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Foreword

I started building what became the pandas project in 2008, during a rather different era in statistical 
computing and what we now call data science. At that time, data analysis was commonly performed 
using databases and SQL, Microsoft Excel, proprietary programming environments, and open-source 
languages like R. Python had a small but growing scientific computing community, yet it had little 
traction in statistical analysis and business analytics. While pandas began as my personal toolbox for 
data analysis work in Python, after a few years, it took on a life of its own as it became clear to me 
that Python had the potential to become a mainstream language for data analysis using open-source 
software.

Until 2013, I actively developed and maintained pandas for about five years. Since then, it has been 
community-maintained by a small, passionate group of core developers and thousands of community 
contributors. I published one of the first books to teach users about pandas in 2012, but today there 
are many books and online resources catering to different audiences. Some books focus mainly on 
explaining how to use the features of pandas, while others use pandas as an essential data manipula-
tion tool as part of learning how to do data science or machine learning.

I’ve known Will Ayd and Matt Harrison for many years and have admired the work that they have done 
as open-source developers and educators for the Python community. Will is a member of the pandas 
core team and has built and maintained many of the features that are discussed in this book. Matt is 
an author of many successful Python books and possesses an amazing track record as a trainer and 
educator of Python programming, pandas, and other data science tools. This is a trustworthy duo to 
teach you how to do things the right way.

I am excited to see the third edition of this book come together. It is an excellent resource full of 
practical solutions to problems you will encounter in your data analysis work in Python. It covers the 
essential features of pandas while delving into more advanced functionality and features that were 
only added to the library in the last few years.

Wes McKinney

Creator of the pandas and Ibis projects

Co-creator of Apache Arrow
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Preface

pandas is a library for creating and manipulating structured data with Python. What do I mean by 
structured? I mean tabular data in rows and columns like what you would find in a spreadsheet or data-
base. Data scientists, analysts, programmers, engineers, and others are leveraging it to mold their data.

pandas is limited to “small data” (data that can fit in memory on a single machine). However, the 
syntax and operations have been adopted by or inspired other projects: PySpark, Dask, and cuDF, 
among others. These projects have different goals, but some of them will scale out to big data. So, 
there is value in understanding how pandas works as the features are becoming the de facto API for 
interacting with structured data.

I, Will Ayd, have been a core maintainer of the pandas library since 2018. During that time, I have had 
the pleasure of contributing to and collaborating on a host of other open source projects in the same 
ecosystem, including but not limited to Arrow, NumPy and Cython.

I also consult for a living, utilizing the same ecosystem that I contribute to. Using the best open source 
tooling, I help clients develop data strategies, implement processes and patterns, and train associates 
to stay ahead of the ever-changing analytics curve. I strongly believe in the freedom that open source 
tooling provides, and have proven that value to many companies.

If your company is interested in optimizing your data strategy, feel free to reach out (will_ayd@
innobi.io).

Who this book is for
This book contains a huge number of recipes, ranging from very simple to advanced. All recipes strive 
to be written in clear, concise, and modern idiomatic pandas code. The How it works sections contain 
extremely detailed descriptions of the intricacies of each step of the recipe. Often, in the There’s more… 
section, you will get what may seem like an entirely new recipe. This book is densely packed with an 
extraordinary amount of pandas code.

While not strictly required, users are advised to read the book chronologically. The recipes are struc-
tured in such a way that they first introduce concepts and features using very small, directed examples, 
but continuously build from there into more complex applications.
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Due to the wide range of complexity, this book can be useful to both novice and everyday users alike. 
It has been my experience that even those who use pandas regularly will not master it without being 
exposed to idiomatic pandas code. This is somewhat fostered by the breadth that pandas offers. There 
are almost always multiple ways of completing the same operation, which can have users get the result 
they want but in a very inefficient manner. It is not uncommon to see an order of magnitude or more 
in performance difference between two sets of pandas solutions to the same problem.

The only real prerequisite for this book is a fundamental knowledge of Python. It is assumed that the 
reader is familiar with all the common built-in data containers in Python, such as lists, sets, dictio-
naries, and tuples.

What this book covers
Chapter 1, pandas Foundations, introduces the main pandas objects, namely, Series, DataFrames, and 
Index.

Chapter 2, Selection and Assignment, shows you how to sift through the data that you have loaded into 
any of the pandas data structures.

Chapter 3, Data Types, explores the type system underlying pandas. This is an area that has evolved 
rapidly and will continue to do so, so knowing the types and what distinguishes them is invaluable 
information.

Chapter 4, The pandas I/O System, shows why pandas has long been a popular tool to read from and 
write to a variety of storage formats.

Chapter 5, Algorithms and How to Apply Them, introduces you to the foundation of performing calcu-
lations with the pandas data structures.

Chapter 6, Visualization, shows you how pandas can be used directly for plotting, alongside the seaborn 
library which integrates well with pandas.

Chapter 7, Reshaping DataFrames, discusses the many ways in which data can be transformed and 
summarized robustly via the pandas pd.DataFrame.

Chapter 8, Group By, showcases how to segment and summarize subsets of your data contained within 
a pd.DataFrame.

Chapter 9, Temporal Data Types and Algorithms, introduces users to the date/time types which underlie 
time-series-based analyses that pandas is famous for and highlights usage against real data.

Chapter 10, General Usage/Performance Tips, goes over common pitfalls users run into when using 
pandas, and showcases the idiomatic solutions.

Chapter 11, The pandas Ecosystem, discusses other open source libraries that integrate, extend, and/
or complement pandas.
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To get the most out of this book
There are a couple of things you can do to get the most out of this book. First, and most importantly, 
you should download all the code, which is stored in Jupyter Notebook. While reading through each 
recipe, run each step of code in the notebook. Make sure you explore on your own as you run through 
the code. Second, have the pandas official documentation open (http://pandas.pydata.org/pandas-
docs/stable/) in one of your browser tabs. The pandas documentation is an excellent resource 
containing over 1,000 pages of material. There are examples for most of the pandas operations in the 
documentation, and they will often be directly linked from the See also section. While it covers the 
basics of most operations, it does so with trivial examples and fake data that don’t reflect situations 
that you are likely to encounter when analyzing datasets from the real world.

What you need for this book
pandas is a third-party package for the Python programming language and, as of the printing of this 
book, is transitioning from the 2.x to the 3.x series. The examples in this book should work with a 
minimum pandas version of 2.0 along with Python versions 3.9 and above.

The code in this book will make use of the pandas, NumPy, and PyArrow libraries. Jupyter Notebook 
files are also a popular way to visualize and inspect code. All of these libraries should be installable 
via pip or the package manager of your choice. For pip users, you can run:

python -m pip install pandas numpy pyarrow notebook

Download the example code files
You can download the example code files for this book from your account at www.packt.com. If you 
purchased this book elsewhere, you can visit www.packtpub.com/support/errata and register to have 
the files emailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register at www.packt.com.
2.	 Select the Support tab.
3.	 Click on Code Downloads.
4.	 Enter the name of the book in the Search box and follow the on-screen instructions.

The code bundle for the book is also hosted on GitHub at https://github.com/WillAyd/Pandas-
Cookbook-Third-Edition. In case there is an update to the code, it will be updated in the existing 
GitHub repository.

Running a Jupyter notebook
The suggested method to work through the content of this book is to have a Jupyter notebook up and 
running so that you can run the code while reading through the recipes. Following along on your 
computer allows you to go off exploring on your own and gain a deeper understanding than by just 
reading the book alone.

http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
www.packt.com
www.packtpub.com/support/errata
www.packt.com
https://github.com/WillAyd/Pandas-Cookbook-Third-Edition
https://github.com/WillAyd/Pandas-Cookbook-Third-Edition
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After installing Jupyter notebook, open a Command Prompt (type cmd at the search bar on Windows, 
or open Terminal on Mac or Linux) and type:

jupyter notebook

It is not necessary to run this command from your home directory. You can run it from any location, 
and the contents in the browser will reflect that location. Although we have now started the Jupyter 
Notebook program, we haven’t actually launched a single individual notebook where we can start 
developing in Python. To do so, you can click on the New button on the right-hand side of the page, 
which will drop down a list of all the possible kernels available for you to use. If you are working from 
a fresh installation, then you will only have a single kernel available to you (Python 3). After selecting 
the Python 3 kernel, a new tab will open in the browser, where you can start writing Python code.

You can, of course, open previously created notebooks instead of beginning a new one. To do so, 
navigate through the filesystem provided in the Jupyter Notebook browser home page and select the 
notebook you want to open. All Jupyter Notebook files end in .ipynb.

Alternatively, you may use cloud providers for a notebook environment. Both Google and Microsoft 
provide free notebook environments that come preloaded with pandas.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You 
can download it here: https://packt.link/gbp/9781836205876.

Conventions
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file exten-
sions, pathnames, dummy URLs, user input, and Twitter/X handles. Here is an example: “You may 
need to install xlwt or openpyxl to write XLS or XLSX files, respectively.”

A block of code is set as follows:

import pandas as pd
import numpy as np
movies = pd.read_csv("data/movie.csv")
movies

Bold: Indicates an important word, or words that you see on the screen. Here is an example: “Select 
System info from the Administration panel.”

Italics: Indicates terminology that has extra importance within the context of the writing.

Important notes

Appear like this.

https://packt.link/gbp/9781836205876
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Assumptions for every recipe
It should be assumed that at the beginning of each recipe, pandas, NumPy, PyArrow, and Matplotlib 
are imported into the namespace:

import numpy as np
import pyarrow as pa
import pandas as pd

Dataset descriptions
There are about two dozen datasets that are used throughout this book. It can be very helpful to have 
background information on each dataset as you complete the steps in the recipes. A detailed description 
of each dataset may be found in the dataset_descriptions Jupyter Notebook file found at https://
github.com/WillAyd/Pandas-Cookbook-Third-Edition. For each dataset, there will be a list of the 
columns, information about each column, and notes on how the data was procured.

Sections
In this book, you will find several headings that appear frequently.

To give clear instructions on how to complete a recipe, we may use some or all of the following sections:

How to do it
This section contains the steps required to follow the recipe.

How it works
This section usually consists of a detailed explanation of what happened in the previous section.

There’s more…
This section consists of additional information about the recipe in order to make you more knowl-
edgeable about the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the 
subject of your message and email us at customercare@packtpub.com.

Tips

Appear like this.

https://github.com/WillAyd/Pandas-Cookbook-Third-Edition
https://github.com/WillAyd/Pandas-Cookbook-Third-Edition
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Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit, www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission 
Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are 
interested in either writing or contributing to a book, please visit authors.packtpub.com.

Leave a Review!
Thank you for purchasing this book from Packt Publishing—we hope you enjoy it! Your feedback is 
invaluable and helps us improve and grow. Once you’ve completed reading it, please take a moment 
to leave an Amazon review; it will only take a minute, but it makes a big difference for readers like you. 

https://packt.link/NzOWQ

Scan the QR code below to receive a free ebook of your choice.

www.packtpub.com/support/errata
authors.packtpub.com
https://packt.link/r/1835463576
https://packt.link/NzOWQ
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1
pandas Foundations

The pandas library is useful for dealing with structured data. What is structured data? Data that is 
stored in tables, such as CSV files, Excel spreadsheets, or database tables, is all structured. Unstructured 
data consists of free-form text, images, sound, or video. If you find yourself dealing with structured 
data, pandas will be of great utility to you.

pd.Series is a one-dimensional collection of data. If you are coming from Excel, you can think of 
this as a column. The main difference is that, like a column in a database, all of the values within 
pd.Series must have a single, homogeneous type.

pd.DataFrame is a two-dimensional object. Much like an Excel sheet or database table can be thought 
of as a collection of columns, pd.DataFrame can be thought of as a collection of pd.Series objects. 
Each pd.Series has a homogeneous data type, but the pd.DataFrame is allowed to be heterogeneous 
and store a variety of pd.Series objects with different data types.

pd.Index does not have a direct analogy with other tools. Excel may offer the closest with auto-num-
bered rows on the left-hand side of a worksheet, but those numbers tend to be for display purposes 
only. pd.Index, as you will find over the course of this book, can be used for selecting values, joining 
tables, and much more.

The recipes in this chapter will show you how to manually construct pd.Series and pd.DataFrame 
objects, customize the pd.Index object(s) associated with each, and showcase common attributes of 
the pd.Series and pd.DataFrame that you may need to inspect during your analyses.

We are going to cover the following recipes in this chapter:

•	 Importing pandas
•	 Series
•	 DataFrame
•	 Index
•	 Series attributes
•	 DataFrame attributes
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Importing pandas
Most users of the pandas library will use an import alias so they can refer to it as pd. In general, in 
this book, we will not show the pandas and NumPy imports, but they look like this:

import pandas as pd
import numpy as np

While it is an optional dependency in the 2.x series of pandas, many examples in this book will also 
leverage the PyArrow library, which we assume to be imported as:

import pyarrow as pa

Series
The basic building block in pandas is a pd.Series, which is a one-dimensional array of data paired 
with a pd.Index. The index labels can be used as a simplistic way to look up values in the pd.Series, 
much like the Python dictionary built into the language uses key/value pairs (we will expand on this 
and much more pd.Index functionality in Chapter 2, Selection and Assignment).

The following section demonstrates a few ways of creating a pd.Series directly.

How to do it
The easiest way to construct a pd.Series is to provide a sequence of values, like a list of integers:

pd.Series([0, 1, 2])

0    0
1    1
2    2
dtype: int64

A tuple is another type of sequence, making it valid as an argument to the pd.Series constructor:

pd.Series((12.34, 56.78, 91.01))

0    12.34
1    56.78
2    91.01
dtype: float64

When generating sample data, you may often reach for the Python range function:

pd.Series(range(0, 7, 2))

0    0
1    2
2    4
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3    6
dtype: int64

In all of the examples so far, pandas will try and infer a proper data type from its arguments for you. 
However, there are times when you will know more about the type and size of your data than can be 
inferred. Providing that information explicitly to pandas via the dtype= argument can be useful to 
save memory or ensure proper integration with other typed systems, like SQL databases.

To illustrate this, let’s use a simple range argument to fill a pd.Series with a sequence of integers. When 
we did this before, the inferred data type was a 64-bit integer, but we, as developers, may know that 
we never expect to store larger values in this pd.Series and would be fine with only 8 bits of storage 
(if you do not know the difference between an 8-bit and 64-bit integer, that topic will be covered in 
Chapter 3, Data Types). Passing dtype="int8" to the pd.Series constructor will let pandas know we 
want to use the smaller data type:

pd.Series(range(3), dtype="int8")

0    0
1    1
2    2
dtype: int8

A pd.Series can also have a name attached to it, which can be specified via the name= argument (if 
not specified, the name defaults to None):

pd.Series(["apple", "banana", "orange"], name="fruit")

0     apple
1     banana
2     orange
Name: fruit, dtype: object

DataFrame
While pd.Series is the building block, pd.DataFrame is the main object that comes to mind for users 
of pandas. pd.DataFrame is the primary and most commonly used object in pandas, and when people 
think of pandas, they typically envision working with a pd.DataFrame.

In most analysis workflows, you will be importing your data from another source, but for now, we 
will show you how to construct a pd.DataFrame directly (input/output will be covered in Chapter 4, 
The pandas I/O System).

How to do it
The most basic construction of a pd.DataFrame happens with a two-dimensional sequence, like a list 
of lists:

pd.DataFrame([
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    [0, 1, 2],
    [3, 4, 5],
    [6, 7, 8],
])

    0   1   2
0   0   1   2
1   3   4   5
2   6   7   8

With a list of lists, pandas will automatically number the row and column labels for you. Typically, 
users of pandas will at least provide labels for columns, as it makes indexing and selecting from a 
pd.DataFrame much more intuitive (see Chapter 2, Selection and Assignment, for an introduction to 
indexing and selecting). To label your columns when constructing a pd.DataFrame from a list of lists, 
you can provide a columns= argument to the constructor:

pd.DataFrame([
    [1, 2],
    [4, 8],
], columns=["col_a", "col_b"])

     col_a    col_b
0    1          2
1    4          8

Instead of using a list of lists, you could also provide a dictionary. The keys of the dictionary will be 
used as column labels, and the values of the dictionary will represent the values placed in that column 
of the pd.DataFrame:

pd.DataFrame({
    "first_name": ["Jane", "John"],
    "last_name": ["Doe", "Smith"],
})

            first_name      last_name
0           Jane            Doe
1           John            Smith

In the above example, our dictionary values were lists of strings, but the pd.DataFrame does not strictly 
require lists. Any sequence will work, including a pd.Series:

ser1 = pd.Series(range(3), dtype="int8", name="int8_col")
ser2 = pd.Series(range(3), dtype="int16", name="int16_col")
pd.DataFrame({ser1.name: ser1, ser2.name: ser2})



Chapter 1 5

             int8_col         int16_col
0            0                0
1            1                1
2            2                2

Index
When constructing both the pd.Series and pd.DataFrame objects in the previous sections, you likely 
noticed the values to the left of these objects starting at 0 and incrementing by 1 for each new row 
of data. The object responsible for those values is the pd.Index, highlighted in the following image:

Figure 1.1: Default pd.Index, highlighted in red

In the case of a pd.DataFrame, you have a pd.Index not only to the left of the object (often referred to 
as the row index or even just index) but also above (often referred to as the column index or columns):

Figure 1.2: A pd.DataFrame with a row and column index

Unless explicitly provided, pandas will create an auto-numbered pd.Index for you (technically, this 
is a pd.RangeIndex, a subclass of the pd.Index class). However, it is very rare to use pd.RangeIndex 
for your columns, as referring to a column named City or Date is more expressive than referring to 
a column in the nth position. The pd.RangeIndex appears more commonly in the row index, although 
you may still want custom labels to appear there as well. More advanced selection operations with 
the default pd.RangeIndex and custom pd.Index values will be covered in Chapter 2, Selection and 
Assignment, to help you understand different use cases, but for now, let’s just look at how you would 
override the construction of the row and column pd.Index objects during pd.Series and pd.DataFrame 
construction.
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How to do it
When constructing a pd.Series, the easiest way to change the row index is by providing a sequence 
of labels to the index= argument. In this example, the labels dog, cat, and human will be used instead 
of the default pd.RangeIndex numbered from 0 to 2:

pd.Series([4, 4, 2], index=["dog", "cat", "human"])

dog          4
cat          4
human        2
dtype: int64

If you want finer control, you may want to construct the pd.Index yourself before passing it as an argu-
ment to index=. In the following example, the pd.Index is given the name animal, and the pd.Series 
itself is named num_legs, providing more context to the data:

index = pd.Index(["dog", "cat", "human"], name="animal")
pd.Series([4, 4, 2], name="num_legs", index=index)

animal
dog          4
cat          4
human        2
Name: num_legs, dtype: int64

A pd.DataFrame uses a pd.Index for both dimensions. Much like with the pd.Series constructor, the 
index= argument can be used to specify the row labels, but you now also have the columns= argument 
to control the column labels:

pd.DataFrame([
    [24, 180],
    [42, 166],
], columns=["age", "height_cm"], index=["Jack", "Jill"])

         age    height_cm
Jack     24     180
Jill     42     166

Series attributes
Once you have a pd.Series, there are quite a few attributes you may want to inspect. The most basic 
attributes can tell you the type and size of your data, which is often the first thing you will inspect 
when reading in data from a data source.
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How to do it
Let’s start by creating a pd.Series that has a name, alongside a custom pd.Index, which itself has a 
name. Although not all of these elements are required, having them will help us more clearly under-
stand what the attributes we access through this recipe are actually showing us:

index = pd.Index(["dog", "cat", "human"], name="animal")
ser = pd.Series([4, 4, 2], name="num_legs", index=index)
ser

animal
dog      4
cat      4
human    2
Name: num_legs, dtype: int64

The first thing users typically want to know about their data is the type of pd.Series. This can be 
inspected via the pd.Series.dtype attribute:

ser.dtype

dtype('int64')

The name may be inspected via the pd.Series.name attribute. The data we constructed in this recipe 
was created with the name="num_legs" argument, which is what you will see when accessing this 
attribute (if not provided, this will return None):

ser.name

num_legs

The associated pd.Index can be accessed via pd.Series.index:

ser.index

Index(['dog', 'cat', 'human'], dtype='object', name='animal')

The name of the associated pd.Index can be accessed via pd.Series.index.name:

ser.index.name

animal

The shape can be accessed via pd.Series.shape. For a one-dimensional pd.Series, the shape is 
returned as a one-tuple where the first element represents the number of rows:

ser.shape

3
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The size (number of elements) can be accessed via pd.Series.size:

ser.size

3

The Python built-in function len can show you the length (number of rows):

len(ser)

3

DataFrame attributes
The pd.DataFrame shares many of the attributes of the pd.Series, with some slight differences. Gen-
erally, pandas tries to share as many attributes as possible between the pd.Series and pd.DataFrame, 
but the two-dimensional nature of the pd.DataFrame makes it more natural to express some things in 
plural form (for example, the .dtype attribute becomes .dtypes) and gives us a few more attributes 
to inspect (for example, .columns exists for a pd.DataFrame but not for a pd.Series).

How to do it
Much like we did in the previous section, we are going to construct a pd.DataFrame with a custom 
pd.Index in the rows, while also using custom labels in the columns. This will be more helpful when 
inspecting the various attributes:

index = pd.Index(["Jack", "Jill"], name="person")
df = pd.DataFrame([
    [24, 180, "red"],
    [42, 166, "blue"],
], columns=["age", "height_cm", "favorite_color"], index=index)
df

           age    height_cm    favorite_color
person
Jack       24     180          red
Jill       42     166          blue

The types of each column can be inspected via the pd.DataFrame.dtypes attribute. This attribute 
returns a pd.Series where each row shows the data type corresponding to each column in our 
pd.DataFrame:

df.dtypes

age                int64
height_cm          int64
favorite_color     object
dtype: object
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The row index can be accessed via pd.DataFrame.index:

df.index

Index(['Jack', 'Jill'], dtype='object', name='person')

The column index can be accessed via pd.DataFrame.columns:

df.columns

Index(['age', 'height_cm', 'favorite_color'], dtype='object')

The shape can be accessed via pd.DataFrame.shape. For a two-dimensional pd.DataFrame, the shape 
is returned as a two-tuple where the first element represents the number of rows and the second 
element represents the number of columns:

df.shape

2     3

The size (number of elements) can be accessed via pd.DataFrame.size:

df.size

6

The Python built-in function len can show you the length (number of rows):

len(df)

2

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/pandas

https://packt.link/pandas




2
Selection and Assignment

In the previous chapter, we looked at how to create a pd.Series and pd.DataFrame, and we also 
looked at their relationship to the pd.Index. With a foundation in constructors, we now shift focus to 
the crucial processes of selection and assignment. Selection, also referred to as indexing, is considered 
a getter; i.e., it is used to retrieve values from a pandas object. Assignment, by contrast, is a setter that 
is used to update values.

The recipes in this chapter start out by showing you how to retrieve values from pd.Series and 
pd.DataFrame objects, with ever-increasing complexity. We will eventually introduce the pd.MultiIndex, 
which can be used to select data hierarchically, before finally ending with an introduction to the as-
signment operators. The pandas API takes great care to reuse many of the same methods for selection 
and assignment, which ultimately allows you to be very expressive in how you would like to interact 
with your data.

By the end of this chapter, you will be adept at efficiently retrieving data from and updating values 
within your pandas objects. We are going to cover the following recipes in this chapter: 

•	 Basic selection from a Series
•	 Basic selection from a DataFrame
•	 Position-based selection of a Series
•	 Position-based selection of a DataFrame
•	 Label-based selection from a Series
•	 Label-based selection from a DataFrame
•	 Mixing position-based and label-based selection
•	 DataFrame.filter
•	 Selection by data type
•	 Selection/filtering via Boolean arrays
•	 Selection with a MultiIndex – A single level
•	 Selection with a MultiIndex – Multiple levels
•	 Selection with a MultiIndex – a DataFrame
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•	 Item assignment with .loc and .iloc
•	 DataFrame column assignment

Basic selection from a Series
Selection from a pd.Series involves accessing elements either by their position or by their label. This 
is akin to accessing elements in a list by their index or in a dictionary by their key, respectively. The 
versatility of the pd.Series object allows intuitive and straightforward data retrieval, making it an 
essential tool for data manipulation.

The pd.Series is considered a container in Python, much like the built-in list, tuple, and dict objects. 
As such, for simple selection operations, the first place users turn to is the Python index operator, 
using the [] syntax.

How to do it
To introduce the basics of selection, let’s start with a very simple pd.Series:

ser = pd.Series(list("abc") * 3)
ser

0    a
1    b
2    c
3    a
4    b
5    c
6    a
7    b
8    c
dtype: object

In Python, you’ve already discovered that the [] operator can be used to select elements from a con-
tainer; i.e., some_dictionary[0] will give you the value associated with a key of 0. With a pd.Series, 
basic selection behaves similarly:

ser[3]

a

With the expression ser[3], pandas tries to find the label 3 in the index of the pd.Series and, assuming 
only one match, returns the value associated with that label.

Instead of selecting the associated value from the pd.Series, alternatively, you may want a pd.Series 
returned, as doing so helps you keep the label 3 associated with the data element “a.” With pandas, 
you can do this by providing a list argument that contains a single element:

ser[[3]]
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3    a
dtype: object

Expanding on the usage of a list argument, you can select multiple values from the pd.Series if your 
list contains multiple elements:

ser[[0, 2]]

0    a
2    c
dtype: object

Assuming you use the default index, you can use slice arguments that work very similarly to slicing 
a Python list. For example, to get up to (but not including) the element at position 3 of a pd.Series, 
you can use:

ser[:3]

0    a
1    b
2    c
dtype: object

Negative slice indexers are not a problem for pandas. The following code will select the last four 
elements of the pd.Series:

ser[-4:]

5    c
6    a
7    b
8    c
dtype: object

You can even provide slices with start and stop arguments. The following code will retrieve all elements 
of the pd.Series, starting in position 2 and up to (but not including) position 6:

ser[2:6]

2    c
3    a
4    b
5    c
dtype: object

This final example on slices uses start, stop and step arguments to grab every third element, starting 
at position 1 and stopping when position 8 is encountered:

ser[1:8:3]
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1    b
4    b
7    b
dtype: object

Selection still works when providing your own pd.Index values. Let’s create a small pd.Series with 
string index labels to illustrate:

ser = pd.Series(range(3), index=["Jack", "Jill", "Jayne"])
ser

Jack     0
Jill     1
Jayne    2
dtype: int64

Selection via ser["Jill"] will scan the index for the string Jill and return the corresponding element:

ser["Jill"]

1

Once again, providing a single-element list argument will ensure that you receive a pd.Series in 
return instead of a single value:

ser[["Jill"]]

Jill    1
dtype: int64

There’s more…
A common pitfall when using the [] operator is to assume that selection with integer arguments works 
the same as when selecting from a Python list. This is only true when you use the default pd.Index, 
which is auto-numbered, starting at 0 (this is technically called a pd.RangeIndex).

When not using a pd.RangeIndex, extra attention must be paid to the behavior. To illustrate, let’s start 
with a small pd.Series, which still uses integers in its pd.Index, but does not use an auto-increment-
ing sequence that starts at 0:

ser = pd.Series(list("abc"), index=[2, 42, 21])
ser

2     a
42    b
21    c
dtype: object
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It is important to note that an integer argument selects by label and not by position; i.e., the following 
code will return the value associated with a label of 2, not the value in position 2:

ser[2]

a

While the integer argument matches by label and not by position, slicing still works positionally. The 
following example does not stop when encountering the number 2 and, instead, gives the first two 
elements back:

ser[:2]

2     a
42    b
dtype: object

Users should also be familiar with selection behavior when working with a non-unique pd.Index. Let’s 
create a small pd.Series where the number 1 appears twice in our row index:

ser = pd.Series(["apple", "banana", "orange"], index=[0, 1, 1])
ser

0     apple
1    banana
1    orange
dtype: object

With this pd.Series, attempting to select the number 1 will not return a single value and, instead, 
return another pd.Series:

ser[1]

1    banana
1    orange
dtype: object

The fact that a selection like ser[1] can be thought to be done by position or label interchangeably 
when using the default pd.RangeIndex but, in actuality, selects by label with other pd.Index types 
can be the source of subtle bugs in user programs. Many users may think they are selecting the nth 
element, only to have that assumption break when their data changes. To resolve the ambiguity be-
tween wanting to select by label or by position with an integer argument, it is highly recommended to 
leverage the .loc and .iloc methods introduced later in this chapter.
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Basic selection from a DataFrame
When using the [] operator with a pd.DataFrame, simple selection typically involves selecting data 
from the column index rather than the row index. This distinction is crucial for effective data manip-
ulation and analysis. Columns in a pd.DataFrame can be accessed by their labels, making it easy to 
work with named data from a pd.Series within the larger pd.DataFrame structure.

Understanding this fundamental difference in selection behavior is key to utilizing the full power of 
a pd.DataFrame in pandas. By leveraging the [] operator, you can efficiently access and manipulate 
specific columns of data, setting the stage for more advanced operations and analyses.

How to do it
Let’s start by creating a simple 3x3 pd.DataFrame. The values of the pd.DataFrame are not important, 
but we are intentionally going to provide our own column labels instead of having pandas create an 
auto-numbered column index for us:

df = pd.DataFrame(np.arange(9).reshape(3, -1), columns=["a", "b", "c"])
df

     a     b     c
0    0     1     2
1    3     4     5
2    6     7     8

To select a single column, use the [] operator with a scalar argument:

df["a"]

0    0
1    3
2    6
Name: a, dtype: int64

To select a single column but still get back a pd.DataFrame instead of a pd.Series, pass a single-el-
ement list:

df[["a"]]

     a
0    0
1    3
2    6

Multiple columns can be selected using a list:

df[["a", "b"]]
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     a     b
0    0     1
1    3     4
2    6     7

In all of these examples, the arguments for [] have been selected from the columns, but providing a 
slice argument exhibits different behavior and will actually select from rows. Note that the following 
example selects all columns and the first two rows of data, not the other way around:

df[:2]

     a     b     c
0    0     1     2
1    3     4     5

There’s more…
When using a list argument for the [] operator, you have the flexibility to specify the order of columns 
in the output. This allows you to customize the pd.DataFrame to suit your needs. The order of columns 
in the output will exactly match the order of labels provided as input. For example:

df[["a", "b"]]

     a     b
0    0     1
1    3     4
2    6     7

Swapping the order of the elements in the list as an argument to [] will swap the order of the columns 
in the resulting pd.DataFrame:

df[["b", "a"]]

     b     a
0    1     0
1    4     3
2    7     6

This feature is particularly useful when you need to reorder columns for presentation purposes, or 
when preparing data for export to CSV or Excel formats where a specific column order is required 
(see Chapter 4, The pandas I/O System, for more on the pandas I/O system).

Position-based selection of a Series
As discussed back in the Basic selection from a DataFrame section, using [] as a selection mechanism 
does not signal the clearest intent and can sometimes be downright confusing. The fact that ser[42] 
selects from a label matching the number 42 and not the 42nd row of a pd.Series is a common mistake 
for new users, and such an ambiguity can grow even more complex as you start trying to select two 
dimensions with the [] operator from a pd.DataFrame.
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To clearly signal that you are trying to select by position instead of by label, you should use pd.Series.
iloc.

How to do it
Let’s create a pd.Series where we have an index using integral labels that are also non-unique:

ser = pd.Series(["apple", "banana", "orange"], index=[0, 1, 1])
ser

0     apple
1    banana
1    orange
dtype: object

To select a scalar, you can use pd.Series.iloc with an integer argument:

ser.iloc[1]

banana

Following the same patterns we have seen before, turning that integer argument into a list containing 
a single element will return a pd.Series instead of a scalar:

ser.iloc[[1]]

1    banana
dtype: object

Multiple integers in the list argument will select multiple elements of the pd.Series by position:

ser.iloc[[0, 2]]

0     apple
1    orange
dtype: object

Slices are a natural way of expressing a range of elements that you would select, and they pair very 
nicely as an argument to pd.Series.iloc:

ser.iloc[:2]

0     apple
1    banana
dtype: object
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Position-based selection of a DataFrame
Much like with a pd.Series, integers, lists of integers, and slice objects are all valid arguments to 
DataFrame.iloc. However, with a pd.DataFrame, two arguments are required. The first argument 
handles selecting from the rows, and the second is responsible for the columns.

In most use cases, users reach for position-based selection when retrieving rows and label-based se-
lection when retrieving columns. We will cover the latter in the Label-based selection from a DataFrame 
section and will show you how to combine both in the Mixing position-based and label-based selection 
section. However, when your row index uses the default pd.RangeIndex and the order of columns is 
significant, the techniques shown in this section will be of immense value.

How to do it
Let’s create a pd.DataFrame with five rows and four columns:

df = pd.DataFrame(np.arange(20).reshape(5, -1), columns=list("abcd"))
df

     a     b     c     d
0    0     1     2     3
1    4     5     6     7
2    8     9     10    11
3    12    13    14    15
4    16    17    18    19

Passing two integer arguments to pd.DataFrame.iloc will return a scalar from that row and column 
position:

df.iloc[2, 2]

10

In some cases, you may not want to select individual values from a particular axis, opting instead for 
everything that axis has to offer. An empty slice object, :, allows you to do this; i.e., if you wanted to 
select all rows of data from the first column of a pd.DataFrame, you would use:

df.iloc[:, 0]

0     0
1     4
2     8
3    12
4    16
Name: a, dtype: int64
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Flipping the order of the arguments to pd.DataFrame.iloc will change behavior. Instead of grabbing 
all rows for the first column, the below code selects all columns and only the first row of data:

df.iloc[0, :]

a    0
b    1
c    2
d    3
Name: 0, dtype: int64

Because the preceding examples only return one dimension of data, they implicitly attempt to squeeze 
the return value from a pd.DataFrame down to a pd.Series. Following the patterns we have seen many 
times already in this chapter, you can prevent that implicit dimensionality reduction by passing a 
single-element list argument for the axis, which is not an empty slice. For example, to select all rows 
for the first column but still get back a pd.DataFrame, you would opt for:

df.iloc[:, [0]]

     a
0    0
1    4
2    8
3    12
4    16

Reversing those arguments gives us the first row and all columns back as a pd.DataFrame:

df.iloc[[0], :]

     a    b    c    d
0    0    1    2    3

Lists can be used to select multiple elements from both the rows and columns. If we wanted the first 
and second rows paired with the last and second-to-last columns of our pd.DataFrame, you could opt 
for an expression like:

df.iloc[[0, 1], [-1, -2]]

     d    c
0    3    2
1    7    6

There’s more…
Empty slices are valid arguments to .iloc. Both ser.iloc[:] and df.iloc[:, :] will return every-
thing from each axis, essentially giving you a copy of the object.
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Label-based selection from a Series
In pandas, pd.Series.loc is used to perform selection by label instead of by position. This method 
is particularly useful when you consider the pd.Index of your pd.Series to contain lookup values, 
much like the key in a Python dictionary, rather than giving importance to the order or position of 
data in your pd.Series.

How to do it
Let’s create a pd.Series where we have a row index using integral labels that are also non-unique:

ser = pd.Series(["apple", "banana", "orange"], index=[0, 1, 1])
ser

0     apple
1    banana
1    orange
dtype: object

pd.Series.loc will select all rows where the index has a label of 1:

ser.loc[1]

1    banana
1    orange
dtype: object

Of course, you are not limited to integral labels in pandas. Let’s see what this looks like with a pd.Index 
composed of string values:

ser = pd.Series([2, 2, 4], index=["dog", "cat", "human"], name="num_legs")
ser

dog      2
cat      2
human    4
Name: num_legs, dtype: int64

pd.Series.loc can select all rows where the index has a label of "dog":

ser.loc["dog"]

2

To select all rows where the index has a label of "dog" or "cat":

ser.loc[["dog", "cat"]]

dog    2
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cat    2
Name: num_legs, dtype: int64

Finally, to select all rows up to and including the label "cat":

ser.loc[:"cat"]

dog    2
cat    2
Name: num_legs, dtype: int64

There’s more…
Understanding label-based selection with pd.Series.loc provides powerful capabilities to access 
and manipulate data in a pd.Series. While this method may seem straightforward, it offers nuances 
and behaviors that are important to grasp for effective data handling.

A very common mistake for users of all experience levels with pandas is to overlook the differences 
in behavior that slicing with pd.Series.loc has, compared to slicing in standard Python and the 
pd.Series.iloc case.

To walk through this, let’s create a small Python list and a pd.Series with the same data:

values = ["Jack", "Jill", "Jayne"]
ser = pd.Series(values)
ser

0     Jack
1     Jill
2    Jayne
dtype: object

As you have already seen with lists and other containers built into the Python language, slicing returns 
values up to but not including the provided position:

values[:2]

Jack    Jill

Slicing with pd.Series.iloc matches this behavior, returning a pd.Series with the same exact length 
and elements as the Python list:

ser.iloc[:2]

0    Jack
1    Jill
dtype: object

But slicing with pd.Series.loc actually produces a different result:

ser.loc[:2]
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0     Jack
1     Jill
2    Jayne
dtype: object

What is going on here? To try and get a grasp on this, it is important to remember that pd.Series.loc 
matches by label, not by position. The pandas library does something akin to a loop over each element 
in the pd.Series and its accompanying pd.Index, stopping at the point where it finds the value of 2 
in the index. However, pandas cannot guarantee that there is only one value in the pd.Index with the 
value of 2, so it must continue going until it finds something else. You can see that in action if you try 
the same selection with a pd.Series that repeats the index label 2:

repeats_2 = pd.Series(range(5), index=[0, 1, 2, 2, 0])
repeats_2.loc[:2]

0    0
1    1
2    2
2    3
dtype: int64

This can seem downright devious if you expect your row index to contain integers, but the main use 
case for pd.Series.loc is for working with a pd.Index where position/ordering is not important (for 
that, use pd.Series.iloc). Taking string labels as a more practical example, the slicing behavior of 
pd.Series.loc becomes more natural. The following code can essentially be thought of as asking 
pandas to loop over the pd.Series until the label "xxx" is found in the row index, continuing until a 
new label is found:

ser = pd.Series(range(4), index=["zzz", "xxx", "xxx", "yyy"])
ser.loc[:"xxx"]

zzz    0
xxx    1
xxx    2
dtype: int64

In certain cases where you try to slice with pd.Series.loc but the index labels have no determinate 
ordering, pandas will end up raising an error:

ser = pd.Series(range(4), index=["zzz", "xxx", "yyy", "xxx"])
ser.loc[:"xxx"]

KeyError: "Cannot get right slice bound for non-unique label: 'xxx'"
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Label-based selection from a DataFrame
As we discussed back in the Position-based selection of a DataFrame section, the most common use case 
with a pd.DataFrame is to use label-based selection when referring to columns and position-based 
selection when referring to rows. However, this is not an absolute requirement, and pandas allows 
you to use label-based selection from both the rows and columns.

When compared to other data analysis tools, the ability to select by label from the rows of a pd.DataFrame 
is a unique advantage to pandas. For users familiar with SQL, there is no real equivalent to this provided 
by the language; columns are very easy to select when placed in a SELECT clause, but rows can only 
be filtered via a WHERE clause. For users adept at Microsoft Excel, you could create two-dimensional 
structures using a pivot table, with both row labels and column labels, but your ability to select or 
refer to data within that pivot table is effectively limited.

For now, we will introduce selection for very small pd.DataFrame objects to get a feel for the syntax. In 
Chapter 8, Reshaping Data Frames, we will explore ways that you can create meaningful pd.DataFrame 
objects where row and column labels are significant. Combined with the knowledge introduced in this 
section, you will come to appreciate how unique this type of selection is to pandas, as well as how it 
can help you explore data in meaningful ways that other tools cannot express.

How to do it
Let’s create a pd.DataFrame where we have indices composed of strings in both the rows and columns:

df = pd.DataFrame([
    [24, 180, "blue"],
    [42, 166, "brown"],
    [22, 160, "green"],
], columns=["age", "height_cm", "eye_color"], index=["Jack", "Jill", "Jayne"])
df

        age    height_cm    eye_color
Jack    24     180          blue
Jill    42     166          brown
Jayne   22     160          green

pd.DataFrame.loc can select by the row and column label:

df.loc["Jayne", "eye_color"]

green

To select all rows from the column with the label "age":

df.loc[:, "age"]
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Jack     24
Jill     42
Jayne    22
Name: age, dtype: int64

To select all columns from the row with the label "Jack":

df.loc["Jack", :]

age            24
height_cm     180
eye_color    blue
Name: Jack, dtype: object

To select all rows from the column with the label "age", maintaining the pd.DataFrame shape:

df.loc[:, ["age"]]

         age
Jack     24
Jill     42
Jayne    22

To select all columns from the row with the label "Jack", maintaining the pd.DataFrame shape:

df.loc[["Jack"], :]

        age   height_cm    eye_color
Jack    24    180          blue

To select both rows and columns using lists of labels:

df.loc[["Jack", "Jill"], ["age", "eye_color"]]

        age   eye_color
Jack    24    blue
Jill    42    brown

Mixing position-based and label-based selection
Since pd.DataFrame.iloc is used for position-based selection and pd.DataFrame.loc is for label-based 
selection, users must take an extra step if attempting to select by label in one dimension and by position 
in another. As mentioned in previous sections, the majority of pd.DataFrame objects constructed will 
place heavy significance on the labels used for the columns, with little care for how those columns 
are ordered. The inverse is true for the rows, so being able to effectively mix and match both styles 
is of immense value.
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How to do it
Let’s start with a pd.DataFrame that uses the default auto-numbered pd.RangeIndex in the rows but 
has custom string labels for the columns:

df = pd.DataFrame([
    [24, 180, "blue"],
    [42, 166, "brown"],
    [22, 160, "green"],
], columns=["age", "height_cm", "eye_color"])
df

     age   height_cm    eye_color
0    24    180          blue
1    42    166          brown
2    22    160          green

The pd.Index.get_indexer method can help us convert a label or list of labels into their correspond-
ing positions in a pd.Index:

col_idxer = df.columns.get_indexer(["age", "eye_color"])
col_idxer

array([0, 2])

This can subsequently be used as an argument to .iloc, ensuring that you use position-based selection 
across both the rows and columns:

df.iloc[[0, 1], col_idxer]

     age    eye_color
0    24     blue
1    42     brown

There’s more…
Instead of using pd.Index.get_indexer, you can split this expression up into a few steps, with one 
of the steps performing index-based selection and the other performing label-based selection. And 
if you did this, you’d end up getting the exact same result as shown above:

df[["age", "eye_color"]].iloc[[0, 1]]

     age    eye_color
0    24     blue
1    42     brown
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There’s a strong argument to be made that this is more expressive than using pd.Index.get_indexer, 
which developers of all experience levels with pandas would agree with. So why even bother with 
pd.Index.get_indexer?

While these appear the same on the surface, how pandas computes the result is drastically different. 
Adding some timing benchmarks to the various methods should highlight this. While the exact num-
bers will vary on your machine, compare the timing output of the idiomatic approach described in 
this section:

import timeit

def get_indexer_approach():
  col_idxer = df.columns.get_indexer(["age", "eye_color"])
  df.iloc[[0, 1], col_idxer]

timeit.timeit(get_indexer_approach, number=10_000)

1.8184850879988517

to the approach with separate steps to select by label and then by position:

two_step_approach = lambda: df[["age", "eye_color"]].iloc[[0, 1]]
timeit.timeit(two_step_approach, number=10_000

2.027099569000711

The pd.Index.get_indexer approach clocks in faster and should scale better to larger datasets. The 
reason for this is that pandas evaluates its expressions eagerly or, more specifically, it will do what you 
say, when you say it. The expression df[["age", "eye_color"]].iloc[[0, 1]] first runs df[["age", 
"eye_color"]], which creates an intermediate pd.DataFrame, to which the .iloc[[0, 1]] gets applied. 
By contrast, the expression df.iloc[[0, 1], col_idxer] performs the label-based and position-based 
selection all in one go, avoiding the creation of any intermediate pd.DataFrame.

The contrasting approach to the eager execution approach that pandas takes is often called lazy execu-
tion. If you’ve used SQL before, the latter is a good example of that; you typically do not instruct the 
SQL engine on what steps to take exactly to produce the desired result. Instead, you declare what you 
want your result to look like and leave it up to the SQL database to optimize and execute your query.

Will pandas ever support lazy evaluation and optimization? I would posit yes, as it would help pandas 
scale to larger datasets and take the onus away from the end user to write optimal queries. However, 
that capability does not exist today, so it is still important for you as a user of the library to understand 
if the code you produce will be processed efficiently or inefficiently.
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It is also worth considering the context of your data analysis when deciding if it is worth trying to 
combine position/label-based selection in one step, or if they are fine as separate steps. In our trivial 
example, the runtime difference of df.iloc[[0, 1], col_idxer] versus df[["age", "eye_color"]].
iloc[[0, 1]] is probably not worth caring about in the grander scheme of things, but if you were 
dealing with larger datasets and bottlenecked by performance, the former approach could be a lifesaver.

DataFrame.filter
pd.DataFrame.filter is a specialized method that allows you to select from either the rows or col-
umns of a pd.DataFrame.

How to do it
Let’s create a pd.DataFrame where we have indices composed of strings in both the rows and columns:

df = pd.DataFrame([
    [24, 180, "blue"],
    [42, 166, "brown"],
    [22, 160, "green"],
], columns=[
    "age",
    "height_cm",
    "eye_color"
], index=["Jack", "Jill", "Jayne"])
df

        age   height_cm   eye_color
Jack    24    180         blue
Jill    42    166         brown
Jayne   22    160         green

By default, pd.DataFrame.filter will select columns matching the label argument(s), similar to 
pd.DataFrame[]:

df.filter(["age", "eye_color"])

       age   eye_color
Jack   24    blue
Jill   42    brown
Jayne  22    green

However, pd.DataFrame.filter also accepts an axis= argument, which allows you to change the axis 
being selected from. To select rows instead of columns, pass axis=0:

df.filter(["Jack", "Jill"], axis=0)
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  age   height_cm   eye_color
Jack   24    180         blue
Jill   42    166         brown

You are not limited to exact string matches against labels. If you would like to select any label contain-
ing a string, use the like= parameter. This example will select any column containing an underscore:

df.filter(like="_")

      height_cm   eye_color
Jack   180         blue
Jill   166         brown
Jayne  160         green

If simple string containment is not enough, you can also use regular expressions to match index 
labels with the regex= parameter. The following example will select any row labels that start with a 
"Ja" but do not end with "e":

df.filter(regex=r"^Ja.*(?<!e)$", axis=0)

       age   height_cm   eye_color
Jack   24    180         blue

Selection by data type
So far in this cookbook, we have seen data types, but we have not talked too much in depth about what 
they are. We still aren’t quite there; a deep dive into the type system of pandas is reserved for Chapter 
3, Data Types. However, for now, you should be aware that the column type provides metadata that 
pd.DataFrame.select_dtypes can use for selection.

How to do it
Let’s start with a pd.DataFrame that uses integral, floating point, and string columns:

df = pd.DataFrame([
    [0, 1.0, "2"],
    [4, 8.0, "16"],
], columns=["int_col", "float_col", "string_col"])
df

    int_col   float_col   string_col
0   0         1.0         2
1   4         8.0         16

Use pd.DataFrame.select_dtypes to select only integral columns:

df.select_dtypes("int")
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    int_col
0   0
1   4

Multiple types can be selected if you pass a list argument:

df.select_dtypes(include=["int", "float"])

    int_col   float_col
0   0         1.0
1   4         8.0

The default behavior is to include the data types you pass in as an argument. To exclude them, use 
the exclude= parameter instead:

df.select_dtypes(exclude=["int", "float"])

    string_col
0   2
1   16

Selection/filtering via Boolean arrays
Using Boolean lists/arrays (also referred to as masks) is a very common method to select a subset of rows.

How to do it
Let’s create a mask of True=/=False values alongside a simple pd.Series:

mask = [True, False, True]
ser = pd.Series(range(3))
ser

0    0
1    1
2    2
dtype: int64

Using the mask as an argument to pd.Series[] will return each row where the corresponding mask 
entry is True:

ser[mask]

0    0
2    2
dtype: int64
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pd.Series.loc will match the exact same behavior as pd.Series[] in this particular case:

ser.loc[mask]

0    0
2    2
dtype: int64

Interestingly, whereas pd.DataFrame[] usually tries to select from the columns when provided a list 
argument, its behavior with a sequence of Boolean values is different. Using the mask we have already 
created, df[mask] will actually match along the rows rather than the columns:

df = pd.DataFrame(np.arange(6).reshape(3, -1))
df[mask]

    0   1
0   0   1
2   4   5

If you need to mask the columns alongside the rows, pd.DataFrame.loc will accept two mask argu-
ments:

col_mask = [True, False]
df.loc[mask, col_mask]

    0
0   0
2   4

There’s more…
Commonly, you will manipulate your masks using some combination of the OR, AND, or INVERT 
operators. To see these in action, let’s start with a slightly more complicated pd.DataFrame:

df = pd.DataFrame([
    [24, 180, "blue"],
    [42, 166, "brown"],
    [22, 160, "green"],
], columns=["age", "height_cm", "eye_color"], index=["Jack", "Jill", "Jayne"])
df

       age   height_cm   eye_color
Jack   24    180         blue
Jill   42    166         brown
Jayne  22    160         green
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If our goal was to filter this only to users with blue or green eyes, we could first identify which users 
have blue eyes:

blue_eyes = df["eye_color"] == "blue"
blue_eyes

Jack      True
Jill     False
Jayne    False
Name: eye_color, dtype: bool

Then, we figure out who has green eyes:

green_eyes = df["eye_color"] == "green"
green_eyes

Jack     False
Jill     False
Jayne     True
Name: eye_color, dtype: bool

and combine those together into one Boolean mask using the OR operator, |:

mask = blue_eyes | green_eyes
mask

Jack      True
Jill     False
Jayne     True
Name: eye_color, dtype: bool

before passing that mask in as an indexer of our pd.DataFrame:

df[mask]

       age   height_cm   eye_color
Jack   24    180         blue
Jayne  22    160         green

Instead of using the OR operator, |, you will often commonly use the AND operator, &. For example, 
let’s create a filter for records with an age less than 40:

age_lt_40 = df["age"] < 40
age_lt_40

Jack      True
Jill     False
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Jayne     True
Name: age, dtype: bool

And also, a height greater than 170:

height_gt_170 = df["height_cm"] > 170
height_gt_170

Jack      True
Jill     False
Jayne    False
Name: height_cm, dtype: bool

These can be ANDed together to only select records that meet both conditions:

df[age_lt_40 & height_gt_170]

       age   height_cm   eye_color
Jack   24    180         blue

The INVERT operator is useful to think of as a NOT operator; i.e., in the context of a mask, it will make 
any True value False and any False value True. Continuing with our example above, if we wanted 
to find records that did not satisfy the condition of having an age under 40 and a height over 170, we 
could simply invert our mask using ~:

df[~(age_lt_40 & height_gt_170)]

       age   height_cm   eye_color
Jill   42    166         brown
Jayne  22    160         green

Selection with a MultiIndex – A single level
A pd.MultiIndex is a subclass of a pd.Index that supports hierarchical labels. Depending on who you 
ask, this can be one of the best or one of the worst features of pandas. After reading this cookbook, I 
hope you consider it one of the best.

Much of the derision toward the pd.MultiIndex comes from the fact that the syntax used to select 
from it can easily become ambiguous, especially when using pd.DataFrame[]. The examples below 
exclusively use the pd.DataFrame.loc method and avoid pd.DataFrame[] to mitigate confusion.

How to do it
pd.MultiIndex.from_tuples can be used to construct a pd.MultiIndex from a list of tuples. In the 
following example, we create a pd.MultiIndex with two levels – first_name and last_name, sequen-
tially. We will pair this alongside a very simple pd.Series:

index = pd.MultiIndex.from_tuples([
    ("John", "Smith"),
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    ("John", "Doe"),
    ("Jane", "Doe"),
    ("Stephen", "Smith"),
], names=["first_name", "last_name"])
ser = pd.Series(range(4), index=index)
ser

first_name  last_name
John        Smith        0
            Doe          1
Jane        Doe          2
Stephen     Smith        3
dtype: int64

Using pd.Series.loc with a pd.MultiIndex and a scalar argument will match against the first level 
of the pd.MultiIndex. The output will not include this first level in its result:

ser.loc["John"]

last_name
Smith    0
Doe      1
dtype: int64

The behavior that drops the first level of the pd.MultiIndex in the above example is also referred to 
as partial slicing. This concept is similar to the dimensionality reduction we saw with .loc and .iloc 
in the previous sections, with the exception that instead of reducing dimensions, pandas here tries to 
reduce the number of levels in a pd.MultiIndex.

To prevent this implicit level reduction from occurring, we can once again provide a list argument 
containing a single element:

ser.loc[["John"]]

first_name  last_name
John        Smith        0
            Doe          1
dtype: int64

Selection with a MultiIndex – Multiple levels
Things would not be that interesting if you could only select from the first level of a pd.MultiIndex. 
Fortunately, pd.DataFrame.loc will scale out to more than just the first level through the creative use 
of tuple arguments.
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How to do it
Let’s recreate the pd.Series from the previous section:

index = pd.MultiIndex.from_tuples([
    ("John", "Smith"),
    ("John", "Doe"),
    ("Jane", "Doe"),
    ("Stephen", "Smith"),
], names=["first_name", "last_name"])
ser = pd.Series(range(4), index=index)
ser

first_name  last_name
John        Smith        0
            Doe          1
Jane        Doe          2
Stephen     Smith        3
dtype: int64

To select all records where the first index level uses the label "Jane" and the second uses "Doe", pass 
the following tuple:

ser.loc[("Jane", "Doe")]

2

To select all records where the first index level uses the label "Jane" and the second uses "Doe", while 
maintaining the pd.MultiIndex shape, place a single element list in the tuple:

ser.loc[(["Jane"], "Doe")]

first_name  last_name
Jane        Doe          2
dtype: int64

To select all records where the first index level uses the label "John" and the second uses the label 
"Smith", OR the first level is "Jane" and the second is "Doe":

ser.loc[[("John", "Smith"), ("Jane", "Doe")]]

first_name  last_name
John        Smith        0
Jane        Doe          2
dtype: int64
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To select all records where the second index level is "Doe", use an empty slice as the first tuple element. 
Note that this drops the second index level and reconstructs the result with a simple pd.Index from 
the first index level that remains:

ser.loc[(slice(None), "Doe")]

first_name
John    1
Jane    2
dtype: int64

To select all records where the second index level is "Doe" while maintaining the pd.MultiIndex shape, 
pass a single-element list as the second tuple element:

ser.loc[(slice(None), ["Doe"])]

first_name  last_name
John        Doe          1
Jane        Doe          2
dtype: int64

At this point, you might be asking yourself the question, what the heck does slice(None) mean? This 
rather cryptic expression actually creates a slice object without a start, stop, or step value, which is 
easier to illustrate with a simpler Python list – note that the behavior here:

alist = list("abc")
alist[:]

['a', 'b', 'c']

is exactly the same as with slice(None):

alist[slice(None)]

['a', 'b', 'c']

When a pd.MultiIndex expects a tuple argument but doesn’t get one, this issue is caused by a slice 
within a tuple, similar to how (:,) is a syntax error in Python. The more explicit (slice(None),) 
fixes the issue.

There’s more…
If you find the slice(None) syntax to be unwieldy, pandas provides a convenient object called the 
pd.IndexSlice that acts like a tuple but allows you to use the more natural : notation for slicing.

ser.loc[(slice(None), ["Doe"])]

first_name  last_name
John        Doe          1
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Jane        Doe          2
dtype: int64

thus can become:

ixsl = pd.IndexSlice
ser.loc[ixsl[:, ["Doe"]]]

first_name  last_name
John        Doe          1
Jane        Doe          2
dtype: int64

Selection with a MultiIndex – a DataFrame
A pd.MultiIndex can be used both as a row index and a column index, and selection via pd.DataFrame.
loc works with both.

How to do it
Let’s create a pd.DataFrame that uses a pd.MultiIndex in both the rows and columns:

row_index = pd.MultiIndex.from_tuples([
    ("John", "Smith"),
    ("John", "Doe"),
    ("Jane", "Doe"),
    ("Stephen", "Smith"),
], names=["first_name", "last_name"])
col_index = pd.MultiIndex.from_tuples([
    ("music", "favorite"),
    ("music", "last_seen_live"),
    ("art", "favorite"),
], names=["art_type", "category"])
df = pd.DataFrame([
   ["Swift", "Swift", "Matisse"],
   ["Mozart", "T. Swift", "Van Gogh"],
   ["Beatles", "Wonder", "Warhol"],
   ["Jackson", "Dylan", "Picasso"],
], index=row_index, columns=col_index)
df

             art_type              music           art
             category   favorite   last_seen_live  favorite
first_name   last_name
John         Smith      Swift      Swift           Matisse
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             Doe        Mozart     T. Swift        Van Gogh
Jane         Doe        Beatles    Wonder          Warhol
Stephen      Smith      Jackson    Dylan           Picasso

To select all rows where the second level is "Smith" and all columns where the second level is 
"favorite", you will need to pass two tuples where the second element in each is the desired label:

row_idxer = (slice(None), "Smith")
col_idxer = (slice(None), "favorite")
df.loc[row_idxer, col_idxer]

             art_type   music      art
             category   favorite   favorite
first_name   last_name
John         Smith      Swift      Matisse
Stephen      Smith      Jackson    Picasso

pd.DataFrame.loc always requires two arguments – the first to specify how the rows should be indexed 
and the second to specify how the columns should be indexed. When you have a pd.DataFrame with a 
pd.MultiIndex in both the rows and the columns, you may find it stylistically easier to create separate 
variables for the indexers. The above code could have also been written as:

df.loc[(slice(None), "Smith"), (slice(None), "favorite")]

             art_type   music      art
             category   favorite   favorite
first_name   last_name
John         Smith      Swift      Matisse
Stephen      Smith      Jackson    Picasso

Although you could argue that this is more difficult to interpret. As the old saying goes, beauty is in 
the eye of the beholder.

Item assignment with .loc and .iloc
The pandas library is optimized for reading, exploring, and evaluating data. Operations that try to 
mutate or change data are far less efficient.

However, when you must mutate your data, you can use .loc and .iloc to do it.

How to do it
Let’s start with a very small pd.Series:

ser = pd.Series(range(3), index=list("abc"))

pd.Series.loc is useful when you want to assign a value by matching against the label of an index. 
For example, if we wanted to store the value 42 where our row index contained a value of "b", we 
would write:
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ser.loc["b"] = 42
ser

a     0
b    42
c     2
dtype: int64

pd.Series.iloc is used when you want to assign a value positionally. To assign the value -42 to the 
second element in our pd.Series, we would write:

ser.iloc[2] = -42
ser

a     0
b    42
c   -42
dtype: int64

There’s more…
The cost of mutating data through pandas can depend largely on two factors:

•	 The type of array backing a pandas pd.Series (Chapter 3, Data Types, will cover data types in 
more detail)

•	 How many objects reference a pd.Series

A deep dive into those factors is far beyond the scope of this book. For the first point above, my general 
guidance is that the simpler an array type is, the better your odds are of being able to mutate it with-
out the array contents having to be copied, which for larger datasets may be prohibitively expensive.

For the second bullet, a lot of Copy on Write (CoW) work was involved in the pandas 2.x series. CoW 
is the default behavior in pandas 3.0, and it tries to make the behavior of what does and does not 
get copied when mutating data more predictable. For advanced users, I highly encourage giving the 
pandas CoW documentation a read.

DataFrame column assignment
While assigning to data can be a relatively expensive operation in pandas, assigning columns to a 
pd.DataFrame is a common operation.

How to do it
Let’s create a very simple pd.DataFrame:

df = pd.DataFrame({"col1": [1, 2, 3]})
df
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    col1
0   1
1   2
2   3

New columns can be assigned using the pd.DataFrame[] operator. The simplest type of assignment 
can take a scalar value and broadcast it to every row of the pd.DataFrame:

df["new_column1"] = 42
df

    col1   new_column1
0   1      42
1   2      42
2   3      42

You can also assign a pd.Series or sequence as long as the number of elements matches the number 
of rows in the pd.DataFrame:

df["new_column2"] = list("abc")
df

    col1   new_column1   new_column2
0   1      42            a
1   2      42            b
2   3      42            c

df["new_column3"] = pd.Series(["dog", "cat", "human"])
df

    col1   new_column1   new_column2   new_column3
0   1      42            a             dog
1   2      42            b             cat
2   3      42            c             human

If the new sequence does not match the number of rows in the existing pd.DataFrame, the assignment 
will fail:

df["should_fail"] = ["too few", "rows"]

ValueError: Length of values (2) does not match length of index (3)

Assignment can also be done to a pd.DataFrame with a pd.MultiIndex in the columns. Let’s take a 
look at such a pd.DataFrame:

row_index = pd.MultiIndex.from_tuples([
    ("John", "Smith"),
    ("John", "Doe"),
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    ("Jane", "Doe"),
    ("Stephen", "Smith"),
], names=["first_name", "last_name"])
col_index = pd.MultiIndex.from_tuples([
    ("music", "favorite"),
    ("music", "last_seen_live"),
    ("art", "favorite"),
], names=["art_type", "category"])
df = pd.DataFrame([
   ["Swift", "Swift", "Matisse"],
   ["Mozart", "T. Swift", "Van Gogh"],
   ["Beatles", "Wonder", "Warhol"],
   ["Jackson", "Dylan", "Picasso"],
], index=row_index, columns=col_index)
df 

             art_type   music            art
             category   favorite   last_seen_live   favorite
first_name   last_name
John         Smith      Swift      Swift            Matisse
             Doe        Mozart     T. Swift         Van Gogh
Jane         Doe        Beatles    Wonder           Warhol
Stephen      Smith      Jackson    Dylan            Picasso

To assign a new column under the "art" hierarchy for the number of museums seen, pass a tuple 
argument to pd.DataFrame.loc:

df.loc[:, ("art", "museuems_seen")] = [1, 2, 4, 8]
df

             art_type    music            art
             category    favorite   last_seen_live   favorite   museuems_seen
first_name   last_name
John         Smith       Swift       Swift           Matisse    1
             Doe         Mozart      T. Swift        Van Gogh   2
Jane         Doe         Beatles     Wonder          Warhol     4
Stephen      Smith       Jackson     Dylan           Picasso    8

Assignment with a pd.DataFrame follows the same patterns we saw when selecting values with 
pd.DataFrame[] and pd.DataFrame.loc[]. The main difference is that during selection, you would 
use pd.DataFrame[] and pd.DataFrame.loc[] on the right-hand side of an expression, whereas with 
assignment, they appear on the left-hand side.



