
Optimizing
Visual Studio
Code for Python
Development

Developing More Efficient and
Effective Programs in Python
—
Sufyan bin Uzayr

Optimizing Visual
Studio Code for

Python Development
Developing More Efficient

and Effective Programs
in Python

Sufyan bin Uzayr

Optimizing Visual Studio Code for Python Development: Developing More

Efficient and Effective Programs in Python

ISBN-13 (pbk): 978-1-4842-7343-2		 ISBN-13 (electronic): 978-1-4842-7344-9
https://doi.org/10.1007/978-1-4842-7344-9

Copyright © 2021 by Sufyan bin Uzayr

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: James Markham
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York
Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7343-2.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Sufyan bin Uzayr
Barabanki, India

https://doi.org/10.1007/978-1-4842-7344-9

For Mom

v

Table of Contents

Chapter 1: �Introduction to Visual Studio Code���������������������������������������1

User Interface��3

Basic Layout���3

Side-By-Side Editing��4

Minimap��5

Indent Guides��5

Breadcrumbs��6

Explorer��6

Multiselection���7

Filtering the Document Tree���8

Outline View��8

Markdown Outline View��9

Open Editors���9

Views��10

Activity Bar���10

Command Palette���10

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

vi

Configuring the Editor���11

Hiding the Menu Bar (for Windows, Linux)���12

Settings��12

Zen Mode��13

Centered Editor Layout���13

Tabs��13

Tab Ordering���14

Preview Mode���14

Editor Groups��14

Keyboard Shortcuts��16

Disabling Preview Mode���16

Using Ctrl+Tab to Navigate in Entire Editor History��17

Closing an Entire Group Instead of a Single Editor���17

Window Management���17

Setting Up Visual Studio Code���18

Cross-Platform���19

Updating Cadence��20

Insiders Nightly Build���21

Portable Mode��21

Additional Components��21

Extensions��21

Key Bindings for Visual Studio Code���22

Keyboard Shortcuts Editor��22

Keyboard Rules���24

Accepted Keys��25

Command Arguments���26

Removing a Specific Key Binding Rule���27

Keyboard Layout-Independent Nindings��27

Table of Contents

vii

When Clause Contexts��28

Conditional Operators���28

Available Contexts��29

Programming Languages Supported��40

Language Features in VS Code���41

Changing the Language for the Selected File���42

Additional Components and Tools��42

Commonly Used Components���42

VS Code Extensions��43

Additional Tools��43

Settings Precedence��44

Settings and Security���45

Summary���46

Chapter 2: �Getting Started with Python Programs in
Visual Studio Code���47

Installation Basics���47

Reviewing the Required Extensions��48

Tabnine���50

Bracket Pair Colorizer���51

Python Snippets���53

Python Test Explorer for Visual Studio Code���57

Configuring Debug��61

Better Comments��62

AutoDocstring���63

Python Indent���67

Table of Contents

viii

Getting Started with Code Editing���67

Autocomplete and IntelliSense���67

Customizing IntelliSense Behavior���68

Troubleshooting��69

Running Selection/Line in Terminal (REPL)���70

Formatting��70

Troubleshooting Your Formatting��72

Refactoring���73

Linting���75

Enabling Linters��76

Disabling Linting���76

Running Linting��76

Linting Settings��77

Pylint���79

Troubleshooting Linting��82

Debugging���83

Initializing Configurations���84

Additional Configurations���84

Basic Debugging��85

Conditional Breakpoints���90

Summary���91

Chapter 3: �Setting Up the Environment and Testing����������������������������93

Setting Up Your Environment���93

Manually Specifying an Interpreter��96

Selecting and Activating an Environment���98

Environments and Terminal Windows���99

Table of Contents

ix

Choosing a Debugging Environment��100

Environment Variable Definitions File���101

Variable Substitution��102

Using the PYTHONPATH Variable��103

Running Your Projects���104

Selecting a Python Interpreter��105

Creating a Python Hello World Source Code File��106

Running Hello World���107

Running the Python Debugger��107

Installing and Using Packages��109

Supportting Jupyter���110

Jupyter Code Cells��112

Additional Commands and Keyboard Shortcuts���113

Python Interactive Window���114

Plot Viewer��114

Live Share for Python Interactive���114

Variable Explorer and Data Viewer���115

Connecting to a Remote Jupyter Server���115

Converting Jupyter Notebooks to Python Code File�������������������������������������116

Debugging a Jupyter Notebook��117

Exporting a Jupyter Notebook��118

Configuration Files��118

Data Files��120

Runtime File���121

Summary���122

Table of Contents

x

Chapter 4: �Working with Python Frameworks�����������������������������������123

Python Frameworks Ecosystem at a Glance���124

Django Development���126

Installation��127

Creating a Project Environment for the Django Tutorial��������������������������������128

Creating and Running a Minimal Django App���129

Creating the Django Project��130

Creating a Django App��131

Creating a Debugger Launch Profile���133

Exploring the Debugger��134

Using Definition and Peek Definition Commands���137

Using a Template to Render a Page��137

Serving Static Files���139

Readying the App for Static Files���140

Referring to Static Files��140

Using the Collectstatic Command��141

Creating Multiple Templates That Extend a Base Template��������������������������142

Creating a Base Page Template and Styles��142

Creating a Code Snippet���143

Working with Data, Data Models, and Migrations���143

Types of Databases��145

Migrating the Database��145

Creating a Superuser and Enabling the Administrative Interface�����������������146

Flask Development��147

Creating and Running a Minimal Flask App��149

Running the App in the Debugger���151

Using Definition and Peek Definition Commands���155

Table of Contents

xi

Using a Template to Render a Page��156

Creating a Requirements.txt File for the Environment���������������������������������158

Data Science–Specific Information and Tutorials������������������������������������159

Setting Up a Data Science Environment���159

Preparing the Data��160

Training and Evaluating a Model��164

Summary���166

Chapter 5: �Working with Containers and MS Azure��������������������������167

Integrating Azure for Your Python Projects��167

Key Azure Services���168

Creating a Function in Azure with Python Using Visual Studio Code������������174

Deploying Docker Containers to Azure App Service�������������������������������������185

Using Containers in VS Code���188

Operating with Containers��190

Creating a Devcontainer.json File���192

Managing Extensions���193

Forcing an Extension to Operate Locally or Remotely����������������������������������194

Forwarding or Publishing a Port���195

Temporarily Forwarding a Port���195

Personalizing with Dotfile Repositories��198

Summary���199

�Index��201

Table of Contents

xiii

About the Author

Sufyan bin Uzayr is a writer, coder, and entrepreneur with over a decade

of experience in the industry. He has authored several books in the past

on a diverse range of topics, ranging from history to computers and

information technology.

Sufyan is the director of Parakozm, a multinational IT company

specializing in EdTech solutions. He also runs Zeba Academy, an online

learning and teaching vertical with a focus on STEM fields. He specializes

in a wide variety of technologies, such as JavaScript, Dart, WordPress,

Drupal, Linux, and Python. He holds multiple degrees, in fields including

management, information technology, literature, and political science.

Sufyan is a digital nomad, dividing his time between four countries.

He has lived and taught in universities and educational institutions around

the globe. Sufyan takes a keen interest in technology, politics, literature,

history, and sports, and in his spare time, he enjoys teaching coding and

English to young students.

Learn more at sufyanism.com.

xv

About the Technical Reviewer

Mathew Rooney is a coder with 8 years of experience in the web

development field. He works with PHP, JavaScript, Python, and offers

custom-coded WordPress themes and plugins. Mathew is a firm believer

in open-source software and has finished Bachelor of Technology in

computer science.

xvii

Acknowledgments

There are many people who deserve to be on this page, for this book

would not have come into existence without their support. That said, some

names deserve a special mention, and I am genuinely grateful to:

•	 My mother and father, for everything they have done

for me.

•	 Faisal Fareed and Sadaf Fareed, my siblings, for helping

with things back home.

•	 Sana Akhtar Usmani, for all her help and support.

•	 The Parakozm team, especially Madina Karybzhanova,

for offering great amounts of help and assistance

during the book-writing process.

•	 The Apress team, especially Smriti Srivastava, Shrikant

Vishwakarma, and James Markham, for ensuring that

the book’s content, layout, formatting, and everything

else remains perfect throughout.

•	 Reviewers of this book, for going through the

manuscript and providing their insight and feedback.

•	 Typesetters, cover designers, printers, and everyone

else, for their part in the development of this book.

xviii

•	 All the folks associated with Zeba Academy, either

directly or indirectly, for their help and support.

•	 The Python and VS Code community at large, for all

their hard work and efforts.

—Sufyan bin Uzayr

Acknowledgments

xix

Introduction

Visual Studio Code (VS Code) is a great open-source code editor created

by Microsoft for Windows, Linux, and macOS. Widely applied, standard

features include support for debugging, syntax highlighting, automatic

code completion, snippets, code restructuring, and embedded Git.

Developers from all over the world are free to edit the design theme,

keyboard shortcuts, and preferences, as well as install essential and extra

extensions to upgrade the general project versatility.

�Chapters at a Glance
Chapter 1, “Introduction to Visual Studio Code,” reviews how to set up VS

Code as well as provide an overview of the basic features, such as:

•	 User interface: Provides the view of the documentation

for VS Code.

•	 Setup overview: Analyzes documentation for starting

up and running with VS Code, including platform-

related setup.

•	 Keyboard shortcuts: Provides customization options

for your own shortcuts and installation of Keymap

extensions.

•	 Keybinding extensions: Covers how to install a

Keymap extension and how to bring the keybindings

from other editors to VS Code.

xx

Chapter 2, “Getting Started with Python Programs in Visual Studio

Code,” explains in detail how to set up your VS Code for Python

Development. For the sake of demonstrating with examples, you’ll see how

to install most of the tools on Windows.

Chapter 3, “Setting Up the Environment and Testing,” demonstrates

how to install the top 8 Python extensions by typing Python in the

Extensions item on the Activity Bar.

Chapter 4, “Working with Python Frameworks,” discusses using Python

frameworks, such as Django and Flask. We will discuss topics such as

Python web development, Django apps, Flask development, and so on.

Chapter 5, “Working with Containers and MS Azure,” covers Python

development in VS Code in assonance with MS Azure. Azure services can

be used for speedy deployment and building of production level apps.

With VS Code, Azure offers neat integration and this chapter discusses the

same.

Introduction

1© Sufyan bin Uzayr 2021
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9_1

CHAPTER 1

Introduction to Visual
Studio Code
Visual Studio Code (VS Code) is an open-source code editor created by

Microsoft for Windows, Linux, and macOS (Figure 1-1). Widely popular

standard features include support for debugging, syntax highlighting,

automatic code completion, snippets, code restructuring, and embedded

Git. Users are free to change the design theme, keyboard shortcuts, and

preferences, as well as install additional extensions to upgrade the overall

project functionality.

Microsoft first introduced VS Code at the 2015 Build conference. By

2019 VS Code ranked as the most popular developer environment tool,

with 50.7% of 87,317 respondents reporting that they regularly apply it.

https://doi.org/10.1007/978-1-4842-7344-9_1#DOI

2

In this chapter, we will walk you through setting up VS Code as well as

provide an overview of the basic features:

•	 User interface: viewing the documentation for VS

Code.

•	 Setup overview: documentation for starting up and

running with VS Code, including platform-related

setup.

•	 Keyboard shortcuts: customization options for your

own shortcuts and installation of Keymap extensions.

•	 Keybinding extensions: how to install a Keymap

extension to bring the keybindings from your previous

editor to VS Code.

Figure 1-1.  Visual Studio Code, a free and open-source code editor

Chapter 1 Introduction to Visual Studio Code

3

�User Interface
According to the original intent, VS Code is a code editor. Similar to many

other code editors, VS Code has a common user interface and layout of an

explorer on the left, displaying all of the files and folders you have access

to, and an editor on the right, presenting the content of the files you have

opened.

�Basic Layout
VS Code comes with a straightforward yet intuitive layout that utilizes

all the space provided for the editor, while leaving some room to browse

and access the full context of your folder or the ongoing project. The User

Interface is divided into five main areas:

•	 Editor: The main space for you to edit current files. You

can open as many editors as you need side by side, as

well as vertically and horizontally.

•	 SideBar: This area has different views such as the

Explorer, to provide a maximum assistance while you

are working on your project.

•	 Status Bar: Information about the current project and

the files you are editing.

•	 Activity Bar: Placed on the far left-hand side, this area

enables you to switch between views and gives you

additional context-specific measures—for instance, the

number of outgoing changes.

•	 Panels: You can show different panels below the editor

area for output or debug content, errors, and warnings,

or integrated information. The panel can also be shifted

to the right for more vertical space.

Chapter 1 Introduction to Visual Studio Code

4

Each time you launch VS Code, it opens up in the same state it was in

when you last left it. The folder, layout, and opened files will be preserved

the same. Open files in each editor are displayed with tabbed headers

(Tabs) at the top of the editor region. To learn more information about

tabbed headers, see the details of the Tabs section. You can also move the

Sidebar to the right-hand side (View ➤ Move Side Bar Right) or enhance

its visibility (Ctrl+B).

�Side-By-Side Editing
As previously mentioned, you can open as many editors as you like side-

by-side vertically as well as horizontally. If you already have one editor

open, there are various ways of placing another editor to the side of the

existing one:

•	 Alt-click on a file in the Explorer.

•	 Ctrl+\ to split the active editor into two.

•	 Open to the Side (Ctrl+Enter) from the Explorer context

menu on a file.

•	 Click the Split Editor button in the upper right of an

editor.

•	 Drag and drop a file to any side of the editor region.

•	 Ctrl+Enter (macOS: Cmd+Enter) in the Quick Open

(Ctrl+P) file list.

Once you open another file, the editor that is in progress will display

the content of that file. So if you have two editors side by side and you need

to open file doc.cs into the right-hand editor, make sure that editor is active

(by clicking on it) before opening file doc.cs.

Chapter 1 Introduction to Visual Studio Code

5

By default, editors are made to open on the right-hand side of the

active one. You can change this pattern through the setting workbench.

editor.openSideBySideDirection and modify to open new editors to the

bottom of the active one instead. At the same time, when you have more

than one editor active, you can switch between them easily by holding the

Ctrl (macOS: Cmd) key and pressing 1, 2, and 3. In addition, you can resize

editors and reorder them if you would like to: simply drag and drop the

editor title area to reposition or resize the editor.

�Minimap
A Minimap (code outline) allows you to get a high-level overview of

your source code, which is quite useful for easy navigation and code

comprehension. A file’s minimap is displayed on the right side of the

editor. You can also click or drag the shaded area to quickly switch to

different sections of your file. It is also worth noting that you can move

the minimap to the left-hand side or even disable it completely by simply

setting “editor.minimap.side”:, “left”, or “editor.minimap.enabled”: false in

your user or workspace settings.

�Indent Guides
The image above the editor also shows vertical lines or indentation

guides that are there to help you freely observe matching indent levels.

If you would like to turn off those indent guides, you should set

“editor.renderIndentGuides”: false in your user or workspace settings.

Chapter 1 Introduction to Visual Studio Code

6

�Breadcrumbs
If you take a look at the editor once again, you will notice it has a

navigation bar above its contents that is named Breadcrumbs. It is there to

show your current location and let you quickly navigate between folders,

files, and symbols.

Breadcrumbs also tend to display the file path, and if the active file type

has language support for symbols, it displays the symbol path up to the

cursor position. You can switch off Breadcrumbs with the View ➤ Show

Breadcrumbs simple command. You can also access the same information

about the Breadcrumbs feature at the Breadcrumbs section of the editor.

�Explorer
The Explorer is a tool used to browse, open, and operate all of the files and

folders in your editing project. Since VS Code is file- and folder-based, you

can get started at any time simply by opening a file or folder in VS Code.

Once you open a folder in VS Code, the contents of the folder are shown in

the Explorer. You can do many modifications from here, such as:

•	 Create, delete, and rename files and folders.

•	 Change the location of files and folders by using drag

and drop.

•	 See the context menu to see all options.

Moreover, you can drag and drop files into the Explorer from outside

VS Code to make a VS copy of them, so that if the explorer is empty, VS

Code will access them instead.

VS Code also works very well with other tools that you might use,

especially command-line tools. If you need to run a command-line tool in

the context of the folder you have open in VS Code, right-click the folder and

select Open in Command Prompt (or Open in Terminal on macOS or Linux).

Chapter 1 Introduction to Visual Studio Code

7

At the same time, you can navigate to the location of a file or folder in

the native Explorer by right-clicking on a file or folder and selecting Reveal

in Explorer (or Reveal in Finder on macOS, or Open Containing Folder on

Linux). You may also type Ctrl+P (Quick Open option) to quickly search

and open a file by its name.

By default, VS Code does not open some folders from the Explorer

(for example, .git). In this case, you can use the files.exclude setting to edit

rules for hiding files and folders from the Explorer. However, if you have

any derived resource files, such as *.meta in Unity or *.js in a TypeScript

project, then this solution is not really going to be useful. Please note that

for Unity to exclude the *.cs.metafiles, the pattern to select would be “**/*.

cs.meta”: true. For TypeScript, you can exclude generated JavaScript for

TypeScript files with “**/*.js”: {“when”: “$(basename).ts”}.

�Multiselection
You can choose multiple files in the File Explorer and OPEN EDITORS view

to complete actions (Delete, Drag and Drop, Open to the Side) on multiple

items. Simply use the Ctrl/Cmd key with a click to select individual files

and Shift + click to select a range. If you select two items, you can now use

the context menu Compare Selected command to quickly differentiate the

two files. Also, remember that in earlier VS Code releases, clicking with

the Ctrl/Cmd key pressed would open a file in a new Editor Group to the

side. If you would still like this feature, you can use the workbench.list.

multiSelectModifier setting to modify multiselection to use the Alt key by

“workbench.list.multiSelectModifier”: “alt”.

Chapter 1 Introduction to Visual Studio Code

8

�Filtering the Document Tree
It is possible to filter the currently visible files in the File Explorer. You

can simply start typing part of the file name you want to match, keeping

the focus on the File Explorer. You will be able to see a filter box in the

top-right of the File Explorer presenting what you have typed so far, and

matching file names will be highlighted. Once you press the cursor keys

to move up and down the file list, it will switch between matching files or

folders. However, switching over the filter box and selecting Enable Filter

on Type will show only matching files and folders. You can apply the X

Clear button to clear the filter.

�Outline View
The Outline view is a section at the bottom of the File Explorer. When

activated, it will show the symbol tree of the currently active editor. The

Outline view has different Sort By modes and optional cursor tracking, and

supports the usual open gestures. It also has an input box that can search

for filters and symbols as you type. Errors and warnings are also displayed

in the Outline view, allowing you to see a glimpse of a problem as well as

its location.

As for symbols, the view relies heavily on the data computed by

your installed extensions for different file types. For instance, the built-

in Markdown support returns the Markdown header hierarchy for a

Markdown file’s symbols.

Chapter 1 Introduction to Visual Studio Code

9

�Markdown Outline View
There are a few Outline view settings that allow you to enable and disable

items and operate with errors and warnings display (all enabled by

default):1

•	 outline.icons: toggle rendering outline elements with

icons.

•	 outline.problems.enabled: shows errors and warnings

on outline elements.

•	 outline.problems.badges: toggle using badges for

errors and warnings.

•	 outline.problems.colors: toggle using colors for errors

and warnings.

�Open Editors
At the top of the Explorer, there is a section labeled as OPEN EDITORS that

displays a list of active files or previews. There might also be some files

visible that you previously opened in VS Code. For example, a file will be

listed in the OPEN EDITORS view if you make a change to a file, double-

click a file’s header, double-click a file in the Explorer, or open a file that is

not part of the current folder. By clicking an item in the OPEN EDITORS

view, it becomes active in VS Code. Once you are finished with your

project and wish to remove files individually from the OPEN EDITORS

view, or remove all files, you can do so by using the View: Close All Editors

or View and then Close All Editors in Group actions.

1 �Visual Studio Code, “Markdown and Visual Studio Code,”
https://code.visualstudio.com/docs/languages/markdown, accessed
July 29, 2021.

Chapter 1 Introduction to Visual Studio Code

https://code.visualstudio.com/docs/languages/markdown

10

�Views
The File Explorer is just one of the Views available in VS Code. There are

also Views for:2

•	 Search: Provides global search and replace across your

open folder.

•	 Source Control: VS Code includes Git source control

by default.

•	 Run: VS Code’s Run and Debug View displays

variables, call stacks, and breakpoints.

•	 Extensions: Installs and manages your extensions

within VS Code.

•	 Custom views: Views contributed by extensions.

Any of these views can be accessed by using the View: Open View

command.

�Activity Bar
The Activity Bar on your left is designed for you to easily switch between Views.

You can also reorder Views by dragging and dropping them on the Activity Bar,

or stow away a View entirely with the right-click Hide from Activity Bar.

�Command Palette
VS Code is also easily accessible from the keyboard. The most useful key

combination to know is Ctrl+Shift+P, which calls for the Command Palette.

With the Command Palette you have access to all of the functionality of VS

2 �Visual Studio Code, “User and Workspace Settings,” https://code.visualstudio.
com/docs/getstarted/settings, accessed July 29, 2021.

Chapter 1 Introduction to Visual Studio Code

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/getstarted/settings

11

Code, including keyboard shortcuts for the most implemented operations.

The Command Palette provides access to many commands. You can

manage editor commands, open files, search for items, and see a quick

outline of a file, all while using the same interactive window. Following are

a few navigation combinations:3

•	 Ctrl+P will let you navigate to any file or symbol by

typing its name.

•	 Ctrl+Tab will cycle you through the last set of files

opened.

•	 Ctrl+Shift+P will bring you directly to the editor

commands.

•	 Ctrl+Shift+O will let you navigate to a specific symbol in

a file.

•	 Ctrl+G will let you navigate to a specific line in a file.

•	 Type ? into the input field to get a list of available

commands you can execute from Quick Open Help.

�Configuring the Editor
VS Code has many options for you to configure the editor. From the View

menu you can hide or toggle various bits of the user interface, such as the

Side Bar, Status Bar, and Activity Bar.

3 Visual Studio Code, “User and Workspace Settings.”

Chapter 1 Introduction to Visual Studio Code

12

�Hiding the Menu Bar (for Windows, Linux)
You can hide the Menu Bar on Windows and Linux by selecting the setting

window.menuBarVisibility from classic to toggle. The toggle setting means

that a single press of the Alt key will show the Menu Bar again.

You can also remove the Menu Bar on Windows and Linux with the

View ➤ Toggle Menu Bar command. This command switches window.

menuBarVisibility from classic to compact, resulting in the Menu Bar

moving into the Activity Bar. To move back to the Menu Bar to the classic

position, select the View ➤ Toggle Menu Bar command again.

�Settings
Most basic editor configurations are kept in settings that can be modified

directly. You can set options globally through user settings, or per project

or file through workspace settings. Settings options are kept in a settings.

json file. You can follow the path Select File ➤ Preferences ➤ Settings

(or press Ctrl+,) to edit the user settings.json file. To change workspace

settings, click the WORKSPACE SETTINGS tab to edit the workspace

settings.json file. Note that for macOS users, the Preferences menu is

located under Code, not File; please follow Code ➤ Preferences ➤ Settings.

You can access the VS Code Default Settings in the left window, and

your editable settings.json on the right. It is also possible to easily filter

settings in the Default Settings using the search box at the top. You can

copy a setting over to the editable settings.json on the right by clicking

on the edit icon to the left of the setting. Settings with a fixed set of values

let you select a primary value as a section of their edit icon menu. After

editing your settings, type Ctrl+S to settle your changes. The changes will

take effect instantly. Workspace settings will override User settings and are

beneficial for sharing particular project settings.

Chapter 1 Introduction to Visual Studio Code

13

�Zen Mode
Zen mode enables you to focus on your code by removing all User

Interface items (Activity Bar, Status Bar, Side Bar, and Panel) except the

editor, displaying the full screen and centering the editor layout only. Zen

mode can be toggled using the View menu, Command Palette or by the

shortcut, Ctrl+K Z. To exit Zen mode, press double Esc. The transition

to full screen can be disabled via zenMode.fullScreen. Zen mode can be

further modified using the following settings: zenMode.hideStatusBar,

zenMode.hideTabs, zenMode.fullScreen, zenMode.restore, and zenMode.

centerLayout.

�Centered Editor Layout
Centered editor layout lets you center-align the editor area. This is

especially useful if you find yourself working with a single editor on a large

monitor. You can apply the sashes on the side to resize the view with the

Alt key, and using the same method you can also independently move the

sashes.

�Tabs
VS Code displays open items with tabbed headings or Tabs in the title area

above the editor. If you open a file, a new Tab is added for that file. Tabs

allow you to quickly navigate between files, and you can drag and drop

tabs to reorder them as you wish. When you have more open items than

can fit in the title area, you can apply the Show Opened Editors command

to show a dropdown list of tabbed items.

If you do not want to use Tabs, you can turn off the feature by setting

the workbench.editor.showTabs setting to false: “workbench.editor

.showTabs”: false.

Chapter 1 Introduction to Visual Studio Code

14

�Tab Ordering
By default, new Tabs are included to the right of the existing Tabs, but

you can administer where you would like new Tabs to appear with the

workbench.editor.openPositioning setting. For instance, you might like

new tabbed items to appear on the left, by using “workbench.editor

.openPositioning”: “left”.

�Preview Mode
Once you single-click or select a file in the Explorer, it is shown in a

presentation mode and reuses an existing Tab. This is particularly helpful

if you just need to quickly browse files and do not want each file you

accessed to have its own Tab. When you start editing the file or use double-

click to open the file from the Explorer, a new Tab is assigned to that file.

Preview mode is indicated by italics in the Tab heading: preview mode.

If you would rather not see the preview mode and always make a new

Tab, you can control the pattern with these settings:

•	 workbench.editor.enablePreview: to globally enable

or disable preview editors.

•	 workbench.editor.enablePreviewFromQuickOpen:
to enable or disable preview editors when opened from

Quick Open.

�Editor Groups
If you split an editor via the Split Editor or Open to the Side commands,

a new editor region that can hold a group of items is created instead.

At the same time, you can open as many editor regions as you like

side-by-side vertically and horizontally. You can see them in order in

Chapter 1 Introduction to Visual Studio Code

15

the OPEN EDITORS section at the top of the Explorer view. The OPEN

EDITORS section also allows you to Drag and Drop editor groups on the

workbench, move individual Tabs between groups, and quickly close

entire groups by clicking on Close All.

Be sure that VS Code uses editor groups whether or not you have any

Tabs on. Without Tabs, editor groups are a stack of your open items with

the most recently searched item visible in the editor pane. By default,

editor groups are structured in vertical columns when you split an editor

to open it to the side. You can also arrange editor groups in any layout you

like, both vertically and horizontally.

In order to support flexible layouts, you should create empty editor

groups. By default, closing the last editor of an editor group will also close

the group itself, but you can modify this behavior with the new setting

workbench.editor.closeEmptyGroups: false. You can also see if there are

any predefined set of editor layouts in the View ➤ Editor Layout menu.

Editors that open to the side by clicking the editor toolbar Split Editor

action will normally open to the right-hand side of the active editor. If

you prefer to open editors below the active one, configure the new setting

workbench.editor.openSideBySideDirection: down.

There are plenty of keyboard commands for adjusting the editor layout

with the keyboard alone, but if you prefer to use the mouse, drag and drop

is the fastest method to split the editor into any direction. In addition, if

you press and hold the Alt key while switching over the toolbar action to

split an editor, it will offer to split to the other orientation. This is another

fast way to split either to the right or to the bottom.

Chapter 1 Introduction to Visual Studio Code

16

�Keyboard Shortcuts
It will also be very beneficial for you to know some handy keyboard

shortcuts to quickly navigate between editors and editor groups. Some of

the most widely used ones are the following:4

•	 Ctrl+PageDown go to the right editor.

•	 Ctrl+PageUp go to the left editor.

•	 Ctrl+Tab open the previous editor in the editor group

MRU list.

•	 Ctrl+1 go to the leftmost editor group.

•	 Ctrl+2 go to the center editor group.

•	 Ctrl+3 go to the rightmost editor group.

•	 Ctrl+F4 close the active editor.

•	 Ctrl+K W close all editors in the editor group.

•	 Ctrl+K Ctrl+W close all editors.

�Disabling Preview Mode
Without Tabs, the OPEN EDITORS section of the File Explorer is a great

way to do file navigation. With preview editor mode, files are not shown

in the OPEN EDITOR list, nor editor group on single-click open. You can

turn this feature off through the workbench.editor.enablePreview and

workbench.editor.enablePreviewFromQuickOpen settings.

4 �Visual Studio Code, “User Interface,” https://code.visualstudio.com/docs/
getstarted/userinterface, accessed July 29, 2021.

Chapter 1 Introduction to Visual Studio Code

https://code.visualstudio.com/docs/getstarted/userinterface
https://code.visualstudio.com/docs/getstarted/userinterface

17

�Using Ctrl+Tab to Navigate in Entire Editor
History
You can edit keybindings for Ctrl+Tab to show you a list of all opened

editors from the history independent from the active editor group. You can

edit your keybindings and add the following by using:

{ "key": "ctrl+tab", "command":

"workbench.action.openPreviousEditorFromHistory" },

{ "key": "ctrl+tab", "command":

"workbench.action.quickOpenNavigateNext", "when": "inQuickOpen" }

�Closing an Entire Group Instead of a Single
Editor
If you want to repeat the behavior of VS Code closing an entire group when

closing one editor, you can bind the following in your keybindings by

using:

macOS: { "key": "cmd+w", "command":

"workbench.action.closeEditorsInGroup" }

Windows/Linux: { "key": "ctrl+w", "command":

"workbench.action.closeEditorsInGroup" }

�Window Management
VS Code has some options to operate to determine how windows

can be opened or restored between sessions. The settings

window.openFoldersInNewWindow and window.openFilesInNewWindow

are used to configure opening new windows or reusing the last active

window for files or folders and possible values by default.

Chapter 1 Introduction to Visual Studio Code

18

If edited to turn to default conditions, VS Code will restore all windows

you worked on during your previous session. However, there can still be

cases where this setting is ignored (for instance, if using the -new-window

or -reuse-window command-line option).

The window.restoreWindows setting tells VS Code how to restore the

opened windows of your previous session. You can also change this setting

to never reopen any windows and always start with an empty VS Code

instance.

We will now take a look at how to set up VS Code for Python

development.

�Setting Up Visual Studio Code
Getting and activating VS Code is easy and quick. All it takes is a small

download and then you can install it in a matter of minutes (Figure 1-2).

Figure 1-2.  Setting up VS Code

Chapter 1 Introduction to Visual Studio Code

19

�Cross-Platform
VS Code is a free code editor that runs on the macOS, Linux, and Windows

operating systems.

For smoother installation you can follow the following platform-

specific guides:5

�MacOS

	 1.	 Download VS Code for macOS.

	 2.	 Open the browser’s download list and locate the

downloaded archive.

	 3.	 Select the magnifying glass icon to open the archive

in Finder.

	 4.	 Drag VS Code.app to the Applications folder, making

it available in the macOS Launchpad.

	 5.	 Add VS Code to your Dock by right-clicking on the

icon to bring up the context menu and choosing

Options, Keep in Dock.

�Linux

VS Code is officially distributed as a Snap package in the Snap Store, and

can also be downloaded from the official site as an RPM or DEB package.

You can install it by running: sudo snap install --classic code # or

code-insiders.

5 �Visual Studio Code, “Setting Up Visual Studio Code,” https://code.
visualstudio.com/docs/setup/setup-overview, accessed July 29, 2021.

Chapter 1 Introduction to Visual Studio Code

https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview

20

Once installed, the Snap daemon will take care of automatically

updating VS Code in the background. You can also expect to get an in-

product update notification whenever a new update is available.

�Windows

	 1.	 Download the VS Code installer for Windows.

	 2.	 Once it is downloaded, run the installer

(VSCodeUserSetup-{version}.exe). This will only

take a minute.

	 3.	 By default, VS Code is installed under C:\users\

{username}\AppData\Local\Programs\Microsoft VS

Code.

VS Code is lightweight and should run on most available hardware and

platform versions. You can review the System Requirements to see whether

your computer configuration is supported.

�Updating Cadence
VS Code releases a new version every month with new features and

progressive bug fixes. Most platforms have auto-updating installed, so you

will be prompted to look for the new release when it becomes available.

You can also manually check for updates by running Help ➤ Check for

Updates on Linux and Windows, or running Code ➤ Check for Updates on

macOS. Additionally, you can also disable auto-update if you would like to

update VS Code according to your own schedule.

