

NumPy Cookbook
Second Edition

Over 90 fascinating recipes to learn and perform
mathematical, scientific, and engineering Python
computations with NumPy

Ivan Idris

BIRMINGHAM - MUMBAI

NumPy Cookbook
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Second edition: April 2015

Production reference: 1270415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-094-5

www.packtpub.com

www.packtpub.com

Credits

Author
Ivan Idris

Reviewers
Lev E. Givon

Mark Livingstone

Lijun Xue

Commissioning Editor
Kartikey Pandey

Acquisition Editors
Nadeem N. Bagban

Owen Roberts

Content Development Editor
Parita Khedekar

Technical Editors
Utkarsha S. Kadam

Shiny Poojary

Copy Editor
Vikrant Phadke

Project Coordinator
Rashi Khivansara

Proofreaders
Maria Gould

Clyde Jenkins

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Ivan Idris has an MSc in experimental physics. His graduation thesis had a strong emphasis
on applied computer science. After graduating, he worked for several companies as a Java
developer, data warehouse developer, and QA analyst. His main professional interests are
business intelligence, big data, and cloud computing. Ivan enjoys writing clean, testable
code and interesting technical articles. He is the author of NumPy Beginner's Guide, NumPy
Cookbook, Python Data Analysis, and Learning NumPy, all by Packt Publishing. You can find
more information about him and a few NumPy examples at http://ivanidris.net/
wordpress/.

I would like to take this opportunity to thank the reviewers and the team at
Packt Publishing for making this book possible. Also, thanks to my teachers,
professors, and colleagues who taught me about science and programming.
Last but not least, I would like to acknowledge my parents, family, and
friends for their support.

http://ivanidris.net/wordpress/
http://ivanidris.net/wordpress/

About the Reviewers

Lev E. Givon is a doctoral candidate and neurocomputing researcher at the department of
electrical engineering in Columbia University, New York. His research focuses on developing
computational tools and techniques to study information processing and representation
by neural circuits in the brain of the fruit fly. He is one of the developers of Neurokernel
(http://neurokernel.github.io), an open software framework written in Python
for the emulation of the fruit fly brain on multiple graphics processing units.

Mark Livingstone started his career by working for many years in three international
computer companies (which no longer exist) in engineering, support, programming, and
training roles. He got tired of being made redundant. He then graduated from Griffith
University, Gold Coast, Australia, in 2011 with a bachelor's in information technology.
In 2013, Mark received a B.InfoTech (Hons) degree. He is currently a PhD candidate,
with his confirmation rapidly approaching. All of his research software is written in
Python on a Mac system.

Mark enjoys mentoring students with special needs. He was the chairman of IEEE in
Griffith University's Gold Coast Student Branch. He volunteers as a qualified justice of
peace at the local district courthouse. He is also a credit union director, and has completed
105 blood donations.

Lijun Xue is a developer of Theano, which is a Python library that allows you to define,
optimize, and evaluate mathematical expressions involving multi-dimensional arrays
efficiently. He was a research assistant at Carnegie Mellon University doing research projects
related to machine learning and data mining. He is a Pythonista and has passion towards
machine learning and data mining. He is currently working on some deep learning research
projects, which aims to solve image classification problems in university. You can know
more about him at http://royxue.me/.

http://neurokernel.github.io
http://royxue.me/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

i

Table of Contents
Preface	 v
Chapter 1: Winding Along with IPython	 1

Introduction	 1
Installing IPython	 2
Using IPython as a shell	 4
Reading manual pages	 6
Installing matplotlib	 7
Running an IPython notebook	 8
Exporting an IPython notebook	 11
Importing a web notebook	 12
Configuring a notebook server	 13
Exploring the SymPy profile	 16

Chapter 2: Advanced Indexing and Array Concepts	 19
Introduction	 19
Installing SciPy	 20
Installing PIL	 22
Resizing images	 23
Creating views and copies	 26
Flipping Lena	 28
Fancy indexing	 30
Indexing with a list of locations	 32
Indexing with Booleans	 34
Stride tricks for Sudoku	 36
Broadcasting arrays	 39

ii

Table of Contents

Chapter 3: Getting to Grips with Commonly Used Functions	 43
Introduction	 44
Summing Fibonacci numbers	 44
Finding prime factors	 48
Finding palindromic numbers	 51
The steady state vector	 53
Discovering a power law	 58
Trading periodically on dips	 62
Simulating trading at random	 65
Sieving integers with the Sieve of Eratosthenes	 68

Chapter 4: Connecting NumPy with the Rest of the World	 71
Introduction	 71
Using the buffer protocol	 72
Using the array interface	 74
Exchanging data with MATLAB and Octave	 76
Installing RPy2	 77
Interfacing with R	 78
Installing JPype	 79
Sending a NumPy array to JPype	 80
Installing Google App Engine	 81
Deploying the NumPy code on the Google Cloud	 83
Running the NumPy code in a PythonAnywhere web console	 85

Chapter 5: Audio and Image Processing	 87
Introduction	 87
Loading images into memory maps	 88
Combining images	 92
Blurring images	 95
Repeating audio fragments	 98
Generating sounds	 101
Designing an audio filter	 104
Edge detection with the Sobel filter	 106