Selection and Assignment42

There’s more…
The pd.DataFrame.assign method can be used to allow method chaining during assignment. Let’s 
start with a simple pd.DataFrame to illustrate the utility:

df = pd.DataFrame([[0, 1], [2, 4]], columns=list("ab"))
df

    a   b
0   0   1
1   2   4

Method chaining refers to the ability of pandas to apply many algorithms in succession to a pandas 
data structure (algorithms and how to apply them will be covered in more detail in Chapter 5, Algo-
rithms and How to Apply Them). So, to take our pd.DataFrame, double it, and add 42 to each element, 
we could do something like:

(
    df
    .mul(2)
    .add(42)
)

    a    b
0   42   44
1   46   50

But what happens if we want to add a new column as part of this chain of events? Unfortunately, with 
the standard assignment operators, you would have to break that chain of events and usually assign 
a new variable:

df2 = (
    df
    .mul(2)
    .add(42)
)
df2["assigned_c"] = df2["b"] - 3
df2

    a   b   assigned_c
0   42  44  41
1   46  50  47

But with pd.DataFrame.assign, you can continue chaining along. Simply pass the desired column 
label as a keyword to pd.DataFrame.assign, whose argument is the values you would like to see in 
the new pd.DataFrame:
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(
    df
    .mul(2)
    .add(42)
    .assign(chained_c=lambda df: df["b"] - 3)
) 

    a    b    chained_c
0   42   44   41
1   46   50   47

In this case, you are limited to using labels that meet Python’s syntax requirements for parameter 
names, and this, unfortunately, does not work with a pd.MultiIndex. Some users think method chain-
ing makes debugging harder, while others argue that method chaining like this makes code easier to 
read. Ultimately, there is no right or wrong answer, and the best advice I can give you for now is to 
use the form you feel most comfortable with.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/pandas

https://packt.link/pandas




3
Data Types

The data type of a pd.Series allows you to dictate what kind of elements may or may not be stored. 
Data types are important for ensuring data quality, as well as enabling high-performance algorithms 
in your code. If you have a data background working with databases, you more than likely are already 
familiar with data types and their benefits; you will find types like TEXT, INTEGER, and DOUBLE PRECISION 
in pandas just like you do in a database, albeit under different names.

Unlike a database, however, pandas offers multiple implementations of how a TEXT, INTEGER, and 
DOUBLE PRECISION type can work. Unfortunately, this means, as an end user, that you should at least 
have some understanding of how the different data types are implemented to make the best choice 
for your application.

A quick history lesson on types in pandas can help explain this usability quirk. Originally, pandas was 
built on top of the NumPy type system. This worked for quite a while but had major shortcomings. For 
starters, the NumPy types pandas built on top of did not support missing values, so pandas created a 
Frankenstein’s monster of methods to support those. NumPy, being focused on numerical computa-
tions, also did not offer a first-class string data type, leading to very poor string handling in pandas.

Work to move past the NumPy type system started with pandas version 0.23, which introduced new 
data types built directly into pandas that were still implemented using NumPy but could actually 
handle missing values. In version 1.0, pandas implemented its own string data type. At the time, 
these were called numpy_nullable data types, but over time, they have become referred to as pandas 
extension types.

While all of this was going on, Wes McKinney, the original creator of pandas, was working on the 
Apache Arrow project. Fully explaining the Arrow project is beyond the scope of this book, but one 
of the major things it helps with is to define a set of standardized data types that can be used from 
different tools and programming languages. Those data types also draw inspiration from databases; 
if using a database has already been a part of your analytics journey, then the Arrow types will likely 
be very familiar to you. Starting with version 2.0, pandas allows you to use Arrow for your data types.



Data Types46

Despite support for pandas extension and Arrow data types, the default types from pandas were never 
changed, and in most cases still use NumPy. In the author’s opinion, this is very unfortunate; this 
chapter will introduce a rather opinionated take on how to best manage the type landscape, with the 
general guidance of the following:

•	 Use pandas extension types, when available
•	 Use Arrow data types, when pandas extension types do not suffice
•	 Use NumPy-backed data types

This guidance may be controversial and can be scrutinized in extreme examples, but, for someone 
just starting with pandas, I believe this prioritization gives users the best balance of usability and 
performance, without requiring a deep understanding of how pandas works behind the scenes.

The general layout of this chapter will introduce the pandas extension system for general use, before 
diving into the Arrow-type system for more advanced use cases. As we walk through these types, we 
will also highlight any special behavior that can be unlocked using accessors. Finally, we will talk about 
the historical NumPy-backed data types and take a deep dive into some of their fatal flaws, which I 
hope will convince you as to why you should limit your use of these types.

We are going to cover the following recipes in this chapter:

•	 Integral types
•	 Floating point types
•	 Boolean types
•	 String types
•	 Missing value handling
•	 Categorical types
•	 Temporal types – datetime
•	 Temporal types – timedelta
•	 Temporal PyArrow types
•	 PyArrow List types
•	 PyArrow decimal types
•	 NumPy type system, the object type, and pitfalls

Integral types
Integral types are the most basic type category. Much like the int type in Python or the INTEGER data 
type in a database, these can only represent whole numbers. Despite this limitation, integers are 
useful in a wide variety of applications, including but not limited to arithmetic, indexing, counting, 
and enumeration.

Integral types are heavily optimized for performance, tracing all the way from pandas down to the 
hardware on your computer. The integral types offered by pandas are significantly faster than the int 
type offered by the Python standard library, and proper usage of integral types is often a key enabler 
to high-performance, scalable reporting.
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How to do it
Any valid sequence of integers can be passed as an argument to the pd.Series constructor. Paired 
with the dtype=pd.Int64Dtype() argument you will end up with a 64-bit integer data type:

pd.Series(range(3), dtype=pd.Int64Dtype())

0    0
1    1
2    2
dtype: Int64

When storage and compute resources are not a concern, users often opt for 64-bit integers, but we 
could have also picked a smaller data type in our example:

pd.Series(range(3), dtype=pd.Int8Dtype())

0    0
1    1
2    2
dtype: Int8

With respect to missing values, pandas uses the pd.NA sentinel as its indicator, much like a database 
uses NULL:

pd.Series([1, pd.NA, 2], dtype=pd.Int64Dtype())

0       1
1    <NA>
2       2
dtype: Int64

As a convenience, the pd.Series constructor will convert Python None values into pd.NA for you:

pd.Series([1, None, 2], dtype=pd.Int64Dtype())

0       1
1    <NA>
2       2
dtype: Int64

There’s more…
For users new to scientific computing, it is important to know that unlike Python’s int, which has no 
theoretical size limit, integers in pandas have lower and upper bounds. These limits are determined 
by the width and signedness of the integer.
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In most computing environments, users have integer widths of 8, 16, 32, and 64. Signedness can be 
either signed (i.e., the number can be positive or negative) or unsigned (i.e., the number must not be 
negative). Limits for each integral type are summarized in the following table:

Type Lower Bound Upper Bound

8-bit width, signed -128 127

8-bit width, unsigned 0 255

16-bit width, signed -32769 32767

16-bit width, unsigned 0 65535

32-bit width, signed -2147483648 2147483647

32-bit width, unsigned 0 4294967295

64-bit width, signed -(2**63) 2**63-1

64-bit width, unsigned 0 2**64-1

Table 3.1: Integral limits per signedness and width

The trade-off in these types is capacity versus memory usage – a 64-bit integral type requires 8x as 
much memory as an 8-bit integral type. Whether or not this is an issue depends entirely on the size 
of your dataset and the system on which you perform your analysis.

Within the pandas extension type system, the dtype= argument for each of these follows the 
pd.IntXXDtype() form for signed integers and pd.UIntXXDtype() for unsigned integers, where XX 
refers to the bit width:

pd.Series(range(555, 558), dtype=pd.Int16Dtype())

0    555
1    556
2    557
dtype: Int16

pd.Series(range(3), dtype=pd.UInt8Dtype())

0    0
1    1
2    2
dtype: UInt8

Floating point types
Floating point types allow you to represent real numbers, not just integers. This allows you to work 
with a continuous and theoretically infinite set of values within your computations. It may come as no 
surprise that floating point calculations show up in almost every scientific computation, macro-finan-
cial analysis, machine learning algorithm, and so on.
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The emphasis on the word theoretically, however, is intentional and very important to understand. 
Floating point types still have boundaries, with real limitations being imposed by your computer 
hardware. In essence, the notion of being able to represent any number is an illusion. Floating point 
types are liable to lose precision and introduce rounding errors, especially as you work with more 
extreme values. As such, floating point types are not suitable when you need absolute precision (for 
that, you will want to reference the PyArrow decimal types introduced later in this chapter).

Despite those limitations, it is rare that you actually would need absolute precision, so floating point 
types are the most commonly used data type to represent fractional numbers in general.

How to do it
To construct floating point data, use dtype=pd.Float64Dtype():

pd.Series([3.14, .333333333, -123.456], dtype=pd.Float64Dtype())

0        3.14
1    0.333333
2    -123.456
dtype: Float64

Much like we saw with the integral types, the missing value indicator is pd.NA. The Python object None 
will be implicitly converted to this as a convenience:

pd.Series([3.14, None, pd.NA], dtype=pd.Float64Dtype())

0    3.14
1    <NA>
2    <NA>
dtype: Float64

There’s more…
By nature of their design, floating point values are inexact, and arithmetic with floating point values is 
slower than with integers. A deep dive into floating point arithmetic is beyond the scope of this book, 
but those interested can find much more information in the Python documentation.

Python has a built-in float type that is somewhat of a misnomer because it is actually an IEEE 754 
double. That standard and other languages like C/C++ have distinct float and double types, with 
the former occupying 32 bits and the latter occupying 64 bits. To disambiguate these widths but stay 
consistent with Python terminology, pandas offers pd.Float64Dtype() (which some may consider a 
double) and pd.Float32Dtype() (which some may consider a float).
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Generally, unless your system is constrained on resources, users are recommended to use 64-bit floating 
point types. The odds of losing precision with 32-bit floating point types are much higher than with 
their respective 64-bit counterparts. In fact, 32-bit floats only offer between 6 and 9 decimal digits of 
precision, so the following expression will likely return True for equality comparison, even though 
we as humans can very clearly see the numbers are not the same:

ser1 = pd.Series([1_000_000.123], dtype=pd.Float32Dtype())
ser2 = pd.Series([1_000_000.124], dtype=pd.Float32Dtype())
ser1.eq(ser2)

0    True
dtype: boolean

With a 64-bit floating point, you would at least get between 15 and 17 decimal digits of precision, so 
the values at which rounding errors occur are much more extreme.

Boolean types
A Boolean type represents a value that is either True or False. Boolean data types are useful to simply 
answer questions with a yes/no style of response and are also widely used in machine learning algo-
rithms to convert categorical values into 1s and 0s (for True and False, respectively) that a computer 
can more easily digest (see also the One-hot encoding with pd.get_dummies recipe in Chapter 5, Algorithms 
and How to Apply Them).

How to do it
For Boolean, the appropriate dtype= argument is pd.BooleanDtype:

pd.Series([True, False, True], dtype=pd.BooleanDtype())

0     True
1    False
2     True
dtype: boolean

The pandas library will take care of implicitly converting values to their Boolean representation for 
you. Often, 0 and 1 are used in place of False and True, respectively:

pd.Series([1, 0, 1], dtype=pd.BooleanDtype())

0     True
1    False
2     True
dtype: boolean
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Once again, pd.NA is the canonical missing indicator, although pandas will implicitly convert None 
to a missing value:

pd.Series([1, pd.NA, None], dtype=pd.BooleanDtype())

0    True
1    <NA>
2    <NA>
dtype: boolean

String types
The string data type is the appropriate choice for any data that represents text. Unless you are working 
in a purely scientific domain, chances are that strings will be prevalent throughout the data that you use.

In this recipe, we will highlight some of the additional features pandas provides when working with 
string data, most notably through the pd.Series.str accessor. This accessor helps to change cases, 
extract substrings, match patterns, and more.

As a technical note, before we jump into the recipe, strings starting in pandas 3.0 will be significantly 
overhauled behind the scenes, enabling an implementation that is more type-correct, much faster, 
and requires far less memory than what was available in the pandas 2.x series. To make this possible 
in 3.0 and beyond, users are highly encouraged to install PyArrow alongside their pandas installation. 
For users looking for an authoritative reference on the why and how of strings in pandas 3.0, you may 
reference the PDEP-14 dedicated string data type.

How to do it
String data should be constructed with dtype=pd.StringDtype():

pd.Series(["foo", "bar", "baz"], dtype=pd.StringDtype())

0    foo
1    bar
2    baz
dtype: string

You have probably picked up by now that pd.NA is the missing indicator to use, but pandas will convert 
None implicitly for you:

pd.Series(["foo", pd.NA, None], dtype=pd.StringDtype())

0     foo
1    <NA>
2    <NA>
dtype: string



Data Types52

When working with a pd.Series containing string data, pandas will create what it refers to as the 
string accessor to help you unlock new methods that are tailored to strings. The string accessor is used 
via pd.Series.str, and helps you do things like report back the length of each string via pd.Series.
str.len:

ser = pd.Series(["xx", "YyY", "zZzZ"], dtype=pd.StringDtype())
ser.str.len()

0    2
1    3
2    4
dtype: Int64

It may also be used to force everything to a particular case, like uppercase:

ser.str.upper()

0      XX
1     YYY
2    ZZZZ
dtype: string

It may also be used to force everything to lowercase:

ser.str.lower()

0      xx
1     yyy
2    zzzz
dtype: string

And even “title case” (i.e., the first letter only is capitalized, with everything else lower):

ser.str.title()

0      Xx
1     Yyy
2    Zzzz
dtype: string

pd.Series.str.contains can be used to check for simple string containment:

ser = pd.Series(["foo", "bar", "baz"], dtype=pd.StringDtype())
ser.str.contains("o")
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0     True
1    False
2    False
dtype: boolean

But it also has the flexibility to test for regular expressions with regex=True, akin to how re.search 
works in the standard library. The case=False argument will also turn the matching into a case-in-
sensitive comparison:

ser.str.contains(r"^ba[rz]$", case=False, regex=True)

0    False
1     True
2     True
dtype: boolean

Missing value handling
Before we continue with more data types, we must step back and talk about how pandas handles miss-
ing values. So far, things have been simple (we have only seen pd.NA), but as we explore more types 
we will see that the way pandas handles missing values is inconsistent, owing mostly to the history 
of how the library was developed. While it would be great to wave a magic wand and make any incon-
sistencies go away, in reality, they have existed and will continue to exist in production code bases for 
years to come. Having a high-level understanding of that evolution will help you write better pandas 
code, and hopefully convert the unaware to using the idioms we preach in this book.

How to do it
The pandas library was originally built on top of NumPy, whose default data types do not support 
missing values. As such, pandas had to build its own missing value handling solution from scratch, 
and, for better or worse, decided that using the np.nan sentinel, which represents “not a number,” 
was useful enough to build off of.

np.nan itself is an implementation of the IEEE 754 standard’s “not a number” sentinel, a specification 
that only really had to do with floating point arithmetic. There is no such thing as “not a number” for 
integral data, which is why pandas implicitly converts a pd.Series like this:

ser = pd.Series(range(3))
ser

0    0
1    1
2    2
dtype: int64
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To a floating point data type after assigning a missing value:

ser.iloc[1] = None
ser

0    0.0
1    NaN
2    2.0
dtype: float64

As we discussed back in the Floating point types recipe, floating point values are slower than their 
integral counterparts. While integers can be expressed with 8- and 16-bit widths, floating point types 
require 32 bits at a minimum. Even if you are using 32-bit width integers, using a 32-bit floating point 
value may not be viable without loss of precision, and with 64-bit integers, conversion simply may just 
have to lose precision. Generally, with a conversion from integral to floating point types, you have to 
sacrifice some combination of performance, memory usage, and/or precision, so such conversions 
are not ideal.

Of course, pandas offers more than just integral and floating point types, so other types had to have 
custom missing value solutions attached to them. The default Boolean type gets converted to an object 
type, whose pitfalls will be explored in a recipe toward the end of this chapter. For datetime types, 
which we will discuss soon, pandas had to create a different pd.NaT sentinel altogether, as np.nan 
was technically not a feasible value to use for that data type. In essence, each data type in pandas 
could have its own indicator and implicit casting rules, which are hard to explain for beginners and 
seasoned pandas developers alike.

The pandas library tried to solve these issues with the introduction of the pandas extension types back 
in the 0.24 release, and as we have seen with the recipes introduced so far, they do a good job of using 
just pd.NA without any implicit type conversion when missing values appear. However, the pandas 
extension types were introduced as opt-in types instead of being the default, so the custom solutions 
pandas developed to deal with missing values are still prevalent in code. Without having ever rectified 
these inconsistencies, it is unfortunately up to the user to understand the data types they choose and 
how different data types handle missing values.

Despite the inconsistencies, pandas fortunately offers a pd.isna function that can tell you whether 
an element in your array is missing or not. This works with the default data types:

pd.isna(pd.Series([1, np.nan, 2]))

0    False
1     True
2    False
dtype: bool

It works just as well as it works with the pandas extension types:

pd.isna(pd.Series([1, pd.NA, 2], dtype=pd.Int64Dtype()))
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0    False
1     True
2    False
dtype: bool

There’s more…
Users should be aware that comparisons with np.nan and pd.NA do not behave in the same manner. 
For instance, np.nan == np.nan returns False, whereas pd.NA == pd.NA returns pd.NA. The former 
comparison is dictated by the terms of IEEE 757, whereas the pd.NA sentinel follows Kleene logic.

The way pd.NA works allows for much more expressive masking/selection in pandas. For instance, 
if you wanted to create a Boolean mask that also had missing values and use that to select values, 
pd.BooleanDtype allows you to do so, and naturally will only select records where the mask is True:

ser = pd.Series(range(3), dtype=pd.Int64Dtype())
mask = pd.Series([True, pd.NA, False], dtype=pd.BooleanDtype())
ser[mask]

0    0
dtype: Int64

The equivalent operation without the Boolean extension type will raise an error:

mask = pd.Series([True, None, False])
ser[mask]

ValueError: Cannot mask with non-boolean array containing NA / NaN values

So, in code that does not use pd.BooleanDtype, you will likely see a lot of method calls that replace 
“missing” values with False, and use pd.Series.astype to try and cast back to a Boolean data type 
after the fill:

mask = pd.Series([True, None, False])
mask = mask.fillna(False).astype(bool)
ser[mask]

/tmp/ipykernel_45649/2987852505.py:2: FutureWarning: Downcasting object dtype 
arrays on .fillna, .ffill, .bfill is deprecated and will change in a future 
version. Call result.infer_objects(copy=False) instead. To opt-in to the future 
behavior, set `pd.set_option('future.no_silent_downcasting', True)`
 mask = mask.fillna(False).astype(bool)
0    0
dtype: Int64

This is needlessly complex and inefficient. Using pd.BooleanDtype expresses the intent of your oper-
ations much more succinctly, letting you worry less about the nuances of pandas.
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Categorical types
The main point of the categorical data type is to define an acceptable set of domain values that your 
pd.Series can contain. The CSV - strategies for reading large files recipe in Chapter 4, The pandas I/O 
System, will show you an example where this can result in significant memory savings, but generally, 
the use case here is to have pandas convert string values like foo, bar, and baz into codes 0, 1, and 2, 
respectively, which can be much more efficiently stored.

How to do it
So far, we have always opted for pd.XXDtype() as the dtype= argument, which still could work in the 
case of categorical data types, but unfortunately does not handle missing values consistently (see 
There’s more… for a deeper dive into this). Instead, we have to opt for one of two alternative approaches 
to creating a pd.CategoricalDtype with the pd.NA missing value indicator.

With either approach, you will want to start with a pd.Series of data using pd.StringDtype:

values = ["foo", "bar", "baz"]
values_ser = pd.Series(values, dtype=pd.StringDtype())

From there, you may use pd.DataFrame.astype to cast this to categorical:

ser = values_ser.astype(pd.CategoricalDtype())
ser

0    foo
1    bar
2    baz
dtype: category
Categories (3, string): [bar, baz, foo]

Or, if you need more control over the behavior of the categorical type, you may construct a 
pd.CategoricalDtype from your pd.Series of values and subsequently use that as the dtype= ar-
gument:

cat = pd.CategoricalDtype(values_ser)
ser = pd.Series(values, dtype=cat)
ser

0    foo
1    bar
2    baz
dtype: category
Categories (3, string): [foo, bar, baz]

Both approaches get you to the same place, although the second approach trades some verbosity in 
constructing the pd.CategoricalDtype for finer-grained control over its behavior, as you will see 
throughout the remainder of this recipe.
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Regardless of the approach you take, you should note that the values used at the time you construct 
your categorical pd.Series define the set of acceptable domain values that can be used. Given that 
we created our categorical type with values of ["foo", "bar", "baz"], subsequent assignment using 
any of these values is not a problem:

ser.iloc[2] = "foo"
ser

0    foo
1    bar
2    foo
dtype: category
Categories (3, string): [foo, bar, baz]

However, assigning a value outside of that domain will raise an error:

ser.iloc[2] = "qux"

TypeError: Cannot setitem on a Categorical with a new category (qux), set the 
categories first

When explicitly constructing a pd.CategoricalDtype, you can assign a non-lexicographical order 
to your values via the ordered= argument. This is invaluable when working with ordinal data whose 
values are not naturally sorted the way you want by a computer algorithm.

As a practical example, let’s consider the use case of clothing sizes. Naturally, small clothing is 
smaller than medium clothing, which is smaller than large clothing, and so on. By constructing 
pd.CategoricalDtype with the desired sizes in order and using ordered=True, pandas makes it very 
natural to compare sizes:

shirt_sizes = pd.Series(["S", "M", "L", "XL"], dtype=pd.StringDtype())
cat = pd.CategoricalDtype(shirt_sizes, ordered=True)
ser = pd.Series(["XL", "L", "S", "L", "S", "M"], dtype=cat)
ser < "L"

0    False
1    False
2     True
3    False
4     True
5     True
dtype: bool

So, how does pandas make this so easy and efficient? The pandas library exposes a categorical accessor 
pd.Series.cat, which allows you to understand this more deeply. To dive further into this, let’s first 
create a pd.Series of categorical data where a given category is used more than once:

accepted_values = pd.Series(["foo", "bar"], dtype=pd.StringDtype())
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cat = pd.CategoricalDtype(accepted_values)
ser = pd.Series(["foo", "bar", "foo"], dtype=cat)
ser

0    foo
1    bar
2    foo
dtype: category
Categories (2, string): [foo, bar]

If you inspect pd.Series.cat.codes, you will see a like-sized pd.Series, but the value foo is replaced 
with the number 0, and the value bar is replaced with the value 1:

ser.cat.codes

0    0
1    1
2    0
dtype: int8

Separately, pd.Series.cat.categories will contain the values of each category, in order:

ser.cat.categories

Index(['foo', 'bar'], dtype='string')

Sparing some details around the internals, you can think of pandas as creating a dictionary of the 
form {0: "foo", 1: "bar"}. While it internally stores a pd.Series with values of [0, 1, 0], when it 
comes time to display or access the values in any way, those values are used like keys in a dictionary to 
access the true value the end user would like to use. For this reason, you will often see the categorical 
data type described as a dictionary type (Apache Arrow, for one, uses the term dictionary).

So, why bother? The process of encoding the labels into very small integer lookup values can have a sig-
nificant impact on memory usage. Note the difference in memory usage between a normal string type:

pd.Series(["foo", "bar", "baz"] * 100, dtype=pd.StringDtype()).memory_usage()

2528

As compared to the equivalent categorical type, as follows:

pd.Series(["foo", "bar", "baz"] * 100, dtype=cat).memory_usage()

552

Your numbers may or may not exactly match the output of .memory_usage(), but you should at the 
very least see a rather drastic reduction when using the categorical data type.
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There’s more…
If using dtype=pd.CategoricalDtype() works directly, why would users not want to use that? Unfor-
tunately, there is a rather large gap in the pandas API that prevents missing values from propagating 
with categorical types, which can unexpectedly introduce the np.nan missing value indicator we 
cautioned against using in the Missing value handling recipe. This can lead to very surprising behavior, 
even if you think you are properly using the pd.NA sentinel:

pd.Series(["foo", "bar", pd.NA], dtype=pd.CategoricalDtype())

0    foo
1    bar
2    NaN
dtype: category
Categories (2, object): ['bar', 'foo']

Notice in the preceding example that we tried to supply pd.NA but still got an np.nan in return? The 
explicit construction of a pd.CategoricalDtype from a pd.Series with dtype=pd.StringDtype() 
helps us avoid this very surprising behavior:

values = pd.Series(["foo", "bar"], dtype=pd.StringDtype())
cat = pd.CategoricalDtype(values)
pd.Series(["foo", "bar", pd.NA], dtype=cat)

0     foo
1     bar
2    <NA>
dtype: category
Categories (2, string): [foo, bar]

If you find this behavior confusing or troublesome, trust that you are not alone. The light at the end 
of the tunnel may be PDEP-16, which aims to make pd.NA exclusively work as the missing value in-
dicator. This would mean that you could safely use the pd.CategoricalDtype() constructor directly 
and follow all the same patterns you saw up until this point.

Unfortunately, this book was released around the time of the pandas 3.0 release and before PDEP-16 
had been officially accepted, so it is hard to see into the future and advise when these inconsistencies 
in the API will go away. If you are reading this book a few years after publication, be sure to check back 
on the status of PDEP-16, as it may change the proper way to construct categorical data (alongside 
other data types).
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Temporal types – datetime
The term temporal generally encompasses data types that concern themselves with dates and times, 
both in absolute terms as well as when measuring the duration between two different points in time. 
Temporal types are a key enabler for time-series-based analyses, which can be invaluable for trend 
detection and forecasting models. In fact, pandas was initially written at a capital management firm 
before being open sourced. Much of the time-series handling that was built into pandas has been 
influenced by real-world reporting needs from financial and economic industries.

While the Categorical types section started to show some inconsistencies in the pandas type system 
API, temporal types take things a bit further. It would be reasonable to expect pd.DatetimeDtype() 
to exist as a constructor, but that is unfortunately not the case, at least as of writing. Additionally, and 
as mentioned in the Missing value handling recipe, temporal types, which were implemented before 
the pandas type extension system, use a different missing value indicator of pd.NaT (i.e., “not a time”).

Despite these issues, pandas offers a mind-boggling amount of advanced functionality for dealing with 
temporal data. Chapter 9, Temporal Data Types and Algorithms, will dive further into the applications 
of these data types; for now, we will just give a quick overview.

How to do it
Unlike many database systems that offer separate DATE and DATETIME or TIMESTAMP data types, pan-
das just has a single “datetime” type, which can be constructed via the dtype= argument of the 
"datetime64[<unit>]" form.

Through much of the history of pandas, ns was the only accepted value for <unit>, so, let’s start with 
that for now (but check There’s more… for a more detailed explanation of the different values):

ser = pd.Series([
    "2024-01-01 00:00:00",
    "2024-01-02 00:00:01",
    "2024-01-03 00:00:02"
], dtype="datetime64[ns]")
ser

0   2024-01-01 00:00:00
1   2024-01-02 00:00:01
2   2024-01-03 00:00:02
dtype: datetime64[ns]

You can also construct a pd.Series of this data type using string arguments without time components:

ser = pd.Series([
    "2024-01-01",
    "2024-01-02",
    "2024-01-03"
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], dtype="datetime64[ns]")
ser

0   2024-01-01
1   2024-01-02
2   2024-01-03
dtype: datetime64[ns]

The output of the preceding construction is slightly misleading; although the timestamps are not 
displayed, pandas still internally stores these values as datetimes, not dates. This might be problem-
atic because there is no way to prevent subsequent timestamps from being stored in that pd.Series:

ser.iloc[1] = "2024-01-04 00:00:42"
ser

0   2024-01-01 00:00:00
1   2024-01-04 00:00:42
2   2024-01-03 00:00:00
dtype: datetime64[ns]

If preserving dates is important, be sure to read the Temporal PyArrow types recipe later in this chapter.

Much like we saw back with string types, a pd.Series containing datetime data gets an accessor, which 
unlocks features to fluidly deal with dates and times. In this case, the accessor is pd.Series.dt.

We can use this accessor to determine the year of each element in our pd.Series:

ser.dt.year

0    2024
1    2024
2    2024
dtype: int32

pd.Series.dt.month will yield the month:

ser.dt.month

0    1
1    1
2    1
dtype: int32

pd.Series.dt.day extracts the day of the month that the date falls on:

ser.dt.day

0    1
1    4
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2    3
dtype: int32

There is also a pd.Series.dt.day_of_week function, which will tell you the day of the week a date 
falls on. Monday starts at 0, going up to 6, meaning Sunday:

ser.dt.day_of_week

0    0
1    3
2    2
dtype: int32

If you’ve worked with timestamps before (especially in global organizations), another thing you may 
question is what time these values represent. 2024-01-03 00:00:00 in New York City does not happen 
simultaneously with 2024-01-03 00:00:00 in London, nor in Shanghai. So, how can we get a true rep-
resentation of time?

The timestamps we have seen before are considered timezone-naive, (i.e., they do not clearly represent 
a single point in time anywhere on Earth). By contrast, you can make your timestamps timezone-aware 
by specifying a timezone as part of the dtype= argument.

Strangely enough, pandas does have a pd.DatetimeTZDtype(), so we can use that along with a tz= 
argument to specify the time zone in which our events are assumed to occur. For example, to make 
your timestamps represent UTC, you would do the following:

pd.Series([
    "2024-01-01 00:00:01",
    "2024-01-02 00:00:01",
    "2024-01-03 00:00:01"
], dtype=pd.DatetimeTZDtype(tz="UTC"))

0   2024-01-01 00:00:01+00:00
1   2024-01-02 00:00:01+00:00
2   2024-01-03 00:00:01+00:00
dtype: datetime64[ns, UTC]

The string UTC represents an Internet Assigned Numbers Authority (IANA) timezone identifier. You 
can use any of those identifiers as the tz= argument, like America/New_York:

pd.Series([
    "2024-01-01 00:00:01",
    "2024-01-02 00:00:01",
    "2024-01-03 00:00:01"
], dtype=pd.DatetimeTZDtype(tz="America/New_York"))
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0   2024-01-01 00:00:01-05:00
1   2024-01-02 00:00:01-05:00
2   2024-01-03 00:00:01-05:00
dtype: datetime64[ns, America/New_York]

In case you did not want to use a timezone identifier, you could alternatively specify a UTC offset:

pd.Series([
    "2024-01-01 00:00:01",
    "2024-01-02 00:00:01",
    "2024-01-03 00:00:01"
], dtype=pd.DatetimeTZDtype(tz="-05:00"))

0   2024-01-01 00:00:01-05:00
1   2024-01-02 00:00:01-05:00
2   2024-01-03 00:00:01-05:00
dtype: datetime64[ns, UTC-05:00]

The pd.Series.dt accessor we introduced in this recipe also has some nice features for working with 
timezones. For instance, if you are working with data that technically has no timezone associated with 
it, but you know in fact that the times represent US eastern time values, pd.Series.dt.tz_localize 
can help you express that:

ser_no_tz = pd.Series([
    "2024-01-01 00:00:00",
    "2024-01-01 00:01:10",
    "2024-01-01 00:02:42"
], dtype="datetime64[ns]")
ser_et = ser_no_tz.dt.tz_localize("America/New_York")
ser_et

0   2024-01-01 00:00:00-05:00
1   2024-01-01 00:01:10-05:00
2   2024-01-01 00:02:42-05:00
dtype: datetime64[ns, America/New_York]

You can also use pd.Series.dt.tz_convert to translate times into another timezone:

ser_pt = ser_et.dt.tz_convert("America/Los_Angeles")
ser_pt

0   2023-12-31 21:00:00-08:00
1   2023-12-31 21:01:10-08:00
2   2023-12-31 21:02:42-08:00
dtype: datetime64[ns, America/Los_Angeles]
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You could even set all of your datetime data to midnight of whichever timezone it is in using pd.Series.
dt.normalize. This can be useful if you don’t really care about the time component of your datetimes 
at all, and just want to treat them as dates, even though pandas does not offer a first-class DATE type:

ser_pt.dt.normalize()

0   2023-12-31 00:00:00-08:00
1   2023-12-31 00:00:00-08:00
2   2023-12-31 00:00:00-08:00
dtype: datetime64[ns, America/Los_Angeles]

While we have so far pointed out many great features of pandas when working with datetime data, we 
should also take a look at one of the not-so-great aspects. Back in Missing value handling, we talked 
about how np.nan was historically used as a missing value indicator in pandas, even though more 
modern data types use pd.NA. With datetime data types, there is even yet another missing value in-
dicator of pd.NaT:

ser = pd.Series([
    "2024-01-01",
    None,
    "2024-01-03"
], dtype="datetime64[ns]")
ser

0   2024-01-01
1          NaT
2   2024-01-03
dtype: datetime64[ns]

Again, this difference owes to the history that temporal types were offered before pandas introduced 
its extension types, and progress to move to one consistent missing value indicator has not fully 
occurred. Fortunately, functions like pd.isna will still correctly identify pd.NaT as a missing value:

pd.isna(ser)

0    False
1     True
2    False
dtype: bool

There’s more…
The historical ns precision to pandas limited timestamps to a range that started slightly before 1677-
09-21 and would go up to slightly after 2264-04-11. Attempting to assign a datetime value outside of 
those bounds would raise an OutOfBoundsDatetime exception:
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pd.Series([
    "1500-01-01 00:00:01",
    "2500-01-01 00:00:01",
], dtype="datetime64[ns]")

OutOfBoundsDatetime: Out of bounds nanosecond timestamp: 1500-01-01 00:00:01, 
at position 0

Starting with the 3.0 series of pandas, you could specify lower precisions like s, ms, or us to extend 
your range beyond those windows:

pd.Series([
    "1500-01-01 00:00:01",
    "2500-01-01 00:00:01",
], dtype="datetime64[us]")

0   1500-01-01 00:00:01
1   2500-01-01 00:00:01
dtype: datetime64[us]

Temporal types – timedelta
Timedeltas are useful for measuring the duration between two points in time. This can be used to 
measure things like “on average, how much time passed between events X and Y,” which can be 
helpful to monitor and predict the turnaround time of certain processes and/or systems within your 
organization. Additionally, timedeltas can be used to manipulate your datetimes, making it easy to 

“add X number of days” or “subtract Y number of seconds” from your datetimes, all without having to 
dive into the minutiae of how your datetime objects are stored internally.

How to do it
So far, we have introduced each data type by constructing it directly. However, the use cases where 
you would construct a timedelta pd.Series by hand are exceedingly rare. More commonly, you will 
come across this type as the result of an expression that subtracts two datetimes from one another:

ser = pd.Series([
    "2024-01-01",
    "2024-01-02",
    "2024-01-03"
], dtype="datetime64[ns]")
ser - pd.Timestamp("2023-12-31 12:00:00")

0   0 days 12:00:00
1   1 days 12:00:00
2   2 days 12:00:00
dtype: timedelta64[ns]
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Within pandas, there is also the pd.Timedelta scalar, which can be used in expressions to add or 
subtract a duration to datetimes. For instance, the following code shows you how to add 3 days to 
every datetime in a pd.Series:

ser + pd.Timedelta("3 days")

0   2024-01-04
1   2024-01-05
2   2024-01-06
dtype: datetime64[ns]

There’s more…
While not a common pattern, if you ever needed to manually construct a pd.Series of timedelta 
objects, you could do so using dtype="timedelta[ns]":

pd.Series([
    "-1 days",
    "6 hours",
    "42 minutes",
    "12 seconds",
    "8 milliseconds",
    "4 microseconds",
    "300 nanoseconds",
], dtype="timedelta64[ns]")

0           -1 days +00:00:00
1             0 days 06:00:00
2             0 days 00:42:00
3             0 days 00:00:12
4      0 days 00:00:00.008000
5      0 days 00:00:00.000004
6   0 days 00:00:00.000000300
dtype: timedelta64[ns]

What if we tried to create a timedelta of months? Let’s see:

pd.Series([
    "1 months",
], dtype="timedelta64[ns]")

ValueError: invalid unit abbreviation: months
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The reason pandas does not allow this is that timedelta represents a consistently measurable duration. 
While there are always 1,000 nanoseconds in a microsecond, 1,000 microseconds in a millisecond, 1,000 
milliseconds in a second, and so on, the number of days in a month is not consistent, ranging from 
28-31. Saying two events occurred one month apart does not appease the rather strict requirements of 
a timedelta to measure a finite duration of time passed between two points.

If you need the ability to move dates by the calendar rather than by a finite duration, you can still use 
the pd.DateOffset object we will introduce in Chapter 9, Temporal Data Types and Algorithms. While 
this does not have an associated data type to introduce in this chapter, the object itself can be a great 
complement or augmentation of the timedelta type, for analyses that don’t strictly think of time as a 
finite duration.

Temporal PyArrow types
At this point, we have reviewed many of the “first-class” data types built into pandas, while highlighting 
some rough edges and inconsistencies that plague them. Despite those issues, the types baked into 
pandas can take you a long way in your data journey.

But there are still cases where the pandas types are not suitable, with a common case being interoper-
ability with databases. Most databases have distinct DATE and DATETIME types, so the fact that pandas 
only offers a DATETIME type can be disappointing to users fluent in SQL.

Fortunately, the Apache Arrow project defines a true DATE type. Starting in version 2.0, pandas users 
can start leveraging Arrow types exposed through the PyArrow library.

How to do it
To construct PyArrow types in pandas directly, you will always provide a dtype= argument of the 
pd.ArrowDtype(XXX) form, replacing XXX with the appropriate PyArrow type. The DATE type in PyAr-
row is called pa.date32():

ser = pd.Series([
    "2024-01-01",
    "2024-01-02",
    "2024-01-03",
], dtype=pd.ArrowDtype(pa.date32()))
ser

0    2024-01-01
1    2024-01-02
2    2024-01-03
dtype: date32[day][pyarrow]

The pa.date32() type can express a wider range of dates without having to toggle the precision:

ser = pd.Series([
    "9999-12-29",
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    "9999-12-30",
    "9999-12-31",
], dtype=pd.ArrowDtype(pa.date32()))
ser

0    9999-12-29
1    9999-12-30
2    9999-12-31
dtype: date32[day][pyarrow]

The PyArrow library offers a timestamp type; however, the functionality is nearly identical to the da-
tetime type you have already seen, so I would advise sticking with the datetime type built into pandas.

PyArrow List types
Life would be so simple if every bit of data you came across fit nicely and squarely in a single location 
of pd.DataFrame, but inevitably you will run into issues where that is not the case. For a second, let’s 
imagine trying to analyze the employees that work at a company:

df = pd.DataFrame({
    "name": ["Alice", "Bob", "Janice", "Jim", "Michael"],
    "years_exp": [10, 2, 4, 8, 6],
})
df

     name      years_exp
0    Alice     10
1    Bob       2
2    Janice    4
3    Jim       8
4    Michael   6

This type of data is pretty easy to work with – you could easily add up or take the average number of 
years that each employee has of experience. But what if we also wanted to know that Bob and Michael 
reported to Alice while Janice reported to Jim?

Our picturesque view of the world has suddenly come crashing down – how could we possibly ex-
press this in pd.DataFrame? If you are coming from a Microsoft Excel or SQL background, you may 
be tempted to think that you need to create a separate pd.DataFrame that holds the direct reports 
information. In pandas, we can express this more naturally using the PyArrow pa.list_() data type.

How to do it
When working with a pa.list_() type, you must parametrize it with the data type of elements it will 
contain. In our case, we want our list to contain values like Bob and Janice, so we will parametrize 
our pa.list_() type with the pa.string() type:
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ser = pd.Series([
    ["Bob", "Michael"],
    None,
    None,
    ["Janice"],
    None,
], dtype=pd.ArrowDtype(pa.list_(pa.string())))
df["direct_reports"] = ser
df

     name      years_exp    direct_reports
0    Alice     10           ['Bob' 'Michael']
1    Bob       2            <NA>
2    Janice    4            <NA>
3    Jim       8            ['Janice']
4    Michael   6            <NA>

There’s more…
When working with a pd.Series that has a PyArrow list type, you can unlock more features of the 
pd.Series by using the .list accessor. For instance, to see how many items a list contains, you can 
call ser.list.len():

ser.list.len()

0       2
1    <NA>
2    <NA>
3       1
4    <NA>
dtype: int32[pyarrow]

You can access the list item at a given position using the .list[] syntax:

ser.list[0]

0       Bob
1      <NA>
2      <NA>
3    Janice
4      <NA>
dtype: string[pyarrow]

There’s also a .list.flatten accessor, which could help you identify all of the employees who report 
to someone:

ser.list.flatten()



Data Types70

0        Bob
1    Michael
2     Janice
dtype: string[pyarrow]

PyArrow decimal types
When we looked at the Floating point types recipe earlier in this chapter, one of the important things 
we mentioned was that floating types are inexact. Most users of computer software can go their entire 
lives without knowing this fact, and in many cases, the lack of precision may be an acceptable trade-
off to get the performance offered by floating point types. However, in some domains, it is critical to 
have extremely precise computations.

As a simplistic example, let’s assume that a movie recommender system used floating point arithmetic 
to calculate the rating for a given movie as 4.3334 out of 5 stars when it really should have been 4.33337. 
Even if that rounding error was repeated a million times, it probably wouldn’t have a largely negative 
effect on civilization. On the flip side, a financial system that processes billions of transactions per day 
would find this rounding error to be unacceptable. Over time, that rounding error would accumulate 
into a rather large number in its own right.

Decimal data types are the solution to these problems. By giving up some performance that you would 
get with floating point calculations, decimal values allow you to achieve more precise calculations.

How to do it
The pa.decimal128() data type requires two arguments that define the precision and scale of the num-
bers you wish to represent. The precision dictates how many decimal digits can safely be stored, with 
the scale representing how many of those decimal digits may appear after a decimal point.

For example, with a precision of 5 and a scale of 2, you would be able to accurately represent numbers 
between -999.99 and 999.99, whereas a precision of 5 with a scale of 0 gives you a range of -99999 to 
99999. In practice, the precision you choose will be much higher.

Here’s an example of how to represent this in a pd.Series:

pd.Series([
    "123456789.123456789",
    "-987654321.987654321",
    "99999999.9999999999",
], dtype=pd.ArrowDtype(pa.decimal128(19, 10)))

0     123456789.1234567890
1    -987654321.9876543210
2      99999999.9999999999
dtype: decimal128(19, 10)[pyarrow]
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Pay special attention to the fact that we provided our data as strings. If we had tried to provide that as 
floating point data to begin with, we would have immediately seen a loss in precision:

pd.Series([
    123456789.123456789,
    -987654321.987654321,
    99999999.9999999999,
], dtype=pd.ArrowDtype(pa.decimal128(19, 10)))

0     123456789.1234567910
1    -987654321.9876543283
2     100000000.0000000000
dtype: decimal128(19, 10)[pyarrow]

This happens because Python itself uses floating point storage for real numbers by default, so the 
rounding error happens the moment the language runtime tries to interpret the numbers you have 
provided. Depending on your platform, you may even find that 99999999.9999999999 == 100000000.0 
returns True. To a human reader, that is obviously not true, but the limits of computer storage prevent 
the language from being able to discern that.

Python’s solution to this issue is the decimal module, which ensures rounding errors do not occur:

import decimal
decimal.Decimal("99999999.9999999999") == decimal.Decimal("100000000.0")

False

While still giving you proper arithmetic, as follows:

decimal.Decimal("99999999.9999999999") + decimal.Decimal("100000000.0")

Decimal('199999999.9999999999')

decimal.Decimal objects are also valid arguments when constructing the PyArrow decimal type:

pd.Series([
    decimal.Decimal("123456789.123456789"),
    decimal.Decimal("-987654321.987654321"),
    decimal.Decimal("99999999.9999999999"),
], dtype=pd.ArrowDtype(pa.decimal128(19, 10)))

0     123456789.1234567890
1    -987654321.9876543210
2      99999999.9999999999
dtype: decimal128(19, 10)[pyarrow]
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There’s more…
The pa.decimal128 data type can only support up to 38 significant decimal digits. If you need more 
than that, the Arrow ecosystem also provides a pa.decimal256 data type:

ser = pd.Series([
    "123456789123456789123456789123456789.123456789"
], dtype=pd.ArrowDtype(pa.decimal256(76, 10)))
ser

0    123456789123456789123456789123456789.1234567890
dtype: decimal256(76, 10)[pyarrow]

Just be aware that this will consume twice as much memory as the pa.decimal128 data type, with 
potentially even slower calculation times.

NumPy type system, the object type, and pitfalls
As mentioned back in the introduction to this chapter, at least in the 2.x and 3.x series, pandas still 
defaults to types that are sub-optimal for general data analysis. You will undoubtedly come across 
them in code from peer or online snippets, however, so understanding how they work, their pitfalls, 
and how to avoid them will be important for years to come.

How to do it
Let’s look at the default construction of a pd.Series from a sequence of integers:

pd.Series([0, 1, 2])

0    0
1    1
2    2
dtype: int64

From this argument, pandas gave us back a pd.Series with an int64 data type. That seems normal, 
so what is the big deal? Well, let’s go ahead and see what happens when you introduce missing values:

pd.Series([0, None, 2])

0    0.0
1    NaN
2    2.0
dtype: float64

Huh? We provided integer data but now we got back a floating point type. Surely specifying the dtype= 
argument will help us fix this:

pd.Series([0, None, 2], dtype=int)
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TypeError: int() argument must be a string, a bytes-like object or a number, 
not 'NoneType'

Try as hard as you might, you simply cannot mix missing values with the NumPy integer data type, 
which pandas returns by default. A common solution to this pattern is to start filling missing values 
with another value like 0 before casting back to an actual integer data type with pd.Series.astype:

ser = pd.Series([0, None, 2])
ser.fillna(0).astype(int)

0    0
1    0
2    2
dtype: int64

That solves the problem of getting us to a proper integer type, but it had to change the data to get us 
there. Whether this matters is a context-dependent issue; some users may be OK with treating missing 
values as 0 if all they wanted to do was sum the column, but that same user might not be happy with 
the new count and average that gets produced by that data.

Note the difference between this fillna approach and using the pandas extension types introduced 
at the start of this chapter:

pd.Series([0, None, 2]).fillna(0).astype(int).mean()

0.6666666666666666

pd.Series([0, None, 2], dtype=pd.Int64Dtype()).mean()

1.0

Not only do we get different results, but the approach where we do not use dtype=pd.Int64Dtype() 
takes longer to compute:

import timeit
func = lambda: pd.Series([0, None, 2]).fillna(0).astype(int).mean()
timeit.timeit(func, number=10_000)

0.9819313539992436

func = lambda: pd.Series([0, None, 2], dtype=pd.Int64Dtype()).mean()
timeit.timeit(func, number=10_000)

0.6182142379984725

This is perhaps not surprising when you consider the number of steps you had to go through to just 
get integers instead of floats.
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When you look at the historical Boolean data type in pandas, things get even stranger. Let’s once again 
start with the seemingly sane base case:

pd.Series([True, False])

0     True
1    False
dtype: bool

Let’s throw a wrench into things with a missing value:

pd.Series([True, False, None])

0     True
1    False
2     None
dtype: object

This is the first time we have seen the object data type. Sparing some technical details, you should 
trust that the object data type is one of the worst data types to use in pandas. Essentially anything 
goes with an object data type; it completely disallows the type system from enforcing anything about 
your data. Even though we just want to store True=/=False values where some may be missing, really 
any valid value can now be placed alongside those values:

pd.Series([True, False, None, "one of these things", ["is not like"], ["the 
other"]])

0                   True
1                  False
2                   None
3    one of these things
4          [is not like]
5            [the other]
dtype: object

All of this nonsense can be avoided by using pd.BooleanDtype:

pd.Series([True, False, None], dtype=pd.BooleanDtype())

0     True
1    False
2     <NA>
dtype: boolean

Another rather unfortunate fact of the default pandas implementation (at least in the 2.x series) is 
that the object data type is used for strings:

pd.Series(["foo", "bar", "baz"])
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0    foo
1    bar
2    baz
dtype: object

Once again, there is nothing there that strictly enforces we have string data:

ser = pd.Series(["foo", "bar", "baz"])
ser.iloc[2] = 42
ser

0    foo
1    bar
2     42
dtype: object

With pd.StringDtype(), that type of assignment would raise an error:

ser = pd.Series(["foo", "bar", "baz"], dtype=pd.StringDtype())
ser.iloc[2] = 42

TypeError: Cannot set non-string value '42' into a StringArray.

There’s more…
We have talked at length in this recipe about how the lack of type enforcement with the object data 
type is a problem. On the flip side, there are some use cases where having that flexibility can be 
helpful, especially when interacting with Python objects where you cannot make assertions about 
the data up front:

alist = [42, "foo", ["sub", "list"], {"key": "value"}]
ser = pd.Series(alist)
ser

0                  42
1                 foo
2         [sub, list]
3    {'key': 'value'}
dtype: object

If you have worked with a tool like Microsoft Excel in the past, the idea that you can put any value 
anywhere in almost any format may not seem that novel. On the flip side, if your experience is more 
based on using SQL databases, the idea that you could just load any data may be a foreign concept.

In the realm of data processing, there are two major approaches: extract, transform, load (ETL) and 
extract, load, transform (ELT). ETL requires you to transform your data before you can load it into a 
data analysis tool, meaning all of the cleansing has to be done upfront in another tool. 
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The ELT approach allows you to just load the data first and deal with cleaning it up later; the object 
data type enables you to use the ELT approach in pandas, should you so choose.

With that said, I would generally advise that you strictly use the object data type as a staging data type 
before transforming it into a more concrete type. By avoiding the object data type, you will achieve 
much higher performance, have a better understanding of your data, and be able to write cleaner code.

As a final note in this chapter, it is pretty easy to control data types when you work with a pd.Series 
constructor directly with the dtype= argument. While the pd.DataFrame also has a dtype= argument, 
it does not allow you to specify types per column, meaning you usually will end up with the historical 
NumPy data types when creating a pd.DataFrame:

df = pd.DataFrame([
    ["foo", 1, 123.45],
    ["bar", 2, 333.33],
    ["baz", 3, 999.99],
], columns=list("abc"))
df

    a     b   c
0   foo   1   123.45
1   bar   2   333.33
2   baz   3   999.99

Checking pd.DataFrame.dtypes will help us confirm this:

df.dtypes

a     object
b      int64
c    float64
dtype: object

To get us into using the more desirable pandas extension types, we could either explicitly use the 
pd.DataFrame.astype method:

df.astype({
    "a": pd.StringDtype(),
    "b": pd.Int64Dtype(),
    "c": pd.Float64Dtype(),
}).dtypes

a    string[python]
b             Int64
c           Float64
dtype: object
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Or, we could use the pd.DataFrame.convert_dtypes method with dtype_backend="numpy_nullable":

df.convert_dtypes(dtype_backend="numpy_nullable").dtypes

a    string[python]
b             Int64
c           Float64
dtype: object

The term numpy_nullable is a bit of a misnomer at this point in the history of pandas, but, as we 
mentioned back in the introduction, it was the original name for what later became referred to as 
the pandas extension type system.
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4
The pandas I/O System

So far, we have been creating our pd.Series and pd.DataFrame objects inline with data. While this is 
helpful for establishing a theoretical foundation, very rarely would a user do this in production code. 
Instead, users would use the pandas I/O functions to read/write data from/to various formats.

I/O, which is short for input/output, generally refers to the process of reading from and writing to 
common data formats like CSV, Microsoft Excel, JSON, etc. There is, of course, not just one format 
for data storage, and many of these options represent trade-offs between performance, storage size, 
third-party integration, accessibility, and/or ubiquity. Some formats assume well-structured, stringently 
defined data (SQL being arguably the most extreme), whereas other formats can be used to represent 
semi-structured data that is not restricted to being two-dimensional (JSON being great example).

The fact that pandas can interact with so many of these data formats is one of its greatest strengths, 
allowing pandas to be the proverbial Swiss army knife of data analysis tools. Whether you are inter-
acting with SQL databases, a set of Microsoft Excel files, HTML web pages, or a REST API endpoint 
that transmits data via JSON, pandas is up to the task of helping you build a cohesive view of all of your 
data. For this reason, pandas is considered a popular tool in the domain of ETL.

We are going to cover the following recipes in this chapter:

•	 CSV – basic reading/writing
•	 CSV – strategies for reading large files
•	 Microsoft Excel – basic reading/writing
•	 Microsoft Excel – finding tables in non-default locations
•	 Microsoft Excel – hierarchical data
•	 SQL using SQLAlchemy
•	 SQL using ADBC
•	 Apache Parquet
•	 JSON
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•	 HTML
•	 Pickle
•	 Third party I/O libraries

CSV – basic reading/writing
CSV, which stands for comma-separated values, is one of the most common formats for data exchange. 
While there is no official standard that defines what a CSV file is, most developers and users would 
loosely consider it to be a plain text file, where each line in the file represents a row of data, and within 
each row, there are delimiters between each field to indicate when one record ends and the next begins. 
The most commonly used delimiter is a comma (hence the name comma-separated values), but this is 
not a hard requirement; it is not uncommon to see CSV files that use a pipe (|), tilde (~), or backtick (`) 
character as the delimiter. If the delimiter character is expected to appear within a given record, usually 
some type of quoting surrounds the individual record (or all records) to allow a proper interpretation.

For example, let’s assume a CSV file uses a pipe separator with the following contents:

column1|column2
a|b|c

The first row would be read with only two columns of data, whereas the second row would contain 
three columns of data. Assuming we wanted the records ["a|b", "c"] to appear in the second row, 
proper quoting would be required:

column1|column2
"a|b"|c

The above rules are relatively simple and make it easy to write CSV files, but that in turn makes reading 
CSV files much more difficult. The CSV format provides no metadata (i.e., what delimiter, quoting rule, 
etc.), nor does it provide any information about the type of data being provided (i.e., what type of data 
should be located in column X). This puts the onus on CSV readers to figure this all out on their own, 
which adds performance overhead and can easily lead to a misinterpretation of data. Being a text-
based format, CSV is also an inefficient way of storing data compared to binary formats like Apache 
Parquet. Some of this can be offset by compressing CSV files (at the cost of read/write performance), 
but generally, CSV rates as one of the worst formats for CPU efficiency, memory usage, and losslessness.

Despite these shortcomings and more, the CSV format has been around for a long time and won’t 
disappear any time soon, so it is beneficial to know how to read and write such files with pandas.

How to do it
Let’s start with a simple pd.DataFrame. Building on our knowledge in Chapter 3, Data Types, we 
know that the default types used by pandas are less than ideal, so we are going to use pd.DataFrame.
convert_dtypes with the dtype_backend="numpy_nullable" argument to construct this and all of 
our pd.DataFrame objects going forward.

df = pd.DataFrame([
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    ["Paul", "McCartney", 1942],
    ["John", "Lennon", 1940],
    ["Richard", "Starkey", 1940],
    ["George", "Harrison", 1943],
], columns=["first", "last", "birth"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")
df

        first   last       birth
0       Paul    McCartney  1942
1       John    Lennon     1940
2       Richard Starkey    1940
3       George  Harrison   1943

To write this pd.DataFrame out to a CSV file, we can use the pd.DataFrame.to_csv method. Typically, 
the first argument you would provide is a filename, but in this example, we will use the io.StringIO 
object instead. An io.StringIO object acts like a file but does not save anything to your disk. Instead, 
it manages the file contents completely in memory, requiring no cleanup and leaving nothing behind 
on your filesystem:

import io
buf = io.StringIO()

df.to_csv(buf)
print(buf.getvalue())

,first,last,birth
0,Paul,McCartney,1942
1,John,Lennon,1940
2,Richard,Starkey,1940
3,George,Harrison,1943

Now that we have a “file” with CSV data, we can use the pd.read_csv function to read this data back in. 
However, by default, I/O functions in pandas will use the same default data types that a pd.DataFrame 
constructor would use. To avoid that, we can fortunately still use the dtype_backend="numpy_nullable" 
argument with I/O read functions:

buf.seek(0)
pd.read_csv(buf, dtype_backend="numpy_nullable")

     Unnamed: 0   first    last       birth
0    0            Paul     McCartney  1942
1    1            John     Lennon     1940
2    2            Richard  Starkey    1940
3    3            George   Harrison   1943
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Interestingly, the pd.read_csv result does not exactly match the pd.DataFrame we started with, as it 
includes a newly added Unnamed: 0 column. When you call pd.DataFrame.to_csv, it will write out 
both your row index and columns to the CSV file. The CSV format does not allow you to store any extra 
metadata to indicate which columns in the CSV file should map to the row index versus those that 
should represent a column in the pd.DataFrame, so pd.read_csv assumes everything to be a column.

You can rectify this situation by letting pd.read_csv know that the first column of data in the CSV file 
should form the row index with an index_col=0 argument:

buf.seek(0)
pd.read_csv(buf, dtype_backend="numpy_nullable", index_col=0)

      first    last       birth
0     Paul     McCartney  1942
1     John     Lennon     1940
2     Richard  Starkey    1940
3     George   Harrison   1943

Alternatively, you could avoid writing the index in the first place with the index=False argument of 
pd.DataFrame.to_csv:

buf = io.StringIO()
df.to_csv(buf, index=False)
print(buf.getvalue())

first,last,birth
Paul,McCartney,1942
John,Lennon,1940
Richard,Starkey,1940
George,Harrison,1943

There’s more…
As mentioned back at the beginning of this section, CSV files use quoting to prevent any confusion 
between the appearance of the delimiter within a field and its intended use – to indicate the start of a 
new record. Fortunately, pandas handles this rather sanely by default, which we can see with some 
new sample data:

df = pd.DataFrame([
    ["McCartney, Paul", 1942],
    ["Lennon, John", 1940],
    ["Starkey, Richard", 1940],
    ["Harrison, George", 1943],
], columns=["name", "birth"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")
df
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     name               birth
0    McCartney, Paul    1942
1    Lennon, John       1940
2    Starkey, Richard   1940
3    Harrison, George   1943

Now that we just have a name column that contains a comma, you can see that pandas quotes the field 
to indicate that the usage of a comma is part of the data itself and not a new record:

buf = io.StringIO()
df.to_csv(buf, index=False)
print(buf.getvalue())

name,birth
"McCartney, Paul",1942
"Lennon, John",1940
"Starkey, Richard",1940
"Harrison, George",1943

We could have alternatively decided upon the usage of a different delimiter, which can be toggled with 
the sep= argument:

buf = io.StringIO()
df.to_csv(buf, index=False, sep="|")
print(buf.getvalue())

name|birth
McCartney, Paul|1942
Lennon, John|1940
Starkey, Richard|1940
Harrison, George|1943

We also mentioned that, while CSV files are naturally plain text, you can also compress them to save 
storage space. The easiest way to do this is to provide a filename argument with a common compres-
sion file extension, i.e., by saying df.to_csv("data.csv.zip"). For more explicit control, you can 
use the compression= argument.

To see this in action, let’s work with a larger pd.DataFrame:

df = pd.DataFrame({
    "col1": ["a"] * 1_000,
    "col2": ["b"] * 1_000,
    "col3": ["c"] * 1_000,
})
df = df.convert_dtypes(dtype_backend="numpy_nullable")
df.head()
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       col1     col2    col3
0      a        b       c
1      a        b       c
2      a        b       c
3      a        b       c
4      a        b       c

Take note of the number of bytes used to write this out as a plain text CSV file:

buf = io.StringIO()
df.to_csv(buf, index=False)
len(buf.getvalue())

6015

Using compression="gzip", we can produce a file with far less storage:

buf = io.BytesIO()
df.to_csv(buf, index=False, compression="gzip")
len(buf.getvalue())

69

The trade-off here is that while compressed files require less disk storage, they require more work 
from the CPU to compress or decompress the file contents.

CSV – strategies for reading large files
Handling large CSV files can be challenging, especially when they exhaust the memory of your com-
puter. In many real-world data analysis scenarios, you might encounter datasets that are too large to 
be processed in a single-read operation. This can lead to performance bottlenecks and MemoryError 
exceptions, making it difficult to proceed with your analysis. However, fear not! There are quite a few 
levers you can pull to more efficiently try and process files.

In this recipe, we will show you how you can use pandas to peek at parts of your CSV file to understand 
what data types are being inferred. With that understanding, we can instruct pd.read_csv to use more 
efficient data types, yielding far more efficient memory usage.

How to do it
For this example, we will look at the diamonds dataset. This dataset is not actually all that big for modern 
computers, but let’s pretend that the file is a lot bigger than it is, or that the memory on our machine 
is limited to the point where a normal read_csv call would yield a MemoryError.

To start, we will look at the first 1,000 rows from the dataset to get an idea of what is in the file via 
nrows=1_000.
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df = pd.read_csv("data/diamonds.csv", dtype_backend="numpy_nullable", 
nrows=1_000)
df

   carat  cut      color  clarity  depth  table  price  x      y      z
0  0.23   Ideal    E      SI2      61.5   55.0   326    3.95   3.98   2.43
1  0.21   Premium  E      SI1      59.8   61.0   326    3.89   3.84   2.31
2  0.23   Good     E      VS1      56.9   65.0   327    4.05   4.07   2.31
3  0.29   Premium  I      VS2      62.4   58.0   334    4.2    4.23   2.63
4  0.31   Good     J      SI2      63.3   58.0   335    4.34   4.35   2.75
…  …      …        …      …        …      …      …      …      …      …
995  0.54   Ideal    D    VVS2    61.4    52.0   2897   5.3    5.34   3.26
996  0.72   Ideal    E    SI1     62.5    55.0   2897   5.69   5.74   3.57
997  0.72   Good     F    VS1     59.4    61.0   2897   5.82   5.89   3.48
998  0.74   Premium  D    VS2     61.8    58.0   2897   5.81   5.77   3.58
999  1.12   Premium  J    SI2     60.6    59.0   2898   6.68   6.61   4.03

1000 rows × 10 columns

The pd.DataFrame.info method should give us an idea of how much memory this subset uses:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 10 columns):
#   Column   Non-Null Count  Dtype 
---  ------   --------------  ----- 
0   carat    1000 non-null   Float64
1   cut      1000 non-null   string
2   color    1000 non-null   string
3   clarity  1000 non-null   string
4   depth    1000 non-null   Float64
5   table    1000 non-null   Float64
6   price    1000 non-null   Int64 
7   x        1000 non-null   Float64
8   y        1000 non-null   Float64
9   z        1000 non-null   Float64
dtypes: Float64(6), Int64(1), string(3)
memory usage: 85.1 KB
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The exact memory usage you see may depend on your version of pandas and operating system, but 
let’s assume that the pd.DataFrame we are using requires around 85 KB of memory. If we had 1 billion 
rows instead of just 1,000, that would require 85 GB of memory just to store this pd.DataFrame.

