Optimizing
Visual Studio
Code for Python
Development

Developing More Efficient and
Effective Programs in Python

Sufyan bin Uzayr

ApPress’

Optimizing Visual
Studio Code for
Python Development

Developing More Efficient
and Effective Programs
in Python

Sufyan bin Uzayr

Apress’

Optimizing Visual Studio Code for Python Development: Developing More
Efficient and Effective Programs in Python

Sufyan bin Uzayr
Barabanki, India

ISBN-13 (pbk): 978-1-4842-7343-2 ISBN-13 (electronic): 978-1-4842-7344-9
https://doi.org/10.1007/978-1-4842-7344-9

Copyright © 2021 by Sufyan bin Uzayr

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: James Markham

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York
Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7343-2.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7344-9

For Mom

Table of Contents

About the Authorcccociseemmmmissssnmmmsssnmmsass s ——————— xiii
About the Technical REVIEWETcusssmesmsssssnssssssssnssssssssnssssssssnsnsssssnns XV
Acknowledgments......ccccuseemmmmssssnnnmmssssnnnmsssssssnsssssssnnssssssnssessssnnnsnns Xvii
Introductionccccnisemmmmnmsssnnnmmnssssnnnessssnnnesssnsnnnssssannn s snnnnnenssnnnnnes Xix
Chapter 1: Introduction to Visual Studio Code..........ccevrsssnnnmnnnnnnessssnns 1
U e] g 1 2T P 3
BaSiC LAYOULcocriererrer s 3
Side-By-Side EitiNgccccvrerererreriererensensesensssessesesssssssessessesessessessessssessessens 4
MINIMAP......eeiiie 5
INAENT GUIAES.......cceererrccsi e 5
BreadCrumbs ... 6
(0] 0] S 6
MUIEISEIECHION.ovveeccri e 7
Filtering the DOCUMENT TFEEcvveveevrererrereresesrere e sssses s ses e ssesressssessesaees 8
OULHING VIBW....cvecccerirrsscese s 8
Markdown OULINE VIEW.........ccccerermmninmsisrsisssssese s sesssssssas 9

00 T=T T (0] R 9
VIBWS .. e 10
ACHIVITY BAK ...c.veerereesieserese e s e s st se e s saesa e sae e e e nnesnens 10
Command Paletteccccovrriiinr s 10

TABLE OF CONTENTS

Configuring the Editorccocevevererere e see e 11
Hiding the Menu Bar (for Windows, LiNUX)ccccvverininnenneniensensenssesessenns 12
LT S 12
ZEN MOGE.......cecerircirce e 13
Centered EdItor LAYOUL..........ccoeereverrerieniere s s s sese s seesessessessesessessesseees 13
TaDS ..o —————————————————— 13
B F- Lo B0 (0 [T 1 T R 14
Preview MOGE........cccciririsese s s s s 14
o 11 (0] 01U o 14
Keyboard SHOMCULScccccvvvrrreriere s s ses e saesnes 16
Disabling Preview MOde.........cccvcerevnninvenennnersere e sesse e ses e ssessesessessesaes 16
Using Ctrl+Tab to Navigate in Entire Editor History.......c.cceevevvrvrinviniennenn. 17
Closing an Entire Group Instead of a Single Editor.............ccocvvriicsnscrernnnnn 17
Window Management...........ccovmnnennsnsssss s ssssesens 17

Setting Up Visual Studio Code........ccceererreriercersrrssses s ses e snsseenenns 18
CroSS-Platform ..o s 19
Updating CadencCe ... s se s 20
Insiders Nightly Build...........ccccoorinninininrr e 21
POrtable MOGEcoveeereecrerce e 21
Additional Components ..o 21
(=] S]] T 21

Key Bindings for Visual Studio Codeccceeriernsmrresnnsesssesesensessesensens 22
Keyboard Shortcuts Editor.........cccccvvernnncsensse e 22
Keyboard RUIES..........ccueererenennmneresessese s se s s sse s s senesnesnes 24
ACCEPIEU KBYS...coueieeeeerereriesese e s 25
Command ArgUMENEScccverererernsesese s 26
Removing a Specific Key Binding RUIE...........ccooveerveernresenenernsesesesesesenennes 27
Keyboard Layout-Independent Nindingsccccovinnernnesenienesnsesensesssenenennes 27

TABLE OF CONTENTS

When Clause CONtEXIS........ccovrermmmsmserersssssesesessssssssse e sessssssssssesens 28
Conditional OPErators.........ocvvevrerererrersereresessersese s s s ssesessessessessssessessees 28
AVailable CONTEXLSccrriieereresrseesese s 29
Programming Languages SUPPOIEd........ccovvvvrveriererensenserensesessesessesessessesees 40
Language Features in VS COUE.........ccvvrrerererrerierensssensesessssessessessessssessessees 4
Changing the Language for the Selected File..........cccverrervrririerienessensenens 42
Additional Components and TOOIS..........ccererrrreriereresensessese e sessesessens 42
Commonly Used COMPONENTS.........cccvverererersersesessssessessessessssessessesssssssessenes 42

VS Code EXIENSIONS.......cccicererirrsssesse s e s sssssssssesens 43
Addition@l TOOISccvererriricie i 43
Settings PreCEUENCE.ocvverrerererer s s s sa s e 44
Settings and SECUNLYccovvririerr s 45
SUMMANY ...t sn e sn s sr s e sr s sn s nesn s sr s sn s snssn e nnennssnannnnnans 46

Chapter 2: Getting Started with Python Programs in

Visual Studio Codeccusemmmsemmsmsmsnssssssssnsssanssssssssnsnsansas 47
INStAllation BASICSccevveerierrierreerieersee s e e seesse e e e snesssessseesnesnessnnesanens 47
Reviewing the Required EXtenSions..........ccccecvercrcersessesssssesses s ses e 48
L= 111 50
Bracket Pair COIOMZETcoocoereereecrercere e 51
Python SNIPPets.......cccicrrr 53
Python Test Explorer for Visual Studio Code.........ccoevvririennnnsnininsnsenenne, 57
Configuring DEDUG......cccceverirrrirerr e e 61
Better COMMENTS........coeececeree e s 62
AUTODOCSINNGccececccrcr 63
PYthon INAent ... s 67

vii

TABLE OF CONTENTS

Getting Started with Code Editingcccoevvvverreernnnns e seens 67
Autocomplete and INTEIlISENSE.........vvvvriererrrrerrere e eaens 67
Customizing IntelliSense BENAVIOFccovvevververenerensenereesessesessesessesessenes 68
TroubleShOOtINGcccceverrcr - 69
Running Selection/Line in Terminal (REPL)........ccceovvrrerierienensersersereesessensenes 70
0T T2 13T O 70
Troubleshooting Your FOrmatting..........cceevrevrrerierenennensensesesessensessesessessensens 72
(3121 T3 (0] 1 o R 73

01 (3o SRS 75
ENabling LINTErS......cov e 76
Disabling Linting........ccccvrrinninnnennsinesess e s ssesessessesaes 76
Running LiNtiNgcoooovvnininnsnnesrsineses s ss s s ses e snes 76
Linting SEttings ..o 77
PYIINT... e s 79
Troubleshooting Lintingccccverinninnnsnses s sese e sessessessens 82

D] o1 oo T4 RS RRRN 83
Initializing Configurations............ccuveernenninsennseses s 84
Additional Configurationsccuveerenrnssnsesrsese s sessesens 84
BasiC DebUGUING.......ccoueernrernesrrese s 85
Conditional Breakpointscccvievnvnieninnninnnsese s sessessessessssesesse s 90

31111 1P 7S 91

Chapter 3: Setting Up the Environment and Testing..........ccccnrnssnnnnnns 93

Setting Up Your Environment............coovoeeecececscscse e 93
Manually Specifying an INterpretercovoveerrecrnresersesereseseeese s 96
Selecting and Activating an Environment...........cccooovvnininnnncnnnesnsnienens 98
Environments and Terminal Windows...........ccceeerrennnenesienesnsesesenesenesennes 99

viii

TABLE OF CONTENTS

Choosing a Debugging ENVIronmentcccvvvreviennnenienienssensesesessessessenees 100
Environment Variable Definitions File.........ccccvvniinnnninninnsencnenes 101
Variable SUDSHItULIONccccovireiicccr e 102
Using the PYTHONPATH Variable..........ccccvvvvrvenierennsensese s sesesesessessessenns 103
Running Your Projectsccccvevvercersersen s ses s s e s e e 104
Selecting a Python Interpreter ... 105
Creating a Python Hello World Source Code Filecccovinvninennrennnnnnnnes 106
Running HEllo WOKIdocmeeeeeeeeeeee e 107
Running the Python Debugger..........cccvrriininnnsnsne s 107
Installing and USing PaCKaQEeS.........cccvverreereerierrerseererserses e ssesessesssessessenns 109
SUPPOIING JUPYLEL..... et e 110
Jupyter Code CellS.......ccovmrininesrneene s 112
Additional Commands and Keyboard ShortCutsc.ccovrvvernneseneserensenenne 113
Python Interactive WindoWcccovvevrcsnnscsnesssnsse e ssssesessenens 114
PIOT VIBWEN ..ot s 114
Live Share for Python Interactivecouvvrenrnssnnesnnssess e 114
Variable Explorer and Data VIEWEr ... sessennens 115
Connecting to @ Remote JUpPYLer SErver.........oovvevnnenereserssesesesesesesenns 115
Converting Jupyter Notebooks to Python Code Fileccccooveernierereiennnne. 116
Debugging a Jupyter NOTEDOOKcccceerrenerrnserenesesene s sessenens 117
Exporting a Jupyter NotehooKcoccoveeerncennesrese s 118
Configuration Files..........cccvveernnenernnernsssesesese s seenes 118
DAta FilES.....ccoveeerreerreeresesere s 120
RUNTIME FilE ... 121
1111 P2 2 122

ix

TABLE OF CONTENTS

Chapter 4: Working with Python Frameworks........ccucccurensssnnnnnsssnnns 123
Python Frameworks Ecosystem at a GIance.............ccococcvenericnenscrncnennene 124
Django Developmentcoeenierenmresnsese s 126

INSEAIALION.......coieerreeree e —————— 127
Creating a Project Environment for the Django Tutorial...........ccocveeverecernnne. 128
Creating and Running a Minimal Django ApPpccouevmereresessnsesessessssenensnnes 129
Creating the Django Project..........coucvvvincnnssensse s sessesesssessnns 130
Creating @ Django APPcccoeeereresesenerssesessesessese s sesse e ssssssessesssssssssnnes 131
Creating a Debugger Launch Profile.........cccoverrnssnnenennesesssesessesesesenennes 133
Exploring the DEDUGQETvveereserreercse s 134
Using Definition and Peek Definition Commandscccccvrvvernnenerenerennes 137
Using a Template to Render a Page..........cccovvrrnnernnenesnssesssesesesesenesenns 137
Serving StatiC FileS......c.ouorvrrrresernsersse s seenes 139
Readying the App for StatiC FileSc.couernrrnnenenisnnssesesesese s 140
Referring 10 Static FileS........cooorverrrcnererer e 140
Using the Collectstatic COmMmMan...........c.ccccoverernrrnnenesnesesese s 141
Creating Multiple Templates That Extend a Base Template.............cccceucnee. 142
Creating a Base Page Template and Styles.........c.ccccovvrrieirnscrnscsesienennnnes 142
Creating a Code Snippet.......cccriiiinininnsnr s 143
Working with Data, Data Models, and Migrations............ccccocvveererrenerenscrenns 143
TYPES Of DALADASES.cceveerrrererereree e 145
Migrating the Databasecccoveerrrererenernsrene e 145
Creating a Superuser and Enabling the Administrative Interface................ 146
Flask Development.........cocverirreninse s sse e snens 147
Creating and Running a Minimal FIasK APP.....ccccvrvverrerierersssensesessssessessenses 149
Running the App in the Debugger.......ccccvrirvrirnininrrr e 151
Using Definition and Peek Definition Commandsccceevevveriernnenseriennes 155

TABLE OF CONTENTS

Using a Template to Render a Page.........cccocvvrvrinrrinsnsn s s 156
Creating a Requirements.txt File for the Environmentcccccoevvvvienienne, 158
Data Science—Specific Information and Tutorials..........ccccoeeeriervcriencnnne 159
Setting Up a Data Science Environment.........c..occovoenneernscnnenesesesenscnenns 159
Preparing the Data.........c.cccoeerrenrencnerese e 160
Training and Evaluating @ Model ... 164
SUMMAIY ...t sr s a e nn e 166
Chapter 5: Working with Containers and MS Azureccuseeninssnnns 167
Integrating Azure for Your Python Projects.........cccccvvrvervrncncenncnieninnne 167
KBY AZUIE SBIVICES ...evrerrerrrrersersersessssersessessssessessesssssssessesssssssessessesssssnsessens 168
Creating a Function in Azure with Python Using Visual Studio Code............ 174
Deploying Docker Containers to Azure APp SEIVICEc.ccvvvverrerierrerensersersens 185
Using Containers in VS Codecccoeeererereeseseesee e ses s e e 188
Operating with CONtaINers..........ccooeoererrrererese s 190
Creating a Devcontainer.jSon Fileccoveoreereecnnnenerese s 192
Managing EXTENSIONSccoevererrnerererereseree e se e 193
Forcing an Extension to Operate Locally or Remotelycccocrveviinicnnens 194
Forwarding or Publishing @ Port..........cccocvivnininnnnnn s senennens 195
Temporarily Forwarding a Portccccooevercnvnre e res e saenenns 195
Personalizing with Dotfile Repositories..........ccccvvnvnvnininnnniniessseniennens 198
SUMMAIY ...t sr s as e nr e nnas 199
INA@X . ciiissssnnnmnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnssssssssnnnnnnnnnnssssssssnnnnnnnnnnsssssnn 201

About the Author

Sufyan bin Uzayr is a writer, coder, and entrepreneur with over a decade
of experience in the industry. He has authored several books in the past
on a diverse range of topics, ranging from history to computers and
information technology.

Sufyan is the director of Parakozm, a multinational IT company
specializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields. He specializes
in a wide variety of technologies, such as JavaScript, Dart, WordPress,
Drupal, Linux, and Python. He holds multiple degrees, in fields including
management, information technology, literature, and political science.

Sufyan is a digital nomad, dividing his time between four countries.

He has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism.com.

xiii

About the Technical Reviewer

Mathew Rooney is a coder with 8 years of experience in the web
development field. He works with PHP, JavaScript, Python, and offers
custom-coded WordPress themes and plugins. Mathew is a firm believer
in open-source software and has finished Bachelor of Technology in
computer science.

Acknowledgments

There are many people who deserve to be on this page, for this book

would not have come into existence without their support. That said, some

names deserve a special mention, and I am genuinely grateful to:

My mother and father, for everything they have done
for me.

Faisal Fareed and Sadaf Fareed, my siblings, for helping
with things back home.

Sana Akhtar Usmani, for all her help and support.

The Parakozm team, especially Madina Karybzhanova,
for offering great amounts of help and assistance
during the book-writing process.

The Apress team, especially Smriti Srivastava, Shrikant
Vishwakarma, and James Markham, for ensuring that
the book’s content, layout, formatting, and everything
else remains perfect throughout.

Reviewers of this book, for going through the
manuscript and providing their insight and feedback.

Typesetters, cover designers, printers, and everyone
else, for their part in the development of this book.

xvii

ACKNOWLEDGMENTS

o All the folks associated with Zeba Academy, either
directly or indirectly, for their help and support.

e The Python and VS Code community at large, for all
their hard work and efforts.

—Sufyan bin Uzayr

xviii

Introduction

Visual Studio Code (VS Code) is a great open-source code editor created
by Microsoft for Windows, Linux, and macOS. Widely applied, standard
features include support for debugging, syntax highlighting, automatic
code completion, snippets, code restructuring, and embedded Git.
Developers from all over the world are free to edit the design theme,
keyboard shortcuts, and preferences, as well as install essential and extra
extensions to upgrade the general project versatility.

Chapters at a Glance

Chapter 1, “Introduction to Visual Studio Code,” reviews how to set up VS
Code as well as provide an overview of the basic features, such as:

¢ User interface: Provides the view of the documentation
for VS Code.

e Setup overview: Analyzes documentation for starting
up and running with VS Code, including platform-
related setup.

o Keyboard shortcuts: Provides customization options
for your own shortcuts and installation of Keymap
extensions.

¢ Keybinding extensions: Covers how to install a
Keymap extension and how to bring the keybindings
from other editors to VS Code.

Xix

INTRODUCTION

Chapter 2, “Getting Started with Python Programs in Visual Studio
Code,” explains in detail how to set up your VS Code for Python
Development. For the sake of demonstrating with examples, you'll see how
to install most of the tools on Windows.

Chapter 3, “Setting Up the Environment and Testing,” demonstrates
how to install the top 8 Python extensions by typing Python in the
Extensions item on the Activity Bar.

Chapter 4, “Working with Python Frameworks,” discusses using Python
frameworks, such as Django and Flask. We will discuss topics such as
Python web development, Django apps, Flask development, and so on.

Chapter 5, “Working with Containers and MS Azure,” covers Python
development in VS Code in assonance with MS Azure. Azure services can
be used for speedy deployment and building of production level apps.
With VS Code, Azure offers neat integration and this chapter discusses the

same.

CHAPTER 1

Introduction to Visual
Studio Code

Visual Studio Code (VS Code) is an open-source code editor created by
Microsoft for Windows, Linux, and macOS (Figure 1-1). Widely popular
standard features include support for debugging, syntax highlighting,
automatic code completion, snippets, code restructuring, and embedded
Git. Users are free to change the design theme, keyboard shortcuts, and
preferences, as well as install additional extensions to upgrade the overall
project functionality.

Microsoft first introduced VS Code at the 2015 Build conference. By
2019 VS Code ranked as the most popular developer environment tool,
with 50.7% of 87,317 respondents reporting that they regularly apply it.

© Sufyan bin Uzayr 2021
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9_1

https://doi.org/10.1007/978-1-4842-7344-9_1#DOI

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Visual Studio Code

Figure 1-1. Visual Studio Code, a free and open-source code editor

In this chapter, we will walk you through setting up VS Code as well as
provide an overview of the basic features:

o User interface: viewing the documentation for VS
Code.

e Setup overview: documentation for starting up and
running with VS Code, including platform-related
setup.

o Keyboard shortcuts: customization options for your
own shortcuts and installation of Keymap extensions.

o Keybinding extensions: how to install a Keymap
extension to bring the keybindings from your previous
editor to VS Code.

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

User Interface

According to the original intent, VS Code is a code editor. Similar to many
other code editors, VS Code has a common user interface and layout of an
explorer on the left, displaying all of the files and folders you have access
to, and an editor on the right, presenting the content of the files you have
opened.

Basic Layout

VS Code comes with a straightforward yet intuitive layout that utilizes

all the space provided for the editor, while leaving some room to browse
and access the full context of your folder or the ongoing project. The User
Interface is divided into five main areas:

o Editor: The main space for you to edit current files. You
can open as many editors as you need side by side, as
well as vertically and horizontally.

o SideBar: This area has different views such as the
Explorer, to provide a maximum assistance while you

are working on your project.

o Status Bar: Information about the current project and
the files you are editing.

e Activity Bar: Placed on the far left-hand side, this area
enables you to switch between views and gives you
additional context-specific measures—for instance, the
number of outgoing changes.

o Panels: You can show different panels below the editor
area for output or debug content, errors, and warnings,
or integrated information. The panel can also be shifted
to the right for more vertical space.

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Each time you launch VS Code, it opens up in the same state it was in
when you last left it. The folder, layout, and opened files will be preserved
the same. Open files in each editor are displayed with tabbed headers
(Tabs) at the top of the editor region. To learn more information about
tabbed headers, see the details of the Tabs section. You can also move the
Sidebar to the right-hand side (View » Move Side Bar Right) or enhance
its visibility (Ctrl+B).

Side-By-Side Editing

As previously mentioned, you can open as many editors as you like side-
by-side vertically as well as horizontally. If you already have one editor
open, there are various ways of placing another editor to the side of the
existing one:

e Alt-click on a file in the Explorer.
o Ctrl+\ to split the active editor into two.

e Open to the Side (Ctrl+Enter) from the Explorer context

menu on a file.

o Click the Split Editor button in the upper right of an
editor.

e Dragand drop a file to any side of the editor region.

e Ctrl+Enter (macOS: Cmd+Enter) in the Quick Open
(Ctrl+P) file list.

Once you open another file, the editor that is in progress will display
the content of that file. So if you have two editors side by side and you need
to open file doc.cs into the right-hand editor, make sure that editor is active
(by clicking on it) before opening file doc.cs.

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

By default, editors are made to open on the right-hand side of the
active one. You can change this pattern through the setting workbench.
editor.openSideBySideDirection and modify to open new editors to the
bottom of the active one instead. At the same time, when you have more
than one editor active, you can switch between them easily by holding the
Ctrl (macOS: Cmd) key and pressing 1, 2, and 3. In addition, you can resize
editors and reorder them if you would like to: simply drag and drop the
editor title area to reposition or resize the editor.

Minimap

A Minimap (code outline) allows you to get a high-level overview of

your source code, which is quite useful for easy navigation and code
comprehension. A file’s minimap is displayed on the right side of the
editor. You can also click or drag the shaded area to quickly switch to
different sections of your file. It is also worth noting that you can move

the minimap to the left-hand side or even disable it completely by simply
setting “editor.minimap.side”:, “left’, or “editor.minimap.enabled”: false in

your user or workspace settings.

Indent Guides

The image above the editor also shows vertical lines or indentation
guides that are there to help you freely observe matching indent levels.
If you would like to turn off those indent guides, you should set
“editor.renderIndentGuides”: false in your user or workspace settings.

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Breadcrumbs

Ifyou take a look at the editor once again, you will notice it has a
navigation bar above its contents that is named Breadcrumbs. It is there to
show your current location and let you quickly navigate between folders,
files, and symbols.

Breadcrumbs also tend to display the file path, and if the active file type
has language support for symbols, it displays the symbol path up to the
cursor position. You can switch off Breadcrumbs with the View » Show
Breadcrumbs simple command. You can also access the same information

about the Breadcrumbs feature at the Breadcrumbs section of the editor.

Explorer

The Explorer is a tool used to browse, open, and operate all of the files and
folders in your editing project. Since VS Code is file- and folder-based, you
can get started at any time simply by opening a file or folder in VS Code.
Once you open a folder in VS Code, the contents of the folder are shown in
the Explorer. You can do many modifications from here, such as:

o Create, delete, and rename files and folders.

o Change the location of files and folders by using drag
and drop.

o See the context menu to see all options.

Moreover, you can drag and drop files into the Explorer from outside
VS Code to make a VS copy of them, so that if the explorer is empty, VS
Code will access them instead.

VS Code also works very well with other tools that you might use,
especially command-line tools. If you need to run a command-line tool in
the context of the folder you have open in VS Code, right-click the folder and
select Open in Command Prompt (or Open in Terminal on macOS or Linux).

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

At the same time, you can navigate to the location of a file or folder in
the native Explorer by right-clicking on a file or folder and selecting Reveal
in Explorer (or Reveal in Finder on macOS, or Open Containing Folder on
Linux). You may also type Ctrl+P (Quick Open option) to quickly search
and open a file by its name.

By default, VS Code does not open some folders from the Explorer
(for example, .git). In this case, you can use the files.exclude setting to edit
rules for hiding files and folders from the Explorer. However, if you have
any derived resource files, such as *.meta in Unity or *.js in a TypeScript
project, then this solution is not really going to be useful. Please note that
for Unity to exclude the *.cs.metafiles, the pattern to select would be “**/*.
cs.meta”: true. For TypeScript, you can exclude generated JavaScript for

», u

TypeScript files with “**/* js”: {“when”: “$(basename).ts”}.

Multiselection

You can choose multiple files in the File Explorer and OPEN EDITORS view
to complete actions (Delete, Drag and Drop, Open to the Side) on multiple
items. Simply use the Ctrl/Cmd key with a click to select individual files
and Shift + click to select a range. If you select two items, you can now use
the context menu Compare Selected command to quickly differentiate the
two files. Also, remember that in earlier VS Code releases, clicking with

the Ctrl/Cmd key pressed would open a file in a new Editor Group to the
side. If you would still like this feature, you can use the workbench.list.
multiSelectModifier setting to modify multiselection to use the Alt key by
“workbench.list. multiSelectModifier”: “alt”

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Filtering the Document Tree

It is possible to filter the currently visible files in the File Explorer. You
can simply start typing part of the file name you want to match, keeping
the focus on the File Explorer. You will be able to see a filter box in the
top-right of the File Explorer presenting what you have typed so far, and
matching file names will be highlighted. Once you press the cursor keys
to move up and down the file list, it will switch between matching files or
folders. However, switching over the filter box and selecting Enable Filter
on Type will show only matching files and folders. You can apply the X
Clear button to clear the filter.

Outline View

The Outline view is a section at the bottom of the File Explorer. When
activated, it will show the symbol tree of the currently active editor. The
Outline view has different Sort By modes and optional cursor tracking, and
supports the usual open gestures. It also has an input box that can search
for filters and symbols as you type. Errors and warnings are also displayed
in the Outline view, allowing you to see a glimpse of a problem as well as
its location.

As for symbols, the view relies heavily on the data computed by
your installed extensions for different file types. For instance, the built-
in Markdown support returns the Markdown header hierarchy for a
Markdown file’s symbols.

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Markdown Outline View

There are a few Outline view settings that allow you to enable and disable
items and operate with errors and warnings display (all enabled by
default):!

o outline.icons: toggle rendering outline elements with

icons.

o outline.problems.enabled: shows errors and warnings
on outline elements.

o outline.problems.badges: toggle using badges for
errors and warnings.

o outline.problems.colors: toggle using colors for errors

and warnings.

Open Editors

At the top of the Explorer, there is a section labeled as OPEN EDITORS that
displays a list of active files or previews. There might also be some files
visible that you previously opened in VS Code. For example, a file will be
listed in the OPEN EDITORS view if you make a change to a file, double-
click a file’s header, double-click a file in the Explorer, or open a file that is
not part of the current folder. By clicking an item in the OPEN EDITORS
view, it becomes active in VS Code. Once you are finished with your
project and wish to remove files individually from the OPEN EDITORS
view, or remove all files, you can do so by using the View: Close All Editors
or View and then Close All Editors in Group actions.

1Visual Studio Code, “Markdown and Visual Studio Code,”
https://code.visualstudio.com/docs/languages/markdown, accessed
July 29, 2021.

https://code.visualstudio.com/docs/languages/markdown

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Views

The File Explorer is just one of the Views available in VS Code. There are

also Views for:?

e Search: Provides global search and replace across your
open folder.

e Source Control: VS Code includes Git source control
by default.

¢ Run: VS Code’s Run and Debug View displays
variables, call stacks, and breakpoints.

o Extensions: Installs and manages your extensions
within VS Code.

o Custom views: Views contributed by extensions.

Any of these views can be accessed by using the View: Open View
command.

Activity Bar

The Activity Bar on your left is designed for you to easily switch between Views.
You can also reorder Views by dragging and dropping them on the Activity Bar,
or stow away a View entirely with the right-click Hide from Activity Bar.

Command Palette

VS Code is also easily accessible from the keyboard. The most useful key
combination to know is Ctrl+Shift+P, which calls for the Command Palette.
With the Command Palette you have access to all of the functionality of VS

2Visual Studio Code, “User and Workspace Settings,” https://code.visualstudio.
com/docs/getstarted/settings, accessed July 29, 2021.

10

https://code.visualstudio.com/docs/getstarted/settings
https://code.visualstudio.com/docs/getstarted/settings

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Code, including keyboard shortcuts for the most implemented operations.

The Command Palette provides access to many commands. You can

manage editor commands, open files, search for items, and see a quick

outline of a file, all while using the same interactive window. Following are

a few navigation combinations:?

Ctrl+P will let you navigate to any file or symbol by
typing its name.

Ctrl+Tab will cycle you through the last set of files
opened.

Ctrl+Shift+P will bring you directly to the editor
commands.

Ctrl+Shift+0O will let you navigate to a specific symbol in
a file.

Ctrl+G will let you navigate to a specific line in a file.

Type ? into the input field to get a list of available
commands you can execute from Quick Open Help.

Configuring the Editor

VS Code has many options for you to configure the editor. From the View

menu you can hide or toggle various bits of the user interface, such as the
Side Bar, Status Bar, and Activity Bar.

3Visual Studio Code, “User and Workspace Settings.”

11

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Hiding the Menu Bar (for Windows, Linux)

You can hide the Menu Bar on Windows and Linux by selecting the setting
window.menuBarVisibility from classic to toggle. The toggle setting means
that a single press of the Alt key will show the Menu Bar again.

You can also remove the Menu Bar on Windows and Linux with the
View » Toggle Menu Bar command. This command switches window.
menuBarVisibility from classic to compact, resulting in the Menu Bar
moving into the Activity Bar. To move back to the Menu Bar to the classic
position, select the View » Toggle Menu Bar command again.

Settings

Most basic editor configurations are kept in settings that can be modified
directly. You can set options globally through user settings, or per project
or file through workspace settings. Settings options are kept in a settings.
json file. You can follow the path Select File » Preferences » Settings
(or press Ctrl+,) to edit the user settings.json file. To change workspace
settings, click the WORKSPACE SETTINGS tab to edit the workspace
settings.json file. Note that for macOS users, the Preferences menu is
located under Code, not File; please follow Code » Preferences » Settings.
You can access the VS Code Default Settings in the left window, and
your editable settings.json on the right. It is also possible to easily filter
settings in the Default Settings using the search box at the top. You can
copy a setting over to the editable settings.json on the right by clicking
on the edit icon to the left of the setting. Settings with a fixed set of values
let you select a primary value as a section of their edit icon menu. After
editing your settings, type Ctrl+S to settle your changes. The changes will
take effect instantly. Workspace settings will override User settings and are
beneficial for sharing particular project settings.

12

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Zen Mode

Zen mode enables you to focus on your code by removing all User
Interface items (Activity Bar, Status Bar, Side Bar, and Panel) except the
editor, displaying the full screen and centering the editor layout only. Zen
mode can be toggled using the View menu, Command Palette or by the
shortcut, Ctrl+K Z. To exit Zen mode, press double Esc. The transition

to full screen can be disabled via zenMode.fullScreen. Zen mode can be
further modified using the following settings: zenMode.hideStatusBar,
zenMode.hideTabs, zenMode.fullScreen, zenMode.restore, and zenMode.
centerLayout.

Centered Editor Layout

Centered editor layout lets you center-align the editor area. This is
especially useful if you find yourself working with a single editor on a large
monitor. You can apply the sashes on the side to resize the view with the
Alt key, and using the same method you can also independently move the
sashes.

Tabs

VS Code displays open items with tabbed headings or Tabs in the title area
above the editor. If you open a file, a new Tab is added for that file. Tabs
allow you to quickly navigate between files, and you can drag and drop
tabs to reorder them as you wish. When you have more open items than
can fit in the title area, you can apply the Show Opened Editors command
to show a dropdown list of tabbed items.

If you do not want to use Tabs, you can turn off the feature by setting
the workbench.editor.showTabs setting to false: “workbench.editor
.showTabs”: false.

13

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Tab Ordering

By default, new Tabs are included to the right of the existing Tabs, but
you can administer where you would like new Tabs to appear with the
workbench.editor.openPositioning setting. For instance, you might like
new tabbed items to appear on the left, by using “workbench.editor
.openPositioning”: “left”.

Preview Mode

Once you single-click or select a file in the Explorer, it is shown in a
presentation mode and reuses an existing Tab. This is particularly helpful
if you just need to quickly browse files and do not want each file you
accessed to have its own Tab. When you start editing the file or use double-
click to open the file from the Explorer, a new Tab is assigned to that file.
Preview mode is indicated by italics in the Tab heading: preview mode.

If you would rather not see the preview mode and always make a new
Tab, you can control the pattern with these settings:

o workbench.editor.enablePreview: to globally enable
or disable preview editors.

o workbench.editor.enablePreviewFromQuickOpen:
to enable or disable preview editors when opened from
Quick Open.