Chapter 1 Introduction to Visual Studio Code

21

�Insiders Nightly Build
If you’d like to check out VS Code nightly builds to get access to new

features earlier than the rest of the users or to verify bug fixes, you can

install the Insiders build. The Insiders build installs side by side with the

monthly Stable build, and you can freely incorporate and work with both

on the same machine. The Insiders build is the same tool that the VS Code

development team uses on a daily basis. If you have valuable feedback

about the new features to offer, the development team would really

appreciate it.

�Portable Mode
VS Code also supports Portable mode installation. This mode ensures that

all data created and maintained by VS Code is stored in close quarters so

that when necessary it can be moved around across environments, even

on a USB drive.

�Additional Components
VS Code is an editor with a relatively small footprint. Unlike other

traditional editors that tend to include every other function, with VS

Code you can tune and customize your installation to the development

technologies most important to you.

�Extensions
VS Code extensions let third parties add support for the following:

•	 Languages: C++, C#, Go, Java, Python

•	 Tools: ESLint, JSHint , PowerShell

Chapter 1 Introduction to Visual Studio Code

22

•	 Debuggers: PHP XDebug

•	 Keymaps: Vim, Sublime Text, IntelliJ, Emacs, Atom,

Brackets, Visual Studio, Eclipse

Extensions smoothly integrate into VS Code’s User Interface,

commands, and task running systems, so you will find it easy to operate

with different technologies through VS Code’s shared interface.

�Key Bindings for Visual Studio Code
VS Code offers you an option to manage most tasks directly from the

keyboard (Figure 1-3). This section lists out the default bindings (keyboard

shortcuts) and gives you an overview of how you can update them.

�Keyboard Shortcuts Editor
VS Code has many simple keyboard shortcuts using Keyboard Shortcuts

editor. It illustrates all available commands with and without keybindings,

and you can easily change, remove, and update these using the available

Figure 1-3.  Using keyboard shortcuts in VS Code

Chapter 1 Introduction to Visual Studio Code

23

options. It also has a search box on the top that is useful when searching

for commands or keybindings. You can open this editor by looking at

the menu under File ➤ Preferences ➤ Keyboard Shortcuts (Code ➤

Preferences ➤ Keyboard Shortcuts on macOS). You can also access a

printable version of these keyboard shortcuts at Help ➤ Keyboard Shortcut

Reference and get a condensed PDF version suitable for printing as a user-

friendly reference.

�Detecting Keybinding Conflicts

If you have too many extensions installed or you have customized most of

your keyboard shortcuts, you may at times face keybinding conflicts where

the same keyboard shortcut is mapped to perform several commands. This

can result in confusing occurrences, especially if different keybindings are

going in and out of scope when you keep working with the editor. From

time to time you should check on the Keyboard Shortcuts editor that has

a context menu command Show Same Keybindings, which is used to filter

the keybindings based on a keyboard shortcut to display and potentially

prevent any conflicts.

�Troubleshooting Keybindings

To troubleshoot keybindings problems, you can activate the command

Developer: Toggle Keyboard Shortcuts Troubleshooting. This will help to

perform logging of dispatched keyboard shortcuts and will give access to

the output panel with the corresponding log file.

With it, you can later press your desired keybinding and check what

keyboard shortcut VS Code uses and what command is activated.

Chapter 1 Introduction to Visual Studio Code

24

�Keyboard Rules
Each rule consists of the following:6

•	 a key that defines the pressed keys.

•	 a command containing the identifier of the command

to execute.

•	 an optional when clause containing a Boolean

expression that will be calculated depending on the

current context.

Two separate keypress actions known as Chords are described by

separating the two keypresses with space. For example, Ctrl+K Ctrl+C.

When a key is pressed:

•	 the rules are assessed from bottom to top.

•	 the first rule that matches, both the key and in terms of

when is accepted.

•	 no more rules are processed.

•	 if a rule is found and has a command set too, the

command is implemented.

The additional keybindings.json rules are omitted at runtime to the

bottom of the default rules, therefore allowing them to overwrite the

default rules. The keybindings.json file is observed by VS Code, so editing

it while VS Code is running will upgrade the rules at runtime.

The keyboard shortcuts dispatching is completed by analyzing a list of

rules that are stored in JSON. To illustrate with a few examples:7

6 �Visual Studio Code, “Key Bindings for Visual Studio Code,” https://code.
visualstudio.com/docs/getstarted/keybindings, accessed July 29, 2021.

7 Visual Studio Code, “Key Bindings for Visual Studio Code.”

Chapter 1 Introduction to Visual Studio Code

https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/docs/getstarted/keybindings

25

// Keybindings that are active when the focus is in the editor:

{ "key": "home", "command": "cursorHome",

 "when": "editorTextFocus" },

{ "key": "shift+home", "command": "cursorHomeSelect"

, "when": "editorTextFocus" },

// Keybindings that are complementary:

{ "key": "f5", "command":

"workbench.action.debug.continue", "when": "inDebugMode" },

{ "key": "f5", "command":

"workbench.action.debug.start", "when": "!inDebugMode" },

// Global keybindings:

{ "key": "ctrl+f", "command": "actions.find" },

{ "key": "alt+left", "command":

"workbench.action.navigateBack" },

{ "key": "alt+right", "command":

"workbench.action.navigateForward" },

// Global keybindings using chords (two separate keypress actions):

{ "key": "ctrl+k enter", "command":

"workbench.action.keepEditor" },

{ "key": "ctrl+k ctrl+w", "command":

"workbench.action.closeAllEditors" },

�Accepted Keys
The key is made up of modifiers and the key itself. The following modifiers

are accepted:

Platform Modifiers

macOS Ctrl+, Shift+, Alt+, Cmd+

Windows Ctrl+, Shift+, Alt+, Win+

Linux Ctrl+, Shift+, Alt+, Meta+

Chapter 1 Introduction to Visual Studio Code

26

The following keys are accepted:

•	 f1-f19, a-z, 0-9

•	 `, -, =, [,], \, ;, ’, ,, ., /

•	 left, up, right, down, pageup, pagedown, end, home

•	 tab, enter, escape, space, backspace, delete

•	 pausebreak, capslock, insert

•	 numpad0-numpad9, numpad_multiply, numpad_add,

numpad_separator

•	 numpad_subtract, numpad_decimal, numpad_divide

�Command Arguments
You can call on command with arguments. This is especially helpful if you

usually perform the same operation on a specific file or folder. You can

include a custom keyboard shortcut to do exactly what you need it to do.

The following is an example of overriding the Enter key to print some text:

{

 "key": "enter",

 "command": "type",

 "args": { "text": "Hello There" },

 "when": "editorTextFocus"

}

The type command will receive {“text”: “Hello There”} as its first

argument and add “Hello There” to the file instead of producing the

default command.

Chapter 1 Introduction to Visual Studio Code

27

�Removing a Specific Key Binding Rule
You can script a key binding rule that targets the dismissal of a specific

default key binding. With keybindings.json it was always acceptable to

redefine all the key bindings of VS Code, but it can be challenging to

make a small addition, especially around overloaded keys, such as Tab or

Escape. In order to hide a specific key binding, add a - to the command

and the rule will be a removal one.

�Keyboard Layout-Independent Nindings
Using scan codes, it is manageable to define keybindings that do not

change with the modification of the keyboard layout. For example: { “key”:

“cmd+[Slash]”, “command”: “editor.action.commentLine”, and “when”:

“editorTextFocus” }.

The following scan codes are accepted:

[F1]-[F19], [KeyA]-[KeyZ], [Digit0]-[Digit9]

[Backquote], [Minus], [Equal], [BracketLeft], [BracketRight],

[Backslash], [Semicolon], [Quote], [Comma], [Period], [Slash]

[ArrowLeft], [ArrowUp], [ArrowRight], [ArrowDown], [PageUp],

[PageDown], [End], [Home]

[Tab], [Enter], [Escape], [Space], [Backspace], [Delete]

[Pause], [CapsLock], [Insert]

[Numpad0]-[Numpad9], [NumpadMultiply], [NumpadAdd],

[NumpadComma]

[NumpadSubtract], [NumpadDecimal], [NumpadDivide]

Chapter 1 Introduction to Visual Studio Code

28

�When Clause Contexts
VS Code gives you full control over when your key bindings are activated

through the optional when clause. If some key bindings do not have a

when clause, those key binding are globally available at all times. A when

clause relates to either Boolean true or false for operating key bindings.

In addition, VS Code sets various context keys and specific values

depending on what elements are available and active in the VS Code User

Interface. For instance, the built-in Start Debugging command has the

keyboard shortcut F5, which is only enabled when there is an appropriate

debugger available (context debuggersAvailable is true) and the editor is

not in debug mode (context inDebugMode is false).

�Conditional Operators
For when clause conditional expressions, the conditional operators in

Table 1-1 are used for keybindings.8

8 Visual Studio Code, “Key Bindings for Visual Studio Code.”

Table 1-1.  Conditional operators

Operator Symbol Example

Equality == “editorLangId == typescript”

Inequality != “resourceExtname != .js”

Or || “isLinux||isWindows”

And && “textInputFocus &&

!editorReadonly”

Matches =~ “resourceScheme =~

/^untitled$|^file$/”

Chapter 1 Introduction to Visual Studio Code

29

�Available Contexts
You can see some of the available contexts at hand when clause contexts in

the when clause context reference. The list there is not as exhaustive, and

you can look for other when clause contexts by searching and filtering in

the Keyboard Shortcuts editor (Preferences: Open Keyboard Shortcuts) or

reviewing the Default Keybindings JSON file (Preferences: Open Default

Keyboard Shortcuts (JSON)). Tables 1-2 through 1-12 provides shortcuts

for some basic commands.9

9 �Visual Studio Code, “When Clause Contexts,” https://code.visualstudio.com/
api/references/when-clause-contexts, VS Code, web, accessed July 29, 2021.

Table 1-2.  Basic editing

Command Key Command id

Cut line (empty

selection)

Ctrl+X editor.action.clipboardCutAction

Copy line (empty

selection)

Ctrl+C editor.action.clipboardCopyAction

Paste Ctrl+V editor.action.clipboardPasteAction

Delete Line Ctrl+Shift+K editor.action.deleteLines

Insert Line Below Ctrl+Enter editor.action.insertLineAfter

Insert Line Above Ctrl+Shift+Enter editor.action.insertLineBefore

Move Line Down Alt+Down editor.action.moveLinesDownAction

Move Line Up Alt+Up editor.action.moveLinesUpAction

Copy Line Down Shift+Alt+Down editor.action.copyLinesDownAction

Copy Line Up Shift+Alt+Up editor.action.copyLinesUpAction

(continued)

Chapter 1 Introduction to Visual Studio Code

https://code.visualstudio.com/api/references/when-clause-contexts
https://code.visualstudio.com/api/references/when-clause-contexts

30

Table 1-2.  (continued)

Command Key Command id

Undo Ctrl+Z undo

Redo Ctrl+Y redo

Add Selection To Next

Find Match

Ctrl+D editor.action

.addSelectionToNextFindMatch

Move Last Selection

To Next Find Match

Ctrl+K editor.action

.moveSelectionToNextFindMatch

Undo last cursor

operation

Ctrl+U cursorUndo

Insert cursor at end

of line

Shift+Alt+I editor.action

.insertCursorAtEndOfEachLineSelected

Select all occurrences

of current selection

Ctrl+Shift+L editor.action.selectHighlights

Select all occurrences

of current word

Ctrl+F2 editor.action.changeAll

Select current line Ctrl+L expandLineSelection

Insert Cursor Below Ctrl+Alt+Down editor.action.insertCursorBelow

Insert Cursor Above Ctrl+Alt+Up editor.action.insertCursorAbove

Jump to matching

bracket

Ctrl+Shift+\ editor.action.jumpToBracket

Indent Line Ctrl+] editor.action.indentLines

Outdent Line Ctrl+[editor.action.outdentLines

Go to Beginning of

Line

Home cursorHome

(continued)

Chapter 1 Introduction to Visual Studio Code

31

Table 1-2.  (continued)

(continued)

Command Key Command id

Go to End of Line End cursorEnd

Go to End of File Ctrl+End cursorBottom

Go to Beginning of File Ctrl+Home cursorTop

Scroll Line Down Ctrl+Down scrollLineDown

Scroll Line Up Ctrl+Up scrollLineUp

Scroll Page Down Alt+PageDown scrollPageDown

Scroll Page Up Alt+PageUp scrollPageUp

Fold (collapse) region Ctrl+Shift+[editor.fold

Unfold (uncollapse)

region

Ctrl+Shift+] editor.unfold

Fold (collapse) all

subregions

Ctrl+K Ctrl+[editor.foldRecursively

Unfold (uncollapse) all

subregions

Ctrl+K Ctrl+] editor.unfoldRecursively

Fold (collapse) all

regions

Ctrl+K Ctrl+0 editor.foldAll

Unfold (uncollapse) all

regions

Ctrl+K Ctrl+J editor.unfoldAll

Add Line Comment Ctrl+K Ctrl+C editor.action.addCommentLine

Remove Line

Comment

Ctrl+K Ctrl+U editor.action.removeCommentLine

Toggle Line Comment Ctrl+/ editor.action.commentLine

Chapter 1 Introduction to Visual Studio Code

32

Command Key Command id

Toggle Block

Comment

Shift+Alt+A editor.action.blockComment

Find Ctrl+F actions.find

Replace Ctrl+H editor.action.startFindReplaceAction

Find Next Enter editor.action.nextMatchFindAction

Find Previous Shift+Enter editor.action.previousMatchFindAction

Select All Occurrences

of Find Match

Alt+Enter editor.action.selectAllMatches

Toggle Find Case

Sensitive

Alt+C toggleFindCaseSensitive

Toggle Find Regex Alt+R toggleFindRegex

Toggle Find Whole

Word

Alt+W toggleFindWholeWord

Toggle Use of Tab Key

for Setting Focus

Ctrl+M editor.action.toggleTabFocusMode

Toggle Render

Whitespace

unassigned toggleRenderWhitespace

Toggle Word Wrap Alt+Z editor.action.toggleWordWrap

Table 1-2.  (continued)

Chapter 1 Introduction to Visual Studio Code

33

Table 1-3.  Rich languages editing

Command Key Command id

Trigger Suggest Ctrl+Space editor.action.triggerSuggest

Trigger Parameter Hints Ctrl+Shift+Space editor.action.triggerParameterHints

Format Document Shift+Alt+F editor.action.formatDocument

Format Selection Ctrl+K Ctrl+F editor.action.formatSelection

Go to Definition F12 editor.action.revealDefinition

Show Hover Ctrl+K Ctrl+I editor.action.showHover

Peek Definition Alt+F12 editor.action.peekDefinition

Open Definition to the

Side

Ctrl+K F12 editor.action.revealDefinitionAside

Quick Fix Ctrl+. editor.action.quickFix

Go to References Shift+F12 editor.action.goToReferences

Rename Symbol F2 editor.action.rename

Replace with Next

Value

Ctrl+Shift+. editor.action.inPlaceReplace.down

Replace with Previous

Value

Ctrl+Shift+, editor.action.inPlaceReplace.up

Expand AST Selection Shift+Alt+Right editor.action.smartSelect.expand

Shrink AST Selection Shift+Alt+Left editor.action.smartSelect.shrink

Trim Trailing

Whitespace

Ctrl+K Ctrl+X editor.action.trimTrailingWhitespace

Change Language

Mode

Ctrl+K M workbench.action.editor

.changeLanguageMode

Chapter 1 Introduction to Visual Studio Code

34

Table 1-5.  Editor/window management

Command Key Command id

New Window Ctrl+Shift+N workbench.action.newWindow

Close Window Ctrl+W workbench.action.closeWindow

Close Editor Ctrl+F4 workbench.action.closeActiveEditor

Close Folder Ctrl+K F workbench.action.closeFolder

(continued)

Table 1-4.  Navigation

Command Key Command id

Show All Symbols Ctrl+T workbench.action.showAllSymbols

Go to Line... Ctrl+G workbench.action.gotoLine

Go to File..., Quick Open Ctrl+P workbench.action.quickOpen

Go to Symbol... Ctrl+Shift+O workbench.action.gotoSymbol

Show Problems Ctrl+Shift+M workbench.actions.view.problems

Go to Next Error or

Warning

F8 editor.action.marker.nextInFiles

Go to Previous Error or

Warning

Shift+F8 editor.action.marker.prevInFiles

Show All Commands Ctrl+Shift+P or F1 workbench.action.showCommands

Navigate Editor History Ctrl+Tab workbench.action.quickOpen

PreviousRecentlyUsedEditorInGroup

Go Back Alt+Left workbench.action.navigateBack

Go back in Quick Input Alt+Left workbench.action.quickInputBack

Go Forward Alt+Right workbench.action.navigateForward

Chapter 1 Introduction to Visual Studio Code

35

Command Key Command id

Cycle Between Editor

Groups

unassigned workbench.action

.navigateEditorGroups

Split Editor Ctrl+\ workbench.action.splitEditor

Focus into First Editor

Group

Ctrl+1 workbench.action

.focusFirstEditorGroup

Focus into Second

Editor Group

Ctrl+2 workbench.action

.focusSecondEditorGroup

Focus into Third Editor

Group

Ctrl+3 workbench.action

.focusThirdEditorGroup

Focus into Editor

Group on the Left

unassigned workbench.action

.focusPreviousGroup

Focus into Editor

Group on the Right

unassigned workbench.action.focusNextGroup

Move Editor Left Ctrl+Shift+PageUp workbench.action

.moveEditorLeftInGroup

Move Editor Right Ctrl+Shift+PageDown workbench.action

.moveEditorRightInGroup

Move Active Editor

Group Left

Ctrl+K Left workbench.action

.moveActiveEditorGroupLeft

Move Active Editor

Group Right

Ctrl+K Right workbench.action

.moveActiveEditorGroupRight

Move Editor into Next

Group

Ctrl+Alt+Right workbench.action

.moveEditorToNextGroup

Move Editor into

Previous Group

Ctrl+Alt+Left workbench.action

.moveEditorToPreviousGroup

Table 1-5.  (continued)

Chapter 1 Introduction to Visual Studio Code

36

Table 1-6.  File management

Command Key Command id

New File Ctrl+N workbench.action.files.newUntitledFile

Open File... Ctrl+O workbench.action.files.openFile

Save Ctrl+S workbench.action.files.save

Save All Ctrl+K S saveAll

Save As... Ctrl+Shift+S workbench.action.files.saveAs

Close Ctrl+F4 workbench.action.closeActiveEditor

Close Others unassigned workbench.action.closeOtherEditors

Close Group Ctrl+K W workbench.action.closeEditorsInGroup

Close Other Groups unassigned workbench.action

.closeEditorsInOtherGroups

Close Group to Left unassigned workbench.action.closeEditorsToTheLeft

Close Group to Right unassigned workbench.action.closeEditorsToTheRight

Close All Ctrl+K

Ctrl+W

workbench.action.closeAllEditors

Reopen Closed Editor Ctrl+Shift+T workbench.action.reopenClosedEditor

Keep Open Ctrl+K Enter workbench.action.keepEditor

Copy Path of Active File Ctrl+K P workbench.action.files.copyPathOfActiveFile

Reveal Active File in

Window

Ctrl+K R workbench.action.files.

revealActiveFileInWindows

Show Opened File in

New Window

Ctrl+K workbench.action.files.

showOpenedFileInNewWindow

Compare Opened File

With

unassigned workbench.files.action.compareFileWith

Chapter 1 Introduction to Visual Studio Code

37

Table 1-7.  Display

Command Key Command id

Toggle Full Screen F11 workbench.action.toggleFullScreen

Toggle Zen Mode Ctrl+K Z workbench.action.toggleZenMode

Leave Zen Mode Escape workbench.action.exitZenMode

Zoom in Ctrl+= workbench.action.zoomIn

Zoom out Ctrl+- workbench.action.zoomOut

Reset Zoom Ctrl+Numpad0 workbench.action.zoomReset

Toggle Sidebar Visibility Ctrl+B workbench.action.toggleSidebarVisibility

Show Explorer / Toggle

Focus

Ctrl+Shift+E workbench.view.explorer

Show Search Ctrl+Shift+F workbench.view.search

Show Source Control Ctrl+Shift+G workbench.view.scm

Show Run Ctrl+Shift+D workbench.view.debug

Show Extensions Ctrl+Shift+X workbench.view.extensions

Show Output Ctrl+Shift+U workbench.action.output.toggleOutput

Quick Open View Ctrl+Q workbench.action.quickOpenView

Open New Command

Prompt

Ctrl+Shift+C workbench.action.terminal

.openNativeConsole

Toggle Markdown

Preview

Ctrl+Shift+V markdown.showPreview

Open Preview to the Side Ctrl+K V markdown.showPreviewToSide

Toggle Integrated

Terminal

Ctrl+` workbench.action.terminal

.toggleTerminal

Chapter 1 Introduction to Visual Studio Code

38

Table 1-8.  Search

Command Key Command id

Show Search Ctrl+Shift+F workbench.view.search

Replace in Files Ctrl+Shift+H workbench.action.replaceInFiles

Toggle Match Case Alt+C toggleSearchCaseSensitive

Toggle Match Whole Word Alt+W toggleSearchWholeWord

Toggle Use Regular

Expression

Alt+R toggleSearchRegex

Toggle Search Details Ctrl+Shift+J workbench.action.search

.toggleQueryDetails

Focus Next Search Result F4 search.action.focusNextSearchResult

Focus Previous Search

Result

Shift+F4 search.action.focusPreviousSearchResult

Show Next Search Term Down history.showNext

Show Previous Search

Term

Up history.showPrevious

Table 1-9.  Search editor

Command Key Command id

Open Results In

Editor

Alt+Enter search.action.openInEditor

Focus Search Editor

Input

Escape search.action.focusQueryEditorWidget

Search Again Ctrl+Shift+R rerunSearchEditorSearch

Delete File Results Ctrl+Shift+Backspace search.searchEditor.action

.deleteFileResults

Chapter 1 Introduction to Visual Studio Code

39

Table 1-11.  Debug

Command Key Command id

Toggle Breakpoint F9 editor.debug.action.toggleBreakpoint

Start F5 workbench.action.debug.start

Continue F5 workbench.action.debug.continue

Start (without debugging) Ctrl+F5 workbench.action.debug.run

Pause F6 workbench.action.debug.pause

Step Into F11 workbench.action.debug.stepInto

Table 1-12.  Tasks

Command Key Command id

Run Build Task Ctrl+Shift+B workbench.action.tasks.build

Run Test Task Unassigned workbench.action.tasks.test

Table 1-10.  Preferences

Command Key Command id

Open Settings Ctrl+, workbench.action.openSettings

Open Workspace Settings unassigned workbench.action

.openWorkspaceSettings

Open Keyboard Shortcuts Ctrl+K

Ctrl+S

workbench.action

.openGlobalKeybindings

Open User Snippets unassigned workbench.action.openSnippets

Select Color Theme Ctrl+K

Ctrl+T

workbench.action.selectTheme

Configure Display

Language

unassigned workbench.action.configureLocale

Chapter 1 Introduction to Visual Studio Code

40

�Programming Languages Supported
In VS Code, there is a support tool for almost every major programming

language. Most of the default settings for JavaScript, TypeScript, CSS,

and HTML with rich language extensions can be found in the VS Code

Marketplace. These are eight of the most popular language extensions:

•	 Python

•	 C/C++

•	 C#

Table 1-13.  Extensions

Command Key Command id

Install Extension unassigned workbench.extensions

.action.installExtension

Show Installed Extensions unassigned workbench

.extensions.action

.showInstalledExtensions

Show Outdated Extensions unassigned workbench

.extensions.action

.listOutdatedExtensions

Show Recommended Extensions unassigned workbench.extensions

.action.showRecommended

Extensions

Show Popular Extensions unassigned workbench

.extensions.action

.showPopularExtensions

Update All Extensions unassigned workbench.extensions

.action.updateAllExtensions

Chapter 1 Introduction to Visual Studio Code

41

•	 Java Extension Pack

•	 Go

•	 Dart

•	 PHP Extension Pack

•	 Ruby

You can go to the Marketplace or check out the integrated Extensions

view and search for your desired programming language to find snippets,

code completion and IntelliSense providers, linters, debuggers, and more.

If you want to change the display language of VS Code (for example, to

some other available language), you can do that in the Display Language

topic.

It is best to have some prior understanding of these programming

languages and their language specific documentation supported by VS

Code in advance.

�Language Features in VS Code
The richness of support characteristics varies across the different

languages and their extensions:

•	 Syntax highlighting and bracket matching

•	 Smart completions

•	 Linting and corrections

•	 Code navigation (Go to Definition, Find All References)

•	 Debugging

•	 Refactoring

Chapter 1 Introduction to Visual Studio Code

42

�Changing the Language for the Selected File
In VS Code, there is a default setting of the language support for a file

based on its filename extension. Nevertheless, when you need to change a

few language modes, you can do so by clicking on the language indicator,

which is located on the right-hand side of the Status Bar. This will call

up the Select Language Mode dropdown, where you can see and choose

another language for the current file.

�Additional Components and Tools
VS Code is quite minimal by design and only includes the limited

number of components shared across most development platforms. Basic

functionality such as the editor, file management, window management,

and preference settings are included. A JavaScript and TypeScript language

service and Node.js debugger are also part of the basic structure.

If you are used to working with bigger, more inclusive, and diverse

development tools, you may be surprised that your scenarios are not

always fully supported out of the box. For instance, there is not a File ➤

New Project dialog with preinstalled project templates. Most VS Code

users will be required to look for and download additional components,

depending on their specific projects.

�Commonly Used Components
Here are a few commonly installed components:

•	 Git: VS Code has built-in support for source code

control using Git, but needs Git to be installed on the

side.

•	 Node.js (includes npm): A cross-platform mostly used

for building and running JavaScript applications.

Chapter 1 Introduction to Visual Studio Code

43

•	 TypeScript: The TypeScript compiler, tsc, for

transcripting TypeScript to JavaScript.

�VS Code Extensions
You can also expand the VS Code editor itself through extensions. The

VS Code community has built the multiple varieties of useful extensions

available on the VS Code Marketplace for the following programming

languages:

•	 Python

•	 C/C++

•	 Jupyter

•	 ESLint

•	 Prettier: code formatter

•	 Live Server

•	 Visual Studio IntelliCode

•	 C#

�Additional Tools
VS Code effectively integrates with some widely used toolchains. The

following tools will assist in advancing your development experience:

•	 Yeoman: an application scaffolding tool, a

command-line version of File ➤ New Project.

•	 generator-aspnet: a Yeoman generator for running

ASP.NET Core applications.

Chapter 1 Introduction to Visual Studio Code

44

•	 generator-hot towel: a Yeoman generator for easy

creation of AngularJS applications.

•	 Express: an application framework for Node.js

applications using the Pug template engine.

•	 Gulp: a streaming task runner system that could be

incorporated with VS Code tasks.

•	 Mocha: a JavaScript test framework that runs on Node.js.

•	 Yarn: a dependency manager and a good alternative to

npm.

Please note that most of these tools require Node.js and the npm

package manager to download and apply.

�Settings Precedence
Configurations can be overridden at multiple levels by the different setting

scopes:

User settings: applies globally to all VS Code

instances.

Workspace setting: goes to the open folder or

workspace and normally overrides User settings.

Workspace Folder settings: typically applies to a

specific folder of a multiroot workspace; overrides

both User and Workspace settings.

Setting values can be of various types:

•	 String: “files.autoSave”: “afterDelay”

•	 Boolean: “editor.minimap.enabled”: true

Chapter 1 Introduction to Visual Studio Code

45

•	 Number: “files.autoSaveDelay”: 1000

•	 Array: “editor.rulers”: []

•	 Object: “search.exclude”: { “**/node_modules”: true,

“**/bower_components”: true }

Values with primitive types and Array type are overridden,

but those with Object type are merged. For example, workbench.

colorCustomizations takes an Object that specifies a group of User

Interface items and their desired colors. If there are conflicting values, the

usual reaction would be to override behavior with workspace values taking

precedence over user values.

�Settings and Security
Some settings let you specify an executable that VS Code will run to

operate over certain operations. For example, you can select which shell

the Integrated Terminal would be using. For more advanced security, such

settings can only be determined in user settings and not at workspace

scope. See the list of settings not supported in workspace settings:

•	 git.path

•	 terminal.external.windowsExec

•	 terminal.external.osxExec

•	 terminal.external.linuxExec

The first time you activate a workspace that determines any of these

settings, VS Code is going to warn you once, and you may ignore the values

after that.

Chapter 1 Introduction to Visual Studio Code

46

�Summary
In this chapter we have covered the basics related to VS Code, including its

user interface and keyboard shortcuts.

In the next chapter we will look closer at the VS Code for Python

Development, including the list of required extensions, linting, and

debugging requirements.

Chapter 1 Introduction to Visual Studio Code

47© Sufyan bin Uzayr 2021
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9_2

CHAPTER 2

Getting Started
with Python Programs
in Visual Studio Code
In the previous chapter, we covered the basics of VS Code. In this

chapter, we are going to explain how to set up your VS Code for Python

development. It can be easily downloaded and installed for all the major

operating systems such as Windows, Linux, and macOS.

�Installation Basics
First, let’s cover the installation basics.

For the sake of illustrating examples, we are going to show how

to install most of the tools on Windows. Windows will be used as the

development environment for setting up the Python environment. For

Linux and macOS, the process will be almost the same; nevertheless, there

are a few differences in the commands.

All you have to do to start is to navigate to https://code.

visualstudio.com/download and choose the appropriate platform to

install the software. Once the download is completed, proceed with the

normal installation.

https://doi.org/10.1007/978-1-4842-7344-9_2#DOI
https://code.visualstudio.com/download
https://code.visualstudio.com/download

48

Once VS Code is up and running, the next thing to do is to set up the

Python runtime environment. Again, you can install Python on all three

operating systems (Windows, Linux, and macOS). Once Python has been

downloaded and installed, you can go to the command prompt and

run the following commands to verify whether the installation has been

successful or not. To verify that you have installed Python successfully on

your machine, activate one of the following commands (depending on

your operating system):

•	 Linux and macOS: open a Terminal Window and type

the following command:

python3 --version

•	 Windows: open a command prompt and run the

following command:

py -3 --version

If the installation was successful, the output window should be able to

display the version of Python that you installed.

Next, we will learn to install extensions for VS Code.

�Reviewing the Required Extensions
By default, VS Code operates just like an ordinary text editor and does

not have any built-in support for Python. What this means is that even

though you can easily write Python code in VS Code, you will not be able

to upgrade and use some of the developer tools or techniques that make

writing code a lot easier. VS Code supports development in multiple

Chapter 2 Getting Started with Python Programs in Visual Studio Code

49

programming languages through a well-documented extension model.

The Python extension enables Python development in VS Code, with the

following features:

•	 Support for Python 3.4 and higher, as well as Python 2.7

•	 Code completion with IntelliSense

•	 Linting

•	 Debugging support

•	 Code snippets

•	 Unit testing support

•	 Automatic use of virtual environments

•	 Code editing in Jupyter environments and Jupyter

Notebooks

•	 Installing the Python extension for VS Code

VS Code extensions also cover more than just programming language

capabilities:

•	 Keymaps let users already familiar with Atom, Sublime

Text, Emacs, Vim, PyCharm, or other environments

advance your coding.

•	 Themes customize the User Interface, whether you like

coding in the light, dark, or something more colorful.

•	 Language packs let you have a more localized experience.

•	 GitLens has tons of useful Git features directly in your

editing platform, including blame annotations and

repository exploration features.

•	 Autosave is easily turned on by selecting File, AutoSave

from the menu. The default delay time is 1000

milliseconds, which is also adjustable.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

50

•	 Settings Sync offers to synchronize your VS Code

settings across different installations using GitHub. If

you work on different machines, this is useful to keep

your environment consistent across all of them.

•	 Docker lets you quickly and easily work with Docker,

helping author Dockerfile and docker-compose.

yml, setting and deploying your projects, and even

producing the proper Docker files for your project.

Identifying and installing additional extensions and themes is possible

by clicking on the Extensions icon on the Activity Bar. You can look for

extensions using keywords, sort the results in the most preferred ways, and

install extensions quickly and effortlessly.

The following sections take a look in brief at the top eight extensions for

Python in VS Code, visible by typing Python in the Extensions item on the

Activity Bar. There are more extensions that developers like to use, but here

we want to focus on the extensions that are applicable for Python only.