Chapter 6: Special Arrays and Universal Functions	 109
Introduction	 109
Creating a universal function	 109
Finding Pythagorean triples	 110
Performing string operations with chararray	 112
Creating a masked array	 114
Ignoring negative and extreme values	 116
Creating a scores table with a recarray function	 119

iii

Table of Contents

Chapter 7: Profiling and Debugging	 123
Introduction	 123
Profiling with timeit	 123
Profiling with IPython	 126
Installing line_profiler	 129
Profiling code with line_profiler	 130
Profiling code with the cProfile extension	 131
Debugging with IPython	 133
Debugging with PuDB	 136

Chapter 8: Quality Assurance	 137
Introduction	 137
Installing Pyflakes	 138
Performing static analysis with Pyflakes	 139
Analyzing code with Pylint	 140
Performing static analysis with Pychecker	 142
Testing code with docstrings	 143
Writing unit tests	 145
Testing code with mocks	 149
Testing the BDD way	 151

Chapter 9: Speeding Up Code with Cython	 155
Introduction	 155
Installing Cython	 156
Building a Hello World program	 156
Using Cython with NumPy	 158
Calling C functions	 160
Profiling the Cython code	 162
Approximating factorials with Cython	 165

Chapter 10: Fun with Scikits	 169
Introduction	 169
Installing scikit-learn	 170
Loading an example dataset	 170
Clustering Dow Jones stocks with scikits-learn	 171
Installing statsmodels	 176
Performing a normality test with statsmodels	 176
Installing scikit-image	 177
Detecting corners	 178
Detecting edges	 180
Installing pandas	 181
Estimating correlation of stock returns with pandas	 182

iv

Table of Contents

Loading data as pandas objects from statsmodels	 185
Resampling time series data	 188

Chapter 11: Latest and Greatest NumPy	 193
Introduction	 193
Fancy indexing in place for ufuncs with the at() method	 194
Partial sorting via selection for fast median with the partition() function	 195
Skipping NaNs with the nanmean(), nanvar(), and nanstd() functions	 196
Creating value initialized arrays with the full() and full_like() functions	 198
Random sampling with numpy.random.choice()	 199
Using the datetime64 type and related API	 201

Chapter 12: Exploratory and Predictive Data Analysis with NumPy	 205
Introduction	 205
Exploring atmospheric pressure	 206
Exploring the day-to-day pressure range	 209
Studying annual atmospheric pressure averages	 212
Analyzing maximum visibility	 215
Predicting pressure with an autoregressive model	 219
Predicting pressure with a moving average model	 222
Studying intrayear average pressure	 224
Studying extreme values of atmospheric pressure	 228

Index	 231

v

Preface
This second edition adds two new chapters on the new NumPy functionality and data analysis.
We NumPy users live in exciting times. New NumPy-related developments seem to come to
our attention every week, or maybe even daily. At the time of the first edition, the NumFocus,
short for NumPy Foundation for Open Code for Usable Science, was created. The Numba
project—a NumPy-aware dynamic Python compiler using LLVM—was also announced.
Further, Google added support to their cloud product called Google App Engine.

In the future, we can expect improved concurrency support for clusters of GPUs and CPUs.
OLAP-like queries will be possible with NumPy arrays. This is wonderful news, but we have
to keep reminding ourselves that NumPy is not alone in the scientific (Python) software
ecosystem. There is SciPy, matplotlib (a very useful Python plotting library), IPython (an
interactive shell), and Scikits. Outside the Python ecosystem, languages such as R, C,
and Fortran are pretty popular. We will cover the details of exchanging data with
these environments.

What this book covers
Chapter 1, Winding Along with IPython, introduces IPython, a toolkit mostly known for its shell.
The web-based notebook is an exciting feature covered in detail here. Think of MATLAB and
Mathematica, but in your browser, it's open source and free.

Chapter 2, Advanced Indexing and Array Concepts, shows that NumPy has very efficient arrays
that are easy to use due to the powerful indexing mechanism. This chapter describes some of
the more advanced and tricky indexing techniques.

Chapter 3, Getting to Grips with Commonly Used Functions, makes an attempt to document
the most essential functions that every NumPy user should know. NumPy has many
functions—too many to even mention in this book!

Preface

vi

Chapter 4, Connecting NumPy with the Rest of the World, the number of programming
languages, libraries, and tools one encounters in the real world is mind-boggling. Some of the
software runs on the cloud, while some of it lives on your local machine or a remote server.
Being able to fit and connect NumPy with such an environment is just as important as being
able to write standalone NumPy code.

Chapter 5, Audio and Image Processing, assumes that when you think of NumPy, you probably
don't think of sounds or images. This will change after reading this chapter.

Chapter 6, Special Arrays and Universal Functions, introduces pretty technical topics.
This chapter explains how to perform string operations, ignore illegal values, and store
heterogeneous data.

Chapter 7, Profiling and Debugging, shows the skills necessary to produce good software.
We demonstrate several convenient profiling and debugging tools.

Chapter 8, Quality Assurance, deserves a lot of attention because it's about quality.
We discuss common methods and techniques, such as unit testing, mocking, and BDD,
using the NumPy testing utilities.

Chapter 9, Speeding Up Code with Cython, introduces Cython, which tries to combine
the speed of C and the strengths of Python. We show you how Cython works from the
NumPy perspective.

Chapter 10, Fun with Scikits, covers Scikits, which are a yet another part of the fascinating
scientific Python ecosystem. A quick tour guides you through some of the most useful
Scikits projects.

Chapter 11, Latest and Greatest NumPy, showcases new functionality not covered in the
first edition.

Chapter 12, Exploratory and Predictive Data Analysis with NumPy, presents real-world
analysis of meteorological data. I've added this chapter in the second edition.