Editor Groups

If you split an editor via the Split Editor or Open to the Side commands,
a new editor region that can hold a group of items is created instead.
At the same time, you can open as many editor regions as you like
side-by-side vertically and horizontally. You can see them in order in

14

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

the OPEN EDITORS section at the top of the Explorer view. The OPEN
EDITORS section also allows you to Drag and Drop editor groups on the
workbench, move individual Tabs between groups, and quickly close
entire groups by clicking on Close All.

Be sure that VS Code uses editor groups whether or not you have any
Tabs on. Without Tabs, editor groups are a stack of your open items with
the most recently searched item visible in the editor pane. By default,
editor groups are structured in vertical columns when you split an editor
to open it to the side. You can also arrange editor groups in any layout you
like, both vertically and horizontally.

In order to support flexible layouts, you should create empty editor
groups. By default, closing the last editor of an editor group will also close
the group itself, but you can modify this behavior with the new setting
workbench.editor.closeEmptyGroups: false. You can also see if there are
any predefined set of editor layouts in the View » Editor Layout menu.

Editors that open to the side by clicking the editor toolbar Split Editor
action will normally open to the right-hand side of the active editor. If
you prefer to open editors below the active one, configure the new setting
workbench.editor.openSideBySideDirection: down.

There are plenty of keyboard commands for adjusting the editor layout
with the keyboard alone, but if you prefer to use the mouse, drag and drop
is the fastest method to split the editor into any direction. In addition, if
you press and hold the Alt key while switching over the toolbar action to
split an editor, it will offer to split to the other orientation. This is another
fast way to split either to the right or to the bottom.

15

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Keyboard Shortcuts

It will also be very beneficial for you to know some handy keyboard
shortcuts to quickly navigate between editors and editor groups. Some of
the most widely used ones are the following:*

o Ctrl+PageDown go to the right editor.
e Ctrl+PageUp go to the left editor.

e Ctrl+Tab open the previous editor in the editor group
MRU list.

o Ctrl+1 go to the leftmost editor group.

o Ctrl+2 go to the center editor group.

o Ctrl+3 go to the rightmost editor group.

o Ctrl+F4 close the active editor.

o Ctrl+K W close all editors in the editor group.

o Ctrl+K Ctrl+W close all editors.

Disabling Preview Mode

Without Tabs, the OPEN EDITORS section of the File Explorer is a great
way to do file navigation. With preview editor mode, files are not shown
in the OPEN EDITOR list, nor editor group on single-click open. You can
turn this feature off through the workbench.editor.enablePreview and
workbench.editor.enablePreviewFromQuickOpen settings.

*Visual Studio Code, “User Interface,” https://code.visualstudio.com/docs/
getstarted/userinterface, accessed July 29, 2021.

16

https://code.visualstudio.com/docs/getstarted/userinterface
https://code.visualstudio.com/docs/getstarted/userinterface

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Using Ctrl+Tab to Navigate in Entire Editor
History

You can edit keybindings for Ctrl+Tab to show you a list of all opened
editors from the history independent from the active editor group. You can
edit your keybindings and add the following by using:

{ "key": "ctrl+tab", "command":
"workbench.action.openPreviousEditorFromHistory" },

{ "key": "ctrl+tab", "command":
"workbench.action.quickOpenNavigateNext", "when": "inQuickOpen" }

Closing an Entire Group Instead of a Single
Editor

If you want to repeat the behavior of VS Code closing an entire group when
closing one editor, you can bind the following in your keybindings by

using:

mac0S: { "key": "cmd+w", "command":
"workbench.action.closeEditorsInGroup" }
Windows/Linux: { "key": "ctrl+w", "command":
"workbench.action.closeEditorsInGroup" }

Window Management

VS Code has some options to operate to determine how windows

can be opened or restored between sessions. The settings
window.openFoldersinNewWindow and window.openFilesinNewWindow
are used to configure opening new windows or reusing the last active

window for files or folders and possible values by default.

17

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

If edited to turn to default conditions, VS Code will restore all windows
you worked on during your previous session. However, there can still be
cases where this setting is ignored (for instance, if using the -new-window
or -reuse-window command-line option).

The window.restoreWindows setting tells VS Code how to restore the
opened windows of your previous session. You can also change this setting
to never reopen any windows and always start with an empty VS Code
instance.

We will now take a look at how to set up VS Code for Python
development.

Setting Up Visual Studio Code

Getting and activating VS Code is easy and quick. All it takes is a small

download and then you can install it in a matter of minutes (Figure 1-2).

M Visual Studio Code

& Microsoft

Figure 1-2. Setting up VS Code

18

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Cross-Platform

VS Code is a free code editor that runs on the macOS, Linux, and Windows
operating systems.

For smoother installation you can follow the following platform-
specific guides:®

Mac0S

1. Download VS Code for macOS.

2. Open the browser’s download list and locate the
downloaded archive.

3. Select the magnifying glass icon to open the archive
in Finder.

4. DragVS Code.app to the Applications folder, making
it available in the macOS Launchpad.

5. Add VS Code to your Dock by right-clicking on the
icon to bring up the context menu and choosing
Options, Keep in Dock.

Linux

VS Code is officially distributed as a Snap package in the Snap Store, and
can also be downloaded from the official site as an RPM or DEB package.

You can install it by running: sudo snap install --classic code # or
code-insiders.

®Visual Studio Code, “Setting Up Visual Studio Code,” https://code.
visualstudio.com/docs/setup/setup-overview, accessed July 29, 2021.

19

https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/setup/setup-overview

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Once installed, the Snap daemon will take care of automatically
updating VS Code in the background. You can also expect to get an in-
product update notification whenever a new update is available.

Windows

1. Download the VS Code installer for Windows.

2. Once itis downloaded, run the installer
(VSCodeUserSetup-{version}.exe). This will only
take a minute.

3. Bydefault, VS Code is installed under C:\users\
{username}\AppData\Local\Programs\Microsoft VS
Code.

VS Code is lightweight and should run on most available hardware and
platform versions. You can review the System Requirements to see whether
your computer configuration is supported.

Updating Cadence

VS Code releases a new version every month with new features and
progressive bug fixes. Most platforms have auto-updating installed, so you
will be prompted to look for the new release when it becomes available.
You can also manually check for updates by running Help » Check for
Updates on Linux and Windows, or running Code » Check for Updates on
macOS. Additionally, you can also disable auto-update if you would like to
update VS Code according to your own schedule.

20

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Insiders Nightly Build

If you'd like to check out VS Code nightly builds to get access to new
features earlier than the rest of the users or to verify bug fixes, you can
install the Insiders build. The Insiders build installs side by side with the
monthly Stable build, and you can freely incorporate and work with both
on the same machine. The Insiders build is the same tool that the VS Code
development team uses on a daily basis. If you have valuable feedback
about the new features to offer, the development team would really
appreciate it.

Portable Mode

VS Code also supports Portable mode installation. This mode ensures that
all data created and maintained by VS Code is stored in close quarters so
that when necessary it can be moved around across environments, even
on a USB drive.

Additional Components

VS Code is an editor with a relatively small footprint. Unlike other
traditional editors that tend to include every other function, with VS
Code you can tune and customize your installation to the development
technologies most important to you.

Extensions

VS Code extensions let third parties add support for the following:
o Languages: C++, C#, Go, Java, Python

o Tools: ESLint, JSHint , PowerShell

21

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

o Debuggers: PHP XDebug

e Keymaps: Vim, Sublime Text, Intelli], Emacs, Atom,
Brackets, Visual Studio, Eclipse

Extensions smoothly integrate into VS Code’s User Interface,
commands, and task running systems, so you will find it easy to operate
with different technologies through VS Code’s shared interface.

Key Bindings for Visual Studio Code

VS Code offers you an option to manage most tasks directly from the
keyboard (Figure 1-3). This section lists out the default bindings (keyboard
shortcuts) and gives you an overview of how you can update them.

pqg Visual Studio Code

Keyboard Shortcuts

Figure 1-3. Using keyboard shortcuts in VS Code

Keyboard Shortcuts Editor

VS Code has many simple keyboard shortcuts using Keyboard Shortcuts
editor. It illustrates all available commands with and without keybindings,
and you can easily change, remove, and update these using the available

22

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

options. It also has a search box on the top that is useful when searching
for commands or keybindings. You can open this editor by looking at

the menu under File » Preferences » Keyboard Shortcuts (Code »
Preferences » Keyboard Shortcuts on macOS). You can also access a
printable version of these keyboard shortcuts at Help » Keyboard Shortcut
Reference and get a condensed PDF version suitable for printing as a user-
friendly reference.

Detecting Keybinding Conflicts

If you have too many extensions installed or you have customized most of
your keyboard shortcuts, you may at times face keybinding conflicts where
the same keyboard shortcut is mapped to perform several commands. This
can result in confusing occurrences, especially if different keybindings are
going in and out of scope when you keep working with the editor. From
time to time you should check on the Keyboard Shortcuts editor that has

a context menu command Show Same Keybindings, which is used to filter
the keybindings based on a keyboard shortcut to display and potentially
prevent any conflicts.

Troubleshooting Keybindings

To troubleshoot keybindings problems, you can activate the command
Developer: Toggle Keyboard Shortcuts Troubleshooting. This will help to
perform logging of dispatched keyboard shortcuts and will give access to
the output panel with the corresponding log file.

With it, you can later press your desired keybinding and check what
keyboard shortcut VS Code uses and what command is activated.

23

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Keyboard Rules

Each rule consists of the following:®
o akey that defines the pressed keys.

e acommand containing the identifier of the command
to execute.

e anoptional when clause containing a Boolean
expression that will be calculated depending on the
current context.

Two separate keypress actions known as Chords are described by
separating the two keypresses with space. For example, Ctrl+K Ctrl+C.
When a key is pressed:

o therules are assessed from bottom to top.

o the first rule that matches, both the key and in terms of
when is accepted.

e no more rules are processed.

o ifaruleisfound and has a command set too, the
command is implemented.

The additional keybindings.json rules are omitted at runtime to the
bottom of the default rules, therefore allowing them to overwrite the
default rules. The keybindings.json file is observed by VS Code, so editing
it while VS Code is running will upgrade the rules at runtime.

The keyboard shortcuts dispatching is completed by analyzing a list of
rules that are stored in JSON. To illustrate with a few examples:’

®Visual Studio Code, “Key Bindings for Visual Studio Code,” https://code.
visualstudio.com/docs/getstarted/keybindings, accessed July 29, 2021.

"Visual Studio Code, “Key Bindings for Visual Studio Code.”

24

https://code.visualstudio.com/docs/getstarted/keybindings
https://code.visualstudio.com/docs/getstarted/keybindings

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

// Keybindings that are active when the focus is in the editor:

{ "key": "home", "command": "cursorHome",
"when": "editorTextFocus" },

{ "key": "shift+home", "command": "cursorHomeSelect"

s "when": "editorTextFocus" },

// Keybindings that are complementary:
{ "key": "f5", "command":
"workbench.action.debug.continue", "when": "inDebugMode" },
{ "key": "f5", "command" :
"workbench.action.debug.start", "when": "!inDebugMode" },

// Global keybindings:

{ "key": "ctrl+f", "command": "actions.find" },
{ "key": "alt+left", "command":
"workbench.action.navigateBack" },

{ "key": "alt+right", "command" :

"workbench.action.navigateForward" },

// Global keybindings using chords (two separate keypress actions):
{ "key": "ctrl+k enter”, "command":
"workbench.action.keepEditor" },

{ "key": "ctrl+k ctrl+w", "command":
"workbench.action.closeAllEditors" },

Accepted Keys

The key is made up of modifiers and the key itself. The following modifiers
are accepted:

Platform Modifiers

mac0S Ctrl+, Shift+, Alt+, Cmd+
Windows Ctrl+, Shift+, Alt+, Win+
Linux Ctrl+, Shift+, Alt+, Meta+

25

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

The following keys are accepted:
o f1-f19,a-z 0-9
] A
o left, up, right, down, pageup, pagedown, end, home
o tab, enter, escape, space, backspace, delete
o pausebreak, capslock, insert

e numpad0-numpad9, numpad_multiply, numpad_add,
numpad_separator

e numpad_subtract, numpad_decimal, numpad_divide

Command Arguments

You can call on command with arguments. This is especially helpful if you
usually perform the same operation on a specific file or folder. You can
include a custom keyboard shortcut to do exactly what you need it to do.
The following is an example of overriding the Enter key to print some text:

{

"key": "enter",

"command": "type",

"args": { "text": "Hello There" },
"when": "editorTextFocus"

The type command will receive {“text”: “Hello There”} as its first
argument and add “Hello There” to the file instead of producing the
default command.

26

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Removing a Specific Key Binding Rule

You can script a key binding rule that targets the dismissal of a specific
default key binding. With keybindings.json it was always acceptable to
redefine all the key bindings of VS Code, but it can be challenging to
make a small addition, especially around overloaded keys, such as Tab or
Escape. In order to hide a specific key binding, add a - to the command
and the rule will be a removal one.

Keyboard Layout-Independent Nindings

Using scan codes, it is manageable to define keybindings that do not
change with the modification of the keyboard layout. For example: { “key”:
“cmd+[Slash]’, “command”: “editor.action.commentLine’, and “when”:
“editorTextFocus” }.

The following scan codes are accepted:

[F1]-[F19], [KeyA]-[KeyZ], [Digito]-[Digit9]

[Backquote], [Minus], [Equal], [BracketLeft], [BracketRight],
[Backslash], [Semicolon], [Quote], [Comma], [Period], [Slash]
[ArrowLeft], [ArrowUp], [ArrowRight], [ArrowDown], [PageUp],
[PageDown], [End], [Home]

[Tab], [Enter], [Escape], [Space], [Backspace], [Delete]
[Pause], [CapsLock], [Insert]

[Numpado]-[Numpad9], [NumpadMultiply], [NumpadAdd],
[NumpadComma]

[NumpadSubtract], [NumpadDecimal], [NumpadDivide]

27

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

When Clause Contexts

VS Code gives you full control over when your key bindings are activated
through the optional when clause. If some key bindings do not have a
when clause, those key binding are globally available at all times. A when
clause relates to either Boolean true or false for operating key bindings.

In addition, VS Code sets various context keys and specific values
depending on what elements are available and active in the VS Code User
Interface. For instance, the built-in Start Debugging command has the
keyboard shortcut F5, which is only enabled when there is an appropriate
debugger available (context debuggersAvailable is true) and the editor is
not in debug mode (context inDebugMode is false).

Conditional Operators

For when clause conditional expressions, the conditional operators in
Table 1-1 are used for keybindings.?

Table 1-1. Conditional operators

Operator Symbol Example

Equality == “editorLangld == typescript”

Inequality != “resourceExtname != .js”

Or I “isLinuxllisWindows”

And && “textinputFocus &&
leditorReadonly”

Matches =~ “resourceScheme =~

/Auntitled$INfile$/”

8Visual Studio Code, “Key Bindings for Visual Studio Code.”

28

CHAPTER 1

Available Contexts

INTRODUCTION TO VISUAL STUDIO CODE

You can see some of the available contexts at hand when clause contexts in

the when clause context reference. The list there is not as exhaustive, and

you can look for other when clause contexts by searching and filtering in

the Keyboard Shortcuts editor (Preferences: Open Keyboard Shortcuts) or

reviewing the Default Keybindings JSON file (Preferences: Open Default
Keyboard Shortcuts (JSON)). Tables 1-2 through 1-12 provides shortcuts
for some basic commands.’

Table 1-2. Basic editing

Command Key Command id

Cut line (empty Ctrl+X editor.action.clipboardCutAction
selection)

Copy line (empty Ctrl+C editor.action.clipboardCopyAction
selection)

Paste Ctrl+V editor.action.clipboardPasteAction
Delete Line Cirl+Shift+K editor.action.deleteLines

Insert Line Below Ctrl+Enter editor.action.insertLineAfter

Insert Line Above Ctrl+Shift+Enter editor.action.insertLineBefore
Move Line Down Alt+Down editor.action.moveLinesDownAction
Move Line Up Alt+Up editor.action.moveLinesUpAction
Copy Line Down Shift+Alt+Down editor.action.copyLinesDownAction
Copy Line Up Shift+Alt+Up editor.action.copyLinesUpAction

(continued)

%Visual Studio Code, “When Clause Contexts,” https://code.visualstudio.com/
api/references/when-clause-contexts, VS Code, web, accessed July 29, 2021.

29

https://code.visualstudio.com/api/references/when-clause-contexts
https://code.visualstudio.com/api/references/when-clause-contexts

CHAPTER 1

Table 1-2. (continued)

INTRODUCTION TO VISUAL STUDIO CODE

Command Key Command id

Undo Ctrl+Z undo

Redo Ctrl+Y redo

Add Selection To Next Ctrl+D editor.action

Find Match .addSelectionToNextFindMatch
Move Last Selection Cirl+K editor.action

To Next Find Match .moveSelectionToNextFindMatch
Undo last cursor Cirl+U cursorUndo

operation

Insert cursor atend Shift+Alt+| editor.action

of line .insertCursorAtEndOfEachLineSelected
Select all occurrences Ctrl+Shift+L editor.action.selectHighlights
of current selection

Select all occurrences Ctrl+F2 editor.action.changeAll

of current word

Select current line Ctrl+L expandLineSelection

Insert Cursor Below Ctrl+Alt+Down editor.action.insertCursorBelow
Insert Cursor Above Ctrl+Alt+Up editor.action.insertCursorAbove
Jump to matching Ctrl+Shift+\ editor.action.jumpToBracket
bracket

Indent Line Ctrl+] editor.action.indentLines
Outdent Line Ctrl+[editor.action.outdentLines

Go to Beginning of Home cursorHome

Line

30

(continued)

CHAPTER 1

Table 1-2. (continued)

INTRODUCTION TO VISUAL STUDIO CODE

Command Key Command id
Go to End of Line End cursorEnd
Go to End of File Ctrl+End cursorBottom
Go to Beginning of File Ctrl+Home cursorTop

Scroll Line Down Ctrl+Down
Scroll Line Up Ctrl+Up
Scroll Page Down Alt+PageDown
Scroll Page Up Alt+PageUp
Fold (collapse) region Ctrl+Shift+[
Unfold (uncollapse) Ctrl+Shift+]
region

Fold (collapse) all Ctrl+K Ctrl+[
subregions

Unfold (uncollapse) all Girl+K Ctrl+]
subregions

Fold (collapse) all Ctrl+K Ctrl+0
regions

Unfold (uncollapse) all Ctrl+K Ctrl+J
regions

Add Line Comment Ctrl+K Ctrl+C
Remove Line Ctrl+K Ctrl+U
Comment

Toggle Line Comment Ctrl+/

scrollLineDown
scrollLineUp
scrollPageDown
scrollPageUp
editor.fold

editor.unfold

editor.foldRecursively

editor.unfoldRecursively

editor.foldAll

editor.unfoldAll

editor.action.addCommentLine

editor.action.removeCommentLine

editor.action.commentLine

(continued)

31

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Table 1-2. (continued)

Command Key Command id

Toggle Block Shift+Alt+A editor.action.blockComment
Comment

Find Ctrl+F actions.find

Replace Ctrl+H editor.action.startFindReplaceAction
Find Next Enter editor.action.nextMatchFindAction
Find Previous Shift+Enter editor.action.previousMatchFindAction

Select All Occurrences Alt+Enter
of Find Match

Toggle Find Case Alt+C
Sensitive

Toggle Find Regex Alt+R

Toggle Find Whole Alt+W
Word

Toggle Use of Tab Key Ctrl+M
for Setting Focus

Toggle Render unassigned
Whitespace

Toggle Word Wrap Alt+Z

editor.action.selectAllMatches

toggleFindCaseSensitive

toggleFindRegex
toggleFindWholeWord

editor.action.toggleTabFocusMode

toggleRenderWhitespace

editor.action.toggleWordWrap

32

CHAPTER 1

Table 1-3. Rich languages editing

INTRODUCTION TO VISUAL STUDIO CODE

Command Key Command id

Trigger Suggest Ctrl+Space editor.action.triggerSuggest
Trigger Parameter Hints Ctrl+Shift+Space editor.action.triggerParameterHints
Format Document Shift+Alt+F editor.action.formatDocument
Format Selection Ctrl+K Ctrl+F editor.action.formatSelection

Go to Definition F12 editor.action.revealDefinition
Show Hover Ctrl+K Ctrl+l editor.action.showHover

Peek Definition Alt+F12 editor.action.peekDefinition

Open Definition to the Ctrl+K F12 editor.action.revealDefinitionAside
Side

Quick Fix Ctrl+. editor.action.quickFix

Go to References Shift+F12 editor.action.goToReferences
Rename Symbol F2 editor.action.rename

Replace with Next Ctrl+Shift+. editor.action.inPlaceReplace.down
Value

Replace with Previous Ctrl+Shift+, editor.action.inPlaceReplace.up
Value

Expand AST Selection Shift+Alt+Right editor.action.smartSelect.expand
Shrink AST Selection Shift+Alt+Left editor.action.smartSelect.shrink
Trim Trailing Ctrl+K Ctrl+X editor.action.trimTrailingWhitespace
Whitespace

Change Language Ctrl+K'M workbench.action.editor

Mode .changeLanguageMode

33

CHAPTER 1

Table 1-4. Navigation

INTRODUCTION TO VISUAL STUDIO CODE

Command Key Command id

Show All Symbols Ctrl+T workbench.action.showAllSymbols

Go to Line... Ctrl+G workbench.action.gotoLine

Go to File..., Quick Open Ctrl+P workbench.action.quickOpen

Go to Symbol... Ctrl+Shift+0 workbench.action.gotoSymbol

Show Problems Ctrl+Shift+M workbench.actions.view.problems

Go to Next Error or F8 editor.action.marker.nextInFiles

Warning

Go to Previous Erroror Shift+F8 editor.action.marker.previnFiles

Warning

Show All Commands Ctrl+Shift+P or F1 workbench.action.showCommands

Navigate Editor History Ctrl+Tab workbench.action.quickOpen
PreviousRecentlyUsedEditorinGroup

Go Back Alt+Left workbench.action.navigateBack

Go back in Quick Input Alt+Left workbench.action.quicklnputBack

Go Forward Alt+Right workbench.action.navigateForward

Table 1-5. Editor/window management

Command Key Command id

New Window Ctrl+Shift+N workbench.action.newWindow
Close Window Ctrl+W workbench.action.closeWindow
Close Editor Ctrl+F4 workbench.action.closeActiveEditor
Close Folder Ctrl+KF workbench.action.closeFolder

34

(continued)

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Table 1-5. (continued)

Command Key Command id

Cycle Between Editor unassigned workbench.action

Groups .navigateEditorGroups

Split Editor Ctrl+\ workbench.action.splitEditor

Focus into First Editor Ctrl+1 workbench.action

Group .focusFirstEditorGroup

Focus into Second Ctrl+2 workbench.action

Editor Group .focusSecondEditorGroup

Focus into Third Editor Ctrl+3 workbench.action

Group .focusThirdEditorGroup

Focus into Editor unassigned workbench.action

Group on the Left .focusPreviousGroup

Focus into Editor unassigned workbench.action.focusNextGroup

Group on the Right

Move Editor Left Ctrl+Shift+PageUp ~ workbench.action
.moveEditorLeftinGroup

Move Editor Right Ctrl+Shift+PageDown workbench.action
.moveEditorRightinGroup

Move Active Editor Ctrl+K Left workbench.action

Group Left .moveActiveEditorGroupLeft

Move Active Editor Ctrl+K Right workbench.action

Group Right .moveActiveEditorGroupRight

Move Editor into Next Ctrl+Alt+Right workbench.action

Group .moveEditorToNextGroup

Move Editor into Ctrl+Alt+Left workbench.action

Previous Group .moveEditorToPreviousGroup

35

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Table 1-6. File management

Command Key Command id

New File Ctrl+N workbench.action.files.newUntitledFile

Open File... Ctrl+0 workbench.action.files.openFile

Save Cirl+S workbench.action.files.save

Save All Ctrl+K' S saveAll

Save As... Ctrl+Shift+S workbench.action.files.saveAs

Close Ctrl+F4 workbench.action.closeActiveEditor

Close Others unassigned workbench.action.closeOtherEditors

Close Group Ctrl+K'W workbench.action.closeEditorsinGroup

Close Other Groups unassigned workbench.action
.closeEditorsinOtherGroups

Close Group to Left unassigned workbench.action.closeEditorsToTheLeft

Close Group to Right unassigned

Close All Ctrl+K
Ctrl+W

Reopen Closed Editor Ctrl+Shift+T
Keep Open Ctrl+K Enter
Copy Path of Active File Ctrl+K P

Reveal Active File in Ctrl+K R
Window

Show Opened File in Ctrl+K
New Window

Compare Opened File unassigned
With

workbench.action.closeEditorsToTheRight

workbench.action.closeAllEditors

workbench.action.reopenClosedEditor
workbench.action.keepEditor
workbench.action.files.copyPathOfActiveFile

workbench.action.files.
revealActiveFilelnWindows

workbench.action.files.
showOpenedFilelInNewWindow

workbench.files.action.compareFileWith

36

Table 1-7. Display

CHAPTER 1

INTRODUCTION TO VISUAL STUDIO CODE

Command Key Command id

Toggle Full Screen F11 workbench.action.toggleFullScreen
Toggle Zen Mode Ctrl+K Z workbench.action.toggleZenMode
Leave Zen Mode Escape workbench.action.exitZenMode
Zoom in Ctrl+= workbench.action.zoomin

Zoom out Crl+- workbench.action.zoomOut

Reset Zoom Ctrl+Numpad0 workbench.action.zoomReset
Toggle Sidebar Visibility ~ Ctrl+B workbench.action.toggleSidebarVisibility
Show Explorer / Toggle ~ Ctrl+Shift+E workbench.view.explorer

Focus

Show Search Ctrl+Shift+F workbench.view.search

Show Source Control Ctrl+Shift+G workbench.view.scm

Show Run Ctrl+Shift+D workbench.view.debug

Show Extensions Ctrl+Shift+X workbench.view.extensions

Show Output Ctrl+Shift+U workbench.action.output.toggleOutput
Quick Open View Ctrl+Q workbench.action.quickOpenView
Open New Command Ctrl+Shift+C workbench.action.terminal

Prompt .openNativeConsole

Toggle Markdown Ctrl+Shift+V markdown.showPreview

Preview

Open Preview to the Side Ctrl+KV markdown.showPreviewToSide
Toggle Integrated Ctrl+ workbench.action.terminal

Terminal

.toggleTerminal

37

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Table 1-8. Search

Command Key Command id

Show Search Ctrl+Shift+F workbench.view.search

Replace in Files Ctrl+Shift+H workbench.action.replacelnFiles

Toggle Match Case Alt+C toggleSearchCaseSensitive

Toggle Match Whole Word ~ Alt+W toggleSearchWholeWord

Toggle Use Regular Alt+R toggleSearchRegex

Expression

Toggle Search Details Ctrl+Shift+J workbench.action.search
.toggleQueryDetails

Focus Next Search Result F4 search.action.focusNextSearchResult

Focus Previous Search Shift+F4 search.action.focusPreviousSearchResult

Result

Show Next Search Term Down history.showNext

Show Previous Search Up history.showPrevious

Term

Table 1-9. Search editor

Command Key Command id

Open Results In Alt+Enter search.action.openinEditor

Editor

Focus Search Editor Escape search.action.focusQueryEditorWidget
Input

Search Again Ctrl+Shift+R rerunSearchEditorSearch

Delete File Results Ctrl+Shift+Backspace search.searchEditor.action
.deleteFileResults

38

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Table 1-10. Preferences

Command Key Command id
Open Settings Ctrl+, workbench.action.openSettings
Open Workspace Settings unassigned workbench.action
.openWorkspaceSettings
Open Keyboard Shortcuts ~ Ctrl+K workbench.action
Ctrl+S .openGlobalKeybindings
Open User Snippets unassigned workbench.action.openSnippets
Select Color Theme Ctrl+K workbench.action.selectTheme
Ctrl+T
Configure Display unassigned workbench.action.configureLocale
Language
Table 1-11. Debug
Command Key Command id
Toggle Breakpoint F9 editor.debug.action.toggleBreakpoint
Start F5 workbench.action.debug.start
Continue F5 workbench.action.debug.continue
Start (without debugging) Ctrl+F5 workbench.action.debug.run
Pause F6 workbench.action.debug.pause
Step Into F11 workbench.action.debug.stepinto
Table 1-12. Tasks
Command Key Command id
Run Build Task Ctrl+Shift+B workbench.action.tasks.build
Run Test Task Unassigned workbench.action.tasks.test

39

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Table 1-13. Extensions

Command Key Command id

Install Extension unassigned workbench.extensions
.action.installExtension

Show Installed Extensions unassigned workbench
.extensions.action
.showInstalledExtensions

Show Outdated Extensions unassigned workbench
.extensions.action
JistOutdatedExtensions

Show Recommended Extensions unassigned workbench.extensions
.action.showRecommended
Extensions

Show Popular Extensions unassigned workbench
.extensions.action
.showPopularExtensions

Update All Extensions unassigned workbench.extensions

.action.updateAllExtensions

Programming Languages Supported

In VS Code, there is a support tool for almost every major programming

language. Most of the default settings for JavaScript, TypeScript, CSS,

and HTML with rich language extensions can be found in the VS Code

Marketplace. These are eight of the most popular language extensions:

e Python
o C/C++
o (C#

40

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

¢ Java Extension Pack
e Go

e Dart

o PHP Extension Pack
e Ruby

You can go to the Marketplace or check out the integrated Extensions
view and search for your desired programming language to find snippets,
code completion and IntelliSense providers, linters, debuggers, and more.
If you want to change the display language of VS Code (for example, to
some other available language), you can do that in the Display Language
topic.

It is best to have some prior understanding of these programming
languages and their language specific documentation supported by VS
Code in advance.

Language Features in VS Code

The richness of support characteristics varies across the different
languages and their extensions:

e Syntax highlighting and bracket matching

e Smart completions

o Linting and corrections

e Code navigation (Go to Definition, Find All References)
e Debugging

o Refactoring

41

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Changing the Language for the Selected File

In VS Code, there is a default setting of the language support for a file
based on its filename extension. Nevertheless, when you need to change a
few language modes, you can do so by clicking on the language indicator,
which is located on the right-hand side of the Status Bar. This will call

up the Select Language Mode dropdown, where you can see and choose
another language for the current file.

Additional Components and Tools

VS Code is quite minimal by design and only includes the limited
number of components shared across most development platforms. Basic
functionality such as the editor, file management, window management,
and preference settings are included. A JavaScript and TypeScript language
service and Node.js debugger are also part of the basic structure.

If you are used to working with bigger, more inclusive, and diverse
development tools, you may be surprised that your scenarios are not
always fully supported out of the box. For instance, there is not a File »
New Project dialog with preinstalled project templates. Most VS Code
users will be required to look for and download additional components,
depending on their specific projects.

Commonly Used Components

Here are a few commonly installed components:

e Git: VS Code has built-in support for source code
control using Git, but needs Git to be installed on the
side.

e Node.js (includes npm): A cross-platform mostly used
for building and running JavaScript applications.

42

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

TypeScript: The TypeScript compiler, tsc, for
transcripting TypeScript to JavaScript.

VS Code Extensions

You can also expand the VS Code editor itself through extensions. The

VS Code community has built the multiple varieties of useful extensions

available on the VS Code Marketplace for the following programming

languages:

Python

C/C++

Jupyter

ESLint

Prettier: code formatter
Live Server

Visual Studio IntelliCode

C#

Additional Tools

VS Code effectively integrates with some widely used toolchains. The

following tools will assist in advancing your development experience:

Yeoman: an application scaffolding tool, a
command-line version of File » New Project.

generator-aspnet: a Yeoman generator for running
ASP.NET Core applications.

43

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

« generator-hot towel: a Yeoman generator for easy
creation of Angular]JS applications.

o Express: an application framework for Node.js
applications using the Pug template engine.

e Gulp: a streaming task runner system that could be
incorporated with VS Code tasks.

e Mocha: a JavaScript test framework that runs on Node.js.

e Yarn: a dependency manager and a good alternative to
npm.

Please note that most of these tools require Node.js and the npm
package manager to download and apply.