�Tabnine
Tabnine is an extension that offers code completion suggestions based on

a model that has millions of open-source code lines stored, which are then

offered to the code you are currently working on. Tabnine sends minimal

contextual data pieces from your currently edited file that allows us to

make predictions based on your current project objectives. This extension

does not use your code to train the core model, and the information sent to

the server is only used to compute your prediction and is not being saved

for any further application.

In addition, Tabnine is viewed as a powerful artificial intelligence (AI)

assistant designed to help you code faster, prevent any mistakes, and get

accustomed to the best coding practices without ever having to leave the

comfort of VS Code. Tabnine studies publicly shared code and uses AI

Chapter 2 Getting Started with Python Programs in Visual Studio Code

51

based learning algorithms that provide it with the ability to see your next

coding requests and suggest one-click code completion. Tabnine works

with all major programming languages, including JavaScript, Python,

TypeScript, PHP, C/C++, HTML/CSS, Go, Java, Ruby, C#, Rust, SQL, Bash,

Kotlin, Julia, Lua, OCaml, Perl, Haskell, and React.

�Bracket Pair Colorizer
This extension allows matching brackets to be spotted or classified with

colors. This way the user can determine which characters to match, and

which colors to use. Here are the few basic settings:1

•	 “bracketPairColorizer.timeOut”: configures how

long the editor should be idle for before updating the

document; set to 0 to disable.

•	 “bracketPairColorizer.forceUniqueOpeningColor”:
disabled.

•	 “bracketPairColorizer.forceIterationColorCycle”:
enabled.

•	 “bracketPairColorizer.colorMode”: consecutive

brackets share a color pool for all bracket types.

Independent brackets allow each bracket type to use

its own color pool:

•	 “bracketPairColorizer.highlightActiveScope”:
highlights currently scoped brackets.

1 �Visual Studio Code, “Bracket Pair Colorizer,” https://marketplace.
visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer,
accessed July 29, 2021.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

https://marketplace.visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer
https://marketplace.visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer

52

•	 “bracketPairColorizer.activeScopeCSS”: chooses a

border style to highlight the active scope; use {color} to

match the existing bracket color. It is recommended to

disable the inbuilt editor.matchBrackets setting if using

this feature. Add the value “backgroundColor : {color}”

to increase visibility.

•	 “bracketPairColorizer.showBracketsInGutter”:
shows active scope brackets in the gutter.

•	 “bracketPairColorizer.showBracketsInRuler”: shows

active scope brackets in the ruler.

•	 “bracketPairColorizer.rulerPosition”: decoration

position in the ruler.

•	 “bracketPairColorizer.showVerticalScopeLine”:
shows a vertical line between the brackets.

•	 “bracketPairColorizer.showHorizontalScopeLine”:
shows a horizontal line between the brackets; enabled

by default

•	 “bracketPairColorizer.scopeLineRelativePosition”:
disable to show the vertical line in column 0.

•	 “bracketPairColorizer.scopeLineCSS”: chooses a

border style to highlight the active scope; use {color} to

match the existing bracket color.

•	 “bracketPairColorizer.consecutivePairColors”: a

new bracket pair can be configured by adding it to the

array. Note: Pair must be supported punctuation type

by Prism.js.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

53

•	 “bracketPairColorizer.independentPairColors”: a new

bracket pair can be configured by adding it to the array.

Note: Pair must be supported punctuation type by Prism.js

•	 “bracketPairColorizer.excludedLanguages”: excludes

languages from being parsed by this extension.

�Python Snippets
A snippet set is there in the Marketplace to make you more efficient

working with Python. By default, the standard snippet pack contains all of

the following Python methods:

•	 all Python built-in snippets and contains at least one

example for each method

•	 all Python string snippets contain at least one example

for each method

•	 all Python list snippets contain at least one example for

each method

•	 all Python sets snippets contain at least one example

for each method

•	 all Python tuple snippets contain at least one example

for each method

•	 all Python dictionary snippets contain at least one

example for each method

In addition, the set also contains a lot of other code snippets like if/else,

for, while, while/else, try/catch, file process, class snippets, and others,2 as

shown in Table 2-1.

2 �Visual Studio Code, “Python Snippets,” https://marketplace.visualstudio.com/
items?itemName=cstrap.python-snippets, accessed July 29, 2021.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

https://marketplace.visualstudio.com/items?itemName=cstrap.python-snippets
https://marketplace.visualstudio.com/items?itemName=cstrap.python-snippets

54

Table 2-1.  Additional code snippets

Snippets Descriptons

abs Returns the absolute value of a number

all Returns True if all items in an iterable object are true

any Returns True if any item in an iterable object is true

ASCII Returns a readable version of an object. Replaces none-ASCII

characters with escape character

bin Returns the binary version of a number

bool Returns the Boolean value of the specified object

bytearray Returns an array of bytes

bytes Returns a bytes object

callable Returns True if the specified object is callable, otherwise False

chr Returns a character from the specified Unicode code.

delattr Deletes the specified attribute (property or method) from the specified

object

dict Returns a dictionary (Array)

dir Returns a list of the specified object’s properties and methods

divmod Returns the quotient and the remainder when argument1 is divided

by argument2

enumerate Takes a collection (e.g., a tuple) and returns it as an enumerate object

eval Evaluates and executes an expression

exec Executes the specified code (or object)

filter Use a filter function to exclude items in an iterable object

float Returns a floating-point number

frozenset Returns a frozenset object

(continued)

Chapter 2 Getting Started with Python Programs in Visual Studio Code

55

Table 2-1.  (continued)

Snippets Descriptons

getattr Returns the value of the specified attribute (property or method)

globals Returns the current global symbol table as a dictionary

hasattr Returns True if the specified object has the specified attribute

(property/method)

hash Returns the hash value of a specified object

help Executes the built-in help system

hex Converts a number into a hexadecimal value

int Returns an integer number

id Returns the id of an object

input Allowing user input

isinstance Returns True if a specified object is an instance of a specified object

issubclass Returns True if a specified class is a subclass of a specified object

iter Returns an iterator object

len Returns the length of an object

locals Returns an updated dictionary of the current local symbol table

map Returns the specified iterator with the specified function applied to

each item

max Returns the largest item in an iterable

memoryview Returns a memory view object

min Returns the smallest item in an iterable

next Returns the next item in an iterable

object Returns a new object

oct Converts a number into an octal

(continued)

Chapter 2 Getting Started with Python Programs in Visual Studio Code

56

Snippets Descriptons

open Opens a file and returns a file object

ord Given a string of length one, return an integer representing the

Unicode code point of the character when the argument is a Unicode

object, or the value of the byte when the argument is an 8-bit string.

pow Return x to the power y

print Prints to the standard output device

property Gets, sets, deletes a property

range returns a sequence of numbers, starting from 0 and increments by 1

(by default)

repr Returns a readable version of an object

reversed Returns a reversed iterator

round Rounds a numbers

slice Returns a slice object

sorted Returns a sorted list

staticmethod Converts a method into a static method

str Returns a string object

sum Sums the items of an iterator

super Return a proxy object that delegates method calls to a parent or

sibling class of type.

type Returns the type of an object

unichr Return the Unicode string of one character whose Unicode code is the

integer i.

vars Returns the dict property of an object

zip Returns an iterator, from two or more iterators

Table 2-1.  (continued)

Chapter 2 Getting Started with Python Programs in Visual Studio Code

57

�Python Test Explorer for Visual Studio Code
This extension offers you an option to run your Python Unittest or Pytest

tests with the Test Explorer UI. Moreover, the extension lets you operate

your Python tests in the sidebar of VS Code. There are some key features

that make it highly popular among developers:

•	 Displays a Test Explorer in the Test view in VS Code’s

sidebar with all noticed tests and suites and their

condition.

•	 Convenient error reporting function during the testing.

•	 Unittest and Pytest debugging.

•	 Notifies about the failed test’s log when the test is

selected in the explorer.

•	 Supports multiroot workspaces.

•	 Supports Unittest and Pytest test frameworks and their

plugins.

•	 Comparison to Python extension’s Test View.

•	 Better error reporting during the discovery stage. If

there are errors, you will see such tests in an errored

state, and by clicking on them, a complete error

message would be displayed in the Output panel.

Python Extension, at best, will not show your tests that

contain errors such as syntax errors or invalid data.

•	 Tends to work better with pytest plugins such as Tavern.

Python Extension will not recognize these tests.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

58

•	 Based on Test Explorer User Interface. This fact may be

particularly handy when you have a workspace with

projects in different languages or frameworks. Test

Explorer User Interface has a lot of plugins, and you can

conveniently discover and run tests at the same View.

•	 Shows your errors and a complete report of your tests

by clicking on a failed test.

•	 Has only relevant folders from your workspace on the

platform display. Showing all workspace folders, as the

Python Extension is doing, can be slightly problematic

when you have multiple workspace folders, but only a

couple of them have any tests.

User experience with both extensions is highly subjective. However,

you might prefer the user interface of this extension better. Also, each

discovery, test execution, and test cancellation won’t require you to select

a folder when you have multiple in your workspace.

By default, the extension configuration uses the configuration from

Python extension for VS Code. To modify Python for your project, see

Getting Started with Python in VS Code. Nevertheless, test framework

applied by this extension can be overridden by the pythonTestExplorer.

testFramework configuration property. The two available options are

unittest and pytest. When property is set to null, the configuration from

Python extension is used.

When configuring Python test discovery and execution, make sure you

are familiar with the list of currently used properties shown in Table 2-2.3

3 �Visual Studio Code, “Python Test Explorer for Visual Studio Code,”
https://marketplace.visualstudio.com/items?itemName=LittleFoxTeam.
vscode-python-test-adapter, accessed July 29, 2021.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

https://marketplace.visualstudio.com/items?itemName=LittleFoxTeam.vscode-python-test-adapter
https://marketplace.visualstudio.com/items?itemName=LittleFoxTeam.vscode-python-test-adapter

59

The configurations in Table 2-2 support placeholders for workspace

folder as ${workspaceFolder} and environment variables in a form of

${env:YOUR_ENVIRONMENT_VARIABLE}.

Table 2-2.  Properties used in VS Code for Python development

Property Description

python.pythonPath Path to Python.

python.envFile Path to environment variable definitions file.

python.testing.cwd Optional working directory for unit tests.

python.testing.unittestEnabled Whether to enable or disable unit testing

using unittest (enables or disables test

discovery for Test Explorer).

python.testing.unittestArgs Arguments used for test discovery (currently

only -s and -p arguments are considered).

python.testing.pyTestEnabled Whether to enable or disable unit testing

using pytest (enables or disables test

discovery for Test Explorer).

python.testing.pytestPath Path to pytest executable or a pytest

compatible module.

python.testing.pyTestArgs Arguments passed to the pytest. Each

argument is a separate item in the array.

python.testing

.autoTestDiscoverOnSaveEnabled

When true tests will be automatically

rediscovered when saving a text file.

pythonTestExplorer.testFramework Test framework to use (overrides Python

extension properties python.testing

.unittestEnabled and python.testing

.pyTestEnabled).

Chapter 2 Getting Started with Python Programs in Visual Studio Code

60

If you are configuring Test Explorer User Interface, use the g

configuration properties listed in Table 2-3.4

4 Visual Studio Code, “Python Test Explorer for Visual Studio Code.”

Table 2-3.  Configuration properties

Property Description

testExplorer.onStart Retire or reset all test states whenever a test run is

started

testExplorer.onReload Retire or reset all test states whenever the test tree is

reloaded

testExplorer.codeLens Show a CodeLens above each test or suite for running

or debugging the tests

testExplorer

.gutterDecoration

Show the state of each test in the editor using Gutter

Decorations

testExplorer

.errorDecoration

Show error messages from test failures as decorations

in the editor

testExplorer

.errorDecorationHover

Provide hover messages for the error decorations in the

editor

testExplorer.sort Sort the tests and suites by label or location. If this is

not set (or set to null), they will be shown in the order

that they were received from the adapter

testExplorer

.showCollapseButton

Show a button for collapsing the nodes of the test tree

testExplorer

.showExpandButton

Show a button for expanding the top nodes of the test

tree, recursively for the given number of levels

(continued)

Chapter 2 Getting Started with Python Programs in Visual Studio Code

61

Property Description

testExplorer.showOnRun Switch to the Test Explorer view whenever a test run is

started

testExplorer

.addToEditorContextMenu

Add menu items for running and debugging the tests in

the current file to the editor context menu

testExplorer.mergeSuites Merge suites with the same label and parent

testExplorer.hideEmptyLog Hide the output channel used to show a test’s log when

the user clicks on a test whose log is empty

testExplorer.hideWhen Hide the Test Explorer when no test adapters have been

registered or when no tests have been found by the

registered adapters. The default is to never hide the

Test Explorer and there are some test adapters only

work with this default setting.

Table 2-3.  (continued)

�Configuring Debug
This extension typically searches for a configuration in launch.json with

“type”: “python” and “request”: “test” to load any of the following items

during debugging:

•	 name

•	 console

•	 env

•	 componentry

•	 showReturnValue

•	 redirectOutput

•	 debugStdLib

Chapter 2 Getting Started with Python Programs in Visual Studio Code

62

•	 justMyCode

•	 subProcess

•	 envFile

�Better Comments
The Better Comments extension is there to help you create more user-

friendly, informative comments in your code. Extension can also assist you

to able to categorise your annotations into Alerts, Queries, TODOs, and

Project Highlights. Commented out code can also be styled in any way you

like to make it clear what the code’s objective is, and any other comment

styles you would like can be tuned in the settings. This extension can also be

configured in the following manner in User Settings or Workspace settings:5

•	 “better-comments.multilineComments”: true

This setting will control whether multiline

comments are styled using the annotation tags.

When false, multiline comments will be presented

without decoration.

•	 “better-comments.highlightPlainText”: false

This setting will control whether comments in

a plain text file are styled using the annotation

tags. When true, the tags (defaults: ! * ? //) will be

detected if they’re the first character on a line.

•	 better-comments.tags:

The tags are the characters or sequences used to

mark a comment for decoration. The default 5 can be

modified to change the colors, and more can be added.

5 �Visual Studio Code, “Better Comments,” https://marketplace.visualstudio.
com/items?itemName=aaron-bond.better-comments, accessed July 29, 2021.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

https://marketplace.visualstudio.com/items?itemName=aaron-bond.better-comments
https://marketplace.visualstudio.com/items?itemName=aaron-bond.better-comments

63

The list of the extension supported Languages is quite impressive

and includes the following: Ada, AL, Apex, AsciiDoc, BrightScript, C, C#,

C++, ColdFusion, Clojure, COBOL, CoffeeScript, CSS, Dart, Dockerfile,

Elixir, Elm, Erlang, F#, Fortran, gdscript, GenStat, Go, GraphQL, Groovy,

Haskell, Haxe, HiveQL, HTML, Java, JavaScript, JavaScript React, JSON

with comments, Julia, Kotlin, LaTex (inlc. Bibtex/Biblatex), Less, Lisp, Lua,

Makefile, Markdown, Nim, MATLAB, Objective-C, Objective-C++, Pascal,

Perl, Perl 6, PHP, Pig, PlantUML, PL/SQL, PowerShell, Puppet, Python, R,

Racket, Ruby, Rust, SAS, Sass, Scala, SCSS, ShaderLab, ShellScript, SQL,

STATA, Stylus, Swift, Tcl, Terraform, Twig, TypeScript, TypeScript React,

Verilog, Visual Basic, Vue.js, XML, and YAML.

�AutoDocstring
This VS Code extension enables users to quickly generate docstrings for

Python functions. It has some very useful features that include:

•	 Generation of docstring snippet that can be tabbed

through.

•	 Developers can choose between several different types

of docstring formats.

•	 Infers parameter types through pep484 type hints,

default values, and var names.

•	 The extension supports args, kwargs, decorators, errors,

and parameter types.

By default, autoDocstring supports the following docstring formats:

•	 Google

•	 docBlockr

•	 Numpy

Chapter 2 Getting Started with Python Programs in Visual Studio Code

64

•	 Sphinx

•	 PEP0257

When using the extension, it is recommended that some of the

standard application rules be followed:

•	 Place the cursor on the line directly below the

definition to generate full auto-populated docstring

•	 Make sure you press enter after opening docstring with

triple quotes (“‘ or ’’’)

•	 Keyboard shortcut: ctrl+shift+2 or cmd+shift+2 for mac

•	 Can be changed in Preferences ➤ Keyboard Shortcuts

➤ extension.generateDocstring

•	 Command: Generate Docstring

•	 Right-click menu: Generate Docstring

This extension contributes the following settings:6

•	 autoDocstring.docstringFormat: Switch between

different docstring formats

•	 autoDocstring.customTemplatePath: Path to a custom

docstring template (absolute or relative to the project root)

•	 autoDocstring.generateDocstringOnEnter: Generate

the docstring on pressing enter after opening docstring

•	 autoDocstring.includeExtendedSummary: Include

extended summary section in docstring

•	 autoDocstring.includeName: Include function name

at the start of docstring

6 �Visual Studio Code, “VSCode Python Docstring Generator,” https://
marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring,
accessed July 29, 2021.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring
https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring

65

•	 autoDocstring.startOnNewLine: Newline before

summary placeholder

•	 autoDocstring.guessTypes: Infer types from type

hints, default values and variable names

•	 autoDocstring.quoteStyle: The style of quotes for

docstrings

This extension also supports custom templates with the help of

the mustache.js templating engine. In order to use a custom template,

you need to create a .mustache file and specify its path using the

customTemplatePath configuration. You can take a look at the following

tags that are available for use in custom templates:7

{{name}} - name of the function

{{summaryPlaceholder}} - [summary] placeholder

{{extendedSummaryPlaceholder}} - [extended_summary] placeholder

Sections

{{#args}} - iterate over function arguments

 {{var}} - variable name

 {{typePlaceholder}} - [type] or guessed type placeholder

 {{descriptionPlaceholder}} - [description] placeholder

{{/args}}

{{#kwargs}} - iterate over function kwargs

 {{var}} - variable name

 {{typePlaceholder}} - [type] or guessed type placeholder

 {{&default}} - default value (& unescapes the variable)

 {{descriptionPlaceholder}} - [description] placeholder

{{/kwargs}}

7 Visual Studio Code, “VSCode Python Docstring Generator.”

Chapter 2 Getting Started with Python Programs in Visual Studio Code

66

{{#exceptions}} - iterate over exceptions

 {{type}} - exception type

 {{descriptionPlaceholder}} - [description] placeholder

{{/exceptions}}

{{#yields}} - iterate over yields

 {{typePlaceholder}} - [type] placeholder

 {{descriptionPlaceholder}} - [description] placeholder

{{/yields}}

{{#returns}} - iterate over returns

 {{typePlaceholder}} - [type] placeholder

 {{descriptionPlaceholder}} - [description] placeholder

{{/returns}}

Additional Sections

{{#argsExist}} - display contents if args exist

{{/argsExist}}

{{#kwargsExist}} - display contents if kwargs exist

{{/kwargsExist}}

{{#parametersExist}} - display contents if args or kwargs exist

{{/parametersExist}}

{{#exceptionsExist}} - display contents if exceptions exist

{{/exceptionsExist}}

{{#yieldsExist}} - display contents if returns exist

{{/yieldsExist}}

{{#returnsExist}} - display contents if returns exist

{{/returnsExist}}

{{#placeholder}} - makes contents a placeholder

Chapter 2 Getting Started with Python Programs in Visual Studio Code

67

�Python Indent
This Extension helps quickly generate docstrings for Python functions.

Any time you press the Enter key in a Python context, this extension will

parse your Python file up to the place of your cursor, and define exactly

how much the next line (or two in the case of hanging indents) should be

indented and how much close bylines should be un-indented.

In the next section, we will now start off with code editing in VS Code.

�Getting Started with Code Editing
VS Code editing should start by an explanation of what IntelliSense

is. It is a general term for various code editing features including code

completion, parameter info, quick info, and member lists. IntelliSense

features are also referred to by other names such as code completion,

content assist, and code hinting.

VS Code IntelliSense is provided for JavaScript, TypeScript, JSON,

HTML, CSS, and SCSS. VS Code supports word-based completions for

any programming language but can as well be configured to have more

extensive IntelliSense by installing a language extension.

�Autocomplete and IntelliSense
Autocomplete together with IntelliSense is provided for all files within the

currently activated folder and for Python packages that are installed in

standard locations. During editing, you can right-click different identifiers

to take advantage of several convenient commands:8

8 �Visual Studio Code, “Editing Python in Visual Studio Code,” https://code.
visualstudio.com/docs/python/editing, accessed July 29, 2021.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

https://code.visualstudio.com/docs/python/editing
https://code.visualstudio.com/docs/python/editing

68

•	 Go to Definition (F12) transfers from your code into the

code that defines an object. This command is useful

when you are operating with libraries.

•	 Peek Definition (Alt+F12), is almost the same as the

previous one but displays the definition directly in the

editor (making space in the editor window to avoid

messing any code). Press Escape to close the Peek

window or use the x in the upper right corner.

•	 Go to Declaration jumps to the point at which the

variable or other item is declared in your code.

•	 Peek Declaration is similar but displays the declaration

directly in the editor. Again, you can use Escape or the x

in the upper right corner to close the Peek window.

�Customizing IntelliSense Behavior
To customize the behavior of the engine, you should check the code

analysis settings and autocomplete settings. You can also customize the

general behavior of autocomplete and IntelliSense, even to disable these

tune-ins completely. IntelliCode provides a set of AI-assisted capabilities

for IntelliSense in Python, such as inferring the most relevant auto-

completions based on the current code context.

To enable IntelliSense for packages that are installed in other,

nonstandard locations, add those locations to the python.autoComplete.

extraPaths collection in the settings file (the default collection is empty).

For example, you might already have installed Google App Engine in

custom locations, specified in-app.yaml if you use Flask. In this case you

would have to specify those locations in the following way:

Chapter 2 Getting Started with Python Programs in Visual Studio Code

69

Windows:

"python.autoComplete.extraPaths": [

 "C:/Program Files (x86)/Google/google_appengine",

 �"C:/Program Files (x86)/Google/google_appengine/lib/

flask-0.12"]

macOS/Linux:

"python.autoComplete.extraPaths": [

 "~/.local/lib/Google/google_appengine",

 "~/.local/lib/Google/google_appengine/lib/flask-0.12"]

The python.autoComplete.addBrackets setting (default false) also defines

whether VS Code automatically adds parentheses (()) when autocompleting a

function name. For instance, when you set addBrackets to true:

 "python.autoComplete.addBrackets": true,

and then write import os followed by os.getc, you will get autocomplete for

os.getcwd. Selecting that auto-complete adds os.getcwd() to your source

code and locates the cursor inside the parentheses. When the setting is

false, only os.getcwd is added to the file.

�Troubleshooting
If autocomplete and IntelliSense are not functioning for a custom module,

it is advised to check the following causes:

•	 If the path to the Python interpreter is incorrect, check

the pythonPath setting or restart VS Code if you make a

correction.

•	 If the custom module is located in a nonstandard

location or not installed using pip, be sure to add the

location to the python.autoComplete.extraPaths setting

and restart VS Code.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

70

�Running Selection/Line in Terminal (REPL)
The Python: Run Selection/Line in Python Terminal command

(Shift+Enter) is the fastest way to take whatever code is selected, or the

code on the current line if there is no selection, and run it in the Python

Terminal. An identical Run Selection/Line in Python Terminal command

can also be accessed on the context menu for a selection in the editor.

VS Code automatically deletes indents based on the first nonempty

line of the selection, moving all other lines left accordingly. Source code

that runs in the terminal/REPL is cumulative until the current instance of

the terminal is finished. The command opens the Python Terminal only

if needed; you can also start the interactive REPL environment directly

using the Python via Start REPL command. If you are just starting to use

Python: Run Selection/Line in Python Terminal command, VS Code will

send the text to the REPL before that environment is ready, in which case

the selection or line is not run. If you encounter this behavior, try the

command again when the REPL has finished loading.

�Formatting
Formatting makes code more user-friendly when applying specific rules

and conventions for line spacing, indents, spacing around operators, and

so on. At the same time, it does not really affect the functionality of the

code itself. Linting, on the contrary, analyzes code for common syntactical,

stylistic, and functional mistakes as well as unconventional programming

practices that can result in errors. Even though there is a little overlap

between formatting and linting, the two capabilities are operating

complementarily.

The Python extension supports source code formatting using either

autopep8 (the default), black, or yapf.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

71

�General Formatting Settings

Table 2-4 shows the general formatting setings for Python code in VS Code:

The settings in Table 2-5 apply mostly to the individual formatters.

The Python extension looks in the current pythonPath for the formatter. In

order to use a formatter in another location, be sure to specify that location

in the designated custom path setting.

Table 2-4.  General formatting settings

Setting (python.formatting.) Default value Description

Provider “autopep8” Specifies the formatter to use, either

“autopep8”, “yapf”, or “black”.

Table 2-5.  Formatter-specific settings

Formatter Install steps Arguments setting
(python.formatting.)

Custom path setting
(python.formatting.)

autopep8 pip install pep8

pip install --

upgrade

autopep8

autopep8Args autopep8Path

black (see

note)

pip install black blackArgs blackPath

Yapf pip install yapf yapfArgs yapfPath

Chapter 2 Getting Started with Python Programs in Visual Studio Code

72

By default, you cannot install the Black formatter if a Python 2

environment is active. Trying to do so may display the message “Formatter

black is not installed. Install?”. If you try to install Black in response,

another message appears stating, “Could not find a version that satisfies

the requirement black. No matching distribution found for black.”

To solve this issue and use the Black formatter with Python 2, first

install Black in a Python 3 framework. Then set the python.formatting.

blackPath setting to that install location. When using custom arguments,

each top-level element of an argument string that is separated by space on

the command line must be a separate item in the args list. To illustrate:

"python.formatting.autopep8Args": ["--max-line-length", "120",

"--experimental"],

"python.formatting.yapfArgs": ["--style",

"{based_on_style: chromium, indent_width: 20}"],

"python.formatting.blackArgs": ["--line-length", "100"]

�Troubleshooting Your Formatting
If formatting attempts fails, check the potential causes listed in Table 2-6.9

9 Visual Studio Code, “Editing Python in Visual Studio Code.”

Table 2-6.  Troubleshooting formatting in VS Code

Cause Solution

The path to the

python interpreter

is incorrect.

Check the pythonPath setting.

(continued)

Chapter 2 Getting Started with Python Programs in Visual Studio Code

73

In cases when a warning message “Black does not support the

Format Select” comes out, possible solution could be preventing it with

the following settings “[python]”: {“editor.formatOnPaste”: false, “editor.

formatOnSaveMode”: “file”}.

�Refactoring
The Python extension includes three refactoring commands: Extract

Variable, Extract Method, and Sort Imports.

Cause Solution

The formatter

is not installed

in the current

environment.

Open a command prompt, navigate to the location specified in

the pythonPath setting, and run pip install for the formatter.

The path to the

formatter is

incorrect.

Check the value of the appropriate python.

formatting.<formatter>Path setting.

Custom

arguments for

the formatter are

incorrect.

Check that the appropriate python.formatting.<formatter>Path

setting does not contain arguments, and that python.

formatting.<formatter>Args contains a list of individual

top-level argument elements such as “python.formatting

.yapfArgs”: [“--style”, “{based_on_style: chromium,

indent_width: 20}”].

Table 2-6.  (continued)

Chapter 2 Getting Started with Python Programs in Visual Studio Code

74

�Extract Variable

Extracts all similar items of the selected text within the particular scope,

and replaces it with a variable. The new method is given the name

newvariableNNN where NNN stands for a random number. It is typically

invoked by:

•	 Context Menu: right-click a selection and select Extract

Variable.

•	 Command Palette (Ctrl+Shift+P), then Python Refactor:

Extract Variable.

•	 Assign a keyboard shortcut to the python.

refactorExtractVariable command.

�Extract Method

Extracts all similar items of the particular expression or block within the

current scope, and replaces it with a method call. The new method is given

the name newmethodNNN where NNN stands for a random number. It is

normally invoked by:

•	 Context Menu: right-click a selection and select Extract

Method.

•	 Command Palette (Ctrl+Shift+P), then Python Refactor:

Extract Method.

•	 Assign a keyboard shortcut to the python.

refactorExtractMethod command.

•	 Refactoring code into a method.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

75

�Sort Imports

Sort Imports applies the sort package to set all specific imports from

the same module into a single import statement and organize import

statements in alphabetical order. It is typically invoked by:

•	 Right-click in the editor and select Sort Imports (no

selection is required).

•	 Command Palette (Ctrl+Shift+P), then Python Refactor:

Sort Imports.

•	 Assign a keyboard shortcut to the python.sortImports

command.

•	 Sorting import statements.

Custom applications to sort are specified in the python.sortImports.

args setting, where each top-level item, as divided by spaces on the

command line, is a single item in the array:

“python.sortImports.args”: [“-rc”, “--atomic”]. In order to use a custom

isort script, it is better to use the python.sortImports.path setting to set a

specific path.

�Linting
Linting is different from the previously mentioned Formatting method

due to the fact that it analyzes how the code runs and traces errors while

Formatting can only restructure how code is framed. Linting points out any

syntactical and stylistic issues in your Python source code, which at most

times helps you see and correct subtle programming mistakes or outdated

coding practices that can result in errors. For instance, linting traces the

use of an uninitialized or undetermined variable, requests to undefined

functions, missing parentheses, and even more underlining issues, such as

trying to redefine built-in types or functions.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

76

By default, stylistic and syntactical code detection is completed by the

Language Server. If you require third-party linters for additional problem

detection, you can easily enable them by using the Python: Select Linter

command and the appropriate linter. You can certainly enable and disable

all linting by using the Python: Enable Linting function.

�Enabling Linters
To turn on linters other than the default PyLint, you should open the

Command Palette (Ctrl+Shift+P) and select the Python: Select Linter

command. This command adds “python.linting.<linter>Enabled”: true

to your settings, where <linter> is the name of the selected linter. You can

also See Specific linters for details and enable a linter prompts to install the

required packages in your programming environment.

If you are using a global environment and VS Code is not running

efficiently, linter installation may fail. In that case, either run VS Code

elevated, or manually run the Python package manager to install the linter at

an elevated command prompt for the same environment: for example, sudo

pip3 install pylint (for macOS and Linux) or pip install pylint (for Windows).

�Disabling Linting
You can disable all Python linting with the Python: Enable Linting

command, which shows a dropdown with the current linting state and see

the options to turn Python linting on or off.

�Running Linting
To efficiently run linting you need to:

•	 Linting runs by default any time you save a file.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

77

•	 Open the Command Palette (Ctrl+Shift+P), then enter

and click on Python: Run Linting.

Should you face any issues, they all will be shown in the Problems

panel and as underlines in the code editor.

�Linting Settings
This section lists general and specific settings for linting. You are free to

add any of the settings to your user settings.json file (go through the File

➤ Preferences ➤ Settings command Ctrl+,). You can also refer to User and

Workspace settings to find out how to change the linting behavior across

all enabled linters. You can modify the following settings in the Table 2-7:10

You can easily change python.linting.enabled via Python as well by

clicking on Enable Linting command. However, when enabling lintOnSave,

you might also want to enable the generic files.autoSave option (Save /

AutoSave). This function provides regular linting feedback in your code as

you script it.

10 �Visual Studio Code, “Linting Python in Visual Studio Code,” https://code.
visualstudio.com/docs/python/linting, accessed July 29, 2021.

Table 2-7.  Linting settings

Feature Setting (python.
linting.)

Default value

Linting in general Enabled True

Linting on file save lintOnSave True

Maximum number of

linting messages

maxNumberOfProblems 100

Exclude file and folder

patterns

ignorePatterns [“.vscode/*.py”,

“**/site-packages/**/*.py”]

Chapter 2 Getting Started with Python Programs in Visual Studio Code

https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/python/linting

78

�Specific Linters

Table 2-8 lists the available Python linters and their basic settings. Be sure

to note that only Pylint is enabled by default.11

11 Visual Studio Code, “Linting Python in Visual Studio Code.”

Table 2-8.  Available Python linters

Linter Package
name

Default
state

True/false
enable
setting
(python.
linting.)

Arguments
setting
(python.
linting.)

Custom path
setting
(python.
linting.)

