, also more expensive.

CREATE A SCATTER PLOT WITH TUITION ON THE X AXIS AND ADMISSION RATE ON THE Y
AXIS. WHERE DO THE LOWEST-PAID GRADUATES SHOW UP ON THE GRAPH?
I asked you to create a scatter plot with the admission rate on the y axis and the tuition
fee on the x axis:

institutions_df.plot.scatter(x='TUITIONFEE_OUT', y='ADM_RATE')

We can see that the plot (overall) starts in the top left and moves toward the bottom
right. This aligns with our numeric correlation finding that higher admission rates are
associated with lower tuition and vice versa.

 However, I was intrigued by the fact that the college scorecard includes a column
MD_EARN_WNE_P10, which shows the median income for graduates from each school 10
years following graduation. This allows us to ask and answer a number of different ques-
tions. For example, we have now seen that more-expensive schools are also harder to

409■Column name and meanings
get into. However, is there a tangible benefit for that additional cost? Specifically, if you
attend a more exclusive school, can you expect to earn more after graduation?

 I thus asked you to modify this scatter plot, colorizing it using the Spectral color-
map and drawing on the values in the MD_EARN_WNE_P10 column (figure 13.4):

(
institutions_df
.plot.scatter(x='TUITIONFEE_OUT',

y='ADM_RATE',
c='MD_EARN_WNE_P10',
colormap='Spectral')

)

Figure 13.4 Scatter plot comparing tuition fees and admission rates

The Spectral colormap puts earnings of $20,000/year in red, $120,000/year in blue,
and everything else in between. The closer to blue (darkest gray in bottom-right cor-
ner) the dots are colored, the higher the income. It’s not a huge surprise that we see a
great deal of red (darkest gray) in the top-left corner (i.e., less expensive, lower-admis-
sion schools with lower earnings), whereas yellows, greens, and blues are in the lower-
right corner (i.e., more expensive, higher-admission schools with higher earnings).
On average, it would seem, graduates from more exclusive schools do earn more.

WHICH UNIVERSITIES ARE IN THE TOP 25% OF TUITION AND ALSO THE TOP 25% WITH PELL GRANTS?
I decided to probe expensive, exclusive schools further. First, I asked you to find
schools that charge in the top 25% of tuition (i.e., the most expensive universities)

410 CHAPTER 13 Final project
that are also in the top 25% of schools offering Pell grants. Pell grants are awarded to
students on the basis of financial need and provide a rough estimate of how many less-
wealthy students are studying somewhere. We’re thus looking to find, in simple terms,
expensive schools that have a relatively high proportion of nonwealthy students.

 To do that, we need to use quantile(0.75) on the TUITIONFEE_OUT column to
determine the top quartile of tuition. We similarly need to run quantile(0.75) on
the FTFTPCTPELL column, which contains the percentage of Pell-grant recipients at
each school. We can then compare each institution’s value for TUITIONFEE_OUT and
FTFTPCTPELL against that 0.75 quantile, retrieving institutions that are above those
thresholds in both:

(
institutions_df
.loc[(institutions_df['TUITIONFEE_OUT'] >

institutions_df['TUITIONFEE_OUT'].quantile(0.75)) &
(institutions_df['FTFTPCTPELL'] >
institutions_df['FTFTPCTPELL'].quantile(0.75))]

)

This returns all rows in institutions_df where both TUITIONFEE_OUT and
FTFTPCTPELL are above the 75th percentile. But we aren’t really interested in all the
columns; I asked you to show the institution name along with its city and state. For
that, we need to include a column selector in our call to .loc:

(
institutions_df
.loc[(institutions_df['TUITIONFEE_OUT'] >

institutions_df['TUITIONFEE_OUT'].quantile(0.75)) &
(institutions_df['FTFTPCTPELL'] >
institutions_df['FTFTPCTPELL'].quantile(0.75)),

['INSTNM', 'CITY', 'STABBR']]
)

Finally, I asked you to sort the output by institution name, which we can do by calling
sort_values and specifying the INSTNM column:

(
institutions_df
.loc[(institutions_df['TUITIONFEE_OUT'] >

institutions_df['TUITIONFEE_OUT'].quantile(0.75)) &
(institutions_df['FTFTPCTPELL'] >
institutions_df['FTFTPCTPELL'].quantile(0.75)),

['INSTNM', 'CITY', 'STABBR']]
.sort_values(by='INSTNM')

)

IN HOW MANY INSTITUTIONS DOES THE BOTTOM QUINTILE RECEIVE MONEY?
Now let’s look at university tuition from another perspective. The college scorecard
tracks the net price for four-year public and private institutions (NPT4_PUB and

411■Column name and meanings
NPT4_PRIV, respectively). It then breaks the tuition payments down even further in
additional columns, showing (for example) the average price paid by people in the
lowest income bracket at public (NPT41_PUB) and private (NPT41_PRIV) universities.