Settings Precedence

Configurations can be overridden at multiple levels by the different setting
scopes:

User settings: applies globally to all VS Code
instances.

Workspace setting: goes to the open folder or
workspace and normally overrides User settings.

Workspace Folder settings: typically applies to a
specific folder of a multiroot workspace; overrides
both User and Workspace settings.

Setting values can be of various types:

e String: “files.autoSave”: “afterDelay”

¢ Boolean: “editor.minimap.enabled”: true

44

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

e Number: “files.autoSaveDelay”: 1000
e Array: “editor.rulers”: []

o Object: “search.exclude”: { “**/node_modules”: true,

“**/bower_components”: true }

Values with primitive types and Array type are overridden,
but those with Object type are merged. For example, workbench.
colorCustomizations takes an Object that specifies a group of User
Interface items and their desired colors. If there are conflicting values, the
usual reaction would be to override behavior with workspace values taking
precedence over user values.

Settings and Security

Some settings let you specify an executable that VS Code will run to
operate over certain operations. For example, you can select which shell
the Integrated Terminal would be using. For more advanced security, such
settings can only be determined in user settings and not at workspace
scope. See the list of settings not supported in workspace settings:

o git.path

¢ terminal.external.windowsExec
¢ terminal.external.osxExec

o terminal.external.linuxExec

The first time you activate a workspace that determines any of these
settings, VS Code is going to warn you once, and you may ignore the values
after that.

45

CHAPTER 1 INTRODUCTION TO VISUAL STUDIO CODE

Summary

In this chapter we have covered the basics related to VS Code, including its
user interface and keyboard shortcuts.

In the next chapter we will look closer at the VS Code for Python
Development, including the list of required extensions, linting, and
debugging requirements.

46

CHAPTER 2

Getting Started
with Python Programs
in Visual Studio Code

In the previous chapter, we covered the basics of VS Code. In this
chapter, we are going to explain how to set up your VS Code for Python
development. It can be easily downloaded and installed for all the major
operating systems such as Windows, Linux, and macOS.

Installation Basics

First, let’s cover the installation basics.

For the sake of illustrating examples, we are going to show how
to install most of the tools on Windows. Windows will be used as the
development environment for setting up the Python environment. For
Linux and macOS, the process will be almost the same; nevertheless, there
are a few differences in the commands.

All you have to do to start is to navigate to https://code.
visualstudio.com/download and choose the appropriate platform to
install the software. Once the download is completed, proceed with the
normal installation.

© Sufyan bin Uzayr 2021 47
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9_2

https://doi.org/10.1007/978-1-4842-7344-9_2#DOI
https://code.visualstudio.com/download
https://code.visualstudio.com/download

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Once VS Code is up and running, the next thing to do is to set up the
Python runtime environment. Again, you can install Python on all three
operating systems (Windows, Linux, and macOS). Once Python has been
downloaded and installed, you can go to the command prompt and
run the following commands to verify whether the installation has been
successful or not. To verify that you have installed Python successfully on
your machine, activate one of the following commands (depending on
your operating system):

e Linux and macOS: open a Terminal Window and type
the following command:

python3 --version

e Windows: open a command prompt and run the

following command:
py -3 --version

If the installation was successful, the output window should be able to
display the version of Python that you installed.
Next, we will learn to install extensions for VS Code.

Reviewing the Required Extensions

By default, VS Code operates just like an ordinary text editor and does
not have any built-in support for Python. What this means is that even
though you can easily write Python code in VS Code, you will not be able
to upgrade and use some of the developer tools or techniques that make
writing code a lot easier. VS Code supports development in multiple

48

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

programming languages through a well-documented extension model.
The Python extension enables Python development in VS Code, with the
following features:

Support for Python 3.4 and higher, as well as Python 2.7
Code completion with IntelliSense

Linting

Debugging support

Code snippets

Unit testing support

Automatic use of virtual environments

Code editing in Jupyter environments and Jupyter
Notebooks

Installing the Python extension for VS Code

VS Code extensions also cover more than just programming language

capabilities:

Keymaps let users already familiar with Atom, Sublime
Text, Emacs, Vim, PyCharm, or other environments
advance your coding.

Themes customize the User Interface, whether you like
coding in the light, dark, or something more colorful.

Language packs let you have a more localized experience.

GitLens has tons of useful Git features directly in your
editing platform, including blame annotations and
repository exploration features.

Autosave is easily turned on by selecting File, AutoSave
from the menu. The default delay time is 1000
milliseconds, which is also adjustable.

49

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

o Settings Sync offers to synchronize your VS Code
settings across different installations using GitHub. If
you work on different machines, this is useful to keep

your environment consistent across all of them.

o Docker lets you quickly and easily work with Docker,
helping author Dockerfile and docker-compose.
yml, setting and deploying your projects, and even
producing the proper Docker files for your project.

Identifying and installing additional extensions and themes is possible
by clicking on the Extensions icon on the Activity Bar. You can look for
extensions using keywords, sort the results in the most preferred ways, and
install extensions quickly and effortlessly.

The following sections take a look in brief at the top eight extensions for
Python in VS Code, visible by typing Python in the Extensions item on the
Activity Bar. There are more extensions that developers like to use, but here
we want to focus on the extensions that are applicable for Python only.

Tabnine

Tabnine is an extension that offers code completion suggestions based on
a model that has millions of open-source code lines stored, which are then
offered to the code you are currently working on. Tabnine sends minimal
contextual data pieces from your currently edited file that allows us to
make predictions based on your current project objectives. This extension
does not use your code to train the core model, and the information sent to
the server is only used to compute your prediction and is not being saved
for any further application.

In addition, Tabnine is viewed as a powerful artificial intelligence (AI)
assistant designed to help you code faster, prevent any mistakes, and get
accustomed to the best coding practices without ever having to leave the
comfort of VS Code. Tabnine studies publicly shared code and uses Al

50

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

based learning algorithms that provide it with the ability to see your next
coding requests and suggest one-click code completion. Tabnine works
with all major programming languages, including JavaScript, Python,
TypeScript, PHP, C/C++, HTML/CSS, Go, Java, Ruby, C#, Rust, SQL, Bash,
Kotlin, Julia, Lua, OCaml, Perl, Haskell, and React.

Bracket Pair Colorizer

This extension allows matching brackets to be spotted or classified with
colors. This way the user can determine which characters to match, and
which colors to use. Here are the few basic settings:!

e ‘“bracketPairColorizer.timeOut”: configures how
long the editor should be idle for before updating the
document; set to 0 to disable.

o ‘“bracketPairColorizer.forceUniqueOpeningColor”:
disabled.

o ‘“bracketPairColorizer.forcelterationColorCycle”:
enabled.

o “bracketPairColorizer.colorMode”: consecutive
brackets share a color pool for all bracket types.

Independent brackets allow each bracket type to use
its own color pool:

o ‘“bracketPairColorizer.highlightActiveScope”:
highlights currently scoped brackets.

'Visual Studio Code, “Bracket Pair Colorizer,” https://marketplace.
visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer,
accessed July 29, 2021.

51

https://marketplace.visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer
https://marketplace.visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer

CHAPTER 2

52

GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

“bracketPairColorizer.activeScopeCSS”: chooses a
border style to highlight the active scope; use {color} to
match the existing bracket color. It is recommended to
disable the inbuilt editor.matchBrackets setting if using
this feature. Add the value “backgroundColor : {color}”
to increase visibility.

“bracketPairColorizer.showBracketsInGutter”:
shows active scope brackets in the gutter.

“bracketPairColorizer.showBracketsInRuler”: shows
active scope brackets in the ruler.

“bracketPairColorizer.rulerPosition”: decoration
position in the ruler.

“bracketPairColorizer.showVerticalScopeLine”:
shows a vertical line between the brackets.

“bracketPairColorizer.showHorizontalScopeLine”:
shows a horizontal line between the brackets; enabled
by default

“bracketPairColorizer.scopeLineRelativePosition”:
disable to show the vertical line in column 0.

“bracketPairColorizer.scopeLineCSS”: chooses a
border style to highlight the active scope; use {color} to
match the existing bracket color.

“bracketPairColorizer.consecutivePairColors”: a
new bracket pair can be configured by adding it to the
array. Note: Pair must be supported punctuation type
by Prism.js.

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

“bracketPairColorizer.independentPairColors”: a new
bracket pair can be configured by adding it to the array.
Note: Pair must be supported punctuation type by Prism.js

“bracketPairColorizer.excludedLanguages”: excludes
languages from being parsed by this extension.

Python Snippets

A snippet set is there in the Marketplace to make you more efficient

working with Python. By default, the standard snippet pack contains all of
the following Python methods:

all Python built-in snippets and contains at least one
example for each method

all Python string snippets contain at least one example
for each method

all Python list snippets contain at least one example for
each method

all Python sets snippets contain at least one example
for each method

all Python tuple snippets contain at least one example
for each method

all Python dictionary snippets contain at least one
example for each method

In addition, the set also contains a lot of other code snippets like if/else,

for, while, while/else, try/catch, file process, class snippets, and others,? as

shown in Table 2-1.

2Visual Studio Code, “Python Snippets,” https://marketplace.visualstudio.com/
items?itemName=cstrap.python-snippets, accessed July 29, 2021.

53

https://marketplace.visualstudio.com/items?itemName=cstrap.python-snippets
https://marketplace.visualstudio.com/items?itemName=cstrap.python-snippets

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Table 2-1. Additional code snippets

Snippets Descriptons

abs Returns the absolute value of a number

all Returns True if all items in an iterable object are true

any Returns True if any item in an iterable object is true

ASCII Returns a readable version of an object. Replaces none-ASClI
characters with escape character

bin Returns the binary version of a number

bool Returns the Boolean value of the specified object

bytearray Returns an array of bytes

bytes Returns a bytes object

callable Returns True if the specified object is callable, otherwise False

chr Returns a character from the specified Unicode code.

delattr Deletes the specified attribute (property or method) from the specified
object

dict Returns a dictionary (Array)

dir Returns a list of the specified object’s properties and methods

divmod Returns the quotient and the remainder when argument1 is divided
by argument2

enumerate Takes a collection (e.g., a tuple) and returns it as an enumerate object

eval Evaluates and executes an expression

exec Executes the specified code (or object)

filter Use a filter function to exclude items in an iterable object
float Returns a floating-point number

frozenset Returns a frozenset object

(continued)

54

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Table 2-1. (continued)

Snippets Descriptons

getattr Returns the value of the specified attribute (property or method)

globals Returns the current global symbol table as a dictionary

hasattr Returns True if the specified object has the specified attribute
(property/method)

hash Returns the hash value of a specified object

help Executes the built-in help system

hex Converts a number into a hexadecimal value

int Returns an integer number

id Returns the id of an object

input Allowing user input

isinstance Returns True if a specified object is an instance of a specified object

issubclass Returns True if a specified class is a subclass of a specified object

iter Returns an iterator object

len Returns the length of an object

locals Returns an updated dictionary of the current local symbol table

map Returns the specified iterator with the specified function applied to
each item

max Returns the largest item in an iterable

memoryview Returns a memory view object

min Returns the smallest item in an iterable

next Returns the next item in an iterable

object Returns a new object

oct Converts a number into an octal

(continued)

55

CHAPTER 2

GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Table 2-1. (continued)

Snippets Descriptons

open Opens a file and returns a file object

ord Given a string of length one, return an integer representing the
Unicode code point of the character when the argument is a Unicode
object, or the value of the byte when the argument is an 8-bit string.

pow Return x to the powery

print Prints to the standard output device

property Gets, sets, deletes a property

range returns a sequence of numbers, starting from 0 and increments by 1
(by default)

repr Returns a readable version of an object

reversed Returns a reversed iterator

round Rounds a numbers

slice Returns a slice object

sorted Returns a sorted list

staticmethod Converts a method into a static method

str Returns a string object

sum Sums the items of an iterator

super Return a proxy object that delegates method calls to a parent or
sibling class of type.

type Returns the type of an object

unichr Return the Unicode string of one character whose Unicode code is the
integer i.

vars Returns the dict property of an object

zip Returns an iterator, from two or more iterators

56

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Python Test Explorer for Visual Studio Code

This extension offers you an option to run your Python Unittest or Pytest
tests with the Test Explorer UL. Moreover, the extension lets you operate
your Python tests in the sidebar of VS Code. There are some key features
that make it highly popular among developers:

o Displays a Test Explorer in the Test view in VS Code’s
sidebar with all noticed tests and suites and their
condition.

o Convenient error reporting function during the testing.
e Unittest and Pytest debugging.

o Notifies about the failed test’s log when the test is
selected in the explorer.

e Supports multiroot workspaces.

e Supports Unittest and Pytest test frameworks and their
plugins.

e Comparison to Python extension’s Test View.

e Better error reporting during the discovery stage. If
there are errors, you will see such tests in an errored
state, and by clicking on them, a complete error
message would be displayed in the Output panel.

Python Extension, at best, will not show your tests that
contain errors such as syntax errors or invalid data.

o Tends to work better with pytest plugins such as Tavern.
Python Extension will not recognize these tests.

57

CHAPTER 2

GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Based on Test Explorer User Interface. This fact may be
particularly handy when you have a workspace with
projects in different languages or frameworks. Test
Explorer User Interface has a lot of plugins, and you can
conveniently discover and run tests at the same View.

Shows your errors and a complete report of your tests
by clicking on a failed test.

Has only relevant folders from your workspace on the
platform display. Showing all workspace folders, as the
Python Extension is doing, can be slightly problematic
when you have multiple workspace folders, but only a
couple of them have any tests.

User experience with both extensions is highly subjective. However,

you might prefer the user interface of this extension better. Also, each

discovery, test execution, and test cancellation won’t require you to select

a folder when you have multiple in your workspace.

By default, the extension configuration uses the configuration from

Python extension for VS Code. To modify Python for your project, see
Getting Started with Python in VS Code. Nevertheless, test framework
applied by this extension can be overridden by the pythonTestExplorer.

testFramework configuration property. The two available options are

unittest and pytest. When property is set to null, the configuration from

Python extension is used.

When configuring Python test discovery and execution, make sure you

are familiar with the list of currently used properties shown in Table 2-2.3

3Visual Studio Code, “Python Test Explorer for Visual Studio Code,”
https://marketplace.visualstudio.com/items?itemName=LittleFoxTeam.
vscode-python-test-adapter, accessed July 29, 2021.

58

https://marketplace.visualstudio.com/items?itemName=LittleFoxTeam.vscode-python-test-adapter
https://marketplace.visualstudio.com/items?itemName=LittleFoxTeam.vscode-python-test-adapter

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Table 2-2. Properties used in VS Code for Python development

Property

Description

python.pythonPath
python.envFile
python.testing.cwd
python.testing.unittestEnabled

python.testing.unittestArgs

python.testing.pyTestEnabled

python.testing.pytestPath
python.testing.pyTestArgs
python.testing

.autoTestDiscoverOnSaveEnabled

pythonTestExplorer.testFramework

Path to Python.
Path to environment variable definitions file.
Optional working directory for unit tests.

Whether to enable or disable unit testing
using unittest (enables or disables test
discovery for Test Explorer).

Arguments used for test discovery (currently
only -s and -p arguments are considered).

Whether to enable or disable unit testing
using pytest (enables or disables test
discovery for Test Explorer).

Path to pytest executable or a pytest
compatible module.

Arguments passed to the pytest. Each
argument is a separate item in the array.

When true tests will be automatically
rediscovered when saving a text file.

Test framework to use (overrides Python
extension properties python.testing
.unittestEnabled and python.testing
.pyTestEnabled).

The configurations in Table 2-2 support placeholders for workspace

folder as ${workspaceFolder} and environment variables in a form of
${env:YOUR_ENVIRONMENT_VARIABLE}.

59

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

If you are configuring Test Explorer User Interface, use the g

configuration properties listed in Table 2-3.*

Table 2-3. Configuration properties

Property Description

testExplorer.onStart Retire or reset all test states whenever a test run is
started

testExplorer.onReload Retire or reset all test states whenever the test tree is
reloaded

testExplorer.codelLens Show a CodeLens above each test or suite for running
or debugging the tests

testExplorer Show the state of each test in the editor using Gutter

.gutterDecoration Decorations

testExplorer Show error messages from test failures as decorations

.errorDecoration in the editor

testExplorer Provide hover messages for the error decorations in the

.errorDecorationHover editor

testExplorer.sort Sort the tests and suites by label or location. If this is
not set (or set to null), they will be shown in the order
that they were received from the adapter

testExplorer Show a button for collapsing the nodes of the test tree

.showCollapseButton

testExplorer
.showExpandButton

Show a button for expanding the top nodes of the test
tree, recursively for the given number of levels

(continued)

*Visual Studio Code, “Python Test Explorer for Visual Studio Code.”

60

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Table 2-3. (continued)

Property Description

testExplorer.showOnRun Switch to the Test Explorer view whenever a test run is
started

testExplorer Add menu items for running and debugging the tests in

.addToEditorContextMenu
testExplorer.mergeSuites

testExplorer.hideEmptyLog

testExplorer.hideWhen

the current file to the editor context menu
Merge suites with the same label and parent

Hide the output channel used to show a test’s log when
the user clicks on a test whose log is empty

Hide the Test Explorer when no test adapters have been
registered or when no tests have been found by the
registered adapters. The default is to never hide the
Test Explorer and there are some test adapters only
work with this default setting.

Configuring Debug

This extension typically searches for a configuration in launch.json with

“type”: “python” and “request”: “test” to load any of the following items

during debugging:
e name
e console
e env

e componentry

¢ showReturnValue

o redirectOutput

o debugStdLib

61

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

e justMyCode
e subProcess

e envFile

Better Comments

The Better Comments extension is there to help you create more user-
friendly, informative comments in your code. Extension can also assist you
to able to categorise your annotations into Alerts, Queries, TODOs, and
Project Highlights. Commented out code can also be styled in any way you
like to make it clear what the code’s objective is, and any other comment
styles you would like can be tuned in the settings. This extension can also be
configured in the following manner in User Settings or Workspace settings:>

¢ ‘“better-comments.multilineComments”: true

This setting will control whether multiline
comments are styled using the annotation tags.
When false, multiline comments will be presented
without decoration.

o ‘“better-comments.highlightPlainText": false

This setting will control whether comments in
a plain text file are styled using the annotation
tags. When true, the tags (defaults: ! * ? //) will be
detected if they're the first character on a line.

¢ Dbetter- comments.tags:

The tags are the characters or sequences used to
mark a comment for decoration. The default 5 can be
modified to change the colors, and more can be added.

*Visual Studio Code, “Better Comments,” https://marketplace.visualstudio.
com/items?itemName=aaron-bond.better-comments, accessed July 29, 2021.

62

https://marketplace.visualstudio.com/items?itemName=aaron-bond.better-comments
https://marketplace.visualstudio.com/items?itemName=aaron-bond.better-comments

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

The list of the extension supported Languages is quite impressive
and includes the following: Ada, AL, Apex, AsciiDoc, BrightScript, C, C#,
C++, ColdFusion, Clojure, COBOL, CoffeeScript, CSS, Dart, Dockerfile,
Elixir, Elm, Erlang, F#, Fortran, gdscript, GenStat, Go, GraphQL, Groovy,
Haskell, Haxe, HiveQL, HTML, Java, JavaScript, JavaScript React, JSON
with comments, Julia, Kotlin, LaTex (inlc. Bibtex/Biblatex), Less, Lisp, Lua,
Makefile, Markdown, Nim, MATLAB, Objective-C, Objective-C++, Pascal,
Perl, Perl 6, PHP, Pig, PlantUML, PL/SQL, PowerShell, Puppet, Python, R,
Racket, Ruby, Rust, SAS, Sass, Scala, SCSS, ShaderLab, ShellScript, SQL,
STATA, Stylus, Swift, Tcl, Terraform, Twig, TypeScript, TypeScript React,
Verilog, Visual Basic, Vue.js, XML, and YAML.

AutoDocstring

This VS Code extension enables users to quickly generate docstrings for
Python functions. It has some very useful features that include:

e Generation of docstring snippet that can be tabbed
through.

e Developers can choose between several different types
of docstring formats.

o Infers parameter types through pep484 type hints,
default values, and var names.

o The extension supports args, kwargs, decorators, errors,
and parameter types.

By default, autoDocstring supports the following docstring formats:

e Google
o docBlockr
e Numpy

63

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE
e Sphinx
e PEP0257

When using the extension, it is recommended that some of the
standard application rules be followed:

o Place the cursor on the line directly below the
definition to generate full auto-populated docstring

o Make sure you press enter after opening docstring with

w

triple quotes (“ or ”
o Keyboard shortcut: ctrl+shift+2 or cmd+shift+2 for mac

e Can be changed in Preferences » Keyboard Shortcuts
» extension.generateDocstring

e Command: Generate Docstring
o Right-click menu: Generate Docstring
This extension contributes the following settings:®

o autoDocstring.docstringFormat: Switch between
different docstring formats

o autoDocstring.customTemplatePath: Path to a custom
docstring template (absolute or relative to the project root)

o autoDocstring.generateDocstringOnEnter: Generate
the docstring on pressing enter after opening docstring

o autoDocstring.includeExtendedSummary: Include
extended summary section in docstring

o autoDocstring.includeName: Include function name
at the start of docstring

Visual Studio Code, “VSCode Python Docstring Generator,” https://
marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring,
accessed July 29, 2021.

64

https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring
https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

o autoDocstring.startOnNewLine: Newline before
summary placeholder

o autoDocstring.guessTypes: Infer types from type
hints, default values and variable names

o autoDocstring.quoteStyle: The style of quotes for
docstrings

This extension also supports custom templates with the help of
the mustache.js templating engine. In order to use a custom template,
you need to create a .mustache file and specify its path using the
customTemplatePath configuration. You can take a look at the following
tags that are available for use in custom templates:’

{{name}} - name of the function
{{summaryPlaceholder}} - [summary] placeholder
{{extendedSummaryPlaceholder}} - [extended summary] placeholder

Sections
{{#targs}} - iterate over function arguments
{{var}} - variable name
{{typePlaceholder}} - [type] or guessed type placeholder
{{descriptionPlaceholder}} - [description] placeholder
{{/args}}

{{#tkwargs}} - iterate over function kwargs
{{var}} - variable name
{{typePlaceholder}} - [type] or guessed type placeholder
{{&default}} - default value (& unescapes the variable)
{{descriptionPlaceholder}} - [description] placeholder
{{/kwargs}}

"Visual Studio Code, “VSCode Python Docstring Generator.”

65

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

{{#exceptions}} - iterate over exceptions

{{type}} - exception type

{{descriptionPlaceholder}} - [description] placeholder
{{/exceptions}}

{{#yields}} - iterate over yields
{{typePlaceholder}} - [type] placeholder
{{descriptionPlaceholder}} - [description] placeholder

{{/yields}}

{{#treturns}} - iterate over returns
{{typePlaceholder}} - [type] placeholder
{{descriptionPlaceholder}} - [description] placeholder
{{/returns}}

Additional Sections
{{#argsExist}} - display contents if args exist
{{/argsExist}}

{{#tkwargsExist}} - display contents if kwargs exist
{{/kwargsExist}}

{{#parameterskExist}} - display contents if args or kwargs exist
{{/parametersExist}}

{{#texceptionsExist}} - display contents if exceptions exist
{{/exceptionsExist}}

{{#yieldsExist}} - display contents if returns exist
{{/yieldsExist}}

{{#returnskxist}} - display contents if returns exist
{{/returnskxist}}
{{#placeholder}} - makes contents a placeholder

66

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Python Indent

This Extension helps quickly generate docstrings for Python functions.
Any time you press the Enter key in a Python context, this extension will
parse your Python file up to the place of your cursor, and define exactly
how much the next line (or two in the case of hanging indents) should be
indented and how much close bylines should be un-indented.

In the next section, we will now start off with code editing in VS Code.

Getting Started with Code Editing

VS Code editing should start by an explanation of what IntelliSense

is. It is a general term for various code editing features including code

completion, parameter info, quick info, and member lists. IntelliSense
features are also referred to by other names such as code completion,

content assist, and code hinting.

VS Code IntelliSense is provided for JavaScript, TypeScript, JSON,
HTML, CSS, and SCSS. VS Code supports word-based completions for
any programming language but can as well be configured to have more
extensive IntelliSense by installing a language extension.

Autocomplete and IntelliSense

Autocomplete together with IntelliSense is provided for all files within the
currently activated folder and for Python packages that are installed in
standard locations. During editing, you can right-click different identifiers
to take advantage of several convenient commands:?

8Visual Studio Code, “Editing Python in Visual Studio Code,” https://code.
visualstudio.com/docs/python/editing, accessed July 29, 2021.

67

https://code.visualstudio.com/docs/python/editing
https://code.visualstudio.com/docs/python/editing

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

e Go to Definition (F12) transfers from your code into the
code that defines an object. This command is useful
when you are operating with libraries.

e Peek Definition (Alt+F12), is almost the same as the
previous one but displays the definition directly in the
editor (making space in the editor window to avoid
messing any code). Press Escape to close the Peek
window or use the x in the upper right corner.

e Go to Declaration jumps to the point at which the
variable or other item is declared in your code.

e Peek Declaration is similar but displays the declaration
directly in the editor. Again, you can use Escape or the x
in the upper right corner to close the Peek window.

Customizing IntelliSense Behavior

To customize the behavior of the engine, you should check the code
analysis settings and autocomplete settings. You can also customize the
general behavior of autocomplete and IntelliSense, even to disable these
tune-ins completely. IntelliCode provides a set of Al-assisted capabilities
for IntelliSense in Python, such as inferring the most relevant auto-
completions based on the current code context.

To enable IntelliSense for packages that are installed in other,
nonstandard locations, add those locations to the python.autoComplete.
extraPaths collection in the settings file (the default collection is empty).
For example, you might already have installed Google App Engine in
custom locations, specified in-app.yaml if you use Flask. In this case you
would have to specify those locations in the following way:

68

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Windows:

"python.autoComplete.extraPaths": [
"C:/Program Files (x86)/Google/google appengine”,
"C:/Program Files (x86)/Google/google appengine/lib/
flask-0.12"]

macOS/Linux:

"python.autoComplete.extraPaths": [
"~/.local/lib/Google/google appengine",
"~/.local/lib/Google/google appengine/lib/flask-0.12"]

The python.autoComplete.addBrackets setting (default false) also defines
whether VS Code automatically adds parentheses (()) when autocompleting a
function name. For instance, when you set addBrackets to true:

"python.autoComplete.addBrackets": true,

and then write import os followed by os.getc, you will get autocomplete for
os.getcwd. Selecting that auto-complete adds os.getcwd() to your source
code and locates the cursor inside the parentheses. When the setting is
false, only os.getcwd is added to the file.

Troubleshooting

If autocomplete and IntelliSense are not functioning for a custom module,
itis advised to check the following causes:

o Ifthe path to the Python interpreter is incorrect, check
the pythonPath setting or restart VS Code if you make a

correction.

e Ifthe custom module is located in a nonstandard
location or not installed using pip, be sure to add the
location to the python.autoComplete.extraPaths setting
and restart VS Code.

69

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Running Selection/Line in Terminal (REPL)

The Python: Run Selection/Line in Python Terminal command
(Shift+Enter) is the fastest way to take whatever code is selected, or the
code on the current line if there is no selection, and run it in the Python
Terminal. An identical Run Selection/Line in Python Terminal command
can also be accessed on the context menu for a selection in the editor.

VS Code automatically deletes indents based on the first nonempty
line of the selection, moving all other lines left accordingly. Source code
that runs in the terminal/REPL is cumulative until the current instance of
the terminal is finished. The command opens the Python Terminal only
if needed; you can also start the interactive REPL environment directly
using the Python via Start REPL command. If you are just starting to use
Python: Run Selection/Line in Python Terminal command, VS Code will
send the text to the REPL before that environment is ready, in which case
the selection or line is not run. If you encounter this behavior, try the
command again when the REPL has finished loading.

Formatting

Formatting makes code more user-friendly when applying specific rules
and conventions for line spacing, indents, spacing around operators, and
so on. At the same time, it does not really affect the functionality of the
code itself. Linting, on the contrary, analyzes code for common syntactical,
stylistic, and functional mistakes as well as unconventional programming
practices that can result in errors. Even though there is a little overlap
between formatting and linting, the two capabilities are operating
complementarily.

The Python extension supports source code formatting using either
autopep8 (the default), black, or yapf.

70

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

General Formatting Settings

Table 2-4 shows the general formatting setings for Python code in VS Code:

Table 2-4. General formatting settings

Setting (python.formatting.) Default value Description

Provider “autopep8” Specifies the formatter to use, either
“autopep8”, “yapf”, or “black”.

The settings in Table 2-5 apply mostly to the individual formatters.
The Python extension looks in the current pythonPath for the formatter. In
order to use a formatter in another location, be sure to specify that location
in the designated custom path setting.

Table 2-5. Formatter-specific settings

Formatter Install steps Arguments setting Custom path setting
(python.formatting.) (python.formatting.)

autopep8 pip install pep8 autopep8Args autopep8Path
pip install --
upgrade
autopep8
black (see pip install black blackArgs blackPath
note)
Yapf pip install yapf yapfArgs yapfPath

71

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

By default, you cannot install the Black formatter if a Python 2
environment is active. Trying to do so may display the message “Formatter
black is not installed. Install?” If you try to install Black in response,
another message appears stating, “Could not find a version that satisfies
the requirement black. No matching distribution found for black””

To solve this issue and use the Black formatter with Python 2, first
install Black in a Python 3 framework. Then set the python.formatting.
blackPath setting to that install location. When using custom arguments,
each top-level element of an argument string that is separated by space on
the command line must be a separate item in the args list. To illustrate:

"python.formatting.autopep8Args": ["--max-line-length", "120",
"--experimental"],

"python.formatting.yapfArgs": ["--style",

"{based on_style: chromium, indent width: 20}"],
"python.formatting.blackArgs": ["--line-length", "100"]

Troubleshooting Your Formatting

If formatting attempts fails, check the potential causes listed in Table 2-6.°

Table 2-6. Troubleshooting formatting in VS Code

Cause Solution

The path to the Check the pythonPath setting.
python interpreter
is incorrect.

(continued)

9Visual Studio Code, “Editing Python in Visual Studio Code.”

72

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Table 2-6. (continued)

Cause

Solution

The formatter
is not installed
in the current
environment.

The path to the
formatter is
incorrect.

Custom
arguments for
the formatter are
incorrect.

Open a command prompt, navigate to the location specified in
the pythonPath setting, and run pip install for the formatter.

Check the value of the appropriate python.
formatting.<formatter>Path setting.

Check that the appropriate python.formatting.<formatter>Path
setting does not contain arguments, and that python.
formatting.<formatter>Args contains a list of individual
top-level argument elements such as “python.formatting
.yapfArgs”: [“--style”, “{based_on_style: chromium,
indent_width: 20}"].

In cases when a warning message “Black does not support the

Format Select” comes out, possible solution could be preventing it with

the following settings “[python]”: {“editor.formatOnPaste”: false, “editor.
formatOnSaveMode”: “file”}.

Refactoring

The Python extension includes three refactoring commands: Extract

Variable, Extract Method, and Sort Imports.

73

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Extract Variable

Extracts all similar items of the selected text within the particular scope,
and replaces it with a variable. The new method is given the name
newvariableNNN where NNN stands for a random number. It is typically
invoked by:

o Context Menu: right-click a selection and select Extract
Variable.

e Command Palette (Ctrl+Shift+P), then Python Refactor:
Extract Variable.

e Assign a keyboard shortcut to the python.
refactorExtractVariable command.

Extract Method

Extracts all similar items of the particular expression or block within the
current scope, and replaces it with a method call. The new method is given
the name newmethodNNN where NNN stands for a random number. It is

normally invoked by:

o Context Menu: right-click a selection and select Extract
Method.

o Command Palette (Ctrl+Shift+P), then Python Refactor:
Extract Method.

o Assign a keyboard shortcut to the python.
refactorExtractMethod command.

e Refactoring code into a method.