Pylint

(default)

pylint Enabled pylint

Enabled

pylintArgs pylintPath

Flake8 flake8 Disabled flake8

Enabled

flake8Args flake8Path

mypy mypy Disabled mypy

Enabled

mypyArgs mypyPath

pydocstyle pydocstyle Disabled pydocstyle

Enabled

pydocstyle

Args

pydocstyle

Path

pycodestyle

(pep8)

pycodestyle Disabled pycodestyle

Enabled

pycodestyle

Args

pycodestyle

Path

prospector prospector Disabled prospector

Enabled

prospector

Args

prospector

Path

pylama pylama Disabled pylama

Enabled

pylama

Args

pylamaPath

bandit bandit Disabled bandit

Enabled

bandit

Args

banditPath

Chapter 2 Getting Started with Python Programs in Visual Studio Code

https://code.visualstudio.com/docs/python/linting#_pylint
https://pypi.org/project/pylint/
https://code.visualstudio.com/docs/python/linting#_flake8
https://pypi.org/project/flake8/
https://code.visualstudio.com/docs/python/linting#_mypy
https://pypi.org/project/mypy/
https://code.visualstudio.com/docs/python/linting#_pydocstyle
https://pypi.org/project/pydocstyle/
https://code.visualstudio.com/docs/python/linting#_pycodestyle-pep8
https://code.visualstudio.com/docs/python/linting#_pycodestyle-pep8
https://pypi.org/project/pycodestyle/
https://code.visualstudio.com/docs/python/linting#_prospector
https://pypi.org/project/prospector/
https://pypi.org/project/pylama/
https://pypi.org/project/bandit/

79

To choose a different linter, it is useful to do it through the Python:

Select Linter command. You can also edit your settings manually to

enable multiple linters. At the same time, keep in mind that applying the

Select Linter command will overwrite those edits. Custom arguments are

predetermined in the appropriate arguments setting for each linter. Each

top-level element of an argument string that is separated by a space on

the command line should be a separate item in the arguments (args) list.

However, if a top-level element is a single value, as delineated by quotation

marks or braces, it still comes out as a single item in the list even if the

value itself has spaces.

A custom path is not usually needed, as the Python extension

has the path to the linter based on the applied Python interpreter. To

use a different version of a linter, write down its path in the specified

custom path setting. For instance, if your selected interpreter is a virtual

environment but you want to use a linter that is installed in a global

environment, you will have to set the appropriate path setting to point to

the global environment’s linter.

�Pylint
Pylint messages fall into the types listed in Table 2-9, with the indicated

mapping to VS Code categories. You can modify the setting if you want to

change the mapping.12

12 Visual Studio Code, “Linting Python in Visual Studio Code.”

Chapter 2 Getting Started with Python Programs in Visual Studio Code

80

�Default Pylint Rules

Python in VS Code is customized by default to apply a set of three main

linting rules that are relevant to the largest number of Python developers:13

•	 Enable all Error (E) and Fatal (F) messages.

•	 Disable all Convention (C) and Refactor (R) messages

•	 Disable all Warning (W) messages, except the

following:

–– unreachable (W0101): Unreachable code

–– duplicate-key (W0109): Duplicate key %r in the dictionary

13 Visual Studio Code, “Linting Python in Visual Studio Code.”

Table 2-9.  Pylint categories with VS Code category mapping

Pylint
category

Description VS Code
category
mapping

Applicable setting
(python.linting.)

Convention

(C)

Programming standard

violation

Information

(green underline)

pylintCategorySeverity.

convention

Refactor (R) Bad code smell Hint (light bulbs) pylintCategorySeverity.

refactor

Warning (W) Python-specific

problems

Warning pylintCategorySeverity.

warning

Error (E) Likely code bugs Error (red

underline)

pylintCategorySeverity.

error

Fatal (F) An error prevented

further Pylint

processing

Error pylintCategorySeverity.fatal

Chapter 2 Getting Started with Python Programs in Visual Studio Code

81

–– unnecessary-semicolon (W0301): Unnecessary semicolon

–– global-variable-not-assigned (W0602): Using global for %r but

no assignment is completed

–– unused-variable (W0612): Unused variable %r

–– binary-op-exception (W0711): Exception to catch is the result

of a binary “%s” operation

–– bad-format-string (W1302): Invalid format string

–– anomalous-backslash-in-string (W1401): Anomalous backs-

lash in string

–– bad-open-mode (W1501): “%s” is not a valid model for open

These rules are activated through the following default arguments

passed to Pylint:

--disable=all, --enable=F, E, unreachable,duplicate-key,

unnecessary-semicolon,global-variable-not-assigned,

unused-variable,binary-op-exception,bad-format-string,

anomalous-backslash-in-string,bad-open-mode

These items are passed every time the python.linting

.pylintUseMinimalCheckers is set to true. But if you specify

a value in pylintArgs or use a Pylint configuration file, then

pylintUseMinimalCheckers is going to always be set to false.

In addition, command-line arguments can be used to load Pylint

plugins, such as the plugin for Django:

"python.linting.pylintArgs": ["--load-plugins",

"pylint_django"]

Other options can also be specified in a pylintrc or .pylintrc options file

in the workspace folder, as described on Pylint command line arguments.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

82

�Troubleshooting Linting
In Table 2-10, some of the basic error messages and their probable

solutions are listed.14

14 Visual Studio Code, “Linting Python in Visual Studio Code.”

Table 2-10.  Troubleshooting linting problems

Error message Cause Solution

... unable

to import

<module_

name>

The Python

extension is using

the wrong version

of Pylint.

Make sure that the pythonPath setting

points to a valid Python installation where

Pylint is installed. Also try setting the

python.linting.pylintPath to an

appropriate version of Pylint for the Python

interpreter being used.

Linting with

<linter> failed ...

The path to the

Python interpreter

is incorrect.

Check the pythonPath setting.

The linter has not

been installed in

the current Python

environment.

Open a command window, navigate to the

location of the Python interpreter in the

pythonPath setting, and run pip install

for the linter.

The path to the

linter is incorrect.

Ensure that the appropriate python.linting

.<linter>Path setting for the linter is correct.

(continued)

Chapter 2 Getting Started with Python Programs in Visual Studio Code

83

�Debugging
Debugging refers to fixing your code and removing potential errors. Python

is a syntactically typed language, which means that the role of your code

editor becomes paramount in debugging, as a good editor can help you

locate issues with your code in no time.

VS Code handles debugging on two fronts. On one hand, there are

VS Code general debugging features such as inspecting variables, setting

breakpoints, and others that are typically language-dependent; on the

other hand, there are debugging considerations that are Python-specific

debugging configurations, including specific app types and remote

debugging.

Error message Cause Solution

Custom

arguments

are defined

incorrectly.

Check the appropriate python.linting

.<linter>Args settings, and that the

value of the setting is a list of the argument

elements that are separated by spaces. For

example, "python.linting.pylintPath":

"pylint --load-plugins pylint_

django" is incorrect. The correct syntax

is "python.linting.pylintArgs":

["--load-plugins", "pylint_django"]

Table 2-10.  (continued)

Chapter 2 Getting Started with Python Programs in Visual Studio Code

84

�Initializing Configurations
In order to initialize debug configurations, you have to first select the Run

view in the sidebar and then press the Run icon. Configuration drives VS

Code’s behavior during a debugging session and is defined in a launch.

json file that is stored in a .vscode folder in your workspace. To change

debugging configuration, you need to make sure your code is stored in a

folder.

If you do not yet have any configurations defined, you can see a

button to Run and Debug and a link to create a configuration (launch.

json) file: Debug toolbar settings command. To generate a launch.json file

with Python configurations, complete the following steps: first, click the

create a launch.json file link or use the Run ➤ Open configurations menu

command. A configuration menu will be displayed from the Command

Palette, offering you to choose the type of debug configuration you want

for the opened file. Next, in the Select a debug configuration menu that

appears, select Python File.Debug configurations menu.

Keep in mind that starting a debugging session through the Debug

Panel, F5, or Run ➤ Start Debugging when no configuration exists will also

bring up the debug configuration menu, but will not create a launch.json file.

The Python extension then generates and opens a launch.json file that

has a predefined configuration based on what you previously selected—in

this case, Python File. You can customize those configurations (by adding

arguments, for instance), and also add custom configurations.

�Additional Configurations
By default, VS Code displays only the most applied configurations

provided by the Python extension. You can select other configurations

to include in launch.json by activating the Add Configuration command

shown in the list and in the launch.json editor. When you use the

Chapter 2 Getting Started with Python Programs in Visual Studio Code

85

command, VS Code prompts you with a list of all available configurations

(scroll down to see all the Python options):

•	 Adding a new Python debugging configuration

•	 Selecting the Node.js: Gulp task yields the following

result:Added a configuration

•	 See Debugging specific app types for details on all of

these configurations

During debugging, the Status Bar will present the current configuration

and the current debugging interpreter. Selecting the configuration calls

up a list from which you can select a different configuration. Normally,

the debugger uses the same python.pythonPath workspace setting as for

other features of VS Code. To apply a different interpreter for debugging

specifically, you need to set the value for python in launch.json for the

applicable debugger configuration. As an alternative, you can select the

named interpreter on the Status Bar to opt for a different one.

�Basic Debugging
The easiest way to start debugging a Python file is to use the Run view and

click the Run and Debug icon. If no configuration has been previously done,

you will be presented with a list of debugging options. You simply need to

select the appropriate option to quickly begin debugging your code.

The two most used options are Python File configuration to operate the

currently open Python file, and the Attach to use with Process ID to add

the debugger to a process that is already running. Once a configuration is

added, it can be selected from the dropdown list and started using the Start

Debugging button. Additionally, you can also add other settings such as

args that are not included in the standard configurations:15

15 �Visual Studio Code, “Python Debugging in VS Code,” https://code.
visualstudio.com/docs/python/debugging, accessed July 29, 2021.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

https://code.visualstudio.com/docs/python/debugging
https://code.visualstudio.com/docs/python/debugging

86

•	 name: Provides the name for the debug configuration

that appears in the VS Code dropdown list.

•	 type: Identifies the type of debugger to use; leave this

set to Python for Python code.

•	 request: Specifies the mode in which to start

debugging:

–– launch: start the debugger on the file specified in program

–– attach: attach the debugger to an already running process.

See Remote debugging for an example.

–– program: Provides the fully qualified path to the Python

program’s entry module. The value ${file}, often used in

default configurations, uses the currently active file in the

editor. By specifying a specific startup file, you can always be

sure of launching your program with the same entry point

regardless of which files are open. For example:

"program": "/Users/Me/Projects/PokemonGo-Bot/

pokemongo_bot/event_handlers/__init__.py",

•	 python: Full path that points to the Python interpreter

to be used for debugging.

If not determined, this setting defaults to the

interpreter identified in the python.pythonPath

setting, which is equivalent to using the value

${config:python.pythonPath}. To apply a different

interpreter, identify its path instead in the python

property of a debug configuration.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

87

As an option, you can also use a custom environment

variable that is defined on every platform to contain

the full path to the Python interpreter to use, so that

no other folder paths are needed. Once you need to

pass arguments to the Python interpreter, you can

use the pythonArgs property.

•	 pythonArgs: Specifies arguments to pass to the Python

interpreter using the syntax “pythonArgs”: [“<arg 1>”,

“<arg 2>”].

•	 args: Specifies arguments to pass to the Python

program. Each element of the argument string that

is separated by a space have to be contained within

quotes, for example:

"args": ["--quiet", "--no-repeat", "--port",

"1593"],

•	 stopOnEntry: When set to true, breaks the debugger at

the first line of the program being debugged. If omitted

(by default) or set to false, the debugger runs the

program to the first breakpoint.

•	 console: Specifies how program output is presented as

long as the defaults for redirectOutput are not edited.

Most widely used console values are listed in Table 2-11.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

88

•	 cwd: Specifies the current working directory for the

debugger, which is the basic folder for any relative

paths used in code. Once omitted, defaults to

${workspaceFolder} (the folder open in VS Code). As an

example, say ${workspaceFolder} contains a py_code

folder containing app.py, and a data folder containing

salaries.csv. If you start the debugger on py_code/app.py,

then the relative paths to the data file vary depending on

the value of cwd (Table 2-12).16

16 Visual Studio Code, “Python Debugging in VS Code.”

Table 2-11.  Output values

Value Where output is displayed

“internalConsole” VS Code debug console. If redirectOutput is set to False, no

output is displayed.

“integratedTerminal” VS Code Integrated Terminal. If redirectOutput is set to True,

output is also displayed in the debug console.

“externalTerminal” Separate console window. If redirectOutput is set to True,

output is also displayed in the debug console.

Table 2-12.  Date file paths

cwd Relative path to data file

Omitted or ${workspaceFolder} data/salaries.csv

${workspaceFolder}/py_code ../data/salaries.csv

${workspaceFolder}/data salaries.csv

Chapter 2 Getting Started with Python Programs in Visual Studio Code

89

•	 redirectOutput: When set to true (by default for

internalConsole), causes the debugger to print

all output from the program into the VS Code

debug output window. If set to false (by default for

integratedTerminal and externalTerminal), program

output is not displayed in the debugger output window.

This option is usually disabled when using “console”:

“integratedTerminal” or “console”: “externalTerminal”

because there is no need to duplicate the output in the

debug console.

•	 justMyCode: When omitted or set to true (by default),

restricts debugging to user-written code only. Set to

false to also enable debugging of standard library

functions.

•	 Django: When set to true, activates debugging features

specific to the Django web framework.

•	 sudo: When set to true and used with “console”:

“externalTerminal”, allows for debugging apps that

require elevation. Applying an external console is

necessary to capture the password.

•	 pyramid: When set to true, makes sure that a Pyramid

app is launched with the necessary command-line

pserve command.

•	 env: Sets optional environment variables for the

debugger process beyond system environment

variables, which the debugger always inherits. The

values for these variables must be entered as strings.

Chapter 2 Getting Started with Python Programs in Visual Studio Code

90

•	 envFile: Optional path to a file that contains

environment variable definitions.

•	 gevent: If set to true, enables debugging of gevent

monkey-patched code.

�Conditional Breakpoints
Breakpoints can also be set to trigger based on expressions, hit counts,

or a combination of both. The Python extension support hit counts that

are integers, as well as integers preceded by the ==, >, >=, <, <=, and %

operators. For instance, you can set a breakpoint to trigger after five

occurrences by setting a hitcount of >5.

�Invoking a Breakpoint in Code

In your Python code, you can call debugpy.breakpoint() at any point where

you want to pause the debugger during a debugging session.

�Breakpoint Validation

The Python extension automatically detects breakpoints that are set on

nonexecutable lines, such as pass statements or the middle of a multiline

statement. In such cases, running the debugger moves the breakpoint to

the nearest valid line to ensure that code execution stops at that point.

�Debugging Specific App Types

The configuration dropdown has a variety of different options for general

app types (Table 2-13).17

17 Visual Studio Code, “Python Debugging in VS Code.”

Chapter 2 Getting Started with Python Programs in Visual Studio Code

91

�Summary
In this chapter we covered several programming basics in VS Code from

the perspective of Python developers, such as linting, debugging, and code

formatting.

In the next chapter, we will delve deeper into VS Code for Python

development and continue with additional code paradigm and tips.

Table 2-13.  Popular configuration descriptions for Python

Configuration Description

Attach See Remote debugging in the previous section.

Django Specifies “program”: “${workspaceFolder}/manage.py”, “args”:

[“runserver”]. Also adds “django”: true to enable debugging of

Django HTML templates.

Flask See Flask debugging.

Gevent Adds “gevent”: true to the standard integrated terminal

configuration.

Pyramid Removes program, adds “args”: [“${workspaceFolder}/development.

ini”], adds “jinja”: true for enabling template debugging, and adds

“pyramid”: true to ensure that the program is launched with the

necessary pserve command.

Scrapy Specifies “module”: “scrapy” and adds “args”: [“crawl”, “specs”,

“-o”, “bikes.json”].

Watson Specifies “program”: “${workspaceFolder}/console.py” and “args”:

[“dev”, “runserver”, “--noreload=True”].

Chapter 2 Getting Started with Python Programs in Visual Studio Code

93© Sufyan bin Uzayr 2021
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9_3

CHAPTER 3

Setting Up the
Environment
and Testing
VS Code includes multiple handy tools for building and debugging any

application. Especially when the Python extension is enabled, VS Code

becomes a very convenient, dream-like working environment for Python

developers. This chapter discusses Python environments and how to

make use of them, how to configure Python project on VS Code to get the

most out of it, and how to work with the Jupyter ecosystem, which can be

a powerful tool in the hands of a moderately IT-literate user. This chapter

also covers how to work with the Jupyter Notebook extension.

�Setting Up Your Environment
An environment in Python stands for the surrounding context in which

a Python program operates, and consists of an interpreter and many

other installed packages of your choice. The Python extension for VS

Code provides smooth integration features for working with different

environments.

https://doi.org/10.1007/978-1-4842-7344-9_3#DOI

94

By default, any Python interpreter that you have installed operates

in its own global environment, which is not specific to any one project.

For instance, if you run python (on Windows) or python3 (on macOS and

Linux) at a new command prompt, you are running in that interpreter’s

global environment. Therefore, any packages that you install or uninstall

have an impact on the global environment and all programs that you run

within that environment. It is also good to note that the Python extension

version 2018.8.1 and all the other versions after that automatically update

environments.

Even though administering projects in the global environment is an

easy way to get started, that environment will, with time, become cluttered

and disarranged with many different packages that have been installed for

different projects. Such clutter makes it complicated to thoroughly test an

application against a specific set of packages with modular versions, which

is exactly the kind of environment you would need to set up on a build

server or web server.

Because of that, developers often create a virtual environment for a

project. A virtual environment represents a subfolder in a project that has

a copy of a specific interpreter. Once you activate the virtual environment,

any packages you install are installed only in that environment’s subfolder.

When you then run a Python program within that environment, you know

that it’s running against only those specific packages. At the same time,

if you are not using a virtual environment, and you have more than one

version of Python installed and set in the path variable, you might need

to specify the Python interpreter to utilize in the terminal for installing

packages to the global environment. While it is possible to open a virtual

environment folder as a workspace, it is not highly recommended to do so

as it might cause issues with using the Python extension.

Another type of environment that needs to be mentioned is a Conda

environment. Conda environment is a virtual environment that is designed

and managed using the Conda package manager.

Chapter 3 Setting Up the Environment and Testing

95

Conda is widely known for creating environments with interrelated

dependencies as well as binary sets. Unlike virtual environments, which

are created for particular projects, Conda environments are available

globally on any given device and for any project. This availability makes

it easy to modify several distinct Conda features and then choose the

appropriate one for any scoop of work.

As previously mentioned, the Python extension automatically

recognizes existing Conda environments provided that the environment

has a Python interpreter. To illustrate, the following command creates a

Conda environment with the Python 3.4 interpreter and a few libraries,

which VS Code then displays in the list of available interpreters:

conda create -n env-01 python=3.4 scipy=0.15.0 astroid babel

In contrast, if you do not specify an interpreter in a timely manner, as

with conda create --name env-00, the environment will simply not appear

in the list.

In addition, if you create a new Conda environment while VS Code is

running, use the Reload Window command to refresh the environment

list shown with Python: Select Interpreter; otherwise, you may not see

the environment there. It may take a short time to appear; try waiting 15

seconds before using the command again.

To ensure that the environment is set up right from a shell perspective,

one option would be to use an Anaconda prompt with the activated

environment to launch VS Code using the code . command. At that

point, select the interpreter using the Command Palette or by clicking on

the status bar. Even though the Python extension for VS Code does not

yet have direct integration with Conda environment.yml files, VS Code

itself can act as a great YAML editor. Conda environments cannot be

automatically activated in the VS Code Integrated Terminal if the default

shell is set to PowerShell. If you want to change the shell, you should check

out Integrated terminal Configuration menu.

Chapter 3 Setting Up the Environment and Testing

96

You can manually determine the path to the Conda executable to use

for activation (version 4.4+). In order to do so, open the Command Palette

(Ctrl+Shift+P) and enter Preferences: Open User Settings. Then set the

appropriate path with python.condaPath, which is in the Python extension

section of User Settings.

�Manually Specifying an Interpreter
If you see that VS Code does not automatically find an interpreter you

need to use, you can set the path to it manually in your Workspace Settings

settings.json file. With any of the entries that follow, you can add the line

as a sibling to other existing settings. Select the File (Code on macOS) ➤

Preferences ➤ Settings menu command (Ctrl+,) to open your Settings, and

select Workspace. Then do any of the following steps:

Create or edit an existing entry for python.pythonPath with the full

path to the Python executable (if you edit settings.json directly, add the

following line as the setting):

•	 For Windows:

"python.pythonPath": "c:/python36/python.exe",

•	 For macOS and Linux:

"python.pythonPath": "/home/python36/python",

You can also use python.pythonPath to indicate a virtual environment,

such as:

•	 Windows:

"python.pythonPath": "c:/dev/ala/venv/Scripts/

python.exe",

Chapter 3 Setting Up the Environment and Testing

97

•	 macOS/Linux:

"python.pythonPath": "/home/abc/dev/ala/venv/bin/

python",

You can use an environment variable in the path setting using the

syntax ${env:VARIABLE}. For instance, if you have added a variable named

PYTHON_INSTALL_LOC with a path to an interpreter, you can then apply

the following setting value:

"python.pythonPath": "${env:PYTHON_INSTALL_LOC}",

At the same time, since variable substitution is only supported in VS

Code settings files, it will not work in .env environment files.

By making use of an environment variable, you can easily transfer a

project between operating systems where the paths are different. Just make

sure you set the environment variable on the operating system first.

To create a virtual environment, write down the following command,

where “.venv” is the name of the environment folder:

macOS and Linux

You might need to run sudo apt-get install python3-venv first

python3 -m venv .venv

Windows

You can also use py -3 -m venv .venv

python -m venv .venv

Once you create a new virtual environment, a prompt will be displayed

to let you select it for the workspace. If you notice that the active command

generates the message “Activate.ps1 is not digitally signed. You cannot run

this script on the current system.”, then you would have to temporarily

change the PowerShell execution policy to allow scripts to run.

Python environment prompt adds the path to the Python interpreter

from the new virtual environment to your general workspace settings. That

Chapter 3 Setting Up the Environment and Testing

98

environment will then be applied when installing packages and running

code through the Python extension. This will be discussed in detail in

Chapter 4, covering Django and the Flask projects.

�Selecting and Activating an Environment
By default, the Python extension searches for and uses the first Python

interpreter it finds in the system path. If it does not recognize any

interpreter, it issues a warning. On macOS, the extension also issues a

warning if you are using the OS-installed Python interpreter, because you

normally want to use an interpreter you install directly. In both cases, you

can disable these warnings by setting python.disableInstallationCheck to

true in your user settings.

To select a specific environment, you should use the Python: Select

Interpreter command from the Command Palette (Ctrl+Shift+P). You can

switch in-between environments at any time; switching environments

is also helpful if you need to test different sections of your project with

different interpreters or library versions if requested.

The Python: Select Interpreter command comes with a list of available

global environments, Conda environments, and virtual environments. It

is also important to note that on Windows, it can take a little time for VS

Code to detect available Conda environments. During that process, you

may see “(cached)” before the path to an environment is ready. The label

indicates that VS Code is presently processing with cached information for

that environment.

Choosing an interpreter from the list adds an entry for python.

pythonPath with the path to the interpreter inside your Workspace

Settings. Because the path is part of the workspace settings, the same

environment should already be selected at the time you open that

workspace. If you would need to set up a default interpreter for your

applications, you can instead include an entry for python.pythonPath

manually inside your User Settings. To do so, open the Command Palette

Chapter 3 Setting Up the Environment and Testing

99

(Ctrl+Shift+P) and enter Preferences: Open User Settings. After that, you

can set python.pythonPath, which is in the Python extension section of

User Settings, with the appropriate interpreter.

The Python extension utilizes the selected environment for running

Python code using the Python: Run Python File in Terminal command,

providing standard language services such as auto-complete, syntax

checking, linting, and formatting when you have a .py file open in

the editor, and opening a terminal with the Terminal: Create New

Integrated Terminal command. In the latter case, VS Code is expected to

automatically activate the selected environment.

�Environments and Terminal Windows
After using Python: Select Interpreter, that interpreter is applied when

right-clicking a file and selecting Python: Run Python File in Terminal.

The environment is also activated automatically any time you use the

Terminal: Create New Integrated Terminal command unless you change

the python.terminal.activateEnvironment setting to false. Nevertheless,

launching VS Code from a shell where a certain Python environment is

activated does not automatically activate that environment in the default

Integrated Terminal. Use the Terminal: Create New Integrated Terminal

command after VS Code is running. Also, Conda environments cannot be

automatically operated in the integrated terminal if PowerShell is set as

the integrated shell. You should see Integrated terminal - Configuration in

order to change the shell.

Any changes you make to an activated environment within the

terminal will be permanent. For instance, using Conda install <package>

from the terminal with a Conda environment activated installs the package

into that environment for good. At the same time, using pip install in a

terminal with a virtual environment activated adds the package to that

environment.

Chapter 3 Setting Up the Environment and Testing

100

Changing interpreters with the Python: Select Interpreter command

does not cause any difference to terminal panels that are already open.

Therefore, you can activate separate environments in a split terminal:

simply select the first interpreter, create a terminal for it, select a different

interpreter, and then use the split button (Ctrl+Shift+5) in the terminal title

bar.

�Choosing a Debugging Environment
By default, the python.pythonPath setting determines which Python

interpreter to apply for debugging. However, if you have a pythonPath

property in the debug configuration of launch.json, that interpreter is

applied instead. To be more precise, VS Code uses the following order of

precedence when deciding which interpreter to employ for debugging:

	 1.	 pythonPath property of the selected debug

configuration in launch.json

	 2.	 python.pythonPath setting in the workspace

settings.json

	 3.	 python.pythonPath setting in the user settings.json

The extension automatically searches for interpreters in the given

locations:

•	 Standard install paths such as /usr/local/bin, /usr/

sbin, /sbin, c:\\python27, c:\\python36

•	 Virtual environments located directly under the

workspace (project) folder

•	 Virtual environments located in the folder identified by

the python.venvPath setting, which can contain multiple

virtual environments. The extension looks for virtual

environments in the first-level subfolders of venvPath

Chapter 3 Setting Up the Environment and Testing

101

•	 Virtual environments located in a ~/.virtualenvs folder

for virtualenvwrapper

•	 Interpreters installed by pyenv

•	 Virtual environments located in the path identified by

WORKON_HOME and used by virtualenvwrapper

Conda environments should include a Python interpreter. As a rule, VS

Code does not show Conda environments that do not have an interpreter.

Interpreters installed in a .direnv folder for direnv under the workspace

(or project) folder. You can also manually define an interpreter if VS Code

does not locate it automatically.

�Environment Variable Definitions File
An environment variable definitions file is an ordinary text file that

includes key-value pairs in the form of environment_variable=value, with

applied for comments. Multiline values are not supported, but values

can refer to any other environment variable that is already included in the

system or earlier in the file. Environment variable definitions files can be

applied for scenarios such as debugging and tool execution (including

linters, formatters, IntelliSense, and testing tools), but are not applied to

the terminal.

By default, the Python extension firstly looks for and loads a file

named .env in the current workspace folder, and then applies those

definitions. The file is recognized by the default entry “python.envFile”:

“${workspaceFolder}/.env” in your user General settings. You can modify

the python.envFile setting at any time to apply a different definitions file.

A debug configuration has an enviable property that also defaults to

the .env file in the current workspace. This function allows you to easily set

variables for debugging purposes that replace variables under the default

.env file. For instance, when developing a web application, you might want

to rapidly switch between development and production servers. Instead of

Chapter 3 Setting Up the Environment and Testing

102

coding the different URLs and other settings into your application directly,

you could use separate definitions files for each.

�Variable Substitution
When determining an environment variable in a definitions file, you can

use the value of any existing environment variable with the following

general syntax:

<VARIABLE>=...${env:EXISTING_VARIABLE}...

where ... stands for any other text as used in the value, and the curly braces

are strictly required. In the limits of this syntax, the following rules apply

directly:

•	 Variables are operated in the order they appear in the

.env file, so you can use any variable that is included

earlier in the file.

•	 Single or double quotes do not have an effect on the

substituted value and are included in the defined

value. For instance, if the value of VAR1 is abcedfg,

then VAR2=‘${env:VAR1}’ assigns the value ‘abcedfg’ to

VAR2.

•	 The $ character can be omitted with a backslash, as in \$.

•	 You can apply recursive substitution,

such as PYTHONPATH=${env:PROJ_

DIR}:${env:PYTHONPATH} (where PROJ_DIR is any

other environment variable).

•	 You can apply only simple substitution; nesting such as

${_${env:VAR1}_EX} is not supported.

Entries with unsupported syntax are left unmodified.

Chapter 3 Setting Up the Environment and Testing

103

�Using the PYTHONPATH Variable
The PYTHONPATH environment variable identifies additional locations

where the Python interpreter should be looking for modules. In VS Code,

PYTHONPATH can be set via the terminal settings (such as terminal.

integrated.env.*) and within an .env file.

If you are applying the terminal settings, PYTHONPATH starts affecting

any tools that are run within the terminal by a user, as well as any action

the extension carries out for a user that is completed through the terminal,

such as debugging. Yet in this case, when the extension is executing an

action that is not routed through the terminal, such as the use of a linter or

formatter, then this setting will not have any influence on module outlook.

When PYTHONPATH is set using an .env file, it will affect everything

the extension does on your behalf and actions completed by the debugger,

but it will not have any affect tools run in the terminal. If necessary, you

can set PYTHONPATH using both practices.

A good example of when to use PYTHONPATH would be if you have

source code in a src folder and tests in a tests folder. When running tests,

however, those tests cannot ordinarily access modules in src unless you

hard-code relative paths. In order to prevent this problem, be sure to add

the path to src to PYTHONPATH.

The value of PYTHONPATH can hold in multiple locations separated

by os.pathsep: a semicolon (;) on Windows and a colon (:) on Linux and

macOS. Invalid paths are usually simply disregarded. If you find that your

value for PYTHONPATH is not operating as expected, make sure that

you are adding the correct separator between locations for the operating

system. For instance, adding a colon to separate locations on Windows, or

adding a semicolon to separate locations on Linux and macOS, results in

an invalid value for PYTHONPATH, which is overlooked. PYTHONPATH

does not specify a path to a Python interpreter itself, and should not be

used together with the python.pythonPath setting.

The next section describes how to run our Python projects.

Chapter 3 Setting Up the Environment and Testing

104

�Running Your Projects
Start by verifying the Python installation on your machine by running the

standard commands:

Linux/macOS: python3 --version

Windows: py -3 --version

You are now ready to start VS Code in a project (workspace) folder

(Figure 3-1).

Using a command prompt or terminal, set up an empty folder called

“hello”, navigate into it, and open VS Code in that folder by entering the

following commands:

mkdir hello

cd hello

code

Figure 3-1.  Running Python projects in VS Code

Chapter 3 Setting Up the Environment and Testing

105

At this point, make sure you are using an Anaconda command

prompt. By starting VS Code in a folder, that folder becomes your

workspace. VS Code stores settings that belong to that particular

workspace in .vscode/settings.json, which are separate from user settings

that are stored globally. Alternately, you can run VS Code through the

operating system User Interface by accessing File ➤ Open Folder to open

the project folder.

�Selecting a Python Interpreter
Python by default is an interpreted language, and in order to run Python

code and get Python IntelliSense, you must specify to VS Code which

interpreter to apply.

From within VS Code, choose a Python 3 interpreter by opening the

Command Palette (Ctrl+Shift+P), and then start typing the Python: Select

Interpreter command to search; after that, select the command. You can

also use the Select Python Environment function on the Status Bar if

available (it may already display information on a selected interpreter).

The command presents options of available interpreters that VS Code

can find automatically, including virtual environments. If you do not

see the interpreter you are looking for, trying searching at Configuring

Python environments. You should also note that when using an Anaconda

distribution, the correct interpreter will normally have the suffix

(‘base’:conda): for example, Python 3.7.3 64-bit (‘base’:conda).

Opting for an interpreter sets the python.pythonPath value in your

workspace settings to the path of the interpreter. To see that setting,

select File ➤ Preferences ➤ Settings (Code ➤ Preferences ➤ Settings for

macOS), then click on the Workspace Settings tab. At the same time, if

you select an interpreter without a workspace folder open, VS Code sets

python.pythonPath in your user settings instead, which activates the

default interpreter for VS Code in general. The user setting enables you to

Chapter 3 Setting Up the Environment and Testing

106

always have a default interpreter for Python projects. In other words, the

workspace settings lets you override the user setting.

�Creating a Python Hello World Source Code File
From the File Explorer toolbar, select the New File button on the hello

folder. Name the file hello.py, and it automatically opens in the editor: File

Explorer hello.py. By using the .py file extension, you let VS Code interpret

this file as a Python program, so that it reads the contents with the Python

extension and the interpreter of your choice. The same File Explorer

toolbar also allows you to make folders within your workspace to help you

order and organize your code. For that you can use the New folder button

to effortlessly create a folder.