What you need for this book
To try the code samples in this book, you will need a recent build of NumPy. This means that
you will need to have one of the Python versions supported by NumPy as well. Recipes for
installing other relevant software packages are provided throughout this book.

Who this book is for
This book is for scientists, engineers, programmers, or analysts with basic knowledge
of Python and NumPy, who want to go to the next level. Also, some affinity—or at least
interest—in mathematics and statistics is required.

Preface

vii

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

from __future__ import print_function
from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy as np
import matplotlib.pyplot as plt

def get_indices(high, size):
 #2. Generate random indices
 return np.random.randint(0, high, size)

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

from sklearn.datasets import load_sample_images
import matplotlib.pyplot as plt
import skimage.feature

dataset = load_sample_images()
img = dataset.images[0]
edges = skimage.feature.canny(img[..., 0])
plt.axis('off')
plt.imshow(edges)
plt.show()

Any command-line input or output is written as follows:

$ sudo easy_install patsy

Preface

viii

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The Print button doesn't
actually print the notebook."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

ix

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/0945OS.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section
of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/0945OS.pdf
https://www.packtpub.com/sites/default/files/downloads/0945OS.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Winding Along with

IPython

In this chapter, we will cover the following recipes:

ff Installing IPython

ff Using IPython as a shell

ff Reading manual pages

ff Installing matplotlib

ff Running an IPython notebook

ff Exporting an IPython notebook

ff Importing a web notebook

ff Configuring a notebook server

ff Exploring the SymPy profile

Introduction
IPython, which is available at http://ipython.org/, is a free, open source project
available for Linux, Unix, Mac OS X, and Windows. The IPython authors only request that you
cite IPython in any scientific work where IPython was used. IPython provides an architecture
for interactive computing. The most notable part of this project is the IPython shell. IPython
provides the following components, among others:

ff Interactive Python shells (terminal-based and Qt application)

ff A web notebook (available in IPython 0.12 and later) with support for rich
media and plotting

http://ipython.org/

Winding Along with IPython

2

IPython is compatible with Python versions 2.5, 2.6, 2.7, 3.1, 3.2, 3.3, and 3.4.
The compatibility depends on the IPython version. For instance, IPython 2.3.0 requires
Python 2.7 or 3.3+.

You can try IPython in the cloud without installing it on your system by going to http://www.
pythonanywhere.com/try-ipython/. There is a slight delay compared to locally installed
software, so this is not as good as the real thing. However, most of the features available in
the IPython interactive shell seem to be available. PythonAnywhere also has a Vi (m) editor,
which if you like vi, is obviously great. You can save and edit files from your IPython sessions.

Installing IPython
IPython can be installed in various ways, depending on your operating system. For the
terminal-based shell, there is a dependency on readline. The web notebook requires
tornado and zmq.

In addition to installing IPython, we will install setuptools, which gives you the
easy_install command. The easy_install command is a popular package
manager for Python. pip can be installed once you have easy_install. The pip
command is similar to easy_install and adds options such as uninstalling.

How to do it...
This section describes how IPython can be installed on Windows, Mac OS X, and Linux.
It also describes how to install IPython and its dependencies with easy_install and
pip, or from source:

ff Installing IPython and setuptools on Windows: A binary Windows installer for Python
2 or Python 3 is available on the IPython website. Also see http://ipython.org/
ipython-doc/stable/install/install.html#windows.

Install setuptools with an installer from http://pypi.python.org/pypi/
setuptools#files. Then install pip, like this:

cd C:\Python27\scripts

python .\easy_install-27-script.py pip

ff Installing IPython on Mac OS X: Install the Apple Developer Tools (Xcode) if
necessary. Xcode can be found at https://developer.apple.com/xcode/.
Follow the easy_install/pip instructions or the instructions for installation
from source provided later in this section.

ff Installing IPython on Linux: Since there are so many Linux distributions, this section
will not be exhaustive:

�� On Debian, type the following command:
$ su – aptitude install ipython python-setuptools

http://www.pythonanywhere.com/try-ipython/
http://www.pythonanywhere.com/try-ipython/
http://ipython.org/ipython-doc/stable/install/install.html#windows
http://ipython.org/ipython-doc/stable/install/install.html#windows
http://pypi.python.org/pypi/setuptools#files
http://pypi.python.org/pypi/setuptools#files
https://developer.apple.com/xcode/

Chapter 1

3

�� On Fedora, the magic command is as follows:
$ su – yum install ipython python-setuptools-devel

�� The following command will install IPython on Gentoo:
$ su – emerge ipython

�� For Ubuntu, the install command is as follows:

$ sudo apt-get install ipython python-setuptools

ff Installing IPython with easy_install or pip: Install IPython and all the
dependencies required for the recipes in this chapter with easy_install
using the following command:
$ sudo easy_install ipython pyzmq tornado readline

Alternatively, you can first install pip with easy_install by typing this command in
your terminal:
$ sudo easy_install pip

After that, install IPython using pip:

$ sudo pip install ipython pyzmq tornado readline

ff Installing from source: If you want to use the bleeding-edge development version,
then installing from source is for you:

1.	 Download the latest source archive from https://github.com/
ipython/ipython/archive/master.zip.

2.	 Unpack the source code from the archive:
$ tar xzf ipython-<version>.tar.gz

3.	 Instead, if you have Git installed, you can clone the Git repository:
$ git clone https://github.com/ipython/ipython.git

4.	 Go to the root directory within the downloaded source:
$ cd ipython

5.	 Run the setup script. This may require you to run the command with
sudo, as follows:

$ sudo python setup.py install

How it works...
We installed IPython using several methods. Most of these methods install the latest stable
release, except when you install from source, which will install the development version.

https://github.com/ipython/ipython/archive/master.zip
https://github.com/ipython/ipython/archive/master.zip

Winding Along with IPython

4

See also
ff Instructions from the official IPython website at http://ipython.org/install.

html

Using IPython as a shell
Scientists and engineers are used to experimenting. IPython was created by scientists
with experimentation in mind. The interactive environment that IPython provides is viewed
by many as a direct answer to MATLAB, Mathematica, Maple, and R.