74

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Sort Imports

Sort Imports applies the sort package to set all specific imports from
the same module into a single import statement and organize import

statements in alphabetical order. It is typically invoked by:

e Right-click in the editor and select Sort Imports (no
selection is required).

o Command Palette (Ctrl+Shift+P), then Python Refactor:
Sort Imports.

o Assign a keyboard shortcut to the python.sortimports
command.

o Sorting import statements.

Custom applications to sort are specified in the python.sortImports.
args setting, where each top-level item, as divided by spaces on the
command line, is a single item in the array:

“python.sortimports.args”: [“-rc’, “--atomic”]. In order to use a custom
isort script, it is better to use the python.sortImports.path setting to set a

specific path.

Linting

Linting is different from the previously mentioned Formatting method

due to the fact that it analyzes how the code runs and traces errors while
Formatting can only restructure how code is framed. Linting points out any
syntactical and stylistic issues in your Python source code, which at most
times helps you see and correct subtle programming mistakes or outdated
coding practices that can result in errors. For instance, linting traces the
use of an uninitialized or undetermined variable, requests to undefined
functions, missing parentheses, and even more underlining issues, such as

trying to redefine built-in types or functions.

75

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

By default, stylistic and syntactical code detection is completed by the
Language Server. If you require third-party linters for additional problem
detection, you can easily enable them by using the Python: Select Linter
command and the appropriate linter. You can certainly enable and disable
all linting by using the Python: Enable Linting function.

Enabling Linters

To turn on linters other than the default PyLint, you should open the
Command Palette (Ctrl+Shift+P) and select the Python: Select Linter
command. This command adds “python.linting.<linter>Enabled”: true

to your settings, where <linter> is the name of the selected linter. You can
also See Specific linters for details and enable a linter prompts to install the
required packages in your programming environment.

If you are using a global environment and VS Code is not running
efficiently, linter installation may fail. In that case, either run VS Code
elevated, or manually run the Python package manager to install the linter at
an elevated command prompt for the same environment: for example, sudo
pip3 install pylint (for macOS and Linux) or pip install pylint (for Windows).

Disabling Linting

You can disable all Python linting with the Python: Enable Linting
command, which shows a dropdown with the current linting state and see
the options to turn Python linting on or off.

Running Linting
To efficiently run linting you need to:

¢ Linting runs by default any time you save a file.

76

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

e Open the Command Palette (Ctrl+Shift+P), then enter
and click on Python: Run Linting.

Should you face any issues, they all will be shown in the Problems
panel and as underlines in the code editor.

Linting Settings

This section lists general and specific settings for linting. You are free to
add any of the settings to your user settings.json file (go through the File
» Preferences » Settings command Ctrl+,). You can also refer to User and
Workspace settings to find out how to change the linting behavior across
all enabled linters. You can modify the following settings in the Table 2-7:*

Table 2-7. Linting settings

Feature Setting (python. Default value
linting.)

Linting in general Enabled True

Linting on file save lintOnSave True

Maximum number of maxNumberOfProblems 100

linting messages

Exclude file and folder ignorePatterns [“.vscode/*.py”,
patterns “**[site-packages/**/*.py”]

You can easily change python.linting.enabled via Python as well by
clicking on Enable Linting command. However, when enabling lintOnSave,
you might also want to enable the generic files.autoSave option (Save /
AutoSave). This function provides regular linting feedback in your code as
you script it.

%Visual Studio Code, “Linting Python in Visual Studio Code,” https://code.
visualstudio.com/docs/python/linting, accessed July 29, 2021.

77

https://code.visualstudio.com/docs/python/linting
https://code.visualstudio.com/docs/python/linting

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Specific Linters

Table 2-8 lists the available Python linters and their basic settings. Be sure
to note that only Pylint is enabled by default.™

Table 2-8. Available Python linters

Linter Package Default True/false Arguments Custom path
name state enable setting setting
setting (python. (python.
(python. linting.) linting.)

linting.)

Pylint pylint Enabled pylint pylintArgs pylintPath

(default) Enabled

Flake8 flake8 Disabled flake8 flake8Args flake8Path
Enabled

mypy mypy Disabled mypy mypyArgs mypyPath
Enabled

pydocstyle pydocstyle Disabled pydocstyle pydocstyle pydocstyle
Enabled Args Path

pycodestyle pycodestyle Disabled pycodestyle pycodestyle pycodestyle

(pep8) Enabled Args Path

prospector prospector Disabled prospector prospector prospector
Enabled Args Path

pylama pylama Disabled pylama pylama pylamaPath
Enabled Args

bandit bandit Disabled bandit bandit banditPath

Enabled Args

"'Visual Studio Code, “Linting Python in Visual Studio Code.”

78

https://code.visualstudio.com/docs/python/linting#_pylint
https://pypi.org/project/pylint/
https://code.visualstudio.com/docs/python/linting#_flake8
https://pypi.org/project/flake8/
https://code.visualstudio.com/docs/python/linting#_mypy
https://pypi.org/project/mypy/
https://code.visualstudio.com/docs/python/linting#_pydocstyle
https://pypi.org/project/pydocstyle/
https://code.visualstudio.com/docs/python/linting#_pycodestyle-pep8
https://code.visualstudio.com/docs/python/linting#_pycodestyle-pep8
https://pypi.org/project/pycodestyle/
https://code.visualstudio.com/docs/python/linting#_prospector
https://pypi.org/project/prospector/
https://pypi.org/project/pylama/
https://pypi.org/project/bandit/

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

To choose a different linter, it is useful to do it through the Python:
Select Linter command. You can also edit your settings manually to
enable multiple linters. At the same time, keep in mind that applying the
Select Linter command will overwrite those edits. Custom arguments are
predetermined in the appropriate arguments setting for each linter. Each
top-level element of an argument string that is separated by a space on
the command line should be a separate item in the arguments (args) list.
However, if a top-level element is a single value, as delineated by quotation
marks or braces, it still comes out as a single item in the list even if the
value itself has spaces.

A custom path is not usually needed, as the Python extension
has the path to the linter based on the applied Python interpreter. To
use a different version of a linter, write down its path in the specified
custom path setting. For instance, if your selected interpreter is a virtual
environment but you want to use a linter that is installed in a global
environment, you will have to set the appropriate path setting to point to
the global environment’s linter.

Pylint

Pylint messages fall into the types listed in Table 2-9, with the indicated
mapping to VS Code categories. You can modify the setting if you want to
change the mapping.'?

2Visual Studio Code, “Linting Python in Visual Studio Code.”

79

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Table 2-9. Pylint categories with VS Code category mapping

Pylint Description VS Code Applicable setting
category category (python.linting.)
mapping
Convention Programming standard Information pylintCategorySeverity.
(®) violation (green underline) convention
Refactor (R) Bad code smell Hint (light bulbs) pylintCategorySeverity.
refactor
Warning (W) Python-specific Warning pylintCategorySeverity.
problems warning
Error (E) Likely code bugs Error (red pylintCategorySeverity.
underline) error
Fatal (F) An error prevented Error pylintCategorySeverity.fatal
further Pylint
processing
Default Pylint Rules

Python in VS Code is customized by default to apply a set of three main
linting rules that are relevant to the largest number of Python developers:*®

o Enable all Error (E) and Fatal (F) messages.
e Disable all Convention (C) and Refactor (R) messages

o Disable all Warning (W) messages, except the
following:

— unreachable (W0101): Unreachable code

— duplicate-key (W0109): Duplicate key %r in the dictionary

BVisual Studio Code, “Linting Python in Visual Studio Code.”

80

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

unnecessary-semicolon (W0301): Unnecessary semicolon

— global-variable-not-assigned (W0602): Using global for %r but
no assignment is completed

— unused-variable (W0612): Unused variable %r

— binary-op-exception (W0711): Exception to catch is the result
of a binary “%s” operation

— bad-format-string (W1302): Invalid format string

— anomalous-backslash-in-string (W1401): Anomalous backs-
lash in string

— bad-open-mode (W1501): “%s” is not a valid model for open

These rules are activated through the following default arguments
passed to Pylint:

--disable=all, --enable=F, E, unreachable,duplicate-key,
unnecessary-semicolon,global-variable-not-assigned,
unused-variable,binary-op-exception,bad-format-string,
anomalous-backslash-in-string, bad-open-mode

These items are passed every time the python.linting
.pylintUseMinimalCheckers is set to true. But if you specify
avalue in pylintArgs or use a Pylint configuration file, then
pylintUseMinimalCheckers is going to always be set to false.

In addition, command-line arguments can be used to load Pylint
plugins, such as the plugin for Django:

"python.linting.pylintArgs": ["--load-plugins",
"pylint_django"]

Other options can also be specified in a pylintrc or .pylintrc options file
in the workspace folder, as described on Pylint command line arguments.

81

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Troubleshooting Linting

In Table 2-10, some of the basic error messages and their probable

solutions are listed.'

Table 2-10. Troubleshooting linting problems

Error message Cause Solution

... unable The Python Make sure that the pythonPath setting

to import extension is using points to a valid Python installation where

<module_ the wrong version Pylint is installed. Also try setting the

name> of Pylint. python.linting.pylintPath to an
appropriate version of Pylint for the Python
interpreter being used.

Linting with The pathtothe ~ Check the pythonPath setting.

<linter> failed ... Python interpreter

is incorrect.

The linter has not
been installed in
the current Python
environment.

The path to the
linter is incorrect.

Open a command window, navigate to the
location of the Python interpreter in the
pythonPath setting, and run pip install
for the linter.

Ensure that the appropriate python.linting
.<linter>Path setting for the linter is correct.

(continued)

“Visual Studio Code, “Linting Python in Visual Studio Code.”

82

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Table 2-10. (continued)

Error message Cause

Solution

Custom

arguments
are defined
incorrectly.

Check the appropriate python.linting
.<linter>Args settings, and that the

value of the setting is a list of the argument
elements that are separated by spaces. For
example, "python.linting.pylintPath":
"pylint --load-plugins pylint
django" is incorrect. The correct syntax

is "python.linting.pylintArgs":
["--load-plugins”, "pylint django"]

Debugging

Debugging refers to fixing your code and removing potential errors. Python

is a syntactically typed language, which means that the role of your code

editor becomes paramount in debugging, as a good editor can help you

locate issues with your code in no time.

VS Code handles debugging on two fronts. On one hand, there are

VS Code general debugging features such as inspecting variables, setting

breakpoints, and others that are typically language-dependent; on the

other hand, there are debugging considerations that are Python-specific

debugging configurations, including specific app types and remote

debugging.

83

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Initializing Configurations

In order to initialize debug configurations, you have to first select the Run
view in the sidebar and then press the Run icon. Configuration drives VS
Code’s behavior during a debugging session and is defined in a launch.
json file that is stored in a .vscode folder in your workspace. To change
debugging configuration, you need to make sure your code is stored in a
folder.

If you do not yet have any configurations defined, you can see a
button to Run and Debug and a link to create a configuration (launch.
json) file: Debug toolbar settings command. To generate a launch.json file
with Python configurations, complete the following steps: first, click the
create a launch.json file link or use the Run » Open configurations menu
command. A configuration menu will be displayed from the Command
Palette, offering you to choose the type of debug configuration you want
for the opened file. Next, in the Select a debug configuration menu that
appears, select Python File.Debug configurations menu.

Keep in mind that starting a debugging session through the Debug
Panel, F5, or Run » Start Debugging when no configuration exists will also
bring up the debug configuration menu, but will not create a launch.json file.

The Python extension then generates and opens a launch.json file that
has a predefined configuration based on what you previously selected—in
this case, Python File. You can customize those configurations (by adding
arguments, for instance), and also add custom configurations.

Additional Configurations

By default, VS Code displays only the most applied configurations
provided by the Python extension. You can select other configurations
to include in launch.json by activating the Add Configuration command
shown in the list and in the launch.json editor. When you use the

84

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

command, VS Code prompts you with a list of all available configurations
(scroll down to see all the Python options):

¢ Adding a new Python debugging configuration

e Selecting the Node.js: Gulp task yields the following
result:Added a configuration

e See Debugging specific app types for details on all of
these configurations

During debugging, the Status Bar will present the current configuration
and the current debugging interpreter. Selecting the configuration calls
up a list from which you can select a different configuration. Normally,
the debugger uses the same python.pythonPath workspace setting as for
other features of VS Code. To apply a different interpreter for debugging
specifically, you need to set the value for python in launch.json for the
applicable debugger configuration. As an alternative, you can select the
named interpreter on the Status Bar to opt for a different one.

Basic Debugging

The easiest way to start debugging a Python file is to use the Run view and
click the Run and Debug icon. If no configuration has been previously done,
you will be presented with a list of debugging options. You simply need to
select the appropriate option to quickly begin debugging your code.

The two most used options are Python File configuration to operate the
currently open Python file, and the Attach to use with Process ID to add
the debugger to a process that is already running. Once a configuration is
added, it can be selected from the dropdown list and started using the Start
Debugging button. Additionally, you can also add other settings such as
args that are not included in the standard configurations:*

*Visual Studio Code, “Python Debugging in VS Code,” https://code.
visualstudio.com/docs/python/debugging, accessed July 29, 2021.

85

https://code.visualstudio.com/docs/python/debugging
https://code.visualstudio.com/docs/python/debugging

CHAPTER 2

86

GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

name: Provides the name for the debug configuration
that appears in the VS Code dropdown list.

type: Identifies the type of debugger to use; leave this
set to Python for Python code.

request: Specifies the mode in which to start
debugging:

— launch: start the debugger on the file specified in program

— attach: attach the debugger to an already running process.
See Remote debugging for an example.

— program: Provides the fully qualified path to the Python
program’s entry module. The value ${file}, often used in
default configurations, uses the currently active file in the
editor. By specifying a specific startup file, you can always be
sure of launching your program with the same entry point
regardless of which files are open. For example:

"program": "/Users/Me/Projects/PokemonGo-Bot/
pokemongo_bot/event_handlers/__init_.py",

python: Full path that points to the Python interpreter
to be used for debugging.

If not determined, this setting defaults to the
interpreter identified in the python.pythonPath
setting, which is equivalent to using the value
${config:python.pythonPath}. To apply a different
interpreter, identify its path instead in the python
property of a debug configuration.

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

As an option, you can also use a custom environment
variable that is defined on every platform to contain
the full path to the Python interpreter to use, so that
no other folder paths are needed. Once you need to
pass arguments to the Python interpreter, you can
use the pythonArgs property.

pythonArgs: Specifies arguments to pass to the Python
interpreter using the syntax “pythonArgs”: [“<arg 1>/,
“<arg 2>"].

args: Specifies arguments to pass to the Python
program. Each element of the argument string that
is separated by a space have to be contained within
quotes, for example:

"args": ["--quiet", "--no-repeat", "--port",
u1593u],

stopOnEntry: When set to true, breaks the debugger at
the first line of the program being debugged. If omitted
(by default) or set to false, the debugger runs the
program to the first breakpoint.

console: Specifies how program output is presented as
long as the defaults for redirectOutput are not edited.
Most widely used console values are listed in Table 2-11.

87

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Table 2-11. Output values

Value Where output is displayed

“internalConsole” VS Code debug console. If redirectOutput is set to False, no
output is displayed.

“integratedTerminal” VS Code Integrated Terminal. If redirectOutput is set to True,
output is also displayed in the debug console.

“externalTerminal” Separate console window. If redirectOutput is set to True,
output is also displayed in the debug console.

o cwd: Specifies the current working directory for the
debugger, which is the basic folder for any relative
paths used in code. Once omitted, defaults to
${workspaceFolder} (the folder open in VS Code). As an
example, say ${workspaceFolder} contains a py_code
folder containing app.py, and a data folder containing
salaries.csv. If you start the debugger on py_code/app.py,
then the relative paths to the data file vary depending on
the value of cwd (Table 2-12).'6

Table 2-12. Date file paths

cwd Relative path to data file
Omitted or ${workspaceFolder} data/salaries.csv
${workspaceFolder}/py_code ../data/salaries.csv
${workspaceFolder}/data salaries.csv

6Visual Studio Code, “Python Debugging in VS Code.”

88

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

redirectOutput: When set to true (by default for
internalConsole), causes the debugger to print

all output from the program into the VS Code

debug output window. If set to false (by default for
integratedTerminal and externalTerminal), program
output is not displayed in the debugger output window.
This option is usually disabled when using “console”:
“integratedTerminal” or “console”: “externalTerminal”
because there is no need to duplicate the output in the

debug console.

justMyCode: When omitted or set to true (by default),
restricts debugging to user-written code only. Set to
false to also enable debugging of standard library

functions.

Django: When set to true, activates debugging features
specific to the Django web framework.

sudo: When set to true and used with “console”:
“externalTerminal’, allows for debugging apps that
require elevation. Applying an external console is
necessary to capture the password.

pyramid: When set to true, makes sure that a Pyramid
app is launched with the necessary command-line

pserve command.

env: Sets optional environment variables for the
debugger process beyond system environment
variables, which the debugger always inherits. The
values for these variables must be entered as strings.

89

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

o envFile: Optional path to a file that contains
environment variable definitions.

o gevent: If set to true, enables debugging of gevent
monkey-patched code.

Conditional Breakpoints

Breakpoints can also be set to trigger based on expressions, hit counts,
or a combination of both. The Python extension support hit counts that
are integers, as well as integers preceded by the ==, >, >=, <, <=, and %
operators. For instance, you can set a breakpoint to trigger after five
occurrences by setting a hitcount of >5.

Invoking a Breakpoint in Code

In your Python code, you can call debugpy.breakpoint() at any point where
you want to pause the debugger during a debugging session.

Breakpoint Validation

The Python extension automatically detects breakpoints that are set on
nonexecutable lines, such as pass statements or the middle of a multiline
statement. In such cases, running the debugger moves the breakpoint to
the nearest valid line to ensure that code execution stops at that point.

Debugging Specific App Types

The configuration dropdown has a variety of different options for general
app types (Table 2-13)."7

"Visual Studio Code, “Python Debugging in VS Code.”

90

CHAPTER 2 GETTING STARTED WITH PYTHON PROGRAMS IN VISUAL STUDIO CODE

Table 2-13. Popular configuration descriptions for Python

Configuration Description

Attach See Remote debugging in the previous section.

Django Specifies “program”: “${workspaceFolder}/manage.py”, “args”:
[“runserver”]. Also adds “django”: true to enable debugging of
Django HTML templates.

Flask See Flask debugging.

Gevent Adds “gevent”: true to the standard integrated terminal
configuration.

Pyramid Removes program, adds “args”: [“${workspaceFolder}/development.

ini”], adds “jinja”: true for enabling template debugging, and adds
“pyramid”; true to ensure that the program is launched with the
necessary pserve command.

Scrapy Specifies “module”: “scrapy” and adds “args”: [“crawl”, “specs”,
“-0”, “bikes.json”].

Watson Specifies “program”: “${workspaceFolder}/console.py” and “args”:
[“dev”, “runserver”, “--noreload=True"].

Summary

In this chapter we covered several programming basics in VS Code from
the perspective of Python developers, such as linting, debugging, and code
formatting.

In the next chapter, we will delve deeper into VS Code for Python
development and continue with additional code paradigm and tips.

91

CHAPTER 3

Setting Up the
Environment
and Testing

VS Code includes multiple handy tools for building and debugging any
application. Especially when the Python extension is enabled, VS Code
becomes a very convenient, dream-like working environment for Python
developers. This chapter discusses Python environments and how to
make use of them, how to configure Python project on VS Code to get the
most out of it, and how to work with the Jupyter ecosystem, which can be
a powerful tool in the hands of a moderately IT-literate user. This chapter
also covers how to work with the Jupyter Notebook extension.

Setting Up Your Environment

An environment in Python stands for the surrounding context in which
a Python program operates, and consists of an interpreter and many
other installed packages of your choice. The Python extension for VS
Code provides smooth integration features for working with different
environments.

© Sufyan bin Uzayr 2021 93
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9_3

https://doi.org/10.1007/978-1-4842-7344-9_3#DOI

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

By default, any Python interpreter that you have installed operates
in its own global environment, which is not specific to any one project.

For instance, if you run python (on Windows) or python3 (on macOS and
Linux) at a new command prompt, you are running in that interpreter’s
global environment. Therefore, any packages that you install or uninstall
have an impact on the global environment and all programs that you run
within that environment. It is also good to note that the Python extension
version 2018.8.1 and all the other versions after that automatically update
environments.

Even though administering projects in the global environment is an
easy way to get started, that environment will, with time, become cluttered
and disarranged with many different packages that have been installed for
different projects. Such clutter makes it complicated to thoroughly test an
application against a specific set of packages with modular versions, which
is exactly the kind of environment you would need to set up on a build
server or web server.

Because of that, developers often create a virtual environment for a
project. A virtual environment represents a subfolder in a project that has
a copy of a specific interpreter. Once you activate the virtual environment,
any packages you install are installed only in that environment’s subfolder.
When you then run a Python program within that environment, you know
that it’s running against only those specific packages. At the same time,
if you are not using a virtual environment, and you have more than one
version of Python installed and set in the path variable, you might need
to specify the Python interpreter to utilize in the terminal for installing
packages to the global environment. While it is possible to open a virtual
environment folder as a workspace, it is not highly recommended to do so
as it might cause issues with using the Python extension.

Another type of environment that needs to be mentioned is a Conda
environment. Conda environment is a virtual environment that is designed

and managed using the Conda package manager.

94

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Conda is widely known for creating environments with interrelated
dependencies as well as binary sets. Unlike virtual environments, which
are created for particular projects, Conda environments are available
globally on any given device and for any project. This availability makes
it easy to modify several distinct Conda features and then choose the
appropriate one for any scoop of work.

As previously mentioned, the Python extension automatically
recognizes existing Conda environments provided that the environment
has a Python interpreter. To illustrate, the following command creates a
Conda environment with the Python 3.4 interpreter and a few libraries,
which VS Code then displays in the list of available interpreters:

conda create -n env-01 python=3.4 scipy=0.15.0 astroid babel

In contrast, if you do not specify an interpreter in a timely manner, as
with conda create --name env-00, the environment will simply not appear
in the list.

In addition, if you create a new Conda environment while VS Code is
running, use the Reload Window command to refresh the environment
list shown with Python: Select Interpreter; otherwise, you may not see
the environment there. It may take a short time to appear; try waiting 15
seconds before using the command again.

To ensure that the environment is set up right from a shell perspective,
one option would be to use an Anaconda prompt with the activated
environment to launch VS Code using the code . command. At that
point, select the interpreter using the Command Palette or by clicking on
the status bar. Even though the Python extension for VS Code does not
yet have direct integration with Conda environment.yml files, VS Code
itself can act as a great YAML editor. Conda environments cannot be
automatically activated in the VS Code Integrated Terminal if the default
shell is set to PowerShell. If you want to change the shell, you should check
out Integrated terminal Configuration menu.

95

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

You can manually determine the path to the Conda executable to use
for activation (version 4.4+). In order to do so, open the Command Palette
(Ctrl+Shift+P) and enter Preferences: Open User Settings. Then set the
appropriate path with python.condaPath, which is in the Python extension
section of User Settings.

Manually Specifying an Interpreter

If you see that VS Code does not automatically find an interpreter you
need to use, you can set the path to it manually in your Workspace Settings
settings.json file. With any of the entries that follow, you can add the line
as a sibling to other existing settings. Select the File (Code on macOS) »
Preferences » Settings menu command (Ctrl+,) to open your Settings, and
select Workspace. Then do any of the following steps:

Create or edit an existing entry for python.pythonPath with the full
path to the Python executable (if you edit settings.json directly, add the
following line as the setting):

¢ For Windows:

"python.pythonPath": "c:/python36/python.exe",

¢ For macOS and Linux:
"python.pythonPath": "/home/python36/python",

You can also use python.pythonPath to indicate a virtual environment,
such as:

¢ Windows:

"python.pythonPath": "c:/dev/ala/venv/Scripts/
python.exe",

96

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING
¢ macOS/Linux:

"python.pythonPath": "/home/abc/dev/ala/venv/bin/
python",

You can use an environment variable in the path setting using the
syntax ${env:VARIABLE}. For instance, if you have added a variable named
PYTHON_INSTALL_LOC with a path to an interpreter, you can then apply
the following setting value:

"python.pythonPath": "${env:PYTHON_INSTALL_ LOC}",

At the same time, since variable substitution is only supported in VS
Code settings files, it will not work in .env environment files.

By making use of an environment variable, you can easily transfer a
project between operating systems where the paths are different. Just make
sure you set the environment variable on the operating system first.

To create a virtual environment, write down the following command,

where “venv” is the name of the environment folder:

macOS and Linux
You might need to run sudo apt-get install python3-venv first
python3 -m venv .venv

Windows
You can also use py -3 -m venv .venv
python -m venv .venv

Once you create a new virtual environment, a prompt will be displayed
to let you select it for the workspace. If you notice that the active command
generates the message “Activate.psl1 is not digitally signed. You cannot run
this script on the current system.”, then you would have to temporarily
change the PowerShell execution policy to allow scripts to run.

Python environment prompt adds the path to the Python interpreter
from the new virtual environment to your general workspace settings. That

97

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

environment will then be applied when installing packages and running
code through the Python extension. This will be discussed in detail in
Chapter 4, covering Django and the Flask projects.

Selecting and Activating an Environment

By default, the Python extension searches for and uses the first Python
interpreter it finds in the system path. If it does not recognize any
interpreter, it issues a warning. On macQOS, the extension also issues a
warning if you are using the OS-installed Python interpreter, because you
normally want to use an interpreter you install directly. In both cases, you
can disable these warnings by setting python.disableInstallationCheck to
true in your user settings.

To select a specific environment, you should use the Python: Select
Interpreter command from the Command Palette (Ctrl+Shift+P). You can
switch in-between environments at any time; switching environments
is also helpful if you need to test different sections of your project with
different interpreters or library versions if requested.

The Python: Select Interpreter command comes with a list of available
global environments, Conda environments, and virtual environments. It
is also important to note that on Windows, it can take a little time for VS
Code to detect available Conda environments. During that process, you
may see “(cached)” before the path to an environment is ready. The label
indicates that VS Code is presently processing with cached information for
that environment.

Choosing an interpreter from the list adds an entry for python.
pythonPath with the path to the interpreter inside your Workspace
Settings. Because the path is part of the workspace settings, the same
environment should already be selected at the time you open that
workspace. If you would need to set up a default interpreter for your
applications, you can instead include an entry for python.pythonPath
manually inside your User Settings. To do so, open the Command Palette

98

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

(Ctrl+Shift+P) and enter Preferences: Open User Settings. After that, you
can set python.pythonPath, which is in the Python extension section of
User Settings, with the appropriate interpreter.

The Python extension utilizes the selected environment for running
Python code using the Python: Run Python File in Terminal command,
providing standard language services such as auto-complete, syntax
checking, linting, and formatting when you have a .py file open in
the editor, and opening a terminal with the Terminal: Create New
Integrated Terminal command. In the latter case, VS Code is expected to
automatically activate the selected environment.

Environments and Terminal Windows

After using Python: Select Interpreter, that interpreter is applied when
right-clicking a file and selecting Python: Run Python File in Terminal.
The environment is also activated automatically any time you use the
Terminal: Create New Integrated Terminal command unless you change
the python.terminal.activateEnvironment setting to false. Nevertheless,
launching VS Code from a shell where a certain Python environment is
activated does not automatically activate that environment in the default
Integrated Terminal. Use the Terminal: Create New Integrated Terminal
command after VS Code is running. Also, Conda environments cannot be
automatically operated in the integrated terminal if PowerShell is set as
the integrated shell. You should see Integrated terminal - Configuration in
order to change the shell.

Any changes you make to an activated environment within the
terminal will be permanent. For instance, using Conda install <package>
from the terminal with a Conda environment activated installs the package
into that environment for good. At the same time, using pip install in a
terminal with a virtual environment activated adds the package to that

environment.

99

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Changing interpreters with the Python: Select Interpreter command
does not cause any difference to terminal panels that are already open.
Therefore, you can activate separate environments in a split terminal:
simply select the first interpreter, create a terminal for it, select a different
interpreter, and then use the split button (Ctrl+Shift+5) in the terminal title
bar.

Choosing a Debugging Environment

By default, the python.pythonPath setting determines which Python
interpreter to apply for debugging. However, if you have a pythonPath
property in the debug configuration of launch.json, that interpreter is
applied instead. To be more precise, VS Code uses the following order of
precedence when deciding which interpreter to employ for debugging:

1. pythonPath property of the selected debug
configuration in launch.json

2. python.pythonPath setting in the workspace
settings.json

3. python.pythonPath setting in the user settings.json

The extension automatically searches for interpreters in the given
locations:

o Standard install paths such as /usr/local/bin, /usr/
sbin, /sbin, c:\\python27, c:\\python36

e Virtual environments located directly under the
workspace (project) folder

e Virtual environments located in the folder identified by
the python.venvPath setting, which can contain multiple
virtual environments. The extension looks for virtual
environments in the first-level subfolders of venvPath

100

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

e Virtual environments located in a ~/.virtualenvs folder

for virtualenvwrapper
o Interpreters installed by pyenv

e Virtual environments located in the path identified by
WORKON_HOME and used by virtualenvwrapper

Conda environments should include a Python interpreter. As a rule, VS
Code does not show Conda environments that do not have an interpreter.
Interpreters installed in a .direnv folder for direnv under the workspace
(or project) folder. You can also manually define an interpreter if VS Code
does not locate it automatically.

Environment Variable Definitions File

An environment variable definitions file is an ordinary text file that
includes key-value pairs in the form of environment_variable=value, with
applied for comments. Multiline values are not supported, but values
can refer to any other environment variable that is already included in the
system or earlier in the file. Environment variable definitions files can be
applied for scenarios such as debugging and tool execution (including
linters, formatters, IntelliSense, and testing tools), but are not applied to
the terminal.

By default, the Python extension firstly looks for and loads a file
named .env in the current workspace folder, and then applies those
definitions. The file is recognized by the default entry “python.envFile”:
“${workspaceFolder}/.env” in your user General settings. You can modify
the python.envFile setting at any time to apply a different definitions file.

A debug configuration has an enviable property that also defaults to
the .env file in the current workspace. This function allows you to easily set
variables for debugging purposes that replace variables under the default
.env file. For instance, when developing a web application, you might want
to rapidly switch between development and production servers. Instead of

101

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

coding the different URLs and other settings into your application directly,
you could use separate definitions files for each.

Variable Substitution

When determining an environment variable in a definitions file, you can
use the value of any existing environment variable with the following
general syntax:

<VARIABLE>=...${env:EXISTING VARIABLE}...

where ... stands for any other text as used in the value, and the curly braces
are strictly required. In the limits of this syntax, the following rules apply
directly:

e Variables are operated in the order they appear in the
.env file, so you can use any variable that is included
earlier in the file.

o Single or double quotes do not have an effect on the
substituted value and are included in the defined
value. For instance, if the value of VAR1 is abcedfg,
then VAR2="${env:VAR1} assigns the value ‘abcedfg’ to
VAR2.

o The $ character can be omitted with a backslash, as in \$.

e You can apply recursive substitution,
such as PYTHONPATH=${env:PROJ_
DIR}:${env:PYTHONPATH} (where PROJ_DIR is any

other environment variable).

e You can apply only simple substitution; nesting such as
${_${env:VAR1}_EX} is not supported.

Entries with unsupported syntax are left unmodified.

102

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Using the PYTHONPATH Variable

The PYTHONPATH environment variable identifies additional locations
where the Python interpreter should be looking for modules. In VS Code,
PYTHONPATH can be set via the terminal settings (such as terminal.
integrated.env.*) and within an .env file.

If you are applying the terminal settings, PYTHONPATH starts affecting
any tools that are run within the terminal by a user, as well as any action
the extension carries out for a user that is completed through the terminal,
such as debugging. Yet in this case, when the extension is executing an
action that is not routed through the terminal, such as the use of a linter or
formatter, then this setting will not have any influence on module outlook.

When PYTHONPATH is set using an .env file, it will affect everything
the extension does on your behalf and actions completed by the debugger,
but it will not have any affect tools run in the terminal. If necessary, you
can set PYTHONPATH using both practices.

A good example of when to use PYTHONPATH would be if you have
source code in a src folder and tests in a tests folder. When running tests,
however, those tests cannot ordinarily access modules in src unless you
hard-code relative paths. In order to prevent this problem, be sure to add
the path to src to PYTHONPATH.