 At how many institutions, both public and private, does the average lowest-income-
bracket student receive money rather than spend money? If we were merely interested
in public institutions, we could find all those where the value of NPT41_PUB is less than
0 and then show their names:

(
institutions_df
.loc[((institutions_df['NPT41_PUB'] < 0) |

(institutions_df['NPT41_PRIV'] < 0)),
'INSTNM']
.count()

)

Or if we were interested in private institutions, we would do the same for NPT41_PRIV:

institutions_df.loc[institutions_df['NPT41_PRIV'] < 0,
'INSTNM'].count()

We could use | for an “or” condition, thus getting the values where either of these is
less than 0:

institutions_df.loc[((institutions_df['NPT41_PUB'] < 0) |
(institutions_df['NPT41_PRIV'] < 0)),
'INSTNM'].count()

This gave me an answer of 12. However, there’s another way to do this: we can add the
values in NPT41_PRIV to those in NPT41_PUB with a fill_value of 0. Then we can sim-
ply check to see where NPT41_PUB is < 0:

institutions_df.loc[institutions_df['NPT41_PUB'].add(
institutions_df['NPT41_PRIV'], fill_value=0) < 0,
'INSTNM'].count()

This gives the same answer. Although I’m not convinced it’s a better way to solve the
problem, it shows that in pandas, there’s always more than one option, and they often
look different from one another.

WHAT IS THE AVERAGE PROPORTION THAT THE BOTTOM QUINTILE PAYS VERSUS THE TOP
QUINTILE AT PUBLIC UNIVERSITIES?
I then asked you to show, for public universities, the average proportion that the bot-
tom quintile pays versus the top quintile. To calculate this, we divide NPT41_PUB (the
bottom quintile) into NPT45_PUB (the top quintile) and then take the mean:

(institutions_df['NPT41_PUB'] / institutions_df['NPT45_PUB']).mean()

We get a result of about 52%.

412 CHAPTER 13 Final project
WHAT IS THE AVERAGE PROPORTION THAT THE BOTTOM QUINTILE PAYS VERSUS THE TOP
QUINTILE AT PRIVATE UNIVERSITIES?
We can then repeat this for private universities:

(institutions_df['NPT41_PRIV'] / institutions_df['NPT45_PRIV']).mean()

It turns out that people in the bottom quintile at private universities pay about 71% of
what the top quintile do. So not only do students pay more to attend private universi-
ties, but the poorest of them pay a higher percentage of their tuition fees than their
public-university counterparts.

 In looking at this data, we’ve seen that, overall, the schools with the highest-paid
alumni are also the most expensive and the hardest to get into. But of course, that’s
only overall, in the aggregate.

FOR WHICH SCHOOLS IN THE CHEAPEST 25% DO THEIR STUDENTS HAVE THE TOP
25% OF SALARIES 10 YEARS AFTER GRADUATION?
To try to figure out which universities offer the best overall ROI, I asked you to find
the schools whose tuitions are in the lowest 25% but whose 10-year alumni are in the
highest 25% of salaries. First, let’s look at public institutions:

(
institutions_df
.loc[(institutions_df['NPT4_PUB']

<= institutions_df['NPT4_PUB'].quantile(0.25)) &
(institutions_df['MD_EARN_WNE_P10']
>= institutions_df['MD_EARN_WNE_P10'].quantile(0.75)),

['INSTNM', 'STABBR', 'CITY']]
.sort_values(by=['STABBR', 'CITY'])

)

This query is a variation on what we’ve already done, looking for those public universi-
ties whose tuition is in the lowest quartile but whose 10-year alumni are earning in the
highest quartile. In our column selector, we ask for only three columns: institution
name, state, and city. That allows us to sort the results first by state and then by city.
The result is a data frame with 22 rows whose universities are in California, Florida,
New York, Texas, and New Mexico.

HOW ABOUT PRIVATE INSTITUTIONS?
What about private universities? We can run a similar query but using NPT4_PRIV
rather than NPT4_PUB:

(
institutions_df
.loc[(institutions_df['NPT4_PRIV']

<= institutions_df['NPT4_PRIV'].quantile(0.25)) &
(institutions_df['MD_EARN_WNE_P10']
>= institutions_df['MD_EARN_WNE_P10'].quantile(0.75)),

['INSTNM', 'STABBR', 'CITY']]
.sort_values(by=['STABBR', 'CITY'])

)

413■Column name and meanings
This query returns 30 universities spread across a variety of states. Some well-known
universities (e.g., Harvard, Stanford, and Princeton) are in there, along with smaller
and lesser-known ones.