The following is a list of features of the IPython shell:

ff Tab completion

ff History mechanism

ff Inline editing

ff The ability to call external Python scripts with %run

ff The ability to call magic functions that interact with the operating system shell

ff Access to system commands

ff The pylab switch

ff Access to Python debugger and profiler

How to do it...
This section describes how to use the IPython shell:

ff pylab: The pylab switch automatically imports all the SciPy, NumPy, and matplotlib
packages. Without this switch, we would have to import these packages ourselves.

All we need to do is enter the following instruction on the command line:

$ ipython --pylab

Type "copyright", "credits" or "license" for more information.

IPython 2.4.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

http://ipython.org/install.html
http://ipython.org/install.html

Chapter 1

5

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra
details.

Welcome to pylab, a matplotlib-based Python environment [backend:
MacOSX].

For more information, type 'help(pylab)'.

In [1]: quit()

quit() or Ctrl + D quits the IPython shell.

ff Saving a session: We might want to be able to go back to our experiments.
In IPython, it is easy to save a session for later use. This is done with the
following command:
In [1]: %logstart

Activating auto-logging. Current session state plus future input
saved.

Filename : ipython_log.py

Mode : rotate

Output logging : False

Raw input log : False

Timestamping : False

State : active

Logging can be switched off using this command:

In [9]: %logoff

Switching logging OFF

ff Executing a system shell command: You can execute a system shell command
in the default IPython profile by prefixing the command with the ! symbol.
For instance, the following input will get the current date:
In [1]: !date

In fact, any line prefixed with ! is sent to the system shell. We can also store the
command output, as shown here:

In [2]: thedate = !date

In [3]: thedate

Winding Along with IPython

6

ff Displaying history: We can show the history of commands with the %hist
command, like this:

In [1]: a = 2 + 2

In [2]: a

Out[2]: 4

In [3]: %hist

a = 2 + 2

a

%hist

This is a common feature in Command-line Interface (CLI) environments.
We can also look up the history with the -g switch:

In [5]: %hist -g a = 2

 1: a = 2 + 2

Downloading the example code
You can download the example code files for all Packt Publishing books you
have purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to get the files e-mailed directly to you.

How it works...
We saw a number of so-called magic functions in action. These functions start with the %
character. If a magic function is used in a line by itself, the % prefix is optional.

See also
ff IPython as a system shell from the official IPython website at http://ipython.

org/ipython-doc/dev/interactive/shell.html

Reading manual pages
We can open the documentation for NumPy functions with the help command. It is
not necessary to know the name of a function. We can type a few characters and then
let tab completion do its work. For instance, let's browse the available information for the
arange() function.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://ipython.org/ipython-doc/dev/interactive/shell.html
http://ipython.org/ipython-doc/dev/interactive/shell.html

Chapter 1

7

How to do it...
We can browse the available information in either of the following ways:

ff Calling the help function: Call the help command. Type a few characters of the
function and then press the Tab key (see the following screenshot):

ff Querying with a question mark: Another option is to put a question mark behind the
function name. You will then, of course, need to know the function name, but you
don't have to type the help command:

In [3]: arange?

How it works...
Tab completion is dependent on readline, so you need to make sure it is installed.
The question mark gives you information from docstrings.

Installing matplotlib
matplotlib (all lowercase by convention) is a very useful Python plotting library, and we will
need it for the following recipes as well as more later on. It depends on NumPy, but in all
likelihood, you already have NumPy installed.

How to do it...
We will see how matplotlib can be installed on Windows, Linux, and Mac OS X, and also how to
install it from source:

ff Installing matplotlib on Windows: You can install this with the Enthought
distribution, also known as Canopy (http://www.enthought.com/products/
epd.php).

It might be necessary to put the msvcp71.dll file in your C:\Windows\system32
directory. You can get it from http://www.dll-files.com/dllindex/dll-
files.shtml?msvcp71.

http://www.enthought.com/products/epd.php
http://www.enthought.com/products/epd.php
http://www.dll-files.com/dllindex/dll-files.shtml?msvcp71
http://www.dll-files.com/dllindex/dll-files.shtml?msvcp71

Winding Along with IPython

8

ff Installing matplotlib on Linux: Let's see how matplotlib can be installed in the
various distributions of Linux:

Here is the install command on Debian and Ubuntu:

$ sudo apt-get install python-matplotlib

�� The install command on Fedora/Redhat is as follows:

$ su - yum install python-matplotlib

ff Installing from source: You can download the latest source from the tar.gz release
at Sourceforge (http://sourceforge.net/projects/matplotlib/files/),
or from the Git repository using the following command:
$ git clone git://github.com/matplotlib/matplotlib.git

Once it has been downloaded, build and install matplotlib as usual with the
following commands:

$ cd matplotlib

$ sudo python setup.py install

ff Installing matplotlib on Mac OS X: Get the latest DMG file from http://
sourceforge.net/projects/matplotlib/files/matplotlib/ and
install it. You can also use the Mac Ports, Fink, or Homebrew package managers.