So how can we fix this situation? For starters, it is worth looking more closely at the data types that 
have been inferred. The price column may be one that immediately catches our attention; this was 
inferred to be a pd.Int64Dtype(), but chances are that we don’t need 64 bits to store this information. 
Summary statistics will be explored in more detail in Chapter 5, Algorithms and How to Apply Them but 
for now, let’s just take a look at pd.Series.describe to see what pandas can tell us about this column:

df["price"].describe()

count       1000.0
mean       2476.54
std      839.57562
min          326.0
25%         2777.0
50%         2818.0
75%         2856.0
max         2898.0
Name: price, dtype: Float64

The minimum value is 326 and the maximum is 2,898. Those values can both safely fit into  
pd.Int16Dtype(), which would represent good memory savings compared to pd.Int64Dtype().

Let’s also take a look at some of the floating point types, starting with the carat:

df["carat"].describe()

count      1000.0
mean      0.68928
std      0.195291
min           0.2
25%           0.7
50%          0.71
75%          0.79
max          1.27
Name: carat, dtype: Float64

The values range from 0.2 to 1.27, and unless we expect to perform calculations with many decimal 
points, the 6 to 9 digits of decimal precision that a 32-bit floating point data type provides should be 
good enough to use here.
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For this recipe, we are going to assume that 32-bit floating point types can be used across all of the 
other floating point types as well. One way to tell pd.read_csv that we want to use smaller data types 
would be to use the dtype= parameter, with a dictionary mapping column names to the desired types. 
Since our dtype= parameter will cover all of the columns, we can also drop dtype_backend="numpy_
nullable", as it would be superfluous:

df2 = pd.read_csv(
    "data/diamonds.csv",
    nrows=1_000,
    dtype={
        "carat": pd.Float32Dtype(),
        "cut": pd.StringDtype(),
        "color": pd.StringDtype(),
        "clarity": pd.StringDtype(),
        "depth": pd.Float32Dtype(),
        "table": pd.Float32Dtype(),
        "price": pd.Int16Dtype(),
        "x": pd.Float32Dtype(),
        "y": pd.Float32Dtype(),
        "z": pd.Float32Dtype(),
    }
)
df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 10 columns):
#   Column   Non-Null Count  Dtype 
---  ------   --------------  ----- 
0   carat    1000 non-null   Float32
1   cut      1000 non-null   string
2   color    1000 non-null   string
3   clarity  1000 non-null   string
4   depth    1000 non-null   Float32
5   table    1000 non-null   Float32
6   price    1000 non-null   Int16 
7   x        1000 non-null   Float32
8   y        1000 non-null   Float32
9   z        1000 non-null   Float32
dtypes: Float32(6), Int16(1), string(3)
memory usage: 55.8 KB
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These steps alone will probably yield a memory usage in the ballpark of 55 KB, which is not a bad 
reduction from the 85 KB we started with! For added safety, we can use the pd.DataFrame.describe() 
method to get summary statistics and ensure that the two pd.DataFrame objects are similar. If the 
numbers are the same for both pd.DataFrame objects, it is a good sign that our conversions did not 
materially change our data:

df.describe()

        carat    depth    table     price      x         y         z
count   1000.0   1000.0	   1000.0    1000.0     1000.0    1000.0    1000.0
mean    0.68928  61.7228  57.7347   2476.54    5.60594   5.59918   3.45753
std     0.195291 1.758879 2.467946  839.57562  0.625173  0.611974  0.389819
min     0.2      53.0     52.0      326.0      3.79      3.75      2.27
25%     0.7      60.9     56.0      2777.0     5.64      5.63      3.45
50%     0.71     61.8     57.0      2818.0     5.77      5.76      3.55
75%     0.79     62.6     59.0      2856.0     5.92      5.91      3.64
max     1.27     69.5     70.0      2898.0     7.12      7.05      4.33

df2.describe()

       carat    depth     table      price      x        y        z
count  1000.0   1000.0    1000.0     1000.0     1000.0   1000.0   1000.0
mean   0.68928  61.722801 57.734699  2476.54    5.60594  5.59918  3.45753
std    0.195291 1.758879  2.467946   839.57562  0.625173 0.611974 0.389819
min    0.2      53.0      52.0       326.0      3.79     3.75     2.27
25%    0.7      60.900002 56.0       2777.0     5.64     5.63     3.45
50%    0.71     61.799999 57.0       2818.0     5.77     5.76     3.55
75%    0.79     62.599998 59.0       2856.0     5.92     5.91     3.64
max    1.27     69.5      70.0       2898.0     7.12     7.05     4.33

So far, things are looking good, but we can still do better. For starters, it looks like the cut column has 
a relatively small amount of unique values:

df2["cut"].unique()

<StringArray>
['Ideal', 'Premium', 'Good', 'Very Good', 'Fair']
Length: 5, dtype: string

The same can be said about the color column:

df2["color"].unique()

<StringArray>
['E', 'I', 'J', 'H', 'F', 'G', 'D']
Length: 7, dtype: string
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As well as the clarity column:

df2["clarity"].unique()

<StringArray>
['SI2', 'SI1', 'VS1', 'VS2', 'VVS2', 'VVS1', 'I1', 'IF']
Length: 8, dtype: string

Out of 1,000 rows sampled, there are only 5 distinct cut values, 7 distinct color values, and 8 distinct 
clarity values. We consider these columns to have a low cardinality, i.e., the number of distinct values 
is very low relative to the number of rows.

This makes these columns a perfect candidate for the use of categorical types. However, I would ad-
vise against using pd.CategoricalDtype() as an argument to dtype=, as by default it uses np.nan as 
a missing value indicator (for a refresher on this caveat, you may want to revisit the Categorical types 
recipe back in Chapter 3, Data Types). Instead, the best approach to convert your strings to categorical 
types is to first read in your columns as pd.StringDtype(), and then use pd.DataFrame.astype on 
the appropriate column(s):

df3 = pd.read_csv(
    "data/diamonds.csv",
    nrows=1_000,
    dtype={
        "carat": pd.Float32Dtype(),
        "cut": pd.StringDtype(),
        "color": pd.StringDtype(),
        "clarity": pd.StringDtype(),
        "depth": pd.Float32Dtype(),
        "table": pd.Float32Dtype(),
        "price": pd.Int16Dtype(),
        "x": pd.Float32Dtype(),
        "y": pd.Float32Dtype(),
        "z": pd.Float32Dtype(),
    }
)
cat_cols = ["cut", "color", "clarity"]
df3[cat_cols] = df3[cat_cols].astype(pd.CategoricalDtype())
df3.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 10 columns):
#   Column   Non-Null Count  Dtype  
---  ------   --------------  -----  
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0   carat    1000 non-null   Float32
1   cut      1000 non-null   category
2   color    1000 non-null   category
3   clarity  1000 non-null   category
4   depth    1000 non-null   Float32
5   table    1000 non-null   Float32
6   price    1000 non-null   Int16  
7   x        1000 non-null   Float32
8   y        1000 non-null   Float32
9   z        1000 non-null   Float32
dtypes: Float32(6), Int16(1), category(3)
memory usage: 36.2 KB

To get even more savings, we may decide that there are columns in our CSV file that are just not 
worth reading at all. To allow pandas to skip this data and save even more memory, you can use the 
usecols= parameter:

dtypes = {  # does not include x, y, or z
    "carat": pd.Float32Dtype(),
    "cut": pd.StringDtype(),
    "color": pd.StringDtype(),
    "clarity": pd.StringDtype(),
    "depth": pd.Float32Dtype(),
    "table": pd.Float32Dtype(),
    "price": pd.Int16Dtype(),
}
df4 = pd.read_csv(
    "data/diamonds.csv",
    nrows=1_000,
    dtype=dtypes,
    usecols=dtypes.keys(),
)
cat_cols = ["cut", "color", "clarity"]
df4[cat_cols] = df4[cat_cols].astype(pd.CategoricalDtype())
df4.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 7 columns):
#   Column   Non-Null Count  Dtype  
---  ------   --------------  -----  
0   carat    1000 non-null   Float32
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1   cut      1000 non-null   category
2   color    1000 non-null   category
3   clarity  1000 non-null   category
4   depth    1000 non-null   Float32
5   table    1000 non-null   Float32
6   price    1000 non-null   Int16  
dtypes: Float32(3), Int16(1), category(3)
memory usage: 21.5 KB

If the preceding steps are not sufficient to create a small enough pd.DataFrame, you might still be in 
luck. If you can process chunks of data at a time and do not need all of it in memory, you can use the 
chunksize= parameter to control the size of the chunks you would like to read from a file:

dtypes = {  # does not include x, y, or z
    "carat": pd.Float32Dtype(),
    "cut": pd.StringDtype(),
    "color": pd.StringDtype(),
    "clarity": pd.StringDtype(),
    "depth": pd.Float32Dtype(),
    "table": pd.Float32Dtype(),
    "price": pd.Int16Dtype(),
}
df_iter = pd.read_csv(
    "data/diamonds.csv",
    nrows=1_000,
    dtype=dtypes,
    usecols=dtypes.keys(),
    chunksize=200
)

for df in df_iter:
    cat_cols = ["cut", "color", "clarity"]
    df[cat_cols] = df[cat_cols].astype(pd.CategoricalDtype())
    print(f"processed chunk of shape {df.shape}")

processed chunk of shape (200, 7)
processed chunk of shape (200, 7)
processed chunk of shape (200, 7)
processed chunk of shape (200, 7)
processed chunk of shape (200, 7)



The pandas I/O System92

There’s more...
The usecols parameter introduced here can also accept a callable that, when evaluated against each 
column label encountered, should return True if the column should be read and False if it should 
be skipped. If we only wanted to read the carat, cut, color, and clarity columns, that might look 
something like:

def startswith_c(column_name: str) -> bool:
    return column_name.startswith("c")

pd.read_csv(
    "data/diamonds.csv",
    dtype_backend="numpy_nullable",
    usecols=startswith_c,
)

       carat   cut       color  clarity

0      0.23    Ideal     E      SI2
1      0.21    Premium   E      SI1
2      0.23    Good      E      VS1
3      0.29    Premium   I      VS2
4      0.31    Good      J      SI2
…      …       …         …      …
53935  0.72    Ideal     D      SI1
53936  0.72    Good      D      SI1
53937  0.7     Very Good D      SI1
53938  0.86    Premium   H      SI2
53939  0.75    Ideal     D      SI2
53940 rows × 4 columns

Microsoft Excel – basic reading/writing
Microsoft Excel is an extremely popular tool for data analysis, given its ease of use and ubiquity. Mic-
rosoft Excel provides a rather powerful toolkit that can help to cleanse, transform, store, and visualize 
data, all without requiring any knowledge of programming languages. Many successful analysts may 
consider it to be the only tool they will ever need. Despite this, Microsoft Excel really struggles with 
performance and scalability and, when used as a storage medium, may even materially change your 
data in unexpected ways.

If you have used Microsoft Excel before and are now picking up pandas, you will find that pandas 
works as a complementary tool. With pandas, you will give up the point-and-click usability of Microsoft 
Excel, but you will easily unlock performance that takes you far beyond the limits of Microsoft Excel.
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Before we jump into this recipe, it’s worth noting that Microsoft Excel support is not shipped as part of 
pandas, so you will need to install third-party package(s) for these recipes to work. While it is not the 
only choice, users are encouraged to opt for installing openpyxl, as it works very well to read and write 
all of the various Microsoft Excel formats. If you do not have it already, openpyxl can be installed via:

python -m pip install openpyxl

How to do it
Let’s again start with a simple pd.DataFrame:

df = pd.DataFrame([
    ["Paul", "McCartney", 1942],
    ["John", "Lennon", 1940],
    ["Richard", "Starkey", 1940],
    ["George", "Harrison", 1943],
], columns=["first", "last", "birth"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")
df

     first     last       birth
0    Paul      McCartney  1942
1    John      Lennon     1940
2    Richard   Starkey    1940
3    George    Harrison   1943

You can use the pd.DataFrame.to_excel method to write this to a file, with the first argument typically 
being a filename like myfile.xlsx, but here, we will again use io.BytesIO, which acts like a file but 
stores binary data in memory instead of on disk:

import io
buf = io.BytesIO()
df.to_excel(buf)

For reading, reach for the pd.read_excel function. We will continue to use dtype_backend="numpy_
nullable" to prevent the default type inference that pandas performs:

buf.seek(0)
pd.read_excel(buf, dtype_backend="numpy_nullable")

     Unnamed: 0   first   last       birth
0    0            Paul    McCartney  1942
1    1            John    Lennon     1940
2    2            Richard Starkey    1940
3    3            George  Harrison   1943
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Many of the function parameters are shared with CSV. To get rid of the Unnamed: 0 column above, we 
can either specify the index_col= argument:

buf.seek(0)
pd.read_excel(buf, dtype_backend="numpy_nullable", index_col=0)

     first    last       birth
0    Paul     McCartney  1942
1    John     Lennon     1940
2    Richard  Starkey    1940
3    George   Harrison   1943

Or choose to not write the index in the first place:

buf = io.BytesIO()
df.to_excel(buf, index=False)
buf.seek(0)
pd.read_excel(buf, dtype_backend="numpy_nullable")

     first     last       birth
0    Paul      McCartney  1942
1    John      Lennon     1940
2    Richard   Starkey    1940
3    George    Harrison   1943

Data types can be controlled with the dtype= argument:

buf.seek(0)
dtypes = {
    "first": pd.StringDtype(),
    "last": pd.StringDtype(),
    "birth": pd.Int16Dtype(),
}
df = pd.read_excel(buf, dtype=dtypes)
df.dtypes

first    string[python]
last     string[python]
birth             Int16
dtype: object

Microsoft Excel – finding tables in non-default locations
In the previous recipe, Microsoft Excel – basic reading/writing, we used the Microsoft Excel I/O func-
tions without thinking about where within the worksheet our data was. By default, pandas will read 
from / write to the first cell on the first sheet of data, but it is not uncommon to receive Microsoft Excel 
files where the data you want to read is located elsewhere within the document.
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For this example, we have a Microsoft Excel workbook where the very first tab, Sheet1, is used as a 
cover sheet:

Figure 4.1: Workbook where Sheet1 contains no useful data

The second sheet is where we have useful information:

Figure 4.2: Workbook where another sheet has relevant data
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How to do it
To still be able to read this data, you can use a combination of the sheet_name=, skiprows=, and 
usecols= arguments to pd.read_excel:

pd.read_excel(
    "data/beatles.xlsx",
    dtype_backend="numpy_nullable",
    sheet_name="the_data",
    skiprows=4,
    usecols="C:E",
)

     first     last       birth
0    Paul      McCartney  1942
1    John      Lennon     1940
2    Richard   Starkey    1940
3    George    Harrison   1943

By passing sheet_name="the_data", the pd.read_excel function is able to pinpoint the specific sheet 
within the Microsoft Excel file to start looking for data. Alternatively, we could have used sheet_name=1 
to search by tab position. After locating the correct sheet, pandas looks at the skiprows= argument 
and knows to ignore rows 1–4 on the worksheet. It then looks at the usecols= argument to select only 
columns C–E.

There’s more…
Instead of usecols="C:E", we could have also provided the labels we wanted:

pd.read_excel(
    "data/beatles.xlsx",
    dtype_backend="numpy_nullable",
    sheet_name="the_data",
    skiprows=4,
    usecols=["first", "last", "birth"],
)

     first    last      birth
0    Paul     McCartney 1942
1    John     Lennon    1940
2    Richard  Starkey   1940
3    George   Harrison  1943

Passing such an argument to usecols= was a requirement when working with the CSV format to select 
particular columns from a file. However, pandas provides special behavior when reading Microsoft 
Excel files to allow strings like "C:E" or "C,D,E" to refer to columns.
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Microsoft Excel – hierarchical data
One of the major tasks with data analysis is to take very detailed information and aggregate it into a 
summary that is easy to digest. Rather than having to sift through thousands of orders, most executives 
at a company just want to know, “What have my sales looked like in the last X quarters?”

With Microsoft Excel, users will commonly summarize this information in a view like the one shown 
in Figure 4.3, which represents a hierarchy of Region/Sub-Region along the rows and Year/Quarter 
along the columns:

Figure 4.3: Workbook with hierarchical data – sales by Region and Quarter

While this summary does not seem too far-fetched, many analysis tools struggle to properly present 
this type of information. Taking a traditional SQL database as an example, there is no direct way to 
represent this Year/Quarter hierarchy in a table – your only option would be to concatenate all of 
the hierarchy fields together and produce columns like 2024/Q1, 2024/Q2, 2025/Q1 and 2025/Q2. While 
that makes it easy to select any individual column, you lose the ability to easily select things like “all 
of 2024 sales” without additional effort.

Fortunately, pandas can handle this a lot more sanely than a SQL database can, directly supporting 
such hierarchical relationships in both the row and column index. If you recall Chapter 2, Selection 
and Assignment, we introduced the pd.MultiIndex; being able to maintain those relationships allows 
users to efficiently select from any and all levels of the hierarchies.

How to do it
Upon closer inspection of Figure 4.3, you will see that rows 1 and 2 contain the labels Year and Quarter, 
which can form the levels of the pd.MultiIndex that we want in the columns of our pd.DataFrame. 
Microsoft Excel uses 1-based numbering of each row, so rows [1, 2] translated to Python would 
actually be [0, 1]; we will use this as our header= argument to establish that we want the first two 
rows to form our column pd.MultiIndex.



The pandas I/O System98

Switching our focus to columns A and B in Microsoft Excel, we can now see the labels Region and 
Sub-Region, which will help us shape the pd.MultiIndex in our rows. Back in the CSV – basic reading/
writing section, we introduced the index_col= argument, which can be used to tell pandas which 
column(s) of data should actually be used to generate the row index. Columns A and B from the 
Microsoft Excel file represent the first and second columns, so we can once again use [0, 1] to let 
pandas know our intent:

df = pd.read_excel(
    "data/hierarchical.xlsx",
    dtype_backend="numpy_nullable",
    index_col=[0, 1],
    header=[0, 1],
)
df

        Year    2024            2025
        Quarter Q1      Q2      Q1      Q2
Region  Sub-Region
America East    1       2       4       8
        West    16      32      64      128
        South   256     512     1024    4096
Europe  West    8192    16384   32768   65536
        East    131072  262144  524288  1048576

Voila! We have successfully read in the data and maintained the hierarchical nature of the rows and 
columns, which lets us use all of the native pandas functionality to select from this data, and even an-
swer questions like, “What does the Q2 performance look like year over year for every East Sub-Region?”

df.loc[(slice(None), "East"), (slice(None), "Q2")]

        Year    2024    2025
        Quarter Q2      Q2
Region  Sub-Region
America East    2       8
Europe  East    262144  1048576

SQL using SQLAlchemy
The pandas library provides robust capabilities for interacting with SQL databases, allowing you to 
perform data analysis directly on data stored in relational databases.

There are, of course, countless databases that exist (and more are coming!), each with its own features, 
authentication schemes, dialects, and quirks. To interact with them, pandas relies on another great 
Python library, SQLAlchemy, which at its core acts as a bridge between Python and the database world. 
In theory, pandas can work with any database that SQLAlchemy can connect to.
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To get started, you should first install SQLAlchemy into your environment:

python -m pip install sqlalchemy

SQLAlchemy supports all major databases, like MySQL, PostgreSQL, MS SQL Server, etc., but setting 
up and properly configuring those databases is an effort in its own right, which cannot be covered 
within the scope of this book. To make things as simple as possible, we will focus on using SQLite as 
our database, as it requires no setup and can operate entirely within memory on your computer. Once 
you feel comfortable experimenting with SQLite, you only need to change the credentials you use to 
point to your target database; otherwise, all of the functionality remains the same.

How to do it
The first thing we need to do is create a SQLAlchemy engine, using sa.create_engine. The argument 
to this function is a URL and will be dependent upon the database you are trying to connect to (see 
the SQLAlchemy docs for more info). For these examples, we are going to use SQLite in memory:

import sqlalchemy as sa
engine = sa.create_engine("sqlite:///:memory:")

With the pd.DataFrame.to_sql method, you can take an existing pd.DataFrame and write it to a 
database table. The first argument is the name of the table you would like to create, with the second 
argument being an engine/connectable:

df = pd.DataFrame([
    ["dog", 4],
    ["cat", 4],
], columns=["animal", "num_legs"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df.to_sql("table_name", engine, index=False)

2

The pd.read_sql function can be used to go in the opposite direction and read from a database table:

pd.read_sql("table_name", engine, dtype_backend="numpy_nullable")

     animal    num_legs
0    dog       4
1    cat       4

Alternatively, if you wanted something different than just a copy of the table, you could pass a SQL 
query to pd.read_sql:

pd.read_sql(
    "SELECT SUM(num_legs) AS total_legs FROM table_name",
    engine,
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    dtype_backend="numpy_nullable"
)

      total_legs
0     8

When a table already exists in a database, trying to write to the same table again will raise an error. 
You can pass if_exists="replace" to override this behavior and replace the table:

df = pd.DataFrame([
    ["dog", 4],
    ["cat", 4],
    ["human", 2],
], columns=["animal", "num_legs"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")
df.to_sql("table_name", engine, index=False, if_exists="replace")

3

You can also use if_exists="append" to add data to a table:

new_data = pd.DataFrame([["centipede", 100]], columns=["animal", "num_legs"])
new_data.to_sql("table_name", engine, index=False, if_exists="append")
pd.read_sql("table_name", engine, dtype_backend="numpy_nullable")

     animal     num_legs
0    dog        4
1    cat        4
2    human      2
3    centipede  100

The bulk of the heavy lifting is done behind the scenes by the SQLAlchemy engine, which is construct-
ed using a URL of the form dialect+driver://username:password@host:port/database. Not all of 
the fields in that URL are required – the string will depend largely on the database you are using and 
how it is configured.

In our specific example, sa.create_engine("sqlite:///:memory:") creates and connects to a SQLite 
database in the memory space of our computer. This feature is specific to SQLite; instead of :memory:, 
we could have also passed a path to a file on our computer like sa.create_engine("sqlite:///tmp/
adatabase.sql").

For more information on SQLAlchemy URLs and to get an idea of drivers to pair with other databases, 
see the SQLAlchemy Backend-Specific URLs documentation.
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SQL using ADBC
While using SQLAlchemy to connect to databases is a viable option and has helped users of pandas for 
many years, a new technology has emerged out of the Apache Arrow project that can help scale your 
SQL interactions even further. This new technology is called Arrow Database Connectivity, or ADBC for 
short. Starting in version 2.2, pandas added support for using ADBC drivers to interact with databases.

Using ADBC will offer better performance and type safety when interacting with SQL databases than 
the aforementioned SQLAlchemy-based approach can. The trade-off is that SQLAlchemy has support 
for far more databases, so depending on your database, it may be the only option. ADBC maintains 
a record of its Driver Implementation Status; I would advise looking there first for a stable driver 
implementation for the database you are using before falling back on SQLAlchemy.

Much like in the previous section, we will use SQLite for our database, given its ease of use to set up 
and configure. Make sure to install the appropriate ADBC Python package for SQLite:

python -m pip install adbc-driver-sqlite

How to do it
Let’s start by importing the dbapi object from our SQLite ADBC driver and creating some sample data:

from adbc_driver_sqlite import dbapi
df = pd.DataFrame([
    ["dog", 4],
    ["cat", 4],
    ["human", 2],
], columns=["animal", "num_legs"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")
df

      animal   num_legs
0     dog      4
1     cat      4
2     human    2

The term dbapi is taken from the Python Database API Specification defined in PEP-249, which stan-
dardizes how Python modules and libraries should be used to interact with databases. Calling the 
.connect method with credentials is the standardized way to open up a database connection in Python. 
Once again, we will use an in-memory SQLite application via dbapi.connect("file::memory:").

By using the with ... as: syntax to use a context manager in Python, we can connect to a database 
and assign it to a variable, letting Python automatically clean up the connection when the block is fin-
ished. While the connection is open within our block, we can use pd.DataFrame.to_sql / pd.read_sql 
to write to and read from the database, respectively:

with dbapi.connect("file::memory:") as conn:
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    df.to_sql("table_name", conn, index=False, if_exists="replace")
    df = pd.read_sql(
        "SELECT * FROM table_name",
        conn,
        dtype_backend="numpy_nullable",
    )
df

     animal    num_legs
0    dog       4
1    cat       4
2    human     2

For smaller datasets, you may not see much of a difference, but the performance gains of ADBC will 
be drastic with larger datasets. Let’s compare the time to write a 10,000 by 10 pd.DataFrame using 
SQLAlchemy:

import timeit
import sqlalchemy as sa

np.random.seed(42)
df = pd.DataFrame(
    np.random.randn(10_000, 10),
    columns=list("abcdefghij")
)

with sa.create_engine("sqlite:///:memory:").connect() as conn:
    func = lambda: df.to_sql("test_table", conn, if_exists="replace")
    print(timeit.timeit(func, number=100))

4.898935955003253

To equivalent code using ADBC:

from adbc_driver_sqlite import dbapi

with dbapi.connect("file::memory:") as conn:
    func = lambda: df.to_sql("test_table", conn, if_exists="replace")
    print(timeit.timeit(func, number=100))

0.7935214300014195

Your results will vary, depending on your data and database, but generally, ADBC should perform 
much faster.
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There’s more…
To understand what ADBC does and why it matters, it is first worth a quick history lesson in database 
standards and how they have evolved. Back in the 1990s, the Open Database Connectivity (ODBC) and 
Java Database Connectivity (JDBC) standards were introduced, which helped standardize how different 
clients could talk to various databases. Before the introduction of these standards, if you developed an 
application that needed to work with two or more different databases, your application would have to 
speak the exact language that each database understood to interact with it.

Imagine then that this application wanted to just get a listing of tables available in each database. A 
PostgreSQL database stores this information in a table called pg_catalog.pg_tables, whereas a SQLite 
database stores this in a sqlite_schema table where type='table'. The application would need to 
be developed with this particular information, and then it would need to be re-released every time a 
database changed how it stored this information, or if an application wanted to support a new database.

With a standard like ODBC, the application instead just needs to communicate with a driver, letting 
the driver know that it wants all of the tables in the system. This shifts the onus of properly interacting 
with a database from the application itself to the driver, giving the application a layer of abstraction. 
As new databases or versions are released, the application itself no longer needs to change; it simply 
works with a new ODBC/JDBC driver and continues to work. SQLAlchemy, in fact, is just like this the-
oretical application; it interacts with databases through either ODBC/JDBC drivers, rather than trying 
to manage the endless array of database interactions on its own.

While these standards are fantastic for many purposes, it is worth noting that databases were very 
different in the 1990s than they are today. Many of the problems that these standards tried to solve 
were aimed at row-oriented databases, which were prevalent at the time. Column-oriented databas-
es arrived more than a decade later, and they have since come to dominate the analytics landscape. 
Unfortunately, without a column-oriented standard for transferring data, many of these databases 
had to retrofit a design that made them ODBC/JDBC-compatible. This allowed them to work with the 
countless database client tools in existence today but required a trade-off in performance in efficiency.

ADBC is the column-oriented specification that solves this problem. The pandas library, and many 
similar offerings in the space, are explicitly (or at least very close to) being column-oriented in their 
designs. When interacting with columnar databases like BigQuery, Redshift, or Snowflake, having a 
column-oriented driver to exchange information can lead to orders of magnitude better performance. 
Even if you aren’t interacting with a column-oriented database, the ADBC driver is so finely optimized 
toward analytics with Apache Arrow that it still would be an upgrade over any ODBC/JDBC driver that 
SQLAlchemy would use.

For users wanting to know more about ADBC, I recommend viewing my talk from PyData NYC 2023, 
titled Faster SQL with pandas and Apache Arrow, on YouTube (https://youtu.be/XhnfybpWOgA?si
=RBrM7UUvpNFyct0L).

https://youtu.be/XhnfybpWOgA?si=RBrM7UUvpNFyct0L
https://youtu.be/XhnfybpWOgA?si=RBrM7UUvpNFyct0L
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Apache Parquet
As far as a generic storage format for a pd.DataFrame goes, Apache Parquet is the best option. Apache 
Parquet allows:

•	 Metadata storage – this allows the format to track data types, among other features
•	 Partitioning – not everything needs to be in one file
•	 Query support – Parquet files can be queried on disk, so you don’t have to bring all data into 

memory
•	 Parallelization – reading data can be parallelized for higher throughput
•	 Compactness – data is compressed and stored in a highly efficient manner

Unless you are working with legacy systems, the Apache Parquet format should replace the use of 
CSV files in your workflows, from persisting data locally and sharing with other team members to 
exchanging data across systems.

How to do it
The API to read/write Apache Parquet is consistent with all other pandas APIs we have seen so far; 
for reading, there is pd.read_parquet, and for writing, there is a pd.DataFrame.to_parquet method.

Let’s start with some sample data and an io.BytesIO object:

import io
buf = io.BytesIO()
df = pd.DataFrame([
    ["Paul", "McCartney", 1942],
    ["John", "Lennon", 1940],
    ["Richard", "Starkey", 1940],
    ["George", "Harrison", 1943],
], columns=["first", "last", "birth"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")
df

      first    last       birth
0     Paul     McCartney  1942
1     John     Lennon     1940
2     Richard  Starkey    1940
3     George   Harrison   1943

This is how you would write to a file handle:

df.to_parquet(buf, index=False)

And here is how you would read from a file handle. Note that we are intentionally not providing 
dtype_backend="numpy_nullable":
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buf.seek(0)
pd.read_parquet(buf)

      first    last       birth
0     Paul     McCartney  1942
1     John     Lennon     1940
2     Richard  Starkey    1940
3     George   Harrison   1943

Why don’t we need the dtype_backend= argument with pd.read_parquet? Unlike a format like CSV, 
which only stores data, the Apache Parquet format stores both data and metadata. Within the metadata, 
Apache Parquet is able to keep track of the data types in use, so whatever data type you write should 
be exactly what you get back.

You can test this by changing the data type of the birth column to a different type:

df["birth"] = df["birth"].astype(pd.UInt16Dtype())
df.dtypes

first    string[python]
last     string[python]
birth            UInt16
dtype: object

Roundtripping this through the Apache Parquet format will give you back the same data type you 
started with:

buf = io.BytesIO()
df.to_parquet(buf, index=False)
buf.seek(0)
pd.read_parquet(buf).dtypes

first    string[python]
last     string[python]
birth            UInt16
dtype: object

Of course, if you want to be extra-defensive, there is no harm in using dtype_backend="numpy_nullable" 
here as well. We intentionally left it out at the start to showcase the power of the Apache Parquet for-
mat, but if you are receiving files from other sources and developers that don’t use the type system we 
recommended in Chapter 3, Data Types, it may be helpful to make sure you work with the best types 
pandas has to offer:

suboptimal_df = pd.DataFrame([
    [0, "foo"],
    [1, "bar"],
    [2, "baz"],
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], columns=["int_col", "str_col"])
buf = io.BytesIO()
suboptimal_df.to_parquet(buf, index=False)
buf.seek(0)
pd.read_parquet(buf, dtype_backend="numpy_nullable").dtypes

int_col             Int64
str_col    string[python]
dtype: object

Another great feature of the Apache Parquet format is that it supports partitioning, which loosens the 
requirement that all your data is located in a single file. By being able to split data across different di-
rectories and files, partitioning allows users an easy way to organize their content, while also making it 
easier for a program to optimize which files it may or may not have to read to solve an analytical query.

There are many ways to partition your data each with practical space/time trade-offs. For demon-
stration purposes, we are going to assume the use of time-based partitioning, whereby individual files 
are generated for different time periods. With that in mind, let’s work with the following data layout, 
where we create different directories for each year and, within each year, create individual files for 
every quarter of sales:

Partitions
 2022/
   q1_sales.parquet
   q2_sales.parquet
 2023/
   q1_sales.parquet
   q2_sales.parquet

Each of the sample Apache Parquet files distributed with this book has already been created with the 
pandas extension types we recommended in Chapter 3, Data Types so the pd.read_parquet calls we 
make intentionally do not include the dtype_backend="numpy_nullable" argument. Within any file, 
you will see that we store information about the year, quarter, region, and overall sales that were 
counted:

pd.read_parquet(
    "data/partitions/2022/q1_sales.parquet",
)

      year   quarter   region   sales
0     2022   Q1        America  1
1     2022   Q1        Europe   2

If we wanted to see all of this data together, a brute-force approach would involve looping over each 
file and accumulating the results. However, with the Apache Parquet format, pandas can natively and 
effectively handle this. Instead of passing individual file names to pd.read_parquet, it simply passes 
the path to the directory:
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pd.read_parquet("data/partitions/")

     year    quarter  region    sales
0    2022    Q1       America   1
1    2022    Q1       Europe    2
2    2022    Q2       America   4
3    2022    Q2       Europe    8
4    2023    Q1       America   16
5    2023    Q1       Europe    32
6    2023    Q2       America   64
7    2023    Q2       Europe    128

Because our sample data is so small, we have no problem reading all of the data into a pd.DataFrame 
first and then working with it from there. However, in production deployments, you may end up work-
ing with Apache Parquet files that measure in gigabytes or terabytes’ worth of storage. Attempting to 
read all of that data into a pd.DataFrame may throw a MemoryError.

Fortunately, the Apache Parquet format gives you the capability to filter records on the fly as files are 
read. From pandas, you can enable this functionality with pd.read_parquet by passing a filters= 
argument. The argument should be a list, where each list element is a tuple, which itself contains 
three elements:

•	 Column Name
•	 Logical Operator
•	 Value

For example, if we only wanted to read in data where our region column is equal to the value Europe, 
we could write this as:

pd.read_parquet(
    "data/partitions/",
    filters=[("region", "==", "Europe")],
)

     year    quarter   region   sales
0    2022    Q1        Europe   2
1    2022    Q2        Europe   8
2    2023    Q1        Europe   32
3    2023    Q2        Europe   128

JSON
JavaScript Object Notation (JSON) is a common format used to transfer data over the internet. The 
JSON specification can be found at https://www.json.org. Despite the name, it does not require 
JavaScript to read or create.

https://www.json.org/json-en.html
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The Python standard library ships with the json library, which can serialize and deserialize Python 
objects to/from JSON:

import json
beatles = {
    "first": ["Paul", "John", "Richard", "George",],
    "last": ["McCartney", "Lennon", "Starkey", "Harrison",],
    "birth": [1942, 1940, 1940, 1943],
}
serialized = json.dumps(beatles)
print(f"serialized values are: {serialized}")
deserialized = json.loads(serialized)
print(f"deserialized values are: {deserialized}")

serialized values are: {"first": ["Paul", "John", "Richard", "George"], "last": 
["McCartney", "Lennon", "Starkey", "Harrison"], "birth": [1942, 1940, 1940, 
1943]}
deserialized values are: {'first': ['Paul', 'John', 'Richard', 'George'], 
'last': ['McCartney', 'Lennon', 'Starkey', 'Harrison'], 'birth': [1942, 1940, 
1940, 1943]}

However, the standard library does not know how to deal with pandas objects, so pandas provides its 
own set of I/O functions specifically for JSON.

How to do it
In the simplest form, pd.read_json can be used to read JSON data:

import io
data = io.StringIO(serialized)
pd.read_json(data, dtype_backend="numpy_nullable")

     first    last       birth
0    Paul     McCartney  1942
1    John     Lennon     1940
2    Richard  Starkey    1940
3    George   Harrison   1943

And the pd.DataFrame.to_json method can be used for writing:

df = pd.DataFrame(beatles)
print(df.to_json())

{"first":{"0":"Paul","1":"John","2":"Richard","3":"George"},"last":{"0":"Mc-
Cartney","1":"Lennon","2":"Starkey","3":"Harrison"},"birth":{"0":1942,"1":1-
940,"2":1940,"3":1943}}
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However, in practice, there are endless ways to represent tabular data in JSON. Some users may want 
to see each row of the pd.DataFrame represented as a JSON array, whereas other users may want to see 
each column shown as an array. Others may want to see the row index, column index, and data listed 
as separate JSON objects, whereas others may not care about seeing the row or column labels at all.

For these use cases and more, pandas allows you to pass an argument to orient=, whose value dictates 
the layout of the JSON to be read or written:

•	 columns (default): Produces JSON objects, where the key is a column label and the value is 
another object that maps the row label to a data point.

•	 records: Each row of the pd.DataFrame is represented as a JSON array, containing objects that 
map column names to a data point.

•	 split: Maps to {"columns": […], "index": […], "data": […]}. Columns/index values are 
arrays of labels, and data contains arrays of arrays.

•	 index: Similar to columns, except that the usage of row and column labels as keys is reversed.
•	 values: Maps the data of a pd.DataFrame to an array of arrays. Row/column labels are dropped.
•	 table: Adheres to the JSON Table Schema.

JSON is a lossy format for exchanging data, so each of the orients above is a trade-off between loss, 
verbosity, and end user requirements. orient="table" would be the least lossy and produce the largest 
payload, whereas orient="values" falls completely on the other end of that spectrum.

To highlight the differences in each of these orients, let’s begin with a rather simple pd.DataFrame:

df = pd.DataFrame(beatles, index=["row 0", "row 1", "row 2", "row 3"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")
df

       first    last       birth
row 0  Paul     McCartney  1942
row 1  John     Lennon     1940
row 2  Richard  Starkey    1940
row 3  George   Harrison   1943

Passing orient="columns" will produce data using the pattern of {"column":{"row": value, "row": 
value, ...}, ...}:

serialized = df.to_json(orient="columns")
print(f'Length of orient="columns": {len(serialized)}')
serialized[:100]

Length of orient="columns": 221
{"first":{"row 0":"Paul","row 1":"John","row 2":"Richard","row 
3":"George"},"last":{"row 0":"McCartn
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This is a rather verbose way of storing the data, as it will repeat the row index labels for every column. 
On the plus side, pandas can do a reasonably good job of reconstructing the proper pd.DataFrame 
from this orient:

pd.read_json(
    io.StringIO(serialized),
    orient="columns",
    dtype_backend="numpy_nullable"
)

       first    last       birth
row 0  Paul     McCartney  1942
row 1  John     Lennon     1940
row 2  Richard  Starkey    1940
row 3  George   Harrison   1943

With orient="records", you end up with each row of the pd.DataFrame being represented without 
its row index label, yielding a pattern of [{"col": value, "col": value, ...}, ...]:

serialized = df.to_json(orient="records")
print(f'Length of orient="records": {len(serialized)}')
serialized[:100]

Length of orient="records": 196
[{"first":"Paul","last":"McCartney","birth":1942},{"first":"John","last":"Len-
non","birth":1940},{"fi

While this representation is more compact than orient="columns", it does not store any row labels, 
so on reconstruction, you will get back a pd.DataFrame with a newly generated pd.RangeIndex:

pd.read_json(
    io.StringIO(serialized),
    orient="orient",
    dtype_backend="numpy_nullable"
)

      first    last       birth
0     Paul     McCartney  1942
1     John     Lennon     1940
2     Richard  Starkey    1940
3     George   Harrison   1943

With orient="split", the row index labels, column index labels, and data are all stored separately:
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serialized = df.to_json(orient="split")
print(f'Length of orient="split": {len(serialized)}')
serialized[:100]

Length of orient="split": 190
{"columns":["first","last","birth"],"index":["row 0","row 1","row 2","row 
3"],"data":[["Paul","McCar

This format uses a relatively lesser amount of characters than orient="columns", and you can still 
recreate a pd.DataFrame reasonably well, since it mirrors how you would build a pd.DataFrame using 
the constructor (with arguments like pd.DataFrame(data, index=index, columns=columns)):

pd.read_json(
    io.StringIO(serialized),
    orient="split",
    dtype_backend="numpy_nullable",
)

       first    last       birth
row 0  Paul     McCartney  1942
row 1  John     Lennon     1940
row 2  Richard  Starkey    1940
row 3  George   Harrison   1943

While this is a good format when roundtripping a pd.DataFrame, the odds of coming across this JSON 
format “in the wild” are much lower as compared to other formats.

orient="index" is very similar to orient="columns", but it reverses the roles of the row and column 
labels:

serialized = df.to_json(orient="index")
print(f'Length of orient="index": {len(serialized)}')
serialized[:100]

Length of orient="index": 228
{"row 0":{"first":"Paul","last":"McCartney","birth":1942},"row 1":{"first":"-
John","last":"Lennon","b

Once again, you can recreate your pd.DataFrame reasonably well:

pd.read_json(
    io.StringIO(serialized),
    orient="index",
    dtype_backend="numpy_nullable",
)



The pandas I/O System112

       first    last       birth
row 0  Paul     McCartney  1942
row 1  John     Lennon     1940
row 2  Richard  Starkey    1940
row 3  George   Harrison   1943

Generally, orient="index" will take up more space than orient="columns", since most pd.DataFrame 
objects use column labels that are more verbose than index labels. I would only advise using this 
format in the possibly rare instances where your column labels are less verbose, or if you have strict 
formatting requirements imposed by another system.

For the most minimalistic representation, you can opt for orient="values". With this orient, neither 
row nor column labels are preserved:

serialized = df.to_json(orient="values")
print(f'Length of orient="values": {len(serialized)}')
serialized[:100]

Length of orient="values": 104
[["Paul","McCartney",1942],["John","Lennon",1940],["Richard","Star-
key",1940],["George","Harrison",19

Of course, since they are not represented in the JSON data, you will not maintain row/column labels 
when reading with orient="values":

pd.read_json(
    io.StringIO(serialized),
    orient="values",
    dtype_backend="numpy_nullable",
)

     0        1          2
0    Paul     McCartney  1942
1    John     Lennon     1940
2    Richard  Starkey    1940
3    George   Harrison   1943

Finally, we have orient="table". This will be the most verbose out of all of the outputs, but it is the 
only one backed by an actual standard, which is called the JSON Table Schema:

serialized = df.to_json(orient="table")
print(f'Length of orient="table": {len(serialized)}')
serialized[:100]

Length of orient="table": 524
{"schema":{"fields":[{"name":"index","type":"string"},{"name":"first","-
type":"any","extDtype":"strin
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The Table Schema is more verbose because it stores metadata about the data being serialized, similar 
to what we saw with the Apache Parquet format (although with fewer features than Apache Parquet). 
With all of the other orient= arguments, pandas would have to infer the type of data as it is being 
read, but the JSON Table Format preserves that information for you. As such, you don’t even need 
the dtype_backend="numpy_nullable" argument, assuming you used the pandas extension types to 
begin with:

df["birth"] = df["birth"].astype(pd.UInt16Dtype())
serialized = df.to_json(orient="table")
pd.read_json(
    io.StringIO(serialized),
    orient="table",
).dtypes

first    string[python]
last     string[python]
birth            UInt16
dtype: object

There’s more...
When attempting to read JSON, you may find that none of the above formats can still sufficiently 
express what you are trying to accomplish. Fortunately, there is still pd.json_normalize, which can 
act as a workhorse function to convert your JSON data into a tabular format.

Imagine working with the following JSON data from a theoretical REST API with pagination:

data = {
    "records": [{
        "name": "human",
        "characteristics": {
            "num_leg": 2,
            "num_eyes": 2
        }
    }, {
        "name": "dog",
        "characteristics": {
            "num_leg": 4,
            "num_eyes": 2
        }
    }, {
        "name": "horseshoe crab",
        "characteristics": {
            "num_leg": 10,
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            "num_eyes": 10
        }
    }],
    "type": "animal",
    "pagination": {
        "next": "23978sdlkusdf97234u2io",
        "has_more": 1
    }
}

While the "pagination" key is useful for navigating the API, it is of little reporting value to us and can 
trip up the JSON serializers. What we actually care about is the array associated with the "records" key. 
You can direct pd.json_normalize to look at this data exclusively, using the record_path= argument. 
Please note that pd.json_normalize is not a true I/O function, since it deals with Python objects and 
not file handles, so it has no dtype_backend= argument; instead, we will chain in a pd.DataFrame.
convert_dtypes call to get the desired pandas extension types:

pd.json_normalize(
    data,
    record_path="records"
).convert_dtypes(dtype_backend="numpy_nullable")

    name            characteristics.num_leg  characteristics.num_eyes
0   human           2                        2
1   dog             4                        2
2   horseshoe crab  10                       10

By providing the record_path= argument, we were able to ignore the undesired "pagination" key, 
but unfortunately, we now have the side effect of dropping the "type" key, which contained valuable 
metadata about each record. To preserve this information, you can use the meta= argument:

pd.json_normalize(
    data,
    record_path="records",
    meta="type"
).convert_dtypes(dtype_backend="numpy_nullable")

    name    characteristics.num_leg  characteristics.num_eyes  type
0   human   2                        2                         animal
1   dog     4                        2                         animal
2   horseshoe 
    crab    10                       10                        animal
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HTML
You can use pandas to read HTML tables from websites. This makes it easy to ingest tables such as 
those found on Wikipedia.

In this recipe, we will scrape tables from the Wikipedia entry for The Beatles Discography (https://
en.wikipedia.org/wiki/The_Beatles_discography). In particular, we want to scrape the table in 
the image that was on Wikipedia in 2024:

Figure 4.4: Wikipedia page for The Beatles Discography

Before attempting to read HTML, users will need to install a third-party library. For the examples in 
this section, we will use lxml:

python -m pip install lxml

How to do it
pd.read_html allows you to read a table from a website:

url = "https://en.wikipedia.org/wiki/The_Beatles_discography"
dfs = pd.read_html(url, dtype_backend="numpy_nullable")
len(dfs)

60

Contrary to the other I/O methods we have seen so far, pd.read_html doesn’t return a pd.DataFrame 
but, instead, returns a list of pd.DataFrame objects. Let’s see what the first list element looks like:

dfs[0]

https://en.wikipedia.org/wiki/The_Beatles_discography
https://en.wikipedia.org/wiki/The_Beatles_discography
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    The Beatles discography   The Beatles discography.1
0   The Beatles in 1965       The Beatles in 1965
1   Studio albums             12 (UK), 17 (US)
2   Live albums               5
3   Compilation albums        51
4   Video albums              22
5   Music videos              53
6   EPs                       36
7   Singles                   63
8   Mash-ups                  2
9   Box sets                  17

The preceding table is a summary of the count of studio albums, live albums, compilation albums, and 
so on. This is not the table we wanted. We could loop through each of the tables that pd.read_html 
created, or we could give it a hint to find a specific table.

One way of getting the table we want would be to leverage the attrs= argument of pd.read_html. This 
parameter accepts a dictionary mapping HTML attributes to values. Because an id attribute in HTML 
is supposed to be unique within a document, trying to find a table with attrs={"id": ...} is usually 
a safe approach. Let’s see if we can get that to work here.

Use your web browser to inspect the HTML of the web page (if you are unsure how to do this, search 
online for terms like Firefox inspector, Safari Web Inspector, or Google Chrome DevTools; the terminology 
is unfortunately not standardized). Look for any id fields, unique strings, or attributes of the table 
element that help us identify the table we are after.

Here is a portion of the raw HTML:

<table class="wikipedia plainrowheaders" style="text-align:center;">
  <caption>List of studio albums, with selected chart positions and certifica-
tion
  </caption>
  <tbody>
    <tr>
      <th rowspan="2" scope="col" style="width:20em;">Title</th>
      <th rowspan="2" scope="col" style="width:20em;">Album details<sup 
id="cite_ref-8" class="reference"><a href="#cite_note-8">[A]</a></sup></th>
      ...
    </tr>
  </tbody>

Unfortunately, the table we are looking for does not have an id attribute. We could try using either the 
class or style attributes we see in the HTML snippet above, but chances are those won’t be unique.
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Another parameter we can try is match=, which can be a string or a regular expression and matches 
against the table contents. In the <caption> tag of the above HTML, you will see the text "List of 
studio albums"; let’s try that as an argument. To help readability, we are just going to look at each 
Album and its performance in the UK, AUS, and CAN:

url = "https://en.wikipedia.org/wiki/The_Beatles_discography"
dfs = pd.read_html(
    url,
    match=r"List of studio albums",
    dtype_backend="numpy_nullable",
)
print(f"Number of tables returned was: {len(dfs)}")
dfs[0].filter(regex=r"Title|UK|AUS|CAN").head()

                      Title                  Peak chart positions

                      Title       UK [8][9]   AUS [10]    CAN [11]
0          Please Please Me               1          —          —
1       With the Beatles[B]               1          —          —
2        A Hard Day's Night               1          1          —
3          Beatles for Sale               1          1          —
4                     Help!               1          1          —

While we are able to now find the table, the column names are less than ideal. If you look closely at the 
Wikipedia table, you will notice that it partially creates a hierarchy between the Peak chart positions 
text and the name of countries below it, which pandas turns into a pd.MultiIndex. To make our table 
easier to read, we can pass header=1 to ignore the very first level of the generated pd.MultiIndex:

url = "https://en.wikipedia.org/wiki/The_Beatles_discography"
dfs = pd.read_html(
    url,
    match="List of studio albums",
    header=1,
    dtype_backend="numpy_nullable",
)
dfs[0].filter(regex=r"Title|UK|AUS|CAN").head()

                      Title      UK [8][9]   AUS [10]   CAN [11]
0          Please Please Me              1         —           —
1       With the Beatles[B]              1         —           —
2        A Hard Day's Night              1         1           —
3          Beatles for Sale              1         1           —
4                     Help!              1         1           —
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As we look closer at the data, we can see that Wikipedia uses — to represent missing values. If we 
pass this as an argument to the na_values= parameter of pd.read_html, we will see  the =—= values 
converted to missing values:

url = "https://en.wikipedia.org/wiki/The_Beatles_discography"
dfs = pd.read_html(
    url,
    match="List of studio albums",
    header=1,
    na_values=["—"],
    dtype_backend="numpy_nullable",
)
dfs[0].filter(regex=r"Title|UK|AUS|CAN").head()

        Title                 UK [8][9]   AUS [10]   CAN [11]
0       Please Please Me              1       <NA>       <NA>
1       With the Beatles[B]           1       <NA>       <NA>
2       A Hard Day's Night            1          1       <NA>
3       Beatles for Sale              1          1       <NA>
4       Help!                         1          1       <NA>

Pickle
The pickle format is Python’s built-in serialization format. Pickle files typically end with a .pkl ex-
tension.

Unlike other formats encountered so far, the pickle format should not be used to transfer data across 
machines. The main use case is for saving pandas objects that themselves contain Python objects to your 
own machine, returning to them at a later point in time. If you are unsure if you should be using this 
format or not, I would advise trying the Apache Parquet format first, which covers a wider array of 
use cases.

Do not load pickle files from untrusted sources. I would generally only advise using pickle for your 
own analyses; do not share data or expect to receive data from others in the pickle format.

How to do it
To highlight that the pickle format should really only be used when your pandas objects contain Py-
thon objects, let’s imagine we decided to store our Beatles data as a pd.Series of namedtuple types. 
It is a fair question as to why you would do this in the first place, as it would be better represented as 
a pd.DataFrame… but questions aside, it is valid to do so:

from collections import namedtuple

Member = namedtuple("Member", ["first", "last", "birth"])
ser = pd.Series([
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    Member("Paul", "McCartney", 1942),
    Member("John", "Lennon", 1940),
    Member("Richard", "Starkey", 1940),
    Member("George", "Harrison", 1943),
])
ser

0     (Paul, McCartney, 1942)
1        (John, Lennon, 1940)
2    (Richard, Starkey, 1940)
3    (George, Harrison, 1943)
dtype: object

None of the other I/O methods we have discussed in this chapter would be able to faithfully represent 
a namedtuple, which is purely a Python construct. pd.Series.to_pickle, however, has no problem 
writing this out:

import io
buf = io.BytesIO()
ser.to_pickle(buf)

When you call pd.read_pickle, you will get the exact representation you started with returned:

buf.seek(0)
ser = pd.read_pickle(buf)
ser

0     (Paul, McCartney, 1942)
1        (John, Lennon, 1940)
2    (Richard, Starkey, 1940)
3    (George, Harrison, 1943)
dtype: object

You can further validate this by inspecting an individual element:

ser.iloc[0]

Member(first='Paul', last='McCartney', birth=1942)

Once again, it is worth stressing that the Apache Parquet format should be preferred to pickle, only 
using this as a last resort when Python-specific objects within your pd.Series or pd.DataFrame need 
to be roundtripped. Be sure to never load pickle files from untrusted sources; unless you created the 
pickle file yourself, I would highly advise against trying to process it.
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Third-party I/O libraries
While pandas covers an impressive amount of formats it cannot hope to cover every important format 
out there. Third-party libraries exist to cover that gap.

Here are a few you may be interested in – the details of how they work are outside the scope of this 
book, but they all generally follow the pattern of having read functions that return pd.DataFrame 
objects and write methods that accept a pd.DataFrame argument:

•	 pandas-gbq allows you to exchange data with Google BigQuery
•	 AWS SDK for pandas works with Redshift and the AWS ecosystem at large
•	 Snowflake Connector for Python helps exchange with Snowflake databases
•	 pantab lets you move pd.DataFrame objects in and out of Tableau’s Hyper database format 

(note: I am also the author of pantab)

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/pandas

https://packt.link/pandas


5
Algorithms and How to Apply 
Them

In this book, we have already looked at a variety of ways to create pandas data structures and select/
assign data within them and have subsequently seen how to store those structures in common formats. 
These features alone can make pandas a powerful tool in the realm of data exchange, but we are still 
just scratching the surface of what pandas can offer.

A core component of data analysis and computing in general is the application of algorithms, which 
describe a sequence of steps the computer should take to process data. In their simplistic form, com-
mon data algorithms build upon basic arithmetic (for example, “sum this column”), but scale out to 
any sequence of steps that you may need for your custom calculations.

As you will see in this chapter, pandas provides many common data algorithms out of the box, but 
also gives you a robust framework through which you can compose and apply your own algorithms. 
The algorithms pandas provides out of the box would be faster than anything you can write by hand 
in Python, and as you progress in your data journey, you will usually find that clever use of these 
algorithms can cover a vast amount of data processing needs.

We are going to cover the following recipes in this chapter:

•	 Basic pd.Series arithmetic
•	 Basic pd.DataFrame arithmetic
•	 Aggregations
•	 Transformations
•	 Map
•	 Apply
•	 Summary statistics
•	 Binning algorithms
•	 One-hot encoding with pd.get_dummies
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•	 Chaining with .pipe
•	 Selecting the lowest-budget movies from the top 100
•	 Calculating a trailing stop order price
•	 Finding the baseball players best at…
•	 Understanding which position scores the most per team

Basic pd.Series arithmetic
The easiest place to start when exploring pandas algorithms is with a pd.Series, given it is also the 
most basic structure provided by the pandas library. Basic arithmetic will cover the operations of 
addition, subtraction, multiplication, and division, and, as you will see in this section, pandas offers 
two ways to perform these. The first approach allows pandas to work with the +, -, *, and / operators 
built into the Python language, which is an intuitive way for new users coming to the library to pick 
up the tool. However, to cover features specific to data analysis not covered by the Python language, 
and to support the Chaining with .pipe approach that we will cover later in this chapter, pandas also 
offers pd.Series.add, pd.Series.sub, pd.Series.mul, and pd.Series.div, respectively.

The pandas library goes to great lengths to keep its API consistent across all data structures, so you 
will see that the knowledge from this section can be easily transferred over to the pd.DataFrame 
structure, with the only difference being that a pd.Series is one-dimensional while a pd.DataFrame 
is two-dimensional.

How to do it
Let’s create a simple pd.Series from a Python range expression:

ser = pd.Series(range(3), dtype=pd.Int64Dtype())
ser

0    0
1    1
2    2
dtype: Int64

To establish terminology, let’s briefly consider an expression like a + b. In such an expression, we are 
using a binary operator (+). The term binary refers to the fact that you need to add two things together 
for this expression to make sense, that is, it wouldn’t make sense to just have an expression like a +. 
Those two “things” are technically considered operands; so, with a + b, we have a left operand of a 
and a right operand of b.

With one of the operands being a pd.Series, the most basic algorithmic expression in pandas would 
encompass the other operand being a scalar, that is to say, just a single value. When that occurs, the 
scalar value is broadcast to each element of the pd.Series to apply the algorithm.

For example, if we wanted to add the number 42 to each and every element of our pd.Series, we 
could simply express that as:
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ser + 42

0    42
1    43
2    44
dtype: Int64

The pandas library is able to take the addition expression and apply it to our pd.Series in a vectorized 
manner (i.e., the number 42 gets applied to all values at once without requiring users to resort to a 
for loop in Python).

Subtraction may be expressed naturally using the - operator:

ser - 42

0    -42
1    -41
2    -40
dtype: Int64

Similarly, multiplication may be expressed with the * operator:

ser * 2

0    0
1    2
2    4
dtype: Int64

By now, you can probably surmise that division is expressed with the / operator:

ser / 2

0    0.0
1    0.5
2    1.0
dtype: Float64

It is also perfectly valid for the two operands to be a pd.Series:

ser2 = pd.Series(range(10, 13), dtype=pd.Int64Dtype())
ser + ser2

0    10
1    12
2    14
dtype: Int64



Algorithms and How to Apply Them124

As mentioned in the introduction of this section, while the built-in Python operators are commonly 
used and viable in most cases, pandas still offers dedicated methods for pd.Series.add, pd.Series.
sub, pd.Series.mul, and pd.Series.div:

ser1 = pd.Series([1., 2., 3.], dtype=pd.Float64Dtype())
ser2 = pd.Series([4., pd.NA, 6.], dtype=pd.Float64Dtype())
ser1.add(ser2)

0     5.0
1    <NA>
2     9.0
dtype: Float64

The advantage of pd.Series.add over the built-in operator is that it accepts an optional fill_value= 
argument to handle missing data:

ser1.add(ser2, fill_value=0.)

0    5.0
1    2.0
2    9.0
dtype: Float64

Later in this chapter, you will also be introduced to chaining with .pipe, which chains most naturally 
with the pandas methods and not with the built-in Python operators.

There’s more…
When both operands in your expression are pd.Series objects together, it is important to note that 
pandas will align on the row labels. This alignment behavior is considered a feature, but can also be 
surprising to newcomers.

To see why this matters, let’s start with two pd.Series objects that have an identical row index. When 
we try to add these together, we get a rather unsurprising result:

ser1 = pd.Series(range(3), dtype=pd.Int64Dtype())
ser2 = pd.Series(range(3), dtype=pd.Int64Dtype())
ser1 + ser2

0    0
1    2
2    4
dtype: Int64

But what happens when the row index values are not identical? A simple case may involve adding two 
pd.Series objects together, where one pd.Series uses a row index that is a subset of the other. You can 
see this with ser3 in the following code, which only has 2 values and uses the default pd.RangeIndex 
with values of [0, 1]. When added together with ser1, we still get a 3-element pd.Series in return, 
but values are only added where the row index labels can be aligned from both pd.Series objects:
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ser3 = pd.Series([2, 4], dtype=pd.Int64Dtype())
ser1 + ser3

0       2
1       5
2    <NA>
dtype: Int64

Now let’s take a look at what happens when two pd.Series objects of the same length get added to-
gether, but the row index values are different:

ser4 = pd.Series([2, 4, 8], index=[1, 2, 3], dtype=pd.Int64Dtype())
ser1 + ser4

0    <NA>
1       3
2       6
3    <NA>
dtype: Int64

For an even more extreme case, let’s consider the situation where one pd.Series has row index values 
that are non-unique:

ser5 = pd.Series([2, 4, 8], index=[0, 1, 1], dtype=pd.Int64Dtype())
ser1 + ser5

0       2
1       5
1       9
2    <NA>
dtype: Int64

If you have a background in SQL, the behavior of pandas here is akin to a FULL OUTER JOIN in a database. 
Every label from each row index gets included in the output, with pandas matching up the labels that 
can be seen in both pd.Series objects. This can be directly replicated in a database like PostgreSQL:

WITH ser1 AS (
  SELECT * FROM (
    VALUES
      (0, 0),
      (1, 1),
      (2, 2)
   ) AS t(index, val1)
),

ser5 AS (
  SELECT * FROM (
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    VALUES
      (0, 2),
      (1, 4),
      (1, 8)
   ) AS t(index, val2)
)

SELECT * FROM ser1 FULL OUTER JOIN ser5 USING(index);

If you were to run this snippet directly in PostgreSQL, you would get back the following result:

index | val1 | val2
------+------+------
    0 |    0 |    2
    1 |    1 |    8
    1 |    1 |    4
    2 |    2 |
(4 rows)

Ignoring the ordering difference, you can see that the database gives us back all of the unique index 
values from the combinations of [0, 1, 2] and [0, 1, 1], alongside any associated val1 and val2 
values. Even though ser1 only had one index value of 1, that same value appeared twice in the index 
column in ser5. The FULL OUTER JOIN therefore shows both val2 values from ser5 (4 and 8), while 
duplicating the val1 value originating from ser1 (1).

If you were to subsequently add val1 and val2 together in the database, you would get back a result 
that matches the output of ser1 + ser5, sparing the fact that the database may choose a different 
order for its output:

WITH ser1 AS (
  SELECT * FROM (
    VALUES
      (0, 0),
      (1, 1),
      (2, 2)
   ) AS t(index, val1)
),

ser5 AS (
  SELECT * FROM (
    VALUES
      (0, 2),
      (1, 4),
      (1, 8)
   ) AS t(index, val2)
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)

SELECT index, val1 + val2 AS value FROM ser1 FULL OUTER JOIN ser5 USING(index);

index | value
------+-------
    0 |     2
    1 |     9
    1 |     5
    2 |
(4 rows)

Basic pd.DataFrame arithmetic
Having now covered basic pd.Series arithmetic, you will find that the corresponding pd.DataFrame 
arithmetic operations are practically identical, with the lone exception being that our algorithms now 
work in two dimensions instead of just one. In doing so, the pandas API makes it easy to interpret 
data regardless of its shape, and without requiring users to write loops to interact with data. This 
helps significantly reduce developer effort and helps you write faster code – a win-win for developers.