After you have set a code file in your Workspace, enter the following

source code in hello.py:

msg = "Hello World"

print(msg)

When you start typing, you should be able to observe how IntelliSense

presents auto-completion options. IntelliSense and auto-completion

operate for standard Python modules as well as for other packages you

have installed into the environment of the selected Python interpreter.

It also offers completions for methods available on object types. For

instance, because the msg variable contains a string, IntelliSense provides

string methods for you to type them.

IntelliSense also appears for a variable whose type provides methods.

You can freely experiment with IntelliSense and try more functions, but

it is always advised to then revert your changes so you have only the msg

variable and the print call, and save the file (Ctrl+S).

Chapter 3 Setting Up the Environment and Testing

107

�Running Hello World
It is quite simple to run hello.py with Python: click the Run Python

File in Terminal play button in the top-right side of the editor. The

button accesses a terminal panel in which your Python interpreter is

automatically activated, then starts running python3 hello.py (macOS and

Linux) or python hello.py (Windows).

There are three other options for running Python code within VS Code:

•	 Right-click anywhere in the editor window and select

Run Python File in Terminal (which saves the file

automatically).

•	 Run Python File in Terminal command in the Python

editor. You should select one or more lines, then press

Shift+Enter or right-click and select Run Selection/

Line in Python Terminal. This command is suitable for

testing separate sections of a file.

•	 Use the Command Palette (Ctrl+Shift+P). Select the

Python: Start REPL command to open a REPL terminal

for the currently selected Python interpreter. In the

REPL, you should then enter and run lines of code one

by one.

�Running the Python Debugger
The procedure to run the debugging process for the Hello World program

is also quite straightforward. You’ll first need to configure and initialize it,

and then define the variables. The next two sections explain how.

Chapter 3 Setting Up the Environment and Testing

108

�Configuring and Initializing the Debugger

Set a breakpoint on line 2 of hello.py by placing the cursor on the print call

and clicking F9. As an alternative, you can click in the editor’s left gutter,

next to the line numbers; once you set a breakpoint, a red circle appears in

the gutter.

Next, in order to initialize the debugger, press F5. Since this is your

first time debugging this file, a configuration menu will open from the

Command Palette, letting you select the type of debug configuration you

would like to run for the active file. It is important to know that VS Code

uses JSON files for all of its various configurations; launch.json is the

standard name for a file that has debugging configurations.

These different configuration methods are fully explained in

Debugging configurations. If you are new to this procedure, select Python

File, which is the configuration that runs the current file shown in the

editor using the currently selected Python interpreter. The debugger will

stop at the first line of the file breakpoint. The current line is identified

with a yellow arrow in the left margin. If you examine the Local variables

window at this point, you can see how defined msg variable showing in the

Local pane.

�Defining Variables

A debug toolbar appears along the top with the following commands

from left to right: continue (F5), step over (F10), step into (F11), step out

(Shift+F11), restart (Ctrl+Shift+F5), and stop (Shift+F5).

The Status Bar can also change color (orange for most of the themes) to

show that you are in debug mode. The Python Debug Console also comes

out automatically in the lower right panel to show the commands being

run, along with the program output. To continue running the program,

select the continue command on the debug toolbar (F5) and the debugger

will run the program to the end.

Chapter 3 Setting Up the Environment and Testing

109

�Installing and Using Packages
This section explains how to run packages. In Python, packages let you

obtain a number of useful code libraries, typically from PyPI. For this

example, we shall try using the matplotlib and NumPy packages to make

up a graphical plot, as is commonly done with data science.

A best practice among Python developers is to refrain from installing

packages into a global interpreter environment. Instead, you should use a

project-specific virtual environment that has a copy of a global interpreter.

When you activate that environment, any packages you then install

are separated from other environments. Such isolation prevents many

complications that can occur from conflicting package versions. In order

to create a virtual environment and install the required packages, enter the

following commands as appropriate for your operating system:

•	 For Windows:

py -3 -m venv .venv

.venv\scripts\activate

If the activate command generates the message

“Activate.ps1 is not digitally signed. You cannot run

this script on the current system.”, then you need to

temporarily change the PowerShell execution policy

to allow scripts to run.

•	 For macOS and Linux:

python3 -m venv .venv

source .venv/bin/activate

You can select your new environment by using

the Python: Select Interpreter command from the

Command Palette. But when you create a new virtual

environment, you should be prompted by VS Code

Chapter 3 Setting Up the Environment and Testing

110

to set it as the default for your workspace folder.

Once chosen, the environment will automatically be

activated when you access a new terminal.

When installing the packages try not to use it with

Anaconda distributions, because they include

matplotlib already:

•	 For macOS:

python3 -m pip install matplotlib

•	 For Windows (might require additional elevation):

python -m pip install matplotlib

Linux (Debian) (you might need to run as sudo)

apt-get install python3-tk

python3 -m pip install matplotlib

When you rerun the program (with or without the debugger) a few

moments later, a plot window should appear with the output: matplotlib

output

Once you are finished, do not forget to type deactivate in the terminal

window to deactivate the virtual environment.

Now, we will turn our attention to the Jupyter Notebook and its usage

in VS Code.

�Supportting Jupyter
Jupyter Notebook enables creating and sharing files that contain live code,

equations, text, and visualizations, and is considered to be one of the

greatest tools for data science because of its simplicity and interactivity

(Figure 3-2).

Chapter 3 Setting Up the Environment and Testing

111

Jupyter Notebooks are also used with other programming languages

in addition to Python, such as R, Julia, and Scala. To enable the same rich

Jupyter Notebook experience for other languages, the Jupyter support has

been refactored out of the Python extension and into the Jupyter extension.

This way it is much easier to build new Jupyter experiences for languages

beyond Python by establishing a dependency on the Jupyter extension, which

itself has no dependency on the Python runtime or the Python extension.

The Jupyter extension provides basic notebook support for any language

kernel that is supported in Jupyter Notebooks today. Most language kernels

will operate Jupyter without any need for modification. However, to enable

advanced features such as full IntelliSense and debugging, there might be

modifications needed in the VS Code language extensions.

Jupyter (also formerly known as IPython Notebook) is an open-source

project that enables you to easily combine Markdown text and executable

Python source code on one platform called a notebook. VS Code supports

working with Jupyter Notebooks by default, as well as through Python

code files. This section will cover the support offered through Python

code files and illustrate how to work with Jupyter-like code cells, run

code in the Python Interactive Window, inspect and filter variables using

the Variable explorer and data viewer, and debug and export a Jupyter

Notebook. In order to work with Jupyter Notebooks, you must first activate

Figure 3-2.  Jupyter Notebook with Python in Visual Studio Code

Chapter 3 Setting Up the Environment and Testing

112

an Anaconda environment in VS Code or another Python environment in

which you have installed the Jupyter package. To select an environment,

use the Python: Select Interpreter command from the Command Palette

(Ctrl+Shift+P).

Once the appropriate environment is activated, you can freely design

and run Jupyter-like code cells, connect to a remote Jupyter server for

running code cells, and export Python files as Jupyter Notebooks.

�Jupyter Code Cells
You define Jupyter-like code cells within Python code using a # %%

comment:

%%

msg = "Hello World"

print(msg)

%%

msg = "Hello again"

print(msg)

Make sure you save the preceding code in a file with a .py extension.

Selecting a command starts Jupyter, then runs the appropriate cell(s)

in the Python Interactive window. It is also possible to run code cells

using (Ctrl+Enter) or the Python: Run Selection/Line in Python Terminal

command (Shift+Enter). After writing down this command, the Python

extension automatically moves the cursor to the next cell. If you are in

the last cell in the file, the extension automatically inserts another # %%

delimiter for a new cell, mimicking the behavior of a Jupyter Notebook.

You can also click in the margin to the left of line numbers to set

breakpoints. Then you can use Debug Cell to refresh a debugging session

for that code cell. The debugger stops execution at breakpoints and lets

you step through code one line at a time and inspect variables.

Chapter 3 Setting Up the Environment and Testing

113

�Additional Commands and Keyboard Shortcuts
Table 3-1 presents a few additional commands and keyboard shortcuts

supported when working with code cells.1

1 �Visual Studio Code, “Python Interactive Window,” https://code.visualstudio.
com/docs/python/jupyter-support-py, accessed July 29, 2021.

Table 3-1.  Additional commands and shortcuts

Command Keyboard shortcut

Python: Go to Next Cell Ctrl+Alt+]

Python: Go to Previous Cell Ctrl+Alt+[

Python: Extend Selection by Cell Above Ctrl+Shift+Alt+[

Python: Extend Selection by Cell Below Ctrl+Shift+Alt+]

Python: Move Selected Cells Up Ctrl+; U

Python: Move Selected Cells Down Ctrl+; D

Python: Insert Cell Above Ctrl+; A

Python: Insert Cell Below Ctrl+; B

Python: Insert Cell Below Position Ctrl+; S

Python: Delete Selected Cells Ctrl+; X

Python: Change Cell to Code Ctrl+; C

Python: Change Cell to Markdown Ctrl+; M

Chapter 3 Setting Up the Environment and Testing

https://code.visualstudio.com/docs/python/jupyter-support-py
https://code.visualstudio.com/docs/python/jupyter-support-py

114

�Python Interactive Window
The Python Interactive window can be used as a fully functioning console

with arbitrary code (with or without code cells). To employ the window as

a console, you have to open it with the Jupyter: create Interactive Window

command from the Command Palette, then type in code, using Enter to

go to a new line and Shift+Enter to run the code. To use the window with

a file, you can also apply the Jupyter, simply by Running Current File in

Python Interactive Window command from the Command Palette.

�Plot Viewer
The Python Interactive window has full IntelliSense that includes code

completions, member lists, quick info for methods, and parameter hints.

These features allow you to be just as productive typing in the Python

Interactive window as you are in the code editor.

The Plot Viewer gives you the ability to work more deeply with the

plots inside the IntelliSense. In the viewer, you can pan, zoom, and

navigate plots in the currently ongoing session. You can also export plots to

PDF, SVG, and PNG formats.

Within the Python Interactive window, double-click any plot to open

it in the viewer, or select the expand button on the upper left corner of the

plot. However, the Python Interactive window supports rendering plots

only created with matplotlib and Altair.

�Live Share for Python Interactive
The Python Interactive window also supports Visual Studio Live Share

for real-time collaboration. Live Share offers you options to co-edit and

co-debug while sharing audio, servers, terminals, diffs, comments, and

more. This characteristic, however, requires the Live Share extensions to

be installed on both host and guest machines.

Chapter 3 Setting Up the Environment and Testing

115

�Variable Explorer and Data Viewer
Within the Python Interactive window it is possible to view, inspect, and

filter the variables within your current Jupyter session. By expanding the

Variables section after running code and cells, you can look through a list

of the current variables, which will be automatically updated as variables

are used in code.

For more information about your variables, you can double-click on

a row or use the Show variable in the data viewer setting to see a more

detailed view of a variable in the Data Viewer. Once open, you can review

the values by looking over the rows. Variable explorer is enabled by default

but can be easily turned off in settings via Python ➤ Data Science: Show

Jupyter Variable Explorer.

�Connecting to a Remote Jupyter Server
You can transfer intensive computation in a Jupyter Notebook to other

computers by simply connecting to a remote Jupyter server. When

connected, code cells run on the remote server rather than the local

computer.

To connect to a remote Jupyter server, run the Jupyter: Specify local

or remote Jupyter server for connections command from the Command

Palette (Ctrl+Shift+P), and afterward make a choice how you would like to

connect to a Jupyter server.

If working remotely, provide the server’s URI (hostname) with the

authentication token included with a ?token= URL parameter when

prompted. If you start the server in the VS Code terminal with an

authentication token enabled, the URL with the token typically shows in

the terminal output from where you should copy it. At the same time, you

should specify a username and password after providing the URI.

Chapter 3 Setting Up the Environment and Testing

116

The Python Interactive window designates where code is run by

displaying the URI. For better security, Microsoft recommends configuring

your Jupyter server with security precautions such as SSL and token

support. This will assist and ensure that requests sent to the Jupyter server

are authenticated and links to the remoter server are safely encrypted.

�Converting Jupyter Notebooks to Python
Code File
When you have activated an environment with Jupyter installed, you can

open a Jupyter Notebook file (.ipynb) in VS Code and then convert it to

Python code. Once you’ve complete the conversion, you can run the code

as you would usually do with any other Python file, and also use the VS

Code debugger. Opening and debugging notebooks in VS Code is an easy

way to find and resolve code bugs, which is rather inconvenient to do

directly in a Jupyter Notebook.

Every time you open a notebook file, VS Code will open it in the

Notebook Editor automatically. You can use the convert icon on the

toolbar to convert the Notebook (.ipynb) file to a Python file (.py). Be sure

to select the convert icon followed by “Python Script”, wait a few seconds,

and then VS Code opens the converted notebook as an untitled file. The

notebook’s cells are delimited in the Python file with # %% comments;

markdown cells are converted wholly to comments preceded with # %%

[markdown], and rendered as HTML in the interactive window along with

the code and other output such as graphs and tables. The first time you

run code cells in a Python file, the Python extension starts a Jupyter server.

It usually takes some time for the server to pick up and for the Python

Interactive window to show the results of the code.

Chapter 3 Setting Up the Environment and Testing

117

�Debugging a Jupyter Notebook
The VS Code debugger lets you analyze your code, set breakpoints,

examine its state, and scan for problems. Using the debugger is a fast way

to look for and correct errors in notebook code.

In VS Code, activate a Python environment in which Jupyter is

installed, as described at the beginning of this chapter. Import the

notebook’s .ipynb file into VS Code and start the debugger using one of the

following options:

•	 For the whole notebook, open the Command Palette

(Ctrl+Shift+P) and run the Jupyter: Debug Current File

in the Python Interactive Window command.

•	 For an individual cell, apply the Debug Cell function

that appears above the cell. The debugger specifically

starts on the code in that cell. By default, Debug Cell

just steps into user code. If you need to step into

nonuser code, you will have to uncheck Data Science:

Debug Just My Code in the Python extension settings

(Ctrl+,).

•	 Make sure you familiarize yourself with the general

debugging features of VS Code, such as inspecting

variables, setting breakpoints, and other activities

If any issues occur during the process, stop the debugger, correct your

code, save the file, and start the debugger again. When you are satisfied

with your code, save the file and then export the notebook. You can then

upload the notebook to your normal Jupyter environment.

Chapter 3 Setting Up the Environment and Testing

118

�Exporting a Jupyter Notebook
In addition to accessing a Jupyter Notebook, you can also apply one of the

following commands from the Command Palette (Ctrl+Shift+P) to export

content from a Python file in VS Code to a Jupyter Notebook (with the

.ipynb extension).

•	 Jupyter: Export Current Python File as Jupyter

Notebook: creates a Jupyter Notebook from the contents

of the current file, using the # %% and # %% [markdown]

delimiters to specify their respective cell types.

•	 Jupyter: Export Current Python File and Output as

Jupyter Notebook: create a Jupyter Notebook from the

contents of the current file and includes output from

code cells.

•	 Jupyter: Export Interactive Window as Jupyter

Notebook: creates a Jupyter Notebook from the

contents of the Python Interactive window.

After exporting the contents, VS Code displays a prompt through which

you can open the notebook in a browser. Jupyter stores different data (such

as configuration, runtime) in a number of different locations. Environment

variables may be set to customize for the location of each file type. Jupyter

keeps data files (nbextensions, kernelspecs) separately from runtime

files (logs, pid files, connection files) and from configuration (config files,

custom.js).

�Configuration Files
Config files are stored by default in the ~/.jupyter directory.

JUPYTER_CONFIG_DIR is used for for config file location and

JUPYTER_CONFIG_PATH is used for config file locations.

Chapter 3 Setting Up the Environment and Testing

119

�JUPYTER_CONFIG_DIR

You should set this environment variable to use a particular directory,

other than the default, for Jupyter config files. Besides the

JUPYTER_CONFIG_DIR, additional directories to select can be

specified through JUPYTER_CONFIG_PATH.

�JUPYTER_CONFIG_PATH

You can set this environment variable to provide extra directories for the

config search path.

:envvar:`JUPYTER_CONFIG_PATH` should contain a series of

directories, separated by

`` os.pathsep`` (``;`` on Windows, ``:`` on Unix). For example,

JUPYTER_CONFIG_PATH can be placed if notebook or server extensions

are installed in a custom prefix. Because notebook and server extensions

are automatically enabled through configuration files, automatic enabling

will only work if the custom prefix’s etc/jupyter directory is included to the

Jupyter config search path.

Besides the user config directory, Jupyter has a search path of extra

locations from which a config file will be loaded. Following is a list of the

locations to be searched, in order of relevance:

•	 For Unix:

JUPYTER_CONFIG_DIR

JUPYTER_CONFIG_PATH

{sys.prefix}/etc/jupyter/

/usr/local/etc/jupyter/ /etc/jupyter/

•	 For Windows:

%PROGRAMDATA%\jupyter\

Chapter 3 Setting Up the Environment and Testing

120

To list the config directories currently being used, you

can activate this command from the command line:

jupyter –paths;

The following command will display the config

directory specifically:

jupyter --config-dir.

�Data Files
Jupyter utilizes a search path to look for installable data files, such as

kernel specs and notebook extensions. When searching for a resource, the

code will review the search path starting at the first directory until it finds

where the resource is contained. Each category of file is in a subdirectory

of each directory of the search path. For instance, kernel specs are placed

in kernels subdirectories.

JUPYTER_PATH is used for datafile directory locations and

JUPYTER_DATA_DIR is used for data file location.

�JUPYTER_PATH

You can set this environment variable to provide extra directories for the

data search path. JUPYTER_PATH should restrain a series of directories,

separated by os.pathsep (; on Windows, : on Unix). Directories scripted

in JUPYTER_PATH are searched before other locations. This is used in

addition to other entries, rather than in their replacement:

•	 For Linux (and other free desktops):

JUPYTER_DATA_DIR or (if not set) ~/.local/

share/jupyter/ (respects $XDG_DATA_HOME)

{sys.prefix}/share/jupyter/

/usr/local/share/jupyter /usr/share/jupyter

Chapter 3 Setting Up the Environment and Testing

121

•	 For Mac:

JUPYTER_DATA_DIR or (if not set) ~/Library/

Jupyter

•	 For Windows:

JUPYTER_DATA_DIR or (if not set) %APPDATA%\

jupyter

%PROGRAMDATA\jupyter

The config directory for Jupyter data files hold nontransient,

nonconfiguration files. Examples include kernelspecs, nbextensions, or

templates.

�JUPYTER_DATA_DIR

You should set this environment variable to use a particular directory,

other than the default, as the user data directory. As mentioned, to list

the config directories currently being used, you can run the following

command from the command line: jupyter –paths; and jupyter --data-dir

shows the data directory specifically.

�Runtime File
Items such as connection files, which are only applied for the lifetime of a

particular process, have a runtime directory. JUPYTER_RUNTIME_DIR is

used for runtime file location.

On Linux and other free desktop platforms, these runtime files are

located in $XDG_RUNTIME_DIR/jupyter by default. On other platforms,

it’s a runtime/subdirectory of the user’s data directory. Any other

environment variable can also be used to set the runtime directory.

Chapter 3 Setting Up the Environment and Testing

122

�JUPYTER_RUNTIME_DIR

You may set this to override where Jupyter stores runtime files. As

mentioned, to list the config directories currently being used, you can use

the command jupyter –paths, and jupyter --runtime-dir shows the runtime

directory specifically.

�Summary
Jupyter Notebook is the most user-friendly, convenient, resourceful, and

stable interactive computing environment currently available. It greatly

combines rich text cells such as markdown, LaTeX and raw HTML, code

cells, and rich, high-value data that contains the computation results.

The output can be anything a web page can display, from ordinary text to

dynamic visualizations. For this reason, it would be better to run and keep

it clear to read as a research file.

Normally, a user should be able to open a notebook in JupyterHub

from a link on a GitHub repo, open a notebook from a link received by

email, give access to a notebook by storing it on a GitHub repo, give access

to a notebook via a cryptic URL, and access to network drives to read

or write data without any hassle. The following three methods to share

notebooks are most practiced at the moment:

•	 Sharing via Git

•	 Sharing viva NFS

•	 Sharing via Docker NetApp plugin

We have covered a good deal about Jupyter Notebook. In the next

chapter, we will turn our attention to Python frameworks such as Django

and Flask.

Chapter 3 Setting Up the Environment and Testing

123© Sufyan bin Uzayr 2021
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9_4

CHAPTER 4

Working with Python
Frameworks
In the previous chapter, we covered some core concepts pertaining to

Jupyter Notebook. In this chapter we will turn our attention to Python

frameworks. Because Python web development has been around for quite

a while now, Avarious handy Python frameworks were created to make the

life of an ordinary developer much easier. That is exactly how we would

describe Python for web development.

Python is known as a very readable, object-oriented programming

language. Due to its unique syntax, it is much faster to learn and use its

basic features compared to other programming languages such as Java or

even C++. The Python framework provides a structure to help users create

the apps without having to build every single item from the beginning. In

this chapter we’ll quickly review Python frameworks ecosystem, create

simple codes in VS Code with Django and Flask frameworks, and then

explore some basic data science scenarios in VS Code.

https://doi.org/10.1007/978-1-4842-7344-9_4#DOI

124

�Python Frameworks Ecosystem at a Glance
A framework acts as an arrangement designed to support the development

of web applications and web APIs. It provides a standard way to

build apps while automating the overhead associated with common

activities performed in web development. It comes with many reusable

characteristics and has two main purposes: simplifying the process of

creating web apps, and aiming for the best possible results and saving your

time. Python frameworks are also very useful for a number of reasons:

•	 They cover basic things such as creating autoload files,

session files, and index files.

•	 They provide better functionality to process requests.

•	 They follow the latest patterns.

•	 They let you attach necessary third-party resources.

There are many web application frameworks out there, and it might

get confusing and challenging to decide which one is the right one for

you. When selecting the Python web framework of your choice, there are

several things to consider. First, you should take a look at the complexity

of your project. If you are working on a smaller application, you should

consider applying microframework. If, on the other hand, you are creating

a large app project that has all kinds of features and requirements, you

might opt for a full-stack framework. In other words, the decision should

come from your understanding of the final outcome and the tasks you

want to untangle. Another thing to remember is the fact that sometimes

a web application framework can stand in the way of web development

due to the fact that every framework usually has certain limitations. You

can either find your ways of working with them or discard the framework

entirely instead of having to go through it.

Chapter 4 Working with Python Frameworks

125

A web framework is the result of what developers have learned over

the past years while programming sites and applications for the web.

Frameworks make it easier to reapply code for common HTTP procedures

and to structure projects so other developers can effortlessly rebuild and

maintain the application. Web frameworks are a concept implemented

by Django, Flask, Bottle, Pyramid, Morepath, TurboGears, and several

other libraries. Frameworks provide functionality in their code or through

extensions to activate operations required to run web applications. These

funding operations include:

•	 URL routing

•	 Input form handling and validation

•	 HTML, XML, JSON, and other output formats

•	 Database connection configuration and data

manipulation through an object-relational mapper

(ORM)

•	 Web security against Cross-site request forgery (CSRF),

SQL Injection, Cross-site Scripting (XSS)

•	 Session storage and retrieval

It is also good to keep in mind that not all web frameworks include

code for all of this functionality. Frameworks are usually placed on the

spectrum from executing a single function to providing every known web

framework characteristic.

Whether or not you need to use a web framework in your project at

all solely depends on your experience with web development and which

project you are running. If you are a beginner programmer and just need

to complete a web application as a learning project, then a framework

can assist in the understanding of the preceding concepts, such as URL

routing, data manipulation, and authentication, that are common tasks for

the majority of web applications. On the other hand, if you already have

Chapter 4 Working with Python Frameworks

126

significant web development experience, you may feel like minimal caliber

frameworks do not match your project’s requirements. In that case, you

can experiment with open-source libraries such as Werkzeug for WSGI

plumbing with your own code to create your own framework. Although

there are plenty of different items in the Python ecosystem to satisfy

the needs of web developers, such as Pyramid and Bottle, this chapter

focuses on Django and Flask, the two most common and versatile Python

frameworks.

�Django Development
Django is a high-level Python framework developed for fast, secure, and

stable web development (Figure 4-1). Django also has rich support for URL

routing, page templates, and working with data.

In this section we shall cover how to work with Django in the VS Code

terminal, editor, and debugger.

Figure 4-1.  Django, a popular Python framework

Chapter 4 Working with Python Frameworks

127

�Installation
You start by making sure you have the latest version of VS Code installed.

To successfully complete this Django tutorial, you must install a version of

Python 3 in one of the following ways:

•	 For all operating systems: a download from python.

org; typically use the Download Python 3.9.1 button

that appears first on the page.

•	 For Linux: the built-in Python 3 installation works well,

but to download other Python packages you must run

sudo apt install python3-pip in the terminal.

•	 For macOS: an installation through Homebrew on

macOS using brew install python3.

In addition, no matter which operating systems you use, be sure you

download from Anaconda distribution for data science purposes. On

Windows, the location of your Python interpreter has to be included in your

PATH environment variable. You can check the location by running path at

the command prompt. If the Python interpreter’s folder is not added, open

Windows Settings, search for “environment”, select Edit environment variables

for your account, and then edit the Path variable to include that folder.

After you are finished with that step, you can install the following (free)

extensions:

•	 Python (published by Microsoft): for full Python

language support.

•	 Django Template: for template file source highlighting.

•	 Django Snippets: for common Django code.

Alternatively, install Djaniero-Django Snippets if you

prefer.

Do not forget to reload VS Code after extension installation.

Chapter 4 Working with Python Frameworks

128

�Creating a Project Environment for the Django
Tutorial
Creating a virtual environment in which Django is installed is an important

step. Using a virtual environment avoids installing Django into a global

Python environment and gives you exact control over the libraries engaged

in an application. A virtual environment also makes it easy to cover

requirements.txt file for the environment.

Begin by creating a project folder for this tutorial, such as hello_django

on your file system. In that folder, use the following command (as suitable

to your computer) to design a virtual environment named env based on

your current interpreter:

•	 For Linux: python3 -m venv env

•	 For macOS: python3 -m venv env

•	 For Windows: python -m venv env

Be sure to use a stock Python installation when activating these

commands. If you apply python.exe from an Anaconda installation,

you get an error because the ensurepip module is not available, and the

environment is left in an incomplete condition.

Next, open the project folder in VS Code by running code or by

running VS Code and using the File ➤ Open Folder command. In VS Code,

open the Command Palette via View ➤ Command Palette or Ctrl+Shift+P,

then select the Python: Select Interpreter command: Django tutorial:

opening the Command Palette in VS Code. The command will call a list

of available interpreters that VS Code can locate automatically (and your

list will vary). From the list, go for the virtual environment in your project

folder that starts with ./env or .\env.

You can also create New Integrated Terminal (Ctrl+Shift+`) from the

Command Palette, which produces a terminal and automatically activates

the virtual environment by running its activation script. On Windows,

Chapter 4 Working with Python Frameworks

129

if your default terminal type is PowerShell, you may get an error that it

cannot run activate.ps1 because running scripts is disabled on the system.

The error shall also provide a link for information on how to allow scripts.

You can also use Terminal: Select Default Shell to set “Command Prompt”

or “Git Bash” as your default.

The selected environment should pop up on the left side of the VS

Code status bar; notice that the “(venv)” indicator that tells you that you

are currently using a virtual environment. In addition, you can modify your

environment via the following commands:

•	 Update pip in the virtual environment: python -m pip

install --upgrade pip

•	 Install Django in the virtual environment: python -m

pip install Django

VS Code activates the environment automatically when you use

Terminal: Create New Integrated Terminal (Ctrl+Shift+`). When you open

a separate command prompt or terminal, activate the environment by

running source env/bin/activate (Linux/macOS) or env\Scripts\Activate.ps1

(Windows). You know the environment is active when the command prompt

shows (env) at the beginning. You now have a self-evolved environment

ready for writing Django code.

�Creating and Running a Minimal Django App
In Django terminology, a Django project is made up of several site-level

configuration files together with one or more apps that you employ to a

web host to make a full web application. A Django project can produce

multiple apps, each of which will normally have an independent function

in the project, and the same app can be in various Django projects. In this

instance, an app is just a Python package that has certain functions that

Django expects.

Chapter 4 Working with Python Frameworks

130

To create a minimal Django application, it is necessary to first design

the basic Django project to serve as the container for the app, and then

go on to creating the app itself. For both processes you should apply the

Django administrative utility or Django-admin, which is installed together

with the Django package.

�Creating the Django Project
In the VS Code Terminal where your virtual environment is operating,

insert the following command:

Django-admin startproject web_project.

This startup command assumes (by use of . at the end) that the current

folder is your project folder, and creates manage.py within it, which stands

for the Django command-line administrative utility for the project. You

run administrative commands for the project using python manage.

py <command>. As a subfolder you also have a file named web_project,

which contains the following files:

•	 __init__.py: an empty file that informs Python that this

folder is a Python package.

•	 asgi.py: an entry point for ASGI-compatible web

servers to serve your project. You should leave this file

as-is to secure the hooks for production web servers.

•	 settings.py: contains settings for Django project, which

you modify in the course of developing a web app.

•	 urls.py: contains a table of contents for the Django

project, which you can edit in the course of

development.

Chapter 4 Working with Python Frameworks

131

•	 wsgi.py: an entry point for WSGI-compatible web

servers to serve your project. It is recommended

to leave this file as-is as to provide the hooks for

production web servers.

You should also create an empty development database by running

the following command: python manage.py migrate. When you run the

server for the first time, it generates a default SQLite database in the file

DB.sqlite3 that is considered necessary for development purposes but can

also be used in production for low-volume web apps. To verify the Django

project, make sure your virtual environment is running error-free, then

start Django’s development server using the command python manage.

py runserver. Django’s built-in web server is designed only for local

development purposes. When you add a web host, however, Django will

use the host’s web server instead. The wsgi.py and asgi.py modules in the

Django project are responsible for getting into the production servers.

If you want to use a different port than the default 8000, you should

insert the port number on the command line, such as python manage.

py runserver 5000. Ctrl+click the http://127.0.0.1:8000/ URL in the

terminal output window to open your default browser to that address. If

Django is installed correctly and the project is still active, you will be able

to see the default page shown below. The VS Code terminal output window

also presents the server log. Once you are finished, close the browser

window and stop the server in VS Code using Ctrl+C in the terminal output

window.

�Creating a Django App
In the VS Code Terminal where your virtual environment is located, run

the administrative utility’s start command in your project folder (where

manage.py added): python manage.py startapp helloworld. This command

will create a folder called helloworld that has a number of code files and

Chapter 4 Working with Python Frameworks

﻿http://127.0.0.1:8000/﻿

132

one subfolder. With this, you most frequently might work with views.py

(that functions as page definition of your web app) and models.py (that

has classes defining your data objects). The migrations folder is utilized by

Django’s administrative utility to administer database versions, as will be

discussed later in this chapter. In the same folder, we can also see the files

apps.py (for app configuration), admin.py (for creating an administrative

interface), and tests.py (for creating tests).

You can modify helloworld/views.py to match the following code

and create a single view for the app’s home page with the following: from

Django.http import HttpResponse

def home(request):

 return HttpResponse("Hello, Django!")

With that, create a file hello/urls.py with the contents below. The urls.py

file is where you identify patterns to route different URLs to their appropriate

views. The following code contains one route to map the root URL of the app

(“”) to the views.home function that you just added to hello/views.py:1

from django.urls import path

from hello import views

urlpatterns = [

 path("", views.home, name="home"),

]

The web_project folder also has a urls.py file, which is where URL

routing is actually located. Open web_project/urls.py and edit it to match

the following code. This code pulls in the app’s hello/urls.py using Django.

URLs.include, which keeps the app’s routes framed within the app. This

procedure is used when a project has not one but multiple apps. In the

end, be sure to save all modified files with Ctrl+K S.

1 �Visual Studio Code, “Django Tutorial in Visual Studio Code,” https://code.
visualstudio.com/docs/python/tutorial-django, accessed July 29, 2021.

Chapter 4 Working with Python Frameworks

https://code.visualstudio.com/docs/python/tutorial-django
https://code.visualstudio.com/docs/python/tutorial-django

133

�Creating a Debugger Launch Profile
Fortunately, there is an easier way to run the server and test the app

without typing python manage.py runserver every time. It is possible to

create a customized launch profile in VS Code, which is also applied for

the inevitable exercise of debugging.