IS THERE A CORRELATION BETWEEN ADMISSION RATES AND COMPLETION RATES?
Next, I wanted to know if we could find any correlation between admission rates and
completion rates. That is, if a school is highly selective, are its students more likely to
graduate? We run the following query:

institutions_df[['C100_4', 'ADM_RATE']].corr()

Sure enough, we see a moderate negative correlation. That is, a school that accepts
more people has a lower graduation rate. That shouldn’t be a huge surprise; after all,
for a school to accept more people, it likely has to take people who are bigger risks in
terms of not finishing.

TEN YEARS AFTER GRADUATING, FROM WHAT KINDS OF SCHOOLS DO PEOPLE EARN,
ON AVERAGE, THE GREATEST AMOUNT?
Next, I asked whether, on average, people earn more after graduating from a public
or private university. That is, on average, how much do people earn for each value of
the CONTROL column? Once again, we join institutions_df with fields_of_
study_df—but only after doing a groupby on fields_of_study_df:

(
institutions_df[['OPEID6', 'MD_EARN_WNE_P10']]
.set_index('OPEID6')
.join(fields_of_study_df

.groupby('OPEID6')['CONTROL'].min())
.groupby('CONTROL')
.mean()

)

The result aligns with my expectations: that people who attend private for-profit uni-
versities end up earning less than those who attend public universities, who in turn
end up earning less than those who attend private universities. Obviously, this is an
aggregate measure—and I definitely know high earners who attended public universi-
ties and low earners who attended private ones. But data analytics is all about making
generalizations, drawing conclusions that are incorrect for any individual but correct
for the overall population.

DO PEOPLE WHO GRADUATE FROM “IVY PLUS” SCHOOLS EARN MORE THAN THE
AVERAGE PRIVATE-SCHOOL UNIVERSITY GRADUATE?
Let’s take this question of private universities to an extreme. People often want to get
into the best-known universities on the assumption that they’ll be able to earn more
later on in life. Is this true? Does going to a famous, exclusive university mean you’ll
have a more lucrative career? I asked you to check the mean salary for graduates from
what are sometimes known as “Ivy Plus” schools: the Ivy League as well as MIT, Stan-
ford, and the University of Chicago.

414 CHAPTER 13 Final project
 To do this, we use isin in the column selector. Note that the universities’ formal
names are tricky to figure out, especially for “Columbia University in the City of New
York.” But here’s the final query:

ivy_plus = ['Harvard University',
'Massachusetts Institute of Technology',
'Yale University',
'Columbia University in the City of New York',
'Brown University',
'Stanford University',
'University of Chicago',
'Dartmouth College',
'University of Pennsylvania',
'Cornell University',
'Princeton University']

(
institutions_df
.loc[institutions_df['INSTNM'].isin(ivy_plus),

'MD_EARN_WNE_P10']
.mean()

)

The answer to this query is just over $91,806/year, more than twice the average salary
earned by all graduates of private universities—which was, as we saw, greater still than
the amount earned by graduates of public or for-profit institutions.

DO PEOPLE STUDYING AT UNIVERSITIES IN PARTICULAR STATES EARN, ON AVERAGE,
MORE AFTER 10 YEARS?
Finally, we want to compare post-graduation salaries, 10 years out, by state. That is, do
your future earnings depend in part on the state in which you studied? For starters, we
perform a groupby on the states (STABBR), looking at the mean salary of 10-year
graduates:

institutions_df.groupby('STABBR')['MD_EARN_WNE_P10'].mean()

This gives the overall answer we want, but understanding such data is always easier
when it’s sorted. I thus asked you to sort the values in descending order:

(
institutions_df
.groupby('STABBR', observed=True)
['MD_EARN_WNE_P10'].mean()
.sort_values(ascending=False)

)

CREATE A BAR PLOT FOR THE AVERAGE AMOUNT EARNED, PER STATE, SORTED BY ASCENDING PAY

Now I asked you to create a bar plot from the per-state salary averages (figure 13.5):

(
institutions_df
.groupby('STABBR', observed=True)
['MD_EARN_WNE_P10'].mean()

415■Column name and meanings
.sort_values()

.plot.bar(figsize=(20,10))
)

By sorting the values, we get (I believe) a more aesthetically pleasing, easy-to-read plot
than would otherwise be the case. We can easily see that there is a big difference
between how much people earn after graduating from schools in Massachusetts and
Rhode Island as opposed to Arkansas and Mississippi. However, before we make a
claim regarding the quality of universities in these respective states, we have to deter-
mine how many people still live in the states where they studied. After all, the cost of
living in New England is significantly higher than in Arkansas and Mississippi, so it
stands to reason that people living there will earn more—regardless of what university
they attended.