The value of PYTHONPATH can hold in multiple locations separated
by os.pathsep: a semicolon (;) on Windows and a colon (:) on Linux and
macOS. Invalid paths are usually simply disregarded. If you find that your
value for PYTHONPATH is not operating as expected, make sure that
you are adding the correct separator between locations for the operating
system. For instance, adding a colon to separate locations on Windows, or
adding a semicolon to separate locations on Linux and macOS, results in
an invalid value for PYTHONPATH, which is overlooked. PYTHONPATH
does not specify a path to a Python interpreter itself, and should not be
used together with the python.pythonPath setting.

The next section describes how to run our Python projects.

103

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Running Your Projects

Start by verifying the Python installation on your machine by running the
standard commands:

Linux/mac0S: python3 --version
Windows: py -3 --version

You are now ready to start VS Code in a project (workspace) folder
(Figure 3-1).

Figure 3-1. Running Python projects in VS Code

Using a command prompt or terminal, set up an empty folder called
“hello’, navigate into it, and open VS Code in that folder by entering the
following commands:

mkdir hello
cd hello
code

104

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

At this point, make sure you are using an Anaconda command
prompt. By starting VS Code in a folder, that folder becomes your
workspace. VS Code stores settings that belong to that particular
workspace in .vscode/settings.json, which are separate from user settings
that are stored globally. Alternately, you can run VS Code through the
operating system User Interface by accessing File » Open Folder to open
the project folder.

Selecting a Python Interpreter

Python by default is an interpreted language, and in order to run Python
code and get Python IntelliSense, you must specify to VS Code which
interpreter to apply.

From within VS Code, choose a Python 3 interpreter by opening the
Command Palette (Ctrl+Shift+P), and then start typing the Python: Select
Interpreter command to search; after that, select the command. You can
also use the Select Python Environment function on the Status Bar if
available (it may already display information on a selected interpreter).

The command presents options of available interpreters that VS Code
can find automatically, including virtual environments. If you do not
see the interpreter you are looking for, trying searching at Configuring
Python environments. You should also note that when using an Anaconda
distribution, the correct interpreter will normally have the suffix
(‘base’:conda): for example, Python 3.7.3 64-bit (‘base’:conda).

Opting for an interpreter sets the python.pythonPath value in your
workspace settings to the path of the interpreter. To see that setting,
select File » Preferences » Settings (Code » Preferences » Settings for
macOS), then click on the Workspace Settings tab. At the same time, if
you select an interpreter without a workspace folder open, VS Code sets
python.pythonPath in your user settings instead, which activates the
default interpreter for VS Code in general. The user setting enables you to

105

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

always have a default interpreter for Python projects. In other words, the
workspace settings lets you override the user setting.

Creating a Python Hello World Source Code File

From the File Explorer toolbar, select the New File button on the hello
folder. Name the file hello.py, and it automatically opens in the editor: File
Explorer hello.py. By using the .py file extension, you let VS Code interpret
this file as a Python program, so that it reads the contents with the Python
extension and the interpreter of your choice. The same File Explorer
toolbar also allows you to make folders within your workspace to help you
order and organize your code. For that you can use the New folder button
to effortlessly create a folder.

After you have set a code file in your Workspace, enter the following
source code in hello.py:

msg = "Hello World"
print(msg)

When you start typing, you should be able to observe how IntelliSense
presents auto-completion options. IntelliSense and auto-completion
operate for standard Python modules as well as for other packages you
have installed into the environment of the selected Python interpreter.

It also offers completions for methods available on object types. For
instance, because the msg variable contains a string, IntelliSense provides
string methods for you to type them.

IntelliSense also appears for a variable whose type provides methods.
You can freely experiment with IntelliSense and try more functions, but
itis always advised to then revert your changes so you have only the msg
variable and the print call, and save the file (Ctrl+S).

106

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Running Hello World

It is quite simple to run hello.py with Python: click the Run Python

File in Terminal play button in the top-right side of the editor. The

button accesses a terminal panel in which your Python interpreter is

automatically activated, then starts running python3 hello.py (macOS and

Linux) or python hello.py (Windows).
There are three other options for running Python code within VS Code:

Right-click anywhere in the editor window and select
Run Python File in Terminal (which saves the file
automatically).

Run Python File in Terminal command in the Python
editor. You should select one or more lines, then press
Shift+Enter or right-click and select Run Selection/
Line in Python Terminal. This command is suitable for

testing separate sections of a file.

Use the Command Palette (Ctrl+Shift+P). Select the
Python: Start REPL command to open a REPL terminal
for the currently selected Python interpreter. In the
REPL, you should then enter and run lines of code one
by one.

Running the Python Debugger

The procedure to run the debugging process for the Hello World program

is also quite straightforward. You'll first need to configure and initialize it,

and then define the variables. The next two sections explain how.

107

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Configuring and Initializing the Debugger

Set a breakpoint on line 2 of hello.py by placing the cursor on the print call
and clicking F9. As an alternative, you can click in the editor’s left gutter,
next to the line numbers; once you set a breakpoint, a red circle appears in
the gutter.

Next, in order to initialize the debugger, press F5. Since this is your
first time debugging this file, a configuration menu will open from the
Command Palette, letting you select the type of debug configuration you
would like to run for the active file. It is important to know that VS Code
uses JSON files for all of its various configurations; launch.json is the
standard name for a file that has debugging configurations.

These different configuration methods are fully explained in
Debugging configurations. If you are new to this procedure, select Python
File, which is the configuration that runs the current file shown in the
editor using the currently selected Python interpreter. The debugger will
stop at the first line of the file breakpoint. The current line is identified
with a yellow arrow in the left margin. If you examine the Local variables
window at this point, you can see how defined msg variable showing in the
Local pane.

Defining Variables

A debug toolbar appears along the top with the following commands
from left to right: continue (F5), step over (F10), step into (F11), step out
(Shift+F11), restart (Ctrl+Shift+F5), and stop (Shift+F5).

The Status Bar can also change color (orange for most of the themes) to
show that you are in debug mode. The Python Debug Console also comes
out automatically in the lower right panel to show the commands being
run, along with the program output. To continue running the program,
select the continue command on the debug toolbar (F5) and the debugger
will run the program to the end.

108

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Installing and Using Packages

This section explains how to run packages. In Python, packages let you
obtain a number of useful code libraries, typically from PyPI. For this
example, we shall try using the matplotlib and NumPy packages to make
up a graphical plot, as is commonly done with data science.

A best practice among Python developers is to refrain from installing
packages into a global interpreter environment. Instead, you should use a
project-specific virtual environment that has a copy of a global interpreter.
When you activate that environment, any packages you then install
are separated from other environments. Such isolation prevents many
complications that can occur from conflicting package versions. In order
to create a virtual environment and install the required packages, enter the
following commands as appropriate for your operating system:

¢ For Windows:

py -3 -m venv .venv
.venv\scripts\activate

If the activate command generates the message
“Activate.psl is not digitally signed. You cannot run
this script on the current system., then you need to
temporarily change the PowerShell execution policy
to allow scripts to run.

¢ For macOS and Linux:

python3 -m venv .venv
source .venv/bin/activate

You can select your new environment by using

the Python: Select Interpreter command from the
Command Palette. But when you create a new virtual
environment, you should be prompted by VS Code

109

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

to set it as the default for your workspace folder.
Once chosen, the environment will automatically be
activated when you access a new terminal.

When installing the packages try not to use it with
Anaconda distributions, because they include
matplotlib already:

¢ For macOS:

python3 -m pip install matplotlib

o For Windows (might require additional elevation):
python -m pip install matplotlib

Linux (Debian) (you might need to run as sudo)
apt-get install python3-tk
python3 -m pip install matplotlib

When you rerun the program (with or without the debugger) a few
moments later, a plot window should appear with the output: matplotlib
output

Once you are finished, do not forget to type deactivate in the terminal
window to deactivate the virtual environment.

Now, we will turn our attention to the Jupyter Notebook and its usage
in VS Code.

Supportting Jupyter

Jupyter Notebook enables creating and sharing files that contain live code,
equations, text, and visualizations, and is considered to be one of the
greatest tools for data science because of its simplicity and interactivity
(Figure 3-2).

110

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

S
jupyter

Figure 3-2. Jupyter Notebook with Python in Visual Studio Code

Jupyter Notebooks are also used with other programming languages
in addition to Python, such as R, Julia, and Scala. To enable the same rich
Jupyter Notebook experience for other languages, the Jupyter support has
been refactored out of the Python extension and into the Jupyter extension.
This way it is much easier to build new Jupyter experiences for languages
beyond Python by establishing a dependency on the Jupyter extension, which
itself has no dependency on the Python runtime or the Python extension.

The Jupyter extension provides basic notebook support for any language
kernel that is supported in Jupyter Notebooks today. Most language kernels
will operate Jupyter without any need for modification. However, to enable
advanced features such as full IntelliSense and debugging, there might be
modifications needed in the VS Code language extensions.

Jupyter (also formerly known as IPython Notebook) is an open-source
project that enables you to easily combine Markdown text and executable
Python source code on one platform called a notebook. VS Code supports
working with Jupyter Notebooks by default, as well as through Python
code files. This section will cover the support offered through Python
code files and illustrate how to work with Jupyter-like code cells, run
code in the Python Interactive Window, inspect and filter variables using
the Variable explorer and data viewer, and debug and export a Jupyter
Notebook. In order to work with Jupyter Notebooks, you must first activate

111

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

an Anaconda environment in VS Code or another Python environment in
which you have installed the Jupyter package. To select an environment,
use the Python: Select Interpreter command from the Command Palette
(Ctrl+Shift+P).

Once the appropriate environment is activated, you can freely design
and run Jupyter-like code cells, connect to a remote Jupyter server for
running code cells, and export Python files as Jupyter Notebooks.

Jupyter Code Cells

You define Jupyter-like code cells within Python code using a # %%

comment:

%k

msg = "Hello World"
print(msg)

%%

msg = "Hello again”
print(msg)

Make sure you save the preceding code in a file with a .py extension.

Selecting a command starts Jupyter, then runs the appropriate cell(s)
in the Python Interactive window. It is also possible to run code cells
using (Ctrl+Enter) or the Python: Run Selection/Line in Python Terminal
command (Shift+Enter). After writing down this command, the Python
extension automatically moves the cursor to the next cell. If you are in
the last cell in the file, the extension automatically inserts another # %%
delimiter for a new cell, mimicking the behavior of a Jupyter Notebook.

You can also click in the margin to the left of line numbers to set
breakpoints. Then you can use Debug Cell to refresh a debugging session
for that code cell. The debugger stops execution at breakpoints and lets
you step through code one line at a time and inspect variables.

112

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Additional Commands and Keyboard Shortcuts

Table 3-1 presents a few additional commands and keyboard shortcuts

supported when working with code cells.!

Table 3-1. Additional commands and shortcuts

Command Keyboard shortcut
Python: Go to Next Cell Ctri+Alt+]
Python: Go to Previous Cell Ctri+Alt+[
Python: Extend Selection by Cell Above Ctrl+Shift+Alt+[
Python: Extend Selection by Cell Below Ctrl+Shift+Alt+]
Python: Move Selected Cells Up Ctrl+; U

Python: Move Selected Cells Down Ctrl+; D

Python: Insert Cell Above Ctrl+; A

Python: Insert Cell Below Ctrl+; B

Python: Insert Cell Below Position Ctrl+; S

Python: Delete Selected Cells Ctrl+; X

Python: Change Cell to Code Ctrl+; C

Python: Change Cell to Markdown Ctrl+; M

'Visual Studio Code, “Python Interactive Window,” https://code.visualstudio.
com/docs/python/jupyter-support-py, accessed July 29, 2021.

113

https://code.visualstudio.com/docs/python/jupyter-support-py
https://code.visualstudio.com/docs/python/jupyter-support-py

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Python Interactive Window

The Python Interactive window can be used as a fully functioning console
with arbitrary code (with or without code cells). To employ the window as
a console, you have to open it with the Jupyter: create Interactive Window
command from the Command Palette, then type in code, using Enter to
go to a new line and Shift+Enter to run the code. To use the window with
a file, you can also apply the Jupyter, simply by Running Current File in
Python Interactive Window command from the Command Palette.

Plot Viewer

The Python Interactive window has full IntelliSense that includes code
completions, member lists, quick info for methods, and parameter hints.
These features allow you to be just as productive typing in the Python
Interactive window as you are in the code editor.

The Plot Viewer gives you the ability to work more deeply with the
plots inside the IntelliSense. In the viewer, you can pan, zoom, and
navigate plots in the currently ongoing session. You can also export plots to
PDE SVG, and PNG formats.

Within the Python Interactive window, double-click any plot to open
itin the viewer, or select the expand button on the upper left corner of the
plot. However, the Python Interactive window supports rendering plots
only created with matplotlib and Altair.

Live Share for Python Interactive

The Python Interactive window also supports Visual Studio Live Share
for real-time collaboration. Live Share offers you options to co-edit and
co-debug while sharing audio, servers, terminals, diffs, comments, and
more. This characteristic, however, requires the Live Share extensions to
be installed on both host and guest machines.

114

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Variable Explorer and Data Viewer

Within the Python Interactive window it is possible to view, inspect, and
filter the variables within your current Jupyter session. By expanding the
Variables section after running code and cells, you can look through a list
of the current variables, which will be automatically updated as variables
are used in code.

For more information about your variables, you can double-click on
arow or use the Show variable in the data viewer setting to see a more
detailed view of a variable in the Data Viewer. Once open, you can review
the values by looking over the rows. Variable explorer is enabled by default
but can be easily turned off in settings via Python » Data Science: Show
Jupyter Variable Explorer.

Connecting to a Remote Jupyter Server

You can transfer intensive computation in a Jupyter Notebook to other
computers by simply connecting to a remote Jupyter server. When
connected, code cells run on the remote server rather than the local
computer.

To connect to a remote Jupyter server, run the Jupyter: Specify local
or remote Jupyter server for connections command from the Command
Palette (Ctrl+Shift+P), and afterward make a choice how you would like to
connect to a Jupyter server.

If working remotely, provide the server’s URI (hostname) with the
authentication token included with a ?token= URL parameter when
prompted. If you start the server in the VS Code terminal with an
authentication token enabled, the URL with the token typically shows in
the terminal output from where you should copy it. At the same time, you
should specify a username and password after providing the URI.

115

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

The Python Interactive window designates where code is run by
displaying the URI. For better security, Microsoft recommends configuring
your Jupyter server with security precautions such as SSL and token
support. This will assist and ensure that requests sent to the Jupyter server
are authenticated and links to the remoter server are safely encrypted.

Converting Jupyter Notebooks to Python
Code File

When you have activated an environment with Jupyter installed, you can
open a Jupyter Notebook file (.ipynb) in VS Code and then convert it to
Python code. Once you've complete the conversion, you can run the code
as you would usually do with any other Python file, and also use the VS
Code debugger. Opening and debugging notebooks in VS Code is an easy
way to find and resolve code bugs, which is rather inconvenient to do
directly in a Jupyter Notebook.

Every time you open a notebook file, VS Code will open it in the
Notebook Editor automatically. You can use the convert icon on the
toolbar to convert the Notebook (.ipynb) file to a Python file (.py). Be sure
to select the convert icon followed by “Python Script’, wait a few seconds,
and then VS Code opens the converted notebook as an untitled file. The
notebook’s cells are delimited in the Python file with # %% comments;
markdown cells are converted wholly to comments preceded with # %%
[markdown], and rendered as HTML in the interactive window along with
the code and other output such as graphs and tables. The first time you
run code cells in a Python file, the Python extension starts a Jupyter server.
It usually takes some time for the server to pick up and for the Python
Interactive window to show the results of the code.

116

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Debugging a Jupyter Notebook

The VS Code debugger lets you analyze your code, set breakpoints,

examine its state, and scan for problems. Using the debugger is a fast way

to look for and correct errors in notebook code.

In VS Code, activate a Python environment in which Jupyter is

installed, as described at the beginning of this chapter. Import the

notebook’s .ipynb file into VS Code and start the debugger using one of the

following options:

For the whole notebook, open the Command Palette
(Ctrl+Shift+P) and run the Jupyter: Debug Current File
in the Python Interactive Window command.

For an individual cell, apply the Debug Cell function
that appears above the cell. The debugger specifically
starts on the code in that cell. By default, Debug Cell
just steps into user code. If you need to step into
nonuser code, you will have to uncheck Data Science:
Debug Just My Code in the Python extension settings
(Ctrl+).

Make sure you familiarize yourself with the general
debugging features of VS Code, such as inspecting
variables, setting breakpoints, and other activities

If any issues occur during the process, stop the debugger, correct your

code, save the file, and start the debugger again. When you are satisfied

with your code, save the file and then export the notebook. You can then

upload the notebook to your normal Jupyter environment.

117

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

Exporting a Jupyter Notebook

In addition to accessing a Jupyter Notebook, you can also apply one of the
following commands from the Command Palette (Ctrl+Shift+P) to export
content from a Python file in VS Code to a Jupyter Notebook (with the
.ipynb extension).

o Jupyter: Export Current Python File as Jupyter
Notebook: creates a Jupyter Notebook from the contents
of the current file, using the # %% and # %% [markdown]
delimiters to specify their respective cell types.

o Jupyter: Export Current Python File and Output as
Jupyter Notebook: create a Jupyter Notebook from the
contents of the current file and includes output from
code cells.

o Jupyter: Export Interactive Window as Jupyter
Notebook: creates a Jupyter Notebook from the
contents of the Python Interactive window.

After exporting the contents, VS Code displays a prompt through which
you can open the notebook in a browser. Jupyter stores different data (such
as configuration, runtime) in a number of different locations. Environment
variables may be set to customize for the location of each file type. Jupyter
keeps data files (nbextensions, kernelspecs) separately from runtime
files (logs, pid files, connection files) and from configuration (config files,
custom.js).

Configuration Files

Config files are stored by default in the ~/.jupyter directory.
JUPYTER_CONFIG_DIR is used for for config file location and
JUPYTER_CONFIG_PATH is used for config file locations.

118

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

JUPYTER_CONFIG_DIR

You should set this environment variable to use a particular directory,
other than the default, for Jupyter config files. Besides the
JUPYTER_CONFIG_DIR, additional directories to select can be
specified through JUPYTER_CONFIG_PATH.

JUPYTER_CONFIG_PATH

You can set this environment variable to provide extra directories for the
config search path.

:envvar: JUPYTER_CONFIG_PATH' should contain a series of
directories, separated by

** os.pathsep™” (**;" on Windows, **:** on Unix). For example,
JUPYTER_CONFIG_PATH can be placed if notebook or server extensions
are installed in a custom prefix. Because notebook and server extensions
are automatically enabled through configuration files, automatic enabling
will only work if the custom prefix’s etc/jupyter directory is included to the
Jupyter config search path.

Besides the user config directory, Jupyter has a search path of extra
locations from which a config file will be loaded. Following is a list of the
locations to be searched, in order of relevance:

e For Unix:

JUPYTER_CONFIG DIR
JUPYTER_CONFIG_PATH
{sys.prefix}/etc/jupyter/
/usr/local/etc/jupyter/ /etc/jupyter/

¢ For Windows:

%PROGRAMDATA%\ jupyter\

119

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

To list the config directories currently being used, you
can activate this command from the command line:

jupyter -paths;

The following command will display the config
directory specifically:

jupyter --config-dir.

Data Files

Jupyter utilizes a search path to look for installable data files, such as
kernel specs and notebook extensions. When searching for a resource, the
code will review the search path starting at the first directory until it finds
where the resource is contained. Each category of file is in a subdirectory
of each directory of the search path. For instance, kernel specs are placed
in kernels subdirectories.

JUPYTER_PATH is used for datafile directory locations and
JUPYTER_DATA_DIR is used for data file location.

JUPYTER_PATH

You can set this environment variable to provide extra directories for the
data search path. JUPYTER_PATH should restrain a series of directories,
separated by os.pathsep (; on Windows, : on Unix). Directories scripted
in JUPYTER_PATH are searched before other locations. This is used in
addition to other entries, rather than in their replacement:

e For Linux (and other free desktops):

JUPYTER_DATA DIR or (if not set) ~/.local/
share/jupyter/ (respects $XDG_DATA_HOME)
{sys.prefix}/share/jupyter/
/usr/local/share/jupyter /usr/share/jupyter

120

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING
e For Mac:

JUPYTER_DATA DIR or (if not set) ~/Library/
Jupyter

¢ For Windows:

JUPYTER_DATA DIR or (if not set) %APPDATA%\
jupyter
%PROGRAMDATA\ jupyter

The config directory for Jupyter data files hold nontransient,
nonconfiguration files. Examples include kernelspecs, nbextensions, or
templates.

JUPYTER_DATA_DIR

You should set this environment variable to use a particular directory,
other than the default, as the user data directory. As mentioned, to list
the config directories currently being used, you can run the following
command from the command line: jupyter -paths; and jupyter --data-dir
shows the data directory specifically.

Runtime File

Items such as connection files, which are only applied for the lifetime of a
particular process, have a runtime directory. JUPYTER_RUNTIME_DIR is
used for runtime file location.

On Linux and other free desktop platforms, these runtime files are
located in $XDG_RUNTIME_DIR/jupyter by default. On other platforms,
it’s a runtime/subdirectory of the user’s data directory. Any other
environment variable can also be used to set the runtime directory.

121

CHAPTER 3 SETTING UP THE ENVIRONMENT AND TESTING

JUPYTER_RUNTIME_DIR

You may set this to override where Jupyter stores runtime files. As
mentioned, to list the config directories currently being used, you can use
the command jupyter -paths, and jupyter --runtime-dir shows the runtime
directory specifically.

Summary

Jupyter Notebook is the most user-friendly, convenient, resourceful, and
stable interactive computing environment currently available. It greatly
combines rich text cells such as markdown, LaTeX and raw HTML, code
cells, and rich, high-value data that contains the computation results.

The output can be anything a web page can display, from ordinary text to
dynamic visualizations. For this reason, it would be better to run and keep
it clear to read as a research file.

Normally, a user should be able to open a notebook in JupyterHub
from a link on a GitHub repo, open a notebook from a link received by
email, give access to a notebook by storing it on a GitHub repo, give access
to a notebook via a cryptic URL, and access to network drives to read
or write data without any hassle. The following three methods to share
notebooks are most practiced at the moment:

e Sharing via Git
o Sharing viva NFS
e Sharing via Docker NetApp plugin

We have covered a good deal about Jupyter Notebook. In the next
chapter, we will turn our attention to Python frameworks such as Django
and Flask.

122

CHAPTER 4

Working with Python
Frameworks

In the previous chapter, we covered some core concepts pertaining to
Jupyter Notebook. In this chapter we will turn our attention to Python
frameworks. Because Python web development has been around for quite
a while now, Avarious handy Python frameworks were created to make the
life of an ordinary developer much easier. That is exactly how we would
describe Python for web development.

Python is known as a very readable, object-oriented programming
language. Due to its unique syntax, it is much faster to learn and use its
basic features compared to other programming languages such as Java or
even C++. The Python framework provides a structure to help users create
the apps without having to build every single item from the beginning. In
this chapter we’ll quickly review Python frameworks ecosystem, create
simple codes in VS Code with Django and Flask frameworks, and then
explore some basic data science scenarios in VS Code.

© Sufyan bin Uzayr 2021 123
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9_4

https://doi.org/10.1007/978-1-4842-7344-9_4#DOI

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Python Frameworks Ecosystem at a Glance

A framework acts as an arrangement designed to support the development
of web applications and web APIs. It provides a standard way to

build apps while automating the overhead associated with common
activities performed in web development. It comes with many reusable
characteristics and has two main purposes: simplifying the process of
creating web apps, and aiming for the best possible results and saving your
time. Python frameworks are also very useful for a number of reasons:

o They cover basic things such as creating autoload files,
session files, and index files.

o They provide better functionality to process requests.
o They follow the latest patterns.
o They let you attach necessary third-party resources.

There are many web application frameworks out there, and it might
get confusing and challenging to decide which one is the right one for
you. When selecting the Python web framework of your choice, there are
several things to consider. First, you should take a look at the complexity
of your project. If you are working on a smaller application, you should
consider applying microframework. If, on the other hand, you are creating
a large app project that has all kinds of features and requirements, you
might opt for a full-stack framework. In other words, the decision should
come from your understanding of the final outcome and the tasks you
want to untangle. Another thing to remember is the fact that sometimes
a web application framework can stand in the way of web development
due to the fact that every framework usually has certain limitations. You
can either find your ways of working with them or discard the framework
entirely instead of having to go through it.

124

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

A web framework is the result of what developers have learned over
the past years while programming sites and applications for the web.
Frameworks make it easier to reapply code for common HTTP procedures
and to structure projects so other developers can effortlessly rebuild and
maintain the application. Web frameworks are a concept implemented
by Django, Flask, Bottle, Pyramid, Morepath, TurboGears, and several
other libraries. Frameworks provide functionality in their code or through
extensions to activate operations required to run web applications. These
funding operations include:

e URLrouting
o Input form handling and validation
e HTML, XML, JSON, and other output formats

o Database connection configuration and data
manipulation through an object-relational mapper
(ORM)

e Web security against Cross-site request forgery (CSRF),
SQL Injection, Cross-site Scripting (XSS)

o Session storage and retrieval

It is also good to keep in mind that not all web frameworks include
code for all of this functionality. Frameworks are usually placed on the
spectrum from executing a single function to providing every known web
framework characteristic.

Whether or not you need to use a web framework in your project at
all solely depends on your experience with web development and which
project you are running. If you are a beginner programmer and just need
to complete a web application as a learning project, then a framework
can assist in the understanding of the preceding concepts, such as URL
routing, data manipulation, and authentication, that are common tasks for
the majority of web applications. On the other hand, if you already have

125

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

significant web development experience, you may feel like minimal caliber
frameworks do not match your project’s requirements. In that case, you
can experiment with open-source libraries such as Werkzeug for WSGI
plumbing with your own code to create your own framework. Although
there are plenty of different items in the Python ecosystem to satisfy

the needs of web developers, such as Pyramid and Bottle, this chapter
focuses on Django and Flask, the two most common and versatile Python
frameworks.

Django Development

Django is a high-level Python framework developed for fast, secure, and
stable web development (Figure 4-1). Django also has rich support for URL
routing, page templates, and working with data.

Figure 4-1. Django, a popular Python framework

In this section we shall cover how to work with Django in the VS Code
terminal, editor, and debugger.

126

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Installation

You start by making sure you have the latest version of VS Code installed.
To successfully complete this Django tutorial, you must install a version of
Python 3 in one of the following ways:

o For all operating systems: a download from python.
org; typically use the Download Python 3.9.1 button
that appears first on the page.

¢ For Linux: the built-in Python 3 installation works well,
but to download other Python packages you must run
sudo apt install python3-pip in the terminal.

e For macOS: an installation through Homebrew on
macOS using brew install python3.

In addition, no matter which operating systems you use, be sure you
download from Anaconda distribution for data science purposes. On
Windows, the location of your Python interpreter has to be included in your
PATH environment variable. You can check the location by running path at
the command prompt. If the Python interpreter’s folder is not added, open
Windows Settings, search for “environment’, select Edit environment variables
for your account, and then edit the Path variable to include that folder.

After you are finished with that step, you can install the following (free)
extensions:

o Python (published by Microsoft): for full Python
language support.

o Django Template: for template file source highlighting.

o Django Snippets: for common Django code.
Alternatively, install Djaniero-Django Snippets if you
prefer.

Do not forget to reload VS Code after extension installation.

127

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Creating a Project Environment for the Django
Tutorial

Creating a virtual environment in which Django is installed is an important
step. Using a virtual environment avoids installing Django into a global
Python environment and gives you exact control over the libraries engaged
in an application. A virtual environment also makes it easy to cover
requirements.txt file for the environment.

Begin by creating a project folder for this tutorial, such as hello_django
on your file system. In that folder, use the following command (as suitable
to your computer) to design a virtual environment named env based on

your current interpreter:
e For Linux: python3 -m venv env
¢ For macOS: python3 -m venv env
e For Windows: python -m venv env

Be sure to use a stock Python installation when activating these
commands. If you apply python.exe from an Anaconda installation,
you get an error because the ensurepip module is not available, and the
environment is left in an incomplete condition.

Next, open the project folder in VS Code by running code or by
running VS Code and using the File » Open Folder command. In VS Code,
open the Command Palette via View » Command Palette or Ctrl+Shift+P,
then select the Python: Select Interpreter command: Django tutorial:
opening the Command Palette in VS Code. The command will call a list
of available interpreters that VS Code can locate automatically (and your
list will vary). From the list, go for the virtual environment in your project
folder that starts with ./env or .\env.

You can also create New Integrated Terminal (Ctrl+Shift+") from the
Command Palette, which produces a terminal and automatically activates
the virtual environment by running its activation script. On Windows,

128

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

if your default terminal type is PowerShell, you may get an error that it
cannot run activate.ps1 because running scripts is disabled on the system.
The error shall also provide a link for information on how to allow scripts.
You can also use Terminal: Select Default Shell to set “Command Prompt”
or “Git Bash” as your default.

The selected environment should pop up on the left side of the VS
Code status bar; notice that the “(venv)” indicator that tells you that you
are currently using a virtual environment. In addition, you can modify your
environment via the following commands:

o Update pip in the virtual environment: python -m pip
install --upgrade pip

o Install Django in the virtual environment: python -m
pip install Django

VS Code activates the environment automatically when you use
Terminal: Create New Integrated Terminal (Ctrl+Shift+'). When you open
a separate command prompt or terminal, activate the environment by
running source env/bin/activate (Linux/macOS) or env\Scripts\Activate.ps1
(Windows). You know the environment is active when the command prompt
shows (env) at the beginning. You now have a self-evolved environment
ready for writing Django code.

Creating and Running a Minimal Django App

In Django terminology, a Django project is made up of several site-level
configuration files together with one or more apps that you employ to a
web host to make a full web application. A Django project can produce
multiple apps, each of which will normally have an independent function
in the project, and the same app can be in various Django projects. In this
instance, an app is just a Python package that has certain functions that
Django expects.

129

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

To create a minimal Django application, it is necessary to first design
the basic Django project to serve as the container for the app, and then
go on to creating the app itself. For both processes you should apply the
Django administrative utility or Django-admin, which is installed together
with the Django package.

Creating the Django Project

In the VS Code Terminal where your virtual environment is operating,

insert the following command:
Django-admin startproject web project.

This startup command assumes (by use of . at the end) that the current
folder is your project folder, and creates manage.py within it, which stands
for the Django command-line administrative utility for the project. You
run administrative commands for the project using python manage.
py <command>. As a subfolder you also have a file named web_project,
which contains the following files:

e __init__.py: an empty file that informs Python that this
folder is a Python package.

e asgi.py: an entry point for ASGI-compatible web
servers to serve your project. You should leave this file
as-is to secure the hooks for production web servers.

» settings.py: contains settings for Django project, which
you modify in the course of developing a web app.

o urls.py: contains a table of contents for the Django
project, which you can edit in the course of
development.

130

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

e wsgi.py: an entry point for WSGI-compatible web
servers to serve your project. It is recommended
to leave this file as-is as to provide the hooks for

production web servers.

You should also create an empty development database by running
the following command: python manage.py migrate. When you run the
server for the first time, it generates a default SQLite database in the file
DB.sqlite3 that is considered necessary for development purposes but can
also be used in production for low-volume web apps. To verify the Django
project, make sure your virtual environment is running error-free, then
start Django’s development server using the command python manage.
py runserver. Django’s built-in web server is designed only for local
development purposes. When you add a web host, however, Django will
use the host’s web server instead. The wsgi.py and asgi.py modules in the
Django project are responsible for getting into the production servers.

If you want to use a different port than the default 8000, you should
insert the port number on the command line, such as python manage.
py runserver 5000. Ctrl+click the http://127.0.0.1:8000/ URL in the
terminal output window to open your default browser to that address. If
Django is installed correctly and the project is still active, you will be able
to see the default page shown below. The VS Code terminal output window
also presents the server log. Once you are finished, close the browser
window and stop the server in VS Code using Ctrl+C in the terminal output
window.