See also
ff Instructions from the official matplotlib documentation are given at http://

matplotlib.org/users/installing.html

ff Installing the SciPy stack is explained at http://www.scipy.org/install.html

Running an IPython notebook
IPython has an exciting feature—the web notebook. A so-called notebook server can serve
notebooks over the Web. We can now start a notebook server and get a web-based IPython
environment. This environment has most of the features that the regular IPython environment
has. The IPython notebook's features include the following:

ff Displaying images and inline plots

ff Using HTML and Markdown (this is a simplified HTML-like language see
https://en.wikipedia.org/wiki/Markdown) in text cells

ff Importing and exporting of notebooks

http://sourceforge.net/projects/matplotlib/files/
http://sourceforge.net/projects/matplotlib/files/matplotlib/
http://sourceforge.net/projects/matplotlib/files/matplotlib/
http://matplotlib.org/users/installing.html
http://matplotlib.org/users/installing.html
http://www.scipy.org/install.html
https://en.wikipedia.org/wiki/Markdown

Chapter 1

9

Getting ready
Before we start, we should make sure that all of the required software is installed. There
is a dependency on tornado and zmq. See the Installing IPython recipe in this chapter
for more information.

How to do it...
ff Running a notebook: We can start a notebook with the following command:

$ ipython notebook

[NotebookApp] Using existing profile dir: u'/Users/ivanidris/.
ipython/profile_default'

[NotebookApp] The IPython Notebook is running at:
http://127.0.0.1:8888

[NotebookApp] Use Control-C to stop this server and shut down all
kernels.

As you can see, we are using the default profile. A server started on the local machine
at port 8888. You will learn how to configure these settings later on in this chapter.
The notebook is opened in your default browser; this is configurable as well (see the
following screenshot):

IPython lists all the notebooks in the directory where you started the notebook.
In this example, no notebooks were found. The server can be stopped by pressing
Ctrl + C.

ff Running a notebook in the pylab mode: Run a web notebook in the pylab mode with
the following command:
$ ipython notebook --pylab

This loads the SciPy, NumPy, and matplotlib modules.

ff Running a notebook with inline figures: We can display inline matplotlib
plots with the inline directive using the following command:

$ ipython notebook --pylab inline

Winding Along with IPython

10

The following steps demonstrate the IPython notebook functionality:

1.	 Click on the New Notebook button to create a new notebook.

2.	 Create an array with the arange() function. Type the command shown in
the following screenshot and click on Cell/Run:

3.	 Next enter the following command and press Enter. You will see the output
in Out [2], as shown in the following screenshot:

4.	 Apply the sinc() function to the array and plot the result, as shown in
this screenshot:

How it works...
The inline option lets you display inline matplotlib plots. When combined with the pylab
mode, you don't need to import the NumPy, SciPy, and matplotlib packages.

Chapter 1

11

See also
ff The Installing IPython recipe found in this chapter

ff Example notebooks at http://nbviewer.ipython.org/github/ipython/
ipython/blob/2.x/examples/Notebook/Index.ipynb

ff Documentation for the sinc() function at http://docs.scipy.org/doc/
numpy/reference/generated/numpy.sinc.html

ff Documentation for the plot() function at http://matplotlib.org/api/
pyplot_api.html#matplotlib.pyplot.plot

Exporting an IPython notebook
Sometimes, you would want to exchange notebooks with friends or colleagues. The web
notebook provides several methods to export your data.

How to do it...
A web notebook can be exported using the following options:

ff The Print option: The Print button doesn't actually print the notebook, but allows you
to export the notebook as a PDF or HTML document.

ff Downloading the notebook: Download your notebook to a location chosen by you,
using the Download button. We can specify whether we want to download the
notebook as a .py file, which is just a normal Python program, or in the JSON format
as a .ipynb file. The notebook we created in the previous recipe looks like the
following after exporting:

{
 "metadata": {
 "name": "Untitled1"
 },
 "nbformat": 2,
 "worksheets": [
 {
 "cells": [
 {
 "cell_type": "code",
 "collapsed": false,
 "input": [
 "plot(sinc(a))"
],
 "language": "python",

http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Notebook/Index.ipynb
http://nbviewer.ipython.org/github/ipython/ipython/blob/2.x/examples/Notebook/Index.ipynb
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sinc.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sinc.html
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot

Winding Along with IPython

12

 "outputs": [
 {
 "output_type": "pyout",
 "prompt_number": 3,
 "text": [
 "[<matplotlib.lines.Line2D at
 0x103d9c690>]"
]
 },
 {
 "output_type": "display_data",
 "png": "iVBORw0KGgoAAAANSUhEUgAAAXk
 AAAD9CAYAAABZVQdHAAAABHNCSVQICAgIf...
 mgkAAAAASUVORK5CYII=\n"
 }
],
 "prompt_number": 3
 }
]
 }
]
}

Some of the text has been omitted for brevity. This file is not intended
for editing or even reading, but it is pretty readable if you ignore the
image representation part. For more information about JSON, see
https://en.wikipedia.org/wiki/JSON.

ff Saving the notebook: Save the notebook using the Save button. This will
automatically export a notebook in the native JSON format, .ipynb. The file
will be stored in the directory where you started IPython initially.

Importing a web notebook
Python scripts can be imported as a web notebook. Obviously, we can also import previously
exported notebooks.