How it works
Let’s create a small 3x3 pd.DataFrame using random numbers:

np.random.seed(42)
df = pd.DataFrame(
    np.random.randn(3, 3),
    columns=["col1", "col2", "col3"],
    index=["row1", "row2", "row3"],
).convert_dtypes(dtype_backend="numpy_nullable")
df

        col1         col2         col3
row1    0.496714    -0.138264     0.647689
row2    1.52303     -0.234153    -0.234137
row3    1.579213     0.767435    -0.469474

Much like a pd.Series, a pd.DataFrame also supports built-in binary operators with a scalar argument. 
Here is a simplistic addition operation:

df + 1

        col1        col2        col3
row1    1.496714    0.861736    1.647689
row2    2.52303     0.765847    0.765863
row3    2.579213    1.767435    0.530526
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And here is a simplistic multiplication operation:

df * 2

        col1        col2          col3
row1    0.993428    -0.276529     1.295377
row2    3.04606     -0.468307    -0.468274
row3    3.158426     1.534869    -0.938949

You can also perform arithmetic with a pd.Series. By default, each row label in the pd.Series is 
searched for and aligned against the columns of the pd.DataFrame. To illustrate, let’s create a small 
pd.Series whose index labels match the column labels of df:

ser = pd.Series(
    [20, 10, 0],
    index=["col1", "col2", "col3"],
    dtype=pd.Int64Dtype(),
)
ser

col1    20
col2    10
col3     0
dtype: Int64

If you were to try and add this to our pd.DataFrame, it would take the value of col1 in the pd.Series 
and add it to every element in the col1 column of the pd.DataFrame, repeating for each index entry:

df + ser

        col1         col2        col3
row1    20.496714    9.861736    0.647689
row2    21.52303     9.765847   -0.234137
row3    21.579213    10.767435  -0.469474

In cases where the row labels of the pd.Series do not match the column labels of the pd.DataFrame, 
you may end up with missing data:

ser = pd.Series(
    [20, 10, 0, 42],
    index=["col1", "col2", "col3", "new_column"],
    dtype=pd.Int64Dtype(),
)
ser + df
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        col1        col2        col3        new_column
row1    20.496714   9.861736    0.647689    NaN
row2    21.52303    9.765847    -0.234137   NaN
row3    21.579213   10.767435   -0.469474   NaN

If you would like to control how pd.Series and pd.DataFrame align, you can use the axis= parameter 
of methods like pd.DataFrame.add, pd.DataFrame.sub, pd.DataFrame.mul, and pd.DataFrame.div.

Let’s see this in action by creating a new pd.Series using row labels that align better with the row 
labels of our pd.DataFrame:

ser = pd.Series(
    [20, 10, 0, 42],
    index=["row1", "row2", "row3", "row4"],
    dtype=pd.Int64Dtype(),
)
ser

row1    20
row2    10
row3     0
row4    42
dtype: Int64

Specifying df.add(ser, axis=0) will match up the row labels from both the pd.Series and 
pd.DataFrame:

df.add(ser, axis=0)

        col1        col2        col3
row1    20.496714   19.861736   20.647689
row2    11.52303    9.765847    9.765863
row3    1.579213    0.767435   -0.469474
row4    <NA>        <NA>        <NA>

You can also use two pd.DataFrame arguments as the operands of addition, subtraction, multiplication, 
and division. Here is how to multiply two pd.DataFrame objects together:

df * df

        col1       col2        col3
row1    0.246725   0.019117    0.4195
row2    2.31962    0.054828    0.05482
row3    2.493913   0.588956    0.220406

Of course, when doing this, you still need to be aware of the index alignment rules – items are always 
aligned by label and not by position!
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Let’s create a new 3x3 pd.DataFrame with different row and column labels to show this:

np.random.seed(42)
df2 = pd.DataFrame(np.random.randn(3, 3))
df2 = df2.convert_dtypes(dtype_backend="numpy_nullable")
df2

     0            1             2
0    0.496714     -0.138264     0.647689
1    1.52303      -0.234153    -0.234137
2    1.579213      0.767435    -0.469474

Attempting to add this to our previous pd.DataFrame will generate a row index with labels ["row1", 
"row2", "row3", 0, 1, 2] and a column index with labels ["col1", "col2", "col3", 0, 1, 2]. 
Because no labels could be aligned, everything comes back as a missing value:

df + df2

        col1    col2    col3    0       1       2
row1    <NA>    <NA>    <NA>    <NA>    <NA>    <NA>
row2    <NA>    <NA>    <NA>    <NA>    <NA>    <NA>
row3    <NA>    <NA>    <NA>    <NA>    <NA>    <NA>
0       <NA>    <NA>    <NA>    <NA>    <NA>    <NA>
1       <NA>    <NA>    <NA>    <NA>    <NA>    <NA>
2       <NA>    <NA>    <NA>    <NA>    <NA>    <NA>

Aggregations
Aggregations (also referred to as reductions) help you to reduce multiple values from a series of values 
down to a single value. Even if the technical term is new to you, you have no doubt encountered many 
aggregations in your data journey. Things like the count of records, the sum or sales, or the average 
price are all very common aggregations.

In this recipe, we will explore many of the aggregations built into pandas, while also forming an under-
standing of how these aggregations are applied. Most analysis you will do throughout your data journey 
involves taking large datasets and aggregating the values therein into results that your audience can 
consume. Executives at most companies are not interested in receiving a data dump of transactions, 
they just want to know the sum, min, max, mean, and so on of values within those transactions. As 
such, effective use and application of aggregations is a key component to converting your complex 
data transformation pipelines into simple outputs that others can use and act upon.

How to do it
Many basic aggregations are implemented as methods directly on the pd.Series object, which makes 
it trivial to calculate commonly desired outputs like the count, sum, max, and so on.

To kick off this recipe, let’s once again start with a pd.Series containing random numbers:
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np.random.seed(42)
ser = pd.Series(np.random.rand(10_000), dtype=pd.Float64Dtype())

The pandas library provides methods for many commonly used aggregations, like pd.Series.count, 
pd.Series.mean, pd.Series.std, pd.Series.min, pd.Series.max, and pd.Series.sum:

print(f"Count is: {ser.count()}")
print(f"Mean value is: {ser.mean()}")
print(f"Standard deviation is: {ser.std()}")
print(f"Minimum value is: {ser.min()}")
print(f"Maximum value is: {ser.max()}")
print(f"Summation is: {ser.sum()}")

Count is: 10000
Mean value is: 0.49415955768429964
Standard deviation is: 0.2876301265269928
Minimum value is: 1.1634755366141114e-05
Maximum value is: 0.9997176732861306
Summation is: 4941.595576842997

Instead of calling those methods directly, a more generic way to invoke these aggregations would be 
to use pd.Series.agg, providing the name of the aggregation you would like to perform as a string:

print(f"Count is: {ser.agg('count')}")
print(f"Mean value is: {ser.agg('mean')}")
print(f"Standard deviation is: {ser.agg('std')}")
print(f"Minimum value is: {ser.agg('min')}")
print(f"Maximum value is: {ser.agg('max')}")
print(f"Summation is: {ser.agg('sum')}")

Count is: 10000
Mean value is: 0.49415955768429964
Standard deviation is: 0.2876301265269928
Minimum value is: 1.1634755366141114e-05
Maximum value is: 0.9997176732861306
Summation is: 4941.595576842997

An advantage using pd.Series.agg is that it can perform multiple aggregations for you. For example, 
if you wanted to calculate the minimum and maximum of a field in one step, you could do this by 
providing a list to pd.Series.agg:

ser.agg(["min", "max"])

min    0.000012
max    0.999718
dtype: float64
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Aggregating a pd.Series is straightforward because there is only one dimension to be aggregated. 
With a pd.DataFrame, there are two possible dimensions to aggregate along, so you have a few more 
considerations as an end user of the library.

To walk through this, let’s go ahead and create a pd.DataFrame with random numbers:

np.random.seed(42)
df = pd.DataFrame(
    np.random.randn(10_000, 6),
    columns=list("abcdef"),
).convert_dtypes(dtype_backend="numpy_nullable")
df

     a          b         c         d          e          f
0    0.496714  -0.138264  0.647689  1.523030  -0.234153  -0.234137
1    1.579213   0.767435 -0.469474  0.542560  -0.463418  -0.465730
2    0.241962  -1.913280 -1.724918 -0.562288  -1.012831   0.314247
3   -0.908024  -1.412304  1.465649 -0.225776   0.067528  -1.424748
4   -0.544383   0.110923 -1.150994  0.375698  -0.600639  -0.291694
…     …         …         …         …         …         …
9995  1.951254  0.324704  1.937021 -0.125083  0.589664   0.869128
9996  0.624062 -0.317340 -1.636983  2.390878 -0.597118   2.670553
9997 -0.470192  1.511932  0.718306  0.764051 -0.495094  -0.273401
9998 -0.259206  0.274769 -0.084735 -0.406717 -0.815527  -0.716988
9999  0.533743 -0.701856 -1.099044  0.141010 -2.181973  -0.006398
10000 rows × 6 columns

By default, invoking an aggregation using a built-in method like pd.DataFrame.sum will apply along 
the columns, meaning each column is individually aggregated. After that, pandas will display the result 
of each column’s aggregation as an entry in a pd.Series:

df.sum()

a    -21.365908
b     -7.963987
c    152.032992
d   -180.727498
e     29.399311
f     25.042078
dtype: Float64

If you would like to aggregate data in each row, you can specify the axis=1 argument, with the caveat 
being that pandas is way more optimized for axis=0 operations, so this has a chance of being signifi-
cantly slower than aggregating columns. Even still, it is a rather unique feature of pandas that can be 
useful when performance is not the main concern:
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df.sum(axis=1)

0       2.060878
1       1.490586
2      -4.657107
3      -2.437675
4      -2.101088
         ...   
9995     5.54669
9996     3.134053
9997     1.755601
9998    -2.008404
9999    -3.314518
Length: 10000, dtype: Float64

Much like a pd.Series, a pd.DataFrame has a .agg method, which can be used to apply multiple 
aggregations at once:

df.agg(["min", "max"])

      a         b         c         d         e         f
min  -4.295391 -3.436062 -3.922400 -4.465604 -3.836656 -4.157734
max   3.602415  3.745379  3.727833  4.479084  3.691625  3.942331

There’s more…
In the examples covered in the How to do it section, we passed functions as strings like min and max 
to .agg. This is great for simple functions, but for more complex cases, you can also pass in callable 
arguments. Each callable should accept a single argument pd.Series and reduce down to a scalar:

def mean_and_add_42(ser: pd.Series):
    return ser.mean() + 42

def mean_and_sub_42(ser: pd.Series):
    return ser.mean() - 42

np.random.seed(42)
ser = pd.Series(np.random.rand(10_000), dtype=pd.Float64Dtype())
ser.agg([mean_and_add_42, mean_and_sub_42])

mean_and_add_42    42.49416
mean_and_sub_42   -41.50584
dtype: float64
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Transformations
Contrary to aggregations, transformations do not reduce an array of values to a single value but, rather, 
maintain the shape of the calling object. This particular recipe may seem rather mundane coming 
from the previous section on aggregations, but transformations and aggregations will end up being 
very complementary tools to calculate things like the “% total of group” later in the cookbook.

How to do it
Let’s create a small pd.Series:

ser = pd.Series([-1, 0, 1], dtype=pd.Int64Dtype())

Much like we saw with pd.Series.agg before, pd.Series.transform can accept a list of functions to 
apply. However, whereas pd.Series.agg expected these functions to return a single value, pd.Series.
transform expects these functions to return a pd.Series with the same index and shape:

def adds_one(ser: pd.Series) -> pd.Series:
    return ser + 1

ser.transform(["abs", adds_one])

     abs    adds_one
0    1      0
1    0      1
2    1      2

Much like pd.DataFrame.agg would aggregate each column by default, pd.DataFrame.transform will 
transform each column by default. Let’s create a small pd.DataFrame to see this in action:

df = pd.DataFrame(
    np.arange(-5, 4, 1).reshape(3, -1)
).convert_dtypes(dtype_backend="numpy_nullable")
df

     0    1    2
0   -5   -4   -3
1   -2   -1    0
2    1    2    3

Sparing implementation details, calling something like df.transform("abs") will apply the absolute 
value function to each column individually before piecing back together the result as a pd.DataFrame:

df.transform("abs")

     0    1    2
0    5    4    3
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1    2    1    0
2    1    2    3

If you were to pass multiple transformation functions to pd.DataFrame.transform, you will end up 
with a pd.MultiIndex:

def add_42(ser: pd.Series):
    return ser + 42

df.transform(["abs", add_42])

    0       1       2
    abs  add_42  abs  add_42  abs  add_42
0   5      37    4      38    3      39
1   2      40    1      41    0      42
2   1      43    2      44    3      45

There’s more…
As mentioned in the introduction to this recipe, transformations and aggregations can work naturally 
together alongside the GroupBy concept, which will be covered in Chapter 8, Group By. In particular, 
our Group by basics recipe will be helpful to compare/contrast aggregations to transformations and 
will highlight how transformations can be used to expressively and succinctly calculate “percent of 
group” calculations.

Map
The .agg and .transform methods we have seen so far apply to an entire sequence of values at once. 
Generally, in pandas, this is a good thing; it allows pandas to perform vectorized operations that are 
fast and computationally efficient.

Still, sometimes, you as an end user may decide that you want to trade performance for customization 
or finer-grained control. This is where the .map methods can come into the picture; .map helps you 
apply functions individually to each element of your pandas object.

How to do it
Let’s assume we have a pd.Series of data that mixes together both numbers and lists of numbers:

ser = pd.Series([123.45, [100, 113], 142.0, [110, 113, 119]])
ser

0             123.45
1         [100, 113]
2              142.0
3    [110, 113, 119]
dtype: object



Algorithms and How to Apply Them136

.agg or .transform are not suitable here because we do not have a uniform data type – we really have 
to inspect each element to make a decision on how to handle it.

For our analysis, let’s assume that when we encounter a number, we are happy to return the value as 
is. If we encounter a list of values, we want to average out all of the values within that list and return 
that. A function implementing this feature would look as follows:

def custom_average(value):
    if isinstance(value, list):
        return sum(value) / len(value)

    return value

We can then apply this to each element of our pd.Series using pd.Series.map:

ser.map(custom_average)

0    123.45
1    106.50
2    142.00
3    114.00
dtype: float64

If we had a pd.DataFrame containing this type of data, pd.DataFrame.map would be able to apply this 
function just as well:

df = pd.DataFrame([
    [2., [1, 2], 3.],
    [[4, 5], 5, 7.],
    [1, 4, [1, 1, 5.5]],
])
df

          0         1              2
0       2.0    [1, 2]            3.0
1    [4, 5]         5            7.0
2         1         4    [1, 1, 5.5]

df.map(custom_average)

       0      1     2
0    2.0    1.5   3.0
1    4.5    5.0   7.0
2    1.0    4.0   2.5
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There’s more…
In the above example, instead of using pd.Series.map, you could have also used pd.Series.transform:

ser.transform(custom_average)

0    123.45
1    106.50
2    142.00
3    114.00
dtype: float64

However, you would not get the same results with pd.DataFrame.transform:

df.transform(custom_average)

          0        1             2
0       2.0   [1, 2]           3.0
1    [4, 5]        5           7.0
2         1        4   [1, 1, 5.5]

Why is this? Remember that .map explicitly applies a function to each element, regardless of if you are 
working with a pd.Series or pd.DataFrame. pd.Series.transform is also happy to apply a function 
to each element that it contains, but pd.DataFrame.transform essentially loops over each column 
and passes that column as an argument to the callable arguments.

Because our function is implemented as:

def custom_average(value):
    if isinstance(value, list):
        return sum(value) / len(value)

    return value

the isinstance(value, list) check fails when passed a pd.Series and you end up just returning 
the pd.Series itself. If we tweak our function slightly:

def custom_average(value):
    if isinstance(value, (pd.Series, pd.DataFrame)):
        raise TypeError("Received a pandas object - expected a single value!")
    if isinstance(value, list):
        return sum(value) / len(value)

    return value
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then the behavior of pd.DataFrame.transform becomes more clear:

df.transform(custom_average)

TypeError: Received a pandas object - expected a single value!

While there may be conceptual overlap, generally, in your code, you should think of .map as working 
element-wise, whereas .agg and .transform will try as best as they can to work with larger sequences 
of data at once.

Apply
Apply is a commonly used method, to the point that I would argue it is overused. The .agg, .transform, 
and .map methods seen so far have relatively clear semantics (.agg reduces, .transform maintains 
shape, .map applies functions element-wise), but when you reach for .apply, you can mirror any of 
these. That flexibility may seem nice at first, but because .apply leaves it up to pandas to do the right 
thing, you are typically better off picking the most explicit methods to avoid surprises.

Even still, you will see a lot of code out in the wild (especially from users who did not read this book); 
so, understanding what it does and what its limitations are can be invaluable.

How to do it
Calling pd.Series.apply will make .apply act like .map (i.e., the function gets applied to each indi-
vidual element of the pd.Series).

Let’s take a look at a rather contrived function that prints out each element:

def debug_apply(value):
    print(f"Apply was called with value:\n{value}")

Funneling this through .apply:

ser = pd.Series(range(3), dtype=pd.Int64Dtype())
ser.apply(debug_apply)

Apply was called with value:
0
Apply was called with value:
1
Apply was called with value:
2
0    None
1    None
2    None
dtype: object

gives exactly the same behavior as pd.Series.map:
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ser.map(debug_apply)

Apply was called with value:
0
Apply was called with value:
1
Apply was called with value:
2
0    None
1    None
2    None
dtype: object

pd.Series.apply works like a Python loop, calling the function for each element. Because our function 
returns nothing, our resulting pd.Series is a like-indexed array of None values.

Whereas pd.Series.apply works element-wise, pd.DataFrame.apply works across each column as 
a pd.Series. Let’s see this in action with a pd.DataFrame of shape (3, 2):

df = pd.DataFrame(
    np.arange(6).reshape(3, -1),
    columns=list("ab"),
).convert_dtypes(dtype_backend="numpy_nullable")
df

      a     b
0     0     1
1     2     3
2     4     5

df.apply(debug_apply)

Apply was called with value:
0    0
1    2
2    4
Name: a, dtype: Int64
Apply was called with value:
0    1
1    3
2    5
Name: b, dtype: Int64
a    None
b    None
dtype: object
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As you can see in the above output, the function was only called twice given the two columns of data, 
but it was applied three times with the pd.Series that had three rows.

Aside from how many times pd.DataFrame.apply actually applies the function, the shape of the return 
value can vary between mirroring .agg and .transform functionality. Our preceding example is closer 
to a .agg because it returns a single None value, but if we returned the element we printed, we would 
get behavior more like a .transform:

def debug_apply_and_return(value):
    print(value)
    return value
df.apply(debug_apply_and_return)

0    0
1    2
2    4
Name: a, dtype: Int64
0    1
1    3
2    5
Name: b, dtype: Int64
      a    b
0     0    1
1     2    3
2     4    5

If you find this confusing, you are not alone. Trusting pandas to do the right thing with .apply can be 
a risky proposition; I strongly advise users exhaust all options with .agg, .transform, or .map before 
reaching for .apply.

Summary statistics
Summary statistics provide a quick way to understand the basic properties and distribution of the data. 
In this section, we introduce two powerful pandas methods: pd.Series.value_counts and pd.Series.
describe, which can serve as useful starting points for exploration.

How to do it
The pd.Series.value_counts method attaches frequency counts to each distinct data point, making 
it easy to see how often each value occurs. This is particularly useful for discrete data:

ser = pd.Series(["a", "b", "c", "a", "c", "a"], dtype=pd.StringDtype())
ser.value_counts()
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a    3
c    2
b    1
Name: count, dtype: Int64

For continuous data, pd.Series.describe is a heap of calculations packaged together into one method 
call. Through invocation of this particular method, you can easily see the count, mean, minimum, 
and maximum, alongside a high-level distribution of your data:

ser = pd.Series([0, 42, 84], dtype=pd.Int64Dtype())
ser.describe()

count     3.0
mean     42.0
std      42.0
min       0.0
25%      21.0
50%      42.0
75%      63.0
max      84.0
dtype: Float64

By default, we will see our distribution summarized through the 25%, 50%, 75%, and max (or 100%) 
quartiles. If your data analysis was focused on a more particular part of the distribution, you could 
control what this method presents back by providing a percentiles= argument:

ser.describe(percentiles=[.10, .44, .67])

count      3.0
mean      42.0
std       42.0
min        0.0
10%        8.4
44%      36.96
50%       42.0
67%      56.28
max       84.0
dtype: Float64

Binning algorithms
Binning is the process of taking a continuous variable and categorizing it into discrete buckets. It can 
be useful to turn a potentially infinite amount of values into a finite amount of “bins” for your analysis.
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How to do it
Let’s imagine we have collected survey data from users of a system. One of the survey questions asks 
users for their age, producing data that looks like:

df = pd.DataFrame([
    ["Jane", 34],
    ["John", 18],
    ["Jamie", 22],
    ["Jessica", 36],
    ["Jackie", 33],
    ["Steve", 40],
    ["Sam", 30],
    ["Stephanie", 66],
    ["Sarah", 55],
    ["Aaron", 22],
    ["Erin", 28],
    ["Elsa", 37],
], columns=["name", "age"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")
df.head()

        name       age
0       Jane       34
1       John       18
2       Jamie      22
3       Jessica    36
4       Jackie     33

Rather than treating each age as an individual number, we will use pd.cut to place each record into 
an age group. As a first attempt, let’s pass our pd.Series and the number of bins we would like to 
generate as arguments:

pd.cut(df["age"], 4)

0       (30.0, 42.0]
1     (17.952, 30.0]
2     (17.952, 30.0]
3       (30.0, 42.0]
4       (30.0, 42.0]
5       (30.0, 42.0]
6     (17.952, 30.0]
7       (54.0, 66.0]
8       (54.0, 66.0]
9     (17.952, 30.0]
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10    (17.952, 30.0]
11      (30.0, 42.0]
Name: age, dtype: category
Categories (4, interval[float64, right]): [(17.952, 30.0] < (30.0, 42.0] < 
(42.0, 54.0] < (54.0, 66.0]]

This produces a pd.CategoricalDtype with 4 distinct intervals – (17.952, 30.0], (30.0, 42.0], 
(42.0, 54.0], and (54.0, 66.0]. Save some unexpected decimal places on the first bin, which starts 
at 17.952, these bins all cover an equidistant range of 12 years, which was derived from the fact that 
the maximum value (66) minus the lowest value (18) yields a total age gap of 48 years, which, when 
divided equally by 4, gives us the 12-year range for each bin.

The age 17.952 we see in the first bin may make sense to pandas internally for whatever algorithm it 
chose to determine the buckets, but it is ultimately uninteresting to us since we know we are dealing 
with whole numbers. Fortunately, this can be controlled via the precision= keyword argument to 
remove any decimal places:

pd.cut(df["age"], 4, precision=0)

0     (30.0, 42.0]
1     (18.0, 30.0]
2     (18.0, 30.0]
3     (30.0, 42.0]
4     (30.0, 42.0]
5     (30.0, 42.0]
6     (18.0, 30.0]
7     (54.0, 66.0]
8     (54.0, 66.0]
9     (18.0, 30.0]
10    (18.0, 30.0]
11    (30.0, 42.0]
Name: age, dtype: category
Categories (4, interval[float64, right]): [(18.0, 30.0] < (30.0, 42.0] < (42.0, 
54.0] < (54.0, 66.0]]

pd.cut does not limit us to producing equally sized bins like this. If, instead, we wanted to place each 
person into 10-year age buckets, we could provide those ranges as the second argument:

pd.cut(df["age"], [10, 20, 30, 40, 50, 60, 70])

0     (30, 40]
1     (10, 20]
2     (20, 30]
3     (30, 40]
4     (30, 40]
5     (30, 40]
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6     (20, 30]
7     (60, 70]
8     (50, 60]
9     (20, 30]
10    (20, 30]
11    (30, 40]
Name: age, dtype: category
Categories (6, interval[int64, right]): [(10, 20] < (20, 30] < (30, 40] < (40, 
50] < (50, 60] < (60, 70]]

However, this is a little too strict because it would not account for users over the age of 70. To handle 
that, we could change our last bin edge from 70 to 999 and treat it as a catch-all:

pd.cut(df["age"], [10, 20, 30, 40, 50, 60, 999])

0      (30, 40]
1      (10, 20]
2      (20, 30]
3      (30, 40]
4      (30, 40]
5      (30, 40]
6      (20, 30]
7     (60, 999]
8      (50, 60]
9      (20, 30]
10     (20, 30]
11     (30, 40]
Name: age, dtype: category
Categories (6, interval[int64, right]): [(10, 20] < (20, 30] < (30, 40] < (40, 
50] < (50, 60] < (60, 999]]

In turn, this produced a label of (60, 999), which leaves something to be desired from a display 
perspective. If we are not happy with the default labels produced, we can control their output with 
the labels= argument:

pd.cut(
    df["age"],
    [10, 20, 30, 40, 50, 60, 999],
    labels=["10-20", "20-30", "30-40", "40-50", "50-60", "60+"],
)

0     30-40
1     10-20
2     20-30
3     30-40
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4     30-40
5     30-40
6     20-30
7       60+
8     50-60
9     20-30
10    20-30
11    30-40
Name: age, dtype: category
Categories (6, object): ['10-20' < '20-30' < '30-40' < '40-50' < '50-60' < 
'60+']

However, our labels above are not quite right. Note that we provided both 30-40 and 40-50, but what 
happens if someone is exactly 40 years old? What bin are they placed in?

Fortunately, we can see this in our data already from Steve, who perfectly matches this criteria. If 
you inspect the default bin he is placed in, it appears as (30, 40]:

df.assign(age_bin=lambda x: pd.cut(x["age"], [10, 20, 30, 40, 50, 60, 999]))

        name        age     age_bin
0       Jane        34      (30, 40]
1       John        18      (10, 20]
2       Jamie       22      (20, 30]
3       Jessica     36      (30, 40]
4       Jackie      33      (30, 40]
5       Steve       40      (30, 40]
6       Sam         30      (20, 30]
7       Stephanie   66     (60, 999]
8       Sarah       55      (50, 60]
9       Aaron       22      (20, 30]
10      Erin        28      (20, 30]
11      Elsa        37      (30, 40]

Binning, by default, is right inclusive, meaning each bin can be thought of as up to and including a 
particular value. If we wanted behavior that was up to but not including, we could control this with 
the right argument:

df.assign(
    age_bin=lambda x: pd.cut(x["age"], [10, 20, 30, 40, 50, 60, 999], 
right=False)
)

        name      age   age_bin
0       Jane      34    [30, 40)
1       John      18    [10, 20)
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2       Jamie     22    [20, 30)
3       Jessica   36    [30, 40)
4       Jackie    33    [30, 40)
5       Steve     40    [40, 50)
6       Sam       30    [30, 40)
7       Stephanie 66    [60, 999)
8       Sarah     55    [50, 60)
9       Aaron     22    [20, 30)
10      Erin      28    [20, 30)
11      Elsa      37    [30, 40)

This changed the bin for Steve from (30, 40] to [40, 50). In the default string representation, the 
square bracket signifies the edge being inclusive of a particular value, whereas the parenthesis is 
exclusive.

One-hot encoding with pd.get_dummies
It is not uncommon in data analysis and machine learning applications to take data that is categorical 
in nature and convert it into a sequence of 0/1 values, as the latter can be more easily interpreted 
by numeric algorithms. This process is often called one-hot encoding, and the outputs are typically 
referred to as dummy indicators.

How to do it
Let’s start with a small pd.Series containing a discrete set of colors:

ser = pd.Series([
    "green",
    "brown",
    "blue",
    "amber",
    "hazel",
    "amber",
    "green",
    "blue",
    "green",
], name="eye_colors", dtype=pd.StringDtype())
ser

0    green
1    brown
2     blue
3    amber
4    hazel
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5    amber
6    green
7     blue
8    green
Name: eye_colors, dtype: string

Passing this as an argument to pd.get_dummies will create a like-indexed pd.DataFrame with a Boolean 
column for each color. Each row has one column with True that maps it back to its original value; all 
other columns in the same row will be False:

pd.get_dummies(ser)

        amber   blue    brown   green   hazel
0       False   False   False   True    False
1       False   False   True    False   False
2       False   True    False   False   False
3       True    False   False   False   False
4       False   False   False   False   True
5       True    False   False   False   False
6       False   False   False   True    False
7       False   True    False   False   False
8       False   False   False   True    False

If we are not satisfied with the default column names, we can modify them by adding a prefix. A 
common convention in data modeling is to prefix a Boolean column with is_:

pd.get_dummies(ser, prefix="is")

        is_amber  is_blue  is_brown  is_green  is_hazel
0       False     False    False     True      False
1       False     False    True      False     False
2       False     True     False     False     False
3       True      False    False     False     False
4       False     False    False     False     True
5       True      False    False     False     False
6       False     False    False     True      False
7       False     True     False     False     False
8       False     False    False     True      False

Chaining with .pipe
When writing pandas code, there are two major stylistic forms that developers follow. The first approach 
makes liberal use of variables throughout a program, whether that means creating new variables like:

df = pd.DataFrame(...)
df1 = do_something(df)
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df2 = do_another_thing(df1)
df3 = do_yet_another_thing(df2)

or simply reassigning to the same variable repeatedly:

df = pd.DataFrame(...)
df = do_something(df)
df = do_another_thing(df)
df = do_yet_another_thing(df)

The alternative approach is to express your code as a pipeline, where each step accepts and returns a 
pd.DataFrame:

(
    pd.DataFrame(...)
    .pipe(do_something)
    .pipe(do_another_thing)
    .pipe(do_yet_another_thing)
)

With the variable-based approach, you must create multiple variables in your program, or change the 
state of a pd.DataFrame at every reassignment. The pipeline approach, by contrast, does not create 
any new variables, nor does it change the state of your pd.DataFrame.

While the pipeline approach could theoretically be better handled by a query optimizer, pandas does 
not offer such a feature as of the time of writing, and it is hard to guess what that may look like in the 
future. As such, the choice between the two approaches makes almost no difference for performance; 
it is truly a matter of style.

I encourage you to familiarize yourself with both approaches. You may at times find it easier to express 
your code as a pipeline; at other times, that may feel burdensome. There is no hard requirement to 
use one or the other, so you can mix and match the styles freely throughout your code.

How to do it
Let’s start with a very basic pd.DataFrame. The columns and their contents are not important for now:

df = pd.DataFrame({
    "col1": pd.Series([1, 2, 3], dtype=pd.Int64Dtype()),
    "col2": pd.Series(["a", "b", "c"], dtype=pd.StringDtype()),
})
df

      col1   col2
0     1      a
1     2      b
2     3      c
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Now let’s create some sample functions that will change the content of the columns. These functions 
should accept and return a pd.DataFrame, which you can see from the code annotations:

def change_col1(df: pd.DataFrame) -> pd.DataFrame:
    return df.assign(col1=pd.Series([4, 5, 6], dtype=pd.Int64Dtype()))

def change_col2(df: pd.DataFrame) -> pd.DataFrame:
    return df.assign(col2=pd.Series(["X", "Y", "Z"], dtype=pd.StringDtype()))

As mentioned in the introduction to this recipe, one of the most common ways to apply these func-
tions would be to list them out as separate steps in our program, assigning the results of each step to 
a new variable along the way:

df2 = change_col1(df)
df3 = change_col2(df2)
df3

     col1   col2
0    4      X 
1    5      Y
2    6      Z

If we wanted to avoid the use of intermediate variables altogether, we could have also tried to nest the 
function calls inside of one another:

change_col2(change_col1(df))

      col1   col2
0     4      X
1     5      Y
2     6      Z

However, that doesn’t make the code any more readable, especially given the fact that change_col1 
is executed before change_col2.

By expressing this as a pipeline, we can avoid the use of variables and more easily express the order of 
operations being applied. To achieve this, we are going to reach for the pd.DataFrame.pipe method:

df.pipe(change_col1).pipe(change_col2)

        col1    col2
0       4       X
1       5       Y
2       6       Z

As you can see, we have gotten back the same result as before, but without the use of variables and in 
a way that is arguably more readable.
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In case any of the functions you want to apply in a pipeline need to accept more arguments, 
pd.DataFrame.pipe is able to forward them along for you. For instance, let’s see what happens if we 
add a new str_case parameter to our change_col2 function:

from typing import Literal

def change_col2(
        df: pd.DataFrame,
        str_case: Literal["upper", "lower"]
) -> pd.DataFrame:
    if str_case == "upper":
        values = ["X", "Y", "Z"]
    else:
        values = ["x", "y", "z"]

    return df.assign(col2=pd.Series(values, dtype=pd.StringDtype()))

As you can see with pd.DataFrame.pipe, you can simply pass that argument along as either a positional 
or keyword argument, just as if you were invoking the change_col2 function directly:

df.pipe(change_col2, str_case="lower")

       col1    col2
0      1       x
1      2       y
2      3       z

To reiterate what we mentioned in the introduction to this recipe, there is little to no functional differ-
ence between these styles. I encourage you to learn them both as you will inevitably see code written 
both ways. For your own development, you may even find that mixing and matching the approaches 
works best.

Selecting the lowest-budget movies from the top 100
Now that we have covered many of the core pandas algorithms from a theoretical level, we can start 
looking at more “real world” datasets and touch on common ways to explore them.

Top N analysis is a common technique whereby you filter your data based on how your data performs 
when measured by a single variable. Most analytics tools have the capability to help you filter your 
data to answer questions like What are the top 10 customers by sales? or, What are the 10 products with 
the lowest inventory?. When chained together, you can even form catchy news headlines such as Out 
of the Top 100 Universities, These 5 Have the Lowest Tuition Fees, or From the Top 50 Cities to Live, These 
10 Are the Most Affordable.



Chapter 5 151

Given how common these types of analyses are, pandas offers built-in functionality to help you eas-
ily perform them. In this recipe, we will take a look at pd.DataFrame.nlargest and pd.DataFrame.
nsmallest and see how we can use them together to answer a question like From the top 100 movies, 
which had the lowest budget?.

How to do it
Let’s start by reading in the movie dataset and selecting the columns movie_title, imdb_score, budget, 
and gross:

df = pd.read_csv(
    "data/movie.csv",
    usecols=["movie_title", "imdb_score", "budget", "gross"],
    dtype_backend="numpy_nullable",
)
df.head()

       gross          movie_title                          budget        imdb_
score
0      760505847.0    Avatar                              237000000.0    7.9
1      309404152.0    Pirates of the Caribbean: At World's End  300000000.0    
7.1
2      200074175.0    Spectre                             245000000.0    6.8
3      448130642.0    The Dark Knight Rises              250000000.0    8.5
4      <NA>           Star Wars: Episode VII - The Force Awakens  <NA>      7.1

The pd.DataFrame.nlargest method can be used to select the top 100 movies by imdb_score:

df.nlargest(100, "imdb_score").head()

        gross        movie_title              budget      imdb_score
2725    <NA>         Towering Inferno         <NA>        9.5
1920    28341469.0   The Shawshank Redemption  25000000.0  9.3
3402    134821952.0  The Godfather            6000000.0   9.2
2779    447093.0     Dekalog                  <NA>        9.1
4312    <NA>         Kickboxer: Vengeance     17000000.0  9.1

Now that we have the top 100 selected, we can chain in a call to pd.DataFrame.nsmallest to return 
the five lowest-budget movies among those:

df.nlargest(100, "imdb_score").nsmallest(5, "budget")

        gross       movie_title              budget       imdb_score
4804    <NA>        Butterfly Girl           180000.0     8.7
4801    925402.0    Children of Heaven       180000.0     8.5
4706    <NA>        12 Angry Men             350000.0     8.9
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4550    7098492.0   A Separation             500000.0     8.4
4636    133778.0    The Other Dream Team     500000.0     8.4

There’s more…
It is possible to pass a list of column names as the columns= parameter of the pd.DataFrame.nlargest 
and pd.DataFrame.nsmallest methods. This would only be useful to break ties in the event that there 
were duplicate values sharing the nth ranked spot in the first column in the list.

To see where this matters, let’s try to just select the top 10 movies by imdb_score:

df.nlargest(10, "imdb_score")

        gross   movie_title     budget  imdb_score
2725    <NA>    Towering Inferno        <NA>     9.5
1920    28341469.0      The Shawshank Redemption        25000000.0     9.3
3402    134821952.0     The Godfather   6000000.0       9.2
2779    447093.0        Dekalog    <NA>    9.1
4312    <NA>    Kickboxer: Vengeance    17000000.0      9.1
66      533316061.0     The Dark Knight 185000000.0     9.0
2791    57300000.0      The Godfather: Part II     13000000.0      9.0
3415    <NA>    Fargo   <NA>    9.0
335     377019252.0     The Lord of the Rings: The Return of the King   
94000000.0     8.9
1857    96067179.0      Schindler's List        22000000.0      8.9

As you can see, the lowest imdb_score from the top 10 is 8.9. However, there are more than 10 movies 
that have a score of 8.9 and above:

df[df["imdb_score"] >= 8.9]

        gross   movie_title     budget  imdb_score
66      533316061.0     The Dark Knight 185000000.0      9.0
335     377019252.0     The Lord of the Rings: The Return of the King   
94000000.0     8.9
1857    96067179.0      Schindler's List        22000000.0      8.9
1920    28341469.0      The Shawshank Redemption       25000000.0      9.3
2725    <NA>    Towering Inferno        <NA>    9.5
2779    447093.0        Dekalog <NA>    9.1
2791    57300000.0      The Godfather: Part II      13000000.0    9.0
3295    107930000.0     Pulp Fiction    8000000.0       8.9
3402    134821952.0     The Godfather   6000000.0       9.2
3415    <NA>    Fargo   <NA>    9.0
4312    <NA>    Kickboxer: Vengeance    17000000.0      9.1
4397    6100000.0       The Good, the Bad and the Ugly    1200000.0      8.9
4706    <NA>    12 Angry Men     350000.0      8.9
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The movies that were a part of the top 10 just happened to be the first two movies pandas came across 
with that score. However, you can use the gross column as the tiebreaker:

df.nlargest(10, ["imdb_score", "gross"])

        gross   movie_title     budget  imdb_score
2725    <NA>    Towering Inferno        <NA>     9.5
1920    28341469.0      The Shawshank Redemption        25000000.0      9.3
3402    134821952.0     The Godfather   6000000.0       9.2
2779    447093.0        Dekalog    <NA>    9.1
4312    <NA>    Kickboxer: Vengeance    17000000.0      9.1
66      533316061.0     The Dark Knight    185000000.0     9.0
2791    57300000.0      The Godfather: Part II    13000000.0        9.0
3415    <NA>    Fargo   <NA>    9.0
335     377019252.0     The Lord of the Rings: The Return of the King   
94000000.0      8.9
3295    107930000.0     Pulp Fiction    8000000.0       8.9

With that, you see that Pulp Fiction replaced Schindler’s List in our top 10 analysis, given that it grossed 
higher.

Calculating a trailing stop order price
There are many strategies to trade stocks. One basic type of trade that many investors employ is the 
stop order. A stop order is an order placed by an investor to buy or sell a stock that executes whenev-
er the market price reaches a certain point. Stop orders are useful to both prevent huge losses and 
protect gains.

In a typical stop order, the price does not change throughout the lifetime of the order. For instance, if 
you purchased a stock for $100 per share, you might want to set a stop order at $90 per share to limit 
your downside to 10%.

A more advanced strategy would be to continually modify the sale price of the stop order to track the 
value of the stock if it increases in value. This is called a trailing stop order. Concretely, if the same 
$100 stock increases to $120, then a trailing stop order 10% below the current market value would 
move the sale price to $108.

The trailing stop order never moves down and is always tied to the maximum value since the time of 
purchase. If the stock fell from $120 to $110, the stop order would still remain at $108. It would only 
increase if the price moved above $120.

This recipe determines the trailing stop order price given an initial purchase price for any stock using 
the pd.Series.cummax method and how pd.Series.cummin could instead be used to handle short 
positions. We will also see how the pd.Series.idxmax method can be used to identify the day the 
stop order would have been triggered.



Algorithms and How to Apply Them154

How to do it
To get started, we will work with Nvidia (NVDA) stock and assume a purchase on the first trading day 
of 2020:

df = pd.read_csv(
    "data/NVDA.csv",
    usecols=["Date", "Close"],
    parse_dates=["Date"],
    index_col=["Date"],
    dtype_backend="numpy_nullable",
)
df.head()

ValueError: not all elements from date_cols are numpy arrays

In the pandas 2.2 series, there is a bug that prevents the preceding code block from running, instead 
throwing a ValueError. If affected by this bug, you can alternatively run pd.read_csv without the 
dtype_backend argument, and add in a call to pd.DataFrame.convert_dtypes instead:

df = pd.read_csv(
    "data/NVDA.csv",
    usecols=["Date", "Close"],
    parse_dates=["Date"],
    index_col=["Date"],
).convert_dtypes(dtype_backend="numpy_nullable")

df.head() 

                      Close
Date
2020-01-02     59.977501
2020-01-03     59.017502
2020-01-06     59.264999
2020-01-07     59.982498
2020-01-08     60.095001

For more information, see pandas bug issue #57930 (https://github.com/pandas-dev/pandas/
issues/57930).

Regardless of which path you took, be aware that pd.read_csv returns a pd.DataFrame, but for this 
analysis we will only need a pd.Series. To perform that conversion, you can call pd.DataFrame.
squeeze, which will reduce the object from two to one dimension, if possible:

ser = df.squeeze()
ser.head()

https://github.com/pandas-dev/pandas/issues/57930
https://github.com/pandas-dev/pandas/issues/57930
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Date
2020-01-02    59.977501
2020-01-03    59.017502
2020-01-06    59.264999
2020-01-07    59.982498
2020-01-08    60.095001
Name: Close, dtype: float64

With that, we can use the pd.Series.cummax method to track the highest closing price seen to date:

ser_cummax = ser.cummax()
ser_cummax.head()

Date
2020-01-02    59.977501
2020-01-03    59.977501
2020-01-06    59.977501
2020-01-07    59.982498
2020-01-08    60.095001
Name: Close, dtype: float64

To create a trailing stop order that limits our downside to 10%, we can chain in a multiplication by 0.9:

ser.cummax().mul(0.9).head()

Date
2020-01-02    53.979751
2020-01-03    53.979751
2020-01-06    53.979751
2020-01-07    53.984248
2020-01-08    54.085501
Name: Close, dtype: float64

The pd.Series.cummax method works by retaining the maximum value encountered up to and in-
cluding the current value. Multiplying this series by 0.9, or whatever cushion you would like to use, 
creates the trailing stop order. In this particular example, NVDA increased in value, and thus, its 
trailing stop has also increased.

On the flip side, let’s say we were pessimistic about NVDA stock during this timeframe, and we wanted 
to short the stock. However, we still wanted to put a stop order in place to limit the downside to a 10% 
increase in value.

For this, we can simply replace our usage of pd.Series.cummax with pd.Series.cummin and multiply 
by 1.1 instead of 0.9:

ser.cummin().mul(1.1).head()
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Date
2020-01-02    65.975251
2020-01-03    64.919252
2020-01-06    64.919252
2020-01-07    64.919252
2020-01-08    64.919252
Name: Close, dtype: float64

There’s more…
With our trailing stop orders calculated, we can easily determine the days where we would have fallen 
off of the cumulative maximum by more than our threshold:

stop_prices = ser.cummax().mul(0.9)
ser[ser <= stop_prices]

Date
2020-02-24     68.320000
2020-02-25     65.512497
2020-02-26     66.912498
2020-02-27     63.150002
2020-02-28     67.517502
                 ...    
2023-10-27    405.000000
2023-10-30    411.609985
2023-10-31    407.799988
2023-11-01    423.250000
2023-11-02    435.059998
Name: Close, Length: 495, dtype: float64

If we only cared to identify the very first day where we fell below the cumulative maximum, we could 
use the pd.Series.idxmax method. This method works by first calculating the maximum value within 
a pd.Series, and then returns the first-row index where that maximum was encountered:

(ser <= stop_prices).idxmax()

Timestamp('2020-02-24 00:00:00')

The expression ser <= stop_prices gives back a Boolean pd.Series containing True=/=False val-
ues, with each True record indicating where the stock price is at or below the stop price we already 
calculated. pd.Series.idxmax will consider True to be the maximum value in that pd.Series; so, by 
returning the first index label where True was seen as a value, it tells us the first day that our trailing 
stop order should have been triggered.

This recipe gives us just a taste of how useful pandas may be for trading securities.
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Finding the baseball players best at…
The American sport of baseball has long been a subject of intense analytical research, with data 
collection dating back to the early 1900s. For Major League baseball teams, advanced data analysis 
helps answer questions like How much should I pay for X player? and What should I do in the game given 
the current state of things?, For fans, that same data can be used as fodder for endless debates around 
who is the greatest player ever.

For this recipe, we are going to use data that was collected from retrosheet.org. Per the Retrosheet 
licensing requirements, you should be aware of the following legal disclaimer:

From its raw form, the data was summarized to show the common baseball metrics for at bat (ab), hits 
(h), runs scored (r), and home runs (hr) for professional players in the years 2020–2023.

How to do it
Let’s start by reading in our summarized data and setting the id column (which represents a unique 
player) as the index:

df = pd.read_parquet(
    "data/mlb_batting_summaries.parquet",
).set_index("id")

df

                ab      r       h       hr
id 
abadf001        0       0       0       0
abboa001        0       0       0       0
abboc001        3       0       1       0
abrac001        847     116     208     20
abrea001        0       0       0       0
…               …       …       …       …
zimmk001        0       0       0       0
zimmr001        255     27      62      14
zubet001        1       0       0       0
zunig001        0       0       0       0
zunim001        572     82      111     41
2183 rows × 4 columns

The information used here was obtained free of charge and is copyrighted by Retrosheet. 
Interested parties may contact Retrosheet at www.retrosheet.org.

retrosheet.org
www.retrosheet.org
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In baseball, it is rather rare for a player to dominate all statistical categories. Oftentimes, a player with 
a lot of home runs (hr) will be more powerful and can hit the ball farther, but may do so less frequently 
than a player more specialized to collect a lot of hits (h). With pandas, we are fortunate to not have 
to dive into each metric individually; a simple call to pd.DataFrame.idxmax will look at each column, 
find the maximum value, and return the row index value associated with that maximum value for you:

df.idxmax()

ab    semim001
r     freef001
h     freef001
hr    judga001
dtype: string

As you can see, player semim001 (Marcus Semien) had the most at bats, freef001 (Freddie Freeman) 
had the most runs and hits, and judga001 (Aaron Judge) hit the most home runs in this timeframe.

If you wanted to look deeper into how these great players performed across all categories, you could 
take the output of pd.DataFrame.idxmax, subsequently call pd.Series.unique on the values, and use 
that as a mask for the overall pd.DataFrame:

best_players = df.idxmax().unique()
mask = df.index.isin(best_players)
df[mask]

          ab      r       h       hr
id
freef001  1849    368     590     81
judga001  1487    301     433    138
semim001  1979    338     521    100

There’s more…
For a nice visual enhancement to this data, you can use pd.DataFrame.style.highlight_max to very 
specifically show which category these players were the best at:

df[mask].style.highlight_max()

Figure 5.1: Jupyter Notebook output of a DataFrame highlighting max value per column



Chapter 5 159

Understanding which position scores the most per team
In baseball, teams are allowed 9 batters in a “lineup,” with 1 representing the first person to bat and 
9 representing the last. Over the course of a game, teams cycle through batters in order, starting over 
with the first batter after the last has batted.

Typically, teams place some of their best hitters toward the “top of the lineup” (i.e., lower number 
positions) to maximize the opportunity for them to come around and score. However, this does not 
always mean that the person who bats in position 1 will always be the first to score.

In this recipe, we are going to look at all Major League baseball teams from 2000–2023 and find the 
position that scored the most runs for a team over each season.

How to do it
Much like we did in the Finding the baseball players best at… recipe, we are going to use data taken from 
retrosheet.org. For this particular dataset, we are going to set the year and team columns in the row 
index, leaving the remaining columns to show the position in the batting order:

df = pd.read_parquet(
    "data/runs_scored_by_team.parquet",
).set_index(["year", "team"])

df

           1    2    3    …    7    8    9
year  team
2000  ANA  124  107  100  …   77   76   54
      ARI  110  106  109  …   72   68   40
      ATL  113  125  124  …   77   74   39
      BAL  106  106   92  …   83   78   74
      BOS   99  107   99  …   75   66   62
…     …    …    …    …    …   …    …    …
2023  SLN  105   91   85  …   70   55   74
      TBA  121  120   93  …   78   95   98
      TEX  126  115   91  …   80   87   81
      TOR   91   97   85  …   64   70   79
      WAS  110   90   87  …   63   67   64
720 rows × 9 columns

With pd.DataFrame.idxmax, we can see for every year and team which position scored the most runs. 
However, with this dataset, the index label we would like pd.DataFrame.idxmax to identify is actually 
in the columns and not the rows. Fortunately, pandas can still calculate this easily with the axis=1 
argument:

df.idxmax(axis=1)

retrosheet.org
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year  team
2000  ANA     1
      ARI     1
      ATL     2
      BAL     1
      BOS     4
            ...
2023  SLN     1
      TBA     1
      TEX     1
      TOR     2
      WAS     1
Length: 720, dtype: object

From there, we can use pd.Series.value_counts to understand the number of times a given position 
in the order represented the most runs scored for a team. We are also going to use the normalize=True 
argument, which will give us a frequency instead of a total:

df.idxmax(axis=1).value_counts(normalize=True)

1    0.480556
2    0.208333
3    0.202778
4    0.088889
5    0.018056
6    0.001389
Name: proportion, dtype: float64

Unsurprisingly, the first batter scored most frequently accounted for the most runs, doing so for 48% 
of the teams.

There’s more…
We might want to explore more and answer the question: For teams where the first batter scored the most 
runs, who scored the second-most?

To calculate this, we can create a mask to filter on teams where the first batter scored the most, drop 
that column from our dataset, and then repeat with the same pd.DataFrame.idxmax approach to 
identify the position next in line:

mask = df.idxmax(axis=1).eq("1")
df[mask].drop(columns=["1"]).idxmax(axis=1).value_counts(normalize=True)

2    0.497110
3    0.280347
4    0.164740
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5    0.043353
6    0.014451
Name: proportion, dtype: float64

As you can see, if a team’s first batter does not lead the team in runs scored, the second batter ends 
up being the leader almost 50% of the time.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/pandas

https://packt.link/pandas




6
Visualization

Visualization is a critical component in exploratory data analysis, as well as presentations and appli-
cations. During exploratory data analysis, you are usually working alone or in small groups and need 
to create plots quickly to help you better understand your data. Visualizations can help you identify 
outliers and missing data, or they can spark other questions of interest that will lead to further analysis 
and more visualizations. This type of visualization is usually not done with the end user in mind. It is 
strictly to help you better your current understanding. The plots do not have to be perfect.

When preparing visualizations for a report or application, a different approach must be used. You 
should pay attention to small details. Also, you usually will have to narrow down all possible visual-
izations to only the select few that best represent your data. Good data visualizations have the viewer 
enjoying the experience of extracting information. Almost like movies that viewers can get lost in, 
good visualizations will have lots of information that really sparks interest.

Out of the box, pandas has the pd.Series.plot and pd.DataFrame.plot methods to help you quickly 
generate plots. These methods dispatch to a plotting backend, which by default is Matplotlib (https://
matplotlib.org/).

We will discuss different backends later in this chapter, but for now, let’s start by installing Matplotlib 
and PyQt5, which Matplotlib uses to draw plots:

python -m pip install matplotlib pyqt5

All code samples in this chapter are assumed to be preceded by the following import:

import matplotlib.pyplot as plt
plt.ion()

The previous command enables Matplotlib’s interactive mode, which will create and update your plots 
automatically every time a plotting command is executed. If, for whatever reason, you run a plot-
ting command but no plot appears, you likely are in non-interactive mode (you can check this with 
matplotlib.pyplot.isinteractive()), and you will need to explicitly call matplotlib.pyplot.show() 
to make your plots appear.

https://matplotlib.org/
https://matplotlib.org/
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We are going to cover the following recipes in this chapter:

•	 Creating charts from aggregated data
•	 Plotting distributions of non-aggregated data
•	 Further plot customization with Matplotlib
•	 Exploring scatter plots
•	 Exploring categorical data
•	 Exploring continuous data
•	 Using seaborn for advanced plots

Creating charts from aggregated data
The pandas library makes it easy to visualize data in pd.Series and pd.DataFrame objects, using the 
pd.Series.plot and pd.DataFrame.plot methods, respectively. In this recipe we are going to start 
with relatively basic line, bar, area, and pie charts, while also seeing the high-level customization 
options pandas offers. While, these chart types are simple, using them effectively can be immensely 
helpful to explore your data, identify trends, and share your research with non-technical associates.

It is important to note that these chart types expect your data to already be aggregated, which our 
sample data in this recipe will reflect. If you are working with data that is not yet aggregated, you will 
need to use techniques that you will encounter in Chapter 7, Reshaping DataFrames, and Chapter 8, Group 
By, or use the techniques shown in the Using Seaborn for advanced plots recipe later in this chapter.

How to do it
Let’s create a simple pd.Series showing book sales over the course of a 7-day period. We are inten-
tionally going to use row index labels of the form Day n, which will provide a good visual clue on the 
different chart types we create:

ser = pd.Series(
    (x ** 2 for x in range(7)),
    name="book_sales",
    index=(f"Day {x + 1}" for x in range(7)),
    dtype=pd.Int64Dtype(),
)

ser

Day 1     0
Day 2     1
Day 3     4
Day 4     9
Day 5    16
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Day 6    25
Day 7    36
Name: book_sales, dtype: Int64

A call to pd.Series.plot without any arguments will produce a line chart, where the labels used on 
the x-axis come from the row index and the values on the Y-axis correspond to the data within the 
pd.Series:

ser.plot()

A line chart treats our data as if it is completely continuous, yielding a visualization that appears to 
show values in between each day, even though that does not exist in our data. A better visualization 
for our pd.Series would be a bar chart that displays each day discretely, which we can get just by 
passing the kind="bar" argument to the pd.Series.plot method:

ser.plot(kind="bar")
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Once again, the row index labels appear on the X-axis and the values appear on the Y-axis. This helps 
you read the visualization from left to right, but in some circumstances, you may find it easier to read 
values from top to bottom. In pandas, such a visualization would be considered a horizontal bar chart, 
which can be rendered by using the kind="barh" argument:

ser.plot(kind="barh")



Chapter 6 167

A kind="area" argument will produce an area chart, which is like a line chart but fills in the area 
underneath the line:

ser.plot(kind="area")

Last but not least, we have pie charts. Unlike all of the visualizations introduced so far, a pie chart 
does not have both an x- and a y-axis. Instead, each label from the row index represents a different 
slice of the pie, whose size is dictated by the associated value in our pd.Series:

ser.plot(kind="pie")
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When working with a pd.DataFrame, the API through which you generate charts stays consistent, al-
though you may find that you need to provide more keyword arguments to get the desired visualization.

To see this in action, let’s extend our data to show both book_sales and book_returns:

df = pd.DataFrame({
    "book_sales": (x ** 2 for x in range(7)),
    "book_returns": [3, 2, 1, 0, 1, 2, 3],
}, index=(f"Day {x + 1}" for x in range(7)))
df = df.convert_dtypes(dtype_backend="numpy_nullable")
df

        book_sales   book_returns
Day 1   0            3
Day 2   1            2
Day 3   4            1
Day 4   9            0
Day 5   16           1
Day 6   25           2
Day 7   36           3

Just like we saw with pd.Series.plot, the default call to pd.DataFrame.plot will give us a line plot, 
with each column represented by its own line:

df.plot()



Chapter 6 169

Once again, to turn this into a bar chart, you would just need to pass kind="bar" to the plotting method:

df.plot(kind="bar")

By default, pandas will present each column as a separate bar on the chart. If you wanted instead to 
stack the columns on top of one another, pass stacked=True:

df.plot(kind="bar", stacked=True)
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The same behavior can be seen with a horizontal bar chart. By default, the columns will not be stacked:

df.plot(kind="barh")

But passing stacked=True will place the bars on top of one another:

df.plot(kind="barh", stacked=True)
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When using a pd.DataFrame with an area chart, the default behavior is to stack the columns:

df.plot(kind="area")

To unstack, pass stacked=False and include an alpha= argument to introduce transparency. The value 
of this argument should be between 0 and 1, with values closer to 0 making the chart more transparent:

df.plot(kind="area", stacked=False, alpha=0.5)
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There’s more…
The examples in this recipe used the minimum amount of arguments to produce visuals. However, 
the plotting methods accept many more arguments to control things like titles, labels, colors, etc.

If you want to add a title to your visualization, simply pass it as the title= argument:

ser.plot(
    kind="bar",
    title="Book Sales by Day",
)
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The color= argument can be used to change the color of the lines, bars, and markers in your chart. 
Color can be expressed using RGB hex codes (like #00008B for dark blue) or by using a Matplotlib 
named color like seagreen (https://matplotlib.org/stable/gallery/color/named_colors.html):

ser.plot(
    kind="bar",
    title="Book Sales by Day",
    color="seagreen",
)

https://matplotlib.org/stable/gallery/color/named_colors.html
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When working with a pd.DataFrame, you can pass a dictionary to pd.DataFrame.plot to control which 
columns should use which colors:

df.plot(
    kind="bar",
    title="Book Metrics",
    color={
        "book_sales": "slateblue",
        "book_returns": "#7D5260",
    }
)
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The grid= argument controls whether gridlines are shown or not:

ser.plot(
    kind="bar",
    title="Book Sales by Day",
    color="teal",
    grid=False,
)
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You can control how your x and y axes are labeled with the xlabel= and ylabel= arguments:

ser.plot(
    kind="bar",
    title="Book Sales by Day",
    color="darkgoldenrod",
    grid=False,
    xlabel="Day Number",
    ylabel="Book Sales",
)
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When working with a pd.DataFrame, pandas will default to placing each column’s data on the same 
chart. However, you can easily generate separate charts with subplots=True:

df.plot(
    kind="bar",
    title="Book Performance",
    grid=False,
    subplots=True,
)
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With separate charts, the legend becomes superfluous. To toggle that off, simply pass legend=False:

df.plot(
    kind="bar",
    title="Book Performance",
    grid=False,
    subplots=True,
    legend=False,
)

When using subplots, it is also worth noting that by default, the x-axis labels are shared, but the y-axis 
value ranges may differ. If you want the y axis to be shared, simply add sharey=True to your method 
invocation:

df.plot(
    kind="bar",
    title="Book Performance",
    grid=False,
    subplots=True,
    legend=False,
    sharey=True,
)
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When working with pd.DataFrame.plot, the y= argument can control which columns should be vi-
sualized, which can be helpful when you don’t want all of the columns to appear:

df.plot(
    kind="barh",
    y=["book_returns"],
    title="Book Returns",
    legend=False,
    grid=False,
    color="seagreen",
)
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As you can see, pandas has a wealth of options to control what is being displayed and how. While pan-
das makes a best effort at figuring out where and how to place all of these elements on your visual, it 
may not always get it right. Later in this chapter, the Further plot customization with Matplotlib recipe 
will show you how to more finely control the layout of your visualization.

Plotting distributions of non-aggregated data
Visualizations can be of immense help in recognizing patterns and trends in your data. Is your data 
normally distributed? Does it skew left? Does it skew right? Is it multimodal? While you may be able 
to work out the answers to these questions, a visualization can very easily highlight these patterns for 
you, yielding deeper insight into your data.

In this recipe, we are going to see how easy pandas makes it to visualize the distribution of your data. 
Histograms are a very popular choice for plotting distributions, so we will start with them before 
showcasing the even more powerful Kernel Density Estimate (KDE) plot.

How to do it
Let’s create a pd.Series using 10,000 random records that are known to follow a normal distribution. 
NumPy can be used to easily generate this data:

np.random.seed(42)
ser = pd.Series(
    np.random.default_rng().normal(size=10_000),
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    dtype=pd.Float64Dtype(),
)
ser

0       0.049174
1      -1.577584
2      -0.597247
3        -0.0198
4       0.938997
         ...   
9995   -0.141285
9996    1.363863
9997   -0.738816
9998   -0.373873
9999   -0.070183
Length: 10000, dtype: Float64

A histogram can be used to plot this data with the kind="hist" argument:

ser.plot(kind="hist")
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Rather than attempting to plot every single point, the histogram places our values into an automatically 
generated number of “bins.” The range of each bin is plotted along the X-axis of the visualization, with 
the count of occurrences within each bin appearing on the y-axis of the histogram.

Since we have created the data we are visualizing, we already know that we have a normally distributed 
set of numbers, and the preceding histogram hints at that as well. However, we can elect to visualize 
a different number of bins by providing a bins= argument to pd.Series.plot, which can have a sig-
nificant impact on the visualization and how it is interpreted.

To illustrate, if we were to pass bins=2, we would have so few bins that our normal distribution would 
not be obvious:

ser.plot(kind="hist", bins=2)

On the flip side, passing bins=100 makes it clear that we generally have a normal distribution:

ser.plot(kind="hist", bins=100)
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This same issue is apparent when making a histogram from a pd.DataFrame. To illustrate, let’s create 
a pd.DataFrame with two columns, where one column is normally distributed and the other uses a 
triangular distribution:

np.random.seed(42)
df = pd.DataFrame({
    "normal": np.random.default_rng().normal(size=10_000),
    "triangular": np.random.default_rng().triangular(-2, 0, 2, size=10_000),
})
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df.head()

    normal     triangular
0  -0.265525   -0.577042
1   0.327898   -0.391538
2  -1.356997   -0.110605
3   0.004558    0.71449
4   1.03956     0.676207

The basic plotting call to pd.DataFrame.plot will produce a chart that looks as follows:

df.plot(kind="hist")
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Unfortunately, the bins from one distribution overlap with the bins of the other. You can solve this by 
either introducing some transparency:

df.plot(kind="hist", alpha=0.5)
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Or generating subplots:

df.plot(kind="hist", subplots=True)

At first glance, these distributions look pretty much the same, but using more bins reveals that they 
are not:

df.plot(kind="hist", alpha=0.5, bins=100)
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While the histogram is commonly used, the fact that the choice of binning can have an impact on the 
interpretation of the data is rather unfortunate; you would not want your interpretation of the data 
to change just from picking the “wrong” number of bins!