First, switch to Run view in VS Code (using the left-side activity bar

or F5). You might get the message “To customize Run and Debug create

a launch.json file.” This means that you do not yet have a launch.json file

with debug configurations. VS Code can create that for you once you click

on the create a launch.json file link.

Select the launch.json link, and VS Code will start a debug

configuration. Select Django from the dropdown and VS Code will include

a new launch.json file to a Django run configuration. The launch.json file

has a number of different debugging configurations, each of which is a

distinct JSON object within the configuration variety.

After that, scroll down to examine the configuration with the name

“Python: Django” by scripting:2

{

 "name": "Python: Django",

 "type": "python",

 "request": "launch",

 "program": "${workspaceFolder}/manage.py",

 "args": [

 "runserver",

],

 "django": true

},

2 Visual Studio Code, “Django Tutorial in Visual Studio Code.”

Chapter 4 Working with Python Frameworks

134

This configuration makes VS Code run “${workspaceFolder}/manage.

py” together with the selected Python interpreter and the arguments in the

args list. Launching the VS Code debugger with this configuration would

have the same effect as running python manage.py runserver in the VS

Code Terminal with your activated virtual environment. The “Django”:

true entry also allows VS Code to enable debugging of Django page

templates.

You can test the configuration any time by selecting the Run

➤ Start Debugging menu command, or clicking on the green Start

Debugging arrow next to the list (F5). You should then do Ctrl+click the

http://127.0.0.1:8000/ URL in the terminal output window to open the

browser and check once again that the app is running properly.

When you are finished, close the browser and stop the debugger. In

order to stop the debugger, use the Stop toolbar button (the red square)

or the Run ➤ Stop Debugging command (Shift+F5). You can also follow

the Run ➤ Start Debugging at any time to test the app, which also has the

advantage of automatically saving all modified files.

�Exploring the Debugger
Debugging gives you a chance to pause a running program on a specified

line of code. When a program is paused you can check out variables, run

code in the Debug Console panel, and take advantage of modified files

before the debugging session begins.

Before you start, make sure you have stopped the running app at the

end of the last session by using Ctrl+C in the terminal. If you leave the app

running in one terminal, it continues to use the port. Because of that, when

you run the app in the debugger using the same port, the original running

app takes all the requests and you will not observe any activity in the app

being debugged, and the program will not stop at breakpoints. To put it

simply, if the debugger does not seem to be activated, make sure that no

other part of the app is still running.

Chapter 4 Working with Python Frameworks

http://127.0.0.1:8000/

135

Start with add a route to the urlpatterns list:

path(“helloworld/<name>” in helloworld/urls.py. The first argument to

path defines a route “hello/” that includes a variable string called name.

The string is passed to the views.hello_world function specified in the

second part of the argument.

Because URL routes are very case-sensitive, if you need the same

view function to manage both, you have to define paths for each variant.

The name variable defined in the URL route is given as an argument to

the hello_there function. As a side note, you should always filter arbitrary

user-provided information to prevent various attacks on your app from

happening. In this case, the code filters the name argument to include only

letters, which avoids injection of control characters, HTML, and others.

You can set a breakpoint at the first line of code in the hello_world

function (now = DateTime.now()) by doing any one of the following:

•	 Press F9 with the cursor on that line

•	 Select the Run ➤ Toggle Breakpoint menu command

•	 Click directly in the margin to the left of the line

number

The breakpoint appears as a red dot in the left margin. Start the

debugger by selecting the Run ➤ Start Debugging menu command, or

selecting the green Start Debugging arrow next to the list (F5). A debugging

toolbar also pops in VS Code containing commands in the following

order: Pause (or Continue, F5), Step Over (F10), Step Into (F11), Step Out

(Shift+F11), Restart (Ctrl+Shift+F5), and Stop (Shift+F5). Command output

appears in a Python Debug Console terminal. You should open a browser

and navigate to http://127.0.0.1:8000/helloworld/VSCode. Before the

page loads, VS Code pauses the program at the breakpoint you set. The

small yellow arrow on the breakpoint shows that it is the next line of code

to run. Use Step Over to run the now = DateTime.now() statement.

Chapter 4 Working with Python Frameworks

http://127.0.0.1:8000/helloworld/VSCode

136

On the left side of the VS Code window, you can see a Variables list that

shows local variables and arguments. Below that would be listed for Watch,

Call Stack, and Breakpoints. In the Locals section, try expanding different

values and modifying them with double-clicks (or F2). Changing variables,

however, can break the program. Developers usually make changes only

to correct values when the code did not produce the right value in the

beginning.

When a program is paused, the Debug Console panel allows you to

experiment with expressions and try out different parts of code using the

current state of the program. For instance, once you have stepped over

the line now = DateTime.now(), you might try with different date/time

formats. In the editor, choose the code that reads now.strftime(“%A, %d

%B, %Y at %X”), and then right-click and select Debug: Evaluate to send

that code to the debug console, where it shows:

now.strftime("%A, %d %B, %Y at %X")

'Friday, 07 June, 2021 at 12:43:32'

At the same time, the Debug Console also has exceptions from within

the app that may not show in the terminal. For example, if you see a

“Paused on exception” message in the Call Stack area of Run view, switch

to the Debug Console to see the exception message. To make it easier

to repeatedly go to a specific URL such as http://127.0.0.1:8000/

helloworld/VSCode, output that URL using a print statement at some

point in a file like views.py. The URL appears in the VS Code Terminal,

where you can use Ctrl+click to open it in a browser.

When you are finished, be sure to close the browser and stop the

debugger using the Stop toolbar button (the red square) or the Run ➤ Stop

Debugging command (Shift+F5).

Chapter 4 Working with Python Frameworks

http://127.0.0.1:8000/helloworld/VSCode
http://127.0.0.1:8000/helloworld/VSCode

137

�Using Definition and Peek Definition Commands
When you work with Django or any other library, you need to examine the

code in those libraries from time to time. For that, VS Code provides two

convenient commands that go straight to the definitions of classes and

other objects in any code.

Go to Definition transfers from your code into the code that defines an

object. For example, in views.py, right-click on HttpResponse in the home

function and select Go to Definition (or use F12), which guides to the class

definition in the Django library.

Peek Definition (or Alt+F12) is used to display the class definition

directly in the editor making space in the editor window to avoid

disturbing any code. To close the Peek window, press Escape or use the x

in the upper right corner.

�Using a Template to Render a Page
The first app created in Django usually has only plain text web pages from

Python code. Even if it is possible to get HTML directly in code, developers

rarely practice that because it opens the app to cross-site scripting (XSS)

attacks. In the simplest hello_there function, one might think to edit the

output in code with content such as = “<h1>Hello there, “+ clean_name +

“!</h1>, where the result in content is attached directly to a browser. This

opening lets an attacker place malicious HTML, including JavaScript code,

in the URL that turns into clean_name and thus ends up being run in the

browser.

Keeping HTML out of your code entirely by using templates (so that

your code is concerned only with data values) is considered to be a much

better practice. In Django, a template is an HTML file that accommodates

placeholders for values that the code provides at run time. The Django

templating engine then has to make the substitutions when rendering

the page and provide automatic escaping to prevent XSS attacks. The

Chapter 4 Working with Python Frameworks

138

code therefore concerns itself only with data values and markup. Django

templates provide great options, such as template inheritance, which lets

you define a base page with common markup and then expand upon that

base by using different page-specific additions.

Begin by creating a single page using a template in the web_project/

settings.py file. First, locate the INSTALLED_APPS list and add the

following entry, which makes sure the project is familiar with the app and

can handle templating: ‘hello’. Inside the hello folder, make a folder named

templates, and then another subfolder named hello to match the app.

After that, in the templates/hello folder, create a file named

hello_there.html with the following contents. This template has to

have two placeholders for data values named “name” and “date”, which

should be separated by pairs of curly braces, {{ and }}. All other text is

also considered a part of the template, together with formatting markup

(such as). Template placeholders can also include formatting,

such as the expressions after the pipe | symbols, in this case using

Django’s built-in date filter and a time filter. The code then needs only

to pass the DateTime value in the following manner:3

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8" />

 <title>This is Django</title>

 </head>

 <body>

 �Hello people, {{ name }}! It's {{ date

| date:"l, d F, Y" }} at {{ date | time:"H:i:s" }}

 </body>

</html>

3 Visual Studio Code, “Django Tutorial in Visual Studio Code.”

Chapter 4 Working with Python Frameworks

139

At the top of views.py, add the following import statement: from

Django.shortcuts import render.

Also in views.py, edit the hello_world function to use Django.shortcuts.

render method for loading a template and providing the template context.

The context here stands for the set of variables within the template. The

render function takes the request object, followed by the path to the

template relative to the templates folder, then the context object:

def hello_there(request, name):

 return render(

 request,

 'helloworld/hello_world.html',

 {

 'name': name,

 'date': datetime.now()

 }

)

Notice that the code looks much simpler this way, and concerned

only with data values because the markup and formatting is all located

in the template. Now you can start the program (inside or outside of the

debugger, using Ctrl+F5), navigate to a /hello/name URL, and observe the

results. You can also navigate to a /helloworld/name URL using a name

like <a%20value%20that%20could%20be%20HTML> to see Django’s

automatic escaping in action. The “name” value in this case comes up as

plain text in the browser rather than as rendering an actual element.

�Serving Static Files
Static files represent content that your web app returns as-is for certain

requests, such as Cascading Style Sheets files. Serving static files requires

that the INSTALLED_APPS list in settings.py contains Django.contrib.

staticfiles, which is included by default.

Chapter 4 Working with Python Frameworks

140

Serving static files is used when deploying to production. They work

with the Django development server and also with a production server like

Gunicorn. In production, you also need to set DEBUG=False in settings.py,

which is necessary to carry some additional work when using containers.

�Readying the App for Static Files
To get the app ready, in the project’s web_project/urls.py, add the

following import statement: from Django.contrib.staticfiles.URLs import

staticfiles_urlpatterns. In that same file, include the following line at

the end, which has standard static file URLs to the list that the project

recognizes: urlpatterns += staticfiles_urlpatterns().

�Referring to Static Files
To refer to static files, create a folder named static in the hello folder.

Within the static folder, make a subfolder named hello, matching the app

name. The reason for this extra subfolder is that when you deploy the

Django project to a production server, you combine all the static files into a

single folder that is served by a dedicated static file server. The static/hello

subfolder makes sure that when the app’s static files are combines, they are

in an app-specific subfolder and will not conflict with files from other apps

in the same project.

Then, in the static/hello folder, create a file named site.css with

the following contents. After entering this code, also see the syntax

highlighting that VS Code provides for CSS files, including a color preview:

.message {

 font-weight: 600;

 color: blue;

}

Chapter 4 Working with Python Frameworks

141

In templates/hello/hello_there.html, include the following lines after

the <title> element. The {% load static %} tag is a custom Django template

tag set, which lets you use {% static %} to refer to a file like the stylesheet:

{% load static %}

<link rel="stylesheet" type="text/css" href="{% static

'helloworld/site.css' %}" />

Also in templates/hello/hello_there.html, replace the contents <body>

element with the following markup that uses the message style instead of a

 tag:

Hello, buddy {{ name }}! It's

{{ date | date:'l, d F, Y' }} at {{ date | time:'H:i:s' }}.

Now when you run the app, navigate to a /hello/name URL and

observe that the message renders in blue. Do not forget to stop the app

when you are finished.

�Using the Collectstatic Command
For production purposes, you would need to collect all the static files from

your apps into a single folder using the python manage.py collectstatic

command. You can then take a dedicated static file server to serve those

files, for most issues is better overall performance. The following steps

show how this collection is produced, even though you do not use the

collection when running with the Django development server.

In web_project/settings.py, add the following line that identifies an

exact place where static files are collected when you apply the collectstatic

command:

STATIC_ROOT = BASE_DIR / 'static_collected'

Chapter 4 Working with Python Frameworks

142

Later, in the Terminal, try running the command python manage.

py collectstatic and notice that hello/site.css is copied into the top-

level static_collected folder altogether with manage.py. In practice, run

collectstatic each time you edit static files and before forwarding it into

production.

�Creating Multiple Templates That Extend a Base
Template
Because most web apps have multiple pages, and because those pages

normally share many common items, developers split those common

items into a base page template that other page templates then expand.

This procedure is also called template inheritance, meaning that the

extended pages inherit elements from the basic page.

Also, because you most likely need to create multiple pages that extend

the same template, it is useful to create a code snippet in VS Code with

which you can initialize new page templates faster. A snippet helps you

prevent tedious and prone to error operations.

�Creating a Base Page Template and Styles
A base page template in Django has all the shared bits of a set of pages,

including references to script files. Base templates also define one or more

block tags with content that extended templates are expected to override.

A block tag is delineated by {% block <name> %} and {% endblock %} in

both the base template and extended templates.

In the templates/hello folder, make a file named layout.html with

the contents, which has blocks named “title” and “content”. The markup

should be able to define a simple navbar structure with links to Home,

About, and Contact pages. You can use Django’s {% URL %} tag to refer to

other pages through the names of the corresponding URL patterns rather

Chapter 4 Working with Python Frameworks

143

than by relative path. You can run the app at this point, but because you

have not made use of the base template anywhere and have not changed

any code files, the result will be the same.

�Creating a Code Snippet
If you find yourself creating multiple pages that extend layout.html, it

would save time to create a code snippet to initialize a new template file

with a suitable reference to the base template. A code snippet secures a

consistent part of code from a single source, which prevents mistakes that

can occur when using copy-paste from active code.

To create a snippet in VS Code, select the File (Windows and Linux)

or Code (macOS), menu, then follow Preferences ➤ User snippets. In the

list that appears, select HTML. The option may also appear as “html.json”

in the Existing Snippets section of the list if you have created snippets

previously.

After VS code opens html.json, save it with Ctrl+S. Now. Any time you

start typing the snippet’s prefix, such as djext, VS Code will provide the

snippet as an autocomplete variety. You can also use the Insert Snippet

command to select a snippet from a menu.

�Working with Data, Data Models, and Migrations
Many web apps operate with data stored in a database, and Django makes

it pretty simple to represent the items in that database via models. In

Django, a model is a Python class that comes from Django.DB.models.

Model, which stands for a specific database object, most likely a table, and

is located in an app’s models.py file.

Chapter 4 Working with Python Frameworks

144

With Django, you administer your database through the models you

define in code. Django’s migrations then take care of all the details of the

underlying database automatically as you modify the models over time.

The general system goes the following way:

•	 Make changes to the models in your models.py file.

•	 Run python manage.py makemigrations to create

scripts in the migrations folder that migrate the

database from its current conditions to the new

conditions.

•	 Run python manage.py migrate to apply the scripts to

the base database.

The migration scripts can record all the incremental changes you

make to your data models. By applying the migrations, Django adapts the

database to match your needs. Because each incremental change has its

own script, Django can automatically migrate any previous version of a

database to the newly installed version. You need to occupy yourself only

with your models in models.py, and not with the underlying database

system or the migration scripts.

In code, you also operate only with your model classes to store and

collect data, as Django handles all the other underlying details. There is

only one exception that you can write data into your database, if you are

using the Django administrative utility loaddata command. This command

is often used to start a data set after the migrate command has been

initialized.

When using the DB.sqlite3 file, you can also work directly with the

database using a tool like the SQLite browser. It’s fine to add or delete

records in tables with it, but it is better to avoid making changes to the

database schema because it will then be out of sync with your app’s

models. It is better to change the models, run makemigrations, and then

activate migrate.

Chapter 4 Working with Python Frameworks

145

�Types of Databases
By default, Django has a DB.sqlite3 file for an application database that

is used for development work. SQLite works fine for low to medium

traffic sites with fewer than 100 K hits per day, but is not the best option

for higher volumes.4 It is also limited to a single computer, so it cannot

be applied in any multiserver scenario such as load-balancing and geo-

replication. Because of this, it is best to consider using a production-level

data store such as PostgreSQL, MySQL, and SQL Server. You can also apply

the Azure SDK for Python to work with Azure storage services such as

tables and blobs.

�Migrating the Database
When you change your data models by editing models.py, you will need

to update the database itself. To do so, open a Terminal in VS Code with

your virtual environment activated, navigate to the project folder, and run

the following commands: python manage.py makemigrations, and python

manage.py migrate.

If you take a look in the migrations folder, you should now be able to

see the scripts that makemigrations generates. You can also look at the

database to see that the schema is updated. If you see errors when running

the commands, make sure you are not using a debugging terminal that is

left over from previous steps, as they may not have the virtual environment

activated.

4 SQLite, “When to Use SQLite,” sqlite.org, accessed [date].

Chapter 4 Working with Python Frameworks

146

�Creating a Superuser and Enabling
the Administrative Interface
By default, Django has a great administrative interface for a web app that

is protected by authentication. The interface is used through the built-in

Django.contrib.admin app, which is included by default in the project’s

INSTALLED_APPS list (settings.py), and authentication is managed with

the built-in Django.contrib.auth app, which is also built-in INSTALLED_

APPS.

You should perform the following steps to enable the administrative

interface: first, create a superuser account in the app by opening

a Terminal in VS Code for your virtual environment, then run the

command python manage.py createsuperuser --username=<username>

--email=<email>, replacing <username> and <email> using your personal

information. When you run the command, Django will ask you to enter

and confirm your password. Make sure you remember your username

and password combination. These are the main credentials you need to

authenticate with the app. Add the following URL route in the project-

level urls.py (web_project/urls.py in this tutorial) to point to the built-in

administrative interface:

path("admin/", admin.site.URLs),

Run the server, then open a browser to the app’s /admin page (such

as http://127.0.0.1:8000/admin when using the development server).

Once the login page appears, enter your user credentials.

When you are fully authenticated you see the default administration

page, through which you can manage users and groups. You can customize

the administrative interface as you like and even provide capabilities to

edit and remove entries in the database.

Chapter 4 Working with Python Frameworks

http://127.0.0.1:8000/admin

147

�Flask Development
Flask is a lightweight Python framework for web applications that provides

the foundation for URL routing and page rendering (Figure 4-2).

Flask is usually referred to as a micro framework due to the absence

of features like form validation, database abstraction, and authentication.

Such features are therefore provided by special Python packages called

Flask extensions. These extensions seamlessly incorporate with Flask

design so that they appear as if they were the segment of Flask itself. For

instance, Flask does not have a page template engine, but downloading

Flask includes the Jinja templating engine by default.

In this Flask section, we will review a number of features of VS Code

including using the terminal, the editor, the debugger, code snippets, and others.

To start with, successfully install a version of Python 3 (options were

provided earlier in this chapter). After that, you should create a virtual

environment in which Flask is installed. Using a virtual environment

avoids having to install Flask into a global Python environment, and

gives you exact control over the libraries used in an application. A virtual

environment also makes it easy to establish a requirements.txt file for the

environment.

Figure 4-2.  Flask, a Python web development framework

Chapter 4 Working with Python Frameworks

148

On your file system, create a project folder named hello_flask. In that

folder, use the following command (depending on your computer) to

create a virtual environment named env based on your current interpreter:

•	 For Linux:

python3 -m venv env

•	 For macOS:

python3 -m venv env

•	 For Windows:

python -m venv env

Make sure you use a stock Python installation when activating these

commands. If you use python.exe from an Anaconda installation, you

will get an error because the ensurepip module is not available, and the

environment is left in an unfinished state.

You can open the project folder in VS Code by running code or by

running VS Code and using the File ➤ Open Folder command. In VS Code,

you should open the Command Palette (View ➤ Command Palette or

(Ctrl+Shift+P)). Then click on the Python: Select Interpreter command.

The command will show a list of available interpreters that VS Code can

provide automatically. From the list, look for the virtual environment in

your project folder that starts with ./env or .\env.

Create New Integrated Terminal (Ctrl+Shift+`)) from the Command

Palette, which makes up a terminal and automatically activates the virtual

environment by running its activation script. However, if you are using

Windows and your default terminal type is PowerShell, you might get an

error that it cannot run activate.ps1 because running scripts is disabled

on the system. There is no need to worry, as the error will provide a link

Chapter 4 Working with Python Frameworks

149

for information on how to allow scripts. Otherwise, you can use Terminal:

Select Default Shell to set “Command Prompt” or “Git Bash” as your

default instead.

The selected environment should appear on the left side of the VS

Code status bar, and when it does pay attention to the “(venv)” indicator

that tells you that you are using a virtual environment:

•	 python -m pip install --upgrade pip: update pip in

the virtual environment by running the following

command in the VS Code Terminal.

•	 python -m pip install flask: install Flask in the virtual

environment in the VS Code Terminal.

You now ready to write your first Flask code in a self-contained

environment. VS Code activates the environment automatically when you

use Terminal: Create New Integrated Terminal. When you open a separate

command prompt or terminal, activate the environment by running

source env/bin/activate (Linux/macOS) or env\Scripts\Activate.ps1

(Windows). You will see that the environment is activated if the command

prompt shows (env) at the beginning.

�Creating and Running a Minimal Flask App
In VS Code, create a new file in your project folder named app.py via

File ➤ New from the menu, or by pressing Ctrl+N. After that, in app.py,

add code to import Flask and create an instance of the Flask object.

If you type the following code (instead of using copy-paste), you can see

VS Code’s IntelliSense and auto-completions:

from flask import Flask

app = Flask(__name__)

Chapter 4 Working with Python Frameworks

150

You can also insert a function or a simple string in app.py that returns

content, and use Flask’s app.route decorator to map the URL route / to that

function:

@app.route("/")

def home():

 return "Hello, Flask!"

It is also possible to use multiple decorators on the same function, one

per line, depending on how many different routes you want to map to the

same function.

In the Integrated Terminal, run the app by entering python -m flask

run, which then activates the Flask development server. The development

server searches for app.py by default. If you run Flask, you should see

output similar to the following:

(env) D:\py\\hello_flask_app>python -m flask run

 * Environment: production

 �WARNING: Do not use the development server in a production

environment.

 Use a production WSGI server instead.

 * Debug mode: off

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

If you see an error, make sure you have run python -m pip install flask

in your virtual environment, as described earlier. At the same time, if you

want to run the development server on a different IP address or port,

employ the host and port command-line arguments, as with --host=0.0.0.0

 --port=80.

To open your default browser to the rendered page, Ctrl+click the

http://127.0.0.1:5000/ URL in the terminal. Notice that if you visit a

URL like /, a message will pop in the debug terminal showing the HTTP

request: 127.0.0.1 - - [11/Jun/2021 12:40:10] “GET / HTTP/1.1” 200 -

Chapter 4 Working with Python Frameworks

151

If you want to use a different filename than app.py, such as program.

py, you need to prescribe an environment variable named FLASK_APP

and set its value to your open file. Flask’s development server then applies

the value of FLASK_APP instead of the default file app.py. When you are

finished, you can stop the app by using Ctrl+C in the terminal.

�Running the App in the Debugger
The Debugger tool lets you pause a running program on a particular line

of code. When a program is paused you can assess variables, run code in

the Debug Console panel, and otherwise take advantage of the features

described on Debugging, such as automatically saving any modified files

before every debugging.

Before you start you need to check that you have stopped the running

app at the end of the last section by clicking Ctrl+C in the terminal. If you

leave the app running in one terminal, it continues to own the port and

when you run the app in the debugger using the same port, the original

running app administers all the requests and you will not observe any

activity in the app being debugged, and the program will not stop at

breakpoints. To put it simply, if the debugger does not seem to be working,

you have to make sure that no other parts of the app are still running.

Afterward, replace the contents of app.py with the following code,

which adds a second route and function that you can step through in the

debugger:

•	 from flask import Flask

•	 from DateTime import DateTime

•	 import re

Chapter 4 Working with Python Frameworks

152

app = Flask(__name__)

@app.route("/")

def home():

 return "Hello, Folks!"

@app.route("/helloworld/<name>")

def hello_world(name):

 now = datetime.now()

 formatted_now = now.strftime("%A, %d %B, %Y at %X")

When filtering the name argument to letters, use only regular

expressions. URL arguments can contain arbitrary text; therefore, it is

restricted to safe characters only.

The decorator applied for the new URL route, /hello/<name>,

describes an endpoint /hello/ that can accept any extra value. The

identifier inside < and > in the route stands for a variable that is passed to

the function and can be utilized in your code.

As you already know, URL routes are case-sensitive. For instance, the

route /helloworld/<name> is distinct from /HelloWorld/<name>. If you

need the same function to manage both, try applying decorators for each

variant. In addition, as described in the code comments, always filter

arbitrary user-provided information to prevent various attacks on your

app. In this case, the code filters the name argument to contain only letters,

which avoids the injection of control characters and HTML. Nevertheless,

when you use templates in the next project, Flask will perform automatic

filtering and you will not need to script the code again.

Setting a breakpoint at the first line of code in the hello_world function

(now = DateTime.now()) is quite straightforward if you do it via the following:

•	 Pressing F9 with the cursor on that line

•	 With the cursor on that line, selecting the Run Toggle

Breakpoint menu command

•	 Clicking directly in the margin to the left of the line number

Chapter 4 Working with Python Frameworks

153

After that, you should be able to see the breakpoint appear as a red dot

in the left margin.

You may switch to Run view in VS Code (using the left-side activity bar

or F5), after which you may see the message “To customize Run and Debug

create a launch.json file.” This shows that you do not yet have a launch.json

file containing various debug features. VS Code can produce those for you

once you click on the create a launch.json file link.

When you select the link, VS Code will start the debug configuration.

Select Flask from the dropdown and VS Code will populate a new launch.

json file with a Flask run configuration. The launch.json file has a number

of debugging configurations, each of which is its own JSON object within

the configuration array.

Scroll down to and examine the configuration, which is named

“Python: Flask”. This configuration consists of “module”: “flask”, which

tells VS Code to run Python with -m flask when it turns on the debugger. It

also defines the FLASK_APP environment variable in the env property to

spot the startup file, which is app.py by default but lets you easily specify

a different file. When you need to change the host or port, you can use the

args array. You can save launch.json simply by clicking Ctrl+S.

Next, select the Python: Flask configuration in the debug configuration

list. Start the debugger by selecting the Run ➤ Start Debugging menu

command, or by selecting the green Start Debugging arrow next to the

list (F5). Notice how the status bar changes color to indicate debugging.

A debugging toolbar also shows in VS Code containing commands in the

following order: Pause (or Continue, F5), Step Over (F10), Step Into (F11),

Step Out (Shift+F11), Restart (Ctrl+Shift+F5), and Stop (Shift+F5).

Output typically appears in a Python Debug Console terminal. Ctrl+click

the http://127.0.0.1:5000/ link in that terminal to open a browser to

that URL. In the browser’s address bar, go to http://127.0.0.1:5000/

helloworld/VSCode. Before the page downloads, VS Code pauses the

program at the breakpoint you establish. The small yellow arrow on the

breakpoint indicates that it is the next line of code to be activated.

Chapter 4 Working with Python Frameworks

http://127.0.0.1:5000/
http://127.0.0.1:5000/helloworld/VSCode
http://127.0.0.1:5000/helloworld/VSCode

154

Use Step Over function to run the now = DateTime.now() statement.

On the left side of the VS Code window, you can check out the Variables

pane that shows local variables and arguments such as now and name as

well as panes for Watch, Call Stack, and Breakpoints. In the Locals section,

you can expand different values by double-clicking on them or using

F2. Changing variables such as now, however, can break the program.

Developers typically make changes only to correct values when the code

did not result in the right value in the beginning.

When a program is paused, the Debug Console panel lets you try

out different expressions and bits of code using the current state of

the program. For instance, once you have stepped over the line now =

DateTime.now(), you might test different date and time formats. For that,

select the code that reads now.strftime(“%A, %d %B, %Y at %X”) in the

editor and then right-click and select Debug: Evaluate to send that code to

the debug console, where it runs:

now.strftime("%A, %d %B, %Y at %X")

'Sunday, 20 June, 2021 at 14:23:32'

The Debug Console also reveals exceptions from within the app that

may not be presented in the terminal. For instance, if you see a “Paused

on exception” message in the Call Stack area of Run view, switch to the

Debug Console to see the exception line. After that, copy that line into

the > prompt at the bottom of the debug console and try modifying the

formatting:

now.strftime("%a, %d %B, %Y at %X")

'Sunday, 20 June, 2021 at 14:23:32'

now.strftime("%a, %d %b, %Y at %X")

'Sunday, 20 June, 2021 at 14:23:32'

now.strftime("%a, %d %b, %y at %X")

'Sunday, 20 June, 2021 at 14:23:32'

Chapter 4 Working with Python Frameworks

155

When you see a change you like, you can copy and paste it into the

editor during a debugging session. Those changes will not be applied until

you restart the debugger. You can step through a few more lines of code

and then select Continue (F5) to let the program operate until the browser

window shows the end result.

In order to make it easier to repeatedly navigate to a specific URL

such as http://127.0.0.1:5000/helloworld/VSCode, output that URL

using a print statement. The URL pops in the terminal where you can use

Ctrl+click to open it in a browser. Be sure to close the browser and stop the

debugger when you are finished by using the Stop toolbar button (the red

square) or the Run ➤ Stop Debugging command (Shift+F5).

�Using Definition and Peek Definition Commands
While working with Flask or any other library, you may want to review

the code in those libraries themselves. VS Code has two convenient

commands that operate directly to the definitions of classes and other

items in any code:

•	 Go to Definition derives from your code into the code

that describes an object. For example, in app.py, right-

click on the Flask class (in the line app = Flask

(__name__)) and select Go to Definition (or click F12),

which goes to the class definition in the Flask library.

•	 Peek Definition (Alt+F12, also on the right-click context

menu), is somewhat the same but shows the class

definition directly in the editor (making space in the

editor window without disturbing any code). To close

the Peek window, press Escape to or use the x in the

upper right corner.

Chapter 4 Working with Python Frameworks

﻿http://127.0.0.1:5000/helloworld/VSCode﻿

156

�Using a Template to Render a Page
The first app you create with Flask usually generates only plain text web

pages from Python code. Although it is possible to insert HTML directly in

code, developers try to avoid such a practice because it opens the app to

cross-site scripting (XSS) attacks. In the hello_world function of this tutorial,

for example, one might think to format the output in code with something

such as content = “<h1>Hello buddy, “ + clean_name + “!</h1>, where the

result in content is given directly to a browser. This opening might also give

some attackers a chance to place malicious HTML, including JavaScript

code, in the URL that ends up in clean_name and thus ends up being run in

the browser.

A much better practice is to keep HTML outside of your code

completely by applying templates so that your code is concerned only with

data values and not with rendering. A template is an HTML file that has

placeholders for values that the code provides at run time. The templating

engine mostly deals with placing the substitutions when rendering the

page. The code, therefore, concerns itself only with data values, and the

template concerns itself only with markup items.

The default templating engine for Flask is Jinja, which is installed

at the same time as Flask. This engine provides flexible options such as

automatic escaping (to avoid XSS attacks) and template inheritance. With

inheritance, you can easily define a basic page with common markup and

then build upon that base with page-specific additions.

In order to create a single page using a template, create a folder

named templates inside the hello_flask folder, which is where Flask looks

for templates by default. In that templates folder, create a file named

hello_there.html with the following contents. This template requires two

placeholders named “name” and “date”, which are delineated by pairs of

curly braces, {{ and }}.

Chapter 4 Working with Python Frameworks

157

In app.py, import Flask’s render_template function near the top of the

file:

from flask import render_template

Also in app.py, edit the hello_there function to use render_template

to load a template and apply the named values (and include a route to

recognize the case without a name). Render_template presumes that the

first argument is relative to the templates folder. Normally, developers

name the templates the same as the functions that use them, but matching

names are not required because you always refer to the exact filename in

your code:

@app.route("/helloworld/")

@app.route("/helloworld/<name>")

def hello_world(name = None):

 return render_template(

 "hello_world.html",

 name=name,

 date=datetime.now()

)

Note that this code looks much simpler, and concerned only with data

values because the markup and formatting are all fitted in the template.

After you start the program (using Ctrl+F5), navigate to a /helloworld/

name URL and observe the results. You can also try navigating to a

/helloworld/name URL using a name like <a%20value%20that%20

could%20be%20HTML> to see Flask’s automatic escaping in action.

The “name” value should pop as plain text in the browser rather than as

rendering an actual element.

Chapter 4 Working with Python Frameworks

158

�Creating a Requirements.txt File
for the Environment
When you share your app code using source control or any other method,

it does not make much sense to copy all the files in a virtual environment

because recipients can always refracture the environment on their own.

Therefore, developers typically skip the virtual environment folder

from source control and instead write down the app’s dependencies using

a requirements.txt file. Even though you can create the file by hand, you

can also use the pip freeze command to redesign the file based on the

attached libraries in the activated environment.