How to do it...
This recipe shows you how a Python script can be imported as a web notebook.

Load a Python script with this command:

% load vectorsum.py

https://en.wikipedia.org/wiki/JSON

Chapter 1

13

The following screenshot shows an example of what we see after loading vectorsum.py
from NumPy Beginner's Guide into the notebook page:

Configuring a notebook server
A public notebook server needs to be secure. You should set a password and use an SSL
certificate to connect to it. We need the certificate to provide secure communication over HTTPS
(for more information, see https://en.wikipedia.org/wiki/Transport_Layer_
Security). HTTPS adds a secure layer on top of the standard HTTP protocol widely used on
the Internet. HTTPS also encrypts data sent from the client to the server and back. A certificate
authority is often a commercial organization that issues certificates for websites. Web browsers
have knowledge of certificate authorities and can recognize certificates. A website administrator
needs to create a certificate and get it signed by a certificate authority.

How to do it...
The following steps describe how to configure a secure notebook server:

1.	 We can generate a password from IPython. Start a new IPython session and type in
the following commands:
In [1]: from IPython.lib import passwd

In [2]: passwd()

Enter password:

Verify password:

Out[2]: 'sha1:0e422dfccef2:84cfbcb
 b3ef95872fb8e23be3999c123f862d856'

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security

Winding Along with IPython

14

At the second input line, you will be prompted for a password. You need to remember
this password. A long string is generated. Copy this string because you will need it
later on.

2.	 To create a SSL certificate, you will need the openssl command in your path.

Setting up the openssl command is not rocket science, but it can be tricky.
Unfortunately, it is outside the scope of this book. On the brighter side, there
are plenty of tutorials available online to help you further.

Execute the following command to create a certificate with mycert.pem
as the name:

$ openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout
mycert.pem -out mycert.pem

Generating a 1024 bit RSA private key

......++++++

........................++++++

writing new private key to 'mycert.pem'

You are about to be asked to enter information that will be
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name
or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []:

Email Address []:

The openssl utility prompts you to fill in some fields. For more information,
check out the relevant man page (short for manual page) as follows:

$ man openssl

Chapter 1

15

3.	 Create a special profile for the server using the following command:
$ ipython profile create nbserver

4.	 Edit the configuration file. In this example, it can be found in ~/.ipython/
profile_nbserver/ipython_notebook_config.py.

The configuration file is pretty large, so we will omit most of the lines in it. The lines
that we need to change at minimum are as follows:

c.NotebookApp.certfile = u'/absolute/path/to/your/certificate'

c.NotebookApp.password = u'sha1:b...your password'

c.NotebookApp.port = 9999

Notice that we are pointing to the SSL certificate we created. We set a password
and changed the port to 9999.

5.	 Using the following command, start the server to check whether the changes worked:

$ ipython notebook --profile=nbserver

[NotebookApp] Using existing profile dir: u'/Users/ivanidris/.
ipython/profile_nbserver'

[NotebookApp] The IPython Notebook is running at:
https://127.0.0.1:9999

[NotebookApp] Use Control-C to stop this server and shut down all
kernels.

The server is running on port 9999, and you need to connect to it via https.
If everything goes well, you should see a login page. Also, you will probably need
to accept a security exception in your browser.

How it works...
We created a special profile for our public server. There are some sample profiles
that are already present, such as the default profile. Creating a profile adds a
profile_<profilename> folder to the .ipython directory with a configuration file,
among others. The profile can then be loaded with the --profile=<profile_name>
command-line option. We can list the profiles with the following command:

$ ipython profile list

Available profiles in IPython:

Winding Along with IPython

16

 cluster

 math

 pysh

 python3

 The first request for a bundled profile will copy it

 into your IPython directory (/Users/ivanidris/.ipython),

 where you can customize it.

Available profiles in /Users/ivanidris/.ipython:

 default

 nbserver

 sh

See also
ff IPython documentation for the passwd() function at http://ipython.org/

ipython-doc/2/api/generated/IPython.lib.security.html

ff OpenSSL documentation at https://www.openssl.org/docs/apps/openssl.
html

Exploring the SymPy profile
IPython has a sample SymPy profile. SymPy is a Python-symbolic mathematics library. We can
simplify algebraic expressions or differentiate functions, similar to Mathematica and Maple.
SymPy is obviously a fun piece of software, but is not necessary for our journey through the
NumPy landscape. Consider this as an optional or bonus recipe. Like a dessert, feel free to
skip it, although you might miss out on the sweetest piece of this chapter.

Getting ready
Install SymPy using either easy_install or pip:

$ sudo easy_install sympy

$ sudo pip install sympy

http://ipython.org/ipython-doc/2/api/generated/IPython.lib.security.html
http://ipython.org/ipython-doc/2/api/generated/IPython.lib.security.html
https://www.openssl.org/docs/apps/openssl.html
https://www.openssl.org/docs/apps/openssl.html

Chapter 1

17

How to do it...
The following steps will help you explore the SymPy profile:

1.	 Look at the configuration file, which can be found at ~/.ipython/profile_
sympy/ipython_config.py. The content is as follows:
c = get_config()

app = c.InteractiveShellApp

This can be used at any point in a config file to load a sub
config

and merge it into the current one.

load_subconfig('ipython_config.py', profile='default')

lines = """

from __future__ import division

from sympy import *

x, y, z, t = symbols('x y z t')

k, m, n = symbols('k m n', integer=True)

f, g, h = symbols('f g h', cls=Function)

"""

You have to make sure that attributes that are containers
already

exist before using them. Simple assigning a new list will
override

all previous values.

if hasattr(app, 'exec_lines'):

 app.exec_lines.append(lines)

else:

 app.exec_lines = [lines]

Load the sympy_printing extension to enable nice printing of
sympy expr's.