Creating a Django App

In the VS Code Terminal where your virtual environment is located, run
the administrative utility’s start command in your project folder (where
manage.py added): python manage.py startapp helloworld. This command
will create a folder called helloworld that has a number of code files and

131

﻿http://127.0.0.1:8000/﻿

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

one subfolder. With this, you most frequently might work with views.py
(that functions as page definition of your web app) and models.py (that
has classes defining your data objects). The migrations folder is utilized by
Django’s administrative utility to administer database versions, as will be
discussed later in this chapter. In the same folder, we can also see the files
apps.py (for app configuration), admin.py (for creating an administrative
interface), and tests.py (for creating tests).

You can modify helloworld/views.py to match the following code
and create a single view for the app’s home page with the following: from
Django.http import HttpResponse

def home(request):
return HttpResponse("Hello, Django!")

With that, create a file hello/urls.py with the contents below. The urls.py
file is where you identify patterns to route different URLs to their appropriate
views. The following code contains one route to map the root URL of the app
(“”) to the views.home function that you just added to hello/views.py:!

from django.urls import path
from hello import views
urlpatterns = [
path("", views.home, name="home"),

The web_project folder also has a urls.py file, which is where URL
routing is actually located. Open web_project/urls.py and edit it to match
the following code. This code pulls in the app’s hello/urls.py using Django.
URLs.include, which keeps the app’s routes framed within the app. This
procedure is used when a project has not one but multiple apps. In the
end, be sure to save all modified files with Ctrl+K S.

'Visual Studio Code, “Django Tutorial in Visual Studio Code,” https://code.
visualstudio.com/docs/python/tutorial-django, accessed July 29, 2021.

132

https://code.visualstudio.com/docs/python/tutorial-django
https://code.visualstudio.com/docs/python/tutorial-django

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Creating a Debugger Launch Profile

Fortunately, there is an easier way to run the server and test the app
without typing python manage.py runserver every time. It is possible to
create a customized launch profile in VS Code, which is also applied for
the inevitable exercise of debugging.

First, switch to Run view in VS Code (using the left-side activity bar
or F5). You might get the message “To customize Run and Debug create
alaunch.json file” This means that you do not yet have a launch.json file
with debug configurations. VS Code can create that for you once you click
on the create a launch.json file link.

Select the launch.json link, and VS Code will start a debug
configuration. Select Django from the dropdown and VS Code will include
anew launch.json file to a Django run configuration. The launch.json file
has a number of different debugging configurations, each of which is a
distinct JSON object within the configuration variety.

After that, scroll down to examine the configuration with the name
“Python: Django” by scripting:?

{
“name": "Python: Django",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/manage.py",
"args": [
"runserver",
])
"django": true

1

2Visual Studio Code, “Django Tutorial in Visual Studio Code.”

133

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

This configuration makes VS Code run “${workspaceFolder}/manage.
py” together with the selected Python interpreter and the arguments in the
args list. Launching the VS Code debugger with this configuration would
have the same effect as running python manage.py runserver in the VS
Code Terminal with your activated virtual environment. The “Django”:
true entry also allows VS Code to enable debugging of Django page
templates.

You can test the configuration any time by selecting the Run
» Start Debugging menu command, or clicking on the green Start
Debugging arrow next to the list (F5). You should then do Ctrl+click the
http://127.0.0.1:8000/ URL in the terminal output window to open the
browser and check once again that the app is running properly.

When you are finished, close the browser and stop the debugger. In
order to stop the debugger, use the Stop toolbar button (the red square)
or the Run » Stop Debugging command (Shift+F5). You can also follow
the Run » Start Debugging at any time to test the app, which also has the
advantage of automatically saving all modified files.

Exploring the Debugger

Debugging gives you a chance to pause a running program on a specified
line of code. When a program is paused you can check out variables, run
code in the Debug Console panel, and take advantage of modified files
before the debugging session begins.

Before you start, make sure you have stopped the running app at the
end of the last session by using Ctrl+C in the terminal. If you leave the app
running in one terminal, it continues to use the port. Because of that, when
you run the app in the debugger using the same port, the original running
app takes all the requests and you will not observe any activity in the app
being debugged, and the program will not stop at breakpoints. To put it
simply, if the debugger does not seem to be activated, make sure that no
other part of the app is still running.

134

http://127.0.0.1:8000/

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Start with add a route to the urlpatterns list:
path(“helloworld/<name>" in helloworld/urls.py. The first argument to
path defines a route “hello/” that includes a variable string called name.
The string is passed to the views.hello_world function specified in the
second part of the argument.

Because URL routes are very case-sensitive, if you need the same
view function to manage both, you have to define paths for each variant.
The name variable defined in the URL route is given as an argument to
the hello_there function. As a side note, you should always filter arbitrary
user-provided information to prevent various attacks on your app from
happening. In this case, the code filters the name argument to include only
letters, which avoids injection of control characters, HTML, and others.

You can set a breakpoint at the first line of code in the hello_world
function (now = DateTime.now()) by doing any one of the following:

e Press F9 with the cursor on that line
o Select the Run » Toggle Breakpoint menu command

e Click directly in the margin to the left of the line
number

The breakpoint appears as a red dot in the left margin. Start the
debugger by selecting the Run » Start Debugging menu command, or
selecting the green Start Debugging arrow next to the list (F5). A debugging
toolbar also pops in VS Code containing commands in the following
order: Pause (or Continue, F5), Step Over (F10), Step Into (F11), Step Out
(Shift+F11), Restart (Ctrl+Shift+F5), and Stop (Shift+F5). Command output
appears in a Python Debug Console terminal. You should open a browser
and navigate to http://127.0.0.1:8000/helloworld/VSCode. Before the
page loads, VS Code pauses the program at the breakpoint you set. The
small yellow arrow on the breakpoint shows that it is the next line of code
to run. Use Step Over to run the now = DateTime.now() statement.

135

http://127.0.0.1:8000/helloworld/VSCode

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

On the left side of the VS Code window, you can see a Variables list that
shows local variables and arguments. Below that would be listed for Watch,
Call Stack, and Breakpoints. In the Locals section, try expanding different
values and modifying them with double-clicks (or F2). Changing variables,
however, can break the program. Developers usually make changes only
to correct values when the code did not produce the right value in the
beginning.

When a program is paused, the Debug Console panel allows you to
experiment with expressions and try out different parts of code using the
current state of the program. For instance, once you have stepped over
the line now = DateTime.now(), you might try with different date/time
formats. In the editor, choose the code that reads now.strftime(“%A, %d
%B, %Y at %X”), and then right-click and select Debug: Evaluate to send
that code to the debug console, where it shows:

now.strftime("%A, %d %B, %Y at #%X")
'Friday, 07 June, 2021 at 12:43:32'

At the same time, the Debug Console also has exceptions from within
the app that may not show in the terminal. For example, if you see a
“Paused on exception” message in the Call Stack area of Run view, switch
to the Debug Console to see the exception message. To make it easier
to repeatedly go to a specific URL such as http://127.0.0.1:8000/
helloworld/VSCode, output that URL using a print statement at some
point in a file like views.py. The URL appears in the VS Code Terminal,
where you can use Ctrl+click to open it in a browser.

When you are finished, be sure to close the browser and stop the
debugger using the Stop toolbar button (the red square) or the Run » Stop
Debugging command (Shift+F5).

136

http://127.0.0.1:8000/helloworld/VSCode
http://127.0.0.1:8000/helloworld/VSCode

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Using Definition and Peek Definition Commands

When you work with Django or any other library, you need to examine the
code in those libraries from time to time. For that, VS Code provides two
convenient commands that go straight to the definitions of classes and
other objects in any code.

Go to Definition transfers from your code into the code that defines an
object. For example, in views.py, right-click on HttpResponse in the home
function and select Go to Definition (or use F12), which guides to the class
definition in the Django library.

Peek Definition (or Alt+F12) is used to display the class definition
directly in the editor making space in the editor window to avoid
disturbing any code. To close the Peek window, press Escape or use the x
in the upper right corner.

Using a Template to Render a Page

The first app created in Django usually has only plain text web pages from
Python code. Even if it is possible to get HTML directly in code, developers
rarely practice that because it opens the app to cross-site scripting (XSS)
attacks. In the simplest hello_there function, one might think to edit the
output in code with content such as = “<h1>Hello there, “+ clean_name +
“I</h1>, where the result in content is attached directly to a browser. This
opening lets an attacker place malicious HTML, including JavaScript code,
in the URL that turns into clean_name and thus ends up being run in the
browser.

Keeping HTML out of your code entirely by using templates (so that
your code is concerned only with data values) is considered to be a much
better practice. In Django, a template is an HTML file that accommodates
placeholders for values that the code provides at run time. The Django
templating engine then has to make the substitutions when rendering
the page and provide automatic escaping to prevent XSS attacks. The

137

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

code therefore concerns itself only with data values and markup. Django
templates provide great options, such as template inheritance, which lets
you define a base page with common markup and then expand upon that
base by using different page-specific additions.

Begin by creating a single page using a template in the web_project/
settings.py file. First, locate the INSTALLED_APPS list and add the
following entry, which makes sure the project is familiar with the app and
can handle templating: ‘hello’ Inside the hello folder, make a folder named
templates, and then another subfolder named hello to match the app.

After that, in the templates/hello folder, create a file named
hello_there.html with the following contents. This template has to
have two placeholders for data values named “name” and “date’, which
should be separated by pairs of curly braces, {{ and }}. All other text is
also considered a part of the template, together with formatting markup
(such as). Template placeholders can also include formatting,
such as the expressions after the pipe | symbols, in this case using
Django’s built-in date filter and a time filter. The code then needs only
to pass the DateTime value in the following manner:?

<!DOCTYPE html>

<html>
<head>
<meta charset="utf-8" />
<title>This is Django</title>
</head>
<body>
Hello people, {{ name }}! It's {{ date
| date:"1, d F, Y" }} at {{ date | time:"H:i:s" }}
</body>
</html>

3Visual Studio Code, “Django Tutorial in Visual Studio Code.”

138

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

At the top of views.py, add the following import statement: from
Django.shortcuts import render.

Also in views.py, edit the hello_world function to use Django.shortcuts.
render method for loading a template and providing the template context.
The context here stands for the set of variables within the template. The
render function takes the request object, followed by the path to the
template relative to the templates folder, then the context object:

def hello there(request, name):

return render(
request,
"helloworld/hello world.html',
{
"name': name,
"date': datetime.now()

)

Notice that the code looks much simpler this way, and concerned
only with data values because the markup and formatting is all located
in the template. Now you can start the program (inside or outside of the
debugger, using Ctrl+F5), navigate to a /hello/name URL, and observe the
results. You can also navigate to a /helloworld/name URL using a name
like <a%20value%20that%20could%20be%20HTML> to see Django’s
automatic escaping in action. The “name” value in this case comes up as
plain text in the browser rather than as rendering an actual element.

Serving Static Files

Static files represent content that your web app returns as-is for certain
requests, such as Cascading Style Sheets files. Serving static files requires
that the INSTALLED_APPS list in settings.py contains Django.contrib.
staticfiles, which is included by default.

139

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Serving static files is used when deploying to production. They work
with the Django development server and also with a production server like
Gunicorn. In production, you also need to set DEBUG=False in settings.py,

which is necessary to carry some additional work when using containers.

Readying the App for Static Files

To get the app ready, in the project’s web_project/urls.py, add the
following import statement: from Django.contrib.staticfiles.URLs import
staticfiles_urlpatterns. In that same file, include the following line at

the end, which has standard static file URLs to the list that the project
recognizes: urlpatterns += staticfiles_urlpatterns().

Referring to Static Files

To refer to static files, create a folder named static in the hello folder.
Within the static folder, make a subfolder named hello, matching the app
name. The reason for this extra subfolder is that when you deploy the
Django project to a production server, you combine all the static files into a
single folder that is served by a dedicated static file server. The static/hello
subfolder makes sure that when the app’s static files are combines, they are
in an app-specific subfolder and will not conflict with files from other apps
in the same project.

Then, in the static/hello folder, create a file named site.css with
the following contents. After entering this code, also see the syntax
highlighting that VS Code provides for CSS files, including a color preview:

.message {
font-weight: 600;
color: blue;

140

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

In templates/hello/hello_there.html, include the following lines after
the <title> element. The {% load static %} tag is a custom Django template
tag set, which lets you use {% static %} to refer to a file like the stylesheet:

{% load static %}
<link rel="stylesheet" type="text/css" href="{% static
"helloworld/site.css' %}" />

Also in templates/hello/hello_there.html, replace the contents <body>
element with the following markup that uses the message style instead of a
 tag:

Hello, buddy {{ name }}! It's
{{ date | date:'l, d F, Y' }} at {{ date | time:'H:i:s" }}.

Now when you run the app, navigate to a /hello/name URL and
observe that the message renders in blue. Do not forget to stop the app
when you are finished.

Using the Collectstatic Command

For production purposes, you would need to collect all the static files from
your apps into a single folder using the python manage.py collectstatic
command. You can then take a dedicated static file server to serve those
files, for most issues is better overall performance. The following steps
show how this collection is produced, even though you do not use the
collection when running with the Django development server.

In web_project/settings.py, add the following line that identifies an
exact place where static files are collected when you apply the collectstatic
command:

STATIC_ROOT = BASE_DIR / 'static_collected’

141

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Later, in the Terminal, try running the command python manage.
py collectstatic and notice that hello/site.css is copied into the top-
level static_collected folder altogether with manage.py. In practice, run
collectstatic each time you edit static files and before forwarding it into
production.

Creating Multiple Templates That Extend a Base
Template

Because most web apps have multiple pages, and because those pages
normally share many common items, developers split those common
items into a base page template that other page templates then expand.
This procedure is also called template inheritance, meaning that the
extended pages inherit elements from the basic page.

Also, because you most likely need to create multiple pages that extend
the same template, it is useful to create a code snippet in VS Code with
which you can initialize new page templates faster. A snippet helps you
prevent tedious and prone to error operations.

Creating a Base Page Template and Styles

A base page template in Django has all the shared bits of a set of pages,
including references to script files. Base templates also define one or more
block tags with content that extended templates are expected to override.
A block tag is delineated by {% block <name> %} and {% endblock %} in
both the base template and extended templates.

In the templates/hello folder, make a file named layout.html with
the contents, which has blocks named “title” and “content” The markup
should be able to define a simple navbar structure with links to Home,
About, and Contact pages. You can use Django’s {% URL %} tag to refer to
other pages through the names of the corresponding URL patterns rather

142

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

than by relative path. You can run the app at this point, but because you
have not made use of the base template anywhere and have not changed
any code files, the result will be the same.

Creating a Code Snippet

If you find yourself creating multiple pages that extend layout.html, it
would save time to create a code snippet to initialize a new template file
with a suitable reference to the base template. A code snippet secures a
consistent part of code from a single source, which prevents mistakes that
can occur when using copy-paste from active code.

To create a snippet in VS Code, select the File (Windows and Linux)
or Code (macOS), menu, then follow Preferences » User snippets. In the
list that appears, select HTML. The option may also appear as “html.json”
in the Existing Snippets section of the list if you have created snippets
previously.

After VS code opens html.json, save it with Ctrl+S. Now. Any time you
start typing the snippet’s prefix, such as djext, VS Code will provide the
snippet as an autocomplete variety. You can also use the Insert Snippet

command to select a snippet from a menu.

Working with Data, Data Models, and Migrations

Many web apps operate with data stored in a database, and Django makes
it pretty simple to represent the items in that database via models. In
Django, a model is a Python class that comes from Django.DB.models.
Model, which stands for a specific database object, most likely a table, and
is located in an app’s models.py file.

143

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

With Django, you administer your database through the models you
define in code. Django’s migrations then take care of all the details of the
underlying database automatically as you modify the models over time.
The general system goes the following way:

e Make changes to the models in your models.py file.

¢ Run python manage.py makemigrations to create
scripts in the migrations folder that migrate the
database from its current conditions to the new
conditions.

e Run python manage.py migrate to apply the scripts to
the base database.

The migration scripts can record all the incremental changes you
make to your data models. By applying the migrations, Django adapts the
database to match your needs. Because each incremental change has its
own script, Django can automatically migrate any previous version of a
database to the newly installed version. You need to occupy yourself only
with your models in models.py, and not with the underlying database
system or the migration scripts.

In code, you also operate only with your model classes to store and
collect data, as Django handles all the other underlying details. There is
only one exception that you can write data into your database, if you are
using the Django administrative utility loaddata command. This command
is often used to start a data set after the migrate command has been
initialized.

When using the DB.sqlite3 file, you can also work directly with the
database using a tool like the SQLite browser. It’s fine to add or delete
records in tables with it, but it is better to avoid making changes to the
database schema because it will then be out of sync with your app’s
models. It is better to change the models, run makemigrations, and then
activate migrate.

144

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Types of Databases

By default, Django has a DB.sqlite3 file for an application database that

is used for development work. SQLite works fine for low to medium

traffic sites with fewer than 100 K hits per day, but is not the best option

for higher volumes.* It is also limited to a single computer, so it cannot

be applied in any multiserver scenario such as load-balancing and geo-
replication. Because of this, it is best to consider using a production-level
data store such as PostgreSQL, MySQL, and SQL Server. You can also apply
the Azure SDK for Python to work with Azure storage services such as
tables and blobs.

Migrating the Database

When you change your data models by editing models.py, you will need

to update the database itself. To do so, open a Terminal in VS Code with
your virtual environment activated, navigate to the project folder, and run
the following commands: python manage.py makemigrations, and python
manage.py migrate.

If you take a look in the migrations folder, you should now be able to
see the scripts that makemigrations generates. You can also look at the
database to see that the schema is updated. If you see errors when running
the commands, make sure you are not using a debugging terminal that is
left over from previous steps, as they may not have the virtual environment
activated.

4SQLite, “When to Use SQLite,” sqlite.org, accessed [date].

145

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Creating a Superuser and Enabling
the Administrative Interface

By default, Django has a great administrative interface for a web app that
is protected by authentication. The interface is used through the built-in
Django.contrib.admin app, which is included by default in the project’s
INSTALLED_APPS list (settings.py), and authentication is managed with
the built-in Django.contrib.auth app, which is also built-in INSTALLED_
APPS.

You should perform the following steps to enable the administrative
interface: first, create a superuser account in the app by opening
a Terminal in VS Code for your virtual environment, then run the
command python manage.py createsuperuser --username=<username>
--email=<email>, replacing <username> and <email> using your personal
information. When you run the command, Django will ask you to enter
and confirm your password. Make sure you remember your username
and password combination. These are the main credentials you need to
authenticate with the app. Add the following URL route in the project-
level urls.py (web_project/urls.py in this tutorial) to point to the built-in
administrative interface:

path("admin/", admin.site.URLs),

Run the server, then open a browser to the app’s /admin page (such
ashttp://127.0.0.1:8000/admin when using the development server).
Once the login page appears, enter your user credentials.

When you are fully authenticated you see the default administration
page, through which you can manage users and groups. You can customize
the administrative interface as you like and even provide capabilities to
edit and remove entries in the database.

146

http://127.0.0.1:8000/admin

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Flask Development

Flask is a lightweight Python framework for web applications that provides
the foundation for URL routing and page rendering (Figure 4-2).

Figure 4-2. Flask, a Python web development framework

Flask is usually referred to as a micro framework due to the absence
of features like form validation, database abstraction, and authentication.
Such features are therefore provided by special Python packages called
Flask extensions. These extensions seamlessly incorporate with Flask
design so that they appear as if they were the segment of Flask itself. For
instance, Flask does not have a page template engine, but downloading
Flask includes the Jinja templating engine by default.

In this Flask section, we will review a number of features of VS Code
including using the terminal, the editor, the debugger, code snippets, and others.

To start with, successfully install a version of Python 3 (options were
provided earlier in this chapter). After that, you should create a virtual
environment in which Flask is installed. Using a virtual environment
avoids having to install Flask into a global Python environment, and
gives you exact control over the libraries used in an application. A virtual
environment also makes it easy to establish a requirements.txt file for the
environment.

147

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

On your file system, create a project folder named hello_flask. In that
folder, use the following command (depending on your computer) to
create a virtual environment named env based on your current interpreter:

¢ For Linux:

python3 -m venv env

¢ For macOS:

python3 -m venv env

o For Windows:
python -m venv env

Make sure you use a stock Python installation when activating these
commands. If you use python.exe from an Anaconda installation, you
will get an error because the ensurepip module is not available, and the
environment is left in an unfinished state.

You can open the project folder in VS Code by running code or by
running VS Code and using the File » Open Folder command. In VS Code,
you should open the Command Palette (View » Command Palette or
(Ctrl+Shift+P)). Then click on the Python: Select Interpreter command.
The command will show a list of available interpreters that VS Code can
provide automatically. From the list, look for the virtual environment in
your project folder that starts with ./env or .\enwv.

Create New Integrated Terminal (Ctrl+Shift+')) from the Command
Palette, which makes up a terminal and automatically activates the virtual
environment by running its activation script. However, if you are using
Windows and your default terminal type is PowerShell, you might get an
error that it cannot run activate.ps1 because running scripts is disabled
on the system. There is no need to worry, as the error will provide a link

148

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

for information on how to allow scripts. Otherwise, you can use Terminal:
Select Default Shell to set “Command Prompt” or “Git Bash” as your
default instead.

The selected environment should appear on the left side of the VS
Code status bar, and when it does pay attention to the “(venv)” indicator
that tells you that you are using a virtual environment:

e python -m pip install --upgrade pip: update pip in
the virtual environment by running the following
command in the VS Code Terminal.

e python -m pip install flask: install Flask in the virtual
environment in the VS Code Terminal.

You now ready to write your first Flask code in a self-contained
environment. VS Code activates the environment automatically when you
use Terminal: Create New Integrated Terminal. When you open a separate
command prompt or terminal, activate the environment by running
source env/bin/activate (Linux/macOS) or env\Scripts\Activate.psl
(Windows). You will see that the environment is activated if the command
prompt shows (env) at the beginning.

Creating and Running a Minimal Flask App

In VS Code, create a new file in your project folder named app.py via
File » New from the menu, or by pressing Ctrl+N. After that, in app.py,
add code to import Flask and create an instance of the Flask object.

If you type the following code (instead of using copy-paste), you can see
VS Code’s IntelliSense and auto-completions:

from flask import Flask
app = Flask(__name_)

149

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

You can also insert a function or a simple string in app.py that returns
content, and use Flask’s app.route decorator to map the URL route / to that
function:

@app.route("/")
def home():
return "Hello, Flask!"

It is also possible to use multiple decorators on the same function, one
per line, depending on how many different routes you want to map to the
same function.

In the Integrated Terminal, run the app by entering python -m flask
run, which then activates the Flask development server. The development
server searches for app.py by default. If you run Flask, you should see
output similar to the following:

(env) D:\py\\hello flask_app>python -m flask run

* Environment: production
WARNING: Do not use the development server in a production
environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

If you see an error, make sure you have run python -m pip install flask
in your virtual environment, as described earlier. At the same time, if you
want to run the development server on a different IP address or port,
employ the host and port command-line arguments, as with --host=0.0.0.0
--port=80.

To open your default browser to the rendered page, Ctrl+click the
http://127.0.0.1:5000/ URL in the terminal. Notice that if you visit a
URL like /, a message will pop in the debug terminal showing the HTTP
request: 127.0.0.1 - - [11/Jun/2021 12:40:10] “GET / HTTP/1.1” 200 -

150

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

If you want to use a different filename than app.py, such as program.
py, you need to prescribe an environment variable named FLASK_APP
and set its value to your open file. Flask’s development server then applies
the value of FLASK_APP instead of the default file app.py. When you are
finished, you can stop the app by using Ctrl+C in the terminal.

Running the App in the Debugger

The Debugger tool lets you pause a running program on a particular line
of code. When a program is paused you can assess variables, run code in
the Debug Console panel, and otherwise take advantage of the features
described on Debugging, such as automatically saving any modified files
before every debugging.

Before you start you need to check that you have stopped the running
app at the end of the last section by clicking Ctrl+C in the terminal. If you
leave the app running in one terminal, it continues to own the port and
when you run the app in the debugger using the same port, the original
running app administers all the requests and you will not observe any
activity in the app being debugged, and the program will not stop at
breakpoints. To put it simply, if the debugger does not seem to be working,
you have to make sure that no other parts of the app are still running.

Afterward, replace the contents of app.py with the following code,
which adds a second route and function that you can step through in the
debugger:

o from flask import Flask
e from DateTime import DateTime

e importre

151

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

app = Flask(__name)

@app.route("/")
def home():
return "Hello, Folks!"

@app.route("/helloworld/<name>")
def hello world(name):
now = datetime.now()
formatted now = now.strftime("%A, %d %B, %Y at %X")

When filtering the name argument to letters, use only regular
expressions. URL arguments can contain arbitrary text; therefore, it is
restricted to safe characters only.

The decorator applied for the new URL route, /hello/<name>,
describes an endpoint /hello/ that can accept any extra value. The
identifier inside < and > in the route stands for a variable that is passed to
the function and can be utilized in your code.

As you already know, URL routes are case-sensitive. For instance, the
route /helloworld/<name> is distinct from /HelloWorld/<names>. If you
need the same function to manage both, try applying decorators for each
variant. In addition, as described in the code comments, always filter
arbitrary user-provided information to prevent various attacks on your
app. In this case, the code filters the name argument to contain only letters,
which avoids the injection of control characters and HTML. Nevertheless,
when you use templates in the next project, Flask will perform automatic
filtering and you will not need to script the code again.

Setting a breakpoint at the first line of code in the hello_world function
(now = DateTime.now()) is quite straightforward if you do it via the following:

o Pressing F9 with the cursor on that line

o With the cursor on that line, selecting the Run Toggle
Breakpoint menu command

e Clicking directly in the margin to the left of the line number

152

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

After that, you should be able to see the breakpoint appear as a red dot
in the left margin.

You may switch to Run view in VS Code (using the left-side activity bar
or F5), after which you may see the message “To customize Run and Debug
create a launch.json file.” This shows that you do not yet have a launch.json
file containing various debug features. VS Code can produce those for you
once you click on the create a launch.json file link.

When you select the link, VS Code will start the debug configuration.
Select Flask from the dropdown and VS Code will populate a new launch.
json file with a Flask run configuration. The launch.json file has a number
of debugging configurations, each of which is its own JSON object within
the configuration array.

Scroll down to and examine the configuration, which is named
“Python: Flask” This configuration consists of “module”: “flask’, which
tells VS Code to run Python with -m flask when it turns on the debugger. It
also defines the FLASK_APP environment variable in the env property to
spot the startup file, which is app.py by default but lets you easily specify
a different file. When you need to change the host or port, you can use the
args array. You can save launch.json simply by clicking Ctrl+S.

Next, select the Python: Flask configuration in the debug configuration
list. Start the debugger by selecting the Run » Start Debugging menu
command, or by selecting the green Start Debugging arrow next to the
list (F5). Notice how the status bar changes color to indicate debugging.

A debugging toolbar also shows in VS Code containing commands in the
following order: Pause (or Continue, F5), Step Over (F10), Step Into (F11),
Step Out (Shift+F11), Restart (Ctrl+Shift+F5), and Stop (Shift+F5).

Output typically appears in a Python Debug Console terminal. Ctrl+click
the http://127.0.0.1:5000/ link in that terminal to open a browser to
that URL. In the browser’s address bar, go to http://127.0.0.1:5000/
helloworld/VSCode. Before the page downloads, VS Code pauses the
program at the breakpoint you establish. The small yellow arrow on the
breakpoint indicates that it is the next line of code to be activated.

153

http://127.0.0.1:5000/
http://127.0.0.1:5000/helloworld/VSCode
http://127.0.0.1:5000/helloworld/VSCode

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Use Step Over function to run the now = DateTime.now() statement.
On the left side of the VS Code window, you can check out the Variables
pane that shows local variables and arguments such as now and name as
well as panes for Watch, Call Stack, and Breakpoints. In the Locals section,
you can expand different values by double-clicking on them or using
F2. Changing variables such as now, however, can break the program.
Developers typically make changes only to correct values when the code
did not result in the right value in the beginning.

When a program is paused, the Debug Console panel lets you try
out different expressions and bits of code using the current state of
the program. For instance, once you have stepped over the line now =
DateTime.now(), you might test different date and time formats. For that,
select the code that reads now.strftime(“%A, %d %B, %Y at %X”) in the
editor and then right-click and select Debug: Evaluate to send that code to
the debug console, where it runs:

now.strftime("%A, %d %B, %Y at %X")
'Sunday, 20 June, 2021 at 14:23:32'

The Debug Console also reveals exceptions from within the app that
may not be presented in the terminal. For instance, if you see a “Paused
on exception” message in the Call Stack area of Run view, switch to the
Debug Console to see the exception line. After that, copy that line into
the > prompt at the bottom of the debug console and try modifying the
formatting:

now.strftime("%a, %d %B, %Y at %X")
'Sunday, 20 June, 2021 at 14:23:32'
now.strftime("%a, %d %b, %Y at %X")
"‘Sunday, 20 June, 2021 at 14:23:32'
now.strftime("%a, %d %b, %y at %X")
'Sunday, 20 June, 2021 at 14:23:32'

154

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

When you see a change you like, you can copy and paste it into the
editor during a debugging session. Those changes will not be applied until
you restart the debugger. You can step through a few more lines of code
and then select Continue (F5) to let the program operate until the browser
window shows the end result.

In order to make it easier to repeatedly navigate to a specific URL
such as http://127.0.0.1:5000/helloworld/VSCode, output that URL
using a print statement. The URL pops in the terminal where you can use
Ctrl+click to open it in a browser. Be sure to close the browser and stop the
debugger when you are finished by using the Stop toolbar button (the red
square) or the Run » Stop Debugging command (Shift+F5).

Using Definition and Peek Definition Commands

While working with Flask or any other library, you may want to review
the code in those libraries themselves. VS Code has two convenient
commands that operate directly to the definitions of classes and other
items in any code:

e Go to Definition derives from your code into the code
that describes an object. For example, in app.py, right-
click on the Flask class (in the line app = Flask
(__name__)) and select Go to Definition (or click F12),
which goes to the class definition in the Flask library.

e Peek Definition (Alt+F12, also on the right-click context
menu), is somewhat the same but shows the class
definition directly in the editor (making space in the
editor window without disturbing any code). To close
the Peek window, press Escape to or use the x in the
upper right corner.

155

﻿http://127.0.0.1:5000/helloworld/VSCode﻿

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Using a Template to Render a Page

The first app you create with Flask usually generates only plain text web
pages from Python code. Although it is possible to insert HTML directly in
code, developers try to avoid such a practice because it opens the app to
cross-site scripting (XSS) attacks. In the hello_world function of this tutorial,
for example, one might think to format the output in code with something
such as content = “<h1>Hello buddy, “ + clean_name + “!</h1>, where the
result in content is given directly to a browser. This opening might also give
some attackers a chance to place malicious HTML, including JavaScript
code, in the URL that ends up in clean_name and thus ends up being run in
the browser.

A much better practice is to keep HTML outside of your code
completely by applying templates so that your code is concerned only with
data values and not with rendering. A template is an HTML file that has
placeholders for values that the code provides at run time. The templating
engine mostly deals with placing the substitutions when rendering the
page. The code, therefore, concerns itself only with data values, and the
template concerns itself only with markup items.

The default templating engine for Flask is Jinja, which is installed
at the same time as Flask. This engine provides flexible options such as
automatic escaping (to avoid XSS attacks) and template inheritance. With
inheritance, you can easily define a basic page with common markup and
then build upon that base with page-specific additions.

In order to create a single page using a template, create a folder
named templates inside the hello_flask folder, which is where Flask looks
for templates by default. In that templates folder, create a file named
hello_there.html with the following contents. This template requires two
placeholders named “name” and “date’, which are delineated by pairs of
curly braces, {{ and }}.

156

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

In app.py, import Flask’s render_template function near the top of the
file:

from flask import render template

Also in app.py, edit the hello_there function to use render_template
to load a template and apply the named values (and include a route to
recognize the case without a name). Render_template presumes that the
first argument is relative to the templates folder. Normally, developers
name the templates the same as the functions that use them, but matching
names are not required because you always refer to the exact filename in
your code:

@app.route("/helloworld/")
@app.route("/helloworld/<name>")
def hello world(name = None):
return render template(
"hello world.html",
name=name,
date=datetime.now()

)

Note that this code looks much simpler, and concerned only with data
values because the markup and formatting are all fitted in the template.