Within your chosen environment, try using the Python: Select

Interpreter command and run the Terminal: Create New Integrated

Terminal command (Ctrl+Shift+`)) to open a terminal with that

environment activated. In the same terminal, run pip freeze ➤

requirements.txt to create the requirements.txt file in your project folder.

Any recipient that gets a copy of the project needs only to run the

pip install -r requirements.txt command to reload the packages with

their original environment. Pip freeze has the ability to list all the Python

packages you have installed in the current environment, including

packages that are not currently active. The command also lists packages

with precise version numbers, which you may need to convert to ranges for

more applicability sometime in the future.

Lastly, bear in mind that flask-snippets is a popular VS Code

extension for Flask development. However, some of snippets are often

not on par with Flask development cycle, so you should exercise caution

when using it.

Chapter 4 Working with Python Frameworks

159

�Data Science–Specific Information
and Tutorials
This section demonstrates how to use VS Code and the Microsoft Python

extension with common data science libraries to recreate a basic data

science scenario. Specifically, it covers how to set up a data science

environment, import and clean data, create a machine learning model,

and evaluate the accuracy of the generated model. Before beginning,

install the Python extension for VS Code named Python and published by

Microsoft from the Visual Studio Marketplace.

If you already have the full Anaconda distribution installed, then there

is no need to install Miniconda. Alternatively, if you do not like using

Anaconda or Miniconda, you can create a Python virtual environment and

install the packages necessary for the tutorial using pip. If you opt for this

route, you should at first install the following packages: pandas, jupyter,

seaborn, scikit-learn, keras, and TensorFlow.

�Setting Up a Data Science Environment
VS Code and the Python extension provide a great editor for data science

scenarios. With native support for Jupyter Notebooks combined with

Anaconda, it’s easy to create an Anaconda environment with the data

science modules as well as Jupyter Notebook that you will be using for

creating a machine learning model.

Begin by creating an Anaconda environment for the data science

tutorial by opening an Anaconda command prompt and running conda

create -n myenv python=3.7 pandas jupyter seaborn scikit-learn keras

TensorFlow to create an environment named myenv. Next, make a folder

in the preferred location to serve as your VS Code workspace and name

it hello_ds. Open the project folder in VS Code by running VS Code and

Chapter 4 Working with Python Frameworks

160

using the File ➤ Open Folder command. When VS Code launches, open

the Command Palette (View ➤ Command Palette or Ctrl+Shift+P) and

select the Python: Select Interpreter command.

The Python: Select Interpreter command will then display a list of

available interpreters that VS Code was able to indicate automatically

(if you do not see the desired interpreter, see Configuring Python

environments). From that list, go for the Anaconda environment you

created, which should include the text ’myenv’: conda.

With the environment and VS Code ready, the final step would

be to create the Jupyter Notebook by opening the Command Palette

(Ctrl+Shift+P) and selecting Jupyter: Create New Blank Jupyter Notebook.

As an alternative, from the VS Code File Explorer you can click on

the New File icon to create a Notebook file named hello.ipynb. After that,

be sure to use the Save icon on the main notebook toolbar to save the

notebook with the filename hello. Once your file is created, you should try

opening Jupyter Notebook in the native notebook editor.

�Preparing the Data
This section shows how to load and manipulate data in your Jupyter

Notebook using the Titanic dataset available on OpenML.org, which

is obtained from Vanderbilt University’s Department of Biostatistics at

http://biostat.mc.vanderbilt.edu/DataSets. The Titanic data offers

main information about the survival of passengers on the Titanic, as well

as attributes about the passengers such as name and age. Using this data,

you should attempt to establish a model for predicting whether a given

passenger would have survived the sinking of the Titanic.

Download the Titanic data from OpenML.org as a CSV file named data.

csv and save it to the hello_ds folder that you have already created in the

previous section.

Chapter 4 Working with Python Frameworks

http://biostat.mc.vanderbilt.edu/DataSets

161

In VS Code, open the hello_ds folder and the Jupyter Notebook

(hello.ipynb) by going to File ➤ Open Folder. Within your Jupyter

Notebook, start off by importing the pandas and NumPy libraries, two

libraries most used for manipulating data, and loading the Titanic data

into a pandas DataFrame. Copy and paste the following code into the

first cell of the notebook:

•	 import pandas as pd

•	 import numpy as np

•	 data = PD.read_csv(’data.csv’)

After that, run the cell using the Run cell icon or the Shift+Enter

shortcut.

Once the cell finishes running, you can check the data that was loaded

using the variable explorer and data viewer. First click on the chart icon in

the notebook’s upper toolbar, then the data viewer icon to the right of the

data variable. You can then activate the data viewer to view, sort, and filter

the rows of data. After you have analyzed the data, it can then be useful

to graph some bits of it to help envision the relationships between the

different variables. However, before the data can be graphed, you would

need to make sure that there are not any issues with it. If you look at the

Titanic CSV file, one thing you might notice is that a question mark (“?”)

was inserted to designate cells where data was not obtainable.

While Pandas can place this value into a DataFrame, the result for

a column like Age data type will be set to Object instead of a numeric

data type, which is difficult to visualize in graphs. This problem can be

prevented by replacing the question mark with a missing value that pandas

are able to read. To add a new cell, you can click on the insert cell icon

that is in the bottom left corner of an existing cell, or use the Esc to enter

command mode followed by the B key:

data.replace('?', np.nan, inplace= True)

data = data.astype({"age": np.float64, "fare": np.float64})

Chapter 4 Working with Python Frameworks

162

If you ever need to see the data type that has been utilized for a

column, you can use the DataFrame dtypes attribute.

Now that the data is in good order, it is time to apply seaborn and

matplotlib to see how certain columns of the dataset relate to Titanic

passengers’ survival chances. For that, add the following code to the next

cell in your notebook and run it to see the generated plots:

•	 import seaborn as sns

•	 import matplotlib.pyplot as plt

fig, axs = plt.subplots(ncols=5, figsize=(30,5))

sns.violinplot(x="survived", y="age", hue="sex",

data=data, ax=axs[0])

sns.pointplot(x="sibsp", y="survived", hue="sex",

data=data, ax=axs[1])

sns.pointplot(x="parch", y="survived", hue="sex",

data=data, ax=axs[2])

sns.pointplot(x="pclass", y="survived", hue="sex",

data=data, ax=axs[3])

sns.violinplot(x="survived", y="fare", hue="sex",

data=data, ax=axs[4])

To better review details on the graphs, you can open them in

plot viewer by sharing them over the upper left corner of the graph.

These graphs are of great use when it comes to looking for some of the

relationships between survival and the input variables of the data and

all the possible calculate correlations between variables. To do so, all the

variables used need to be numeric for the calculation and gender data

stored as a string. To convert those string values to integers, script and run

the following code:

data.replace({'male': 1, 'female': 0}, inplace=True)

Chapter 4 Working with Python Frameworks

163

Now that you can analyze the correlation between all the input

variables, it gets simpler to identify the features that would be the best

input material to a machine learning model. Statistically, the closer a value

is to 1, the higher the correlation between the value and the result. You can

apply the following code to correlate the relationship between all variables

and survival:

data.corr().abs()[["survived"]]

Looking closely at the correlation results, you might notice that

some variables, such as gender, have a fairly high correlation to survival

while others, like relatives (sibsp = siblings or spouse, parch = parents or

children), are likely to have little correlation.

Suppose that sibsp and parch are related in how they impact

survivability potential, and group them into a new column called

“relatives” to see whether the combination of them has a higher

correlation level. To do this, you should check if the number of sibsp and

parch is greater than 0 for a given passenger, and if so, you can then claim

that they had a relative on board. Go with the following code to create

a new variable and column in the dataset called relatives and check the

correlation again:

data['relatives'] = data.apply (lambda row: int((row['sibsp'] +

row['parch']) > 0), axis=1)

data.corr().abs()[["survived"]]

You can also observe that when analyzed from the standpoint of

whether a person had relatives, as opposed to how many relatives, there is

a higher correlation with survival. With this information at disposal, you

can now drop from the dataset the low-value sibsp and parch columns

together with rows that had NaN values, to make a dataset that can be used

for training a model.

Chapter 4 Working with Python Frameworks

164

�Training and Evaluating a Model
With the dataset ready, it is time to begin creating a model. For that, it is

necessary to use the scikit-learn library (as it has some of the most useful

helper functions) to do processing of the dataset, train a classification

model to show survivability on the Titanic, and then use that model with

test data to revise its accuracy.

An ordinary first step to training a model is to split up the dataset into

training and validation data. This lets you use a part of the data to train

the model and another part of the data to assess the model. If you used all

your data to train the model, you would not have a way to see how well it

actually perform against data the model has not yet seen. An advantage

of the scikit-learn library is that it comes up with a method specifically for

separating a dataset into training and test data:5

•	 from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split

(data[['sex','pclass','age','relatives','fare']],

data.survived, test_size=0.2, random_state=0)

Afterward, you will have to normalize the inputs

in the manner that all items are treated equally. To

illustrate, within the dataset, the values for an age

range from ~0-100, while gender is only a 1 or 0. By

normalizing all the variables, you can make sure

that the ranges of values are at the same pace. Use

the following code in a new code cell to scale the

input values:

5 �Visual Studio Code, “Data Science in VS Code Tutorial,” https://code.
visualstudio.com/docs/python/data-science-tutorial, accessed July 29, 2021.

Chapter 4 Working with Python Frameworks

https://code.visualstudio.com/docs/python/data-science-tutorial
https://code.visualstudio.com/docs/python/data-science-tutorial

165

•	 from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(x_train)

X_test = sc.transform(x_test)

Additionally, there are a number of various machine

learning algorithms that you can choose from to

model the data. The scikit-learn tool provides great

support for a number of them, as well as a chart to

help look for the one that suits your scenario the

most. As of now, you should try the Naïve Bayes

algorithm, a regular algorithm for classification

matters. Add a cell with the following code to create

and try out the algorithm:

•	 from sklearn.naive_bayes import GaussianNB

model = GaussianNB()

model.fit(X_train, y_train)

With a trained model, it is possible now to try it

against the test data set that was derived from

training. Include and run the following code to

predict the outcome of the test data and calculate

the accuracy of the model:

•	 from sklearn import metrics

predict_test = model.predict(X_test)

print(metrics.accuracy_score(y_test, predict_test))

Judging by the result of the test data, you should have the trained

algorithm resulting in ~75% success rate of estimated survival.

Chapter 4 Working with Python Frameworks

166

Utilizing Jupyter Notebooks to explore data, together with VS Code

Exploring data platform, makes experimenting with ideas much easier.

You can now define and run individual cells using the IPython kernel,

visualize data frames, interact with plots, restart kernels, and export it

all straight to Jupyter Notebooks. Moreover, when it comes to Importing

Jupyter Notebooks into Python, reproducible and production-ready VS

Code allows that transition to go very smoothly. With the addition of these

features, you can now operate with data interactively in VS Code, making it

an exciting option for those who prefer an editor for data science tasks.

�Summary
In this chapter, we first started with Django development in VS Code

and then moved on to Flask, familiarizing ourselves with two of the most

common Python frameworks. We also talked about Data Science in

relation to VS Code, and covered concepts such as Miniconda. In the next

chapter we will continue with our understanding of Python coding in VS

Code and unravel some new topics.

Chapter 4 Working with Python Frameworks

167© Sufyan bin Uzayr 2021
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9_5

CHAPTER 5

Working
with Containers
and MS Azure
In the previous chapter, we learned about Django and Flask development

in VS Code. In this chapter we will be talking about containers and MS

Azure.

VS Code has great support for Remote Development, which is a

popular feature these days. It allows you to connect to another machine via

Secure Shell Protocol (SSH) and operate with code and various language

services there remotely. It is also possible to connect to Microsoft Azure

and manage your development environment in containers. The last two

are the main focus of this chapter.

�Integrating Azure for Your Python Projects
Microsoft Azure which is mostly referred to as Azure, is a cloud computing

platform for building, testing, and implementing applications and services

through Microsoft data management centers (Figure 5-1). It is especially

important because it provides a wide array of development tools and

services, such as build and production solutions.

https://doi.org/10.1007/978-1-4842-7344-9_5#DOI

168

It also acts as a provider of software as a service (SaaS), a platform as a

service (PaaS), and infrastructure as a service (IaaS) and carries out many

different programming languages, tools, and frameworks, Microsoft-based

as well as third-party-specified software and systems.

In this section, we’ll review some of the more import services Azure

offers and then use VS Code to create a Python function that responds to

HTTP requests. We’ll end by deploying Docker containers to Azure App

Service.

�Key Azure Services
Azure utilizes large-scale virtualization at Microsoft data centers

worldwide, and it supplies more than 600 services.

�Computer Services

Virtual machines or infrastructure as a service (IaaS) providers allow users

to create general-purpose Microsoft Windows and Linux virtual machines,

as well as preconfigured machine items for in-demand software sets. Most

users run Linux on Azure due to beneficial Linux distributions offered and

Microsoft’s own Linux-based Azure Sphere. In addition, many app services

Figure 5-1.  Microsoft Azure

Chapter 5 Working with Containers and MS Azure

169

or platform as a service (PaaS) providers use Azure as an environment to

let developers easily publish and administer web sites. Moreover, Azure

web sites encourage developers to build sites using ASP.NET, PHP, Node.

js, or Python, and deploy Team Foundation Server or uploading through

the user portal. Azure customers can create web sites in PHP, ASP.NET,

Node.js, or Python, or select from several open-source applications. This

comprises one aspect of the platform as a service (PaaS) offerings for the

Microsoft Azure Platform. Those applications that can be deployed to an

App Service environment to implement background processing can be

invoked on a schedule, on-demand, or run nonstop.

�Identity

Popular Azure identity-focused products include:

•	 Azure Active Directory is used to synchronize

on-premises directories and enable single sign-on.

•	 Azure Active Directory B2C enables access to consumer

identity and access management in the cloud.

•	 Azure Active Directory Domain Services is activated

when joining Azure virtual machines to a domain

without domain controllers.

•	 Azure information protection is utilized to protect

sensitive information.

�Azure Mobile Services

•	 Mobile Engagement collects real-time data that

highlight users’ analytics. It also enables push

notifications to mobile devices.

•	 HockeyApp can be installed to build, distribute, and

run various beta tests on mobile apps.

Chapter 5 Working with Containers and MS Azure

170

�Storage Services

Storage Services provide the audience with space for storing and accessing

data on the cloud:

•	 Table Service lets programs store structured text

in sectioned collections of items that are accessed

by partition or primary keys. Azure Table Service is

activated in the same manner as any other NoSQL

nonrelational database.

•	 Blob Service offers programs a place to store

unstructured text and binary data that can be accessed

simply by an HTTP(S) path. Blob service also has built-

in security mechanisms to limit and calculate access to

data.

•	 Queue Service provides programs with a platform

to communicate asynchronously by message using

queues.

•	 File Service allows storing and access of data on the

cloud using popular REST APIs and SMB protocols.

�Data Management

•	 Azure Data Explorer is well-suited for big data analytics

and data-exploration.

•	 Azure Search is great for text search and structured data

filtering.

•	 Cosmos DB is a NoSQL database service that enacts

a subset of the SQL SELECT statement on JSON

documents.

Chapter 5 Working with Containers and MS Azure

171

•	 Azure Cache for Redis is a managed implementation

system for Redis.

•	 StorSimple is great to distribute storage tasks between

different devices and cloud storage.

•	 Azure SQL Database works to produce, scale, and place

applications into the cloud using Microsoft SQL Server

technology. It also integrates well with Active Directory

and Microsoft System Center.

•	 Azure Synapse Analytics is an independently managed

cloud data warehouse.

•	 Azure Data Factory is a data integration service that

enables the creation of data-driven work processes

in the cloud for automating data sets and data

transformation.

•	 Azure Data Lake is another data storage and analytic

service platform for big data analytics and massive

parallel queries.

•	 Azure HDInsight is a data-relevant service that

supports the creation of different clusters using Linux

with Ubuntu.

•	 Azure Stream Analytics is a Serverless event processing

tool that enables users to combine and run real-time

analytics on multiple sets of data from sources such as

devices, sensors, web sites, and even social media.

Chapter 5 Working with Containers and MS Azure

172

�Messaging Products

The Microsoft Azure Service Bus lets applications operate on Azure

premises or off-premises devices and integrate with Azure. This also allows

applications to build reliable service-oriented architecture. The Azure

service bus has four different types of communication mechanisms:

•	 Event Hubs, that provide event and telemetry functions

to the cloud with low latency and high reliability. For

instance, an event hub can be applied to track data

from cell phones such as a GPS real-time location.

•	 Queues, which allow one-directional communication

via service bus queue. Even though there can be

multiple readers for the queue, only one can process a

single message.

•	 Topics also provide one-directional communication

but via subscriber pattern. It is similar to a queue, yet

each subscriber can get a copy of the message sent to a

Topic. Moreover, the subscriber can filter out messages

based on various criteria set by the subscriber.

•	 Relays, on the other hand, provide bi-directional

communication. Unlike queues and topics, a relay does

not store in-flight messages in its own memory but

passes data on to the destination application.

�CDN

A global content delivery network (CDN) is of great use for audio, video,

applications, images, and other static media files. It can be used to

cache static assets of web sites geographically closer to users to advance

Chapter 5 Working with Containers and MS Azure

173

performance. The network can be easily managed by HTTP API. As of April

2020,1 Azure has 94 points of presence locations worldwide (also known as

Edge locations).

�Management

Azure Automation management tool provides a way for users to automate

the manual, long-running, error-prone, and repeated tasks that are

frequently performed in a cloud or virtual environment. This tool not

only saves time and increases the reliability of usual administrative

tasks, but also schedules them to be automatically completed at regular

time periods. Moreover, you can automate processes using runbooks or

automate configuration tasks using Desired State Configuration.

�Azure AI

Microsoft Azure Machine Learning stands for a set of ultra-modern tools

and frameworks for developers to design their own machine learning and

artificial intelligence (AI) services.

Microsoft Azure Cognitive Services is another product that offers

customizable services for developers to make their applications more

intelligent, user-friendly, and popular. Both platforms include perceptual

and cognitive intelligence covering speech recognition, speaker

recognition, neural speech synthesis, face recognition, computer vision,

natural language processing, and machine translation, as well as business

decision services. Most AI features that are applied in Microsoft’s own

products and services such as Office, Teams, and Xbox are also powered by

Azure Cognitive Services.

1 �Azure, “New Locations for Azure CDN Now Available,” https://azure.
microsoft.com/en-in/blog/new-locations-for-azure-cdn-now-available/,
accessed July 29, 2021.

Chapter 5 Working with Containers and MS Azure

https://azure.microsoft.com/en-in/blog/new-locations-for-azure-cdn-now-available/
https://azure.microsoft.com/en-in/blog/new-locations-for-azure-cdn-now-available/

174

�Azure Blockchain Workbench

Through Azure Blockchain Workbench, Microsoft is promoting

infrastructure to set up a consortium network of multiple blockchain

mechanisms. The company is also eager to provide integration from Azure

Blockchain platform to other Microsoft services to share the development

of distributed applications. Furthermore, Microsoft supports many

general-purpose blockchains like Ethereum or Hyperledger Fabric, as well

as other purpose-built blockchains like Corda.

Azure is currently available in 54 regions around the world, and is

considered to be one of the first hyper-scale cloud provider that has

committed to building facilities in regions located in South Africa. As of

now, Azure geography has multiple Azure Regions, such as North Europe

(Dublin, Ireland) and West Europe (Amsterdam, Netherlands).

�Creating a Function in Azure with Python Using
Visual Studio Code
In this section, we are going to use VS Code to create a Python function

that responds to HTTP requests. After testing the code locally, we will try to

deploy it to the serverless environment of Azure Functions.

Here are some reasons for using Python on Azure:

•	 You can build Python web apps in the cloud-managed

application platform optimized especially for Python.

It is also possible to connect your apps to data using

Azure services for popular relational and nonrelational

(SQL and NoSQL) databases.

Chapter 5 Working with Containers and MS Azure

175

•	 You can quickly and easily build, test, and host models

from any Python environment with Azure services for

data science and machine learning purposes. Azure

can also bring in prebuilt AI solutions to provide the

smoothest experiences to your Python apps.

•	 With Azure, you can build and debug your Python

apps with VS Code. Moreover, Azure and VS Code also

integrate seamlessly with GitHub, letting you run a full

DevOps lifecycle for your Python apps.

•	 Azure lets you focus on your application’s code, rather

than on infrastructure. Meaning you can run Django

and Flask apps on Azure platform with Azure Web

Apps while Azure will manage the underlying app’s

infrastructure.

•	 Azure offers both relational and nonrelational

databases as managed services. Most popular are

MySQL, Redis, and Azure Cosmos DB (compatible with

MongoDB).

Before getting started, configure your environment and make sure you

have the following requirements in place: an Azure account with an active

subscription and Azure Functions Core Tools version 3.x downloaded.

In order to create your local Azure Functions project in Python project

using VS Code, choose the Azure icon in the Activity bar, then go to the

Azure: Functions area and select the Create new project. Next, choose a

directory location for your project workspace and choose Select. Be sure to

sign in to Azure using your Outlook or Microsoft ID.

These simple steps were designed to be completed outside of a

workspace. Therefore, you do not need to select a project folder that is

already part of a workspace. Next, proceed to provide the following data at

the prompts:

Chapter 5 Working with Containers and MS Azure

176

	 1.	 Select a language for your function project: go with

Python.

	 2.	 Select a Python integration to create a virtual

environment: pick a location of your Python

interpreter. If the location is not displayed, script the

full path to your Python binary.

	 3.	 Select a template for your project’s first function:

select HTTP trigger.

	 4.	 Provide a function name: type HttpExample.

	 5.	 When it comes to authorization level: opt for

Anonymous, which enables everyone to call your

function endpoint.

	 6.	 Set how you would like to open your project: choose

to Add to the workspace.

Using this data, VS Code generates an Azure Functions project with an

HTTP trigger so you can view the local project files in the Explorer.

VS Code will then integrate with Azure Functions Core tools to let you

run this project on your local development computer before you publish

it to Azure. To activate your function, press F5 and start the function app

project. Output from Core Tools is located in the Terminal panel, and that

is where your app starts. There you can also see the URL endpoint of your

HTTP-triggered function operating locally.

If you have issues occurring while running on Windows, check that the

default terminal for VS Code is not set to Windows Subsystem for Linux

(WSL) Bash. You can also do it manually by going to the Azure: Functions

area and under Functions, expand Local Project ➤ Functions. Right-click

(Windows) or Ctrl-click (macOS) the HttpExample function and select

Execute Function Now.

Chapter 5 Working with Containers and MS Azure

177

In Enter request body you should be able to see the request message

body value of { “name”: “Azure” }. Press Enter to send this request message

to your function or manually send an HTTP GET request to the http://

localhost:7070/api/HttpExample address in a web browser. When the

function is activated locally and returns a response, a notification is

displayed in VS Code. Press Ctrl + C to stop Core Tools and disconnect the

debugger.

After you have confirmed that the function runs properly on your local

computer, you can now access VS Code to publish the project directly

to Azure. However, before you can publish your app, you should sign in

to Azure. If you are not already signed in, look for the Azure icon in the

Activity bar, then in the Azure: Functions area, and click on Sign in to

Azure. If you do not already have an Azure account, you can create a free

account. If you are a student, you are eligible to create a free Azure account

for Students. Once you have successfully signed in, you can close the new

browser window. The subscriptions that were activated by you would be

displayed in the Sidebar.

In order to publish the project to Azure, you are expected to make

a function app and related resources in your Azure subscription and

then deploy your code. Normally, publishing to an existing function app

overwrites the content of that app in Azure. To start, choose the Azure icon

in the Activity bar, then in the Azure: Functions area click on the Deploy to

function app button.

You will also need to provide the following information:

	 1.	 Select folder: Locate a folder from your workspace

or browse to one that has your function app. You

will not be able to see this if you already have a valid

function app running.

	 2.	 Select subscription: Choose the subscription to

apply. You will not be able to see this if you only

have one subscription.

Chapter 5 Working with Containers and MS Azure

178

	 3.	 Select Function App in Azure: Choose + Create a

new Function App.

	 4.	 Create a globally unique name for the function
app: It has to be a name that is valid in a URL path

and is unique in Azure Functions at the same time.

	 5.	 Select a runtime: Choose the version of Python

you have already activated to run locally. It

is recommended to use the python --version

command to check your version.

	 6.	 Select a location for new resources: It is always

better to choose a region closer to you.

When completed, the following Azure resources are included in your

subscription, using names based on your function app name:

•	 A resource group, which is also a logical container for

related resources.

•	 A standard Azure Storage account, which has all the

information about your projects.

•	 A consumption plan, which determines the host for

your serverless function app.

•	 A function app, which defines the environment for

executing your function code and lets your group

functions as a logical unit for easier management and

sharing of resources within the same hosting plan.

•	 An Application Insights are used to record the routine

of your serverless function.

Chapter 5 Working with Containers and MS Azure

179

A notification will be displayed after your function app is created. By

default, the Azure resources are set based on the function app name you

provide in the same new resource group with the function app. If you need

to change the names of these resources or reuse them, you would need to

publish the project applying advanced create options.

Look for View Output in the notification to review the deployment

results, and if you miss the notification, you can select the bell icon in the

lower right corner for it to reappear again.

Back in the Azure: Functions area in the sidebar, expand your

subscription, your new function app, and Functions. Right-click

(Windows) or Ctrl-click (macOS) the HttpExample function and select

Execute Function Now. In Enter request body you should be able to see the

request message body value of { “name”: “Azure” }. Press Enter to send this

request message to your function so that when the function is activated in

Azure and returns a response, a notification is displayed in VS Code.

Once you proceed to the next step and include an Azure Storage

queue binding to your function, you will have to keep all your resources

ready to be able to build over what you already have. Alternatively, you

can complete the following steps to delete the function app and its related

resources to avoid any additional costs:

	 1.	 In VS Code, press F1 to activate the command

palette. In the command palette, look for Azure

Functions: Open in the portal. Choose your function

app, and press Enter to see the function app page

open in the Azure portal.

	 2.	 In the Overview tab, look for the named link next to

the Resource group. Choose the resource group to

delete from the function app page. Proceed to the

Resource group page to review the list of included

resources, and click on the ones you need to

delete. Keep in mind that deletion might take some

Chapter 5 Working with Containers and MS Azure

180

time (no more than a couple of minutes). Once

completed, a notification appears for a few seconds.

You can also click on the bell icon at the top of the

page to view the notification again.

Azure Functions lets you get access to Azure services without having

to write your own integration code. These bindings, which are represented

by input and output, are declared within the function definition. Data from

bindings are mostly presented as parameters. A trigger here is a special

type of input binding, and even if a function has only one trigger, it can

have multiple input and output bindings.

You can use VS Code to connect Azure Storage to the function. The

output binding that you insert to this function imports data from the HTTP

request to a message in an Azure Queue storage queue.

Most bindings function via stored connection strings that Functions

use to access the bound service. To put it simply, you use the Storage

account that you created with your function app. The connection to this

account is already stored in an app setting named AzureWebJobsStorage.

However, before you start to work with storage, you should install the

Azure Storage Extension for VS Code and install Azure Storage Explorer.

Storage Explorer is a great instrument to look into queue messages

produced by your output binding. Conveniently, Storage Explorer is

supported on macOS, Windows, and Linux-based operating systems. To

connect to your Storage account when running the function locally, you

should download app settings to the local.settings.json file.

Next, press the F1 key to open the command palette, then look for

and activate the command Azure Functions: Download Remote Settings.

Select Yes to all to overwrite the existing local settings. The local.settings.

json file is not published and therefore excluded from source control. Copy

the value AzureWebJobsStorage, which is the key for the Storage account

connection string value, and use this connection to confirm that the

output binding works as needed.

Chapter 5 Working with Containers and MS Azure

181

Because we are going to use a Queue storage output binding, you

should have the Storage bindings extension downloaded before you

run the project. Your project will then be configured to accommodate

extension bundles, which automatically installs a predefined set of

extension packages. Extension bundles usage is enabled in the host.json

file at the foundation of the project, and look like this:2

JSON

Copy

{

 "version": "2.0",

 "extensionBundle": {

 "id": "Microsoft.Azure.Functions.ExtensionBundle",

 "version": "[1.*, 2.0.0)"

 }

}

With it you can add the storage output binding to your project. Once

you cover that, it is time to learn how to add an output binding. Each

type of binding has a direction, type, and a unique name to be included

in the function.json file. The way you define these attributes depends on

the language of your function app. Binding attributes are defined directly

in the function.json file and depending on the binding type, additional

modifications may be needed. The queue output configuration defines the

fields required for an Azure Storage queue binding.

Creating a binding is a pretty straightforward process. At first, create

a binding by right-clicking (Ctrl+click on macOS) the function.json

file in your HttpTrigger folder and choosing Add binding. Then follow

2 �Microsoft, “Quickstart: Create a Function in Azure with Python Using Visual
Studio Code,” https://docs.microsoft.com/en-us/azure/azure-functions/
create-first-function-vs-code-python, accessed July 29, 2021.

Chapter 5 Working with Containers and MS Azure

https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-python
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-python

182

the prompts listed in Table 5-1 to define the characteristics for the new

binding.3

3 �Microsoft, “Connect Azure Functions to Azure Storage Using Visual Studio Code,”
https://docs.microsoft.com/en-us/azure/azure-functions/functions-
add-output-binding-storage-queue-vs-code?pivots=programming-language-
python, accessed July 29, 2021.

Table 5-1.  Binding characteristics

Prompt Value Description

Select binding

direction

Out The binding is an output binding.

Select binding

with direction...

Azure Queue Storage The binding is an Azure Storage

queue binding.

The name used

to identify this

binding in your

code

Msg Name that identifies the binding

parameter referenced in your code.

The queue

to which the

message will be

sent

Outqueue The name of the queue that

the binding writes to. When the

queueName doesn't exist, the binding

creates it on first use.

Select setting

from "local.

setting.json"

AzureWebJobsStorage The name of an application setting

that contains the connection

string for the Storage account.

The AzureWebJobsStorage setting

contains the connection string for the

Storage account you created with the

function app.

Chapter 5 Working with Containers and MS Azure

https://docs.microsoft.com/en-us/azure/azure-functions/functions-add-output-binding-storage-queue-vs-code?pivots=programming-language-python
https://docs.microsoft.com/en-us/azure/azure-functions/functions-add-output-binding-storage-queue-vs-code?pivots=programming-language-python
https://docs.microsoft.com/en-us/azure/azure-functions/functions-add-output-binding-storage-queue-vs-code?pivots=programming-language-python

183

A binding the attached to the bindings array in your function.json,

which typically should look like:4

JSON

Copy

{

 "type": "queue",

 "direction": "out",

 "name": "msg",

 "queueName": "outqueue",

 "connection": "AzureWebJobsStorage"

}

Once the binding is defined, you can now use the name of the binding

to access it as an attribute signature. With an output binding, there is

no need to use the Azure Storage SDK code for authentication or queue

reference, or scripting data. The Functions runtime and queue output

binding will be completing these tasks for you.

In order to run the function locally, press F5 to start the function

app and Core Tools. With Core Tools running, look for the Azure:

Functions area. Under Functions, expand Local Project ➤ Functions

then right-click (Ctrl-click on Mac) the HttpExample function and

choose Execute Function Now. Once completed, you should be able to

see the request message body value of { “name”: “Azure” }. Press Enter

to send this request message to your function, and when a response is

returned, do not forget to press Ctrl + C to stop Core Tools.

Since you are using the storage connection string, your function will

automatically connect to the Azure storage account when running locally.

A new queue named outqueue will be made in your storage account by the

4 Microsoft, “Connect Azure Functions to Azure Storage Using Visual Studio Code.”

Chapter 5 Working with Containers and MS Azure

184

Functions runtime when the output binding is first activated. The Storage

Explorer will then be used to demonstrate that the queue was created

along with the new message.

In order to connect Storage Explorer to your account, it is necessary

to run the Azure Storage Explorer tool. Select the connect icon on the left,

and click on Add an account. In the Connect dialog, choose Add an Azure

account, choose your Azure environment, and select Sign in. After you

successfully sign in to your account, you will be able to see all of the Azure

subscriptions attached to your account.

To examine the output queue in VS Code, press the F1 key to open the

command palette, then search for and run the command Azure Storage:

Open in Storage Explorer and look for your Storage account name. Your

storage account opens in Azure Storage Explorer.