Fortunately, there is a similar but arguably more powerful visualization you can use that does not 
require you to choose any type of binning strategy, known as the Kernel Density Estimate (or KDE) 
plot. To use this plot, you will need to have SciPy installed:

python -m pip install scipy

After installing SciPy, you can simply pass kind="kde" to pd.Series.plot:

ser.plot(kind="kde")

With our pd.DataFrame, the KDE plot makes it clear that we have two distinct distributions:

df.plot(kind="kde")
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Further plot customization with Matplotlib
For very simple plots, the default layouts may suffice, but you will inevitably run into cases where 
you need to further tweak the generated visualization. To go beyond the out-of-the-box features in 
pandas, it is helpful to understand some Matplotlib terminology. In Matplotlib, the figure refers to the 
drawing area, and an axes or subplot is the region on that figure that you can draw upon. Be careful 
not to confuse an axes, which is an area for plotting data, with an axis, which refers to the X- or Y-axis.

How to do it
Let’s start with a pd.Series of our book sales data and try to plot it three different ways on the same 
figure – once as a line chart, once as a bar chart, and once as a pie chart. To set up our drawing area, 
we will make a call to plt.subplots(nrows=1, ncols=3), essentially telling matplotlib how many rows 
and columns of visualizations we want in our drawing area. This will return a two-tuple containing 
the figure itself and a sequence of the individual Axes objects that we can plot against. We will unpack 
this into two variables, fig and axes, respectively.

Because we asked for one row and three columns, the length of the returned axes sequence will be 
three. We can pass the individual Axes we want pandas to plot on to the ax= argument of pd.DataFrame.
plot. Our first attempt at drawing all of these plots should look as follows, generating a result that is, 
well, hideous:
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ser = pd.Series(
    (x ** 2 for x in range(7)),
    name="book_sales",
    index=(f"Day {x + 1}" for x in range(7)),
    dtype=pd.Int64Dtype(),
)
fig, axes = plt.subplots(nrows=1, ncols=3)
ser.plot(ax=axes[0])
ser.plot(kind="bar", ax=axes[1])
ser.plot(kind="pie", ax=axes[2])

Because we did not tell it any different, Matplotlib gives us three equally sized axes objects to draw 
upon. However, this makes the line/bar charts above very tall and skinny, and we end up producing 
a ton of wasted space above and below the pie chart.

To control this more finely, we can use the Matplotlib GridSpec to create a 2x2 grid. With that, we can 
place our bar and line charts side by side in the first row, and then we can make the pie chart take up 
the entire second row:

from matplotlib.gridspec import GridSpec
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fig = plt.figure()
gs = GridSpec(2, 2, figure=fig)
ax0 = fig.add_subplot(gs[0, 0])
ax1 = fig.add_subplot(gs[0, 1])
ax2 = fig.add_subplot(gs[1, :])
ser.plot(ax=ax0)
ser.plot(kind="bar", ax=ax1)
ser.plot(kind="pie", ax=ax2)

That looks a little better, but now, we still have an issue with the labels of the pie chart overlapping the 
X-axis labels of our bar chart. Fortunately, we can still modify each axes object individually to rotate 
labels, remove labels, change titles, etc.

from matplotlib.gridspec import GridSpec

fig = plt.figure()
fig.suptitle("Book Sales Visualized in Different Ways")
gs = GridSpec(2, 2, figure=fig, hspace=.5)
ax0 = fig.add_subplot(gs[0, 0])
ax1 = fig.add_subplot(gs[0, 1])
ax2 = fig.add_subplot(gs[1, :])
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ax0 = ser.plot(ax=ax0)
ax0.set_title("Line chart")

ax1 = ser.plot(kind="bar", ax=ax1)
ax1.set_title("Bar chart")
ax1.set_xticklabels(ax1.get_xticklabels(), rotation=45)

# Remove labels from chart and show in custom legend instead
ax2 = ser.plot(kind="pie", ax=ax2, labels=None)
ax2.legend(
    ser.index,
    bbox_to_anchor=(1, -0.2, 0.5, 1),  # put legend to right of chart
    prop={"size": 6}, # set font size for legend
)
ax2.set_title("Pie Chart")
ax2.set_ylabel(None)  # remove book_sales label
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There is no limit to the amount of customization that can be done to charts via Matplotlib, and un-
fortunately, we cannot hope to even scratch the surface in this book. If you have a keen interest in 
visualizations, I highly encourage you to read the Matplotlib documentation or find a dedicated book 
on the topic. However, many users who just want to see their data may find the amount of customi-
zations burdensome to handle. For those users (myself included), there are, thankfully, higher-level 
plotting packages like seaborn, which can produce better-looking charts with minimal extra effort. 
The Using seaborn for advanced plots recipe later in this chapter will give you an idea of just how useful 
that package can be.

Exploring scatter plots
Scatter plots are one of the most powerful types of visualizations that you can create. In a very compact 
area, a scatter plot can help you visualize the relationship between two variables, measure the scale of 
individual data points, and even see how these relationships and scales may vary within different cate-
gories. Being able to effectively visualize data in a scatter plot represents a significant leap in analytical 
capabilities when lined up against some of the more commonplace visualizations we have seen so far.

In this recipe, we will explore how we can measure all of these things at once just on one scatter plot.

How to do it
Scatter plots by definition measure the relationship of at least two variables. As such, the scatter plot 
can only be created with a pd.DataFrame. A pd.Series simply does not have enough variables.

With that said, let’s create a sample pd.DataFrame that contains four different columns of data. Three 
of these columns are continuous variables, and the fourth is a color that we will eventually use to 
categorize different data points:

df = pd.DataFrame({
    "var_a": [1, 2, 3, 4, 5],
    "var_b": [1, 2, 4, 8, 16],
    "var_c": [500, 200, 600, 100, 400],
    "var_d": ["blue", "orange", "gray", "blue", "gray"],
})
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

    var_a  var_b  var_c  var_d
0   1      1      500    blue
1   2      2      200    orange
2   3      4      600    gray
3   4      8      100    blue
4   5      16     400    gray
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Alongside kind="scatter", we will want to explicitly control what gets plotted on the X-axis, what gets 
plotted on the Y-axis, how big a given data point should be, and what color a given data point should 
appear as. These are controlled via the x=, y=, s=, and c= arguments, respectively:

df.plot(
    kind="scatter",
    x="var_a",
    y="var_b",
    s="var_c",
    c="var_d",
)

A simple scatter plot like this is not very interesting, but now that we have the basics down, let’s try out 
a more realistic dataset. The United States Department of Energy releases annual reports (https://
www.fueleconomy.gov/feg/download.shtml) that summarize the results of detailed fuel economy 
testing for vehicles sold in the United States. This book includes a local copy of that dataset covering 
the model years 1985–2025.

For now, let’s just read in a select few columns that are of interest to us, namely city08 (city miles-per-
gallon), highway08 (highway miles-per-gallon), VClass (compact car, SUV, etc). fuelCost08 (annual 
fuel cost), and the model year of each vehicle (for a full definition of terms included with this dataset, 
refer to www.fueleconomy.gov):

https://www.fueleconomy.gov/feg/download.shtml
https://www.fueleconomy.gov/feg/download.shtml
www.fueleconomy.gov
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df = pd.read_csv(
    "data/vehicles.csv.zip",
    dtype_backend="numpy_nullable",
    usecols=["city08", "highway08", "VClass", "fuelCost08", "year"],
)
df.head()

   city08    fuelCost08   highway08    VClass           year
0      19         2,450          25    Two Seaters      1985
1       9         4,700          14    Two Seaters      1985
2      23         1,900          33    Subcompact Cars  1985
3      10         4,700          12    Vans             1985
4      17         3,400          23    Compact Cars     1993

This dataset includes many different vehicle classes, so to keep our analysis focused, for now, we are 
just going to look at different classes of cars from 2015 onwards. Trucks, SUVs, and vans can be saved 
for another analysis:

car_classes = (
    "Subcompact Cars",
    "Compact Cars",
    "Midsize Cars",
    "Large Cars",
    "Two Seaters",
)
mask = (df["year"] >= 2015) & df["VClass"].isin(car_classes)
df = df[mask]
df.head()

       city08   fuelCost08   highway08    VClass             year
27058      16        3,400          23    Subcompact Cars    2015
27059      20        2,250          28    Compact Cars       2015
27060      26        1,700          37    Midsize Cars       2015
27061      28        1,600          39    Midsize Cars       2015
27062      25        1,800          35    Midsize Cars       2015

A scatter plot can be used to help us answer a question like, What is the relationship between city miles-
per-gallon and highway miles-per-gallon? by plotting these columns on the X- and Y-axis:

df.plot(
    kind="scatter",
    x="city08",
    y="highway08",
)
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Perhaps not surprisingly, there is a strong linear trend. Chances are that the better mileage a vehicle 
gets on city roads, the better mileage it will get on highways.

Of course, we still see a rather large spread in values; many vehicles are clustered down in the range 
of 10–35 MPG, but some exceed 100. To dive in a little further, we can assign colors to each of our 
vehicle classes and add them to the visualization.

There are quite a few ways to do this, but one of the generally best approaches is to ensure that the 
value you would like to use for a color is a categorical data type:

classes_ser = pd.Series(car_classes, dtype=pd.StringDtype())
cat = pd.CategoricalDtype(classes_ser)
df["VClass"] = df["VClass"].astype(cat)
df.head()

       city08  fuelCost08  highway08  VClass           year
27058  16      3,400       23         Subcompact Cars  2015
27059  20      2,250       28         Compact Cars     2015
27060  26      1,700       37         Midsize Cars     2015
27061  28      1,600       39         Midsize Cars     2015
27062  25      1,800       35         Midsize Cars     2015
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With that out of the way, you can pass the categorical column to the c= argument of pd.DataFrame.plot:

df.plot(
    kind="scatter",
    x="city08",
    y="highway08",
    c="VClass",
)

Adding a colormap= argument may help to visually discern data points. For a list of acceptable values 
for this argument, please refer to the Matplotlib documentation (https://matplotlib.org/stable/
users/explain/colors/colormaps.html):

df.plot(
    kind="scatter",
    x="city08",
    y="highway08",
    c="VClass",
    colormap="Dark2",
)

https://matplotlib.org/stable/users/explain/colors/colormaps.html
https://matplotlib.org/stable/users/explain/colors/colormaps.html
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From these graphs alone, we can theorize a few things. There are not that many “Two Seaters,” but 
when there are, they tend to do poorly on both city and highway mileage. “Midsize Cars” appear to 
dominate the 40–60 MPG ranges, but as you look at the vehicles that produce 100 MPG or better on 
both highways or cities, “Large Cars” and “Midsize Cars” both appear to be reasonably represented.

So far, we have used the X-axis, Y-axis, and color of our scatter plot to dive into data, but we can take 
this one step further and size each data point by fuel cost, passing fuelCost08 as the s= argument:

df.plot(
    kind="scatter",
    x="city08",
    y="highway08",
    c="VClass",
    colormap="Dark2",
    s="fuelCost08",
)
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The size of the individual bubbles here is likely too large to be useful. Our fuel economy column has 
values that are in the range of thousands, which creates too large of a plot area to be useful. Simply 
scaling those values can quickly get us to a more reasonable-looking visualization; here, I have chosen to 
divide by 25 and introduce some transparency with the alpha= argument to get a more pleasing graph:

df.assign(
    scaled_fuel_cost=lambda x: x["fuelCost08"] / 25,
).plot(
    kind="scatter",
    x="city08",
    y="highway08",
    c="VClass",
    colormap="Dark2",
    s="scaled_fuel_cost",
    alpha=0.4,
)
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The general trend of larger circles appearing toward the origin confirms that, generally, vehicles with 
worse mileage have a higher annual fuel cost. You may find individual points on this scatter plot where 
a relatively higher mileage still has a higher fuel cost compared to other vehicles with a similar range, 
likely due to different fuel type requirements.

There’s more…
A nice complement to the scatter plot is the scatter matrix, which generates pairwise relationships 
between all of the continuous columns of data within your pd.DataFrame. Let’s see what that looks 
like with our vehicle data:

from pandas.plotting import scatter_matrix
scatter_matrix(df)



Chapter 6 199

This is a lot of information in one chart, so let’s start by digesting just the first column of visualizations. 
If you look at the bottom of the chart, the label is city08, which means that city08 is the Y-axis for 
each chart in that column.

The visualization in the first row of the first column would give you the combination of city08 on 
the y-axis with city08 on the X-axis. Rather than a scatter plot that graphs the same column against 
itself, the scatter matrix shows you the distribution of city08 values in this visual. As you can see, the 
majority of vehicles get less than 50 MPG in the city.
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If you look one visual beneath that in the second row of the first column, you will see the relationship 
between fuel cost and city mileage. This would suggest that there is an exponential decrease in the 
amount you spend on fuel annually as you opt for cars that get better city mileage.

The visualization in the third row of the first column shows highway08 on the Y-axis, which is the same 
visual that we displayed throughout this recipe. Once again, there is a linear relationship between 
city and highway mileage.

The visualization in the last row of the first column plots the year on the Y-axis. From this, it appears 
that there were more vehicles introduced in the model years 2023 and 2024 that achieved city mileage 
of 75 MPG and above.

Exploring categorical data
The adjective categorical is applied to data that, in a broad sense, is used to classify and help navigate 
your data, but whose values serve little to no purpose when aggregated. For example, if you were 
working with a dataset that contained a field called eye color with values of Brown, Green, Hazel, Blue, 
etc., you could use this field to navigate your dataset and answer questions like, For rows where the 
eye color is X, what is the average pupil diameter? However, you would not ask a question like, What is 
the summation of eye color?, as a formula like "Hazel" + "Blue would not make sense in this context.

By contrast, the adjective continuous is applied to data that you typically aggregate. With a question 
like, What is the average pupil diamenter?, the pupil diameter column would be considered continuous. 
There is value to knowing what it aggregates to (i.e., minimum, maximum, average, standard deviation, 
etc.), and there are a theoretically infinite amount of values that can be represented.

At times, it can be ambiguous whether your data is categorical or continuous. Using a person’s age 
as an example, if you were measuring things like the average age of subjects, that column would be 
continuous, although in the context of a question like, How many users do we have between the ages of 
20–30?, that same data becomes categorical. Ultimately, whether or not data like age is continuous or 
categorical will come down to how you use it in your analysis.

In this recipe, we are going to generate visualizations that help quickly identify the distribution of 
categorical data. Our next recipe, Exploring continuous data, will give you some ideas on how to work 
with continuous data instead.

How to do it
Back in the Scatter plots recipe, we were introduced to the vehicles dataset distributed by the United 
States Department of Energy. This dataset has a good mix of categorical and continuous data, so let’s 
once again start by loading it into a pd.DataFrame:

df = pd.read_csv(
    "data/vehicles.csv.zip",
    dtype_backend="numpy_nullable",
)
df.head()
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/tmp/ipykernel_834707/1427318601.py:1: DtypeWarning: Columns (72,74,75,77) have 
mixed types. Specify dtype option on import or set low_memory=False.
 df = pd.read_csv(
    barrels08   bar-relsA08   charge120   …   phevCity   phevHwy   phevComb
0   14.167143   0.0           0.0         …   0          0         0
1   27.046364   0.0           0.0         …   0          0         0
2   11.018889   0.0           0.0         …   0          0         0
3   27.046364   0.0           0.0         …   0          0         0
4   15.658421   0.0           0.0         …   0          0         0
5 rows × 84 columns

You may have noticed that we received a warning that Columns (72,74,75,77) have mixed types. 
Before we jump into visualization, let’s take a quick look at these columns:

df.iloc[:, [72, 74, 75, 77]]

        rangeA  mfrCode c240Dscr  c240bDscr
0       <NA>    <NA>    <NA>      <NA>
1       <NA>    <NA>    <NA>      <NA>
2       <NA>    <NA>    <NA>      <NA>
3       <NA>    <NA>    <NA>      <NA>
4       <NA>    <NA>    <NA>      <NA>
…       …       …       …         …
47,518  <NA>    <NA>    <NA>      <NA>
47,519  <NA>    <NA>    <NA>      <NA>
47,520  <NA>    <NA>    <NA>      <NA>
47,521  <NA>    <NA>    <NA>      <NA>
47,522  <NA>    <NA>    <NA>      <NA>
47,523 rows × 4 columns

While we can see the column names, our pd.DataFrame preview does not show us any actual values, 
so to inspect this a bit further, we can use pd.Series.value_counts on each column.

Here is what we can see for the rangeA column:

df["rangeA"].value_counts()

rangeA
290            74
270            58
280            56
310            41
277            38
              ..
240/290/290     1
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395             1
258             1
256             1
230/350         1
Name: count, Length: 264, dtype: int64

The values here are… interesting. Without yet knowing what we are looking at, the column name 
rangeA and most of the values suggest there is some value to treating this as continuous. By doing 
so, we could answer questions like, What is the average rangeA of vehicles that…?, but the presence of 
values like 240/290/290 and 230/350 that we see will prevent us from being able to do that. For now, 
we are just going to treat this data as a string.

To bring us full circle on the warning issued by pd.read_csv, pandas tries to infer the data type while 
reading the CSV file. If much of the data at the beginning of the file shows one type but later in the file 
you see another type, pandas will intentionally throw this warning so that you are aware of any potential 
issues with your data. For this column, we can use pd.Series.str.isnumeric alongside pd.Series.
idxmax to quickly determine the first row where a non-integral value was encountered in the CSV file:

df["rangeA"].str.isnumeric().idxmax()

7116

If you were to inspect the other columns that pd.read_csv warned about, you would not see a mix of 
integral and string data, but you would see that much of the data at the beginning of the file is missing, 
which makes it difficult for pandas to infer the data type:

df.iloc[:, [74, 75, 77]].pipe(pd.isna).idxmin()

mfrCode      23147
c240Dscr     25661
c240bDscr    25661
dtype: int64

Of course, the best solution here would have been to avoid the use of CSV files in the first place, opting 
instead for a data storage format that maintains type metadata, like Apache Parquet. However, we have 
no control over how this data is generated, so the best we can do for now is explicitly tell pd.read_csv 
to treat all of these columns as strings and suppress any warnings:

df = pd.read_csv(
    "data/vehicles.csv.zip",
    dtype_backend="numpy_nullable",
    dtype={
        "rangeA": pd.StringDtype(),
        "mfrCode": pd.StringDtype(),
        "c240Dscr": pd.StringDtype(),
        "c240bDscr": pd.StringDtype()
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    }
)
df.head()

    barrels08  bar-relsA08  charge120  …  phevCity  phevHwy  phevComb
0   14.167143  0.0          0.0        …  0         0        0
1   27.046364  0.0          0.0        …  0         0        0
2   11.018889  0.0          0.0        …  0         0        0
3   27.046364  0.0          0.0        …  0         0        0
4   15.658421  0.0          0.0        …  0         0        0
5 rows × 84 columns

Now that we have loaded the data cleanly, let’s try and identify columns that are categorical in nature. 
Since we know nothing about this dataset, we can make the directionally correct assumption that all 
columns read in as strings by pd.read_csv are categorical in nature:

df.select_dtypes(include=["string"]).columns

Index(['drive', 'eng_dscr', 'fuelType', 'fuelType1', 'make', 'model',
      'mpgData', 'trany', 'VClass', 'baseModel', 'guzzler', 'trans_dscr',
      'tCharger', 'sCharger', 'atvType', 'fuelType2', 'rangeA', 'evMotor',
      'mfrCode', 'c240Dscr', 'c240bDscr', 'createdOn', 'modifiedOn',
      'startStop'],
     dtype='object')

We could loop over all of these columns and call pd.Series.value_counts to understand what each 
column contains, but a more effective way to explore this data would be to first understand how many 
unique values are in each column with pd.Series.nunique, ordering from low to high. A lower num-
ber indicates a low cardinality (i.e., the number of unique values compared to the value count of the 
pd.DataFrame is relatively low). Fields with a higher number would inversely be considered to have 
a high cardinality:

df.select_dtypes(include=["string"]).nunique().sort_values()

sCharger         1
tCharger         1
startStop        2
mpgData          2
guzzler          3
fuelType2        4
c240Dscr         5
c240bDscr        7
drive            7
fuelType1        7
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atvType          9
fuelType        15
VClass          34
trany           40
trans_dscr      52
mfrCode         56
make           144
rangeA         245
modifiedOn     298
evMotor        400
createdOn      455
eng_dscr       608
baseModel     1451
model         5064
dtype: int64

For an easy visualization, we are just going to take the nine columns with the lowest cardinality. This is 
by no means an absolute rule for choosing what to visualize or not – ultimately, that decision is up to 
you. For our particular dataset, the nine columns with the lowest cardinality have up to seven unique 
values, which can be reasonably plotted on the X-axis of bar charts to help visualize value distribution.

Building on what we learned back in the Further plot customization with Matplotlib recipe in this chapter, 
we can use plt.subplots to create a simple 3x3 grid and, with that, plot each visual to its own space 
in the grid:

low_card = df.select_dtypes(include=["string"]).nunique().sort_values().
iloc[:9].index
fig, axes = plt.subplots(nrows=3, ncols=3)

for index, column in enumerate(low_card):
    row = index % 3
    col = index // 3
    ax = axes[row][col]
    df[column].value_counts().plot(kind="bar", ax=ax)

plt.tight_layout()

/tmp/ipykernel_834707/4000549653.py:10: UserWarning: Tight layout not applied. 
tight_layout cannot make axes height small enough to accommodate all axes 
decorations.
 plt.tight_layout()
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That chart is… very difficult to read. Many of the X-axis labels overrun the chart area, given their length. 
One way to fix this would be to assign shorter labels to our row index values, using a combination of 
pd.Index.str[] along with pd.Index.set_axis to use those values in a new pd.Index. We can also 
use Matplotlib to rotate and resize our X-axis labels:

low_card = df.select_dtypes(include=["string"]).nunique().sort_values().
iloc[:9].index
fig, axes = plt.subplots(nrows=3, ncols=3)

for index, column in enumerate(low_card):
    row = index % 3
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    col = index // 3
    ax = axes[row][col]
    counts = df[column].value_counts()
    counts.set_axis(counts.index.str[:8]).plot(kind="bar", ax=ax)
    ax.set_xticklabels(ax.get_xticklabels(), rotation=45, fontsize=6)

plt.tight_layout()

From this visualization, we can more easily understand our dataset at a high level. The mpgData 
column appears to be N at a much higher frequency than Y. For the guzzler column, we see roughly 
twice as many G values as T. For the c240Dscr column, we can see that the vast majority of entries are 
standard, although overall, there are only slightly more than 100 rows in our entire dataset that even 
bother to assign this value, so we may decide that there aren’t enough measurements to reliably use it.
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Exploring continuous data
In the Exploring categorical data recipe, we provided a definition for categorical and continuous data, 
while exploring only the former. The same vehicles dataset we used in that recipe has a good mix 
of both types of data (most datasets will), so we will reuse that same dataset but shift our focus to 
continuous data for this recipe.

Before going through this recipe, I advise you to get familiar with the techniques shown in the Plotting 
distributions of non-aggregated data recipe first. The actual plotting calls made will be the same, but this 
recipe will apply them to more of a “real-world” dataset instead of artificially created data.

How to do it
Let’s start by loading the vehicles dataset:

df = pd.read_csv(
    "data/vehicles.csv.zip",
    dtype_backend="numpy_nullable",
    dtype={
        "rangeA": pd.StringDtype(),
        "mfrCode": pd.StringDtype(),
        "c240Dscr": pd.StringDtype(),
        "c240bDscr": pd.StringDtype()
    }
)
df.head()

   barrels08  bar-relsA08  charge120  …  phevCity  phevHwy  phevComb
0  14.167143  0.0          0.0        …  0         0        0
1  27.046364  0.0          0.0        …  0         0        0
2  11.018889  0.0          0.0        …  0         0        0
3  27.046364  0.0          0.0        …  0         0        0
4  15.658421  0.0          0.0        …  0         0        0
5 rows × 84 columns

In the previous recipe, we used pd.DataFrame.select_dtypes with an include= argument that kept 
only string columns, which we used as a proxy for categorical data. By passing that same argument 
to exclude= instead, we can get a reasonable overview of the continuous columns:

df.select_dtypes(exclude=["string"]).columns

Index(['barrels08', 'barrelsA08', 'charge120', 'charge240', 'city08',
      'city08U', 'cityA08', 'cityA08U', 'cityCD', 'cityE', 'cityUF', 'co2',
      'co2A', 'co2TailpipeAGpm', 'co2TailpipeGpm', 'comb08', 'comb08U',
      'combA08', 'combA08U', 'combE', 'combinedCD', 'combinedUF', 'cylinders',
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      'displ', 'engId', 'feScore', 'fuelCost08', 'fuelCostA08', 'ghgScore',
      'ghgScoreA', 'highway08', 'highway08U', 'highwayA08', 'highwayA08U',
      'highwayCD', 'highwayE', 'highwayUF', 'hlv', 'hpv', 'id', 'lv2', 'lv4',
      'phevBlended', 'pv2', 'pv4', 'range', 'rangeCity', 'rangeCityA',
      'rangeHwy', 'rangeHwyA', 'UCity', 'UCityA', 'UHighway', 'UHighwayA',
      'year', 'youSaveSpend', 'charge240b', 'phevCity', 'phevHwy',
      'phevComb'],
     dtype='object')

Using pd.Series.nunique does not make as much sense with continuous data, as values may take on 
a theoretically infinite amount of values. Instead, to identify good plotting candidates, we may just 
want to understand which columns have a sufficient amount of non-missing data by using pd.isna:

df.select_dtypes(
    exclude=["string"]
).pipe(pd.isna).sum().sort_values(ascending=False).head()

cylinders      801
displ          799
barrels08        0
pv4              0
highwayA08U      0
dtype: int64

Generally, most of our continuous data is complete, but let’s take a look at cylinders to see what the 
missing values are:

df.loc[df["cylinders"].isna(), ["make", "model"]].value_counts()

make      model                          
Fiat      500e                               8
smart     fortwo electric drive coupe        7
Toyota    RAV4 EV                            7
Nissan    Leaf                               7
Ford      Focus Electric                     7
                                           ..
Polestar  2 Single Motor (19 Inch Wheels)    1
Ford      Mustang Mach-E RWD LFP             1
Polestar  2 Dual Motor Performance Pack      1
          2 Dual Motor Perf Pack             1
Acura     ZDX AWD                            1
Name: count, Length: 450, dtype: int64
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These appear to be electric vehicles, so we could reasonably choose to fill these missing values with 
a 0 instead:

df["cylinders"] = df["cylinders"].fillna(0)

We see the same pattern with the displ column:

df.loc[df["displ"].isna(), ["make", "model"]].value_counts()

make     model                             
Fiat     500e                                  8
smart    fortwo electric drive coupe           7
Toyota   RAV4 EV                               7
Nissan   Leaf                                  7
Ford     Focus Electric                        7
                                             ..
Porsche  Taycan 4S Performance Battery Plus    1
         Taycan GTS ST                         1
Fisker   Ocean Extreme One                     1
Fiat     500e All Season                       1
Acura    ZDX AWD                               1
Name: count, Length: 449, dtype: int64

Whether or not we should fill this data with 0 is up for debate. In the case of cylinder, filling miss-
ing values with 0 made sense because our data was actually categorical (i.e., there are only so many 
cylinder values that can appear, and you cannot simply aggregate those values). If you have one 
vehicle with 2 cylinders and another with 3, it would not make sense to say, “The average number of 
cylinders is 2.5” because a vehicle may not have 2.5 cylinders.

However, with a column like displacement, it may make more sense to measure something like the 
“average displacement.” In such a case, providing many 0 values to an average will skew it downwards, 
whereas missing values would be ignored. There are also many more unique values than what we 
see with cylinders:

df["displ"].nunique()

66

Ultimately, filling missing values in this field is a judgment call; for our analysis, we will leave them 
as missing.

Now that we have validated the missing values in our dataset and feel comfortable with our complete-
ness, it is time to start exploring individual fields in more detail. When exploring continuous data, a 
histogram is often the first visualization that users reach for. Let’s see what that looks like with our 
city08 column:

df["city08"].plot(kind="hist")



Visualization210

The plot looks very skewed, so we will increase the number of bins in the histogram to see if the skew 
is hiding behaviors (as skew makes bins wider):

df["city08"].plot(kind="hist", bins=30)
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As we discussed back in the Plotting distributions of non-aggregated data recipe, you can forgo having 
to find the optimal number of bins if you have SciPy installed. With SciPy, a KDE plot will give you an 
even better view of the distribution.

Knowing that, and building from what we saw back in the Further plot customization with Matplotlib 
recipe, we can use plt.subplots to visualize the KDE plots for multiple variables at once, like city 
and highway mileage:

fig, axes = plt.subplots(nrows=2, ncols=1)
axes[0].set_xlim(0, 40)
axes[1].set_xlim(0, 40)
axes[0].set_ylabel("city")
axes[1].set_ylabel("highway")

df["city08"].plot(kind="kde", ax=axes[0])
df["highway08"].plot(kind="kde", ax=axes[1])

As you can see, the city mileage tends to skew slightly left, with the peak of the distribution occurring 
around 16 or 17 mpg. Highway mileage peaks closer to 23 or 24, with more values than you would 
expect for a perfectly normal distribution appearing around 17 or 18 mpg.
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Using seaborn for advanced plots
The seaborn library is a popular Python library for creating visualizations. It does not do any drawing 
itself, instead deferring the heavy lifting to Matplotlib. However, for users working with a pd.DataFrame, 
seaborn offers beautiful visualizations out of the box and an API that abstracts a lot of things you would 
have to do when working more directly with Matplotlib.

Rather than using pd.Series.plot and pd.DataFrame.plot, we will use seaborn’s own API. All exam-
ples in this section assume the following code to import seaborn and use its default theme:

import seaborn as sns
sns.set_theme()
sns.set_style("white")

How to do it
Let’s create a small pd.DataFrame that shows how many stars two GitHub projects have received over 
time:

df = pd.DataFrame([
    ["Q1-2024", "project_a", 1],
    ["Q1-2024", "project_b", 1],
    ["Q2-2024", "project_a", 2],
    ["Q2-2024", "project_b", 2],
    ["Q3-2024", "project_a", 4],
    ["Q3-2024", "project_b", 3],
    ["Q4-2024", "project_a", 8],
    ["Q4-2024", "project_b", 4],
    ["Q5-2025", "project_a", 16],
    ["Q5-2025", "project_b", 5],
], columns=["quarter", "project", "github_stars"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

    quarter   project     github_stars
0   Q1-2024   project_a   1
1   Q1-2024   project_b   1
2   Q2-2024   project_a   2
3   Q2-2024   project_b   2
4   Q3-2024   project_a   4
5   Q3-2024   project_b   3
6   Q4-2024   project_a   8
7   Q4-2024   project_b   4
8   Q5-2025   project_a   16
9   Q5-2025   project_b   5
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This simple data makes for a good bar chart, which we can produce with sns.barplot. Note the differ-
ence in the call signature when using seaborn’s API – with seaborn, you will provide the pd.DataFrame 
as an argument and explicitly choose the x, y, and hue arguments. You will also notice that the seaborn 
theme uses a different color theme than Matplotlib, which you may find more visually appealing:

sns.barplot(df, x="quarter", y="github_stars", hue="project")

sns.lineplot can be used to produce this same visualization as a line chart:

sns.lineplot(df, x="quarter", y="github_stars", hue="project")
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An important thing to note when using seaborn is that you will provide your data in long form instead 
of wide form. To illustrate the difference, look closely at the raw pd.DataFrame we just plotted:

df

    quarter   project     github_stars
0   Q1-2024   project_a   1
1   Q1-2024   project_b   1
2   Q2-2024   project_a   2
3   Q2-2024   project_b   2
4   Q3-2024   project_a   4
5   Q3-2024   project_b   3
6   Q4-2024   project_a   8
7   Q4-2024   project_b   4
8   Q5-2025   project_a   16
9   Q5-2025   project_b   5

If we wanted to make the equivalent line and bar charts with pandas, we would have had to structure 
our data differently before calling pd.DataFrame.plot:

df = pd.DataFrame({
    "project_a": [1, 2, 4, 8, 16],
    "project_b": [1, 2, 3, 4, 5],
}, index=["Q1-2024", "Q2-2024", "Q3-2024", "Q4-2024", "Q5-2024"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

          project_a   project_b
Q1-2024   1           1
Q2-2024   2           2
Q3-2024   4           3
Q4-2024   8           4
Q5-2024   16          5

While the default styling that seaborn provides is helpful to make nice-looking charts, there are way 
more powerful visualizations that the library can help you build, with no equivalent when using 
pandas directly.

To see these types of charts in action, let’s once again work with the movie dataset we explored back 
in Chapter 5, Algorithms and How to Apply Them:

df = pd.read_csv(
    "data/movie.csv",
    usecols=["movie_title", "title_year", "imdb_score", "content_rating"],
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    dtype_backend="numpy_nullable",
)
df.head()

    movie_title  content_rating  title_year  imdb_score
0   Avatar       PG-13           2009.0      7.9
1   Pirates of the Caribbean: At World's End   PG-13   2007.0   7.1
2   Spectre      PG-13           2015.0      6.8
3   The Dark Knight Rises   PG-13   2012.0   8.5
4   Star Wars: Episode VII – The Force Awakens   <NA>   <NA>   7.1

We need to do some data cleansing before we jump into this dataset. For starters, it looks like title_year 
is being read as a floating-point value. An integral value would have been much more appropriate, so 
we are going to reread our data while passing that explicitly to the dtype= argument:

df = pd.read_csv(
    "data/movie.csv",
    usecols=["movie_title", "title_year", "imdb_score", "content_rating"],
    dtype_backend="numpy_nullable",
    dtype={"title_year": pd.Int16Dtype()},
)
df.head()

    movie_title   content_rating   title_year   imdb_score
0   Avatar        PG-13            2009         7.9
1   Pirates of the Caribbean: At World's End    PG-13   2007   7.1
2   Spectre       PG-13            2015         6.8
3   The Dark Knight Rises   PG-13  2012         8.5
4   Star Wars: Episode VII - The Force Awakens   <NA>   <NA>   7.1

With that out of the way, let’s see when the oldest movie in our dataset was released:

df["title_year"].min()

1916

And compare that to the last movie:

df["title_year"].max()

2016

As we think ahead toward visualizing this data, we may not always be so detailed as caring about the 
exact year that a movie was released. Instead, we could place each movie into a decade bucket by 
using the pd.cut function we covered back in Chapter 5, Algorithms and How to Apply Them, providing 
a range that will start before and extend after the first and last titles in our dataset were released:
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df = df.assign(
    title_decade=lambda x: pd.cut(x["title_year"],
                                  bins=range(1910, 2021, 10)))

df.head()

    movie_title   content_rating   title_year   imdb_score   title_decade
0   Avatar        PG-13            2009         7.9          (2000.0, 2010.0]
1   Pirates of the Caribbean: At World's End   PG-13   2007   7.1   (2000.0, 
2010.0]
2   Spectre       PG-13            2015         6.8          (2010.0, 2020.0]
3   The Dark Knight Rises   PG-13  2012         8.5          (2010.0, 2020.0]
4   Star Wars: Epi-sode VII - The Force Awakens   <NA>   <NA>   7.1   NaN

If we wanted to understand how the distribution of movie ratings has changed over the decades, a 
boxplot would be a great first step toward visualizing those trends. Seaborn exposes an sns.boxplot 
method that makes this trivial to draw:

sns.boxplot(
    data=df,
    x="imdb_score",
    y="title_decade",
)
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If you look at the median movie rating (i.e., the black vertical line toward the middle of each box), you 
can see that movie ratings have generally trended downward over time. At the same time, the lines 
extending from each box (which represent the lowest and highest quartiles of ratings) appear to have 
a wider spread over time, which may suggest that the worst movies each decade are getting worse, 
while the best movies may be getting better, at least since the 1980s.

While the boxplot chart provides a decent high-level view into the distribution of data by decade, there 
are other plots that seaborn offers that may be even more insightful. One example is the violin plot, 
which is essentially a KDE plot (covered back in the Plotting distributions of non-aggregated data recipe) 
overlaid on top of a boxplot. Seaborn allows this via the sns.violinplot function:

sns.violinplot(
    data=df,
    x="imdb_score",
    y="title_decade",
)

Many of the decades show a distribution with a single mode, but if you look closely at the 1950s, you 
will notice that the KDE plot has two peaks (one around a score of 7 and the other peak slightly north 
of 8). The 1960s exhibit a similar phenomenon, although the peak around a score of 7 is slightly less 
pronounced. For both of these decades, the KDE overlay suggests that a relatively high volume of 
reviews are distributed toward the 25th and 75th percentiles for ratings, whereas other decades tend 
to regress more toward the median.
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However, the violin plot still makes it difficult to discern how many ratings there were per decade. 
While the distribution in each decade is, of course, important, the volume may tell another story. Per-
haps movie ratings are higher for older decades because of survivorship bias, with only the movies 
that are deemed good for those decades actually getting reviewed, or perhaps newer decades have 
valued quality over quantity.

Whatever the root cause may be, seaborn can at least help us visually confirm the volume alongside 
our distribution through the use of a swarm plot, which takes the KDE portion of the violin plot and 
scales it vertically, depending on the volume of records:

sns.swarmplot(
    data=df,
    x="imdb_score",
    y="title_decade",
    size=.25,
)

As you can see in the visual, much of the volume of reviews happened on reviews from the 1990s or 
later, with most of the reviews coming from the years 2000–2010 (remember that our dataset only 
contains movies up until 2016). Decades before 1990 have a relatively small amount of reviews, to the 
point of making them almost indiscernible on the graph.
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With a swarm plot, you can go even further into this data by adding more dimensions to the visual. 
So far, we have already discovered that movie ratings have trended downward over time, whether it 
is due to survivorship bias with ratings or a focus on quantity over quality. But what if we wanted to 
know more about different types of movies? Are PG-13 movies faring better than R-rated?

By controlling the color of each point on a swarm plot, you can add that extra dimension to your visuals. 
To see this in action, let’s drill into just a few years of data, as our current plots are getting tough to 
read. We can also just look at movies with ratings, as unrated entries or TV shows are not something 
we care to drill into. As a final data cleansing step, we are going to convert our title_year column to 
a categorical data type so that the plotting library knows that years like 2013, 2014, 2015, etc. should 
be treated as discrete values, rather than as a continuous range of values from 2013 to 2015:

ratings_of_interest = {"G", "PG", "PG-13", "R"}
mask = (
    (df["title_year"] >= 2013)
    & (df["title_year"] <= 2015)
    & (df["content_rating"].isin(ratings_of_interest))
)
data = df[mask].assign(
    title_year=lambda x: x["title_year"].astype(pd.CategoricalDtype())
)
data.head()

    movie_title   content_rating   title_year   imdb_score   title_decade
2   Spectre       PG-13            2015         6.8          (2010, 2020]
8   Avengers: Age of Ultron   PG-13   2015      7.5          (2010, 2020]
14  The Lone Ranger   PG-13        2013         6.5          (2010, 2020]
15  Man of Steel  PG-13            2013         7.2          (2010, 2020]
20  The Hobbit: The Battle of the Five Ar-mies   PG-13   2014   7.5   (2010, 
2020]

With the data cleansing out of the way, we can go ahead and add the content_rating to our chart and 
have seaborn assign each a unique color, via the hue= argument:

sns.swarmplot(
    data=data,
    x="imdb_score",
    y="title_year",
    hue="content_rating",
)
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Adding colors adds another dimension of information to our chart, although an alternative approach 
to use a separate chart for each content_rating might make this even more readable.

To achieve that, we are going to use the sns.catplot function with some extra arguments. The first 
argument of note is kind=, through which we will tell seaborn to draw “swarm” plots for us. The col= 
argument dictates the field used to generate individual charts, and the col_wrap= argument tells us 
how many charts can be put together in a row, assuming a grid-like layout for our charts:

sns.catplot(
    kind="swarm",
    data=data,
    x="imdb_score",
    y="title_year",
    col="content_rating",
    col_wrap=2,
)
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This visualization would appear to suggest that 2013 was a good year for movies, at least relative to 2014 
and 2015. Within the PG-13 content rating, it appears that there were relatively more movies falling in 
the 7–8 range than any other year. For R-rated movies, it appears that the vast majority of movies were 
given a rating of 5 and above in 2013, with more movies falling below that line as the years went on.
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7
Reshaping DataFrames

Working with data is hard. Rarely, if ever, can you just collect data and have it immediately yield in-
sights. Often, significant time and effort must be put into cleansing, transforming, and reshaping your 
data to get it into a format that is usable, digestible, and/or understandable.

Is your source data a collection of CSV files, where each file represents a different day? Proper use of 
pd.concat will help you take those files and combine them into one with ease.

Does the relational database you use as a source store data in a normalized form, while the target 
columnar database would prefer to ingest data all in one table? pd.merge can help you combine your 
data together.

What if your boss asks you to take millions of rows of data and, from that, produce a nice summary 
report that anyone in the business can understand? pd.pivot_table is the right tool for the job here, 
allowing you to quickly and easily summarize your data.

Ultimately, the reasons why you need to reshape your data come from different places. Whether your 
requirements are driven by systems or people, pandas can help you manipulate data as needed.

Throughout this chapter, we will walk you through the functions and methods that pandas offers to 
reshape your data. Equipped with the proper knowledge and some creativity, reshaping with pandas 
can be one of the most fun and rewarding parts of your analytical process.

We are going to cover the following recipes in this chapter:

•	 Concatenating pd.DataFrame objects
•	 Merging DataFrames with pd.merge
•	 Joining DataFrames with pd.DataFrame.join
•	 Reshaping with pd.DataFrame.stack and pd.DataFrame.unstack
•	 Reshaping with pd.DataFrame.melt
•	 Reshaping with pd.wide_to_long
•	 Reshaping with pd.DataFrame.pivot and pd.pivot_table
•	 Reshaping with pd.DataFrame.explode
•	 Transposing with pd.DataFrame.T
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Concatenating pd.DataFrame objects
The term concatenation in pandas refers to the process of taking two or more pd.DataFrame objects and 
stacking them in some manner. Most commonly, users in pandas perform what we would consider to 
be vertical concatenation, which places the pd.DataFrame objects on top of one another:

Figure 7.1: Vertical concatenation of two pd.DataFrame objects

However, pandas also has the flexibility to take your pd.DataFrame objects and stack them side by 
side, through a process called horizontal concatenation:

Figure 7.2: Vertical concatenation of two pd.DataFrame objects

These figures may provide you with a good grasp of what concatenation is all about, but there are 
some potential issues to consider. What should happen if we try to concatenate vertically, but our 
column labels are not the same across all of the objects? On the flip side, what should happen if we 
try to concatenate horizontally, and not all of the row labels are the same?

Regardless of the direction along which you would like to concatenate, and regardless of how your 
labels may or may not align, concatenation in pandas is controlled entirely through the pd.concat 
function. This recipe will walk you through the basics of pd.concat, while showing you how you can 
control its behavior when you aren’t always working with like-labeled pd.DataFrame objects.
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How to do it
Let’s imagine we have collected data about the stock performance of various companies across two 
different quarters. To best showcase how concatenation works, we have intentionally made it so 
that the two pd.DataFrame objects cover different time periods, show different companies, and even 
contain different columns:

df_q1 = pd.DataFrame([
    ["AAPL", 100., 50., 75.],
    ["MSFT", 80., 42., 62.],
    ["AMZN", 60., 100., 120.],
], columns=["ticker", "shares", "low", "high"])
df_q1 = df_q1.convert_dtypes(dtype_backend="numpy_nullable")

df_q1

    ticker   shares   low   high
0   AAPL     100      50    75
1   MSFT     80       42    62
2   AMZN     60       100   120

df_q2 = pd.DataFrame([
    ["AAPL", 80., 70., 80., 77.],
    ["MSFT", 90., 50., 60., 55.],
    ["IBM", 100., 60., 70., 64.],
    ["GE", 42., 30., 50., 44.],
], columns=["ticker", "shares", "low", "high", "close"])
df_q2 = df_q2.convert_dtypes(dtype_backend="numpy_nullable")

df_q2

    ticker   shares   low   high   close
0   AAPL     80       70    80     77
1   MSFT     90       50    60     55
2   IBM      100      60    70     64
3   GE       42       30    50     44

The most basic call to pd.concat would accept both of these pd.DataFrame objects in a list. By default, 
this will stack the objects vertically, i.e., the first pd.DataFrame is simply stacked on top of the second.

While most of the columns in our pd.DataFrame objects overlap, df_q1 does not have a close column, 
whereas df_q2 does. To still make the concatenation work, pandas will include the close column in the 
result of pd.concat, assigning a missing value to the rows that came from df_q1:

pd.concat([df_q1, df_q2])
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    ticker   shares   low   high   close
0   AAPL     100      50    75     <NA>
1   MSFT     80       42    62     <NA>
2   AMZN     60       100   120    <NA>
0   AAPL     80       70    80     77
1   MSFT     90       50    60     55
2   IBM      100      60    70     64
3   GE       42       30    50     44

You should also take note of the row index that pandas gives in the result. In essence, pandas takes the 
index values of df_q1, which range from 0–2, and then takes the index values of df_q2, which range 
from 0–3. When creating the new row index, pandas simply retains those values, stacking them vertical-
ly in the result. If you do not care for that behavior, you can pass in ignore_index=True to pd.concat:

pd.concat([df_q1, df_q2], ignore_index=True)

    ticker   shares   low   high   close
0   AAPL     100      50    75     <NA>
1   MSFT     80       42    62     <NA>
2   AMZN     60       100   120    <NA>
3   AAPL     80       70    80     77
4   MSFT     90       50    60     55
5   IBM      100      60    70     64
6   GE       42       30    50     44

Another potential issue is that we can no longer see which pd.DataFrame our records originally come 
from. To retain that information, we can pass through a keys= argument, providing custom labels to 
denote the source of our data:

pd.concat([df_q1, df_q2], keys=["q1", "q2"])

         ticker   shares   low   high   close
q1   0   AAPL     100      50    75     <NA>
     1   MSFT     80       42    62     <NA>
     2   AMZN     60       100   120    <NA>
q2   0   AAPL     80       70    80     77
     1   MSFT     90       50    60     55
     2   IBM      100      60    70     64
     3   GE       42       30    50     44

pd.concat also allows you to control the direction in which things are being concatenated. Instead of 
the default behavior to stack vertically, we can pass axis=1 to see things stacked horizontally:

pd.concat([df_q1, df_q2], keys=["q1", "q2"], axis=1)
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    q1                      …   q2
    ticker   shares   low   …   low   high   close
0   AAPL     100      50    …   70    80     77
1   MSFT     80       42    …   50    60     55
2   AMZN     60       100   …   60    70     64
3   <NA>     <NA>     <NA>  …   30    50     44
4 rows × 9 columns

While this gave us back a result without error, a closer inspection of the result reveals some issues. 
The first two rows of data cover both AAPL and MSFT, respectively, so there is no cause for concern 
there. However, the third row of data shows AMZN as the Q1 ticker and IBM as the Q2 ticker – what gives?

The problem is that pandas is aligning on the values of the index, and not on any other column like 
ticker, which is what we are probably interested in. If we wanted pd.concat to align by the ticker, 
we could set that as the row index of the two pd.DataFrame objects before concatenation:

pd.concat([
    df_q1.set_index("ticker"),
    df_q2.set_index("ticker"),
], keys=["q1", "q2"], axis=1)

        q1                   …   q2
        shares  low   high   …   low   high   close
ticker
AAPL    100     50    75     …   70    80     77
MSFT    80      42    62     …   50    60     55
AMZN    60      100   120    …   <NA>  <NA>   <NA>
IBM     <NA>    <NA>  <NA>   …   60    70     64
GE      <NA>    <NA>  <NA>   …   30    50     44
5 rows × 7 columns

One last thing we might want to control about the alignment behavior is how it treats labels that appear 
in at least one, but not all, of the objects being concatenated. By default, pd.concat performs an “outer” 
join, which will take all of the index values (in our case, the ticker symbols) and show them in the 
output, using a missing value indicator where applicable. Passing join="inner" as an argument, by 
contrast, will only show index labels that appear in all of the objects being concatenated:

pd.concat([
    df_q1.set_index("ticker"),
    df_q2.set_index("ticker"),
], keys=["q1", "q2"], axis=1, join="inner")

        q1                    …   q2
        shares   low   high   …   low   high   close
ticker
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AAPL    100      50    75     …   70    80     77
MSFT    80       42    62     …   50    60     55
2 rows × 7 columns

There’s more…
pd.concat is an expensive operation, and should never be called from within a Python loop. If you 
create a bunch of pd.DataFrame objects within a loop and eventually do want to concatenate them 
together, you are better off storing them in a sequence first, only calling pd.concat once after the 
sequence has been fully populated.

We can use the IPython %%time magic function to profile the difference in approaches. Let’s start with 
the anti-pattern of using pd.concat within a loop:

%%time
concatenated_dfs = df_q1
for i in range(1000):
    concatenated_dfs = pd.concat([concatenated_dfs, df_q1])

print(f"Final pd.DataFrame shape is {concatenated_dfs.shape}")

Final pd.DataFrame shape is (3003, 4)
CPU times: user 267 ms, sys: 0 ns, total: 267 ms
Wall time: 287 ms

This code will yield the equivalent result but follows the practice of appending to a Python list during 
the loop, and only calling pd.concat once at the very end:

%%time
df = df_q1
accumulated = [df_q1]
for i in range(1000):
    accumulated.append(df_q1)

concatenated_dfs = pd.concat(accumulated)
print(f"Final pd.DataFrame shape is {concatenated_dfs.shape}")

Final pd.DataFrame shape is (3003, 4)
CPU times: user 28.4 ms, sys: 0 ns, total: 28.4 ms
Wall time: 31 ms
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Merging DataFrames with pd.merge
Another common task in reshaping data is referred to as merging, or in some cases, joining, with the 
latter term being used frequently in database terminology. Where concatenation “stacks” objects on 
top of or next to one another, a merge works by finding a common key (or set of keys) between two 
entities and using that to blend other columns from the entities together:

Figure 7.3: Merging two pd.DataFrame objects

The most commonly used method in pandas to perform merges is pd.merge, whose functionality will 
be covered throughout this recipe. Another viable, though less commonly used, pd.DataFrame.join 
method can be used as well, although knowing pd.merge first is helpful before discussing that (we 
will cover pd.DataFrame.join in the next recipe).

How to do it
Let’s continue along with the stock pd.DataFrame objects we created in the Concatenating pd.DataFrame 
objects recipe:

df_q1 = pd.DataFrame([
    ["AAPL", 100., 50., 75.],
    ["MSFT", 80., 42., 62.],
    ["AMZN", 60., 100., 120.],
], columns=["ticker", "shares", "low", "high"])
df_q1 = df_q1.convert_dtypes(dtype_backend="numpy_nullable")

df_q1

    ticker   shares   low   high
0   AAPL     100      50    75
1   MSFT     80       42    62
2   AMZN     60       100   120
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df_q2 = pd.DataFrame([
    ["AAPL", 80., 70., 80., 77.],
    ["MSFT", 90., 50., 60., 55.],
    ["IBM", 100., 60., 70., 64.],
    ["GE", 42., 30., 50., 44.],
], columns=["ticker", "shares", "low", "high", "close"])
df_q2 = df_q2.convert_dtypes(dtype_backend="numpy_nullable")

df_q2

    ticker   shares   low   high   close
0   AAPL     80       70    80     77
1   MSFT     90       50    60     55
2   IBM      100      60    70     64
3   GE       42       30    50     44

In one of the examples in that recipe, we saw how you could use a combination of pd.concat and 
pd.DataFrame.set_index to merge our two pd.DataFrame objects by the ticker column:

pd.concat([
    df_q1.set_index("ticker"),
    df_q2.set_index("ticker"),
], keys=["q1", "q2"], axis=1)

         q1                    …   q2
         shares   low   high   …   low   high   close
ticker
AAPL     100      50    75     …   70    80     77
MSFT     80       42    62     …   50    60     55
AMZN     60       100   120    …   <NA>  <NA>   <NA>
IBM      <NA>     <NA>  <NA>   …   60    70     64
GE       <NA>     <NA>  <NA>   …   30    50     44
5 rows × 7 columns

With pd.merge, you can express this much more succinctly by passing an argument to on=, which 
clarifies the column(s) you would like pandas to use for alignment:

pd.merge(df_q1, df_q2, on=["ticker"])

    ticker   shares_x   low_x   …   low_y   high_y   close
0   AAPL     100        50      …   70      80       77
1   MSFT     80         42      …   50      60       55
2 rows × 8 columns
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As you can see, the result is not exactly the same, but we can get a little closer by toggling the merge 
behavior. By default, pd.merge performs an inner merge; if we wanted a result more similar to our 
pd.concat example, we could pass how="outer":

pd.merge(df_q1, df_q2, on=["ticker"], how="outer")

    ticker   shares_x   low_x   …   low_y   high_y   close
0   AAPL     100        50      …   70      80       77
1   AMZN     60         100     …   <NA>    <NA>     <NA>
2   GE       <NA>       <NA>    …   30      50       44
3   IBM      <NA>       <NA>    …   60      70       64
4   MSFT     80         42      …   50      60       55
5 rows × 8 columns

While pd.concat only allows you to perform inner or outer merges, pd.merge additionally supports 
left merges, which retain all data from the first pd.DataFrame, merging in data from the second 
pd.DataFrame as key fields can be matched:

pd.merge(df_q1, df_q2, on=["ticker"], how="left")

    ticker   shares_x   low_x   …   low_y   high_y   close
0   AAPL     100        50      …   70      80       77
1   MSFT     80         42      …   50      60       55
2   AMZN     60         100     …   <NA>    <NA>     <NA>
3 rows × 8 columns

how="right" reverses that, ensuring that every row from the second pd.DataFrame is represented 
in the output:

pd.merge(df_q1, df_q2, on=["ticker"], how="right")

    ticker   shares_x   low_x   …   low_y   high_y   close
0   AAPL     100        50      …   70      80       77
1   MSFT     80         42      …   50      60       55
2   IBM      <NA>       <NA>    …   60      70       64
3   GE       <NA>       <NA>    …   30      50       44
4 rows × 8 columns

An additional feature when using how="outer" is the ability to provide an indicator= argument, which 
will tell you where each row in the resulting pd.DataFrame was sourced from:

pd.merge(df_q1, df_q2, on=["ticker"], how="outer", indicator=True)

    ticker   shares_x   low_x   …   high_y   close   _merge
0   AAPL     100        50      …   80       77      both
1   AMZN     60         100     …   <NA>     <NA>    left_only
2   GE       <NA>       <NA>    …   50       44      right_only
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3   IBM      <NA>       <NA>    …   70       64      right_only
4   MSFT     80         42      …   60       55      both
5 rows × 9 columns

A value of “both” means that the key(s) used to perform the merge were found in both pd.DataFrame 
objects, which you can see is applicable to the AAPL and MSFT tickers. A value of left_only means the 
key(s) only appeared in the left pd.DataFrame, as is the case for AMZN. right_only highlights key(s) 
that only appeared in the right pd.DataFrame, like GE and IBM.

Another difference between our pd.concat output and what we get with pd.merge is that the former 
generates a pd.MultiIndex in the columns, essentially preventing any clashes from column labels that 
appear in both pd.DataFrame objects. pd.merge, by contrast, appends a suffix to columns that appear in 
both of the pd.DataFrame objects to disambiguate. The column coming from the left pd.DataFrame will 
be suffixed with _x, whereas a suffix of _y indicates that the column came from the right pd.DataFrame.

For more control over this suffix, you can pass a tuple argument to suffixes=. With our sample data, 
this argument can be used to easily identify Q1 versus Q2 data:

pd.merge(
    df_q1,
    df_q2,
    on=["ticker"],
    how="outer",
    suffixes=("_q1", "_q2"),
)

    ticker   shares_q1   low_q1   …   low_q2   high_q2   close
0   AAPL     100         50       …   70       80        77
1   AMZN     60          100      …   <NA>     <NA>      <NA>
2   GE       <NA>        <NA>     …   30       50        44
3   IBM      <NA>        <NA>     …   60       70        64
4   MSFT     80          42       …   50       60        55
5 rows × 8 columns

However, you should be aware that the suffixes are only applied if the column name appears in both 
pd.DataFrame objects. If a column only appears in one but not both objects, no suffix will be applied:

pd.merge(
    df_q1[["ticker"]].assign(only_in_left=42),
    df_q2[["ticker"]].assign(only_in_right=555),
    on=["ticker"],
    how="outer",
    suffixes=("_q1", "_q2"),
)
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    ticker   only_in_left   only_in_right
0   AAPL     42.0           555.0
1   AMZN     42.0           NaN
2   GE       NaN            555.0
3   IBM      NaN            555.0
4   MSFT     42.0           555.0

If our key column(s) has different names in the two pd.DataFrame objects, would that be a problem? 
Of course not! No need to take my word for it though – let’s just rename the ticker column in one of 
our pd.DataFrame objects to SYMBOL:

df_q2 = df_q2.rename(columns={"ticker": "SYMBOL"})

df_q2

    SYMBOL   shares   low   high   close
0   AAPL     80       70    80     77
1   MSFT     90       50    60     55
2   IBM      100      60    70     64
3   GE       42       30    50     44

With pd.merge, the only thing that changes is that you now need to pass two different arguments to 
left_on= and right_on=, instead of just one argument to on=:

pd.merge(
    df_q1,
    df_q2,
    left_on=["ticker"],
    right_on=["SYMBOL"],
    how="outer",
    suffixes=("_q1", "_q2"),
)

    ticker   shares_q1   low_q1   …   low_q2   high_q2   close
0   AAPL     100         50       …   70       80        77
1   AMZN     60          100      …   <NA>     <NA>      <NA>
2   <NA>     <NA>        <NA>     …   30       50        44
3   <NA>     <NA>        <NA>     …   60       70        64
4   MSFT     80          42       …   50       60        55
5 rows × 9 columns

To finish off this recipe, let’s consider a case where there are multiple columns that should comprise 
our merge key. We can start down this path by creating one pd.DataFrame that lists out the ticker, 
quarter, and low price:

lows = pd.DataFrame([
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    ["AAPL", "Q1", 50.],
    ["MSFT", "Q1", 42.],
    ["AMZN", "Q1", 100.],
    ["AAPL", "Q2", 70.],
    ["MSFT", "Q2", 50.],
    ["IBM", "Q2", 60.],
    ["GE", "Q2", 30.],
], columns=["ticker", "quarter", "low"])
lows = lows.convert_dtypes(dtype_backend="numpy_nullable")

lows

    ticker   quarter   low
0   AAPL     Q1        50
1   MSFT     Q1        42
2   AMZN     Q1        100
3   AAPL     Q2        70
4   MSFT     Q2        50
5   IBM      Q2        60
6   GE       Q2        30

A second pd.DataFrame will also contain the ticker and quarter (albeit with different names), but will 
show the highs instead of the lows:

highs = pd.DataFrame([
    ["AAPL", "Q1", 75.],
    ["MSFT", "Q1", 62.],
    ["AMZN", "Q1", 120.],
    ["AAPL", "Q2", 80.],
    ["MSFT", "Q2", 60.],
    ["IBM", "Q2", 70.],
    ["GE", "Q2", 50.],
], columns=["SYMBOL", "QTR", "high"])
highs = highs.convert_dtypes(dtype_backend="numpy_nullable")

highs

    SYMBOL   QTR   high
0   AAPL     Q1    75
1   MSFT     Q1    62
2   AMZN     Q1    120
3   AAPL     Q2    80
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4   MSFT     Q2    60
5   IBM      Q2    70
6   GE       Q2    50

With the layout of these pd.DataFrame objects, our key field now becomes the combination of the 
ticker and the quarter. By passing the appropriate labels as arguments to left_on= and right_on=, 
pandas is still able to perform this merge:

pd.merge(
    lows,
    highs,
    left_on=["ticker", "quarter"],
    right_on=["SYMBOL", "QTR"],
)

    ticker   quarter   low   SYMBOL   QTR   high
0   AAPL     Q1        50    AAPL     Q1    75
1   MSFT     Q1        42    MSFT     Q1    62
2   AMZN     Q1        100   AMZN     Q1    120
3   AAPL     Q2        70    AAPL     Q2    80
4   MSFT     Q2        50    MSFT     Q2    60
5   IBM      Q2        60    IBM      Q2    70
6   GE       Q2        30    GE       Q2    50

There’s more…
An extra consideration when trying to merge data is the uniqueness of the key(s) in both pd.DataFrame 
objects. Having a poor or incorrect understanding of this can lead to very hard-to-detect errors ap-
pearing in your applications. Fortunately, pd.merge can help detect these issues upfront.

To illustrate what we mean when we talk about uniqueness, highlight the issues it can cause, and show 
you how to solve them with pandas, let’s start with a small pd.DataFrame that shows hypothetical sales 
by salesperson over time:

sales = pd.DataFrame([
    ["Jan", "John", 10],
    ["Feb", "John", 20],
    ["Mar", "John", 30],
], columns=["month", "salesperson", "sales"])
sales = sales.convert_dtypes(dtype_backend="numpy_nullable")

sales
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    month   salesperson   sales
0   Jan     John          10
1   Feb     John          20
2   Mar     John          30

Let’s also create a separate pd.DataFrame that maps each salesperson to a particular region:

regions = pd.DataFrame([
    ["John", "Northeast"],
    ["Jane", "Southwest"],
], columns=["salesperson", "region"])
regions = regions.convert_dtypes(dtype_backend="numpy_nullable")

regions

    salesperson   region
0   John          Northeast
1   Jane          Southwest

If you have ever worked at a small company or within a small department, chances are you’ve seen 
data sources built this way. As far as employees in that space are concerned, everyone knows who 
John is, so they are content with the decision to lay out data in this fashion.