Figure 13.5 Bar chart showing the average amount earned per state

CREATE A BOXPLOT FOR THE EARNINGS BY STATE.
Finally, I asked you to create a box plot based on the per-state salary data so we can
easily see the spread in visual form (figure 13.6):

(
institutions_df
.groupby('STABBR', observed=True)
['MD_EARN_WNE_P10'].mean()
.plot.box()

)

P
R

FM M
P

G
U A
S

M
H

A
R

M
S ID LA K
Y

O
K

W
V

M
T

N
M S
C TN FL N
C M
I

A
z

TX W
Y

G
AA
L V
I

U
T

O
H

S
D

N
D

C
O

M
O IA K
S

O
R

M
E IL D
E IN N
V VA W
I

H
I

N
E

A
K

C
A

STABBR

N
J

M
D

M
N PA W
A

N
H N
Y V
T

C
T

D
C R
I

M
A

P
W

50000

40000

30000

20000

10000

0

416 CHAPTER 13 Final project
The plot shows that most annual salaries are between $25,000 and $50,000, with the
median being just under $40,000.

Figure 13.6 Boxplot showing the average salaries earned by graduates

Summary
You’ve now come to the true and actual end of the book. Thanks for joining me on
this journey. I hope the exercises in this book, including all the extra “Beyond the
exercise” questions, have helped improve your understanding of pandas and how to
load, clean, and analyze data in a variety of ways.

 Beyond the specific techniques I’ve covered in this book, I hope you’ve also begun
to internalize the pandas perspective on data analysis. Pandas is a huge (and con-
stantly growing) library, and there’s no way for someone to know all of it. Understand-
ing how pandas works means when you’re faced with a new problem, you can guess
how to solve it, even predicting what methods pandas will provide to do so.

 I wish you the best of success in your use of pandas to analyze data in whatever
you’re doing. And I hope this book helped you to advance your skills in that area. If it
did, please drop me a line at reuven@lerner.co.il! I’m always delighted to hear from
people who have read my books.

index
Symbols

.loc method 336
// (floordiv) operator 21
%%timeit command 386
%timeit magic command 386
%timeit magic method 386
~ (tilde) character 264

A

advanced SAT scores,
exercise 204–210

agg method 95, 171, 200, 300
aggfunc parameter 128–129
aggregation methods 13
analyzing text 256–261

exercise 257–260
apply method 157, 260
ascending parameter 163
ascending sort 163
assign method 45, 196, 336
astype 368
astype method 16, 21
axis keyword argument 209

B

best tippers 300–306
exercise 301–305

bestsellers 58–60
big cities exercise 97–98
bins parameter 35
Bitcoin values 92–96
boolean index 2, 24
boxplots, weather data 320–327

C

categories 370–375
exercise 371–373

catplot function 363
celebrity deaths exercise 143–148

working through 144–147
column selector 47
columns keyword argument 205
components attribute 285
copy method 88
corr method 177, 228, 339
correlations 341–357

exercise 342–357
count method 64, 74, 136, 170,

259, 330

D

data cleaning
exercise 143–148

working through 144–147
interpolation 148–153
parking data 135–143

exercise 136–141
data frames 1, 37–69

adding products to 53–58
overview 54–56

bestsellers 58–60
interpolation 65–66
net revenue 41–44
outliers 60–64
reading and writing faster

376–384
exercise 376–380

selective updating 67–69
tax planning 44–53
updating 67–69

data, inconsistent 154–157
DataFrame class 3, 41
DataFrameGroupBy objects

170–171, 201, 213, 215–216
dataframes, pivot tables 126–130
date_format parameter 292
date_parser keyword

argument 293
dates and times 279–306

best tippers 300–306
exercise 301–305

oil prices 297–300
reading dates 291–297
short, medium, and long taxi

rides 285–291
writing dates 291–297

datetime 279
datetime.datetime class 281
datetime64 type 282
days attribute 285
ddof (delta degrees of freedom)

parameter 13
deep=True keyword

argument 367
default_rng 6
descending sort 163
describe method 27, 201
descriptive statistics 26–29
df parameter 215
df variable 2
df.dropna method 137
df.dropna() method 88
df.eval 384, 391
df.eval method 382
df.info method 373
df.interpolate method 66
df.loc 287
df.loc accessor 384, 391
417