After you start the program (using Ctrl+F5), navigate to a /helloworld/
name URL and observe the results. You can also try navigating to a
/helloworld/name URL using a name like <a%20value%20that%20
could%20be%20HTML> to see Flask’s automatic escaping in action.
The “name” value should pop as plain text in the browser rather than as
rendering an actual element.

157

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Creating a Requirements.txt File
for the Environment

When you share your app code using source control or any other method,
it does not make much sense to copy all the files in a virtual environment
because recipients can always refracture the environment on their own.

Therefore, developers typically skip the virtual environment folder
from source control and instead write down the app’s dependencies using
arequirements.txt file. Even though you can create the file by hand, you
can also use the pip freeze command to redesign the file based on the
attached libraries in the activated environment.

Within your chosen environment, try using the Python: Select
Interpreter command and run the Terminal: Create New Integrated
Terminal command (Ctrl+Shift+")) to open a terminal with that
environment activated. In the same terminal, run pip freeze »
requirements.txt to create the requirements.txt file in your project folder.

Any recipient that gets a copy of the project needs only to run the
pip install -r requirements.txt command to reload the packages with
their original environment. Pip freeze has the ability to list all the Python
packages you have installed in the current environment, including
packages that are not currently active. The command also lists packages
with precise version numbers, which you may need to convert to ranges for
more applicability sometime in the future.

Lastly, bear in mind that flask-snippets is a popular VS Code
extension for Flask development. However, some of snippets are often
not on par with Flask development cycle, so you should exercise caution
when using it.

158

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Data Science-Specific Information
and Tutorials

This section demonstrates how to use VS Code and the Microsoft Python
extension with common data science libraries to recreate a basic data
science scenario. Specifically, it covers how to set up a data science
environment, import and clean data, create a machine learning model,
and evaluate the accuracy of the generated model. Before beginning,
install the Python extension for VS Code named Python and published by
Microsoft from the Visual Studio Marketplace.

If you already have the full Anaconda distribution installed, then there
is no need to install Miniconda. Alternatively, if you do not like using
Anaconda or Miniconda, you can create a Python virtual environment and
install the packages necessary for the tutorial using pip. If you opt for this
route, you should at first install the following packages: pandas, jupyter,
seaborn, scikit-learn, keras, and TensorFlow.

Setting Up a Data Science Environment

VS Code and the Python extension provide a great editor for data science
scenarios. With native support for Jupyter Notebooks combined with
Anaconda, it’s easy to create an Anaconda environment with the data
science modules as well as Jupyter Notebook that you will be using for
creating a machine learning model.

Begin by creating an Anaconda environment for the data science
tutorial by opening an Anaconda command prompt and running conda
create -n myenv python=3.7 pandas jupyter seaborn scikit-learn keras
TensorFlow to create an environment named myenv. Next, make a folder
in the preferred location to serve as your VS Code workspace and name
it hello_ds. Open the project folder in VS Code by running VS Code and

159

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

using the File » Open Folder command. When VS Code launches, open
the Command Palette (View » Command Palette or Ctrl+Shift+P) and
select the Python: Select Interpreter command.

The Python: Select Interpreter command will then display a list of
available interpreters that VS Code was able to indicate automatically
(ifyou do not see the desired interpreter, see Configuring Python
environments). From that list, go for the Anaconda environment you
created, which should include the text 'myenv’: conda.

With the environment and VS Code ready, the final step would
be to create the Jupyter Notebook by opening the Command Palette
(Ctrl+Shift+P) and selecting Jupyter: Create New Blank Jupyter Notebook.

As an alternative, from the VS Code File Explorer you can click on
the New File icon to create a Notebook file named hello.ipynb. After that,
be sure to use the Save icon on the main notebook toolbar to save the
notebook with the filename hello. Once your file is created, you should try
opening Jupyter Notebook in the native notebook editor.

Preparing the Data

This section shows how to load and manipulate data in your Jupyter
Notebook using the Titanic dataset available on OpenML.org, which
is obtained from Vanderbilt University’s Department of Biostatistics at
http://biostat.mc.vanderbilt.edu/DataSets. The Titanic data offers
main information about the survival of passengers on the Titanic, as well
as attributes about the passengers such as name and age. Using this data,
you should attempt to establish a model for predicting whether a given
passenger would have survived the sinking of the Titanic.

Download the Titanic data from OpenML.org as a CSV file named data.
csv and save it to the hello_ds folder that you have already created in the
previous section.

160

http://biostat.mc.vanderbilt.edu/DataSets

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

In VS Code, open the hello_ds folder and the Jupyter Notebook
(hello.ipynb) by going to File » Open Folder. Within your Jupyter
Notebook, start off by importing the pandas and NumPy libraries, two
libraries most used for manipulating data, and loading the Titanic data
into a pandas DataFrame. Copy and paste the following code into the
first cell of the notebook:

e import pandas as pd
e import numpy as np
e data=PD.read_csv('data.csv’)

After that, run the cell using the Run cell icon or the Shift+Enter
shortcut.

Once the cell finishes running, you can check the data that was loaded
using the variable explorer and data viewer. First click on the chart icon in
the notebook’s upper toolbar, then the data viewer icon to the right of the
data variable. You can then activate the data viewer to view, sort, and filter
the rows of data. After you have analyzed the data, it can then be useful
to graph some bits of it to help envision the relationships between the
different variables. However, before the data can be graphed, you would
need to make sure that there are not any issues with it. If you look at the
Titanic CSV file, one thing you might notice is that a question mark (“?”)
was inserted to designate cells where data was not obtainable.

While Pandas can place this value into a DataFrame, the result for
a column like Age data type will be set to Object instead of a numeric
data type, which is difficult to visualize in graphs. This problem can be
prevented by replacing the question mark with a missing value that pandas
are able to read. To add a new cell, you can click on the insert cell icon
that is in the bottom left corner of an existing cell, or use the Esc to enter
command mode followed by the B key:

data.replace('?', np.nan, inplace= True)
data = data.astype({"age": np.float64, "fare": np.float64})

161

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

If you ever need to see the data type that has been utilized for a
column, you can use the DataFrame dtypes attribute.

Now that the data is in good order, it is time to apply seaborn and
matplotlib to see how certain columns of the dataset relate to Titanic
passengers’ survival chances. For that, add the following code to the next
cell in your notebook and run it to see the generated plots:

e import seaborn as sns

o import matplotlib.pyplot as plt

fig, axs = plt.subplots(ncols=5, figsize=(30,5))
sns.violinplot(x="survived", y="age", hue="sex",
data=data, ax=axs[0])

sns.pointplot(x="sibsp", y="survived", hue="sex",
data=data, ax=axs[1])

sns.pointplot(x="parch", y="survived", hue="sex",
data=data, ax=axs[2])

sns.pointplot(x="pclass", y="survived", hue="sex",
data=data, ax=axs[3])
sns.violinplot(x="survived", y="fare", hue="sex",
data=data, ax=axs[4])

To better review details on the graphs, you can open them in
plot viewer by sharing them over the upper left corner of the graph.
These graphs are of great use when it comes to looking for some of the
relationships between survival and the input variables of the data and
all the possible calculate correlations between variables. To do so, all the
variables used need to be numeric for the calculation and gender data
stored as a string. To convert those string values to integers, script and run
the following code:

data.replace({'male': 1, 'female': 0}, inplace=True)

162

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Now that you can analyze the correlation between all the input
variables, it gets simpler to identify the features that would be the best
input material to a machine learning model. Statistically, the closer a value
is to 1, the higher the correlation between the value and the result. You can
apply the following code to correlate the relationship between all variables
and survival:

data.corr().abs()[["survived"]]

Looking closely at the correlation results, you might notice that
some variables, such as gender, have a fairly high correlation to survival
while others, like relatives (sibsp = siblings or spouse, parch = parents or
children), are likely to have little correlation.

Suppose that sibsp and parch are related in how they impact
survivability potential, and group them into a new column called
“relatives” to see whether the combination of them has a higher
correlation level. To do this, you should check if the number of sibsp and
parch is greater than 0 for a given passenger, and if so, you can then claim
that they had a relative on board. Go with the following code to create
a new variable and column in the dataset called relatives and check the

correlation again:

data['relatives'] = data.apply (lambda row: int((row['sibsp'] +
row['parch']) > 0), axis=1)
data.corr().abs()[["survived"]]

You can also observe that when analyzed from the standpoint of
whether a person had relatives, as opposed to how many relatives, there is
a higher correlation with survival. With this information at disposal, you
can now drop from the dataset the low-value sibsp and parch columns
together with rows that had NaN values, to make a dataset that can be used
for training a model.

163

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Training and Evaluating a Model

With the dataset ready, it is time to begin creating a model. For that, it is
necessary to use the scikit-learn library (as it has some of the most useful
helper functions) to do processing of the dataset, train a classification
model to show survivability on the Titanic, and then use that model with
test data to revise its accuracy.

An ordinary first step to training a model is to split up the dataset into
training and validation data. This lets you use a part of the data to train
the model and another part of the data to assess the model. If you used all
your data to train the model, you would not have a way to see how well it
actually perform against data the model has not yet seen. An advantage
of the scikit-learn library is that it comes up with a method specifically for
separating a dataset into training and test data:®

o from sklearn.model_selection import train_test_split

x_train, x_test, y train, y test = train test split
(data[['sex','pclass','age', 'relatives','fare']],
data.survived, test size=0.2, random state=0)

Afterward, you will have to normalize the inputs

in the manner that all items are treated equally. To
illustrate, within the dataset, the values for an age
range from ~0-100, while gender is only a 1 or 0. By
normalizing all the variables, you can make sure
that the ranges of values are at the same pace. Use
the following code in a new code cell to scale the
input values:

Visual Studio Code, “Data Science in VS Code Tutorial,” https://code.
visualstudio.com/docs/python/data-science-tutorial, accessed July 29, 2021.

164

https://code.visualstudio.com/docs/python/data-science-tutorial
https://code.visualstudio.com/docs/python/data-science-tutorial

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS
o from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
X train = sc.fit transform(x_train)
X test = sc.transform(x test)

Additionally, there are a number of various machine
learning algorithms that you can choose from to
model the data. The scikit-learn tool provides great
support for a number of them, as well as a chart to
help look for the one that suits your scenario the
most. As of now, you should try the Naive Bayes
algorithm, a regular algorithm for classification
matters. Add a cell with the following code to create
and try out the algorithm:

o from sklearn.naive_bayes import GaussianNB

model = GaussianNB()
model.fit(X train, y train)

With a trained model, it is possible now to try it
against the test data set that was derived from
training. Include and run the following code to
predict the outcome of the test data and calculate
the accuracy of the model:

o from sklearn import metrics

predict test = model.predict(X test)
print(metrics.accuracy score(y test, predict test))

Judging by the result of the test data, you should have the trained
algorithm resulting in ~75% success rate of estimated survival.

165

CHAPTER 4 WORKING WITH PYTHON FRAMEWORKS

Utilizing Jupyter Notebooks to explore data, together with VS Code
Exploring data platform, makes experimenting with ideas much easier.
You can now define and run individual cells using the IPython kernel,
visualize data frames, interact with plots, restart kernels, and export it
all straight to Jupyter Notebooks. Moreover, when it comes to Importing
Jupyter Notebooks into Python, reproducible and production-ready VS
Code allows that transition to go very smoothly. With the addition of these
features, you can now operate with data interactively in VS Code, making it
an exciting option for those who prefer an editor for data science tasks.

Summary

In this chapter, we first started with Django development in VS Code

and then moved on to Flask, familiarizing ourselves with two of the most
common Python frameworks. We also talked about Data Science in
relation to VS Code, and covered concepts such as Miniconda. In the next
chapter we will continue with our understanding of Python coding in VS
Code and unravel some new topics.

166

CHAPTER 5

Working
with Containers
and MS Azure

In the previous chapter, we learned about Django and Flask development
in VS Code. In this chapter we will be talking about containers and MS
Azure.

VS Code has great support for Remote Development, which is a
popular feature these days. It allows you to connect to another machine via
Secure Shell Protocol (SSH) and operate with code and various language
services there remotely. It is also possible to connect to Microsoft Azure
and manage your development environment in containers. The last two

are the main focus of this chapter.

Integrating Azure for Your Python Projects

Microsoft Azure which is mostly referred to as Azure, is a cloud computing
platform for building, testing, and implementing applications and services
through Microsoft data management centers (Figure 5-1). It is especially
important because it provides a wide array of development tools and
services, such as build and production solutions.

© Sufyan bin Uzayr 2021 167
S. bin Uzayr, Optimizing Visual Studio Code for Python Development,
https://doi.org/10.1007/978-1-4842-7344-9_5

https://doi.org/10.1007/978-1-4842-7344-9_5#DOI

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

gl \icrosoft
Wl Azure

Figure 5-1. Microsoft Azure

It also acts as a provider of software as a service (SaaS), a platform as a
service (PaaS), and infrastructure as a service (IaaS) and carries out many
different programming languages, tools, and frameworks, Microsoft-based
as well as third-party-specified software and systems.

In this section, we’ll review some of the more import services Azure
offers and then use VS Code to create a Python function that responds to
HTTP requests. We'll end by deploying Docker containers to Azure App
Service.

Key Azure Services

Azure utilizes large-scale virtualization at Microsoft data centers
worldwide, and it supplies more than 600 services.

Computer Services

Virtual machines or infrastructure as a service (IaaS) providers allow users
to create general-purpose Microsoft Windows and Linux virtual machines,
as well as preconfigured machine items for in-demand software sets. Most
users run Linux on Azure due to beneficial Linux distributions offered and
Microsoft’s own Linux-based Azure Sphere. In addition, many app services

168

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

or platform as a service (PaaS) providers use Azure as an environment to

let developers easily publish and administer web sites. Moreover, Azure

web sites encourage developers to build sites using ASP.NET, PHP, Node.

js, or Python, and deploy Team Foundation Server or uploading through

the user portal. Azure customers can create web sites in PHP, ASP.NET,

Node.js, or Python, or select from several open-source applications. This

comprises one aspect of the platform as a service (PaaS) offerings for the

Microsoft Azure Platform. Those applications that can be deployed to an

App Service environment to implement background processing can be

invoked on a schedule, on-demand, or run nonstop.

Identity

Popular Azure identity-focused products include:

Azure Active Directory is used to synchronize
on-premises directories and enable single sign-on.

Azure Active Directory B2C enables access to consumer
identity and access management in the cloud.

Azure Active Directory Domain Services is activated
when joining Azure virtual machines to a domain
without domain controllers.

Azure information protection is utilized to protect
sensitive information.

Azure Mobile Services

Mobile Engagement collects real-time data that
highlight users’ analytics. It also enables push

notifications to mobile devices.

HockeyApp can be installed to build, distribute, and
run various beta tests on mobile apps.

169

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Storage Services

Storage Services provide the audience with space for storing and accessing
data on the cloud:

o Table Service lets programs store structured text
in sectioned collections of items that are accessed
by partition or primary keys. Azure Table Service is
activated in the same manner as any other NoSQL
nonrelational database.

e Blob Service offers programs a place to store
unstructured text and binary data that can be accessed
simply by an HTTP(S) path. Blob service also has built-
in security mechanisms to limit and calculate access to
data.

e Queue Service provides programs with a platform
to communicate asynchronously by message using
queues.

» File Service allows storing and access of data on the
cloud using popular REST APIs and SMB protocols.

Data Management

o Azure Data Explorer is well-suited for big data analytics
and data-exploration.

e Azure Search is great for text search and structured data
filtering.

¢ Cosmos DB is a NoSQL database service that enacts
a subset of the SQL SELECT statement on JSON
documents.

170

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Azure Cache for Redis is a managed implementation
system for Redis.

StorSimple is great to distribute storage tasks between
different devices and cloud storage.

Azure SQL Database works to produce, scale, and place
applications into the cloud using Microsoft SQL Server

technology. It also integrates well with Active Directory
and Microsoft System Center.

Azure Synapse Analytics is an independently managed
cloud data warehouse.

Azure Data Factory is a data integration service that
enables the creation of data-driven work processes
in the cloud for automating data sets and data
transformation.

Azure Data Lake is another data storage and analytic
service platform for big data analytics and massive
parallel queries.

Azure HDInsight is a data-relevant service that
supports the creation of different clusters using Linux
with Ubuntu.

Azure Stream Analytics is a Serverless event processing
tool that enables users to combine and run real-time
analytics on multiple sets of data from sources such as
devices, sensors, web sites, and even social media.

171

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Messaging Products

The Microsoft Azure Service Bus lets applications operate on Azure
premises or off-premises devices and integrate with Azure. This also allows
applications to build reliable service-oriented architecture. The Azure
service bus has four different types of communication mechanisms:

» Event Hubs, that provide event and telemetry functions
to the cloud with low latency and high reliability. For
instance, an event hub can be applied to track data
from cell phones such as a GPS real-time location.

¢ Queues, which allow one-directional communication
via service bus queue. Even though there can be
multiple readers for the queue, only one can process a
single message.

o Topics also provide one-directional communication
but via subscriber pattern. It is similar to a queue, yet
each subscriber can get a copy of the message sent to a
Topic. Moreover, the subscriber can filter out messages
based on various criteria set by the subscriber.

e Relays, on the other hand, provide bi-directional
communication. Unlike queues and topics, a relay does
not store in-flight messages in its own memory but
passes data on to the destination application.

CDN

A global content delivery network (CDN) is of great use for audio, video,
applications, images, and other static media files. It can be used to
cache static assets of web sites geographically closer to users to advance

172

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

performance. The network can be easily managed by HTTP API. As of April
2020,' Azure has 94 points of presence locations worldwide (also known as
Edge locations).

Management

Azure Automation management tool provides a way for users to automate
the manual, long-running, error-prone, and repeated tasks that are
frequently performed in a cloud or virtual environment. This tool not
only saves time and increases the reliability of usual administrative

tasks, but also schedules them to be automatically completed at regular
time periods. Moreover, you can automate processes using runbooks or
automate configuration tasks using Desired State Configuration.

Azure Al

Microsoft Azure Machine Learning stands for a set of ultra-modern tools
and frameworks for developers to design their own machine learning and
artificial intelligence (AI) services.

Microsoft Azure Cognitive Services is another product that offers
customizable services for developers to make their applications more
intelligent, user-friendly, and popular. Both platforms include perceptual
and cognitive intelligence covering speech recognition, speaker
recognition, neural speech synthesis, face recognition, computer vision,
natural language processing, and machine translation, as well as business
decision services. Most Al features that are applied in Microsoft’s own
products and services such as Office, Teams, and Xbox are also powered by
Azure Cognitive Services.

' Azure, “New Locations for Azure CDN Now Available,” https://azure.
microsoft.com/en-in/blog/new-locations-for-azure-cdn-now-available/,
accessed July 29, 2021.

173

https://azure.microsoft.com/en-in/blog/new-locations-for-azure-cdn-now-available/
https://azure.microsoft.com/en-in/blog/new-locations-for-azure-cdn-now-available/

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Azure Blockchain Workbench

Through Azure Blockchain Workbench, Microsoft is promoting
infrastructure to set up a consortium network of multiple blockchain
mechanisms. The company is also eager to provide integration from Azure
Blockchain platform to other Microsoft services to share the development
of distributed applications. Furthermore, Microsoft supports many
general-purpose blockchains like Ethereum or Hyperledger Fabric, as well
as other purpose-built blockchains like Corda.

Azure is currently available in 54 regions around the world, and is
considered to be one of the first hyper-scale cloud provider that has
committed to building facilities in regions located in South Africa. As of
now, Azure geography has multiple Azure Regions, such as North Europe
(Dublin, Ireland) and West Europe (Amsterdam, Netherlands).

Creating a Function in Azure with Python Using
Visual Studio Code

In this section, we are going to use VS Code to create a Python function
that responds to HTTP requests. After testing the code locally, we will try to
deploy it to the serverless environment of Azure Functions.

Here are some reasons for using Python on Azure:

¢ You can build Python web apps in the cloud-managed
application platform optimized especially for Python.
It is also possible to connect your apps to data using
Azure services for popular relational and nonrelational
(SQL and NoSQL) databases.

174

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

e You can quickly and easily build, test, and host models
from any Python environment with Azure services for
data science and machine learning purposes. Azure
can also bring in prebuilt Al solutions to provide the
smoothest experiences to your Python apps.

e With Azure, you can build and debug your Python
apps with VS Code. Moreover, Azure and VS Code also
integrate seamlessly with GitHub, letting you run a full
DevOps lifecycle for your Python apps.

e Azure lets you focus on your application’s code, rather
than on infrastructure. Meaning you can run Django
and Flask apps on Azure platform with Azure Web
Apps while Azure will manage the underlying app’s

infrastructure.

o Azure offers both relational and nonrelational
databases as managed services. Most popular are
MySQL, Redis, and Azure Cosmos DB (compatible with
MongoDB).

Before getting started, configure your environment and make sure you
have the following requirements in place: an Azure account with an active
subscription and Azure Functions Core Tools version 3.x downloaded.

In order to create your local Azure Functions project in Python project
using VS Code, choose the Azure icon in the Activity bar, then go to the
Azure: Functions area and select the Create new project. Next, choose a
directory location for your project workspace and choose Select. Be sure to
sign in to Azure using your Outlook or Microsoft ID.

These simple steps were designed to be completed outside of a
workspace. Therefore, you do not need to select a project folder that is
already part of a workspace. Next, proceed to provide the following data at
the prompts:

175

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

1. Select alanguage for your function project: go with
Python.

2. Select a Python integration to create a virtual
environment: pick a location of your Python
interpreter. If the location is not displayed, script the
full path to your Python binary.

3. Select a template for your project’s first function:
select HTTP trigger.

4. Provide a function name: type HttpExample.

5. When it comes to authorization level: opt for
Anonymous, which enables everyone to call your
function endpoint.

6. Set how you would like to open your project: choose
to Add to the workspace.

Using this data, VS Code generates an Azure Functions project with an
HTTP trigger so you can view the local project files in the Explorer.

VS Code will then integrate with Azure Functions Core tools to let you
run this project on your local development computer before you publish
it to Azure. To activate your function, press F5 and start the function app
project. Output from Core Tools is located in the Terminal panel, and that
is where your app starts. There you can also see the URL endpoint of your
HTTP-triggered function operating locally.

If you have issues occurring while running on Windows, check that the
default terminal for VS Code is not set to Windows Subsystem for Linux
(WSL) Bash. You can also do it manually by going to the Azure: Functions
area and under Functions, expand Local Project » Functions. Right-click
(Windows) or Ctrl-click (macOS) the HttpExample function and select
Execute Function Now.

176

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

In Enter request body you should be able to see the request message
body value of { “name”: “Azure” }. Press Enter to send this request message
to your function or manually send an HTTP GET request to the http://
localhost:7070/api/HttpExample address in a web browser. When the
function is activated locally and returns a response, a notification is
displayed in VS Code. Press Ctrl + C to stop Core Tools and disconnect the
debugger.

After you have confirmed that the function runs properly on your local
computer, you can now access VS Code to publish the project directly
to Azure. However, before you can publish your app, you should sign in
to Azure. If you are not already signed in, look for the Azure icon in the
Activity bar, then in the Azure: Functions area, and click on Sign in to
Azure. If you do not already have an Azure account, you can create a free
account. If you are a student, you are eligible to create a free Azure account
for Students. Once you have successfully signed in, you can close the new
browser window. The subscriptions that were activated by you would be
displayed in the Sidebar.

In order to publish the project to Azure, you are expected to make
a function app and related resources in your Azure subscription and
then deploy your code. Normally, publishing to an existing function app
overwrites the content of that app in Azure. To start, choose the Azure icon
in the Activity bar, then in the Azure: Functions area click on the Deploy to
function app button.

You will also need to provide the following information:

1. Select folder: Locate a folder from your workspace
or browse to one that has your function app. You
will not be able to see this if you already have a valid
function app running.

2. Select subscription: Choose the subscription to
apply. You will not be able to see this if you only
have one subscription.

177

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

3. Select Function App in Azure: Choose + Create a
new Function App.

4. Create a globally unique name for the function
app: It has to be a name that is valid in a URL path
and is unique in Azure Functions at the same time.

5. Select a runtime: Choose the version of Python
you have already activated to run locally. It
is recommended to use the python --version
command to check your version.

6. Select alocation for new resources: It is always
better to choose a region closer to you.

When completed, the following Azure resources are included in your
subscription, using names based on your function app name:

e Aresource group, which is also a logical container for
related resources.

o Astandard Azure Storage account, which has all the
information about your projects.

e A consumption plan, which determines the host for
your serverless function app.

e A function app, which defines the environment for
executing your function code and lets your group
functions as a logical unit for easier management and
sharing of resources within the same hosting plan.

e An Application Insights are used to record the routine
of your serverless function.

178

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

A notification will be displayed after your function app is created. By
default, the Azure resources are set based on the function app name you
provide in the same new resource group with the function app. If you need
to change the names of these resources or reuse them, you would need to
publish the project applying advanced create options.

Look for View Output in the notification to review the deployment
results, and if you miss the notification, you can select the bell icon in the
lower right corner for it to reappear again.

Back in the Azure: Functions area in the sidebar, expand your
subscription, your new function app, and Functions. Right-click
(Windows) or Ctrl-click (macOS) the HttpExample function and select
Execute Function Now. In Enter request body you should be able to see the
request message body value of { “‘name”: “Azure” }. Press Enter to send this
request message to your function so that when the function is activated in
Azure and returns a response, a notification is displayed in VS Code.

Once you proceed to the next step and include an Azure Storage
queue binding to your function, you will have to keep all your resources
ready to be able to build over what you already have. Alternatively, you
can complete the following steps to delete the function app and its related
resources to avoid any additional costs:

1. InVS Code, press F1 to activate the command
palette. In the command palette, look for Azure
Functions: Open in the portal. Choose your function
app, and press Enter to see the function app page
open in the Azure portal.

2. Inthe Overview tab, look for the named link next to
the Resource group. Choose the resource group to
delete from the function app page. Proceed to the
Resource group page to review the list of included
resources, and click on the ones you need to
delete. Keep in mind that deletion might take some

179

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

time (no more than a couple of minutes). Once
completed, a notification appears for a few seconds.
You can also click on the bell icon at the top of the
page to view the notification again.

Azure Functions lets you get access to Azure services without having
to write your own integration code. These bindings, which are represented
by input and output, are declared within the function definition. Data from
bindings are mostly presented as parameters. A trigger here is a special
type of input binding, and even if a function has only one trigger, it can
have multiple input and output bindings.

You can use VS Code to connect Azure Storage to the function. The
output binding that you insert to this function imports data from the HTTP
request to a message in an Azure Queue storage queue.

Most bindings function via stored connection strings that Functions
use to access the bound service. To put it simply, you use the Storage
account that you created with your function app. The connection to this
account is already stored in an app setting named AzureWebJobsStorage.

However, before you start to work with storage, you should install the
Azure Storage Extension for VS Code and install Azure Storage Explorer.
Storage Explorer is a great instrument to look into queue messages
produced by your output binding. Conveniently, Storage Explorer is
supported on macOS, Windows, and Linux-based operating systems. To
connect to your Storage account when running the function locally, you
should download app settings to the local.settings.json file.

Next, press the F1 key to open the command palette, then look for
and activate the command Azure Functions: Download Remote Settings.
Select Yes to all to overwrite the existing local settings. The local.settings.
json file is not published and therefore excluded from source control. Copy
the value AzureWebJobsStorage, which is the key for the Storage account
connection string value, and use this connection to confirm that the
output binding works as needed.

180

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Because we are going to use a Queue storage output binding, you
should have the Storage bindings extension downloaded before you
run the project. Your project will then be configured to accommodate
extension bundles, which automatically installs a predefined set of
extension packages. Extension bundles usage is enabled in the host.json
file at the foundation of the project, and look like this:?

JSON

Copy
{

"version": "2.0",
"extensionBundle": {
"id": "Microsoft.Azure.Functions.ExtensionBundle",
"version": "[1.*, 2.0.0)"
}
}

With it you can add the storage output binding to your project. Once
you cover that, it is time to learn how to add an output binding. Each
type of binding has a direction, type, and a unique name to be included
in the function.json file. The way you define these attributes depends on
the language of your function app. Binding attributes are defined directly
in the function.json file and depending on the binding type, additional
modifications may be needed. The queue output configuration defines the
fields required for an Azure Storage queue binding.

Creating a binding is a pretty straightforward process. At first, create
a binding by right-clicking (Ctrl+click on macOS) the function.json
file in your HttpTrigger folder and choosing Add binding. Then follow

2Microsoft, “Quickstart: Create a Function in Azure with Python Using Visual
Studio Code,” https://docs.microsoft.com/en-us/azure/azure-functions/
create-first-function-vs-code-python, accessed July 29, 2021.

181

https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-python
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-vs-code-python

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

the prompts listed in Table 5-1 to define the characteristics for the new

binding.?

Table 5-1. Binding characteristics

Prompt Value Description

Select binding Out The binding is an output binding.
direction

Select binding Azure Queue Storage The binding is an Azure Storage

with direction...

The name used
to identify this
binding in your
code

The queue

to which the
message will be
sent

Select setting
from "local.
setting.json"

Msg

Outqueue

AzureWebJobsStorage

queue binding.

Name that identifies the binding
parameter referenced in your code.

The name of the queue that

the binding writes to. When the
queueName doesn't exist, the binding
creates it on first use.

The name of an application setting
that contains the connection

string for the Storage account.

The AzureWebJobsStorage setting
contains the connection string for the
Storage account you created with the
function app.

3Microsoft, “Connect Azure Functions to Azure Storage Using Visual Studio Code,’
https://docs.microsoft.com/en-us/azure/azure-functions/functions-
add-output-binding-storage-queue-vs-code?pivots=programming-language-
python, accessed July 29, 2021.

182

https://docs.microsoft.com/en-us/azure/azure-functions/functions-add-output-binding-storage-queue-vs-code?pivots=programming-language-python
https://docs.microsoft.com/en-us/azure/azure-functions/functions-add-output-binding-storage-queue-vs-code?pivots=programming-language-python
https://docs.microsoft.com/en-us/azure/azure-functions/functions-add-output-binding-storage-queue-vs-code?pivots=programming-language-python

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

A binding the attached to the bindings array in your function.json,
which typically should look like:*

JSON

Copy
{
"type": "queue",
"direction": "out",
"name": "msg",
"queueName": "outqueue",
"connection": "AzureWebJobsStorage"

Once the binding is defined, you can now use the name of the binding
to access it as an attribute signature. With an output binding, there is
no need to use the Azure Storage SDK code for authentication or queue
reference, or scripting data. The Functions runtime and queue output
binding will be completing these tasks for you.

In order to run the function locally, press F5 to start the function
app and Core Tools. With Core Tools running, look for the Azure:
Functions area. Under Functions, expand Local Project » Functions
then right-click (Ctrl-click on Mac) the HttpExample function and
choose Execute Function Now. Once completed, you should be able to
see the request message body value of { “name”: “Azure” }. Press Enter
to send this request message to your function, and when a response is
returned, do not forget to press Ctrl + C to stop Core Tools.

Since you are using the storage connection string, your function will
automatically connect to the Azure storage account when running locally.
A new queue named outqueue will be made in your storage account by the

*Microsoft, “Connect Azure Functions to Azure Storage Using Visual Studio Code.”

183

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Functions runtime when the output binding is first activated. The Storage
Explorer will then be used to demonstrate that the queue was created
along with the new message.

In order to connect Storage Explorer to your account, it is necessary
to run the Azure Storage Explorer tool. Select the connect icon on the left,
and click on Add an account. In the Connect dialog, choose Add an Azure
account, choose your Azure environment, and select Sign in. After you
successfully sign in to your account, you will be able to see all of the Azure
subscriptions attached to your account.

To examine the output queue in VS Code, press the F1 key to open the
command palette, then search for and run the command Azure Storage:
Open in Storage Explorer and look for your Storage account name. Your
storage account opens in Azure Storage Explorer.