In the sales data, John appears multiple times, but in the regions data, John appears only once. There-
fore, using salesperson as the merge key, the relationship from sales to regions is many-to-one (n-to-1). 
Conversely, the relationship from regions to sales is one-to-many (1-to-n).

With these types of relationships, merges do not introduce any unexpected behavior. A pd.merge 
between these two objects will simply display the multiple rows of sales data alongside the corre-
sponding region information:

pd.merge(sales, regions, on=["salesperson"])

    month   salesperson   sales   region
0   Jan     John          10      Northeast
1   Feb     John          20      Northeast
2   Mar     John          30      Northeast

If we were to try and sum the sales of this after the merge, we would still get the appropriate amount 
of 60:

pd.merge(sales, regions, on=["salesperson"])["sales"].sum()

60

As the company or department grows, it becomes inevitable that another John gets hired. To accom-
modate this, our regions, pd.DataFrame gets updated to add a new last_name column, and add a new 
entry for John Newhire:
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regions_orig = regions
regions = pd.DataFrame([
    ["John", "Smith", "Northeast"],
    ["Jane", "Doe", "Southwest"],
    ["John", "Newhire", "Southeast"],
], columns=["salesperson", "last_name", "region"])
regions = regions.convert_dtypes(dtype_backend="numpy_nullable")

regions

    salesperson   last_name   region
0   John          Smith       Northeast
1   Jane          Doe         Southwest
2   John          Newhire     Southeast

Suddenly, the same pd.merge we performed before yields a different result:

pd.merge(sales, regions, on=["salesperson"])

    month   salesperson   sales   last_name   region
0   Jan     John          10      Smith       Northeast
1   Jan     John          10      Newhire     Southeast
2   Feb     John          20      Smith       Northeast
3   Feb     John          20      Newhire     Southeast
4   Mar     John          30      Smith       Northeast
5   Mar     John          30      Newhire     Southeast

This is a definite programming mistake. If you were to try and sum the sales column from the merged 
pd.DataFrame, you would end up doubling the true amount of things that were actually sold. In sum, 
we only sold 60 units, but with the introduction of John Newhire into our regions, pd.DataFrame 
suddenly changed the relationship between the two pd.DataFrame objects to many-to-many (or n-to-n), 
which duplicates much of our data and yields the wrong number of sales:

pd.merge(sales, regions, on=["salesperson"])["sales"].sum()

120

To catch these surprises upfront with pandas, you can provide a validate= argument to pd.merge, 
which establishes the expected relationship of the merge key between the two objects. A validation 
of many_to_one with our original pd.DataFrame objects would have been fine:

pd.merge(sales, regions_orig, on=["salesperson"], validate="many_to_one")

    month   salesperson   sales   region
0   Jan     John          10      Northeast
1   Feb     John          20      Northeast
2   Mar     John          30      Northeast
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Yet that same validation would have thrown an error when John Newhire made his way into our merge:

pd.merge(sales, regions, on=["salesperson"], validate="many_to_one")

MergeError: Merge keys are not unique in right dataset; not a many-to-one merge

In this simplistic example, we could have avoided this issue by modeling our data differently upfront, 
by either using a natural key comprising multiple columns in our sales pd.DataFrame or by opting for 
surrogate keys in both pd.DataFrame objects. Because these examples were so small, we could have 
also visually identified that there was a problem with our structure.

In the real world, detecting issues like this is not so simple. You may be trying to merge thousands or 
millions of rows of data, so even if a large number of rows were affected by relationship issues, they 
could be easily overlooked. Attempting to detect issues like this by hand is akin to finding a needle in 
a haystack, so I strongly advise using this data validation feature to avoid surprises.

While a failure is less than ideal, in this case, you have failed loudly and can easily identify where your 
modeling assumptions went wrong. Without these checks, your users will silently see incorrect data, 
which is, more often than not, a worse outcome.

Joining DataFrames with pd.DataFrame.join
While pd.merge is the most common approach for merging two different pd.DataFrame objects, the 
lesser used yet functionally similar pd.DataFrame.join method is another viable option. Stylisti-
cally, you can think of pd.DataFrame.join as a shortcut for when you want to augment an existing 
pd.DataFrame with a few more columns; by contrast, pd.merge defaults to treating both pd.DataFrame 
objects with equal importance.

How to do it
To drive home the point about pd.DataFrame.join being a shortcut to augment an existing pd.DataFrame, 
let’s imagine a sales table where the row index corresponds to a salesperson but uses a surrogate key 
instead of a natural key:

sales = pd.DataFrame(
    [[1000], [2000], [4000]],
    columns=["sales"],
    index=pd.Index([42, 555, 9000], name="salesperson_id")
)
sales = sales.convert_dtypes(dtype_backend="numpy_nullable")
sales

        sales
salesperson_id
42      1000
555     2000
9000    4000
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Let’s also then consider a dedicated pd.DataFrame that stores the metadata for some (but not all) of 
these salespeople:

salesperson = pd.DataFrame([
    ["John", "Smith"],
    ["Jane", "Doe"],
], columns=["first_name", "last_name"], index=pd.Index(
    [555, 42], name="salesperson_id"
))
salesperson = salesperson.convert_dtypes(dtype_backend="numpy_nullable")
salesperson

        first_name   last_name
salesperson_id
555     John         Smith
42      Jane         Doe

Since the data we want to use to join these two pd.DataFrame objects together is in the row index, you 
would have to write out left_index=True and right_index=True while calling pd.merge. Also note that, 
because we have a salesperson_id of 9000 in our sales pd.DataFrame but no corresponding entry in 
salesperson, you would have to use how="left" to make sure records are not lost during the merge:

pd.merge(sales, salesperson, left_index=True, right_index=True, how="left")

        sales   first_name   last_name
salesperson_id
42      1000    Jane         Doe
555     2000    John         Smith
9000    4000    <NA>         <NA>

That rather lengthy call to pd.merge describes the default behavior of pd.DataFrame.join, so you 
may find it easier just to use the latter:

sales.join(salesperson)

        sales   first_name   last_name
salesperson_id
42      1000    Jane         Doe
555     2000    John         Smith
9000    4000    <NA>         <NA>

While pd.DataFrame.join defaults to a left join, you can also choose a different behavior through the 
argument to how=:

sales.join(salesperson, how="inner")
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        sales   first_name   last_name
salesperson_id
42      1000    Jane         Doe
555     2000    John         Smith

Ultimately, there is no requirement to use pd.DataFrame.join over pd.merge. The former is simply 
a shortcut and a stylistic indication that the calling pd.DataFrame (here, sales) should not drop any 
records when being joined against another pd.DataFrame, like salesperson.

Reshaping with pd.DataFrame.stack and pd.DataFrame.
unstack
Before we jump into the terms stacking and unstacking, let’s take a step back and compare two tables 
of data. Do you notice anything different about:

a b c

x 1 2 3

y 4 5 6

Table 7.1: A table in wide format 

compared to:

x a 1

x b 2

x c 3

y a 4

y b 5

y c 6

Table 7.2: A table in long format 

Of course, visually, the tables have different shapes, but the data contained in each is the same. The 
former table would commonly be referred to as a table in wide format, as it stores data strewn across 
different columns. By contrast, in the second table, which many would say is stored in the long format, 
new rows are used to represent the various bits of data.

Which format is better? The answer to this is it depends – namely, on your audience and/or the systems 
you interact with. An executive at your company may prefer to see data stored in the wide format, 
as it is easier to read at a glance. A columnar database would prefer the long format, as it can better 
optimize for millions and billions of rows than it could for an equal number of columns.

Knowing that there is no single way to store data, you will likely need to reshape data in and out of 
both of these formats, which brings us to the terms stacking and unstacking.
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Stacking refers to the process of taking your columns and pushing them down into the rows, essentially, 
helping to move from a wide format into a long format:

Figure 7.4: Stacking a pd.DataFrame from wide to long format

Unstacking goes in the opposite direction, moving data that is stored in a long format into a wide format:

Figure 7.5: Unstacking a pd.DataFrame from long to wide format

In this recipe, we will walk you through the proper usage of the pd.DataFrame.stack and pd.DataFrame.
unstack methods, which can be used for these reshaping purposes.

How to do it
Let’s start with the following pd.DataFrame, which summarizes the amount of fruits being grown in 
different states:

df = pd.DataFrame([
    [12, 10, 40],
    [9, 7, 12],
    [0, 14, 190]
], columns=pd.Index(["Apple", "Orange", "Banana"], name="fruit"), index=pd.
Index(
    ["Texas", "Arizona", "Florida"], name="state"))
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df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

fruit   Apple   Orange  Banana
state
Texas   12      10      40
Arizona 9       7       12
Florida 0       14      190

In data modeling terminology, we would consider this to be a “wide” table. Each row represents one 
state with the different numbers of each crop situated in its own column.

If we wanted to convert our table to “long” form, we would essentially want to see each state and fruit 
combination as a separate row. pd.DataFrame.stack will help us do this, by taking our fruits out of 
the column index and forming a new pd.MultiIndex in our rows, which contains both state and fruit:

df.stack()

state     fruit
Texas     Apple      12
         Orange      10
         Banana      40
Arizona   Apple       9
         Orange       7
         Banana      12
Florida   Apple       0
         Orange      14
         Banana     190
dtype: Int64

After a call to pd.DataFrame.stack, many users will chain in a call to pd.Series.reset_index with a 
name= argument. This converts the pd.Series with a pd.MultiIndex created from the pd.DataFrame.
stack back into a pd.DataFrame with meaningful column names:

df.stack().reset_index(name="number_grown")

    state     fruit    number_grown
0   Texas     Apple    12
1   Texas     Orange   10
2   Texas     Banana   40
3   Arizona   Apple    9
4   Arizona   Orange   7
5   Arizona   Banana   12
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6   Florida   Apple    0
7   Florida   Orange   14
8   Florida   Banana   190

This long form of storing data is preferred for storage by many databases and is also the expected 
shape of the pd.DataFrame to be passed to libraries like Seaborn, which we showcased in the Seaborn 
introduction recipe back in Chapter 6, Visualization.

However, sometimes, you may want to go in the opposite direction, converting your long pd.DataFrame 
into a wider format. This can be particularly useful when wanting to summarize data in a compact 
area; utilizing both dimensions for display is more effective than asking your viewer to scroll through 
many lines of data.

To see this in action, let’s create a new pd.Series from one of the pd.DataFrame.stack calls we just 
made:

stacked = df.stack()
stacked

state    fruit
Texas    Apple      12
        Orange      10
        Banana      40
Arizona  Apple       9
        Orange       7
        Banana      12
Florida  Apple       0
        Orange      14
        Banana     190
dtype: Int64

To go in the opposite direction and move one of our index levels from the rows to the columns, you 
simply need to make a call to pd.Series.unstack:

stacked.unstack()

fruit   Apple   Orange   Banana
state
Texas   12      10       40
Arizona 9       7        12
Florida 0       14       190

By default, a call to pd.Series.unstack moves the innermost level of the row index, which, in our 
case, was the fruit. However, we could have passed level=0 to have it take the very first level instead 
of the innermost, in the case that we wanted to see the states summarized across the columns:

stacked.unstack(level=0)
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state   Texas   Arizona   Florida
fruit
Apple   12      9         0
Orange  10      7         14
Banana  40      12        190

Because our pd.MultiIndex levels have names, we could also have referred to the level we wanted to 
be moved by name instead of by position:

stacked.unstack(level="state")

state   Texas   Arizona   Florida
fruit
Apple   12      9         0
Orange  10      7         14
Banana  40      12        190

Reshaping with pd.DataFrame.melt
In the Reshaping with pd.DataFrame.stack and pd.DataFrame.unstack recipe, we discovered that you 
could convert a wide pd.DataFrame into long form by setting the appropriate row and column index-
(es) before calling pd.DataFrame.stack. pd.TheDataFrame.melt function also lets you convert your 
pd.DataFrame from wide to long, but can do so without having to set the row and column index values 
in an intermediate step, while also offering more control over what other columns may or may not 
be included as part of the wide to long conversion.

How to do it
Let’s once again create a summary of the different fruits being grown in different states. However, 
unlike the Reshaping with pd.DataFrame.stack and pd.DataFrame.unstack recipe, we will not be setting 
the row index to the state values, and instead, just treating it as another column in our pd.DataFrame:

df = pd.DataFrame([
    ["Texas", 12, 10, 40],
    ["Arizona", 9, 7, 12],
    ["Florida", 0, 14, 190]
], columns=["state", "apple", "orange", "banana"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

    state    apple    orange    banana
0   Texas    12       10        40
1   Arizona  9        7         12
2   Florida  0        14        190
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To convert to long format with pd.DataFrame.stack, we would have to chain together a few calls to 
get back a pd.DataFrame without a pd.MultiIndex:

df.set_index("state").stack().reset_index()

    state     level_1   0
0   Texas     apple     12
1   Texas     orange    10
2   Texas     banana    40
3   Arizona   apple     9
4   Arizona   orange    7
5   Arizona   banana    12
6   Florida   apple     0
7   Florida   orange    14
8   Florida   banana    190

The column name level_1 is created by default during our pd.DataFrame.stack operation because 
the column index we start with is unnamed. We also see that we get an auto-generated column name 
of 0 for the newly introduced values in our long format, so we would still need to chain in a rename 
to get us a more readable pd.DataFrame:

df.set_index("state").stack().reset_index().rename(columns={
    "level_1": "fruit",
    0: "number_grown",
})

    state    fruit    number_grown
0   Texas    apple    12
1   Texas    orange   10
2   Texas    banana   40
3   Arizona  apple    9
4   Arizona  orange   7
5   Arizona  banana   12
6   Florida  apple    0
7   Florida  orange   14
8   Florida  banana   190

pd.DataFrame.melt gets us a lot closer to our desired pd.DataFrame, simply by providing an id_vars= 
argument that corresponds to the row index you would have used with pd.DataFrame.stack:

df.melt(id_vars=["state"])

    state     variable  value
0   Texas     apple     12
1   Arizona   apple     9
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2   Florida   apple     0
3   Texas     orange    10
4   Arizona   orange    7
5   Florida   orange    14
6   Texas     banana    40
7   Arizona   banana    12
8   Florida   banana    190

With pd.DataFrame.melt, the newly created column from our variables (here, the different fruits) is 
given the name variable, and the value column is given the default name of value. We can override 
these defaults through the use of the var_name= and value_name= arguments:

df.melt(
    id_vars=["state"],
    var_name="fruit",
    value_name="number_grown",
)

    state     fruit   number_grown
0   Texas     apple   12
1   Arizona   apple   9
2   Florida   apple   0
3   Texas     orange  10
4   Arizona   orange  7
5   Florida   orange  14
6   Texas     banana  40
7   Arizona   banana  12
8   Florida   banana  190

As an added bonus, pd.DataFrame.melt gives you an easy way to control which columns are included 
as part of the wide-to-long conversion. For instance, if we don’t care to include the banana values in 
our newly formed long table, we could just pass the other columns of apple and orange as arguments 
to value_vars=:

df.melt(
    id_vars=["state"],
    var_name="fruit",
    value_name="number_grown",
    value_vars=["apple", "orange"],
)

    state     fruit     number_grown
0   Texas     apple     12
1   Arizona   apple     9
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2   Florida   apple     0
3   Texas     orange    10
4   Arizona   orange    7
5   Florida   orange    14

Reshaping with pd.wide_to_long
So far, we have encountered two very viable ways of converting data from wide to long format, whether 
it be through the use of the pd.DataFrame.stack method, introduced in our Reshaping with pd.Data-
Frame.stack and pd.DataFrame.unstack recipe, or through the use of the pd.DataFrame.melt, as we saw 
in the Reshaping with pd.DataFrame.melt recipe.

If those aren’t enough, pandas offers the pd.wide_to_long function, which can help with that conver-
sion given that your columns follow a particular naming pattern, as we will see in this recipe.

How to do it
Let’s assume we have the following pd.DataFrame, where we have one id variable of widget and four 
columns representing sales from a business quarter. Each column of sales begins with "quarter_":

df = pd.DataFrame([
    ["Widget 1", 1, 2, 4, 8],
    ["Widget 2", 16, 32, 64, 128],
], columns=["widget", "quarter_1", "quarter_2", "quarter_3", "quarter_4"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

    widget     quarter_1   quarter_2   quarter_3   quarter_4
0   Widget 1   1           2           4           8
1   Widget 2   16          32          64          128

Going back to our example of pd.DataFrame.stack, we could convert this from wide to long using 
the following methods:

df.set_index("widget").stack().reset_index().rename(columns={
    "level_1": "quarter",
    0: "quantity",
})

    widget     quarter     quantity
0   Widget 1   quarter_1   1
1   Widget 1   quarter_2   2
2   Widget 1   quarter_3   4
3   Widget 1   quarter_4   8
4   Widget 2   quarter_1   16
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5   Widget 2   quarter_2   32
6   Widget 2   quarter_3   64
7   Widget 2   quarter_4   128

For a more succinct solution, we could use pd.DataFrame.melt:

df.melt(
    id_vars=["widget"],
    var_name="quarter",
    value_name="quantity",
)

    widget     quarter     quantity
0   Widget 1   quarter_1   1
1   Widget 2   quarter_1   16
2   Widget 1   quarter_2   2
3   Widget 2   quarter_2   32
4   Widget 1   quarter_3   4
5   Widget 2   quarter_3   64
6   Widget 1   quarter_4   8
7   Widget 2   quarter_4   128

But there is a feature that pd.wide_to_long offers that neither of these approaches handles directly 
– namely, to create a new variable out of the column labels that are being converted into variables. 
So far, we see the new quarter values as quarter_1, quarter_2, quarter_3, and quarter_4, but 
pd.wide_to_long can extract that string out of the newly created variables, more simply leaving you 
with the digits 1, 2, 3, and 4:

pd.wide_to_long(
    df,
    i=["widget"],
    stubnames="quarter_",
    j="quarter"
).reset_index().rename(columns={"quarter_": "quantity"})

    widget      quarter   quantity
0   Widget 1    1         1
1   Widget 2    1         16
2   Widget 1    2         2
3   Widget 2    2         32
4   Widget 1    3         4
5   Widget 2    3         64
6   Widget 1    4         8
7   Widget 2    4         128



Chapter 7 249

Reshaping with pd.DataFrame.pivot and pd.pivot_table
So far in this chapter, we have seen that pd.DataFrame.stack, pd.DataFrame.melt, and pd.wide_to_
long can all be used to help you convert your pd.DataFrame from a wide to a long format. On the flip 
side, we have only seen pd.Series.unstack helps us go from long to wide, but that method has the 
downside of requiring us to assign a proper row index before we can use it. With pd.DataFrame.pivot, 
you can skip any intermediate steps and go directly from a long to a wide format.

Beyond pd.DataFrame.pivot, pandas offers a pd.pivot_table function, which can not only reshape 
from long to wide but allows you to perform aggregations as part of the reshape.

Figure 7.6: Using pd.pivot_table to reshape with sum aggregation

Effective use of pd.pivot_table allows you to perform very complex calculations with a compact 
and concise syntax.

How to do it
In many of the preceding recipes, we have started with data in wide form and reshaped it to long form. 
For this recipe, let’s start with data that appears in long form from the outset. We are also going to add 
a new column for number_eaten to showcase the aggregation capabilities when pivoting within pandas:

df = pd.DataFrame([
    ["Texas", "apple", 12, 8],
    ["Arizona", "apple", 9, 10],
    ["Florida", "apple", 0, 6],
    ["Texas", "orange", 10, 4],
    ["Arizona", "orange", 7, 2],
    ["Florida", "orange", 14, 3],
    ["Texas", "banana", 40, 28],
    ["Arizona", "banana", 12, 17],
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    ["Florida", "banana", 190, 42],
], columns=["state", "fruit", "number_grown", "number_eaten"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

    state     fruit     number_grown     number_eaten
0   Texas     apple     12               8
1   Arizona   apple     9                10
2   Florida   apple     0                6
3   Texas     orange    10               4
4   Arizona   orange    7                2
5   Florida   orange    14               3
6   Texas     banana    40               28
7   Arizona   banana    12               17
8   Florida   banana    190              42

As we learned back in the Reshaping with pd.DataFrame.stack and pd.DataFrame.unstack recipe, if we 
wanted to convert this from long format into wide, we could do so with the clever use of pd.DataFrame.
set_index paired with pd.DataFrame.unstack:

df.set_index(["state", "fruit"]).unstack()

        number_grown                    number_eaten
fruit   apple   banana  orange  apple   banana  orange
state
Arizona 9       12      7       10      17      2
Florida 0       190     14      6       42      3
Texas   12      40      10      8       28      4

pd.DataFrame.pivot lets us tackle this in one method call. A basic usage of this method requires 
index= and columns= arguments, to dictate which column(s) should appear in the row and column 
indexes, respectively:

df.pivot(index=["state"], columns=["fruit"])

        number_grown                    number_eaten
fruit   apple   banana  orange  apple   banana  orange
state
Arizona 9       12      7       10      17      2
Florida 0       190     14      6       42      3
Texas   12      40      10      8       28      4
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pd.DataFrame.pivot will take any column that is not specified as an argument to index= or columns=, 
and try to convert that column into the values of the resulting pd.DataFrame. However, if you did not 
care for all of the remaining columns to be a part of the pivoted pd.DataFrame, you could specify what 
you want to keep with the values= argument. For example, if we only cared to pivot the number_grown 
column and ignore the number_eaten column, we could write this as:

df.pivot(
      index=["state"],
      columns=["fruit"],
      values=["number_grown"],
  )

        number_grown
fruit   apple   banana   orange
state
Arizona 9       12       7
Florida 0       190      14
Texas   12      40       10

In the case where you only wanted to keep one value, the generated pd.MultiIndex in the columns 
may seem superfluous. Fortunately, this can be dropped with a simple call to pd.DataFrame.droplevel, 
where you indicate the axis= where you would like to drop a level (specify 1 for the columns) and the 
index level you would like to drop (here, 0 represents the first level):

wide_df = df.pivot(
    index=["state"],
    columns=["fruit"],
    values=["number_grown"],
).droplevel(level=0, axis=1)

wide_df

fruit   apple   banana   orange
state
Arizona 9       12       7
Florida 0       190      14
Texas   12      40       10

While pd.DataFrame.pivot is useful for reshaping, it can only help in the case that none of the values 
used to form your rows and columns are duplicated. To see this limitation, let’s work with a slightly 
modified pd.DataFrame that shows how different fruits have been consumed or grown in different 
states and years:

df = pd.DataFrame([
    ["Texas", "apple", 2023, 10, 6],
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    ["Texas", "apple", 2024, 2, 8],
    ["Arizona", "apple", 2023, 3, 7],
    ["Arizona", "apple", 2024, 6, 3],
    ["Texas", "orange", 2023, 5, 2],
    ["Texas", "orange", 2024, 5, 2],
    ["Arizona", "orange", 2023, 7, 2],
], columns=["state", "fruit", "year", "number_grown", "number_eaten"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

    state      fruit    year    number_grown   number_eaten
0   Texas      apple    2023    10             6
1   Texas      apple    2024    2              8
2   Arizona    apple    2023    3              7
3   Arizona    apple    2024    6              3
4   Texas      orange   2023    5              2
5   Texas      orange   2024    5              2
6   Arizona    orange   2023    7              2

We would be able to still use pd.DataFrame.pivot on this pd.DataFrame if we placed state, fruit, 
and year all in either the rows or the columns:

df.pivot(
    index=["state", "year"],
    columns=["fruit"],
    values=["number_grown", "number_eaten"]
)

                number_grown            number_eaten
        fruit   apple   orange  apple   orange
state   year
Arizona 2023    3       7       7       2
        2024    6       NaN     3       NaN
Texas   2023    10      5       6       2
        2024    2       5       8       2

But what if we didn’t want to see the year as part of our output? Just removing it from our pd.DataFrame.
pivot arguments will raise an exception:

df.pivot(
    index=["state"],
    columns=["fruit"],
    values=["number_grown", "number_eaten"]
)
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ValueError: Index contains duplicate entries, cannot reshape

For pd.pivot_table, the lack of a year column is no problem at all:

pd.pivot_table(
    df,
    index=["state"],
    columns=["fruit"],
    values=["number_grown", "number_eaten"]
)

        number_eaten            number_grown
fruit   apple   orange  apple   orange
state
Arizona 5.0     2.0     4.5     7.0
Texas   7.0     2.0     6.0     5.0

This works because pd.pivot_table aggregates the values while reshaping them into a wide form. 
Taking Arizona apples as an example, our input data showed that a whopping three were grown in the 
year 2023 before doubling to a magnificent six in 2024. In our call to pd.pivot_table, this is shown 
as 4.5. By default, pd.pivot_table will take the average of values you supply to it during a reshape.

You can, of course, control the aggregation function being used. In this particular case, we may be 
more interested in knowing how many fruits were grown in each state in total, rather than taking 
an average by year. By passing a different aggregation function as a parameter to aggfunc=, you can 
easily get a summation instead:

pd.pivot_table(
    df,
    index=["state"],
    columns=["fruit"],
    values=["number_grown", "number_eaten"],
    aggfunc="sum"
)

        number_eaten            number_grown
fruit   apple   orange  apple   orange
state
Arizona 10      2       9       7
Texas   14      4       12      10

For more advanced use cases, you can even provide a dictionary of values to aggfunc=, where each 
key/value pair of the dictionary dictates the column and the type of aggregation(s) to be applied, re-
spectively:

pd.pivot_table(
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    df,
    index=["state"],
    columns=["fruit"],
    values=["number_grown", "number_eaten"],
    aggfunc={
        "number_eaten": ["min", "max"],
        "number_grown": ["sum", "mean"],
    },
)

        number_eaten            …       number_grown
        max             min     …       mean    sum
fruit   apple   orange  apple   …       orange  apple   orange
state
Arizona 7       2       3       …       7.0     9       7
Texas   8       2       6       …       5.0     12      10
2 rows × 8 columns

Reshaping with pd.DataFrame.explode
The world would be so simple if every piece of data fitted perfectly as a scalar into a two-dimensional 
pd.DataFrame. Alas, life is not so simple. Especially when working with semi-structured sources of 
data like JSON, it is not uncommon to have individual items in your pd.DataFrame contain non-scalar 
sequences like lists and tuples.

You may find it acceptable to leave data in that state, but other times, there is value to normalizing the 
data and potentially extracting out sequences contained within a column into individual elements.

Figure 7.7: Using pd.DataFrame.explode to extract list elements to individual rows

To that end, pd.DataFrame.explode is the right tool for the job. It may not be a function you use every 
day, but when you eventually need to use it, you will be happy to have known about it. Attempting to 
replicate the same functionality outside of pandas can be error-prone and non-performant!
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How to do it
Since we mentioned JSON as a good source for semi-structured data in the introduction to this recipe, 
let’s start by imagining that we have to interact with a REST API for an HR system. The HR system 
should tell us who each person is in the company, as well as who, if anyone, reports to them.

The hierarchy between employees is rather easy to represent in a semi-structured format like JSON, 
so the REST API might return something like:

[
    {
        "employee_id": 1,
        "first_name": "John",
        "last_name": "Smith",
        "direct_reports": [2, 3]
    },
    {
        "employee_id": 2,
        "first_name": "Jane",
        "last_name": "Doe",
        "direct_reports": []
    },
    {
        "employee_id": 3,
        "first_name": "Joe",
        "last_name": "Schmoe",
        "direct_reports": []
    }
]

The pandas library will also let us load this data into a pd.DataFrame, albeit with the direct_reports 
column containing lists:

df = pd.DataFrame(
    [
        {
            "employee_id": 1,
            "first_name": "John",
            "last_name": "Smith",
            "direct_reports": [2, 3]
        },
        {
            "employee_id": 2,
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            "first_name": "Jane",
            "last_name": "Doe",
            "direct_reports": []
        },
        {
            "employee_id": 3,
            "first_name": "Joe",
            "last_name": "Schmoe",
            "direct_reports": []
        }
    ]
)
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

    employee_id   first_name   last_name   direct_reports
0   1             John         Smith       [2, 3]
1   2             Jane         Doe         []
2   3             Joe          Schmoe      []

With pd.DataFrame.explode, you can unpack those direct_reports into separate rows of the 
pd.DataFrame:

df.explode("direct_reports").convert_dtypes(dtype_backend="numpy_nullable")

    employee_id   first_name   last_name   direct_reports
0   1             John         Smith       2
0   1             John         Smith       3
1   2             Jane         Doe         <NA>
2   3             Joe          Schmoe      <NA>

Building off of the knowledge we picked up about merging/joining data from our Merging DataFrames 
with pd.merge recipe, we can very easily take our exploded information and merge in the names of direct 
reports, yielding an easy summary of who works at the company and who, if anyone, reports to them:

exploded = df.explode("direct_reports").convert_dtypes(
    dtype_backend="numpy_nullable"
)
pd.merge(
    exploded,
    df.drop(columns=["direct_reports"]),
    how="left",
    left_on=["direct_reports"],
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    right_on=["employee_id"],
    suffixes=("", "_direct_report"),
)

   employee_id  first_name  last_name  …  employee_id_direct_report  first_
name_direct_report  last_name_direct_report
0   1        John     Smith    …  2       Jane           Doe
1   1        John     Smith    …  3       Joe            Schmoe
2   2        Jane     Doe      …  <NA>    <NA>           <NA>
3   3        Joe      Schmoe   …  <NA>    <NA>           <NA>
4 rows × 7 columns

There’s more…
While we did not introduce it in our review of types in Chapter 3, Data Types, PyArrow does offer a 
struct data type which, when used in a pd.Series, exposes a pd.Series.struct.explode method:

dtype = pd.ArrowDtype(pa.struct([
    ("int_col", pa.int64()),
    ("str_col", pa.string()),
    ("float_col", pa.float64()),
]))
ser = pd.Series([
    {"int_col": 42, "str_col": "Hello, ", "float_col": 3.14159},
    {"int_col": 555, "str_col": "world!", "float_col": 3.14159},
], dtype=dtype)
ser

0    {'int_col': 42, 'str_col': 'Hello, ', 'float_c...
1    {'int_col': 555, 'str_col': 'world!', 'float_c...
dtype: struct<int_col: int64, str_col: string, float_col: double>[pyarrow]

Unlike pd.DataFrame.explode, which generates new rows of data, pd.Series.struct.explode gen-
erates new columns of data from its struct members:

ser.struct.explode()

    int_col   str_col   float_col
0   42        Hello,    3.14159
1   555       world!    3.14159

This could be particularly useful if you are dealing with a semi-structured data source like JSON. If you 
are able to fit nested data from such a source into the typed struct that PyArrow has to offer, pd.Series.
struct.explode can save you a significant amount of trouble when trying to unnest that data.
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Transposing with pd.DataFrame.T
For the final recipe in this chapter, let’s explore one of the easier reshaping features of pandas. Trans-
position refers to the process of inverting your pd.DataFrame so that the rows become the columns 
and the columns become the rows:

Figure 7.8: Transposing a pd.DataFrame

In this recipe, we will see how to transpose with the pd.DataFrame.T method while discussing how 
this might be useful.

How to do it
Transposition in pandas is straightforward. Take any pd.DataFrame:

df = pd.DataFrame([
    [1, 2, 3],
    [4, 5, 6],
], columns=list("xyz"), index=list("ab"))

df

    x   y   z
a   1   2   3
b   4   5   6

You can simply access the pd.DataFrame.T attribute and watch as your rows become your columns 
and your columns become your rows:

df.T

    a   b
x   1   4
y   2   5
z   3   6

There are an endless number of reasons why you may want to transpose, ranging from simply thinking 
it looks better in a given format to cases where you find it easier to select by a row index label instead 
of by a column index label.
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However, one of the main use cases to transpose will be to get your pd.DataFrame in an optimal format 
before applying functions. As we learned back in Chapter 5, Algorithms and How to Apply Them, pandas 
has the ability to apply aggregations to each column:

df.sum()

x    5
y    7
z    9
dtype: int64

as well as to each row with the axis=1 argument:

df.sum(axis=1)

a     6
b    15
dtype: int64

Unfortunately, using the axis=1 argument can drastically reduce the performance of your applications. 
If you find yourself scattering a lot of axis=1 calls throughout your code, chances are you would be 
much better off transposing your data first and then applying functions with the default axis=0.

To see the difference, let’s look at a pd.DataFrame that is rather wide:

np.random.seed(42)
df = pd.DataFrame(
    np.random.randint(10, size=(2, 10_000)),
    index=list("ab"),
)

df

    0   1   2   …   9997   9998   9999
a   6   3   7   …   2      9      4
b   2   4   2   …   1      5      5
2 rows × 10,000 columns

Ultimately, we will get the same result, whether we sum the rows:

df.sum(axis=1)

a    44972
b    45097
dtype: int64

or transpose first, and then use the default summation of the columns:

df.T.sum()



Reshaping DataFrames260

a    44972
b    45097
dtype: int64

However, if you were to repeatedly make calls using axis=1 as an argument, you would find that 
transposing first can save significant time.

To measure this, let’s use IPython and check how long it takes to perform our sum 100 times:

import timeit

def baseline_sum():
   for _ in range(100):
      df.sum(axis=1)

timeit.timeit(baseline_sum, number=100)

4.366703154002607

Comparatively, transposing first and then performing the sum will be much faster:

def transposed_sum():
   transposed = df.T
   for _ in range(100):
      transposed.sum()

timeit.timeit(transposed_sum, number=100)

0.7069798299999093

Overall, using pd.DataFrame.T to avoid subsequent calls with axis=1 is a highly encouraged practice.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/pandas

https://packt.link/pandas


8
Group By

One of the most fundamental tasks during data analysis involves splitting data into independent groups 
before performing a calculation on each group. This methodology has been around for quite some 
time, but has more recently been referred to as split-apply-combine.

Within the apply step of the split-apply-combine paradigm, it is additionally helpful to know whether we 
are trying to perform a reduction (also referred to as an aggregation) or a transformation. The former 
reduces the values in a group down to one value whereas the latter attempts to maintain the shape of 
the group.

To illustrate, here is what split-apply-combine looks like for a reduction: 

Figure 8.1: Split-apply-combine paradigm for a reduction

Here is the same paradigm for a transformation:

Figure 8.2: Split-apply-combine paradigm for a transformation 
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In pandas, the pd.DataFrame.groupby method is responsible for splitting, applying a function of your 
choice, and combining the results back together for you as an end user.

We are going to cover the following recipes in this chapter:

•	 Group by basics
•	 Grouping and calculating multiple columns
•	 Group by apply
•	 Window operations
•	 Selecting the highest rated movies by year
•	 Comparing the best hitter in baseball across years

Group by basics
True mastery of the pandas group by mechanisms is a powerful skill for any data analyst. With pandas, 
you can easily summarize data, find patterns within different groups, and compare groups to one 
another. The number of algorithms you can apply alongside a group by are endless in theory, giving 
you as an analyst tons of flexibility to explore your data.

In this first recipe, we are going to start with a very simple summation against different groups in an 
intentionally small dataset. While this example is overly simplistic, a solid theoretical understanding 
of how group by works is important as you look toward real-world applications.

How to do it
To get familiarized with how group by works in code, let’s create some sample data that matches our 
starting point in Figures 8.1 and 8.2:

df = pd.DataFrame([
    ["group_a", 0],
    ["group_a", 2],
    ["group_b", 1],
    ["group_b", 3],
    ["group_b", 5],
], columns=["group", "value"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

     group      value
0    group_a    0
1    group_a    2
2    group_b    1
3    group_b    3
4    group_b    5
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Our pd.DataFrame has two distinct groups: group_a and group_b. As you can see, the group_a rows are 
associated with value data of 0 and 2, whereas the group_b rows are associated with value data of 1, 3, 
and 5. Summing the values within each group should therefore yield a result of 2 and 9, respectively.

To express this with pandas, you are going to use the pd.DataFrame.groupby method, which accepts 
as an argument the group name(s). In our case, this is the group column. This technically returns 
a pd.core.groupby.DataFrameGroupBy object that exposes a pd.core.groupby.DataFrameGroupBy.
sum method for summation:

df.groupby("group").sum()

group      value
group_a    2
group_b    9

Don’t worry if you find the method name pd.core.groupby.DataFrameGroupBy.sum to be verbose; it 
is, but you will never have to write it out by hand. We are going to refer to it here by its technical name 
for the sake of completeness, but as an end user, you will always follow the form you can see here:

df.groupby(<GROUP_OR_GROUPS>)

This is what you will follow to get your pd.core.groupby.DataFrameGroupBy object.

By default, pd.core.groupby.DataFrameGroupBy.sum is considered an aggregation, so each group is 
reduced down to a single row during the apply phase of split-apply-combine, much like we see in Figure 8.1.

Instead of calling pd.core.groupby.DataFrameGroupBy.sum directly, we could have alternatively 
used the pd.core.groupby.DataFrameGroupBy.agg method, providing it with the argument of "sum":

df.groupby("group").agg("sum")

group    value
group_a  2
group_b  9

The explicitness of pd.core.groupby.DataFrameGroupBy.agg is useful when compared side by side 
with the pd.core.groupby.DataFrameGroupBy.transform method, which will perform a transformation 
(see Figure 8.2 again) instead of a reduction:

df.groupby("group").transform("sum")

    value
0       2
1       2
2       9
3       9
4       9



Group By264

pd.core.groupby.DataFrameGroupBy.transform guarantees to return a like-indexed object to the 
caller, which makes it ideal for performing calculations like % of group:

df[["value"]].div(df.groupby("group").transform("sum"))

     value
0    0.000000
1    1.000000
2    0.111111
3    0.333333
4    0.555556

When applying a reduction algorithm, pd.DataFrame.groupby will take the unique values of the 
group(s) and use them to form a new row pd.Index (or pd.MultiIndex, in the case of multiple groups). 
If you would prefer not to have the grouped labels create a new index, keeping them as columns in-
stead, you can pass as_index=False:

df.groupby("group", as_index=False).sum()

   group    value
0  group_a      2
1  group_b      9

You should also note that the name of any non-grouping columns will not be altered when performing 
a group by operation. For example, even though we start with a pd.DataFrame containing a column 
named value:

df

   group    value
0  group_a      0
1  group_a      2
2  group_b      1
3  group_b      3
4  group_b      5

The fact that we then group by the group column and sum the value column does not change its name 
in the result; it is still just value:

df.groupby("group").sum()

group      value
group_a    2
group_b    9
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This can be confusing or ambiguous if you apply other algorithms to your groups, like min:

df.groupby("group").min()

group      value
group_a    0
group_b    1

Our column is still just called value, even though in one instance, we are taking the sum of value and 
in the other instance, we are taking the min of value.

Fortunately, there is a way to control this by using the pd.NamedAgg class. When calling pd.core.
groupby.DataFrameGroupBy.agg, you can provide keyword arguments where each argument key 
dictates the desired column name and the argument value is a pd.NamedAgg, which dictates the ag-
gregation as well as the original column it is applied to.

For instance, if we wanted to apply a sum aggregation to our value column, and have the result shown 
as sum_of_value, we could write the following:

df.groupby("group").agg(sum_of_value=pd.NamedAgg(column="value", 
aggfunc="sum"))

group           sum_of_value
group_a         2
group_b         9

There’s more…
Although this recipe focused mainly on summation, pandas offers quite a few other built-in reduction 
algorithms that can be applied to a pd.core.groupby.DataFrameGroupBy object, such as the following:

any all sum prod

idxmin idxmax min max

mean median var std

sem skew first last

Table 8.1: Commonly used GroupBy reduction algorithms

Likewise, there are some built-in transformation functions that you can use:

cumprod cumsum cummin

cummax rank

Table 8.2: Commonly used GroupBy transformation algorithms
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Functionally, there is no difference between calling these functions directly as methods of 
pd.core.groupby.DataFrameGroupBy versus providing them as an argument to pd.core.groupby.
DataFrameGroupBy.agg or pd.core.groupby.DataFrameGroupBy.transform. You will get the same 
performance and result by doing the following:

df.groupby("group").max()

group      value
group_a    2
group_b    5

The preceding code snippet will yield the same results as this one:

df.groupby("group").agg("max")

group      value
group_a    2
group_b    5

You could argue that the latter approach signals a clearer intent, especially considering that max can 
be used as a transformation just as well as an aggregation:

df.groupby("group").transform("max")

    value
0       2
1       2
2       5
3       5
4       5

In practice, both styles are commonplace, so you should be familiar with the different approaches.

Grouping and calculating multiple columns
Now that we have the basics down, let’s take a look at a pd.DataFrame that contains more columns 
of data. Generally, your pd.DataFrame objects will contain many columns with potentially different 
data types, so knowing how to select and work with them all through the context of pd.core.groupby.
DataFrameGroupBy is important.

How to do it
Let’s create a pd.DataFrame that shows the sales and returns of a hypothetical widget across different 
region and month values:

df = pd.DataFrame([
    ["North", "Widget A", "Jan", 10, 2],
    ["North", "Widget B", "Jan", 4, 0],
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    ["South", "Widget A", "Jan", 8, 3],
    ["South", "Widget B", "Jan", 12, 8],
    ["North", "Widget A", "Feb", 3, 0],
    ["North", "Widget B", "Feb", 7, 0],
    ["South", "Widget A", "Feb", 11, 2],
    ["South", "Widget B", "Feb", 13, 4],
], columns=["region", "widget", "month", "sales", "returns"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

     region     widget     month   sales     returns
0    North      Widget A   Jan     10        2
1    North      Widget B   Jan      4        0
2    South      Widget A   Jan      8        3
3    South      Widget B   Jan     12        8
4    North      Widget A   Feb      3        0
5    North      Widget B   Feb      7        0
6    South      Widget A   Feb     11        2
7    South      Widget B   Feb     13        4

To calculate the total sales and returns for each widget, your first attempt at doing so may look like 
this:

df.groupby("widget").sum()

widget    region                month         sales  returns
Widget A  NorthSouthNorthSouth  JanJanFebFeb     32        7
Widget B  NorthSouthNorthSouth  JanJanFebFeb     36       12

While sales and returns look good, the region and month columns also ended up being summed, 
using the same summation logic that Python would when working with strings:

"North" + "South" + "North" + "South"

NorthSouthNorthSouth

Unfortunately, this default behavior is usually undesirable. I personally find it rare to ever want strings 
to be concatenated like this, and when dealing with large pd.DataFrame objects, it can be prohibitively 
expensive to do so.

One way to avoid this issue is to be more explicit about the columns you would like to aggregate by 
selecting them after the df.groupby("widget") call:

df.groupby("widget")[["sales", "returns"]].agg("sum")
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widget        sales    returns
Widget A      32        7
Widget B      36       12

Alternatively, you could reach for the pd.NamedAgg class we introduced back in the Group by basics 
recipe. Though more verbose, the use of pd.NamedAgg gives you the benefit of being able to rename the 
columns you would like to see in the output (i.e., instead of sales, you may want to see sales_total):

df.groupby("widget").agg(
    sales_total=pd.NamedAgg(column="sales", aggfunc="sum"),
    returns_total=pd.NamedAgg(column="returns", aggfunc="sum"),
)

widget            sales_total     returns_total
Widget A          32               7
Widget B          36              12

Another feature of pd.core.groupby.DataFrameGroupBy worth reviewing here is its ability to deal 
with multiple group arguments. By providing a list, you can expand your grouping to cover both 
widget and region:

df.groupby(["widget", "region"]).agg(
    sales_total=pd.NamedAgg("sales", "sum"),
    returns_total=pd.NamedAgg("returns", "sum"),
)

widget      region          sales_total     returns_total
Widget A    North           13               2
            South           19               5
Widget B    North           11               0
            South           25              12

With pd.core.groupby.DataFrameGroupBy.agg, there is no limitation on how many functions can 
be applied. For instance, if you want to see the sum, min, and mean of sales and returns within each 
widget and region, you could simply write the following:

df.groupby(["widget", "region"]).agg(
    sales_total=pd.NamedAgg("sales", "sum"),
    returns_total=pd.NamedAgg("returns", "sum"),
    sales_min=pd.NamedAgg("sales", "min"),
    returns_min=pd.NamedAgg("returns", "min"),
)
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                    sales_total   returns_total   sales_min   returns_min
widget     region 
Widget A   North            13                2           3             0
           South            19                5           8             2
Widget B   North            11                0           4             0
           South            25               12          12             4

There’s more…
While the built-in reduction functions and transformation functions that work out of the box with a 
group by are useful, there may still be times when you need to roll with your own custom function. This 
can be particularly useful when you find an algorithm to be good enough for what you are attempting 
in your local analysis, but when it may be difficult to generalize to all use cases.

A commonly requested function in pandas that is not provided out of the box with a group by is mode, 
even though there is a pd.Series.mode method. With pd.Series.mode, the type returned is always a 
pd.Series, regardless of whether there is only one value that appears most frequently:

pd.Series([0, 1, 1]).mode()

0    1
dtype: int64

This is true even if there are two or more elements that appear most frequently:

pd.Series([0, 1, 1, 2, 2]).mode()

0    1
1    2
dtype: int64

Given that there is a pd.Series.mode, why does pandas not offer a similar function when doing a group 
by? From a pandas developer perspective, the reason is simple; there is no single way to interpret 
what a group by should return.

Let’s think through this in more detail with the following example, where group_a contains two values 
that appear with the same frequency (42 and 555), whereas group_b only contains the value 0:

df = pd.DataFrame([
    ["group_a", 42],
    ["group_a", 555],
    ["group_a", 42],
    ["group_a", 555],
    ["group_b", 0],
], columns=["group", "value"])

df
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  group    value
0 group_a     42
1 group_a    555
2 group_a     42
3 group_a    555
4 group_b      0

The question we need to answer is what should the mode return for group_a? One possible solution 
would be to return a list (or any Python sequence) that holds both 42 and 555. The downside to this 
approach is that your returned dtype would be object, the pitfalls of which we covered back in Chapter 
3, Data Types.

pd.Series([[42, 555], 0], index=pd.Index(["group_a", "group_b"], name="group"))

group
group_a    [42, 555]
group_b            0
dtype: object

A second expectation would be for pandas to just choose one of the values. Of course, this begs the 
question as to how pandas should make that decision – would the value 42 or 555 be more appropriate 
for group_a and how can that be determined in a general case?

A third expectation would be to return something where the label group_a appears twice in the result-
ing row index after aggregation. However, no other group by aggregations work this way, so we would 
be introducing new and potentially unexpected behavior by reducing to this:

pd.Series(
    [42, 555, 0],
    index=pd.Index(["group_a", "group_a", "group_b"], name="group")
)

group
group_a     42
group_a    555
group_b      0
dtype: int64

Rather than trying to solve for all of these expectations and codify it as part of the API, pandas leaves 
it entirely up to you how you would like to implement a mode function, as long as you adhere to the 
expectations that aggregations reduce to a single value per group. This eliminates the third expecta-
tion we just outlined as a possibility, at least until we talk about Group by apply later in this chapter.
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To that end, if we wanted to roll with our own custom mode functions, they may end up looking 
something like:

def scalar_or_list_mode(ser: pd.Series):
    result = ser.mode()
    if len(result) > 1:
        return result.tolist()
    elif len(result) == 1:
        return result.iloc[0]

    return pd.NA

def scalar_or_bust_mode(ser: pd.Series):
    result = ser.mode()
    if len(result) == 0:
        return pd.NA

    return result.iloc[0]

Since these are both aggregations, we can use them in the context of a pd.core.groupby.
DataFrameGroupBy.agg operation:

df.groupby("group").agg(
    scalar_or_list=pd.NamedAgg(column="value", aggfunc=scalar_or_list_mode),
    scalar_or_bust=pd.NamedAgg(column="value", aggfunc=scalar_or_bust_mode),
)

    scalar_or_list    scalar_or_bust
group                                
group_a   [42, 555]              42
group_b          0                0

Group by apply
During our discussion on algorithms and how to apply them back in Chapter 5, Algorithms and How 
to Apply Them, we came across the Apply function, which is both powerful and terrifying at the same 
time. An equivalent function for group by exists as pd.core.groupby.DataFrameGroupBy.apply with 
all of the same caveats. Generally, this function is overused, and you should opt for pd.core.groupby.
DataFrameGroupBy.agg or pd.core.groupby.DataFrameGroupBy.transform instead. However, for 
the cases where you don’t really want an aggregation or a transformation, but something in between, 
using apply is your only option.

Generally, pd.core.groupby.DataFrameGroupBy.apply should only be used as a last resort. It can 
produce sometimes ambiguous behavior and is rather prone to breakage across releases of pandas.
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How to do it
In the There’s more… section of the previous recipe, we mentioned how it is not possible to start with 
a pd.DataFrame of the following:

df = pd.DataFrame([
    ["group_a", 42],
    ["group_a", 555],
    ["group_a", 42],
    ["group_a", 555],
    ["group_b", 0],
], columns=["group", "value"])
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df

  group    value
0 group_a     42
1 group_a    555
2 group_a     42
3 group_a    555
4 group_b      0

And to produce the following output, using a custom mode algorithm supplied to pd.core.groupby.
DataFrameGroupBy.agg:

pd.Series(
    [42, 555, 0],
    index=pd.Index(["group_a", "group_a", "group_b"], name="group"),
    dtype=pd.Int64Dtype(),
)

group
group_a     42
group_a    555
group_b      0
dtype: Int64

The reason for this is straightforward; an aggregation expects you to reduce to a single value per group 
label. Repeating the label group_a twice in the output is a non-starter for an aggregation. Similarly, 
a transformation would expect you to produce a result that shares the same row index as the calling 
pd.DataFrame, which is not what we are after either.
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pd.core.groupby.DataFrameGroupBy.apply is the in-between method that can get us closer to the 
desired result, which you can see in the following code. As a technical aside, the include_groups=False 
argument is passed to suppress any deprecation warnings about behavior in pandas 2.2. In subsequent 
versions, you may not need this:

def mode_for_apply(df: pd.DataFrame):
    return df["value"].mode()

df.groupby("group").apply(mode_for_apply, include_groups=False)

group      
group_a  0     42
         1    555
group_b  0      0
Name: value, dtype: Int64

It is important to note that we annotated the parameter of the mode_for_apply function as a 
pd.DataFrame. With aggregations and transformations, user-defined functions receive just a single 
pd.Series of data at a time, but with apply, you get an entire pd.DataFrame. For a more detailed look 
at what is going on, you can add print statements to the user-defined function:

def mode_for_apply(df: pd.DataFrame):
    print(f"\nThe data passed to apply is:\n{df}")
    return df["value"].mode()

df.groupby("group").apply(mode_for_apply, include_groups=False)

The data passed to apply is:
  value
0     42
1    555
2     42
3    555

The data passed to apply is:
  value
4      0
group     
group_a  0     42
        1    555
group_b  0      0
Name: value, dtype: Int64
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Essentially, pd.core.groupby.DataFrameGroupBy.apply passes a pd.DataFrame of data to the us-
er-defined function, excluding the column(s) that are used for grouping. From there, it will look at the 
return type of the user-defined function and try to infer the best possible output shape it can. In this 
particular instance, because our mode_for_apply function returns a pd.Series, pd.core.groupby.
DataFrameGroupBy.apply has determined that the best output shape should have a pd.MultiIndex, 
where the first level of the index is the group value and the second level contains the row index from 
the pd.Series returned by the mode_for_apply function.

Where pd.core.groupby.DataFrameGroupBy.apply gets overused is in the fact that it can change its 
shape to look like an aggregation when it detects that the functions it applies reduce to a single value:

def sum_values(df: pd.DataFrame):
    return df["value"].sum()

df.groupby("group").apply(sum_values, include_groups=False)

group
group_a    1194
group_b       0
dtype: int64

It is a trap to use it in this way, however. Even if it can infer a reasonable shape for some outputs, the 
rules for how it determines that are implementation details, for which you pay a performance penalty 
or run the risk of code breakage across pandas releases. If you know your functions will reduce to 
a single value, always opt for pd.core.groupby.DataFrameGroupBy.agg in lieu of pd.core.groupby.
DataFrameGroupBy.apply, leaving the latter only for extreme use cases.

Window operations
Window operations allow you to calculate values over a sliding partition (or “window”) of values. 
Commonly, these operations are used to calculate things like “rolling 90-day average,” but they are 
flexible enough to extend to any algorithm of your choosing.

While not technically a group by operation, window operations are included here as they share a similar 
API and work with “groups” of data. The only difference to a group by call is that, instead of forming 
groups from unique value sets, a window operation creates its group by iterating over each value of 
a pandas object and looking at a particular number of preceding (and sometimes following) values.

How to do it
To get a feel for how window operations work, let’s start with a simple pd.Series where each element 
is an increasing power of 2:
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ser = pd.Series([0, 1, 2, 4, 8, 16], dtype=pd.Int64Dtype())
ser

0     0
1     1
2     2
3     4
4     8
5    16
dtype: Int64

The first type of window operation you will come across is the “rolling window,” accessed via the 
pd.Series.rolling method. When calling this method, you need to tell pandas the desired size of 
your window n. The pandas library starts at each element and looks backward n-1 records to form 
the “window”:

ser.rolling(2).sum()

0     NaN
1     1.0
2     3.0
3     6.0
4    12.0
5    24.0
dtype: float64

You may notice that we started with a pd.Int64Dtype() but ended up with a float64 type after the 
rolling window operation. Unfortunately, the pandas window operations do not work well with the 
pandas extension system in at least version 2.2 (see issue #50449), so for the time being, we need to 
cast the result back into the proper data type:

ser.rolling(2).sum().astype(pd.Int64Dtype())

0    <NA>
1       1
2       3
3       6
4      12
5      24
dtype: Int64

So, what is going on here? Essentially, you can think of a rolling window operation as iterating through 
the pd.Series values. While doing so, it looks backward to try and collect enough values to fulfill the 
desired window size, which we have specified as 2.
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After collecting two elements in each window, pandas will apply the specified aggregation function 
(in our case, summation). The result of that aggregation in each window is then used to piece back 
together the result:

Figure 8.3: Rolling window with sum aggregation

In the case of our very first record, which cannot form a window with two elements, pandas returns 
a missing value. If you want the rolling calculation to just sum up as many elements as it can, even 
if the window size cannot be reached, you can pass an argument to min_periods= that dictates the 
minimum number of elements within each window required to perform the aggregation:

ser.rolling(2, min_periods=1).sum().astype(pd.Int64Dtype())

0     0
1     1
2     3
3     6
4    12
5    24
dtype: Int64

By default, rolling window operations look backward to try and fulfill your window size requirements. 
You can also “center” them instead so that pandas looks both forward and backward.
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The effect of this is better seen with an odd window size. Note the difference when we expand our 
call so far with a window size of 3:

ser.rolling(3).sum().astype(pd.Int64Dtype())

0    <NA>
1    <NA>
2       3
3       7
4      14
5      28
dtype: Int64

Compared to the same call with an argument of center=True:

ser.rolling(3, center=True).sum().astype(pd.Int64Dtype())

0    <NA>
1       3
2       7
3      14
4      28
5    <NA>
dtype: Int64

Instead of looking at the current and preceding two values, usage of center=True tells pandas to take 
the current value, one prior, and one following to form a window.

Another type of window function is the “expanding window”, which looks at all prior values encoun-
tered. The syntax for that is straightforward; simply replace your call to pd.Series.rolling with 
pd.Series.expanding and follow that up with your desired aggregation function. An expanding 
summation is similar to the pd.Series.cumsum method you have seen before, so for demonstration 
purposes, let’s pick a different aggregation function, like mean:

ser.expanding().mean().astype(pd.Float64Dtype())

0         0.0
1         0.5
2         1.0
3        1.75
4         3.0
5    5.166667
dtype: Float64

Visually represented, an expanding window calculation looks as follows (for brevity, not all of the 
pd.Series elements are shown):



Group By278

Figure 8.4: Expanding window with mean aggregation

There’s more…
In Chapter 9, Temporal Data Types and Algorithms, we will dive deeper into some of the very nice fea-
tures pandas can offer when dealing with temporal data. Before we get there, it is worth noting that 
group by and rolling/expanding window functions work very naturally with such data, allowing you to 
concisely perform calculations like, “N day moving averages” “year-to-date X,” “quarter-to-date X,” etc.

To see how that works, let’s take another look at the Nvidia stock performance dataset we started with 
back in Chapter 5, Algorithms and How to Apply Them, originally as part of the Calculating a trailing stop 
order price recipe:

df = pd.read_csv(
    "data/NVDA.csv",
    usecols=["Date", "Close"],
    parse_dates=["Date"],
    dtype_backend="numpy_nullable",
).set_index("Date")
df

      Date        Close
2020-01-02    59.977501
2020-01-03    59.017502
2020-01-06    59.264999
2020-01-07    59.982498
2020-01-08    60.095001
…             …
2023-12-22   488.299988
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2023-12-26   492.790009
2023-12-27   494.170013
2023-12-28   495.220001
2023-12-29   495.220001
1006 rows × 1 columns

With rolling window functions, we can easily add 30, 60, and 90-day moving averages. A subsequent 
call to pd.DataFrame.plot also makes this easy to visualize:

import matplotlib.pyplot as plt
plt.ion()

df.assign(
    ma30=df["Close"].rolling(30).mean().astype(pd.Float64Dtype()),
    ma60=df["Close"].rolling(60).mean().astype(pd.Float64Dtype()),
    ma90=df["Close"].rolling(90).mean().astype(pd.Float64Dtype()),
).plot()

For “year-to-date” and “quarter-to-date” calculations, we can use a combination of group by and 
expanding window functions. For “year-to-date” min, max, and mean close values, we can start by 
forming a group by object to split our data into yearly buckets, and from there, we can make a call 
to .expanding():

df.groupby(pd.Grouper(freq="YS")).expanding().agg(
    ["min", "max", "mean"]
)
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          Close
                        min        max        mean
Date       Date
2020-01-01  2020-01-02  59.977501  59.977501  59.977501
            2020-01-03  59.017502  59.977501  59.497501
            2020-01-06  59.017502  59.977501  59.420001
            2020-01-07  59.017502  59.982498  59.560625
            2020-01-08  59.017502  60.095001  59.667500
…           …          …          …          …
2023-01-01  2023-12-22  142.649994  504.089996  363.600610
            2023-12-26  142.649994  504.089996  364.123644
            2023-12-27  142.649994  504.089996  364.648024
            2023-12-28  142.649994  504.089996  365.172410
            2023-12-29  142.649994  504.089996  365.692600
1006 rows × 3 columns

The pd.Grouper(freq="YS") takes our row index, which contains datetimes, and groups them by the 
start of the year within which they fall. After the grouping, the call to .expanding() performs the 
min/max aggregations, only looking as far back as the start of each year. The effects of this are once 
again easier to see with a visualization:

df.groupby(pd.Grouper(freq="YS")).expanding().agg(
    ["min", "max", "mean"]
).droplevel(axis=1, level=0).reset_index(level=0, drop=True).plot()
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For a more granular view, you can calculate the expanding min/max close prices per quarter by 
changing the freq= argument from YS to QS in pd.Grouper:

df.groupby(pd.Grouper(freq="QS")).expanding().agg(
    ["min", "max", "mean"]
).reset_index(level=0, drop=True).plot()

A MS freq= argument gets you down to the monthly level:

df.groupby(pd.Grouper(freq="MS")).expanding().agg(
    ["min", "max", "mean"]
).reset_index(level=0, drop=True).plot()
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Selecting the highest rated movies by year
One of the most basic and common operations to perform during data analysis is to select rows 
containing the largest value of some column within a group. Applied to our movie dataset, this could 
mean finding the highest-rated film of each year or the highest-grossing film by content rating. To 
accomplish these tasks, we need to sort the groups as well as the column used to rank each member 
of the group, and then extract the highest member of each group.

In this recipe, we will find the highest-rated film of each year using a combination of pd.DataFrame.
sort_values and pd.DataFrame.drop_duplicates.

How to do it
Start by reading in the movie dataset and slim it down to just the three columns we care about: 
movie_title, title_year, and imdb_score:

df = pd.read_csv(
    "data/movie.csv",
    usecols=["movie_title", "title_year", "imdb_score"],
    dtype_backend="numpy_nullable",
)

df
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   movie_title                                  title_year  imdb_score
0  Avatar                                        2009.0        7.9
1  Pirates of the Caribbean: At World's End      2007.0        7.1
2  Spectre                                       2015.0        6.8
3  The Dark Knight Rises                         2012.0        8.5
4  Star Wars: Episode VII - The Force Awakens     <NA>        7.1
…                                                 …          …
4911  Signed Sealed Delivered                    2013.0        7.7
4912  The Following                               <NA>        7.5
4913  A Plague So Pleasant                       2013.0        6.3
4914  Shanghai Calling                           2012.0        6.3
4915  My Date with Drew                          2004.0        6.6
4916 rows × 3 columns

As you can see, the title_year column gets interpreted as a floating point value, but years should always 
be whole numbers. We could correct that by assigning the proper data type directly to our column:

df["title_year"] = df["title_year"].astype(pd.Int16Dtype())
df.head(3)

    movie_title                                title_year  imdb_score
0   Avatar                                     2009        7.9
1   Pirates of the Caribbean: At World's End   2007        7.1
2   Spectre                                    2015        6.8

Alternatively, we could have passed the desired data type as the dtype= argument in pd.read_csv:

df = pd.read_csv(
    "data/movie.csv",
    usecols=["movie_title", "title_year", "imdb_score"],
    dtype={"title_year": pd.Int16Dtype()},
    dtype_backend="numpy_nullable",
)
df.head(3)

    movie_title                                 title_year  imdb_score
0   Avatar                                      2009         7.9
1   Pirates of the Caribbean: At World's End    2007         7.1
2   Spectre                                     2015         6.8

With our data cleansing out of the way, we can now turn our focus to answering the question of “what 
is the highest rated movie each year?”. There are a few ways we can calculate this, but let’s start with 
the approach you see most commonly.
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When you perform a group by in pandas, the order in which rows appear in the original pd.DataFrame 
is respected as rows are bucketed into different groups. Knowing this, many users will answer this ques-
tion by first sorting their dataset across title_year and imdb_score. After the sort, you can group by the 
title_year column, select just the movie_title column, and chain in a call to pd.DataFrameGroupBy.
last to select the last value from each group:

df.sort_values(["title_year", "imdb_score"]).groupby(
    "title_year"
)[["movie_title"]].agg(top_rated_movie=pd.NamedAgg("movie_title", "last"))

title_year                                    top_rated_movie
1916         Intolerance: Love's Struggle Throughout the Ages
1920                           Over the Hill to the Poorhouse
1925                                           The Big Parade
1927                                               Metropolis
1929                                            Pandora's Box
…                                                           …
2012                                         Django Unchained
2013                  Batman: The Dark Knight Returns, Part 2
2014                                           Butterfly Girl
2015                                          Running Forever
2016                                     Kickboxer: Vengeance
91 rows × 1 columns

A slightly more succinct approach can be had if you use pd.DataFrameGroupBy.idxmax, which selects 
the row index value corresponding to the highest movie rating each year. This would require you to 
set the index to the movie_title up front:

df.set_index("movie_title").groupby("title_year").agg(
    top_rated_movie=pd.NamedAgg("imdb_score", "idxmax")
)

title_year                                   top_rated_movie
1916        Intolerance: Love's Struggle Throughout the Ages
1920                          Over the Hill to the Poorhouse
1925                                          The Big Parade
1927                                              Metropolis
1929                                           Pandora's Box
…                                                          …
2012                                   The Dark Knight Rises
2013                 Batman: The Dark Knight Returns, Part 2
2014                                  Queen of the Mountains
2015                                         Running Forever
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2016                                    Kickboxer: Vengeance
91 rows × 1 columns

Our results appear mostly the same, although we can see that the two approaches disagreed on what the 
highest rated movie was in the years 2012 and 2014. A closer look at these titles reveals the root cause:

df[df["movie_title"].isin({
    "Django Unchained",
    "The Dark Knight Rises",
    "Butterfly Girl",
    "Queen of the Mountains",
})]

			   movie_title 			   title_year 	 imdb_score
3 			   The Dark Knight Rises 	 2012 		  8.5
293 			  Django Unchained 		  2012 		  8.5
4369 		  Queen of the Mountains 	 2014 		  8.7
4804 		  Butterfly Girl			  2014 		  8.7

In case of a tie, each method has its own way of choosing a value. Neither approach is right or wrong 
per se, but if you wanted finer control over that, you would have to reach for Group by apply.