You should then expand the Queues node and select the queue named

outqueue. The queue carries the message that the queue output binding

created when you ran the HTTP-triggered function. If you activated the

function with the default name value of Azure, the queue message is

Name passed to the function: Azure. Try running the function again, send

another request, and you will be able to see a new message appear in the

queue. With it, it is now time to redeploy and verify the updated app.

Go to VS Code, press F1 to open the command palette in which you

should search for, and select Azure Functions: Deploy to function app.

Choose the function app that you created in the first article and deploy it to

dismiss the warning about overwriting files.

Once the deployment completes, you can again employ the Execute

Function Now feature to trigger the function in Azure and view the

message in the storage queue to verify that the output binding creates a

new message in the queue.

In Azure, resources refer to function apps, functions, and storage

accounts. They are grouped into resource groups, and you can remove

everything in a group simply by deleting the whole group.

Chapter 5 Working with Containers and MS Azure

185

Press F1 in VS Code to open the command palette. In the command

palette, look for and select Azure Functions: Open in the portal. Choose

your function app and press Enter. The function app page will then open

in the Azure portal. In the Overview tab, select the named link next to

the Resource group. Here, select the resource group to delete from the

function app page and verify that they are the ones you want to delete.

Select Delete resource group, and simply follow the instructions. Deletion

may take a couple of minutes, and when it is completed, a notification will

show up for just a few seconds.

In the next section, we will discuss how to deploy Docker containers to

App Services in Azure.

�Deploying Docker Containers to Azure App
Service
Once you have installed the Azure extension, go to the Azure explorer

and select Sign in to Azure to follow with the prompts. After signing in,

confirm that Azure: Signed In statement appears in the Status Bar and your

subscription is displayed in the Azure explorer as well.

If you see the “Cannot find subscription with that name,” the error

might be due to the fact that you are behind a proxy and cannot reach the

Azure API. You can easily configure HTTP_PROXY and HTTPS_PROXY

environment variables with your proxy information in your terminal:5

•	 For Windows:

set HTTPS_PROXY=https://username:password@proxy:8080

set HTTP_PROXY=http://username:password@proxy:8080

5 �Microsoft, “Tutorial: Deploy Docker Containers to Azure App Service with Visual
Studio Code,” https://docs.microsoft.com/en-us/azure/developer/python/
tutorial-deploy-containers-01, accessed July 29, 2021.

Chapter 5 Working with Containers and MS Azure

https://docs.microsoft.com/en-us/azure/developer/python/tutorial-deploy-containers-01
https://docs.microsoft.com/en-us/azure/developer/python/tutorial-deploy-containers-01

186

•	 For macOS and Linux:

export HTTPS_PROXY=https://username:password@proxy:8080

export HTTP_PROXY=http://username:password@proxy:8080

With a container image in a registry, you can apply the Docker

extension in VS Code to set up an Azure App Service operating the

container. In the Docker explorer, expand Registries, expand the node for

your registry, then expand the node for your image name until you see the

image with the :latest tag.

You can locate an image in the Docker explorer by right-clicking the

image and selecting Deploy Image to Azure App Service. Select the Deploy

Image to Azure App Service menu item. Afterward, follow the prompts to

select an Azure subscription, select or specify a resource group, specify a

region, configure an App Service Plan, and set a name for the site.

The name of the App Service should be unique across all of Azure, so it

is standard to use a company or personal name. For production sites, you

can configure the App Service with a separately registered domain name.

Setting the app service as such takes not more than just a few minutes, and

you can see progress in VS Code’s Output panel.

Once over, you should also add a setting named WEBSITES_PORT

to the App Service to specify the port on which the container is located.

It is typical to use an image from the Create a Python container in VS

Code tutorial with the port of 5000 for Flask and 8000 for Django. To set

WEBSITES_PORT of your own, switch to the Azure: App Service explorer,

expand the node for your new App Service, and right-click Application

Settings to select Add New Setting. In the beginning, be sure to enter

WEBSITES_PORT as the key and the port number as the value.

The App Service restarts automatically when you change settings. You

can also right-click the App Service and select Restart at any time. After the

service has restarted, browse the site at HTTP://<name>.azurewebsites.

Chapter 5 Working with Containers and MS Azure

187

net. You can use Ctrl+ click (Cmd + click on macOS) on the URL in the

Output panel, or right-click the App Service in the Azure: App Service

explorer and select Browse Website.

Because you are going to make changes to your app at some point for

sure, you end up rebuilding your container many times. Fortunately, the

process consists of only a few steps. First, rebuild the Docker image. If you

change only the app code, the build should take only a few seconds. Then,

push your image to the registry. Similarly, if you modify only the but app

code, only that small layer needs to be pushed, and the process will be

completed within seconds.

After that, in the Azure: App Service explorer, right-click the suitable

App Service and select Restart. Restarting an app service will automatically

deliver the latest container image from the registry. After about 15–20

seconds, try visiting the App Service URL again to check the updates.

You can also use this procedure to stream logs from an Azure App

Service for a container to VS Code. From within VS Code, you can view logs

from the running site on Azure App Service, that detains any output to the

console and directs them to the VS Code Output panel. In order to open

VS Code Output panel with a connection to the log stream, find the app

in the Azure: App Service explorer, right-click the app, and choose Start

Streaming Logs. Be sure to answer Yes when asked to enable logging and

restart the app.

It is possible that Azure resources you established for your project

might incur ongoing costs. To prevent overspending, delete the resource

group that hosts all those resources. You can delete the resource group

through the Azure portal or the Azure CLI: In the Azure portal. Select

Resource groups from the left-side navigation pane, select the resource

group that you want to be erased, and then use the Delete function.

Then run the following Azure CLI command , but replace

<resource_group> with the name of the selected group:

az group delete --no-wait --name <resource_group>

Chapter 5 Working with Containers and MS Azure

188

Following are some of the most popular Azure extensions for VS Code

that you may find useful for this operation:

•	 Cosmos DB

•	 Azure Functions

•	 Azure CLI Tools

•	 Azure Resource Manager Tools

�Using Containers in VS Code
The VS Code Remote Containers extension enables you to use a Docker

container as a full-featured virtual environment. It lets you access any

folder inside a container and take advantage of VS Code’s attribute set. A

devcontainer.json file in your project is there to guide VS Code on the creation

of a development container with a well-defined runtime set (Figure 5-2). This

container can be utilized to operate an application or to disconnect tools,

libraries, or runtimes that are necessary for dealing with a codebase.

Figure 5-2.  Remote containers in VS Code

Chapter 5 Working with Containers and MS Azure

189

Workspace files are installed from the local file system or shared or

copied into the container. Extensions are activated inside the container,

where they have full access to the tools, platform, and another file system.

This gives you a chance to seamlessly switch your entire development

environment by linking to a different container. This lets VS Code run a

smooth local-quality development experience—including full IntelliSense

capacity, code navigation, and debugging—regardless of where your code

is located.

There are a few system requirements that come with installing

containers in VS Code:

•	 Windows: You are expected to have Docker Desktop

2.0+ on Windows 10 Pro/Enterprise. Windows 10 Home

(2004+) requires Docker Desktop 2.3+ and the WSL 2

back-end.

•	 macOS: Be sure to set Docker Desktop 2.0+.

•	 Linux: Docker CE/EE 18.06+ and Docker Compose

1.21+.

To get started, first install and configure Docker for your operating

system. If you are using WSL 2 on Windows, to enable the Windows WSL 2

back-end: Right-click on the Docker taskbar item and select Settings.

Check Use the WSL 2 based engine and verify your distribution is enabled

under Resources ➤ WSL Integration. Then right-click on the Docker

taskbar item, select Settings, and update Resources ➤ File Sharing with

any locations your source code is located.

If you are using Linux, follow the official install instructions for Docker

CE/EE for your distribution and add your user to the docker group by

using a terminal to run: sudo usermod -aG docker $USER. Then sign out

and back in again to set your changes before you install the VS Code and

Remote Development extension pack.

Chapter 5 Working with Containers and MS Azure

190

If you are working with Git, there are two points to consider: if you are

working with the same repository both locally in Windows and inside a

container, see that you set up stable line endings. If you copy using a Git

credential manager, it is important that your container has a full access to

your credentials.

�Operating with Containers
The Remote containers extension administers in two primary operating

models: you can use a container as your full-time development

environment, or attach it to another running container to examine it.

The easiest way to get started is to try one of the sample development

containers from the Docker and the Remote-Containers extension where

you can select a sample from the extensive list.

On the other hand, you can open an existing folder in a container for

any project to use as your full-time development environment by applying

active source code on your filesystem. Start VS Code, run the Remote-

Containers: Open Folder in Container command from the Command

Palette (F1), and click on the project folder for which you need to set up the

container. At the same time, if you want to modify the container’s contents

or settings before opening the folder, you can activate Remote-Containers:

Add Development Container Configuration Files instead. Next, pick a

starting point for your dev container. You can opt for a base dev container

definition from a filterable list, or use an existing Dockerfile or Docker

Compose file. Please pay attention when using Alpine Linux containers, as

some extensions may not be available due to glibc dependencies in native

code inside the extension.

The filterable list will be automatically organized based on the

contents of the folder you have. The dev container definitions typically

come from the vscode-dev-containers repository. You can easily look

through the containers folder of that repository to check the contents of

each definition. After selecting the starting point for your container, VS

Chapter 5 Working with Containers and MS Azure

191

Code will include the dev container configuration files in your project

(.devcontainer/devcontainer.JSON).

The VS Code window will then restart and build the dev container.

You only have to build a dev container the first time you access it; opening

the folder after the first successful build will be much faster. A progress

notification will be there to display status updates. After the build is over,

VS Code will automatically connect to the container. You can then interact

with your project in VS Code just as you could when accessing the project

locally: when you open the project folder, VS Code will pick up and reuse

your dev container configuration by default. While using this approach

to link-local filesystem into a container is convenient, it does have some

minor performance overhead on Windows and macOS.

If you are using Windows Subsystem for Linux v2 (WSL 2) and have

activated Docker Desktop’s WSL 2 back-end, you can work with source

code stored inside WSL.

Once the WSL 2 engine is enabled, you can either use the Remote-

Containers: Reopen Folder in Container command from a folder that is

already opened or select Remote-Containers: Open Folder in Container

from the Command Palette (F1) and choose a WSL folder using the local

\\wsl$ share (from the Windows side).

You can also open an existing workspace in a container following

a similar process to open a VS Code multiroot workspace in a single

container if the workspace only references relative paths to subfolders.

In this case, you can apply the Remote-Containers: Open Workspace in

Container command or simply use File ➤ Open Workspace once you have

opened a folder that contains a .code-workspace file in a container. Once

connected, you should add the .devcontainer folder to the workspace so

you can edit its contents with ease, if it is not already visible. Remember

that while it is not possible to use multiple containers for the same

workspace in the same VS Code window, it is possible to use multiple

Docker Compose operated containers at once from separate windows.

Chapter 5 Working with Containers and MS Azure

192

�Creating a Devcontainer.json File
VS Code’s container configuration is located in a devcontainer.json file.

This file is optional, but it is recommended that you create it because it

makes handling debugging configuration easier.

This file is the same as the launch.json file for debugging

configurations, but is mostly applied for launching (or adding to) your

development container. You can also determine which extension to install

once the container is running or postconstruct commands to arrange the

environment. The dev container configuration is either located under

.devcontainer/devcontainer.JSON or stored as a .devcontainer.JSON file

in the foundation of your project. You can use any image, Dockerfile, or

set of Docker Compose files with it as a starting point. Here is an ordinary

example that includes one of the prebuilt VS Code Development Container

images:6

{

 �"image": "mcr.microsoft.com/vscode/devcontainers/

typescript-node:0-12",

 "forwardPorts": [3000],

 "extensions": ["dbaeumer.vscode-eslint"]

}

Activating the Remote-Containers: Add Development Container

Configuration Files command from the Command Palette (F1) will deliver

the needed files to your project as a starting point, which you can further

edit to match your needs. The command also allows you to pick a prescribed

container configuration from a list based on your folder’s contents, reuse an

existing Dockerfile, or reuse an existing Docker Compose file.

6 �Microsoft, “Redeploy a Container to Azure App Service After Making Changes,”
https://docs.microsoft.com/en-us/azure/developer/python/
tutorial-deploy-containers-03, accessed July 29, 2021.

Chapter 5 Working with Containers and MS Azure

https://docs.microsoft.com/en-us/azure/developer/python/tutorial-deploy-containers-03
https://docs.microsoft.com/en-us/azure/developer/python/tutorial-deploy-containers-03

193

At times you might have an occasion where you are using a Docker

named volume that you need to review or make changes in. You can

activate VS Code to work with these contents without creating or editing

devcontainer.json file but by selecting the Remote-Containers: Explore a

Volume in a Development Container from the Command Palette (F1).

In addition, it is also possible to inspect your volumes in the Remote

Explorer. First, select Containers in the dropdown, where you can find a Dev

Volumes section. Right-click on a volume to check its creation information,

such as when the volume was made and what files were cloned into it. If you

have the Docker extension installed, you can right-click on a volume in the

Volumes section of the Docker Explorer and select Explore in a Development

Container to explore and navigate through the whole Docker context menu.

�Managing Extensions
VS Code manages and stores extensions in one of two places: locally on the

UI/client side, or in the container. While extensions that directly impact

the VS Code UI, such as themes and snippets, are uploaded locally, most

extensions will be placed inside a particular container. This feature lets you

install only the extensions you need for a specific task in a container and

effortlessly turn the whole tool-chain on by linking to a new container.

When you install an extension from the Extensions view, it will

automatically be placed in the correct location. You can guess where an

extension is installed by looking at the category grouping. There will be a

Local - Installed category and also one for your container. Local extensions

that actually need to operate remotely will appear Disabled in the Local -

Installed category. In order to install an extension on your remote host,

select Install. You can also install all locally installed extensions inside the

Dev Container by accessing the Extensions view and clicking Install Local

Extensions in Dev Container: [Name], pressing the cloud button at the right

of the Local - Installed title bar. This will present a dropdown from which

you can choose what locally installed extensions to add to your container.

Chapter 5 Working with Containers and MS Azure

194

Some extensions may depend upon you installing additional software

in the container. Even though you can edit your devcontainer.json file

by hand to add a list of extension IDs, you can also right-click on any

extension in the Extensions view and click Add to devcontainer.json.

If there are some extensions that you would need to have installed in

any container, you should update the remote.containers.defaultExtensions

User setting. To illustrate, if you wanted to install the GitLens and Resource

Monitor extensions, you would have to script their extension IDs in the

following manner:7

"remote.containers.defaultExtensions": [

 "eamodio.gitlens",

 "mutantdino.resourcemonitor"

]

�Forcing an Extension to Operate Locally or
Remotely
Extensions are usually produced and tested to either operate locally or

remotely, but not both. Nevertheless, if an extension supports it, it is

possible to modify it to run in a particular location in your settings.json

file. For instance, the following setting will make the Docker extension run

locally and Debugger for Chrome extension run remotely, despite their

default settings:8

"remote.extensionKind": {

 "ms-azuretools.vscode-docker": ["ui"],

 "msjsdiag.debugger-for-chrome": ["workspace"]

}

7 Microsoft, “Redeploy a Container to Azure App Service After Making Changes.”
8 Microsoft, “Redeploy a Container to Azure App Service After Making Changes.”

Chapter 5 Working with Containers and MS Azure

195

A value of “ui” instead of “workspace” is the one that will force the

extension to operate on the local UI/client-side instead. Normally,

this should only be applied for testing unless otherwise guided by the

extension’s documentation, since it can cause errors in extensions.

�Forwarding or Publishing a Port
Containers are naturally unrelated environments, so if you need to access

a server, service, or another source inside your container, you will have

to forward or publish the port to your host. You can potentially configure

your container to always keep these ports open, or forward them for the

time being.

You can also settle a list of ports you want to forward at all times when

attaching or accessing a folder in a container by using the forwardPorts

function in devcontainer.json, similar to “forwardPorts”: [3000, 3001]. After

that, you are requested to reload and reopen the window for all the settings

to be applied once VS Code connects to the container again.

�Temporarily Forwarding a Port
If you need to access a port that was not included in devcontainer.json,

or if you need to publish it in your Docker Compose file, you can forward

a new port for the duration of the session by activating the Forward a

Port command from the Command Palette (F1). After choosing a port,

a notification will inform you about the localhost port you should use to

access the port in the container. For example, when you forward an HTTP

server listening on port 3000, the notification will tell you that it is mapped

to port 3000 on localhost. You can then create a link to this remote HTTP

server using http://localhost:3000.

Chapter 5 Working with Containers and MS Azure

196

If you would like VS Code to recollect any ports you have previously

forwarded, check Remote: Restore Forwarded Ports in the Settings editor

(Ctrl+,) or set “remote.restoreForwardedPorts”: true in settings.json.

Docker also has the ability to publish ports when the container is

created. Published ports have very much the same pattern as ports that

you make available to your local network. If your application only accepts

calls from localhost, it will dismiss connections from published ports just

as your local machine would for network calls. Forwarded ports, on the

other hand, actually look like localhost to the application. Each can be

beneficial in different instances.

To publish a port, you can utilize the appPort item. For example,

when you reference an image or Dockerfile in devcontainer.json, you can

use the appPort property to publish ports to the host: “appPort”: [3000,

“8921:5000”].

Similarly, you can access the Docker Compose ports mapping that can

easily be attached to your docker-compose.yml file to publish additional

ports:

- "3000"

- "8921:5000"

In any case, you would have to rebuild your container for the setting

to have any impact. You can achieve this by starting off the Remote-

Containers: Rebuild Container command in the Command Palette (F1)

when you are linked to the container.

Opening a terminal in a container from VS Code is also quite simple.

When you create a folder in a container, any terminal window you open in

VS Code (via Terminal ➤ New Terminal) will automatically operate in the

container rather than locally. You can also use the same code command

line from this same terminal window to take a number of different

operations, such as opening a new file or folder in the container.

Chapter 5 Working with Containers and MS Azure

197

Once you have opened a folder in a container, you can switch the VS

Code’s debugger on in the same way you would when performing the

application locally. For instance, if you choose to launch configuration

in launch.json and start debugging (F5), the application will turn on the

remote host and add the debugger to it.

VS Code’s local user settings are also reapplied when you are linked

to a dev container. Even though this keeps your user experience stable,

you might want to vary some of these settings between your local project

and the container. When you have connected to a container, you can

also calibrate container-specific settings by running the Preferences:

Open Remote Settings command from the Command Palette (F1) or by

switching to the Remote tab in the Settings editor. These will overrule

any local settings you currently activate every time you connect to the

container.

By default, the Remote-Containers extension automatically kicks

off the containers attached to the devcontainer.json when you open the

folder. When you close VS Code, the extension automatically turns off the

containers you have connected to. However, you can correct this behavior

by adding “shutdownAction”: “none” to devcontainer.json.

While you can utilize the command line to administer over your

containers, you can also do it with the Remote Explorer. To stop a

container, choose Containers from the dropdown list and right-click on

a running container, then select Stop Container. You can also kick off

exited containers, remove containers, and remove recent folders. Through

the Details view, you can forward ports and open already forwarded

items in the browser. When you need to clean out images or mass-delete

containers, look for Cleaning out unused containers and images for

various available options.

Chapter 5 Working with Containers and MS Azure

198

�Personalizing with Dotfile Repositories
Dotfiles stand for files whose filename starts with a dot (.) and generally

have configuration information for different applications. Because

development containers can make up for a wide range of application

types, it could be convenient to place these files somewhere so that you

can easily duplicate them into a container once it is on and operating.

A practical way to do this would be to locate these dotfiles in a GitHub

repository and then apply a utility to take a copy and employ them. The

Remote-Containers extension has built-in assistance for using these with

your own containers. If you are a newbie in this area, start by taking a look

at the different dotfiles bootstrap repositories that are available.

At the same time, there are known limitations to remote containers:

•	 Docker Toolbox on Windows is not supported.

•	 Windows container images are not yet supported.

•	 Using a remote Docker Host is realizable, but requires

extra setup actions.

•	 All roots and folders in a multiroot workspace will be

accessed in the same container, regardless of whether

there are available configuration documents at lower

levels or not.

•	 The unofficial Ubuntu Docker snap set for Linux is not

supported.

•	 If you copy a Git repository with SSH and your SSH key

has a passcode, VS Code’s pull and sync features may

break off when running remotely. Either use an SSH

key without a passphrase, copy using HTTPS, or run

git push from the command line to operate around the

matter.

Chapter 5 Working with Containers and MS Azure

199

•	 Local proxy settings are not reapplied inside the

container, which can obstruct extensions from

working unless the correct proxy data is configured

(for example, global HTTP_PROXY or HTTPS_PROXY

environment items with the accurate proxy data).

Additionally, the first-time installation of Docker Desktop for Windows

without the WSL 2 engine might require an additional sharing action to

provide your container with access to local source code. This step may not

work with certain email-based identities, and you may get errors if you

sign in to Docker with your email address instead of your Docker ID. This

is a known problem and can be resolved by signing in with your Docker ID

instead.

�Summary
In this chapter we unraveled the mighty world of MS Azure services, and

how it can be used for building and deploying terrific Python apps.

Chapter 5 Working with Containers and MS Azure

201© Sufyan bin Uzayr 2021
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9

Index

A
Azure Blockchain Workbench, 174
Azure services

AI, 173
binding, 182
CDN, 172
CLI command, 187
computer, 168, 169
data management, 170, 171
deploy Docker, 185–187
Docker, 185
functions, 177, 179, 180
identity, 169
management, 173
message, 172
mobile, 169
storage, 170
VS Code, 174–177

Azure Storage queue binding, 179,
181, 182

B
Better Comments extension, 62
Breakpoints, 90

app types, 90
invoke, 90
validation, 90

C
Command Palette, 10, 11, 13,

74–77, 84, 95, 96, 98, 107,
108, 118, 148, 160

Conda environment, 94, 95, 160
Config files, 118

JUPYTER_CONFIG_DIR, 119
JUPYTER_CONFIG_PATH, 119

Content delivery
network (CDN), 172

Cross-site request forgery
(CSRF), 125

Cross-site Scripting
(XSS), 125, 137

customTemplatePath
configuration, 65

D, E
Data files, 120

JUPYTER_DATA_DIR, 121
JUPYTER_PATH, 120

Data science
preparing data, 160–163
setting up environment, 159
training/evaluating

model, 164, 165
Data viewer, 115, 161

https://doi.org/10.1007/978-1-4842-7344-9#DOI

202

Debugging, 83
basic, 85, 87
configurations, 84, 85
data file paths, 88, 90
initialize, 84
output values, 88

devcontainer.json file, 188, 192–194
Django

administrative interface, 146
code snippet, 143
collectstatic command, 141
creating app, 131, 132
creating project environment,

128, 129
creating/running, 129
databases, 145
data/data models/migrations,

143, 144
debugger launch

profile, 133, 134
definition, 126
definition/peek

commands, 137
exploring debugger, 134–136
installation, 127
migrating databases, 145
multiple templates, 142
project, 130, 131
serving static files, 139–141
static files, 139
template, 137, 138
template/styles, 142

Dotfiles, 198

F, G
Flask

creating requirements, 158
debugger tool, 151–154
definition/peek definition,

147, 155
minimal flask app, 149, 150
template, 156, 157
web development framework, 147
web development installation,

148, 149
Function app, 176, 177, 185

H
HTTP-triggered function,

176, 181, 184

I
Infrastructure as a service (IaaS), 168
IPython Notebook, 111

J
Jupyter extension, 111
Jupyter Notebook, 110

code cells, 112
commands/shortcuts, 113
debugging, 117
exporting, 118
Python code file, 116
remote, 115

INDEX

203

K
Key bindings

accepted keys, 25
available contexts, 29
clause contexts, 28
command arguments, 26
components/tools, 42
conditional operators, 28
debug, 39
display, 37
editor/window management, 34
extensions, 40, 43
file management, 36
keyboard rules, 24
keyboard shortcuts editor, 23
language features, 41
language selected file, 42
layout-independent, 27
navigation, 34
preferences, 39
programming languages, 40, 41
rich language editing, 33
search, 38
search editor, 38
settings precedence, 44
settings/security, 45
tasks, 39
tools, 43, 44

L
Linting, 75

disable, 76
enable, 76

running, 76
settings, 77
specific, 78, 79

M, N
Microsoft data management

centers, 167, 168

O
Object-relational mapper

(ORM), 125

P
Platform as a service (PaaS), 168, 169
Plot Viewer, 114, 162
Pylint, 79

rules, 80, 81
troubleshooting, 82

Python frameworks
APIs, 124
operations, 125
reusable characteristics, 124
sessions storage/retrieval, 125
web framework, 125

Python installation, 104
hello folder, 106
interpreter, 105, 106
packages, 109, 110
run debugger, 107

configure, 108
variables, 108

INDEX

204

run Hello World, 107
VS Code, 104

Python Interactive window, 111,
112, 114

Python programming
environment, 94

choose debug, 100, 101
interpreter, 96–98
PYTHONPATH variable, 103
selecting/activating, 98, 99
terminal windows, 99
variable definitions file, 101
variable substitution, 102

Q
Queue storage, 180–182

R
Runtime file, 121, 122

S
Secure Shell Protocol (SSH), 167
Snippet set, 53
Software as a service (SaaS), 168
Storage explorer, 180, 184
Storage services, 145, 170

T
Tabnine, 50, 51

U
User interface

Activity Bar, 10
Breadcrumbs, 6
Command Palette, 11
document tree, filtering, 8
explorer, 6, 7
layout, 3
markdown outline view, 9
minimap, 5
multiselection, 7
open editors, 9
outline view, 8
side-by-side editing, 4, 5
view, 10

V
Variable explorer, 111, 115
Visual Studio Code (VS Code)

configure editor
centered editor layout, 13
Ctrl+Tab, 17
disabling preview mode, 16
entire group, 17
groups, 14, 15
hiding Menu Bar, 12
keyboard shortcuts, 16
preview mode, 14
settings, 12
tab ordering, 14
tabs, 13
window management, 17

Python installation (cont.)

INDEX

205

zen mode, 13
cross-platform, 19, 20
definition, 1
extensions, 21
features, 2
keyboard shortcuts editor, 22
open-source code editor, 2
portable mode, 21
setting up, 18
updating cadence, 20

VS Code
AutoDocstring, 63, 64
better comments, 62
brackets, 51–53
commands, 48
configuration properties, 60
debugging, 61
editing, 67

customize the behavior, 68, 69
IntelliSense, 67
run selection/line, 70
troubleshooting, 69

extension, 49
formatting, 70

general settings, 71, 72
troubleshooting, 72, 73

installation, 48

programming language
capabilities, 49, 50

properties, 59
Python indent, 67
Python tests, 57
refactoring, 73

method, 74
sort imports, 75
variable, 74

snippet, 53, 58
Tabnine, 50, 51

VS code remote
containers, 188

dev container, 192, 193
dotfiles bootstrap repositories,

198, 199
extensions, 193, 194
forward a port, 195–197
install, 189, 190
operate locally/remotely, 194
operating, 190, 191
publish the port, 195

W, X, Y, Z
Windows Subsystem for Linux

(WSL), 176

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Visual Studio Code
	User Interface
	Basic Layout
	Side-By-Side Editing
	Minimap
	Indent Guides
	Breadcrumbs
	Explorer
	Multiselection
	Filtering the Document Tree
	Outline View
	Markdown Outline View
	Open Editors
	Views
	Activity Bar
	Command Palette

	Configuring the Editor
	Hiding the Menu Bar (for Windows, Linux)
	Settings
	Zen Mode
	Centered Editor Layout
	Tabs
	Tab Ordering
	Preview Mode
	Editor Groups
	Keyboard Shortcuts
	Disabling Preview Mode
	Using Ctrl+Tab to Navigate in Entire Editor History
	Closing an Entire Group Instead of a Single Editor
	Window Management

	Setting Up Visual Studio Code
	Cross-Platform
	MacOS
	Linux
	Windows

	Updating Cadence
	Insiders Nightly Build
	Portable Mode
	Additional Components
	Extensions

	Key Bindings for Visual Studio Code
	Keyboard Shortcuts Editor
	Detecting Keybinding Conflicts
	Troubleshooting Keybindings

	Keyboard Rules
	Accepted Keys
	Command Arguments
	Removing a Specific Key Binding Rule
	Keyboard Layout-Independent Nindings
	When Clause Contexts
	Conditional Operators
	Available Contexts
	Programming Languages Supported
	Language Features in VS Code
	Changing the Language for the Selected File
	Additional Components and Tools
	Commonly Used Components
	VS Code Extensions
	Additional Tools
	Settings Precedence
	Settings and Security

	Summary

	Chapter 2: Getting Started with Python Programs in Visual Studio Code
	Installation Basics
	Reviewing the Required Extensions
	Tabnine
	Bracket Pair Colorizer
	Python Snippets
	Python Test Explorer for Visual Studio Code
	Configuring Debug
	Better Comments
	AutoDocstring
	Python Indent

	Getting Started with Code Editing
	Autocomplete and IntelliSense
	Customizing IntelliSense Behavior
	Troubleshooting
	Running Selection/Line in Terminal (REPL)
	Formatting
	General Formatting Settings

	Troubleshooting Your Formatting
	Refactoring
	Extract Variable
	Extract Method
	Sort Imports

	Linting
	Enabling Linters
	Disabling Linting
	Running Linting
	Linting Settings
	Specific Linters

	Pylint
	Default Pylint Rules

	Troubleshooting Linting

	Debugging
	Initializing Configurations
	Additional Configurations
	Basic Debugging
	Conditional Breakpoints
	Invoking a Breakpoint in Code
	Breakpoint Validation
	Debugging Specific App Types

	Summary

	Chapter 3: Setting Up the Environment and Testing
	Setting Up Your Environment
	Manually Specifying an Interpreter
	Selecting and Activating an Environment
	Environments and Terminal Windows
	Choosing a Debugging Environment
	Environment Variable Definitions File
	Variable Substitution
	Using the PYTHONPATH Variable

	Running Your Projects
	Selecting a Python Interpreter
	Creating a Python Hello World Source Code File
	Running Hello World
	Running the Python Debugger
	Configuring and Initializing the Debugger
	Defining Variables

	Installing and Using Packages

	Supportting Jupyter
	Jupyter Code Cells
	Additional Commands and Keyboard Shortcuts
	Python Interactive Window
	Plot Viewer
	Live Share for Python Interactive
	Variable Explorer and Data Viewer
	Connecting to a Remote Jupyter Server
	Converting Jupyter Notebooks to Python Code File
	Debugging a Jupyter Notebook
	Exporting a Jupyter Notebook
	Configuration Files
	JUPYTER_CONFIG_DIR
	JUPYTER_CONFIG_PATH

	Data Files
	JUPYTER_PATH
	JUPYTER_DATA_DIR

	Runtime File
	JUPYTER_RUNTIME_DIR

	Summary

	Chapter 4: Working with Python Frameworks
	Python Frameworks Ecosystem at a Glance
	Django Development
	Installation
	Creating a Project Environment for the Django Tutorial
	Creating and Running a Minimal Django App
	Creating the Django Project
	Creating a Django App
	Creating a Debugger Launch Profile
	Exploring the Debugger
	Using Definition and Peek Definition Commands
	Using a Template to Render a Page
	Serving Static Files
	Readying the App for Static Files
	Referring to Static Files
	Using the Collectstatic Command
	Creating Multiple Templates That Extend a Base Template
	Creating a Base Page Template and Styles
	Creating a Code Snippet
	Working with Data, Data Models, and Migrations
	Types of Databases
	Migrating the Database
	Creating a Superuser and Enabling the Administrative Interface

	Flask Development
	Creating and Running a Minimal Flask App
	Running the App in the Debugger
	Using Definition and Peek Definition Commands
	Using a Template to Render a Page
	Creating a Requirements.txt File for the Environment

	Data Science–Specific Information and Tutorials
	Setting Up a Data Science Environment
	Preparing the Data
	Training and Evaluating a Model

	Summary

	Chapter 5: Working with Containers and MS Azure
	Integrating Azure for Your Python Projects
	Key Azure Services
	Computer Services
	Identity
	Azure Mobile Services
	Storage Services
	Data Management
	Messaging Products
	CDN
	Management
	Azure AI
	Azure Blockchain Workbench

	Creating a Function in Azure with Python Using Visual Studio Code
	Deploying Docker Containers to Azure App Service

	Using Containers in VS Code
	Operating with Containers
	Creating a Devcontainer.json File
	Managing Extensions
	Forcing an Extension to Operate Locally or Remotely
	Forwarding or Publishing a Port
	Temporarily Forwarding a Port
	Personalizing with Dotfile Repositories

	Summary

	Index