You should then expand the Queues node and select the queue named
outqueue. The queue carries the message that the queue output binding
created when you ran the HTTP-triggered function. If you activated the
function with the default name value of Azure, the queue message is
Name passed to the function: Azure. Try running the function again, send
another request, and you will be able to see a new message appear in the
queue. With it, it is now time to redeploy and verify the updated app.

Go to VS Code, press F1 to open the command palette in which you
should search for, and select Azure Functions: Deploy to function app.
Choose the function app that you created in the first article and deploy it to
dismiss the warning about overwriting files.

Once the deployment completes, you can again employ the Execute
Function Now feature to trigger the function in Azure and view the
message in the storage queue to verify that the output binding creates a
new message in the queue.

In Azure, resources refer to function apps, functions, and storage
accounts. They are grouped into resource groups, and you can remove
everything in a group simply by deleting the whole group.

184

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Press F1in VS Code to open the command palette. In the command
palette, look for and select Azure Functions: Open in the portal. Choose
your function app and press Enter. The function app page will then open
in the Azure portal. In the Overview tab, select the named link next to
the Resource group. Here, select the resource group to delete from the
function app page and verify that they are the ones you want to delete.
Select Delete resource group, and simply follow the instructions. Deletion
may take a couple of minutes, and when it is completed, a notification will
show up for just a few seconds.

In the next section, we will discuss how to deploy Docker containers to
App Services in Azure.

Deploying Docker Containers to Azure App
Service

Once you have installed the Azure extension, go to the Azure explorer

and select Sign in to Azure to follow with the prompts. After signing in,
confirm that Azure: Signed In statement appears in the Status Bar and your
subscription is displayed in the Azure explorer as well.

If you see the “Cannot find subscription with that name,” the error
might be due to the fact that you are behind a proxy and cannot reach the
Azure API. You can easily configure HTTP_PROXY and HTTPS_PROXY
environment variables with your proxy information in your terminal:®

o For Windows:

set HTTPS_PROXY=https://username:password@proxy:8080
set HTTP_PROXY=http://username:password@proxy:8080

®Microsoft, “Tutorial: Deploy Docker Containers to Azure App Service with Visual
Studio Code,” https://docs.microsoft.com/en-us/azure/developer/python/
tutorial-deploy-containers-01, accessed July 29, 2021.

185

https://docs.microsoft.com/en-us/azure/developer/python/tutorial-deploy-containers-01
https://docs.microsoft.com/en-us/azure/developer/python/tutorial-deploy-containers-01

CHAPTER5 WORKING WITH CONTAINERS AND MS AZURE
¢ For macOS and Linux:

export HTTPS_PROXY=https://username:password@proxy:8080
export HTTP_PROXY=http://username:password@proxy:8080

With a container image in a registry, you can apply the Docker
extension in VS Code to set up an Azure App Service operating the
container. In the Docker explorer, expand Registries, expand the node for
your registry, then expand the node for your image name until you see the
image with the :latest tag.

You can locate an image in the Docker explorer by right-clicking the
image and selecting Deploy Image to Azure App Service. Select the Deploy
Image to Azure App Service menu item. Afterward, follow the prompts to
select an Azure subscription, select or specify a resource group, specify a
region, configure an App Service Plan, and set a name for the site.

The name of the App Service should be unique across all of Azure, so it
is standard to use a company or personal name. For production sites, you
can configure the App Service with a separately registered domain name.
Setting the app service as such takes not more than just a few minutes, and
you can see progress in VS Code’s Output panel.

Once over, you should also add a setting named WEBSITES_PORT
to the App Service to specify the port on which the container is located.

It is typical to use an image from the Create a Python container in VS
Code tutorial with the port of 5000 for Flask and 8000 for Django. To set
WEBSITES_PORT of your own, switch to the Azure: App Service explorer,
expand the node for your new App Service, and right-click Application
Settings to select Add New Setting. In the beginning, be sure to enter
WEBSITES_PORT as the key and the port number as the value.

The App Service restarts automatically when you change settings. You
can also right-click the App Service and select Restart at any time. After the
service has restarted, browse the site at HTTP://<name>.azurewebsites.

186

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

net. You can use Ctrl+ click (Cmd + click on macOS) on the URL in the
Output panel, or right-click the App Service in the Azure: App Service
explorer and select Browse Website.

Because you are going to make changes to your app at some point for
sure, you end up rebuilding your container many times. Fortunately, the
process consists of only a few steps. First, rebuild the Docker image. If you
change only the app code, the build should take only a few seconds. Then,
push your image to the registry. Similarly, if you modify only the but app
code, only that small layer needs to be pushed, and the process will be
completed within seconds.

After that, in the Azure: App Service explorer, right-click the suitable
App Service and select Restart. Restarting an app service will automatically
deliver the latest container image from the registry. After about 15-20
seconds, try visiting the App Service URL again to check the updates.

You can also use this procedure to stream logs from an Azure App
Service for a container to VS Code. From within VS Code, you can view logs
from the running site on Azure App Service, that detains any output to the
console and directs them to the VS Code Output panel. In order to open
VS Code Output panel with a connection to the log stream, find the app
in the Azure: App Service explorer, right-click the app, and choose Start
Streaming Logs. Be sure to answer Yes when asked to enable logging and
restart the app.

It is possible that Azure resources you established for your project
might incur ongoing costs. To prevent overspending, delete the resource
group that hosts all those resources. You can delete the resource group
through the Azure portal or the Azure CLI: In the Azure portal. Select
Resource groups from the left-side navigation pane, select the resource
group that you want to be erased, and then use the Delete function.

Then run the following Azure CLI command , but replace
<resource_group> with the name of the selected group:

az group delete --no-wait --name <resource group>

187

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE
Following are some of the most popular Azure extensions for VS Code
that you may find useful for this operation:
e Cosmos DB
e Azure Functions
e Azure CLI Tools

e Azure Resource Manager Tools

Using Containers in VS Code

The VS Code Remote Containers extension enables you to use a Docker
container as a full-featured virtual environment. It lets you access any

folder inside a container and take advantage of VS Code’s attribute set. A
devcontainer.json file in your project is there to guide VS Code on the creation
of a development container with a well-defined runtime set (Figure 5-2). This
container can be utilized to operate an application or to disconnect tools,
libraries, or runtimes that are necessary for dealing with a codebase.

VS Code Remote
Development in Containers

Figure 5-2. Remote containers in VS Code

188

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Workspace files are installed from the local file system or shared or
copied into the container. Extensions are activated inside the container,
where they have full access to the tools, platform, and another file system.
This gives you a chance to seamlessly switch your entire development
environment by linking to a different container. This lets VS Code run a
smooth local-quality development experience—including full IntelliSense
capacity, code navigation, and debugging—regardless of where your code
is located.

There are a few system requirements that come with installing
containers in VS Code:

« Windows: You are expected to have Docker Desktop
2.0+ on Windows 10 Pro/Enterprise. Windows 10 Home
(2004+) requires Docker Desktop 2.3+ and the WSL 2
back-end.

o macOS: Be sure to set Docker Desktop 2.0+.

e Linux: Docker CE/EE 18.06+ and Docker Compose
1.21+.

To get started, first install and configure Docker for your operating
system. If you are using WSL 2 on Windows, to enable the Windows WSL 2
back-end: Right-click on the Docker taskbar item and select Settings.
Check Use the WSL 2 based engine and verify your distribution is enabled
under Resources » WSL Integration. Then right-click on the Docker
taskbar item, select Settings, and update Resources » File Sharing with
any locations your source code is located.

If you are using Linux, follow the official install instructions for Docker
CE/EE for your distribution and add your user to the docker group by
using a terminal to run: sudo usermod -aG docker $USER. Then sign out
and back in again to set your changes before you install the VS Code and
Remote Development extension pack.

189

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

If you are working with Git, there are two points to consider: if you are
working with the same repository both locally in Windows and inside a
container, see that you set up stable line endings. If you copy using a Git
credential manager, it is important that your container has a full access to
your credentials.

Operating with Containers

The Remote containers extension administers in two primary operating
models: you can use a container as your full-time development
environment, or attach it to another running container to examine it.
The easiest way to get started is to try one of the sample development
containers from the Docker and the Remote-Containers extension where
you can select a sample from the extensive list.

On the other hand, you can open an existing folder in a container for
any project to use as your full-time development environment by applying
active source code on your filesystem. Start VS Code, run the Remote-
Containers: Open Folder in Container command from the Command
Palette (F1), and click on the project folder for which you need to set up the
container. At the same time, if you want to modify the container’s contents
or settings before opening the folder, you can activate Remote-Containers:
Add Development Container Configuration Files instead. Next, pick a
starting point for your dev container. You can opt for a base dev container
definition from a filterable list, or use an existing Dockerfile or Docker
Compose file. Please pay attention when using Alpine Linux containers, as
some extensions may not be available due to glibc dependencies in native
code inside the extension.

The filterable list will be automatically organized based on the
contents of the folder you have. The dev container definitions typically
come from the vscode-dev-containers repository. You can easily look
through the containers folder of that repository to check the contents of
each definition. After selecting the starting point for your container, VS

190

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Code will include the dev container configuration files in your project
(.devcontainer/devcontainer.JSON).

The VS Code window will then restart and build the dev container.
You only have to build a dev container the first time you access it; opening
the folder after the first successful build will be much faster. A progress
notification will be there to display status updates. After the build is over,
VS Code will automatically connect to the container. You can then interact
with your project in VS Code just as you could when accessing the project
locally: when you open the project folder, VS Code will pick up and reuse
your dev container configuration by default. While using this approach
to link-local filesystem into a container is convenient, it does have some
minor performance overhead on Windows and macOS.

If you are using Windows Subsystem for Linux v2 (WSL 2) and have
activated Docker Desktop’s WSL 2 back-end, you can work with source
code stored inside WSL.

Once the WSL 2 engine is enabled, you can either use the Remote-
Containers: Reopen Folder in Container command from a folder that is
already opened or select Remote-Containers: Open Folder in Container
from the Command Palette (F1) and choose a WSL folder using the local
\\wsl$ share (from the Windows side).

You can also open an existing workspace in a container following
a similar process to open a VS Code multiroot workspace in a single
container if the workspace only references relative paths to subfolders.

In this case, you can apply the Remote-Containers: Open Workspace in
Container command or simply use File » Open Workspace once you have
opened a folder that contains a .code-workspace file in a container. Once
connected, you should add the .devcontainer folder to the workspace so
you can edit its contents with ease, if it is not already visible. Remember
that while it is not possible to use multiple containers for the same
workspace in the same VS Code window, it is possible to use multiple
Docker Compose operated containers at once from separate windows.

191

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Creating a Devcontainer.json File

VS Code’s container configuration is located in a devcontainer.json file.
This file is optional, but it is recommended that you create it because it
makes handling debugging configuration easier.

This file is the same as the launch.json file for debugging
configurations, but is mostly applied for launching (or adding to) your
development container. You can also determine which extension to install
once the container is running or postconstruct commands to arrange the
environment. The dev container configuration is either located under
.devcontainer/devcontainer.JSON or stored as a .devcontainer.JSON file
in the foundation of your project. You can use any image, Dockerfile, or
set of Docker Compose files with it as a starting point. Here is an ordinary
example that includes one of the prebuilt VS Code Development Container
images:®

{

"image": "mcr.microsoft.com/vscode/devcontainers/
typescript-node:0-12",

"forwardPorts": [3000],

"extensions": ["dbaeumer.vscode-eslint"]

Activating the Remote-Containers: Add Development Container
Configuration Files command from the Command Palette (F1) will deliver
the needed files to your project as a starting point, which you can further
edit to match your needs. The command also allows you to pick a prescribed
container configuration from a list based on your folder’s contents, reuse an
existing Dockerfile, or reuse an existing Docker Compose file.

®Microsoft, “Redeploy a Container to Azure App Service After Making Changes,’
https://docs.microsoft.com/en-us/azure/developer/python/
tutorial-deploy-containers-03, accessed July 29, 2021.

192

https://docs.microsoft.com/en-us/azure/developer/python/tutorial-deploy-containers-03
https://docs.microsoft.com/en-us/azure/developer/python/tutorial-deploy-containers-03

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

At times you might have an occasion where you are using a Docker
named volume that you need to review or make changes in. You can
activate VS Code to work with these contents without creating or editing
devcontainer.json file but by selecting the Remote-Containers: Explore a
Volume in a Development Container from the Command Palette (F1).

In addition, it is also possible to inspect your volumes in the Remote
Explorer. First, select Containers in the dropdown, where you can find a Dev
Volumes section. Right-click on a volume to check its creation information,
such as when the volume was made and what files were cloned into it. If you
have the Docker extension installed, you can right-click on a volume in the
Volumes section of the Docker Explorer and select Explore in a Development
Container to explore and navigate through the whole Docker context menu.

Managing Extensions

VS Code manages and stores extensions in one of two places: locally on the
Ul/client side, or in the container. While extensions that directly impact
the VS Code U], such as themes and snippets, are uploaded locally, most
extensions will be placed inside a particular container. This feature lets you
install only the extensions you need for a specific task in a container and
effortlessly turn the whole tool-chain on by linking to a new container.
When you install an extension from the Extensions view, it will
automatically be placed in the correct location. You can guess where an
extension is installed by looking at the category grouping. There will be a
Local - Installed category and also one for your container. Local extensions
that actually need to operate remotely will appear Disabled in the Local -
Installed category. In order to install an extension on your remote host,
select Install. You can also install all locally installed extensions inside the
Dev Container by accessing the Extensions view and clicking Install Local
Extensions in Dev Container: [Name)], pressing the cloud button at the right
of the Local - Installed title bar. This will present a dropdown from which
you can choose what locally installed extensions to add to your container.

193

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Some extensions may depend upon you installing additional software
in the container. Even though you can edit your devcontainer.json file
by hand to add a list of extension IDs, you can also right-click on any
extension in the Extensions view and click Add to devcontainer.json.

If there are some extensions that you would need to have installed in
any container, you should update the remote.containers.defaultExtensions
User setting. To illustrate, if you wanted to install the GitLens and Resource
Monitor extensions, you would have to script their extension IDs in the
following manner:’

"remote.containers.defaultExtensions": [
"eamodio.gitlens",
"mutantdino.resourcemonitor”

Forcing an Extension to Operate Locally or
Remotely

Extensions are usually produced and tested to either operate locally or
remotely, but not both. Nevertheless, if an extension supports it, it is
possible to modify it to run in a particular location in your settings.json
file. For instance, the following setting will make the Docker extension run
locally and Debugger for Chrome extension run remotely, despite their
default settings:®

"remote.extensionKind": {
"ms-azuretools.vscode-docker": ["ui"],
"msjsdiag.debugger-for-chrome": ["workspace"]

"Microsoft, “Redeploy a Container to Azure App Service After Making Changes.”
8Microsoft, “Redeploy a Container to Azure App Service After Making Changes.”

194

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

A value of “ui” instead of “workspace” is the one that will force the
extension to operate on the local Ul/client-side instead. Normally,
this should only be applied for testing unless otherwise guided by the

extension’s documentation, since it can cause errors in extensions.

Forwarding or Publishing a Port

Containers are naturally unrelated environments, so if you need to access
a server, service, or another source inside your container, you will have

to forward or publish the port to your host. You can potentially configure
your container to always keep these ports open, or forward them for the
time being.

You can also settle a list of ports you want to forward at all times when
attaching or accessing a folder in a container by using the forwardPorts
function in devcontainer.json, similar to “forwardPorts”: [3000, 3001]. After
that, you are requested to reload and reopen the window for all the settings
to be applied once VS Code connects to the container again.

Temporarily Forwarding a Port

If you need to access a port that was not included in devcontainer.json,

or if you need to publish it in your Docker Compose file, you can forward
a new port for the duration of the session by activating the Forward a

Port command from the Command Palette (F1). After choosing a port,

a notification will inform you about the localhost port you should use to
access the port in the container. For example, when you forward an HTTP
server listening on port 3000, the notification will tell you that it is mapped
to port 3000 on localhost. You can then create a link to this remote HTTP
server using http://localhost:3000.

195

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

If you would like VS Code to recollect any ports you have previously
forwarded, check Remote: Restore Forwarded Ports in the Settings editor
(Ctrl+,) or set “remote.restoreForwardedPorts”: true in settings.json.

Docker also has the ability to publish ports when the container is
created. Published ports have very much the same pattern as ports that
you make available to your local network. If your application only accepts
calls from localhost, it will dismiss connections from published ports just
as your local machine would for network calls. Forwarded ports, on the
other hand, actually look like localhost to the application. Each can be
beneficial in different instances.

To publish a port, you can utilize the appPort item. For example,
when you reference an image or Dockerfile in devcontainer.json, you can
use the appPort property to publish ports to the host: “appPort”: [3000,
“8921:5000”].

Similarly, you can access the Docker Compose ports mapping that can
easily be attached to your docker-compose.yml file to publish additional
ports:

- "3000"
- "8921:5000"

In any case, you would have to rebuild your container for the setting
to have any impact. You can achieve this by starting off the Remote-
Containers: Rebuild Container command in the Command Palette (F1)
when you are linked to the container.

Opening a terminal in a container from VS Code is also quite simple.
When you create a folder in a container, any terminal window you open in
VS Code (via Terminal » New Terminal) will automatically operate in the
container rather than locally. You can also use the same code command
line from this same terminal window to take a number of different
operations, such as opening a new file or folder in the container.

196

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Once you have opened a folder in a container, you can switch the VS
Code’s debugger on in the same way you would when performing the
application locally. For instance, if you choose to launch configuration
in launch.json and start debugging (F5), the application will turn on the
remote host and add the debugger to it.

VS Code’s local user settings are also reapplied when you are linked
to a dev container. Even though this keeps your user experience stable,
you might want to vary some of these settings between your local project
and the container. When you have connected to a container, you can
also calibrate container-specific settings by running the Preferences:
Open Remote Settings command from the Command Palette (F1) or by
switching to the Remote tab in the Settings editor. These will overrule
any local settings you currently activate every time you connect to the
container.

By default, the Remote-Containers extension automatically kicks
off the containers attached to the devcontainer.json when you open the
folder. When you close VS Code, the extension automatically turns off the
containers you have connected to. However, you can correct this behavior
by adding “shutdownAction”: “none” to devcontainer.json.

While you can utilize the command line to administer over your
containers, you can also do it with the Remote Explorer. To stop a
container, choose Containers from the dropdown list and right-click on
a running container, then select Stop Container. You can also kick off
exited containers, remove containers, and remove recent folders. Through
the Details view, you can forward ports and open already forwarded
items in the browser. When you need to clean out images or mass-delete
containers, look for Cleaning out unused containers and images for

various available options.

197

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

Personalizing with Dotfile Repositories

Dotfiles stand for files whose filename starts with a dot (.) and generally
have configuration information for different applications. Because
development containers can make up for a wide range of application
types, it could be convenient to place these files somewhere so that you
can easily duplicate them into a container once it is on and operating.

A practical way to do this would be to locate these dotfiles in a GitHub
repository and then apply a utility to take a copy and employ them. The
Remote-Containers extension has built-in assistance for using these with
your own containers. If you are a newbie in this area, start by taking a look
at the different dotfiles bootstrap repositories that are available.

At the same time, there are known limitations to remote containers:
¢ Docker Toolbox on Windows is not supported.
e Windows container images are not yet supported.

o Using aremote Docker Host is realizable, but requires
extra setup actions.

e All roots and folders in a multiroot workspace will be
accessed in the same container, regardless of whether
there are available configuration documents at lower
levels or not.

e The unofficial Ubuntu Docker snap set for Linux is not
supported.

» Ifyou copy a Git repository with SSH and your SSH key
has a passcode, VS Code’s pull and sync features may
break off when running remotely. Either use an SSH
key without a passphrase, copy using HTTPS, or run
git push from the command line to operate around the

matter.

198

CHAPTER 5 WORKING WITH CONTAINERS AND MS AZURE

o Local proxy settings are not reapplied inside the
container, which can obstruct extensions from
working unless the correct proxy data is configured
(for example, global HTTP_PROXY or HTTPS_PROXY
environment items with the accurate proxy data).

Additionally, the first-time installation of Docker Desktop for Windows
without the WSL 2 engine might require an additional sharing action to
provide your container with access to local source code. This step may not
work with certain email-based identities, and you may get errors if you
sign in to Docker with your email address instead of your Docker ID. This
is a known problem and can be resolved by signing in with your Docker ID
instead.

Summary

In this chapter we unraveled the mighty world of MS Azure services, and
how it can be used for building and deploying terrific Python apps.

199

Index

A

Azure Blockchain Workbench, 174
Azure services
Al 173
binding, 182
CDN, 172
CLI command, 187
computer, 168, 169
data management, 170, 171
deploy Docker, 185-187
Docker, 185
functions, 177, 179, 180
identity, 169
management, 173
message, 172
mobile, 169
storage, 170
VS Code, 174-177
Azure Storage queue binding, 179,
181, 182

B

Better Comments extension, 62
Breakpoints, 90

app types, 90

invoke, 90

validation, 90

© Sufyan bin Uzayr 2021

C

Command Palette, 10, 11, 13,
74-77, 84, 95, 96, 98, 107,
108, 118, 148, 160
Conda environment, 94, 95, 160
Config files, 118
JUPYTER_CONFIG_DIR, 119
JUPYTER_CONFIG_PATH, 119
Content delivery
network (CDN), 172
Cross-site request forgery
(CSRF), 125
Cross-site Scripting
(XSS), 125, 137
customTemplatePath
configuration, 65

D, E

Data files, 120
JUPYTER_DATA_DIR, 121
JUPYTER_PATH, 120

Data science
preparing data, 160-163
setting up environment, 159
training/evaluating

model, 164, 165
Data viewer, 115, 161

201

S. bin Uzayr, Optimizing Visual Studio Code for Python Development,

https://doi.org/10.1007/978-1-4842-7344-9

https://doi.org/10.1007/978-1-4842-7344-9#DOI

INDEX

Debugging, 83
basic, 85, 87
configurations, 84, 85
data file paths, 88, 90
initialize, 84
output values, 88
devcontainer.json file, 188, 192-194
Django
administrative interface, 146
code snippet, 143
collectstatic command, 141
creating app, 131, 132
creating project environment,
128, 129
creating/running, 129
databases, 145
data/data models/migrations,
143, 144
debugger launch
profile, 133, 134
definition, 126
definition/peek
commands, 137
exploring debugger, 134-136
installation, 127
migrating databases, 145
multiple templates, 142
project, 130, 131
serving static files, 139-141
static files, 139
template, 137, 138
template/styles, 142
Dotfiles, 198

202

F,G
Flask
creating requirements, 158
debugger tool, 151-154
definition/peek definition,
147, 155
minimal flask app, 149, 150
template, 156, 157
web development framework, 147
web development installation,
148, 149
Function app, 176, 177, 185

H

HTTP-triggered function,
176, 181, 184

Infrastructure as a service (IaaS), 168
IPython Notebook, 111

J

Jupyter extension, 111
Jupyter Notebook, 110
code cells, 112
commands/shortcuts, 113
debugging, 117
exporting, 118
Python code file, 116
remote, 115

K

Key bindings
accepted keys, 25
available contexts, 29
clause contexts, 28
command arguments, 26
components/tools, 42
conditional operators, 28
debug, 39
display, 37
editor/window management, 34
extensions, 40, 43
file management, 36
keyboard rules, 24
keyboard shortcuts editor, 23
language features, 41
language selected file, 42
layout-independent, 27
navigation, 34
preferences, 39
programming languages, 40, 41
rich language editing, 33
search, 38
search editor, 38
settings precedence, 44
settings/security, 45
tasks, 39
tools, 43, 44

L

Linting, 75
disable, 76
enable, 76

INDEX

running, 76
settings, 77
specific, 78, 79

M,N
Microsoft data management
centers, 167, 168

O

Object-relational mapper
(ORM), 125

P

Platform as a service (Paa$), 168, 169
Plot Viewer, 114, 162
Pylint, 79
rules, 80, 81
troubleshooting, 82
Python frameworks
APIs, 124
operations, 125
reusable characteristics, 124
sessions storage/retrieval, 125
web framework, 125
Python installation, 104
hello folder, 106
interpreter, 105, 106
packages, 109, 110
run debugger, 107
configure, 108
variables, 108

203

INDEX

Python installation (cont.)
run Hello World, 107
VS Code, 104
Python Interactive window, 111,
112,114
Python programming
environment, 94
choose debug, 100, 101
interpreter, 96-98
PYTHONPATH variable, 103
selecting/activating, 98, 99
terminal windows, 99
variable definitions file, 101
variable substitution, 102

Q

Queue storage, 180-182

R

Runtime file, 121, 122

S

Secure Shell Protocol (SSH), 167
Snippet set, 53

Software as a service (SaaS), 168
Storage explorer, 180, 184
Storage services, 145, 170

T

Tabnine, 50, 51

204

U

User interface
Activity Bar, 10
Breadcrumbs, 6
Command Palette, 11
document tree, filtering, 8
explorer, 6, 7
layout, 3
markdown outline view, 9
minimap, 5
multiselection, 7
open editors, 9
outline view, 8
side-by-side editing, 4, 5
view, 10

\'

Variable explorer, 111, 115
Visual Studio Code (VS Code)
configure editor
centered editor layout, 13
Ctrl+Tab, 17
disabling preview mode, 16
entire group, 17
groups, 14, 15
hiding Menu Bar, 12
keyboard shortcuts, 16
preview mode, 14
settings, 12
tab ordering, 14
tabs, 13
window management, 17

zen mode, 13
cross-platform, 19, 20
definition, 1
extensions, 21
features, 2
keyboard shortcuts editor, 22
open-source code editor, 2
portable mode, 21
setting up, 18
updating cadence, 20

VS Code
AutoDocstring, 63, 64
better comments, 62
brackets, 51-53
commands, 48
configuration properties, 60
debugging, 61
editing, 67

customize the behavior, 68, 69

IntelliSense, 67
run selection/line, 70
troubleshooting, 69
extension, 49
formatting, 70
general settings, 71, 72
troubleshooting, 72, 73
installation, 48

INDEX

programming language
capabilities, 49, 50
properties, 59
Python indent, 67
Python tests, 57
refactoring, 73
method, 74
sortimports, 75
variable, 74
snippet, 53, 58
Tabnine, 50, 51

VS code remote

containers, 188
dev container, 192, 193
dotfiles bootstrap repositories,
198, 199
extensions, 193, 194
forward a port, 195-197
install, 189, 190
operate locally/remotely, 194
operating, 190, 191
publish the port, 195

W XY,Z

Windows Subsystem for Linux

(WSL), 176

205

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Visual Studio Code
	User Interface
	Basic Layout
	Side-By-Side Editing
	Minimap
	Indent Guides
	Breadcrumbs
	Explorer
	Multiselection
	Filtering the Document Tree
	Outline View
	Markdown Outline View
	Open Editors
	Views
	Activity Bar
	Command Palette

	Configuring the Editor
	Hiding the Menu Bar (for Windows, Linux)
	Settings
	Zen Mode
	Centered Editor Layout
	Tabs
	Tab Ordering
	Preview Mode
	Editor Groups
	Keyboard Shortcuts
	Disabling Preview Mode
	Using Ctrl+Tab to Navigate in Entire Editor History
	Closing an Entire Group Instead of a Single Editor
	Window Management

	Setting Up Visual Studio Code
	Cross-Platform
	MacOS
	Linux
	Windows

	Updating Cadence
	Insiders Nightly Build
	Portable Mode
	Additional Components
	Extensions

	Key Bindings for Visual Studio Code
	Keyboard Shortcuts Editor
	Detecting Keybinding Conflicts
	Troubleshooting Keybindings

	Keyboard Rules
	Accepted Keys
	Command Arguments
	Removing a Specific Key Binding Rule
	Keyboard Layout-Independent Nindings
	When Clause Contexts
	Conditional Operators
	Available Contexts
	Programming Languages Supported
	Language Features in VS Code
	Changing the Language for the Selected File
	Additional Components and Tools
	Commonly Used Components
	VS Code Extensions
	Additional Tools
	Settings Precedence
	Settings and Security

	Summary

	Chapter 2: Getting Started with Python Programs in Visual Studio Code
	Installation Basics
	Reviewing the Required Extensions
	Tabnine
	Bracket Pair Colorizer
	Python Snippets
	Python Test Explorer for Visual Studio Code
	Configuring Debug
	Better Comments
	AutoDocstring
	Python Indent

	Getting Started with Code Editing
	Autocomplete and IntelliSense
	Customizing IntelliSense Behavior
	Troubleshooting
	Running Selection/Line in Terminal (REPL)
	Formatting
	General Formatting Settings

	Troubleshooting Your Formatting
	Refactoring
	Extract Variable
	Extract Method
	Sort Imports

	Linting
	Enabling Linters
	Disabling Linting
	Running Linting
	Linting Settings
	Specific Linters

	Pylint
	Default Pylint Rules

	Troubleshooting Linting

	Debugging
	Initializing Configurations
	Additional Configurations
	Basic Debugging
	Conditional Breakpoints
	Invoking a Breakpoint in Code
	Breakpoint Validation
	Debugging Specific App Types

	Summary

	Chapter 3: Setting Up the Environment and Testing
	Setting Up Your Environment
	Manually Specifying an Interpreter
	Selecting and Activating an Environment
	Environments and Terminal Windows
	Choosing a Debugging Environment
	Environment Variable Definitions File
	Variable Substitution
	Using the PYTHONPATH Variable

	Running Your Projects
	Selecting a Python Interpreter
	Creating a Python Hello World Source Code File
	Running Hello World
	Running the Python Debugger
	Configuring and Initializing the Debugger
	Defining Variables

	Installing and Using Packages

	Supportting Jupyter
	Jupyter Code Cells
	Additional Commands and Keyboard Shortcuts
	Python Interactive Window
	Plot Viewer
	Live Share for Python Interactive
	Variable Explorer and Data Viewer
	Connecting to a Remote Jupyter Server
	Converting Jupyter Notebooks to Python Code File
	Debugging a Jupyter Notebook
	Exporting a Jupyter Notebook
	Configuration Files
	JUPYTER_CONFIG_DIR
	JUPYTER_CONFIG_PATH

	Data Files
	JUPYTER_PATH
	JUPYTER_DATA_DIR

	Runtime File
	JUPYTER_RUNTIME_DIR

	Summary

	Chapter 4: Working with Python Frameworks
	Python Frameworks Ecosystem at a Glance
	Django Development
	Installation
	Creating a Project Environment for the Django Tutorial
	Creating and Running a Minimal Django App
	Creating the Django Project
	Creating a Django App
	Creating a Debugger Launch Profile
	Exploring the Debugger
	Using Definition and Peek Definition Commands
	Using a Template to Render a Page
	Serving Static Files
	Readying the App for Static Files
	Referring to Static Files
	Using the Collectstatic Command
	Creating Multiple Templates That Extend a Base Template
	Creating a Base Page Template and Styles
	Creating a Code Snippet
	Working with Data, Data Models, and Migrations
	Types of Databases
	Migrating the Database
	Creating a Superuser and Enabling the Administrative Interface

	Flask Development
	Creating and Running a Minimal Flask App
	Running the App in the Debugger
	Using Definition and Peek Definition Commands
	Using a Template to Render a Page
	Creating a Requirements.txt File for the Environment

	Data Science–Specific Information and Tutorials
	Setting Up a Data Science Environment
	Preparing the Data
	Training and Evaluating a Model

	Summary

	Chapter 5: Working with Containers and MS Azure
	Integrating Azure for Your Python Projects
	Key Azure Services
	Computer Services
	Identity
	Azure Mobile Services
	Storage Services
	Data Management
	Messaging Products
	CDN
	Management
	Azure AI
	Azure Blockchain Workbench

	Creating a Function in Azure with Python Using Visual Studio Code
	Deploying Docker Containers to Azure App Service

	Using Containers in VS Code
	Operating with Containers
	Creating a Devcontainer.json File
	Managing Extensions
	Forcing an Extension to Operate Locally or Remotely
	Forwarding or Publishing a Port
	Temporarily Forwarding a Port
	Personalizing with Dotfile Repositories

	Summary

	Index