Let’s assume we wanted to aggregate the values so that when there is no tie, we get back a string, but 
in case of a tie we get a sequence of strings. To do this, you should define a function that accepts a 
pd.DataFrame. This pd.DataFrame will contain the values associated with each unique grouping col-
umn, which is title_year in our case.

Within the body of the function, you can figure out what the top movie rating is, find all movies with 
that rating, and return back either a single movie title (when there are no ties) or a set of movies (in 
case of a tie):

def top_rated(df: pd.DataFrame):
    top_rating = df["imdb_score"].max()
    top_rated = df[df["imdb_score"] == top_rating]["movie_title"].unique()

    if len(top_rated) == 1:
        return top_rated[0]
    else:
        return top_rated

df.groupby("title_year").apply(
    top_rated, include_groups=False
).to_frame().rename(columns={0: "top_rated_movie(s)"})

title_year                                   top_rated_movie(s)
1916           Intolerance: Love's Struggle Throughout the Ages
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1920                             Over the Hill to the Poorhouse
1925                                             The Big Parade
1927                                                 Metropolis
1929                                              Pandora's Box
…                                                             …
2012                  [The Dark Knight Rises, Django Unchained]
2013                    Batman: The Dark Knight Returns, Part 2
2014                   [Queen of the Mountains, Butterfly Girl]
2015                                            Running Forever
2016                                       Kickboxer: Vengeance
91 rows × 1 columns

Comparing the best hitter in baseball across years
In the Finding the baseball players best at… recipe back in Chapter 5, Algorithms and How to Apply Them, 
we worked with a dataset that had already aggregated the performance of players from the years 
2020-2023. However, comparing players based on their performance across multiple years is rather 
difficult. Even on a year-to-year basis, statistics that appear elite one year can be considered just “very 
good” in other years. The reasons for the variation in statistics across years can be debated, but likely 
come down to some combination of strategy, equipment, weather, and just pure statistical chance.

For this recipe, we are going to work with a more granular dataset that goes down to the game level. 
From there, we are going to aggregate the data up to a yearly summary, and from there calculate a 
common baseball statistic known as the batting average. 

For those unfamiliar, a batting average is calculated by taking the number of hits a player produces 
(i.e., how many times they swung a bat at a baseball, and reached base as a result) as a percentage of 
their total at bats (i.e., how many times they came to bat, excluding walks).

So what constitutes a good batting average? As you will see, the answer to that question is a moving 
target, having shifted even within the past twenty years. In the early 2000s, a batting average between 

.260-.270 (i.e., getting a hit in 26%-27% of at bats) was considered middle of the road for professionals. 
Within recent years, that number has fallen somewhere in the range of .240-.250.

As such, to try and compare the best hitters from each year to one another, we cannot solely look at 
the batting average. A league-leading batting average of .325 in a year when the league itself averaged 

.240 is likely more impressive than a league-leading batting average of .330 in a year where the overall 
league averaged around .260.

How to do it
Once again, we are going to use data collected from retrosheet.org, with the following legal dis-
claimer:
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For this recipe we are going to use “box score” summaries from every regular season game played in 
the years 2000-2023:

df = pd.read_parquet("data/mlb_batting_lines.parquet")

df

    year     game       starttime   …   cs  gidp  int
0   2015  ANA201504100   7:12PM   …    0    0    0
1   2015  ANA201504100   7:12PM   …    0    0    0
2   2015  ANA201504100   7:12PM   …    0    0    0
3   2015  ANA201504100   7:12PM   …    0    0    0
4   2015  ANA201504100   7:12PM   …    0    0    0
…     …          …          …   …    …    …    …
1630995 2013  WAS201309222   7:06PM   …    0    0    0
1630996 2013  WAS201309222   7:06PM   …    0    0    0
1630997 2013  WAS201309222   7:06PM   …    0    0    0
1630998 2013  WAS201309222   7:06PM   …    0    0    0
1630999 2013  WAS201309222   7:06PM   …    0    0    0
1631000 rows × 26 columns

A box score summarizes the performance of every player in a game. We could therefore single in on 
a particular game that was played in Baltimore on April 10, 2015, and see how batters performed:

bal = df[df["game"] == "BAL201504100"]
bal.head()

      year      game       starttime   …  cs  gidp  int
2383  2015  BAL201504100   3:11PM   …   0    0    0
2384  2015  BAL201504100   3:11PM   …   0    0    0
2385  2015  BAL201504100   3:11PM   …   0    0    0
2386  2015  BAL201504100   3:11PM   …   0    0    0
2387  2015  BAL201504100   3:11PM   …   0    0    0
5 rows × 26 columns

In that game alone we see a total of 75 at bats (ab), 29 hits (h) and two home runs (hr):

bal[["ab", "h", "hr"]].sum()

 The information used here was obtained free of charge from and is copyrighted by Ret-
rosheet.  Interested parties may contact Retrosheet at www.retrosheet.org.

www.retrosheet.org
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ab    75
h     29
hr     2
dtype: Int64

With a basic understanding of what a box score is and what it shows, let’s turn our focus toward cal-
culating the batting average every player produces each year. The individual player is notated in the 
id column of our dataset, and since we want to see the batting average over the course of an entire 
season, we can use the combination of year and id as our argument to pd.DataFrame.groupby. Af-
terward, we can apply a summation to the at bats (ab) and hits (h) columns:

df.groupby(["year", "id"]).agg(
    total_ab=pd.NamedAgg(column="ab", aggfunc="sum"),
    total_h=pd.NamedAgg(column="h", aggfunc="sum"),
)

year  id        total_ab  total_h
2000  abboj002     215       59
      abbok002     157       34
      abbop001       5        2
      abreb001     576      182
      acevj001       1        0
…     …           …        …
2023  zavas001     175       30
      zerpa001       0        0
      zimmb002       0        0
      zunig001       0        0
      zunim001     124       22
31508 rows × 2 columns

To turn those totals into a batting average, we can chain in a division using pd.DataFrame.assign. 
After that, a call to pd.DataFrame.drop will let us solely focus on the batting average, dropping the 
total_ab and total_h columns we no longer need:

(
    df.groupby(["year", "id"]).agg(
        total_ab=pd.NamedAgg(column="ab", aggfunc="sum"),
        total_h=pd.NamedAgg(column="h", aggfunc="sum"))
    .assign(avg=lambda x: x["total_h"] / x["total_ab"])
    .drop(columns=["total_ab", "total_h"])
)

year  id        avg
2000  abboj002  0.274419
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      abbok002  0.216561
      abbop001  0.400000
      abreb001  0.315972
      acevj001  0.000000
…     …         …
2023  zavas001  0.171429
      zerpa001  NaN
      zimmb002  NaN
      zunig001  NaN
      zunim001  0.177419
31508 rows × 1 columns

Before we continue, we have to consider some data quality issues that may arise when calculating 
averages. Over the course of a baseball season, teams may use players who only appear in very niche 
situations, yielding a low number of plate appearances. In some instances, a batter may not even 
register an “at bat” for the season, so using that as a divisor has a chance of dividing by 0, which will 
produce NaN. In cases where a batter has a non-zero amount of at bats on the season, but still has 
relatively few, a small sample size can severely skew their batting average.

Major League Baseball has strict rules for determining how many plate appearances it takes for a batter 
to qualify for records within a given year. Without following the rule exactly, and without having to 
calculate plate appearances in our dataset, we can proxy this by setting a requirement of at least 400 
at bats over the course of a season:

(
    df.groupby(["year", "id"]).agg(
        total_ab=pd.NamedAgg(column="ab", aggfunc="sum"),
        total_h=pd.NamedAgg(column="h", aggfunc="sum"))
    .loc[lambda df: df["total_ab"] > 400]
    .assign(avg=lambda x: x["total_h"] / x["total_ab"])
    .drop(columns=["total_ab", "total_h"])
)

year  id        avg
2000  abreb001  0.315972
      alfoe001  0.323529
      alicl001  0.294444
      alomr001  0.309836
      aloum001  0.354626
…     …         …
2023  walkc002  0.257732
      walkj003  0.276190
      wittb002  0.276131
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      yelic001  0.278182
      yoshm002  0.288641
4147 rows × 1 columns

We can summarize this further by finding the average and maximum batting_average per season, 
and we can even use pd.core.groupby.DataFrameGroupBy.idxmax to identify the player who achieved 
the best average:

averages = (
    df.groupby(["year", "id"]).agg(
        total_ab=pd.NamedAgg(column="ab", aggfunc="sum"),
        total_h=pd.NamedAgg(column="h", aggfunc="sum"))
    .loc[lambda df: df["total_ab"] > 400]
    .assign(avg=lambda x: x["total_h"] / x["total_ab"])
    .drop(columns=["total_ab", "total_h"])
)

averages.groupby("year").agg(
    league_mean_avg=pd.NamedAgg(column="avg", aggfunc="mean"),
    league_max_avg=pd.NamedAgg(column="avg", aggfunc="max"),
    batting_champion=pd.NamedAgg(column="avg", aggfunc="idxmax"),
)

year  league_mean_avg  league_max_avg  batting_champion
2000  0.284512         0.372414         (2000, heltt001)
2001  0.277945         0.350101         (2001, walkl001)
2002  0.275713         0.369727         (2002, bondb001)
2003  0.279268         0.358714         (2003, pujoa001)
2004  0.281307         0.372159         (2004, suzui001)
2005  0.277350         0.335017         (2005, lee-d002)
2006  0.283609         0.347409         (2006, mauej001)
2007  0.281354         0.363025         (2007, ordom001)
2008  0.277991         0.364465         (2008, jonec004)
2009  0.278010         0.365201         (2009, mauej001)
2010  0.271227         0.359073         (2010, hamij003)
2011  0.269997         0.344406         (2011, cabrm001)
2012  0.269419         0.346405         (2012, cabrm002)
2013  0.268789         0.347748         (2013, cabrm001)
2014  0.267409         0.340909         (2014, altuj001)
2015  0.268417         0.337995         (2015, cabrm001)
2016  0.270181         0.347826         (2016, lemad001)
2017  0.268651         0.345763         (2017, altuj001)
2018  0.261824         0.346154         (2018, bettm001)
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2019  0.269233         0.335341         (2019, andet001)
2021  0.262239         0.327731         (2021, turnt001)
2022  0.255169         0.326454         (2022, mcnej002)
2023  0.261457         0.353659         (2023, arral001)

As we can see, the mean batting average fluctuates each year, with those numbers having been higher 
back toward the year 2000. In the year 2005, the mean batting average was .277, with the best hitter 
(lee-d002, or Derrek Lee) having hit .335. The best hitter in 2019 (andet001, or Tim Anderson) also 
averaged .335, but the overall league was down around .269. Therefore, a strong argument could be 
made that Tim Anderson’s 2019 season was more impressive than Derrek Lee’s 2005 season, at least 
through the lens of batting average.

While taking the mean can be useful, it doesn’t tell the full story of what goes on within a given season. 
We would probably like to get a better feel for the overall distribution of batting averages across each 
season, for which a visualization is in order. The violin plot we discovered back in the Plotting movie 
ratings by decade with seaborn recipe can help us understand this in more detail.

First let’s set up our seaborn import, and have Matplotlib draw plots as soon as possible:

import matplotlib.pyplot as plt
import seaborn as sns

plt.ion()

Next, we will want to make a few considerations for seaborn. Seaborn does not make use of 
pd.MultiIndex, so we are going to move our index values to columns with a call to pd.DataFrame.
reset_index. Additionally, seaborn can easily misinterpret discrete year values like 2000, 2001, 2002, 
and so on for a continuous range, which we can solve by turning that column into a categorical data type. 

The pd.CategoricalDtype we want to construct is also ideally ordered, so that pandas can ensure the 
year 2000 is followed by 2001, which is followed by 2002, and so on:

sns_df = averages.reset_index()
years = sns_df["year"].unique()
cat = pd.CategoricalDtype(sorted(years), ordered=True)
sns_df["year"] = sns_df["year"].astype(cat)

sns_df

    year      id        avg
0   2000  abreb001  0.315972
1   2000  alfoe001  0.323529
2   2000  alicl001  0.294444
3   2000  alomr001  0.309836
4   2000  aloum001  0.354626
…     …      …         …
4142 2023  walkc002  0.257732
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4143 2023  walkj003  0.276190
4144 2023  wittb002  0.276131
4145 2023  yelic001  0.278182
4146 2023  yoshm002  0.288641
4147 rows × 3 columns

23 years of data on a single plot may take up a lot of space, so let’s just look at the years 2000-2009 first:

mask = (sns_df["year"] >= 2000) & (sns_df["year"] < 2010)
fig, ax = plt.subplots()
sns.violinplot(
    data=sns_df[mask],
    ax=ax,
    x="avg",
    y="year",
    order=sns_df.loc[mask, "year"].unique(),
)
ax.set_xlim(0.15, 0.4)
plt.show()
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We intentionally made the call to plt.subplots() and used ax.set_xlim(0.15, 0.4) so that the 
x-axis would not change when plotting the remaining years:

mask = sns_df["year"] >= 2010
fig, ax = plt.subplots()
sns.violinplot(
    data=sns_df[mask],
    ax=ax,
    x="avg",
    y="year",
    order=sns_df.loc[mask, "year"].unique(),
)
ax.set_xlim(0.15, 0.4)
plt.show()

While some years show skew in the data (e.g., 2014 skewing right and 2018 skewing left), we can gen-
erally imagine the distribution of this data as an approximation of a normal distribution. Therefore, to 
try and better compare the peak performances across different years, we can use a technique whereby 
we normalize data within each season. Rather than thinking in terms of absolute batting averages like 

.250, we instead think of how far beyond the norm within a season a batter’s performance is.
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More specifically, we can use Z-score normalization, which would appear as follows when mathemat-
ically represented: 𝑧𝑧 𝑧 𝑥𝑥 𝑥 𝑥𝑥𝜎𝜎 

Here, 𝜇𝜇 is the mean and 𝜎𝜎 is the standard deviation.

Calculating this in pandas is rather trivial; all we need to do is define our custom normalize func-
tion and use that as an argument to pd.core.groupby.DataFrameGroupBy.transform to assign each 
combination of year and player their normalized batting average. Using that in subsequent group by 
operations allows us to better compare the peak performance each year across different years:

def normalize(ser: pd.Series) -> pd.Series:
    return (ser - ser.mean()) / ser.std()

(
    averages.assign(
        normalized_avg=averages.groupby("year").transform(normalize)
    )
    .groupby("year").agg(
        league_mean_avg=pd.NamedAgg(column="avg", aggfunc="mean"),
        league_max_avg=pd.NamedAgg(column="avg", aggfunc="max"),
        batting_champion=pd.NamedAgg(column="avg", aggfunc="idxmax"),
        max_normalized_avg=pd.NamedAgg(column="normalized_avg", aggfunc="max"),
    )
    .sort_values(by="max_normalized_avg", ascending=False)
).head()

year  league_mean_avg  league_max_avg  batting_champion      max_normalized_avg
2023  0.261457         0.353659        (2023, arral001)                3.714121
2004  0.281307         0.372159        (2004, suzui001)                3.699129
2002  0.275713         0.369727        (2002, bondb001)                3.553521
2010  0.271227         0.359073        (2010, hamij003)                3.379203
2008  0.277991         0.364465        (2008, jonec004)                3.320429

According to this analysis, the 2023 season by Luis Arráez is the most impressive batting average per-
formance since the year 2000. His league_max_avg achieved that year may appear as the lowest out 
of our top five, but so was the league_mean_avg in 2023.

As you can see from this recipe, effective use of pandas’ Group By functionality allows you to more 
fairly evaluate records within different groups. Our example used professional baseball players within 
a season, but that same methodology could be extended to evaluate users within different age groups, 
products within different product lines, stocks within different sectors, and so on. Simply put, the 
possibilities for exploring your data with group by are endless!
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Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/pandas

https://packt.link/pandas




9
Temporal Data Types and 
Algorithms

Properly working with temporal data (i.e., dates and times) may appear straightforward, but, the fur-
ther you dive into it, the further you realize how surprisingly complex it is. Here are just a few issues 
that come to mind:

•	 Some users measure time in the span of years; others measure in nanoseconds
•	 Some users ignore timezones; others need to coordinate events around the world
•	 Not every country has multiple timezones, even if they are wide enough to have them (e.g., 

China)
•	 Not every country observes daylight saving time; those that do cannot agree on when
•	 In countries that observe daylight saving time, not every region participates (e.g., Arizona in 

the United States (US))
•	 Different operating systems and versions time differently (see also the Year 2038 problem at 

https://en.wikipedia.org/wiki/Year_2038_problem)

These problems are really just the tip of the iceberg, and, in spite of all of the potential data quality 
problems, temporal data is invaluable for purposes of monitoring, trend detection, and forecasting. 
Fortunately, pandas makes it so that you don’t need to be an expert in dates and times to draw insights 
from your data. By using the features and abstractions pandas offers, you can very easily cleanse and 
interpolate your temporal data so that you can focus less on the “problems” of dates and times, and 
more on the insights that your data has to offer.

While we introduced some of the temporal types pandas has to offer back in Chapter 3, Data Types, in 
the section Temporal types – datetime, this chapter will start by focusing on things that pandas offers to 
augment the utility of those types. Beyond that, we will talk about the different ways you can cleanse 
and interpolate your temporal data, before finishing the chapter with a focus on practical applications.

https://en.wikipedia.org/wiki/Year_2038_problem
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We are going to cover the following recipes in this chapter:

•	 Timezone handling
•	 DateOffsets
•	 Datetime selection
•	 Resampling
•	 Aggregating weekly crime and traffic accidents
•	 Calculating year over year changes in crime by category
•	 Accurately measuring sensor-collected events with missing values

Timezone handling
By far, the most common mistakes with temporal data that I come across stem from a misunderstand-
ing of timezones. On the East Coast of the US where I live, I’ve witnessed many users try to read what 
they think is a date of 2024-01-01 out of a database, yet ironically end up with a date of 2023-12-31 in 
their analysis. While that is only offset by a day, the effects of that misalignment can greatly skew 
summaries that group dates into weekly, monthly, quarterly, or yearly buckets.

For those that have been bitten by an issue like that before, you may have already come to realize that 
the source system you were communicating with probably did give you a timestamp of 2024-01-01 
00:00:00, presumed to be at midnight UTC. Somewhere along the line, an analyst on the East Coast of 
the US where I live may have had that translated into their local time, which is either four hours offset 
from UTC during daylight saving time, or five hours offset during standard time. As a result, the time-
stamp ended up being viewed as 2023-12-31 20:00:00 or 2023-12-31 19:00:00 in EDT/EST, respectively, 
and the user may have inadvertently tried to convert that to a date.

To avoid these types of issues when working with temporal data, it is critical to understand when 
you are working with timezone-aware datetimes (i.e., those tied to a timezone like UTC or America/
New_York), and timezone-naive objects, which have no timezone information attached to them. In 
this recipe, we will show you how to create and recognize both types of datetimes, while also diving 
deeper into the utilities pandas offers that let you convert between different timezones, and from 
timezone-aware to timezone-naive.

How to do it
Back in Chapter 3, Data Types, we learned how to create a pd.Series with datetime data. Let’s take a 
closer look at that same example:

ser = pd.Series([
    "2024-01-01 00:00:00",
    "2024-01-02 00:00:01",
    "2024-01-03 00:00:02"
], dtype="datetime64[ns]")
ser
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0   2024-01-01 00:00:00
1   2024-01-02 00:00:01
2   2024-01-03 00:00:02
dtype: datetime64[ns]

These timestamps represent events that occurred at or close to midnight on days ranging from Jan-
uary 1 through January 3, 2024. However, what these datetimes cannot tell us is where these events 
occurred; midnight in New York City happens at a different point in time than in Dubai, so it is tough 
to pinpoint an exact point in time that these events happened. Without that extra metadata, these 
datetimes are timezone-naive.

For programmatic confirmation that your datetimes are timezone-naive, you can use pd.Series.
dt.tz, which will return None:

ser.dt.tz is None

True

With the pd.Series.dt.tz_localize method, we could assign an Internet Assigned Numbers Au-
thority (IANA) timezone identifier to these datetimes to make them timezone-aware. For example, to 
specify that these events happened on the East Coast of the US, we could write:

ny_ser = ser.dt.tz_localize("America/New_York")
ny_ser

0   2024-01-01 00:00:00-05:00
1   2024-01-02 00:00:01-05:00
2   2024-01-03 00:00:02-05:00
dtype: datetime64[ns, America/New_York]

If you try to use pd.Series.dt.tz on this pd.Series, it will report back that you are working with a 
timezone of America/New_York:

ny_ser.dt.tz

<DstTzInfo 'America/New_York' LMT-1 day, 19:04:00 STD>

Now that our pd.Series is timezone-aware, the datetimes contained therein can be mapped to a point 
in time anywhere around the world. By using pd.Series.dt.tz_convert, you can easily translate 
these events into another timezone:

la_ser = ny_ser.dt.tz_convert("America/Los_Angeles")
la_ser

0   2023-12-31 21:00:00-08:00
1   2024-01-01 21:00:01-08:00
2   2024-01-02 21:00:02-08:00
dtype: datetime64[ns, America/Los_Angeles]
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As a matter of practice, it is usually best to keep your datetimes attached to a timezone, which will 
mitigate the risk of being misinterpreted on a different date or at a different point in time. However, 
not all systems and databases that you may interact with will be able to retain this information, forcing 
you to drop it for interoperability. In case such a need arises, you could do this by passing None as an 
argument to pd.Series.dt.tz_localize:

la_ser.dt.tz_localize(None)

0   2023-12-31 21:00:00
1   2024-01-01 21:00:01
2   2024-01-02 21:00:02
dtype: datetime64[ns]

If you are forced to drop the timezone from your datetime, I would strongly recommend storing the 
timezone as a string in another column in your pd.DataFrame and database:

df = la_ser.to_frame().assign(
   datetime=la_ser.dt.tz_localize(None),
   timezone=str(la_ser.dt.tz),
).drop(columns=[0])

df

    datetime              timezone
0   2023-12-31 21:00:00   America/Los_Angeles
1   2024-01-01 21:00:01   America/Los_Angeles
2   2024-01-02 21:00:02   America/Los_Angeles

When roundtripping data like this, you can recreate the original pd.Series by applying the value 
from the timezone column to the data in the datetime column. For added safety, the following code 
sample uses the combination of pd.Series.drop_duplicates with pd.Series.squeeze to extract 
the single value of America/Los_Angeles from the timezone column before passing it to pd.Series.
dt.tz_localize:

tz = df["timezone"].drop_duplicates().squeeze()
df["datetime"].dt.tz_localize(tz)

0   2023-12-31 21:00:00-08:00
1   2024-01-01 21:00:01-08:00
2   2024-01-02 21:00:02-08:00
Name: datetime, dtype: datetime64[ns, America/Los_Angeles]
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DateOffsets
In the Temporal types – Timedelta recipe back in Chapter 3, Data Types, we introduced the pd.Timedelta 
type and mentioned how it could be used to shift datetimes by a finite duration, like 10 seconds or 5 
days. However, a pd.Timedelta cannot be used to offset a date or datetime by say one month because 
a month does not always represent the same duration of time. In the Gregorian calendar, months can 
range in duration from 28–31 days. The month of February is usually 28 days but extends to 29 days 
for every year that is divisible by 4, unless the year is divisible by 100 but not by 400.

Thinking about these issues all of the time would be rather tedious. Fortunately, pandas takes care of 
all of the mundane details and just lets you shift dates according to a calendar through the use of the 
pd.DateOffset object, which we will explore in this recipe.

How to do it
To build a foundational knowledge of how this works, let’s start with a very simple pd.Series con-
taining the first few days of 2024:

ser = pd.Series([
    "2024-01-01",
    "2024-01-02",
    "2024-01-03",
], dtype="datetime64[ns]")
ser

0   2024-01-01
1   2024-01-02
2   2024-01-03
dtype: datetime64[ns]

Shifting these dates by one month would typically mean keeping the same day of the month, but just 
placing the dates in February instead of January. With pd.DateOffset, you can pass in an argument to 
months= that dictates the number of months you want to move the dates by; so, let’s see how it looks 
with an argument of 1:

ser + pd.DateOffset(months=1)

0   2024-02-01
1   2024-02-02
2   2024-02-03
dtype: datetime64[ns]

Shifting by two months would mean moving these dates from January to March. We shouldn’t really care 
that there were 31 days in January but 29 in February 2024; the pd.DateOffset takes care of this for us:

ser + pd.DateOffset(months=2)
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0   2024-03-01
1   2024-03-02
2   2024-03-03
dtype: datetime64[ns]

For dates that wouldn’t exist (e.g., trying to shift January 30 to February 30), pd.DateOffset will try 
and match to the closest date that does exist within the target month:

pd.Series([
    "2024-01-29",
    "2024-01-30",
    "2024-01-31",
], dtype="datetime64[ns]") + pd.DateOffset(months=1)

0   2024-02-29
1   2024-02-29
2   2024-02-29
dtype: datetime64[ns]

You can also step backward through the calendar with a negative argument to months=:

ser + pd.DateOffset(months=-1)

0   2023-12-01
1   2023-12-02
2   2023-12-03
dtype: datetime64[ns]

The pd.DateOffset is flexible enough to accept more than just one keyword argument at a time. For 
instance, if you wanted to offset your dates by one month, two days, three hours, four minutes, and 
five seconds, you could do that all in one expression:

ser + pd.DateOffset(months=1, days=2, hours=3, minutes=4, seconds=5)

0   2024-02-03 03:04:05
1   2024-02-04 03:04:05
2   2024-02-05 03:04:05
dtype: datetime64[ns]

Alongside the pd.DateOffset class, pandas offers you the ability to shift dates to the beginning or the 
end of a period with various classes exposed in the pd.offsets module. For instance, if you want to 
shift your dates to the end of the month, you can use pd.offsets.MonthEnd:

ser + pd.offsets.MonthEnd()

0   2024-01-31
1   2024-01-31
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2   2024-01-31
dtype: datetime64[ns]

pd.offsets.MonthBegin will move the dates to the beginning of the next month:

ser + pd.offsets.MonthBegin()

0   2024-02-01
1   2024-02-01
2   2024-02-01
dtype: datetime64[ns]

pd.offsets.SemiMonthBegin, pd.offsets.SemiMonthEnd, pd.offsets.QuarterBegin, pd.offsets.
QuarterEnd, pd.offsets.YearBegin, and pd.offsets.YearEnd all offer similar behavior to shift your 
dates to the beginning or end of different periods.

There’s more…
The pd.DateOffset, by default, works against the Gregorian calendar, but different subclasses of this 
can provide more customized functionality.

One of the most used subclasses is the pd.offsets.BusinessDay, which, by default, only counts the 
standard “business days” of Monday through Friday when offsetting dates. To see how this works, let’s 
consider the day of the week each of our dates in ser fall on:

ser.dt.day_name()

0       Monday
1      Tuesday
2    Wednesday
dtype: object

Now, let’s see what happens when we add three business days to our dates:

bd_ser = ser + pd.offsets.BusinessDay(n=3)
bd_ser

0   2024-01-04
1   2024-01-05
2   2024-01-08
dtype: datetime64[ns]

We can use the same pd.Series.dt.day_name method to check the new days of the week that these 
dates fall on:

bd_ser.dt.day_name()

0    Thursday
1      Friday
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2      Monday
dtype: object

After having added three business days, our dates that started on Monday and Tuesday ended up falling 
on the Thursday and Friday of the same week, respectively. The Wednesday date we started with was 
pushed to the Monday of the following week, as neither Saturday nor Sunday qualifies as a business day.

If you work with a business that has different business days from Monday to Friday, you could use 
the pd.offsets.CustomBusinessDay to set up your own rules for how offsetting should work. The 
argument to weekmask= will dictate the days of the week that are considered business days:

ser + pd.offsets.CustomBusinessDay(
    n=3,
    weekmask="Mon Tue Wed Thu",
)

0   2024-01-04
1   2024-01-08
2   2024-01-09
dtype: datetime64[ns]

You can even add a holidays= argument to account for days when your business may be closed:

ser + pd.offsets.CustomBusinessDay(
    n=3,
    weekmask="Mon Tue Wed Thu",
    holidays=["2024-01-04"],
)

0   2024-01-08
1   2024-01-09
2   2024-01-10
dtype: datetime64[ns]

For the Gregorian calendar, we have already seen pd.offsets.MonthEnd and pd.offsets.MonthBegin 
classes that help you move dates to the beginning or end of a month, respectively. Similar classes 
exist for you to use when attempting to shift dates toward the beginning or end of business months:

ser + pd.offsets.BusinessMonthEnd()

0   2024-01-31
1   2024-01-31
2   2024-01-31
dtype: datetime64[ns]
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Datetime selection
Back in Chapter 2, Selection and Assignment, we discussed the many robust ways that pandas allows you 
to select data from a pd.Series or pd.DataFrame by interacting with their associated row pd.Index. 
If you happen to create a pd.Index using datetime data, it ends up being represented as a special 
subclass called a pd.DatetimeIndex. This subclass overrides some functionality of the pd.Index.loc 
method to give you more flexible selection options tailored to temporal data.

How to do it
pd.date_range is a convenient function that helps you quickly generate a pd.DatetimeIndex. One 
of the ways to use this function is to specify a starting date with the start= parameter, specify a step 
frequency with the freq= parameter, and specify the desired length of your pd.DatetimeIndex with 
the periods= argument.

For instance, to generate a pd.DatetimeIndex that starts on December 27, 2023, and provides 5 days 
in total with 10 days between each record, you would write:

pd.date_range(start="2023-12-27", freq="10D", periods=5)

DatetimeIndex(['2023-12-27', '2024-01-06', '2024-01-16', '2024-01-26',
              '2024-02-05'],
             dtype='datetime64[ns]', freq='10D')

A frequency string of "2W" will generate dates spaced two weeks apart. If the start= parameter is a 
Sunday, the dates will begin from that date exactly; otherwise, the next Sunday begins the sequence:

pd.date_range(start="2023-12-27", freq="2W", periods=5)

DatetimeIndex(['2023-12-31', '2024-01-14', '2024-01-28', '2024-02-11',
              '2024-02-25'],
             dtype='datetime64[ns]', freq='2W-SUN')

You could even control the day of the week being used to anchor the dates by appending a suffix like 
"-WED", which will generate dates on Wednesday instead of Sunday:

pd.date_range(start="2023-12-27", freq="2W-WED", periods=5)

DatetimeIndex(['2023-12-27', '2024-01-10', '2024-01-24', '2024-02-07',
              '2024-02-21'],
             dtype='datetime64[ns]', freq='2W-WED')

A freq= argument of "WOM-3THU" will give you the third Thursday of every month:

pd.date_range(start="2023-12-27", freq="WOM-3THU", periods=5)

DatetimeIndex(['2024-01-18', '2024-02-15', '2024-03-21', '2024-04-18',
              '2024-05-16'],
             dtype='datetime64[ns]', freq='WOM-3THU')
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The first and fifteenth day of each month can be generated with an argument of "SMS":

pd.date_range(start="2023-12-27", freq="SMS", periods=5)

DatetimeIndex(['2024-01-01', '2024-01-15', '2024-02-01', '2024-02-15',
              '2024-03-01'],
             dtype='datetime64[ns]', freq='SMS-15')

As you can see, there are countless frequency strings that can be used to describe what pandas refers to 
as date offsets. For a more complete listing, be sure to reference the pandas documentation at https://
pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects.

Each element of the pd.DatetimeIndex is actually a pd.Timestamp. When using this for selection from 
a pd.Series or pd.DataFrame, users may at first be tempted to write something like the following to 
select all records up to and including a date like 2024-01-18:

index = pd.date_range(start="2023-12-27", freq="10D", periods=20)
ser = pd.Series(range(20), index=index)
ser.loc[:pd.Timestamp("2024-01-18")]

2023-12-27    0
2024-01-06    1
2024-01-16    2
Freq: 10D, dtype: int64

Similarly, users may be tempted to write the following to select a range of dates:

ser.loc[pd.Timestamp("2024-01-06"):pd.Timestamp("2024-01-18")]

2024-01-06    1
2024-01-16    2
Freq: 10D, dtype: int64

However, these methods of selecting from a pd.DatetimeIndex are rather verbose. For convenience, 
pandas lets you pass in strings to represent the desired dates, instead of pd.Timestamp instances:

ser.loc["2024-01-06":"2024-01-18"]

2024-01-06    1
2024-01-16    2
Freq: 10D, dtype: int64

You also are not required to specify the entire date in YYYY-MM-DD format. For instance, if you want-
ed to select all of the dates that fall in February 2024, you could just pass the string 2024-02 to your 
pd.Series.loc call:

ser.loc["2024-02"]

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects
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2024-02-05    4
2024-02-15    5
2024-02-25    6
Freq: 10D, dtype: int64

Slicing will be intelligent enough to recognize this pattern, making it easy to select all of the records 
in both February and March:

ser.loc["2024-02":"2024-03"]

2024-02-05    4
2024-02-15    5
2024-02-25    6
2024-03-06    7
2024-03-16    8
2024-03-26    9
Freq: 10D, dtype: int64

You can take this abstraction a step further and select an entire year:

ser.loc["2024"].head()

2024-01-06    1
2024-01-16    2
2024-01-26    3
2024-02-05    4
2024-02-15    5
Freq: 10D, dtype: int64

There’s more…
A pd.DatetimeIndex can also be associated with a timezone by providing a tz= argument:

index = pd.date_range(start="2023-12-27", freq="12h", periods=6, tz="US/
Eastern")
ser = pd.Series(range(6), index=index)
ser

2023-12-27 00:00:00-05:00    0
2023-12-27 12:00:00-05:00    1
2023-12-28 00:00:00-05:00    2
2023-12-28 12:00:00-05:00    3
2023-12-29 00:00:00-05:00    4
2023-12-29 12:00:00-05:00    5
Freq: 12h, dtype: int64
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When using strings to select from a timezone-aware pd.DatetimeIndex, be aware that pandas will 
implicitly convert your string argument into the timezone of the pd.DatetimeIndex. For instance, the 
following code will only select one element from our data:

ser.loc[:"2023-12-27 11:59:59"]

2023-12-27 00:00:00-05:00    0
Freq: 12h, dtype: int64

Whereas the following code will correctly select both elements:

ser.loc[:"2023-12-27 12:00:00"]

2023-12-27 00:00:00-05:00    0
2023-12-27 12:00:00-05:00    1
Freq: 12h, dtype: int64

These both work in spite of the fact that our dates are five hours offset from UTC, and our string makes 
no indication of the expected timezone. In this way, pandas makes it very easy to express selection 
from a pd.DatetimeIndex, whether it is timezone-aware or timezone-naive.

Resampling
Back in Chapter 8, Group By, we went in-depth into the group by functionality that pandas has to offer. 
A Group By allows you to split your data based on unique value combinations in your dataset, apply 
an algorithm to those splits, and combine the results back together.

A resample is very similar to a Group By, with the only difference happening during the split phase. 
Instead of generating groups from unique value combinations, a resample lets you take datetimes 
and group them into increments like every 5 seconds or every 10 minutes.

How to do it
Let’s once again reach for the pd.date_range function we were introduced to back in the Datetime 
selection recipe, but this time, we are going to generate a pd.DatetimeIndex with a frequency of sec-
onds instead of days:

index = pd.date_range(start="2024-01-01", periods=10, freq="s")
ser = pd.Series(range(10), index=index, dtype=pd.Int64Dtype())
ser

2024-01-01 00:00:00    0
2024-01-01 00:00:01    1
2024-01-01 00:00:02    2
2024-01-01 00:00:03    3
2024-01-01 00:00:04    4
2024-01-01 00:00:05    5
2024-01-01 00:00:06    6
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2024-01-01 00:00:07    7
2024-01-01 00:00:08    8
2024-01-01 00:00:09    9
Freq: s, dtype: Int64

If viewing this data every second was deemed too granular, pd.Series.resample can be used to 
downsample the data into a different increment, like every 3 seconds. Resampling also requires the use 
of an aggregation function to dictate what happens to all records that fall within each increment; for 
simplicity, we can start with summation:

ser.resample("3s").sum()

2024-01-01 00:00:00     3
2024-01-01 00:00:03    12
2024-01-01 00:00:06    21
2024-01-01 00:00:09     9
Freq: 3s, dtype: Int64

In this particular case, resample creates buckets using the ranges of [00:00:00-00:00:03), [00:00:03-
00:00:06), [00:00:06-00:00:09), and [00:00:09-00:00:12). For each of those intervals, the left 
square bracket indicates that the interval is closed on the left side (i.e., it includes those values). By 
contrast, the right parentheses indicate an open interval that does not include the value.

Technically speaking, all of these intervals created by the resample with a frequency of "3s" are “left-
closed” by default, but the closed= argument can be used to change that behavior, effectively producing 
intervals with the values of (23:59:57-00:00:00], (00:00:00-00:00:03], (00:00:03-00:00:06], and 
(00:00:06-00:00:09]:

ser.resample("3s", closed="right").sum()

2023-12-31 23:59:57     0
2024-01-01 00:00:00     6
2024-01-01 00:00:03    15
2024-01-01 00:00:06    24
Freq: 3s, dtype: Int64

With the frequency of "3s", the left value of the interval is used as the value in the resulting row index. 
That behavior can also be changed through the use of the label= argument:

ser.resample("3s", closed="right", label="right").sum()

2024-01-01 00:00:00     0
2024-01-01 00:00:03     6
2024-01-01 00:00:06    15
2024-01-01 00:00:09    24
Freq: 3s, dtype: Int64
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One last caveat you may want to be aware of is that the default values for the closed= and label= ar-
guments depend upon the frequency that you have chosen. Our frequency of "3s" creates left-closed 
intervals, and uses the left interval value in the row index. However, if we had chosen a frequency that 
is oriented toward the end of a period, like ME or YE (month-end and year-end, respectively), pandas 
will instead produce right-closed intervals and use the right label:

ser.resample("ME").sum()

2024-01-31    45
Freq: ME, dtype: Int64

While we are on the topic of downsampling, let’s take a look at a different frequency, like days ("D"). At 
this level, pd.Series.resample can be a convenient way to aggregate daily events into weekly buckets. 
To see how this works, let’s just look at the first 10 days of 2024:

index = pd.date_range(start="2024-01-01", freq="D", periods=10)
ser = pd.Series(range(10), index=index, dtype=pd.Int64Dtype())
ser

2024-01-01    0
2024-01-02    1
2024-01-03    2
2024-01-04    3
2024-01-05    4
2024-01-06    5
2024-01-07    6
2024-01-08    7
2024-01-09    8
2024-01-10    9
Freq: D, dtype: Int64

Without looking up which day of the week each of these falls on, we can use pd.DatetimeIndex.
dt.day_name() to ground ourselves:

ser.index.day_name()

Index(['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday',
      'Sunday', 'Monday', 'Tuesday', 'Wednesday'],
     dtype='object')

By default, resampling into weekly buckets will create periods that end on a Sunday:

ser.resample("W").sum()

2024-01-07    21
2024-01-14    24
Freq: W-SUN, dtype: Int64
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You are free, however, to pick any day of the week for your period to end on. In the US, considering 
Saturday to be the end of the week is arguably more common than Sunday:

ser.resample("W-SAT").sum()

2024-01-06    15
2024-01-13    30
Freq: W-SAT, dtype: Int64

Though, you can pick any day of the week:

ser.resample("W-WED").sum()

2024-01-03     3
2024-01-10    42
Freq: W-WED, dtype: Int64

Now that we have covered the topic of downsampling (i.e., going from a more granular to a less granu-
lar frequency), let’s take a look at going in the opposite direction with the process of upsampling. Our 
data shows events that happen every day, but what if we wanted to create a time series that measured 
events every 12 hours?

Fortunately, the API to achieve this is not all that different. You can still use pd.Series.resample to 
start, but will subsequently want to chain in a call to pandas.core.resample.Resampler.asfreq:

ser.resample("12h").asfreq().iloc[:5]

2024-01-01 00:00:00       0
2024-01-01 12:00:00    <NA>
2024-01-02 00:00:00       1
2024-01-02 12:00:00    <NA>
2024-01-03 00:00:00       2
Freq: 12h, dtype: Int64

Intervals generated during the upsample, which have no associated activity, are assigned a missing 
value. Left alone, there is likely not a ton of value to upsampling like this. However, pandas offers a 
few ways to fill in this missing data.

The first approach to handle missing data may be to forward fill or backward fill values, so that missing 
values are just replaced with whatever record came preceding or following, respectively.

A forward fill will generate values of [0, 0, 1, 1, 2, 2, ...]:

ser.resample("12h").asfreq().ffill().iloc[:6]

2024-01-01 00:00:00    0
2024-01-01 12:00:00    0
2024-01-02 00:00:00    1
2024-01-02 12:00:00    1
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2024-01-03 00:00:00    2
2024-01-03 12:00:00    2
Freq: 12h, dtype: Int64

Whereas a backward fill yields [0, 1, 1, 2, 2, 3, ...]:

ser.resample("12h").asfreq().bfill().iloc[:6]

2024-01-01 00:00:00    0
2024-01-01 12:00:00    1
2024-01-02 00:00:00    1
2024-01-02 12:00:00    2
2024-01-03 00:00:00    2
2024-01-03 12:00:00    3
Freq: 12h, dtype: Int64

An arguably more robust solution can be had in the form of interpolation, where the values preceding 
and following a missing value can be used to mathematically guess the missing value. The default inter-
polation will be linear, essentially taking the average of the value before and after each missing value:

ser.resample("12h").asfreq().interpolate().iloc[:6]

2024-01-01 00:00:00    0.0
2024-01-01 12:00:00    0.5
2024-01-02 00:00:00    1.0
2024-01-02 12:00:00    1.5
2024-01-03 00:00:00    2.0
2024-01-03 12:00:00    2.5
Freq: 12h, dtype: Float64

There’s more…
In the introduction to this recipe, we mentioned that a resample was similar to a Group By. In fact, 
you could rewrite a resample using pd.DataFrame.groupby with a pd.Grouper argument.

Let’s once again look at a pd.Series with 10 records occurring every second:

index = pd.date_range(start="2024-01-01", periods=10, freq="s")
ser = pd.Series(range(10), index=index, dtype=pd.Int64Dtype())
ser

2024-01-01 00:00:00    0
2024-01-01 00:00:01    1
2024-01-01 00:00:02    2
2024-01-01 00:00:03    3
2024-01-01 00:00:04    4
2024-01-01 00:00:05    5
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2024-01-01 00:00:06    6
2024-01-01 00:00:07    7
2024-01-01 00:00:08    8
2024-01-01 00:00:09    9
Freq: s, dtype: Int64

A resample into three-second increments looks as follows:

ser.resample("3s").sum()

2024-01-01 00:00:00     3
2024-01-01 00:00:03    12
2024-01-01 00:00:06    21
2024-01-01 00:00:09     9
Freq: 3s, dtype: Int64

This would be rewritten to get the same result by passing in "3s" to the freq= argument of a pd.Grouper:

ser.groupby(pd.Grouper(freq="3s")).sum()

2024-01-01 00:00:00     3
2024-01-01 00:00:03    12
2024-01-01 00:00:06    21
2024-01-01 00:00:09     9
Freq: 3s, dtype: Int64

There is no requirement that you use pd.DataFrame.resample, and, in fact, you will find that the 
pd.Grouper approach works better when you must also group by non-datetime values. We will see 
this in action in the Calculating year-over-year changes in crime by category recipe later in this chapter.

Aggregating weekly crime and traffic accidents
So far in this chapter, we have taken a basic tour of pandas’ offerings for dealing with temporal data. 
Starting with small sample datasets has made it easy to visually inspect the output of our operations, 
but we are now at the point where we can start focusing on applications to “real world” datasets.

The Denver crime dataset is huge, with over 460,000 rows each marked with a datetime of when the 
crime was reported. As you will see in this recipe, we can use pandas to easily resample these events 
and ask questions like How many crimes were reported in a given week?.

How to do it
To start, let’s read in the crime dataset, setting our index as the REPORTED_DATE. This dataset was saved 
using pandas extension types, so there is no need to specify the dtype_backend= argument:

df = pd.read_parquet(
    "data/crime.parquet",
).set_index("REPORTED_DATE")
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df.head()

REPORTED_DATE           OFFENSE_TYPE_ID               OFFENSE_CATEGORY_ID      
2014-06-29 02:01:00     traffic-accident-dui-duid     traffic-accident        
2014-06-29 01:54:00     vehicular-eluding-no-chase    all-other-crimes        
2014-06-29 02:00:00     disturbing-the-peace          public-disorder         
2014-06-29 02:18:00     curfew                        public-disorder         
2014-06-29 04:17:00     aggravated-assault            aggravated-assault      

GEO_LON           NEIGHBORHOOD_ID             IS_CRIME         IS_TRAFFIC   
-105.000149       cbd                         0                1
-105.020719       ath-mar-park                1                0
-105.001552       sunny-side                  1                0
-105.018557       college-view-south-platte   1                0
5 rows × 7 columns

To count the number of crimes per week, we need to form a group for each week, which we know we 
can do with pd.DataFrame.resample. Chaining a call to the .size method will count the number of 
crimes within each week for us:

df.resample("W").size()

REPORTED_DATE
2012-01-08     877
2012-01-15    1071
2012-01-22     991
2012-01-29     988
2012-02-05     888
             ...
2017-09-03    1956
2017-09-10    1733
2017-09-17    1976
2017-09-24    1839
2017-10-01    1059
Freq: W-SUN, Length: 300, dtype: int64

We now have the weekly crime count as a pd.Series with the new index incrementing one week at 
a time. There are a few things that happen by default that are very important to understand. Sunday 
is chosen as the last day of the week and is also the date used to label each element in the resulting 
pd.Series. For instance, the first index value, January 8, 2012, is a Sunday. There were 877 crimes 
committed during that week ending on the 8th. The week of Monday, January 9, to Sunday, January 
15, recorded 1,071 crimes. Let’s do some sanity checks and ensure that our resampling is doing this:

len(df.sort_index().loc[:'2012-01-08'])
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877

len(df.sort_index().loc['2012-01-09':'2012-01-15'])

1071

To get an overall understanding of the trend, it would be helpful to create a plot from our resampled 
data:

import matplotlib.pyplot as plt
plt.ion()
df.resample("W").size().plot(title="All Denver Crimes")

The Denver crime dataset has all crime and traffic accidents together in one table and separates them 
through the binary columns IS_CRIME and IS_TRAFFIC. Using pd.DataFrame.resample, we can se-
lect just these two columns and summarize them over a given period. For a quarterly summary, you 
would write:

df.resample("QS")[["IS_CRIME", "IS_TRAFFIC"]].sum().head()

              IS_CRIME  IS_TRAFFIC
REPORTED_DATE
2012-01-01    7882      4726
2012-04-01    9641      5255
2012-07-01    10566     5003
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2012-10-01    9197      4802
2013-01-01    8730      4442

Once again, a line plot to understand the trend may be more helpful:

df.resample("QS")[["IS_CRIME", "IS_TRAFFIC"]].sum().plot(
  color=["black", "lightgrey"],
  title="Denver Crime and Traffic Accidents"
)

Calculating year-over-year changes in crime by category
Often, users want to know How much did this change year over year? or …quarter over quarter?. In spite 
of the frequency with which these questions are asked, writing algorithms to try and answer them 
can be rather complex and time-intensive. Fortunately, pandas gives you much of this functionality 
out of the box, trivializing much of the effort.

To try and make things more complicated, in this recipe, we are going to ask the question of how 
much did it change by category? Adding by category into the equation will prevent us from directly us-
ing pd.DataFrame.resample, but as you will see, pandas can still very easily help you answer these 
detailed types of questions.
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How to do it
Let’s read in the crime dataset, but this time, we are not going to set the REPORTED_DATE as our index:

df = pd.read_parquet(
    "data/crime.parquet",
)
df.head()

   OFFENSE_TYPE_ID  OFFENSE_CATEGORY_ID  REPORTED_DATE  …  NEIGHBORHOOD_ID  IS_
CRIME   IS_TRAFFIC
0   traffic-accident-dui-duid   traffic-accident   2014-06-29 02:01:00   …   
cbd   0   1
1   vehicular-eluding-no-chase   all-other-crimes   2014-06-29 01:54:00   …   
east-colfax   1   0
2   disturbing-the-peace   public-disorder   2014-06-29 02:00:00   …   athmar-
park   1   0
3   curfew   public-disorder   2014-06-29 02:18:00   …   sunny-side   1   0
4   aggravated-assault   aggravated-assault   2014-06-29 04:17:00   …   
college-view-south-platte   1   0
5 rows × 8 columns

By now, you should be comfortable enough with reshaping to answer questions like, How many crimes 
happened in a given year?. But what if we wanted to drill into that analysis and decide how it changed 
within each OFFENSE_CATEGORY_ID?

Since pd.DataFrame.resample just works with a pd.DatetimeIndex, it cannot be used to help us group 
by OFFENSE_CATEGORY_ID and REPORTED_DATE. However, the combination of pd.DataFrame.groupby 
with a pd.Grouper argument can help us express this:

df.groupby([
    "OFFENSE_CATEGORY_ID",
    pd.Grouper(key="REPORTED_DATE", freq="YS"),
], observed=True).agg(
    total_crime=pd.NamedAgg(column="IS_CRIME", aggfunc="sum"),
)

                                      total_crime
OFFENSE_CATEGORY_ID    REPORTED_DATE
aggravated-assault     2012-01-01           1707
                       2013-01-01           1631
                       2014-01-01           1788
                       2015-01-01           2007
                       2016-01-01           2139
…                               …              …
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white-collar-crime     2013-01-01            771
                       2014-01-01           1043
                       2015-01-01           1319
                       2016-01-01           1232
                       2017-01-01           1058
90 rows × 1 columns

As a technical aside, the observed=True argument suppresses a warning about using categorical data 
types in a Group By in the pandas 2.x release; future readers may not need to specify this argument, 
as it will become the default.

To add in the “year over year” component, we can try out the pd.Series.pct_change method, which 
expresses each record as a percentage of the one directly preceding it:

df.groupby([
    "OFFENSE_CATEGORY_ID",
    pd.Grouper(key="REPORTED_DATE", freq="YS"),
], observed=True).agg(
    total_crime=pd.NamedAgg(column="IS_CRIME", aggfunc="sum"),
).assign(
    yoy_change=lambda x: x["total_crime"].pct_change().astype(pd.
Float64Dtype())
).head(10)

                                          total_crime     yoy_change
OFFENSE_CATEGORY_ID      REPORTED_DATE
aggravated-assault          2012-01-01           1707           <NA>
                            2013-01-01           1631      -0.044523
                            2014-01-01           1788        0.09626
                            2015-01-01           2007       0.122483
                            2016-01-01           2139        0.06577
                            2017-01-01           1689      -0.210379
all-other-crimes            2012-01-01           1999       0.183541
                            2013-01-01           9377       3.690845
                            2014-01-01          15507       0.653727
                            2015-01-01          15729       0.014316

Unfortunately, this is not giving us exactly what we want. If you look closely at the first yoy_change 
value for all-other-crimes, it shows 0.183541. However, this value is taken by dividing 1999 by 1689, 
with 1689 coming from the aggravated-assault category. By default, pd.Series.pct_change is not 
doing anything intelligent – it just divides the current row by the former.

Fortunately, there is a way to fix that, by once again using a Group By. Because our OFFENSE_CATEGORY_
ID is the first index level, we can use a second Group By with level=0 and call the .pct_change method 
on that. This will prevent us from accidentally comparing all-other-crimes to aggravated-assault:



Chapter 9 319

yoy_crime = df.groupby([
    "OFFENSE_CATEGORY_ID",
    pd.Grouper(key="REPORTED_DATE", freq="YS"),
], observed=True).agg(
    total_crime=pd.NamedAgg(column="IS_CRIME", aggfunc="sum"),
).assign(
    yoy_change=lambda x: x.groupby(
        level=0, observed=True
    ).pct_change().astype(pd.Float64Dtype())
)

yoy_crime.head(10)

                                         total_crime     yoy_change
OFFENSE_CATEGORY_ID     REPORTED_DATE
aggravated-assault         2012-01-01           1707           <NA>
                           2013-01-01           1631      -0.044523
                           2014-01-01           1788        0.09626
                           2015-01-01           2007       0.122483
                           2016-01-01           2139        0.06577
                           2017-01-01           1689      -0.210379
all-other-crimes           2012-01-01           1999           <NA>
                           2013-01-01           9377       3.690845
                           2014-01-01          15507       0.653727
                           2015-01-01          15729       0.014316

For a more visual representation, we may want to plot out the total crime and year-over-year change 
side by side for all of our different groups, building off of what we learned about visualizations back 
in Chapter 6, Visualization.

For brevity and to save some visual space, we are just going to plot a few crime types:

crimes = tuple(("aggravated-assault", "arson", "auto-theft"))
fig, axes = plt.subplots(nrows=len(crimes), ncols=2, sharex=True)

for idx, crime in enumerate(crimes):
    crime_df = yoy_crime.loc[crime]
    ax0 = axes[idx][0]
    ax1 = axes[idx][1]
    crime_df.plot(kind="bar", y="total_crime", ax=ax0, legend=False)
    crime_df.plot(kind="bar", y="yoy_change", ax=ax1, legend=False)

    xlabels = [x.year for x in crime_df.index]
    ax0.set_xticklabels(xlabels)
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    ax0.set_title(f"{crime} total")
    ax1.set_xticklabels(xlabels)
    ax1.set_title(f"{crime} YoY")
    ax0.set_xlabel("")
    ax1.set_xlabel("")

plt.tight_layout()

Accurately measuring sensor-collected events with 
missing values
Missing data can have an immense impact on your data analysis, but it may not always be clear when 
and to what extent. With detailed and high-volume transactions, it won’t always be immediately obvious 
that a dataset is incomplete. Extra attention must be paid to measure and appropriately impute missing 
transactions; otherwise, any aggregations performed on such datasets may show an incomplete or 
even entirely wrong picture of what happened.

For this recipe, we are going to use the Smart Green Infrastructure Monitoring Sensors - Historical data-
set provided by the Chicago Data Portal. This dataset contains a collection of sensors that measured 
different environmental factors in the city of Chicago, like water runoff and temperature. In theory, 
the sensors should have constantly run and reported back values, but in practice, they were prone to 
intermittent outages that resulted in a loss of data.
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How to do it
While the Chicago Data Portal provides the source data as a CSV file spanning the years 2017 and 2018, 
for this book, we are going to work with a curated Parquet file that only covers the months of June 
2017 through October 2017. This alone provides almost 5 million rows of data, which we can load with 
a simple pd.read_parquet call:

df = pd.read_parquet(
    "data/sgi_monitoring.parquet",
    dtype_backend="numpy_nullable",
)

df.head()

    Measurement Title   Measurement Description   Measurement Type   …   
Latitude   Longitude   Location
0   UI Labs Bioswale NWS Proba-bility of Precipi-tation <NA>   TimeWin-
dowBounda-ry   …   41.90715   -87.653996   POINT (-87.653996 41.90715)
1   UI Labs Bioswale NWS Proba-bility of Precipi-tation <NA>   TimeWin-
dowBounda-ry   …   41.90715   -87.653996   POINT (-87.653996 41.90715)
2   UI Labs Bioswale NWS Proba-bility of Precipi-tation <NA>   TimeWin-
dowBounda-ry   …   41.90715   -87.653996   POINT (-87.653996 41.90715)
3   UI Labs Bioswale NWS Proba-bility of Precipi-tation <NA>   TimeWin-
dowBounda-ry   …   41.90715   -87.653996   POINT (-87.653996 41.90715)
4   UI Labs Bioswale NWS Proba-bility of Precipi-tation <NA>   TimeWin-
dowBounda-ry   …   41.90715   -87.653996   POINT (-87.653996 41.90715)
5 rows × 16 columns

The Measurement Time column should contain the datetime data for when each event occurred, but 
upon closer inspection, you will see that pandas did not recognize this as a datetime type:

df["Measurement Time"].head()

0    07/26/2017 07:00:00 AM
1    06/23/2017 07:00:00 AM
2    06/04/2017 07:00:00 AM
3    09/19/2017 07:00:00 AM
4    06/07/2017 07:00:00 AM
Name: Measurement Time, dtype: string

As such, the first step in exploring our data will be to convert this to the real datetime type using pd.to_
datetime. While it isn’t clear from the data itself, the Chicago Data Portal documentation notes that 
these values are local to the Chicago timezone, which we can use pd.Series.dt.tz_localize to set:

df["Measurement Time"] = pd.to_datetime(
    df["Measurement Time"]
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).dt.tz_localize("US/Central")

df["Measurement Time"]

0         2017-07-26 07:00:00-05:00
1         2017-06-23 07:00:00-05:00
2         2017-06-04 07:00:00-05:00
3         2017-09-19 07:00:00-05:00
4         2017-06-07 07:00:00-05:00
                    ...           
4889976   2017-08-26 20:11:55-05:00
4889977   2017-08-26 20:10:54-05:00
4889978   2017-08-26 20:09:53-05:00
4889979   2017-08-26 20:08:52-05:00
4889980   2017-08-26 20:07:50-05:00
Name: Measurement Time, Length: 4889981, dtype: datetime64[ns, US/Central]

As mentioned, this dataset collects feedback from sensors that measure different environmental fac-
tors, like water runoff and temperature. Inspecting the Measurement Type and Units column should 
give us a better idea of what we are looking at:

df[["Measurement Type", "Units"]].value_counts()

Measurement Type         Units                           
Temperature              degrees Celsius                     721697
DifferentialPressure     pascals                             721671
WindSpeed                meters per second                   721665
Temperature              millivolts                          612313
SoilMoisture             millivolts                          612312
RelativeHumidity         percent                             389424
CumulativePrecipitation  count                               389415
WindDirection            degrees from north                  389413
SoilMoisture             Percent Volumetric Water Content    208391
CumulativePrecipitation  inches                              122762
TimeWindowBoundary       universal coordinated time             918
Name: count, dtype: int64
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Because the different sensors produce different measurements for different types of data, we must be 
careful not to compare more than one sensor at a time. For this analysis, we are going to just focus on 
the TM1 Temp Sensor, which only measures the temperature using a unit of millivolts. Additionally, 
we are going to single in on one Data Stream ID, which the Chicago Data Portal documents as:

df[df["Measurement Description"] == "TM1 Temp Sensor"]["Data Stream ID"].value_
counts()

Data Stream ID
33305    211584
39197    207193
39176    193536
Name: count, dtype: Int64

For this analysis, we are going to only look at Data Stream ID 39176. After filtering, we are also going 
to set Measurement Time as our row index and sort it:

mask = (
    (df["Measurement Description"] == "TM1 Temp Sensor")
    & (df["Data Stream ID"] == 39176)
)
df = df[mask].set_index("Measurement Time").sort_index()
df[["Measurement Type", "Units"]].value_counts()

Measurement Type  Units     
Temperature       millivolts    193536
Name: count, dtype: int64

The Measurement Value column contains the actual millivolts reading from the sensors. Let’s start 
by resampling to the daily level and using mean aggregation on that column to try and understand 
our data at a higher level:

df.resample("D")["Measurement Value"].mean().plot()

 An identifier for the measurement type and location. All records with the same value 
should be comparable.
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Almost immediately, we can see some issues with our data. Most notably, there are two gaps where 
the lines break toward the end of July and middle of October, which are almost assuredly records that 
were not collected due to the sensors being down.

Let’s try narrowing our date range so that we can more clearly see what days are missing from our 
dataset:

df.loc["2017-07-24":"2017-08-01"].resample("D")["Measurement Value"].mean()

Measurement Time
2017-07-24 00:00:00-05:00    3295.908956
2017-07-25 00:00:00-05:00    3296.152968
2017-07-26 00:00:00-05:00    3296.460156
2017-07-27 00:00:00-05:00    3296.697269
2017-07-28 00:00:00-05:00    3296.328725
2017-07-29 00:00:00-05:00    3295.882705
2017-07-30 00:00:00-05:00    3295.800989
2017-07-31 00:00:00-05:00           <NA>
2017-08-01 00:00:00-05:00    3296.126888
Freq: D, Name: Measurement Value, dtype: Float64
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As you can see, we have no data collected at all for July 31, 2017. To fix this, we can simply chain in 
a call to pd.Series.interpolate, which will fill in the missing days with the average of the values 
directly preceding and following:

df.resample("D")["Measurement Value"].mean().interpolate().plot()

Voila! Now, we no longer have any gaps in our data collection, yielding a visually appealing, fully 
drawn-in visual.