Winding Along with IPython

18

if hasattr(app, 'extensions'):

 app.extensions.append('sympyprinting')

else:

 app.extensions = ['sympyprinting']

This code accomplishes the following:

�� Loads the default profile

�� Imports the SymPy packages

�� Defines symbols

2.	 Start IPython with the SymPy profile using this command:
$ ipython --profile=sympy

3.	 Expand an algebraic expression using the command shown in the following screenshot:

See also
ff The SymPy homepage at http://sympy.org/en/index.html

http://sympy.org/en/index.html

19

2
Advanced Indexing and

Array Concepts

In this chapter, we will cover the following recipes:

ff Installing SciPy
ff Installing PIL
ff Resizing images
ff Comparing views and copies
ff Flipping Lena
ff Fancy indexing
ff Indexing with a list of locations
ff Indexing with Booleans
ff Stride tricks for Sudoku
ff Broadcasting arrays

Introduction
NumPy is famous for its efficient arrays. This fame is partly due to the ease of indexing.
We will demonstrate advanced indexing tricks using images. Before diving into indexing,
we will install the necessary software—SciPy and PIL. If you feel it is required, review the
Installing matplotlib recipe in Chapter 1, Winding Along with IPython.

In this chapter and in other chapters, we will use the following imports:

import numpy as np
import matplotlib.pyplot as plt
import scipy

Advanced Indexing and Array Concepts

20

We will also use the newest syntax for the print() Python function as much as possible.

Python 2 is a still popular major Python version, but it is not compatible
with Python 3. Python 2 is officially supported until 2020. One of the main
differences is the syntax for the print() function. This book uses code
that is as compatible with Python 2 and Python 3 as possible.

Some of the examples in this chapter involve manipulating images. In order to do that,
we will require the Python Image Library (PIL), but don't worry; instructions and pointers
to help you install PIL and other necessary Python software are given throughout the chapter
when necessary.

Installing SciPy
SciPy is the scientific Python library and is closely related to NumPy. In fact, SciPy and NumPy
used to be the same project many years ago. SciPy, just like NumPy, is an open source project
available under the BSD license. In this recipe, we will install SciPy. SciPy provides advanced
functionality, including statistics, signal processing, linear algebra, optimization, FFT, ODE
solvers, interpolation, special functions, and integration. There is some overlap with NumPy,
but NumPy primarily provides array functionality.

Getting ready
In Chapter 1, Winding Along with IPython, we discussed how to install setuptools and pip.
Reread the recipe if necessary.

How to do it...
In this recipe, we will go through the steps for installing SciPy:

ff Installing from source: If you have Git installed, you can clone the SciPy repository
using the following command:
$ git clone https://github.com/scipy/scipy.git

$ python setup.py build

$ python setup.py install --user

This installs SciPy to your home directory. It requires Python 2.6 or later versions.

Before building, you will also need to install the following packages that SciPy
depends on:

�� The BLAS and LAPACK libraries

�� The C and Fortran compilers

Chapter 2

21

There is a chance that you have already installed this software as part of the
NumPy installation.

ff Installing SciPy on Linux: Most Linux distributions have SciPy packages. We will go
through the necessary steps for some of the popular Linux distributions (you may
need to log in as root or have sudo privileges):

�� In order to install SciPy on Red Hat, Fedora, and CentOS, run the following
instructions from the command line:
$ yum install python-scipy

�� In order to install SciPy on Mandriva, run this command-line instruction:
$ urpmi python-scipy

�� In order to install SciPy on Gentoo, run the following command line
instruction:
$ sudo emerge scipy

�� On Debian or Ubuntu, we need to type this instruction:

$ sudo apt-get install python-scipy

ff Installing SciPy on Mac OS X: Apple Developer Tools (XCode) is required because it
contains the BLAS and LAPACK libraries. It can be found either in the App Store or in
the installation DVD that came with your Mac; or you can get the latest version from
the Apple Developer's connection website at https://developer.apple.com/
xcode/. Make sure that everything, including all the optional packages, is installed.

You probably have a Fortran compiler installed for NumPy. The binaries for gfortran
can be found at http://r.research.att.com/tools/.

ff Installing SciPy using easy_install or pip: You can install SciPy with either of
these two commands (the need for sudo depends on privileges):
$ [sudo] pip install scipy

$ [sudo] easy_install scipy

ff Installing on Windows: If you already have Python installed, the preferred method
is to download and use the binary distribution. Alternatively, you can install the
Anaconda or Enthought Python distribution, which comes with other scientific Python
software packages.

ff Check your installation: Check the SciPy installation with the following code:

import scipy
print(scipy.__version__)
print(scipy.__file__)

This should print the correct SciPy version.

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
http://r.research.att.com/tools/

Advanced Indexing and Array Concepts

22

How it works...
Most package managers take care of dependencies (if there are any) for you. However, in
some cases, you need to install them manually. This is beyond the scope of this book.

See also
If you run into problems, you can ask for help at:

ff The #scipy IRC channel of freenode

ff The SciPy mailing lists at http://www.scipy.org/scipylib/mailing-lists.
html

Installing PIL
PIL, the Python imaging library, is a prerequisite for the image processing recipes in this
chapter. If you prefer, you can install Pillow, which is a fork of PIL. Some people prefer the
Pillow API; however, we are not going to cover its installation in this book.