INDEX418
df.query 384, 391
df.query method 382
dict data type 14
diff method 204
dot notation 40
drop_duplicates method 218
dropna method 64, 119
dt accessor 284, 297, 303
dtype 20, 87–89, 282
dtype attribute 14, 85
dtype parameter 15, 85–86, 99
dtype series 32
dtype values 14
dtype_backend=pyarrow keyword

argument 375
dtypes attribute 375
dtypes method 85, 286
DtypeWarning 371, 379

E

Economist 182
eval method 381, 384–391

exercise 385–389
expanding window 201–202
explode method 263

F

f-strings 7
fancy strings 7
fillna method 21, 64
filter function 215
filter method 191, 213, 215
float data type 14
float_format option 46
float16 89
float32 87
float64 89
float64 dtype 143
for loops 173, 324, 326, 378
format strings 7
fullname_df data frame 185, 187

G

g.integers 5
g.normal function 30
g.normal method 13, 27
get method 21
glob.glob function 197, 378
grading on a curve 16
GROUP BY clause 159
groupby method 170, 172, 212
groupby object 328
GroupBy objects 171, 213, 217
groupby query 290
grouping 159–230

advanced, SAT scores 204–215
longest taxi rides 162–172

beyond exercise 169–170
solution 169
working out 163–168

multicity temperatures 194–204
exercise 194

taxi ride comparison
exercise 172–182
overview 172–176

tourist spending per
country 182–190
exercise 183–189

weather data 215–222
wine scores and tourism

spending 222–229
grouping by time periods 280

H

has_multiple_readings_at_least
function 218, 222

head method 10
head(1) item 98
head(50) method 168
header parameter 32, 93
hue keyword argument 350

I

idxmax 300
idxmin 300
idxmin method 28
.iloc accessor 8, 11
importing and exporting data

Bitcoin values 92–96
JSON (JavaScript Object

Notation) 97–98
passwd file to data frame 89–92
setting column types 87–89
taxi rides exercise 73–78

working out 74–78
include_lowest=True keyword

argument 35
inconsistent data 154–157
index attribute 6
index keyword parameter 7
Index object 150
index_col parameter 113, 117,

149, 298
indexes 100–130

multi-indexes 112–116
Olympic games 116–126
parking tickets exercise 102–112
pivot tables 126–130

IndexSlice method 122–123
info method 85
inplace parameter 103
int data type 14
INT_REC string 183
INT-EXP string 183
INT-EXP value 185

int64 columns 143
int8 87–88
integers 5
interpolation 65–66, 148–153
interval 279
IQR (interquartile range) 60
iqr variable 62
is_lexsorted method 116
is_monotonic_decreasing

method 116
is_quarter_end attribute 299
isdigit method 144
isin method 127, 264, 266
isnan function 64
isnull().sum() trick 146

J

join method 185, 343
join operation 342
joining 159–230

longest taxi rides 162–172
beyond exercise 169–170
solution 169
working out 163–168

multicity temperatures 194–204
exercise 194

wine scores and tourism
spending 222–229

JSON (JavaScript Object
Notation) 97–98

K

KeyError exception 40

L

labels parameter 35
lambda expression 224
lambda function 214
lambda method 336
left join 182, 228
len method 264
level parameter 122
linear method 66
list data type 14
.loc (accessor) 8–9, 11, 38, 74,

113, 122, 298, 336, 386–387
locations_df data frame 185, 190
low_memory parameter 86
low_memory=False keyword

argument 376
lower method 258, 262

M

map function 215
mask index 2, 11, 18, 24
max function 220

INDEX 419
max method 121
mean function 214
mean method 2, 7–8, 62, 184, 206,

302
memory_usage method 89, 367,

371
method parameter 66
microseconds attribute 285
most_common_destinations

series 153
multi-indexes 101, 112–116

Olympic games 116–126
beyond exercise 123–126
exercise 117–121
solution 123

multicity temperatures 194–204
exercise 194

N

name attribute 215
name parameter 205
names keyword argument 90
names parameter 149, 321, 342
NaN (not a number) 64, 87–89,

148
nanoseconds attribute 285
net revenue 41–44
normalization 182
normalize parameter 33
np.datetime64 class 281
np.default_rng 5
np.float64 15
np.float64 objects 30
np.float64 value 343
np.int64 15
np.int8 15, 20
np.max function 214
np.mean method 171
np.random.default_rng 6
np.random.default_rng

function 23
np.random.randint function 19
np.random.seed function 6
np.std method 171
numexpr backend 387
numexpr library 391
numexpr package 382