There’s more…
How you handle missing data also depends on the aggregation function that you are using. In this 
recipe, the mean is a relatively forgiving function; missing transactions can be masked by the fact 
that they do not materially change the average being produced.

However, if we were looking to measure the daily summation of our readings, we would still have some 
more work to do. For starters, let’s see what a daily-resampled summation of these readings looks like:

df.resample("D")["Measurement Value"].sum().plot()
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Things look more dire than in the case of wanting the average. We still see huge dips in late July and 
October, which we know go back to a lack of data. However, when we dive into the data at the end 
of July that we saw before, the summation will reveal a few more interesting things about our data:

df.loc["2017-07-30 15:45:00":"2017-08-01"].head()

    Measurement Title   Measurement Description   Measurement Type    …   
Latitude   Longitude   Location   Measurement Time
2017-07-30 15:48:44-05:00   Argyle - Thun-der 1: TM1 Temp Sensor   TM1 
Temp Sensor   Temperature   …   41.973086   -87.659725   POINT (-87.659725 
41.973086)
2017-07-30 15:49:45-05:00   Argyle - Thun-der 1: TM1 Temp Sensor   TM1 
Temp Sensor   Temperature   …   41.973086   -87.659725   POINT (-87.659725 
41.973086)
2017-07-30 15:50:46-05:00   Argyle - Thun-der 1: TM1 Temp Sensor   TM1 
Temp Sensor   Temperature   …   41.973086   -87.659725   POINT (-87.659725 
41.973086)
2017-08-01 15:21:33-05:00   Argyle - Thun-der 1: TM1 Temp Sensor   TM1 
Temp Sensor   Temperature   …   41.973086   -87.659725   POINT (-87.659725 
41.973086)
2017-08-01 15:22:34-05:00   Argyle - Thun-der 1: TM1 Temp Sensor   TM1 
Temp Sensor   Temperature   …   41.973086   -87.659725   POINT (-87.659725 
41.973086)
5 rows × 15 columns
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It wasn’t just the day of July 31 when we had an outage. The mean aggregation we did before masked 
the fact that the sensors went down sometime after 15:50:46 on July 30 and did not come back online 
until 15:21:33 on August 1 – an outage of almost 2 full days.

Another interesting thing to try and measure is the expected frequency with which our data should be 
populated. From an initial glance at our data, it appears as if each minute should supply a data point, 
but if you try to measure how many events were collected each hour, you will see a different story:

df.resample("h").size().plot()

Many of the hourly intervals appear to have close to 60 events collected, although surprisingly, only 
1 hour actually collected a full 60:

df.resample("h").size().loc[lambda x: x >= 60]

Measurement Time
2017-07-05 15:00:00-05:00    60
Freq: h, dtype: int64

To fix this, let’s try once again to resample our data by the minute and interpolate where results are 
missing:

df.resample("min")["Measurement Value"].sum().interpolate()

Measurement Time
2017-06-01 00:00:00-05:00    3295.0
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2017-06-01 00:01:00-05:00    3295.0
2017-06-01 00:02:00-05:00    3295.0
2017-06-01 00:03:00-05:00    3295.0
2017-06-01 00:04:00-05:00    3295.0
                             ...  
2017-10-30 23:55:00-05:00    3293.0
2017-10-30 23:56:00-05:00    3293.0
2017-10-30 23:57:00-05:00       0.0
2017-10-30 23:58:00-05:00    3293.0
2017-10-30 23:59:00-05:00    3293.0
Freq: min, Name: Measurement Value, Length: 218880, dtype: Float64

There is a slight caveat users should be aware of with the summation of missing values. By default, 
pandas will sum all missing values to 0 instead of a missing value. In the case of our resample to 
minutes, the data point at 2017-10-30 23:57:00 had no values to sum, so pandas returned the value of 
0 instead of a missing value indicator.

We need a missing value indicator for the resample to work. Luckily, we can still get this by providing 
the sum method with a min_count= argument that is 1 (or greater), essentially establishing how many 
non-missing values must be seen to yield a non-missing result:

interpolated = df.resample("min")["Measurement Value"].sum(min_count=1).
interpolate()
interpolated

Measurement Time
2017-06-01 00:00:00-05:00    3295.0
2017-06-01 00:01:00-05:00    3295.0
2017-06-01 00:02:00-05:00    3295.0
2017-06-01 00:03:00-05:00    3295.0
2017-06-01 00:04:00-05:00    3295.0
                             ...  
2017-10-30 23:55:00-05:00    3293.0
2017-10-30 23:56:00-05:00    3293.0
2017-10-30 23:57:00-05:00    3293.0
2017-10-30 23:58:00-05:00    3293.0
2017-10-30 23:59:00-05:00    3293.0
Freq: min, Name: Measurement Value, Length: 218880, dtype: Float64

As you can see, the value for 2017-10-30 23:57:00 now shows as 3293, which was interpolated by taking 
both the preceding and following values.

With that out of the way, let’s now confirm that we always see 60 events per hour:

interpolated.resample("h").size().plot()
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That check looks good, so now, we can try to downsample again back to the daily level and see what 
the overall summation trend looks like:

interpolated.resample("D").sum().plot()
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This is a drastically different graph from what we started with. We not only removed the extreme 
outliers from influencing the y-axis of our graph but we can also see a general lift in the lower bounds 
of values. In our original graph, the lower bound of the total millivolts measured was commonly in 
the range of 3.5–4 million per day, but now, our lower bound appears somewhere around 4.74 million.

In effect, by paying attention to and handling missing values in our time series data, we were able to 
yield many different insights from our dataset. In relatively few lines of code, pandas has helped us 
clearly and concisely get our data to a much better place than where we started.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/pandas

Leave a Review! 
Thank you for purchasing this book from Packt Publishing—we hope you enjoy it! Your feedback is 
invaluable and helps us improve and grow. Once you’ve completed reading it, please take a moment to 
leave an Amazon review; it will only take a minute, but it makes a big difference for readers like you.

Scan the QR code below to receive a free ebook of your choice.

https://packt.link/NzOWQ
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10
General Usage and Performance 
Tips

At this point in the book, we have covered a rather large part of the pandas library while walking 
through sample applications to reinforce good usage. Equipped with all of this knowledge, you are 
now well prepared to step into the real world and start applying everything you have learned to your 
data analysis problems.

This chapter will offer some tips and tricks you should keep in mind as you go out on your own. The 
recipes presented in this chapter are common mistakes I see by pandas users of all experience levels. 
While well-intentioned, improper usage of pandas constructs can leave a lot of performance on the 
table. When your datasets are smaller in size that may not be a big issue, but data has the tendency to 
grow, not to retreat in size. Using proper idioms and avoiding the maintenance burden of inefficient 
code can yield significant time and money savings for your organization.

We are going to cover the following recipes in this chapter:

•	 Avoid dtype=object
•	 Be cognizant of data sizes
•	 Use vectorized functions instead of loops
•	 Avoid mutating data
•	 Dictionary-encode low cardinality data
•	 Test-driven development features

Avoid dtype=object
Using dtype=object to store strings is one of the most error-prone and inefficient things you can do 
in pandas. Unfortunately, for the longest time, dtype=object was the only way to work with string 
data; this wasn’t “solved” until the 1.0 release.
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I intentionally put “solved” in quotes because, while pandas 1.0 did introduce the pd.StringDtype(), 
it was not used by default by many construction and I/O methods until the 3.0 release. In effect, unless 
you told pandas otherwise, you would end up with dtype=object for all your string data in the 2.x 
series. For what it’s worth, the pd.StringDtype() that was introduced in 1.0 helped to assert you only 
stored strings, but it was never optimized for performance until the pandas 3.0 release.

If you are using the 3.0 release of pandas and beyond, chances are you will still come across legacy 
code that reads like ser = ser.astype(object). More often than not, such calls should be replaced 
with ser = ser.astype(pd.StringDtype()), unless you truly do need to store Python objects in a 
pd.Series. Unfortunately, there is no true way to know the intent, so you as a developer should be 
aware of the pitfalls of using dtype=object and how to identify if it can suitably be replaced with the 
pd.StringDtype().

How to do it
We already covered some of the issues with using dtype=object back in Chapter 3, Data Types, but it 
is worth restating and expanding upon some of those issues here.

For an easy comparison, let’s create two pd.Series objects with identical data, where one uses the 
object data type and the other uses the pd.StringDtype:

ser_obj = pd.Series(["foo", "bar", "baz"] * 10_000, dtype=object)
ser_str = pd.Series(["foo", "bar", "baz"] * 10_000, dtype=pd.StringDtype())

Attempting to assign a non-string value to ser_str will fail:

ser_str.iloc[0] = False

TypeError: Cannot set non-string value 'False' into a StringArray.

By contrast, the object-typed pd.Series will gladly accept our Boolean value:

ser_obj.iloc[0] = False

In turn, this just ends up obfuscating where issues with your data may occur. With pd.StringDtype, 
the point of failure was very obvious when we tried to assign non-string data. With the object data type, 
you may not discover there is a problem until later in your code, when you try some string operation 
like capitalization:

ser_obj.str.capitalize().head()

0    NaN
1    Bar
2    Baz
3    Foo
4    Bar
dtype: object
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Instead of raising an error, pandas just decided to set our False entry in the first row to a missing 
value. Odds are just silently setting things to missing values like that is not the behavior you wanted, 
but with the object data type, you lose a lot of control over your data quality.

If you are working with pandas 3.0 and beyond, you will also see that, when PyArrow is installed, 
pd.StringDtype becomes significantly faster. Let’s recreate our pd.Series objects to measure this:

ser_obj = pd.Series(["foo", "bar", "baz"] * 10_000, dtype=object)
ser_str = pd.Series(["foo", "bar", "baz"] * 10_000, dtype=pd.StringDtype())

For a quick timing comparison, let’s use the timeit module, built into the standard library:

import timeit
timeit.timeit(ser_obj.str.upper, number=1000)

2.2286621460007154

Compare that runtime to the same values but with the proper pd.StringDtype:

timeit.timeit(ser_str.str.upper, number=1000)

2.7227514309997787

Unfortunately, users prior to the 3.0 release will not see any performance difference, but the data 
validation alone is worth it to move away from dtype=object.

So what is the easiest way to avoid dtype=object? If you are fortunate enough to be working with the 
3.0 release and beyond of pandas, you will naturally not run into this data type as often, as a natural 
evolution in the library. Even still, and for users that may still be using the pandas 2.x series, I advise 
using the dtype_backend="numpy_nullable" argument with I/O methods:

import io
data = io.StringIO("int_col,string_col\n0,foo\n1,bar\n2,baz")

data.seek(0)
pd.read_csv(data, dtype_backend="numpy_nullable").dtypes

int_col                Int64
string_col    string[python]
dtype: object

If you are constructing a pd.DataFrame by hand, you can use pd.DataFrame.convert_dtypes paired 
with the same dtype_backend="numpy_nullable" argument:

df = pd.DataFrame([
    [0, "foo"],
    [1, "bar"],
    [2, "baz"],
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], columns=["int_col", "string_col"])
df.convert_dtypes(dtype_backend="numpy_nullable").dtypes

int_col                Int64
string_col    string[python]
dtype: object

Please note that the numpy_nullable term is a bit of a misnomer. The argument would have probably 
been better named pandas_nullable or even just pandas or nullable, but when it was first intro-
duced, it was strongly tied to the NumPy system still. Over time, the term numpy_nullable stuck, but 
the types moved away from using NumPy. Beyond the publication of this book, there may be a more 
suitable value to use to get the same behavior, which essentially asks for optimal data types in pandas 
that can support missing values.

While using dtype=object is most commonly misused for strings, it also exposes some rough edges 
with datetimes. I commonly see code like this from new users trying to create what they think is a 
pd.Series of dates:

import datetime

ser = pd.Series([
    datetime.date(2024, 1, 1),
    datetime.date(2024, 1, 2),
    datetime.date(2024, 1, 3),
])

ser

0    2024-01-01
1    2024-01-02
2    2024-01-03
dtype: object

While this is a logical way to try and accomplish the task at hand, the problem is that pandas does not 
have a true date type. Instead, these get stored in an object data type array using the datetime.date 
type from the Python standard library. This rather unfortunate usage of Python objects obfuscates the 
fact that you are trying to work with dates, and subsequently trying to use the pd.Series.dt accessor 
will throw an error:

ser.dt.year

AttributeError: Can only use .dt accessor with datetimelike values

Back in Chapter 3, Data Types, we talked briefly about the PyArrow date32 type, which would be a 
more native solution to this problem:

import datetime
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ser = pd.Series([
    datetime.date(2024, 1, 1),
    datetime.date(2024, 1, 2),
    datetime.date(2024, 1, 3),
], dtype=pd.ArrowDtype(pa.date32()))

ser

0    2024-01-01
1    2024-01-02
2    2024-01-03
dtype: date32[day][pyarrow]

This will then unlock the pd.Series.dt attributes for use:

ser.dt.year

0    2024
1    2024
2    2024
dtype: int64[pyarrow]

I find this nuance rather unfortunate and hope future versions of pandas will be able to abstract these 
issues away, but nonetheless, they are present at the time of publication and may be for some time.

In spite of all of the downsides that I have highlighted with respect to dtype=object, it still does have 
its uses when dealing with messy data. Sometimes, you may not know anything about your data and 
just need to inspect it before making further decisions. The object data type gives you the flexibility to 
load essentially any data and apply the same pandas algorithms to it. While these algorithms may not 
be very efficient, they still give you a consistent way to interact with and explore your data, ultimately 
buying you time to figure out how to best cleanse it and store it in a more proper data form. For this 
reason, I consider dtype=object best as a staging area – I would not advise keeping your types in it, 
but the fact that it buys you time to make assertions about your data types can be an asset.

Be cognizant of data sizes
As your datasets grow larger, you may find that you have to pick more optimal data types to ensure 
your pd.DataFrame can still fit into memory.

Back in Chapter 3, Data Types, we discussed the different integral types and how they are a trade-off 
between memory usage and capacity. When dealing with untyped data sources like CSV and Excel 
files, pandas will err on the side of using too much memory as opposed to picking the wrong capacity. 
This conservative approach can lead to inefficient usage of your system’s memory, so knowing how 
to optimize that can make the difference between loading a file and receiving an OutOfMemory error.
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How to do it
To illustrate the impact of picking proper data types, let’s start with a relatively large pd.DataFrame 
composed of Python integers:

df = pd.DataFrame({
    "a": [0] * 100_000,
    "b": [2 ** 8] * 100_000,
    "c": [2 ** 16] * 100_000,
    "d": [2 ** 32] * 100_000,
})
df = df.convert_dtypes(dtype_backend="numpy_nullable")

df.head()

    a    b       c          d
0   0  256  65536  4294967296
1   0  256  65536  4294967296
2   0  256  65536  4294967296
3   0  256  65536  4294967296
4   0  256  65536  4294967296

With the integral types, determining how much memory each pd.Series requires is a rather sim-
ple exercise. With a pd.Int64Dtype, each record is a 64-bit integer that requires 8 bytes of memory. 
Alongside each record, the pd.Series associates a single byte that is either 0 or 1, telling us if the 
record is missing or not. Thus, in total, we need 9 bytes for each record, and with 100,000 records 
per pd.Series, our memory usage should come out to 900,000 bytes. pd.DataFrame.memory_usage 
confirms that this math is correct:

df.memory_usage()

Index       128
a        900000
b        900000
c        900000
d        900000
dtype: int64

If you know what the types should be, you could explicitly pick better sizes for the pd.DataFrame 
columns using .astype:

df.assign(
    a=lambda x: x["a"].astype(pd.Int8Dtype()),
    b=lambda x: x["b"].astype(pd.Int16Dtype()),
    c=lambda x: x["c"].astype(pd.Int32Dtype()),
).memory_usage()
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Index       128
a        200000
b        300000
c        500000
d        900000
dtype: int64

As a convenience, pandas can try and infer better sizes for you with a call pd.to_numeric. Passing the 
downcast="signed" argument will ensure that we continue to work with signed integers, and we will 
continue to pass dtype_backend="numpy_nullable" to ensure we get proper missing value support:

df.select_dtypes("number").assign(
    **{x: pd.to_numeric(
         y, downcast="signed", dtype_backend="numpy_nullable"
    ) for x, y in df.items()}
).memory_usage()

Index       128
a        200000
b        300000
c        500000
d        900000
dtype: int64

Use vectorized functions instead of loops
Python as a language is celebrated for its looping prowess. Whether you are working with a list or a 
dictionary, looping over an object in Python is a relatively easy task to perform, and can allow you to 
write really clean, concise code.

Even though pandas is a Python library, those same looping constructs are ironically an impediment 
to writing idiomatic, performant code. In contrast to looping, pandas offers vectorized computations, 
i.e, computations that work with all of the elements contained within a pd.Series but which do not 
require you to explicitly loop.

How to do it
Let’s start with a simple pd.Series constructed from a range:

ser = pd.Series(range(100_000), dtype=pd.Int64Dtype())

We could use the built-in pd.Series.sum method to easily calculate the summation:

ser.sum()

4999950000
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Looping over the pd.Series and accumulating your own result will yield the same number:

result = 0
for x in ser:
    result += x

result

4999950000

Yet the two code samples are nothing alike. With pd.Series.sum, pandas performs the summation 
of elements in a lower-level language like C, avoiding any interaction with the Python runtime. In 
pandas speak, we would refer to this as a vectorized function.

By contrast, the for loop is handled by the Python runtime, and as you may or may not be aware, 
Python is a much slower language than C.

To put some tangible numbers forth, we can run a simple timing benchmark using Python’s timeit 
module. Let’s start with pd.Series.sum:

timeit.timeit(ser.sum, number=1000)

0.04479526499926578

Let’s compare that to the Python loop:

def loop_sum():
    result = 0
    for x in ser:
        result += x

timeit.timeit(loop_sum, number=1000)

5.392715779991704

That’s a huge slowdown with the loop!

Generally, you should look to use the built-in vectorized functions of pandas for most of your analysis 
needs. For more complex applications, reach for the .agg, .transform, .map, and .apply methods, 
which were covered back in Chapter 5, Algorithms and How to Apply Them. You should be able to avoid 
using for loops in 99.99% of your analyses; if you find yourself using them more often, you should 
rethink your design, more than likely after a thorough re-read of Chapter 5, Algorithms and How to 
Apply Them.

The one exception to this rule where it may make sense to use a for loop is when dealing with a 
pd.GroupBy object, which can be efficiently iterated like a dictionary:

df = pd.DataFrame({
    "column": ["a", "a", "b", "a", "b"],
    "value": [0, 1, 2, 4, 8],
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})
df = df.convert_dtypes(dtype_backend="numpy_nullable")

for label, group in df.groupby("column"):
    print(f"The group for label {label} is:\n{group}\n")

The group for label a is:
 column  value
0      a      0
1      a      1
3      a      4

The group for label b is:
 column  value
2      b      2
4      b      8

Avoid mutating data
Although pandas allows you to mutate data, the cost impact of doing so varies by data type. In some 
cases, it can be prohibitively expensive, so you will be best served trying to minimize mutations you 
have to perform at all costs.

How to do it
When thinking about data mutation, a best effort should be made to mutate before loading into a 
pandas structure. We can easily illustrate a performance difference by comparing the time to mutate 
a record after loading it into a pd.Series:

def mutate_after():
    data = ["foo", "bar", "baz"]
    ser = pd.Series(data, dtype=pd.StringDtype())
    ser.iloc[1] = "BAR"

timeit.timeit(mutate_after, number=1000)

0.041951814011554234

To the time it takes if the mutation was performed beforehand:

def mutate_before():
    data = ["foo", "bar", "baz"]
    data[1] = "BAR"
    ser = pd.Series(data, dtype=pd.StringDtype())



General Usage and Performance Tips340

timeit.timeit(mutate_before, number=1000)

0.019495725005981512

There’s more…
You can go down a technical rabbit hole trying to decipher the impact of mutating various data types 
in pandas, across all of the different versions. However, starting in pandas 3.0, the behavior started 
to become more consistent with the introduction of Copy-on-Write, which was proposed as part of 
PDEP-07. In essence, any time you try to mutate a pd.Series or pd.DataFrame, you end up with a 
copy of the original data.

While this behavior is now easier to anticipate, it also means that mutations are potentially very ex-
pensive, especially if you try to mutate a large pd.Series or pd.DataFrame.

Dictionary-encode low cardinality data
Back in Chapter 3, Data Types, we talked about the categorical data type, which can help to reduce 
memory usage by replacing occurrences of strings (or any data type really) with much smaller inte-
gral code. While Chapter 3, Data Types, provides a good technical deep dive, it is worth restating this 
as a best practice here, given how significant of a saving this can represent when working with low 
cardinality data, i.e, data where the ratio of unique values to the overall record count is relatively low.

How to do it
Just to drive home the point about memory savings, let’s create a low cardinality pd.Series. Our 
pd.Series is going to have 300,000 rows of data, but only three unique values of "foo", "bar", and "baz":

values = ["foo", "bar", "baz"]
ser = pd.Series(values * 100_000, dtype=pd.StringDtype())
ser.memory_usage()

2400128

Simply changing this to a categorical data type will yield massive memory improvements:

cat = pd.CategoricalDtype(values)
ser = pd.Series(values * 100_000, dtype=cat)
ser.memory_usage()

300260

Test-driven development features
Test-driven development (or TDD, for short) is a popular software development practice that aims to 
improve code quality and maintenance. At a high level, TDD starts with a developer creating tests that 
describe the expected functionality of their change. The tests start in a failed state, and the developer 
can become confident that their implementation is correct when the tests finally pass.
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Tests are often the first thing code reviewers look at when considering code changes (when contrib-
uting to pandas, tests are a must!). After a change with an accompanying test has been accepted, that 
same test will be re-run for any subsequent code changes, ensuring that your code base continues to 
work as expected over time. Generally, properly constructed tests can help your code base scale out, 
while mitigating the risk of regressions as you develop new features.

The pandas library exposes utilities that make writing tests for your pd.Series and pd.DataFrame 
objects possible through the pd.testing module, which we will review in this recipe.

How it works
The Python standard library offers the unittest module to declare and automate the execution of your 
tests. To create tests, you typically create a class that inherits from unittest.TestCase, and create 
methods on that class that make assertions about your program behavior.

In the following code sample, the MyTests.test_42 method is going to call unittest.TestCase.
assertEqual with two arguments, 21 * 2 and 42. Since those arguments are logically equal, the test 
execution will pass:

import unittest

class MyTests(unittest.TestCase):

    def test_42(self):
        self.assertEqual(21 * 2, 42)

def suite():
    suite = unittest.TestSuite()
    suite.addTest(MyTests("test_42"))
    return suite

runner = unittest.TextTestRunner()
runner.run(suite())

.
----------------------------------------------------------------------
Ran 1 test in 0.001s

OK
<unittest.runner.TextTestResult run=1 errors=0 failures=0>

Now let’s try to follow that same execution framework with pandas, but instead of comparing 21 * 2 
to 42, we are going to try and compare two pd.Series objects:

def some_cool_numbers():
    return pd.Series([42, 555, pd.NA], dtype=pd.Int64Dtype())
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class MyTests(unittest.TestCase):

    def test_cool_numbers(self):
        result = some_cool_numbers()
        expected = pd.Series([42, 555, pd.NA], dtype=pd.Int64Dtype())
        self.assertEqual(result, expected)

def suite():
    suite = unittest.TestSuite()
    suite.addTest(MyTests("test_cool_numbers"))
    return suite

runner = unittest.TextTestRunner()
runner.run(suite())

E
======================================================================
ERROR: test_cool_numbers (__main__.MyTests)
----------------------------------------------------------------------
Traceback (most recent call last):
 File "/tmp/ipykernel_79586/2361126771.py", line 9, in test_cool_numbers
   self.assertEqual(result, expected)
 File "/usr/lib/python3.9/unittest/case.py", line 837, in assertEqual
   assertion_func(first, second, msg=msg)
 File "/usr/lib/python3.9/unittest/case.py", line 827, in _baseAssertEqual
   if not first == second:
 File "/home/willayd/clones/Pandas-Cookbook-Third-Edition/lib/python3.9/site-
packages/pandas/core/generic.py", line 1577, in __nonzero__
   raise ValueError(
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), 
a.item(), a.any() or a.all().
----------------------------------------------------------------------
Ran 1 test in 0.004s

FAILED (errors=1)
<unittest.runner.TextTestResult run=1 errors=1 failures=0>

Well…that was surprising!

The underlying issue here is that the call to self.assertEqual(result, expected) executes the 
expression result == expected. If the result of that expression were True, the test would pass; an 
expression that returns False would fail the test.
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However, pandas overloads the equality operator for a pd.Series, so that instead of returning True 
or False, you actually get back another pd.Series with an element-wise comparison:

result = some_cool_numbers()
expected = pd.Series([42, 555, pd.NA], dtype=pd.Int64Dtype())
result == expected

0    True
1    True
2    <NA>
dtype: boolean

Since testing frameworks don’t know what to make of this, you will have to reach for custom functions 
in the pd.testing namespace. For pd.Series comparison, pd.testing.assert_series_equal is the 
right tool for the job:

import pandas.testing as tm

def some_cool_numbers():
    return pd.Series([42, 555, pd.NA], dtype=pd.Int64Dtype())

class MyTests(unittest.TestCase):

    def test_cool_numbers(self):
        result = some_cool_numbers()
        expected = pd.Series([42, 555, pd.NA], dtype=pd.Int64Dtype())
        tm.assert_series_equal(result, expected)

def suite():
    suite = unittest.TestSuite()
    suite.addTest(MyTests("test_cool_numbers"))
    return suite

runner = unittest.TextTestRunner()
runner.run(suite())

.
----------------------------------------------------------------------
Ran 1 test in 0.001s
 
OK
<unittest.runner.TextTestResult run=1 errors=0 failures=0>
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For completeness, let’s trigger an intentional failure and review the output:

def some_cool_numbers():
    return pd.Series([42, 555, pd.NA], dtype=pd.Int64Dtype())

class MyTests(unittest.TestCase):

    def test_cool_numbers(self):
        result = some_cool_numbers()
        expected = pd.Series([42, 555, pd.NA], dtype=pd.Int32Dtype())
        tm.assert_series_equal(result, expected)

def suite():
    suite = unittest.TestSuite()
    suite.addTest(MyTests("test_cool_numbers"))
    return suite

runner = unittest.TextTestRunner()
runner.run(suite())

F
======================================================================
FAIL: test_cool_numbers (__main__.MyTests)
----------------------------------------------------------------------
Traceback (most recent call last):
 File "/tmp/ipykernel_79586/2197259517.py", line 9, in test_cool_numbers
   tm.assert_series_equal(result, expected)
 File "/home/willayd/clones/Pandas-Cookbook-Third-Edition/lib/python3.9/site-
packages/pandas/_testing/asserters.py", line 975, in assert_series_equal
   assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}")
 File "/home/willayd/clones/Pandas-Cookbook-Third-Edition/lib/python3.9/site-
packages/pandas/_testing/asserters.py", line 421, in assert_attr_equal
   raise_assert_detail(obj, msg, left_attr, right_attr)
 File "/home/willayd/clones/Pandas-Cookbook-Third-Edition/lib/python3.9/site-
packages/pandas/_testing/asserters.py", line 614, in raise_assert_detail
   raise AssertionError(msg)
AssertionError: Attributes of Series are different

Attribute "dtype" are different
[left]:  Int64
[right]: Int32
----------------------------------------------------------------------
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Ran 1 test in 0.003s

FAILED (failures=1)
<unittest.runner.TextTestResult run=1 errors=0 failures=1>

Within the test failure traceback, pandas is telling us that the data types of the compared objects are 
not the same. The result of a call to some_cool_numbers returns a pd.Series with a pd.Int64Dtype, 
whereas our expectation was looking for a pd.Int32Dtype.

While these examples focused on using pd.testing.assert_series_equal, the equivalent method 
for a pd.DataFrame is pd.testing.assert_frame_equal. Both of these functions know how to handle 
potentially different row indexes, column indexes, values, and missing value semantics, and will report 
back informative errors to the test runner if expectations are not met.

There’s more…
This recipe used the unittest module because it is built into the Python language. However, many 
large Python projects, particularly in the scientific Python space, use the pytest library to write and 
execute unit tests.

In contrast to unittest, pytest abandons a class-based testing structure with setUp and tearDown 
methods, opting instead for a test fixture-based approach. A comparison of these two different testing 
paradigms can be found within the pytest documentation.

The pytest library also offers a rich set of plugins. Some plugins may aim to improve integration with 
third-party libraries (as is the case for pytest-django and pytest-sqlalchemy), whereas others may 
be focused on scaling your test suite to use all of your system’s resources (as is the case for pytest-
xdist). There are countless plugin use cases in between, so I strongly recommend giving pytest and 
its plugin ecosystem a look for testing your Python code bases.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/pandas

https://packt.link/pandas
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The pandas Ecosystem

While the pandas library offers an impressive array of features, its popularity owes much to the vast 
amount of third-party libraries that work with it in a complementary fashion. We cannot hope to cover 
all of those libraries in this chapter, nor can we even dive too deep into how any individual library 
works. However, just knowing these tools exist and understanding what they offer can serve as a great 
inspiration for future learning.

While pandas is an amazing tool, it has its flaws, which we have tried to highlight throughout this 
book; pandas cannot hope to solve every analytical problem there is. I strongly encourage you to get 
familiar with the tools outlined in this chapter and to also refer to the pandas ecosystem documentation 
(https://pandas.pydata.org/about/) when looking for new and specialized tools.

As a technical note on this chapter, it is possible that these code blocks may break or change behavior 
as new releases of the libraries are released. While we went to great lengths throughout this book to 
try and write pandas code that is “future-proof”, it becomes more difficult to guarantee that as we 
write about third party dependencies (and their dependencies). If you encounter any issues running 
the code in this chapter, be sure to reference the requirements.txt file provided alongside the code 
samples with this book. That file will contain a list of dependencies and versions that are known to 
work with this chapter.

We will cover the following recipes in this chapter:

•	 Foundational libraries
•	 Exploratory data analysis
•	 Data validation
•	 Visualization 
•	 Data science
•	 Databases 
•	 Other DataFrame libraries

https://pandas.pydata.org/about/
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Foundational libraries
Like many open source libraries, pandas builds functionality on top of other foundational libraries, 
letting them manage lower-level details while pandas offers more user-friendly functionality. If you 
find yourself wanting to dive deeper into technical details beyond what you learn with pandas, these 
are the libraries you’ll want to focus on.

NumPy
NumPy labels itself as the fundamental package for scientific computing with Python, and it is the library 
on top of which pandas was originally built. NumPy is actually an n-dimensional library, so you are 
not limited to two-dimensional data like we get with a pd.DataFrame (pandas actually used to offer 
3-d and 4-d panel structures, but they are now long gone).

Throughout this book, we have shown you how to construct pandas objects from NumPy objects, as 
you can see in the following pd.DataFrame constructor:

arr = np.arange(1, 10).reshape(3, -1)
df = pd.DataFrame(arr)

df

     0    1    2
0    1    2    3
1    4    5    6
2    7    8    9

However, you can also create NumPy arrays from pd.DataFrame objects by using the pd.DataFrame.
to_numpy method:

df.to_numpy()

array([[1, 2, 3],
      [4, 5, 6],
      [7, 8, 9]])

Many NumPy functions accept a pd.DataFrame as an argument and will still even return a pd.DataFrame:

np.log(df)

     0           1           2
0    0.000000    0.693147    1.098612
1    1.386294    1.609438    1.791759
2    1.945910    2.079442    2.197225

The main thing to keep in mind with NumPy is that its interoperability with pandas will degrade the 
moment you need missing values in non-floating point types, or more generally when you try to use 
data types that are neither integral nor floating point. 
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The exact rules for this are too complicated to list in this book, but generally, I would advise against 
ever calling pd.Series.to_numpy or pd.DataFrame.to_numpy for anything other than floating point 
and integral data.

PyArrow
The other main library that pandas is built on top of is Apache Arrow, which labels itself as a cross-
language development platform for in-memory analytics. Started by Wes McKinney (the creator of pandas) 
and announced in his influential Apache Arrow and the 10 Things I Hate About pandas post (https://
wesmckinney.com/blog/apache-arrow-pandas-internals/), the Apache Arrow project defines the 
memory layout for one-dimensional data structures in a way that allows different languages, programs, 
and libraries to work with the same data. In addition to defining these structures, the Apache Arrow 
project offers a vast suite of tooling for libraries to implement the Apache Arrow specifications.

An implementation of Apache Arrow in Python, PyArrow, has been used in particular instances 
throughout this book. While pandas does not expose a method to convert a pd.DataFrame into PyArrow, 
the PyArrow library offers a pa.Table.from_pandas method for that exact purpose:

tbl = pa.Table.from_pandas(df)
tbl

pyarrow.Table
0: int64
1: int64
2: int64
----
0: [[1,4,7]]
1: [[2,5,8]]
2: [[3,6,9]]

PyArrow similarly offers a pa.Table.to_pandas method to get you from a pa.Table into a pd.DataFrame:

tbl.to_pandas()

     0    1    2
0    1    2    3
1    4    5    6
2    7    8    9

Generally, PyArrow is considered a lower-level library than pandas. It mostly aims to serve other 
library authors more than it does general users looking for a DataFrame library, so, unless you are 
authoring a library, you may not often need to convert to PyArrow from a pd.DataFrame. However, 
as the Apache Arrow ecosystem grows, the fact that pandas and PyArrow can interoperate opens up 
a world of integration opportunities for pandas with many other analytical libraries and databases.

https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
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Exploratory data analysis
Oftentimes, you will find yourself provided with a dataset that you know very little about. Throughout 
this book, we’ve shown ways to manually sift through data, but there are also tools out there that can 
help automate potentially tedious tasks and help you grasp the data in a shorter amount of time.

YData Profiling
YData Profiling bills itself as the “leading package for data profiling, that automates and standardizes the 
generation of detailed reports, complete with statistics and visualizations.” While we discovered how to 
manually explore data back in the chapter on visualization, this package can be used as a quick-start 
to automatically generate many useful reports and features.

To compare this to some of the work we did in those chapters, let’s take another look at the vehicles 
dataset. For now, we are just going to pick a small subset of columns to keep our YData Profiling 
minimal; for large datasets, the performance can often degrade:

df = pd.read_csv(
    "data/vehicles.csv.zip",
    dtype_backend="numpy_nullable",
    usecols=[
        "id",
        "engId",
        "make",
        "model",
        "cylinders",
        "city08",
        "highway08",
        "year",
        "trany",
    ]
)
df.head()

    city08   cylinders   engId   …   model               trany           year
0   19       4           9011    …   Spider Veloce 2000  Manual 5-spd    1985
1   9        12          22020   …   Testarossa          Manual 5-spd    1985
2   23       4           2100    …   Charger             Manual 5-spd    1985
3   10       8           2850    …   B150/B250 Wagon 2WD Automatic 3-spd 1985
4   17       4           66031   …   Legacy AWD Turbo    Manual 5-spd    1993
5 rows × 9 columns
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YData Profiling allows you to easily create a profile report, which contains many common visualizations 
and helps describe the columns you are working with in your pd.DataFrame.

This book was written using ydata_profiling version 4.9.0. To create the profile report, simply run:

from ydata_profiling import ProfileReport
profile = ProfileReport(df, title="Vehicles Profile Report")

If running code within a Jupyter notebook, you can see the output of this directly within the notebook 
with a call to:

profile.to_widgets()

If you are not using Jupyter, you can alternatively export that profile to a local HTML file and open it 
from there:

profile.to_file("vehicles_profile.html")

When looking at the profile, the first thing you will see is a high-level Overview section that lists the 
number of cells with missing data, number of duplicate rows, etc.:

Figure 11.1: Overview provided by YData Profiling
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Each column from your pd.DataFrame will be detailed. In the case of a column with continuous values, 
YData Profiling will create a histogram for you:

Figure 11.2: Histogram generated by YData Profiling

For categorical variables, the tool will generate a word cloud visualization:

Figure 11.3: Word cloud generated by YData Profiling

To understand how your continuous variables may or may not be correlated, the profile contains a 
very concise heat map that colors each pair accordingly:
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Figure 11.4: Heat map generated by YData Profiling

While you still will likely need to dive further into your datasets than what this library provides, it can 
be a great starting point and can help automate the generation of otherwise tedious plots.

Data validation
The “garbage in, garbage out” principle in computing says that no matter how great your code may 
be, if you start with poor-quality data, your analysis will yield poor-quality results. All too often, 
data practitioners struggle with issues like unexpected missing data, duplicate values, and broken 
relationships between modeling entities.

Fortunately, there are tools to help you automate both the data that is input to and output from your 
models, which ensures trust in the work that you are performing. In this recipe, we are going to look 
at Great Expectations.

Great Expectations
This book was written using Great Expectations version 1.0.2. To get started, let’s once again look at 
our vehicles dataset:

df = pd.read_csv(
    "data/vehicles.csv.zip",
    dtype_backend="numpy_nullable",
    dtype={
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        "rangeA": pd.StringDtype(),
        "mfrCode": pd.StringDtype(),
        "c240Dscr": pd.StringDtype(),
        "c240bDscr": pd.StringDtype()
    }
)
df.head()

   barrels08  barrelsA08  charge120  …  phevCity  phevHwy  phevComb
0  14.167143  0.0         0.0        …  0         0        0
1  27.046364  0.0         0.0        …  0         0        0
2  11.018889  0.0         0.0        …  0         0        0
3  27.046364  0.0         0.0        …  0         0        0
4  15.658421  0.0         0.0        …  0         0        0
5 rows × 84 columns

There are a few different ways to use Great Expectations, not all of which can be documented in this 
cookbook. For the sake of having a self-contained example, we are going to set up and process all of 
our expectations in memory.

To do this, we are going to import the great_expectations library and create a context for our tests:

import great_expectations as gx
context = gx.get_context()

Within the context, you can create a data source and a data asset. For non-DataFrame sources like SQL, 
the data source would typically contain connection credentials, but with the pd.DataFrame residing 
in memory there is less work to do. The data asset is a grouping mechanism for results. Here we are 
just creating one data asset, but in real-life use cases you may decide that you want multiple assets to 
store and organize the validation results that Great Expectations outputs:

datasource = context.data_sources.add_pandas(name="pandas_datasource")
data_asset = datasource.add_dataframe_asset(name="vehicles")

From there, you can create a batch definition within Great Expectations. For non-DataFrame sources, 
the batch definition would tell the library how to retrieve data from the source. In the case of pandas, 
the batch definition will simply retrieve all of the data from the associated pd.DataFrame:

batch_definition_name = "dataframe_definition"
batch_definition = data_asset.add_batch_definition_whole_dataframe(
    batch_definition_name
)
batch = batch_definition.get_batch(batch_parameters={
    "dataframe": df
})
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At this point, you can start to make assertions about the data. For instance, you can use Great 
Expectations to ensure that a column does not contain any null values:

city_exp = gx.expectations.ExpectColumnValuesToNotBeNull(
    column="city08"
)
result = batch.validate(city_exp)
print(result)

{
  "success": true,
  "expectation_config": {
    "type": "expect_column_values_to_not_be_null",
    "kwargs": {
      "batch_id": "pandas_datasource-vehicles",
      "column": "city08"
    },
    "meta": {}
  },
  "result": {
    "element_count": 48130,
    "unexpected_count": 0,
    "unexpected_percent": 0.0,
    "partial_unexpected_list": [],
    "partial_unexpected_counts": [],
    "partial_unexpected_index_list": []
  },
  "meta": {},
  "exception_info": {
    "raised_exception": false,
    "exception_traceback": null,
    "exception_message": null
  }
}

That same expectation applied to the cylinders column will not be successful:

cylinders_exp = gx.expectations.ExpectColumnValuesToNotBeNull(
    column="cylinders"
)
result = batch.validate(cylinders_exp)
print(result)
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{
  "success": false,
  "expectation_config": {
    "type": "expect_column_values_to_not_be_null",
    "kwargs": {
      "batch_id": "pandas_datasource-vehicles",
      "column": "cylinders"
    },
    "meta": {}
  },
  "result": {
    "element_count": 48130,
    "unexpected_count": 965,
    "unexpected_percent": 2.0049864949096197,
    "partial_unexpected_list": [
      null,
      null,
      ...
      null,
      null
    ],
    "partial_unexpected_counts": [
      {
        "value": null,
        "count": 20
      }
    ],
    "partial_unexpected_index_list": [
      7138,
      7139,
      8143,
      ...
      23022,
      23023,
      23024
    ]
  },
  "meta": {},
  "exception_info": {
    "raised_exception": false,
    "exception_traceback": null,



Chapter 11 357

    "exception_message": null
  }
}

For brevity, we have only shown you how to set expectations around nullability, but there is an entire 
Expectations Gallery at https://greatexpectations.io/expectations/ you can use for other asser-
tions. Great Expectations also works with other tools like Spark, PostgreSQL, etc., so you can apply 
your expectations at many different points in your data transformation pipeline.

Visualization
Back in Chapter 6, Visualization, we discussed at length visualization using matplotlib, and we even 
discussed using Seaborn for advanced plots. These tools are great for generating static charts, but 
when you want to add some level of interactivity, you will need to opt for other libraries.

For this recipe, we are going to load the same data from the vehicles dataset we used back in our Scatter 
plots recipe from Chapter 6:

df = pd.read_csv(
    "data/vehicles.csv.zip",
    dtype_backend="numpy_nullable",
    dtype={
        "rangeA": pd.StringDtype(),
        "mfrCode": pd.StringDtype(),
        "c240Dscr": pd.StringDtype(),
        "c240bDscr": pd.StringDtype()
    }
)

df.head()

   barrels08  barrelsA08  charge120  …  phevCity  phevHwy  phevComb
0  14.167143  0.0         0.0        …  0         0        0
1  27.046364  0.0         0.0        …  0         0        0
2  11.018889  0.0         0.0        …  0         0        0
3  27.046364  0.0         0.0        …  0         0        0
4  15.658421  0.0         0.0        …  0         0        0
5 rows × 84 columns

Plotly
Let’s start by looking at Plotly, which can be used to create visualizations with a high degree of inter-
activity, making it a popular choice within Jupyter notebooks. To use it, simply pass plotly as the 
backend= argument to pd.DataFrame.plot. We are also going to add a hover_data= argument, which 
Plotly can use to add labels to each data point:

df.plot(

https://greatexpectations.io/expectations/
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    kind="scatter",
    x="city08",
    y="highway08",
    backend="plotly",
    hover_data={"make": True, "model": True, "year": True},
)

If you inspect this in a Jupyter notebook or HTML page, you will see that you can hover over any data 
point to reveal more details:

Figure 11.5: Hovering over a data point with Plotly

You can even select an area of the chart to zoom into the data points:
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Figure 11.6: Zooming in with Plotly

As you can see, Plotly is very easy to use with the same pandas API you have seen throughout this book. 
If you desire interactivity with your plots, it is a great tool to make use of.

PyGWalker
All of the plotting code you have seen so far is declarative in nature; i.e., you tell pandas that you want 
a bar, line, scatter plot, etc., and pandas generates that for you. However, many users may prefer 
having a more “free-form” tool for exploration, where they can just drag and drop elements to make 
charts on the fly.

If that is what you are after, then you will want to take a look at the PyGWalker library. With a very 
succinct API, you can generate an interactive tool within a Jupyter notebook, with which you can drag 
and drop different elements to generate various charts:

import pygwalker as pyg
pyg.walk(df)
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Figure 11.7: PyGWalker within a Jupyter notebook

Data science
While pandas offers some built-in statistical algorithms, it cannot hope to cover all of the statistical 
and machine learning algorithms that are used in the domain of data science. Fortunately, however, 
many of the libraries that do specialize further in data science offer very tight integrations with pandas, 
letting you move data from one library to the next rather seamlessly.

scikit-learn
scikit-learn is a popular machine learning library that can help with both supervised and unsupervised 
learning. The scikit-learn library offers an impressive array of algorithms for classification, prediction, 
and clustering tasks, while also providing tools to pre-process and cleanse your data.

We cannot hope to cover all of these features, but for the sake of showcasing something, let’s once 
again load the vehicles dataset:

df = pd.read_csv(
    "data/vehicles.csv.zip",
    dtype_backend="numpy_nullable",
    dtype={
        "rangeA": pd.StringDtype(),
        "mfrCode": pd.StringDtype(),
        "c240Dscr": pd.StringDtype(),
        "c240bDscr": pd.StringDtype()
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    }
)

df.head()

   barrels08  barrelsA08  charge120  …  phevCity  phevHwy  phevComb
0  14.167143  0.0         0.0        …  0         0        0
1  27.046364  0.0         0.0        …  0         0        0
2  11.018889  0.0         0.0        …  0         0        0
3  27.046364  0.0         0.0        …  0         0        0
4  15.658421  0.0         0.0        …  0         0        0
5 rows × 84 columns

Now let’s assume that we want to create an algorithm to predict the combined mileage a vehicle will 
achieve, inferring it from other attributes in the data. Since mileage is a continuous variable, we can 
opt for a linear regression model to make our predictions.

The linear regression model we are going to work with will want to use features that are also numeric. 
While there are ways we could artificially convert some of our non-numeric data into numeric (e.g., 
using the technique from the One-hot encoding with pd.get_dummies recipe back in Chapter 5, Algorithms 
and How to Apply Them), we are just going to ignore any non-numeric columns for now. The linear 
regression model is also unable to handle missing data. We know from the Exploring continuous data 
recipe from Chapter 6 that this dataset has two continuous variables with missing data. While we 
could try to interpolate those values, we are again going to take the simple route in this example and 
just drop them:

num_df = df.select_dtypes(include=["number"])
num_df = num_df.drop(columns=["cylinders", "displ"])

The scikit-learn model will need to know the features we want to use for prediction (commonly notated 
as X) and the target variable we are trying to predict (commonly notated as y). It is also a good practice 
to split the data into training and testing datasets, which we can do with the train_test_split function:

from sklearn.model_selection import train_test_split

target_col = "comb08"
X = num_df.drop(columns=[target_col])
y = num_df[target_col]

X_train, X_test, y_train, y_test = train_test_split(X, y)

With our data in this form, we can go ahead and train the linear regression model and then apply it 
to our test data to generate predictions:

from sklearn import linear_model
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regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)

Now that we have predictions from our test dataset, we can compare them back to the actual values 
we withheld as part of testing. This is a good way to measure how accurate the model is that we fit.

There are many different ways to manage model accuracy, but for now, we can opt for the commonly 
used and relatively simple mean_squared_error, which scikit-learn also provides as a convenience 
function:

from sklearn.metrics import mean_squared_error

mean_squared_error(y_test, y_pred)

0.11414180317382835

If you are interested in knowing more, I highly recommend you read through the documentation 
and examples on the scikit-learn website, or check out books like Machine Learning with PyTorch and 
Scikit-Learn: Develop machine learning and deep learning models with Python (https://www.packtpub.
com/en-us/product/machine-learning-with-pytorch-and-scikit-learn-9781801819312).

XGBoost
For another great machine learning library, let’s now turn our attention to XGBoost, which implements 
algorithms using Gradient boosting. XGBoost is extremely performant, scales well, scores well in 
machine learning competitions, and pairs well with data that is stored in a pd.DataFrame. If you are 
already familiar with scikit-learn, the API it uses will feel familiar.

XGBoost can be used for both classification and regression. Since we just performed a regression 
analysis with scikit-learn, let’s now work through a classification example where we try to predict the 
make of a vehicle from the numeric features in the dataset.

The vehicles dataset we are working with has 144 different makes. For our analysis, we are going to 
just pick a small subset of consumer brands:

brands = {"Dodge", "Toyota", "Volvo", "BMW", "Buick", "Audi", "Volkswagen", 
"Subaru"}
df2 = df[df["make"].isin(brands)]
df2 = df2.drop(columns=["cylinders", "displ"])

From there, we are going to split our data into features (X) and a target variable (y). For the purposes of 
the machine learning algorithm, we also need to convert our target variable into categorical data type, 
so that the algorithm can predict values like 0, 1, 2, etc instead of "Dodge," "Toyota," "Volvo," etc.:

X = df2.select_dtypes(include=["number"])
y = df2["make"].astype(pd.CategoricalDtype())

https://www.packtpub.com/en-us/product/machine-learning-with-pytorch-and-scikit-learn-9781801819312
https://www.packtpub.com/en-us/product/machine-learning-with-pytorch-and-scikit-learn-9781801819312
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With that out of the way, we can once again use the train_test_split function from scikit-learn to 
create training and testing data. Note that we are using pd.Series.cat.codes to use the numeric 
value assigned to our categorical data type, rather than the string:

X_train, X_test, y_train, y_test = train_test_split(X, y.cat.codes)

Finally, we can import the XGBClassifier from XGBoost, train it on our data, and apply it to our test 
features to generate predictions:

from xgboost import XGBClassifier

bst = XGBClassifier()
bst.fit(X_train, y_train)
preds = bst.predict(X_test)

Now that we have the predictions, we can validate how many of them matched the target variables 
included as part of our testing data:

accuracy = (preds == y_test).sum() / len(y_test)
print(f"Model prediction accuracy is: {accuracy:.2%}")

Model prediction accuracy is: 97.07%

Once again, we are only scratching the surface of what you can do with a library like XGBoost. There 
are many different ways to tweak your model to improve accuracy, prevent over-/underfitting, optimize 
for a different outcome, etc. For users wanting to learn more about this great library, I advise checking 
out the XGBoost documentation or books like Hands-On Gradient Boosting with XGBoost and scikit-learn.

Databases
Database knowledge is an important tool in the toolkit of any data practitioner. While pandas is a 
great tool for single-machine, in-memory computations, databases offer a very complementary set 
of analytical tools that can help with the storage and distribution of analytical processes.

Back in Chapter 4, The pandas I/O System, we walked through how to transfer data between pandas 
and theoretically any database. However, a relatively more recent database called DuckDB is worth 
some extra consideration, as it allows you to even more seamlessly bridge the worlds of dataframes 
and databases together.

DuckDB
DuckDB is a lightweight database system that offers a zero-copy integration with Apache Arrow, a 
technology that also underpins efficient data sharing and usage with pandas. It is extremely lightweight 
and, unlike most database systems, can be easily embedded into other tools or processes. Most 
importantly, DuckDB is optimized for analytical workloads.
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DuckDB makes it easy to query data in your pd.DataFrame using SQL. Let’s see this in action by loading 
the vehicles dataset:

df = pd.read_csv(
    "data/vehicles.csv.zip",
    dtype_backend="numpy_nullable",
    dtype={
        "rangeA": pd.StringDtype(),
        "mfrCode": pd.StringDtype(),
        "c240Dscr": pd.StringDtype(),
        "c240bDscr": pd.StringDtype()
    }
)

df.head()

   barrels08  barrelsA08  charge120  …  phevCity  phevHwy  phevComb
0  14.167143  0.0         0.0        …  0         0        0
1  27.046364  0.0         0.0        …  0         0        0
2  11.018889  0.0         0.0        …  0         0        0
3  27.046364  0.0         0.0        …  0         0        0
4  15.658421  0.0         0.0        …  0         0        0
5 rows × 84 columns

By passing a CREATE TABLE statement to duckdb.sql, you can load the data from the pd.DataFrame 
into a table:

import duckdb

duckdb.sql("CREATE TABLE vehicles AS SELECT * FROM df")

Once the table is created, you can query from it with SQL:

duckdb.sql("SELECT COUNT(*) FROM vehicles WHERE make = 'Honda'")

┌──────────────┐
│ count_star() │
│    int64     │
├──────────────┤
│         1197 │
└──────────────┘

If you want to convert your results back to a pd.DataFrame, you use the .df method:

duckdb.sql(
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    "SELECT make, model, year, id, city08 FROM vehicles where make = 'Honda' 
LIMIT 5"
).df()

    make    model          year   id      city08
0   Honda   Accord Wagon   1993   10145   18
1   Honda   Accord Wagon   1993   10146   20
2   Honda   Civic Del Sol  1994   10631   25
3   Honda   Civic Del Sol  1994   10632   30
4   Honda   Civic Del Sol  1994   10633   23

For a deeper dive into DuckDB, I strongly advise checking out the DuckDB documentation and, for 
a greater understanding of where it fits in the grand scheme of databases, the Why DuckDB article 
(https://duckdb.org/why_duckdb). Generally, DuckDB’s focus is on single-user analytics, but if you 
are interested in a shared, cloud-based data warehouse, you may also want to look at MotherDuck 
(https://motherduck.com/).

Other DataFrame libraries
Soon after pandas was developed, it became the de facto DataFrame library in the Python space. Since 
then, many new DataFrame libraries have been developed in the space, which all aim to address some 
of the shortcomings of pandas while introducing their own novel design decisions.

Ibis
Ibis is yet another amazing analytics tool created by Wes McKinney, the creator of pandas. At a high 
level, Ibis is a DataFrame “frontend” that gives you one generic API through which you can query 
multiple “backends.”

To help understand what that means, it is worth contrasting that with the design approach of pandas. 
In pandas, the API or “frontend” for a group by and a sum looks like this:

df.groupby("column").agg(result="sum")

From this code snippet, the frontend of pandas defines how the query looks (i.e., for a group-by 
the operation you must call pd.DataFrame.groupby). Behind the scenes, pandas dictates how the 
pd.DataFrame is stored (in memory using pandas’ own representation) and even dictates how the 
summation should be performed against that in-memory representation.

In Ibis, a similar expression would look like this:

df.group_by("column").agg(result=df.sum())

While the API exposed to the user may not be all that different, the similarities between Ibis and 
pandas stop there. Ibis does not dictate how you store the data you are querying; it can be stored in 
BigQuery, DuckDB, MySQL, PostgreSQL, etc., and it can be even stored in another DataFrame library 
like pandas. Beyond the storage, Ibis does not dictate how summation should be performed; instead, 
it leaves it to an execution engine. Many SQL databases have their own execution engine, but others 
may defer to third-party libraries like Apache DataFusion (https://datafusion.apache.org/).

https://duckdb.org/why_duckdb
https://motherduck.com/
https://datafusion.apache.org/
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To use a pd.DataFrame through Ibis, you will need to wrap it with the ibis.memtable function:

import ibis

df = pd.read_csv(
    "data/vehicles.csv.zip",
    dtype_backend="numpy_nullable",
    usecols=["id", "year", "make", "model", "city08"],
)

t = ibis.memtable(df)

With that out of the way, you can then start to query the data just as you would with pandas but using 
the Ibis API:

t.filter(t.make == "Honda").select("make", "model", "year", "city08")

r0 := InMemoryTable
  data:
    PandasDataFrameProxy:
             city08     id        make                model  year
      0          19      1  Alfa Romeo   Spider Veloce 2000  1985
      1           9     10     Ferrari           Testarossa  1985
      2          23    100       Dodge              Charger  1985
      3          10   1000       Dodge  B150/B250 Wagon 2WD  1985
      4          17  10000      Subaru     Legacy AWD Turbo  1993
      ...       ...    ...         ...                  ...   ...
      48125      19   9995      Subaru               Legacy  1993
      48126      20   9996      Subaru               Legacy  1993
      48127      18   9997      Subaru           Legacy AWD  1993
      48128      18   9998      Subaru           Legacy AWD  1993
      48129      16   9999      Subaru     Legacy AWD Turbo  1993
 
      [48130 rows x 5 columns]

 r1 := Filter[r0]
  r0.make == 'Honda'
  
Project[r1]
  make:   r1.make
  model:  r1.model
  year:   r1.year
  city08: r1.city08
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It is worth noting that the preceding code does not actually return a result. Unlike pandas, which 
executes all of the operations you give it eagerly, Ibis collects all of the expressions you want and waits to 
perform execution until explicitly required. This practice is commonly called deferred or lazy execution.

The advantage of deferring is that Ibis can find ways to optimize the query that you are telling it to 
perform. Our query is asking Ibis to find all rows where the make is Honda and then select a few 
columns, but it might be faster for the underlying database to select the columns first and then perform 
the filter. How that works is abstracted from the end user; users are just required to tell Ibis what they 
want and Ibis takes care of how to retrieve that data.

To materialize this back into a pd.DataFrame, you can chain in a call to .to_pandas:

t.filter(t.make == "Honda").select("make", "model", "year", "city08").to_
pandas().head()

     make    model          year   city08
0    Honda   Accord Wagon   1993   18
1    Honda   Accord Wagon   1993   20
2    Honda   Civic Del Sol  1994   25
3    Honda   Civic Del Sol  1994   30
4    Honda   Civic Del Sol  1994   23

However, you are not required to return a pd.DataFrame. If you wanted a PyArrow table instead, you 
could opt for .to_pyarrow:

t.filter(t.make == "Honda").select("make", "model", "year", "city08").to_
pyarrow()

pyarrow.Table
make: string
model: string
year: int64
city08: int64
----
make: [["Honda","Honda","Honda","Honda","Honda",...,"Honda","Honda","Honda", 
"Honda","Honda"]]
model: [["Accord Wagon","Accord Wagon","Civic Del Sol","Civic Del Sol", 
"Civic Del Sol",...,"Prelude","Prelude","Prelude","Accord","Accord"]]
year: [[1993,1993,1994,1994,1994,...,1993,1993,1993,1993,1993]]
city08: [[18,20,25,30,23,...,21,19,19,19,21]]

For more information on Ibis, be sure to check out the Ibis documentation. There is even an Ibis 
tutorial aimed specifically at users coming from pandas.
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Dask
Another popular library that has a history closely tied to pandas is Dask. Dask is a framework that 
provides a similar API to the pd.DataFrame but scales its usage to parallel computations and datasets 
that exceed the amount of memory available on your system.

If we wanted to convert our vehicles dataset to a Dask DataFrame, we can use the dask.dataframe.
from_pandas function with a npartitions= argument that controls how to divide up the dataset:

import dask.dataframe as dd
ddf = dd.from_pandas(df, npartitions=10)

/home/willayd/clones/Pandas-Cookbook-Third-Edition/lib/python3.9/site-packages/
dask/dataframe/__init__.py:42: FutureWarning:
Dask dataframe query planning is disabled because dask-expr is not installed.

You can install it with `pip install dask[dataframe]` or `conda install dask`.
This will raise in a future version.

 warnings.warn(msg, FutureWarning)

By splitting your DataFrame into different partitions, Dask allows you to perform computations against 
each partition in parallel, which can help immensely with performance and scalability.

Much like Ibis, Dask performs calculations lazily. If you want to force a calculation, you will want to 
call the .compute method:

ddf.size.compute()

3991932

To go from a Dask DataFrame back to pandas, simply call ddf.compute:

ddf.compute().head()

     city08    id      make          model                 year
0    19        1       Alfa Romeo    Spider Veloce 2000    1985
1    9         10      Ferrari       Testarossa            1985
2    23        100     Dodge         Charger               1985
3    10        1000    Dodge         B150/B250 Wagon 2WD   1985
4    17        10000   Subaru        Legacy AWD Turbo      1993

Polars
Polars is a newcomer to the DataFrame space and has developed impressive features and a dedicated 
following in a very short amount of time. The Polars library is Apache Arrow native, so it has a much 
cleaner type system and consistent missing value handling than what pandas offers today (for the 
history of the pandas type system and all of its flaws, be sure to give Chapter 3, Data Types, a good read).
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In addition to a simpler and cleaner type system, Polars can scale to datasets that are larger than 
memory, and it even offers a lazy execution engine coupled with a query optimizer that can make it 
easier to write performant, scalable code.

For a naive conversion from pandas to Polars, you can use polars.from_pandas:

import polars as pl

pl_df = pl.from_pandas(df)
pl_df.head()

shape: (5, 84)
barrels08  barrelsA08  charge120  charge240  ...  phevCity  phevHwy  phevComb
f64        f64         f64        f64        ...  i64       i64      i64
14.167143  0.0         0.0        0.0        ...    0         0        0
27.046364  0.0         0.0        0.0        ...    0         0        0
11.018889  0.0         0.0        0.0        ...    0         0        0
27.046364  0.0         0.0        0.0        ...    0         0        0
15.658421  0.0         0.0        0.0        ...    0         0        0

For lazy execution, you will want to try out the pl.LazyFrame, which can take the pd.DataFrame 
directly as an argument:

lz_df = pl.LazyFrame(df)

Much like we saw with Ibis, the lazy execution engine of Polars can take care of optimizing the best 
path for doing a filter and select. To execute the plan, you will need to chain in a call to pl.LazyFrame.
collect:

lz_df.filter(
    pl.col("make") == "Honda"
).select(["make", "model", "year", "city08"]).collect().head()

shape: (5, 4)
make    model   year    city08
str     str     i64     i64
"Honda" "Accord Wagon"  1993    18
"Honda" "Accord Wagon"  1993    20
"Honda" "Civic Del Sol" 1994    25
"Honda" "Civic Del Sol" 1994    30
"Honda" "Civic Del Sol" 1994    23

If you would like to convert back to pandas from Polars, both the pl.DataFrame and pl.LazyFrame 
offer a .to_pandas method:

lz_df.filter(
    pl.col("make") == "Honda"
).select(["make", "model", "year", "city08"]).collect().to_pandas().head()
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      make   model          year  city08
0     Honda  Accord Wagon   1993  18
1     Honda  Accord Wagon   1993  20
2     Honda  Civic Del Sol  1994  25
3     Honda  Civic Del Sol  1994  30
4     Honda  Civic Del Sol  1994  23

For a more detailed look at Polars and all of the great things it has to offer, I suggest checking out 
the Polars Cookbook (https://www.packtpub.com/en-us/product/polars-cookbook-9781805121152).

cuDF
If you have a Nvidia device and the CUDA toolkit available to you, you may also be interested in cuDF. 
In theory, cuDF is a “drop-in” replacement for pandas; as long as you have the right hardware and 
tooling, it will take your pandas expressions and run them on your GPU, simply by importing cuDF 
before pandas:

import cudf.pandas
cudf.pandas.install()

import pandas as pd

Given the power of modern GPUs compared to CPUs, this library can offer users a significant 
performance boost without having to change the way code is written. For the right users with the 
right hardware, that type of out-of-the-box performance boost can be invaluable.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://packt.link/pandas

https://www.packtpub.com/en-us/product/polars-cookbook-9781805121152
https://packt.link/pandas
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