O

object 87
object data type 15
object dtype 374
OECD (Organization for Eco-

nomic Cooperation and
Development) 182

oecd_df data frame 223
oecd_tourism_df data frame 223
oil prices 297–300

Olympic games
beyond exercise 123–126
exercise 117–121
solution 123

os.stat function 378
outer joins 182, 228
outliers 60–64

P

pandas
final project, problem 392–394
grouping 191–204
joining 191–204
sorting 191–204

Pandas Tutor 33, 129, 142, 148,
229, 261, 300, 306

pandemic taxi data 80–86
parking data, cleaning 135–143

exercise 136–141
parse_dates 328
parse_dates keyword

argument 291
parse_dates list 286
parse_dates method 359
parse_dates parameter 283
passenger frequency 32–34
passenger_count 87
passwd file 89–92
payment_type 87
pct_change method 206–209
pct_change window function 203
pd namespace 35, 383
pd variable 2
pd.CategoricalDtype 370
pd.concat 328
pd.concat function 54, 57, 301
pd.concat method 80, 197, 359
pd.cut method 35, 289
pd.eval 385
pd.eval method 383
pd.from_feather method 375
pd.NA value 64
pd.query 385
pd.read_csv function 32, 74, 205,

301
pd.read_html function 96
pd.set_option method 201
pd.StringDType type 23
pd.StringDtype type 23
pd.to_numeric function 147
pd.to_timedelta function 285
pd.to_timestamp function 285
Pearson’s correlation

coefficient 339
performance

categories 370–375
exercise 371–373

eval method 384–391
exercise 385–389

query method 384–391
exercise 385–389

reading and writing faster
376–384
exercise 376–380

PerformanceWarning 118
pivot method 125
pivot tables 101, 124
plot.bar method 329, 332
plot.hist method 336
plot.scatter method 340
products_df data frame 178
products, adding to data

frames 53–58
overview 54–56

proportion_of_city_precip
function 220

pyarrow engine 381

Q

quantile method 62
query method 57, 78, 381, 384,

386–391
exercise 385–389

R

randint method 5
random module 5
random seed 6
random.randint function 6
range built-in 8
read method 257
read_csv function 32, 89, 92, 283,

342
read_csv method 113, 195
read_excel method 149
read_json function 97
read_methods dictionary 379
reading and writing faster 376–384

exercise 376–380
relplot function 348, 360
replace method 156
resample method 300
resampling 280, 297
right join 228
rolling window function 202
root variable 378
round method 11, 82
row selector 47

S

s.loc['Mon'].mean() 31
s series 262
s variable 2
sales_df data frame 178
sample standard deviation 13
SAT scores 112–116, 204–215

exercise 204–210

INDEX420
scaling test scores 16–19
scipy.stats.trimboth function 63
scipy.stats.zscore function 63
Seaborn, taxi plots 358–364

beyond exercise 364
exercise 358–363

seconds attribute 285
selective updating 67–69
sep keyword argument 90, 293
Series

counting tens digits 19–26
descriptive statistics 26–29
scaling test scores 16–19

series
exercise on test scores 5–16
Monday temperatures 29–31

creating series 30–31
passenger frequency 32–34
taxi rides 34–36

Series class 3, 85
set_index method 103, 113, 118
setting column types 87–89
SettingWithCopyWarning 64, 68,

88
shape attribute 136
shape method 146
short, medium, and long taxi

rides 285–291
size attribute 136
size function 125
slice function 123
slice method 143, 145
sns.displot function 356
sns.relplot function 349
sort_index 160
sort_index method 115, 118, 206
sort_values 160
sort_values method 185, 209
sorting 159–230

longest taxi rides 162–172
beyond exercise 169–170
solution 169
working out 163–168

multicity temperatures 194–204
exercise 194

wine scores and tourism
spending 222–229

split method 263
split-apply-combine, longest taxi

rides 162–172
beyond exercise 169–170
solution 169
working out 163–168

st_size attribute 378
standard deviation 13
str accessor 21, 143–145, 258,

262–264, 367
str data type 14
str.contains method 259–260
str.format method 46
str.isdigit method 146

str.split method 196, 257
str.strip method 258, 263
string module 258
strings 251–278

analyzing text 256–261
beyond exercise 261
exercise 257–260

wine words exercise 261–268
beyond 268
working out 262–266

style parameter 351
subset parameter 141, 146
sum function 214
sum method 14, 43, 302, 332

T

T alias 206
tail method 10
target keyword argument 383
tax planning 44–53
taxi data, pandemic 80–86
taxi fare breakdown 327–340
taxi ride comparison

exercise 172–182
overview 172–176

taxi rides 34–36
exercise 73–78
short, medium, and long

285–291
taxi rides exercise

working out 74–78
temperatures 29–31

creating series 30–31
tens digits, counting 19–26
test scores 5–16

scaling 16–19
text, analyzing 256–261

beyond exercise 261
exercise 257–260

thresh keyword argument 141
thresh parameter 64
time module 376
time series 294
time.perf_counter()

function 376, 378–379
timedelta 279
timedelta object 285
timedelta series 284
timedelta64 objects 284
timeit 366, 384–385
timeit module 377, 386
timestamp 279
Timestamp class 281
timestamp object 285, 287
Timestamp objects 286
Timestamp type 282
tip_amount 89
Titanic data, interpolation 148–153

TLC (Taxi and Limousine
Commission) 73

to_csv function 96
to_datetime function 281
to_datetime step 294
to_feather method 375
to_frame method 227
top_10_words function 262, 266
total_amount 89
tourism_df data frame 184–185,

189–190
tourist spending per country

182–190
exercise 183–189

tpep_pickup_datetime date 294
transform method 213, 215, 219
transpose method 206
trip_distance 89
tuple data type 14
tuple unpacking 196
TypeError exception 14, 369

U

updating data frames 67–69
usecols list 286
usecols parameter 74, 93, 149,

302, 376

V

value_counts method 33, 105,
120, 257

ValueError exception 15, 227
VendorID 89
visualization 307–364

boxplotting weather data
320–327

correlations 341–357
exercise 342–357

Seaborn taxi plots 358–364
beyond exercise 364
exercise 358–363

taxi fare breakdown 327–340

W

weather data 215–222
boxplotting 320–327

window functions 201
wine scores and tourism

spending 222–229
wine words exercise 261–268

beyond 268
working out 262–266

write_methods dictionary 378

X

xs method 122

3

Scatterplot comparing min and max temperatures in seven cities, generated using the
Seaborn library

Licensed to ashwin sampath <ashwin.manning@gmail.com>

Reuven M. Lerner

P
ython’s pandas library can massively reduce the time you
spend analyzing, cleaning, exploring, and manipulating
data. And the only path to pandas mastery is practice,

practice, and, you guessed it, more practice. In this book,
Python guru Reuven Lerner is your personal trainer and guide
through over 200 exercises guaranteed to boost your pandas
skills.

Pandas Workout is a thoughtful collection of practice prob-
lems, challenges, and mini-projects designed to build your
data analysis skills using Python and pandas. Th e workouts
use realistic data from many sources: the New York taxi fl eet,
Olympic athletes, SAT scores, oil prices, and more. Each can
be completed in ten minutes or less. You’ll explore pandas’
rich functionality for string and date/time handling, complex
indexing, and visualization, along with practical tips for every
stage of a data analysis project.

What’s Inside
● Clean data with less manual labor
● Retrieving and assigning data
● Process and manipulate text
● Calculations on selected data subsetss

For Python programmers and data analysts.

Reuven M. Lerner teaches Python and data science around the
world and publishes the “Bamboo Weekly” newsletter. He is
the author of Manning’s Python Workout (2020).

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Pandas Workout

SOFTWARE DEVELOPMENT

M A N N I N G

“A carefully crafted tour
through the pandas library,
jam-packed with wisdom
that will help you become
a better pandas user and a

better data scientist.”
—Kevin Markham

Founder of Data School, Creator
of pandas in 30 days

“Will help you apply pandas
to real problems and push

you to the next level.”
—Michael Driscoll

RFA Engineering, creator of
Teach Me Python

“Th e explanations, paired
with Reuven’s storytelling

and personal tone, make the
concepts simple. I’ll never
 get them wrong again!”—Rodrigo Girão Serrão
Python developer and educator

“Th e defi nitive source!”—Kiran Anantha, Amazon

ISBN-13: 978-1-61729-972-8

See first page

	Pandas Workout
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	Software/hardware requirements
	liveBook discussion forum

	about the author
	about the cover illustration
	1 Series
	Useful references
	Exercise 1 - Test scores
	Working it out
	Solution
	Beyond the exercise

	Exercise 2 - Scaling test scores
	Working it out
	Solution
	Beyond the exercise

	Exercise 3 - Counting tens digits
	Working it out
	Solution
	Beyond the exercise

	Exercise 4 - Descriptive statistics
	Working it out
	Solution
	Beyond the exercise

	Exercise 5 - Monday temperatures
	Working it out
	Solution
	Beyond the exercise

	Exercise 6 - Passenger frequency
	Working it out
	Solution
	Beyond the exercise

	Exercise 7 - Long, medium, and short taxi rides
	Working it out
	Solution
	Beyond the exercise

	Summary

	2 Data frames
	Exercise 8 - Net revenue
	Working it out
	Solution
	Beyond the exercise

	Exercise 9 - Tax planning
	Working it out
	Solution
	Beyond the exercise

	Exercise 10 - Adding new products
	Working it out
	Solution
	Beyond the exercise

	Exercise 11 - Bestsellers
	Working it out
	Solution
	Beyond the exercise

	Exercise 12 - Finding outliers
	Working it out
	Solution
	Beyond the exercise

	Exercise 13 - Interpolation
	Working it out
	Solution
	Beyond the exercise

	Exercise 14 - Selective updating
	Working it out
	Solution
	Beyond the exercise

	Summary

	3 Importing and exporting data
	Exercise 15 - Weird taxi rides
	Working it out
	Solution
	Beyond the exercise

	Exercise 16 - Pandemic taxis
	Working it out
	Solution
	Beyond the exercise

	Exercise 17 - Setting column types
	Working it out
	Beyond the exercise

	Exercise 18 - passwd to df
	Working it out
	Solution
	Beyond the exercise

	Exercise 19 - Bitcoin values
	Working it out
	Solution
	Beyond the exercise

	Exercise 20 - Big cities
	Working it out
	Solution
	Beyond the exercise

	Summary

	4 Indexes
	Exercise 21 - Parking tickets
	Working it out
	Solution
	Beyond the exercise

	Exercise 22 - State SAT scores
	Working it out
	Solution
	Beyond the exercise

	Exercise 23 - Olympic games
	Working it out
	Solution
	Beyond the exercise

	Exercise 24 - Olympic pivots
	Working it out
	Solution
	Beyond the exercise

	Summary

	5 Cleaning data
	Exercise 25 - Parking cleanup
	Working it out
	Solution
	Beyond the exercise

	Exercise 26 - Celebrity deaths
	Working it out
	Solution
	Beyond the exercise

	Exercise 27 - Titanic interpolation
	Working it out
	Solution
	Beyond the exercise

	Exercise 28 - Inconsistent data
	Working it out
	Solution
	Beyond the exercise

	Summary

	6 Grouping, joining, and sorting
	Exercise 29 - Longest taxi rides
	Working it out
	Solution
	Beyond the exercise

	Exercise 30 - Taxi ride comparison
	Working it out
	Solution
	Beyond the exercise

	Exercise 31 - Tourist spending per country
	Working it out
	Solution
	Beyond the exercise

	Summary

	7 Advanced grouping, joining, and sorting
	Exercise 32 - Multicity temperatures
	Working it out
	Solution
	Beyond the exercise

	Exercise 33 - SAT scores, revisited
	Working it out
	Solution
	Beyond the exercise

	Exercise 34 - Snowy, rainy cities
	Working it out
	Solution
	Beyond the exercise

	Exercise 35 - Wine scores and tourism spending
	Working it out
	Solution
	Beyond the exercise

	Summary

	8 Midway project
	Problem
	Working it out

	Solution
	Summary

	9 Strings
	Exercise 36 - Analyzing Alice
	Working it out
	Solution
	Beyond the exercise

	Exercise 37 - Wine words
	Working it out
	Solution
	Beyond the exercise

	Exercise 38 - Programmer salaries
	Working it out
	Solution
	Beyond the exercise

	Summary

	10 Dates and times
	Exercise 39 - Short, medium, and long taxi rides
	Working it out
	Solution
	Beyond the exercise

	Exercise 40 - Writing dates, reading dates
	Working it out
	Solution
	Beyond the exercise

	Exercise 41 - Oil prices
	Working it out
	Solution
	Beyond the exercise

	Exercise 42 - Best tippers
	Working it out
	Solution
	Beyond the exercise

	Summary

	11 Visualization
	Exercise 43 - Cities
	Working it out
	Solution
	Beyond the exercise

	Exercise 44 - Boxplotting weather
	Working it out
	Solution
	Beyond the exercise

	Exercise 45 - Taxi fare breakdown
	Working it out
	Solution
	Beyond the exercise

	Exercise 46 - Cars, oil, and ice cream
	Working it out
	Solution
	Beyond the exercise

	Exercise 47 - Seaborn taxi plots
	Working it out
	Solution
	Beyond the exercise

	Summary

	12 Performance
	Exercise 48 - Categories
	Working it out
	Solution
	Beyond the exercise

	Exercise 49 - Faster reading and writing
	Working it out
	Solution
	Beyond the exercise

	Exercise 50 - “query” and “eval”
	Working it out
	Solution
	Beyond the exercise

	Summary

	13 Final project
	Problem
	Column names and meanings
	Working it out

	Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Pandas Workout - back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