How to do it...
Let's see how to install PIL:

ff Installing PIL on Windows: Install PIL using the Windows executable from the PIL
website at http://www.pythonware.com/products/pil/.

ff Installing on Debian or Ubuntu: On Debian or Ubuntu, install PIL using
the following command:
$ sudo apt-get install python-imaging

ff Installing with easy_install or pip: At the time of writing this book, it
appears that the package managers of Red Hat, Fedora, and CentOS do not
have direct support for PIL. Therefore, follow this step if you are using one of
these Linux distributions.

Install with either of the following commands:

$ easy_install PIL

$ sudo pip install PIL

See also
ff Instructions for Pillow (a fork of PIL) can be found at

http://pillow.readthedocs.org/en/latest/installation.html

http://www.scipy.org/scipylib/mailing-lists.html
http://www.scipy.org/scipylib/mailing-lists.html
http://www.pythonware.com/products/pil/
http://pillow.readthedocs.org/en/latest/installation.html

Chapter 2

23

Resizing images
In this recipe, we will load a sample image of Lena, which is available in the SciPy distribution,
into an array. This chapter is not about image manipulation, by the way; we will just use the
image data as an input.

Lena Soderberg appeared in a 1972 Playboy magazine. For historical
reasons, one of those images is often used in the field of image processing.
Don't worry; the image in question is completely safe for work.

We will resize the image using the repeat() function. This function repeats an array,
which means resizing the image by a certain factor in our use case.

Getting ready
A prerequisite for this recipe is to have SciPy, matplotlib, and PIL installed. Take a look at the
corresponding recipes in this chapter and Chapter 1, Winding Along with IPython.

How to do it...
Resize the image with the following steps:

1.	 First, import SciPy. SciPy has a lena() function. It is used to load the image
into a NumPy array:
lena = scipy.misc.lena()

Some refactoring has occurred since version 0.10, so if you are using an older
version, the correct code is as follows:

lena = scipy.lena()

2.	 Check the shape of the Lena array using the assert_equal() function from
the numpy.testing package—this is an optional sanity check test:
np.testing.assert_equal((LENA_X, LENA_Y), lena.shape)

3.	 Resize the Lena array with the repeat() function. We give this function a resize
factor in the x and y directions:
resized = lena.repeat(yfactor, axis=0).repeat(xfactor, axis=1)

Advanced Indexing and Array Concepts

24

4.	 We will plot the Lena image and the resized image in two subplots that are parts
of the same grid. Plot the Lena array in a subplot using this code:

plt.subplot(211)
plt.title("Lena")
plt.axis("off")
plt.imshow(lena)

The matplotlib subplot() function creates a subplot. This function accepts a three-
digit integer as the parameter, where the first digit is the number of rows, the second
digit is the number of columns, and the last digit is the index of the subplot, starting
with 1. The imshow() function shows images. Finally, the show() function displays
the end result.

Plot the resized array in another subplot and display it. The index is now 2:
plt.subplot(212)
plt.title("Resized")
plt.axis("off")
plt.imshow(resized)
plt.show()

The following screenshot shows the result, with the original image (first) and the
resized image (second):

Chapter 2

25

The following is the complete code for this recipe from the resize_lena.py file in
this book's code bundle:

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

This script resizes the Lena image from Scipy.

Loads the Lena image into an array
lena = scipy.misc.lena()

#Lena's dimensions
LENA_X = 512
LENA_Y = 512

#Check the shape of the Lena array
np.testing.assert_equal((LENA_X, LENA_Y), lena.shape)

Set the resize factors
yfactor = 2
xfactor = 3

Resize the Lena array
resized = lena.repeat(yfactor, axis=0).repeat(xfactor, axis=1)

#Check the shape of the resized array
np.testing.assert_equal((yfactor * LENA_Y, xfactor * LENA_Y),
resized.shape)

Plot the Lena array
plt.subplot(211)
plt.title("Lena")
plt.axis("off")
plt.imshow(lena)

#Plot the resized array
plt.subplot(212)
plt.title("Resized")
plt.axis("off")
plt.imshow(resized)
plt.show()

Advanced Indexing and Array Concepts

26

How it works...
The repeat() function repeats arrays, which in this case resulted in changing the size of the
original image. The subplot() matplotlib function creates a subplot. The imshow() function
shows the images. Finally, the show() function displays the end result.

See also
ff Installing matplotlib in Chapter 1, Winding Along with IPython

ff Installing SciPy in this chapter

ff Installing PIL in this chapter

ff The repeat() function is described at http://docs.scipy.org/doc/numpy/
reference/generated/numpy.repeat.html

Creating views and copies
It is important to know when we are dealing with a shared array view, and when we have a
copy of the array data. A slice, for instance, will create a view. This means that if you assign
the slice to a variable and then change the underlying array, the value of this variable will
change. We will create an array from the famous Lena image, copy the array, create a view,
and at the end, modify the view.

Getting ready
The prerequisites are the same as those for the previous recipe.

How to do it...
Let's create a copy and views of the Lena array:

1.	 Create a copy of the Lena array:
acopy = lena.copy()

2.	 Create a view of the array:
aview = lena.view()

3.	 Set all the values of the view to 0 with a flat iterator:
aview.flat = 0

http://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html

Chapter 2

27

The end result is that only one of the images (the image that is related to the copy)
shows the Playboy model. The other images disappear completely:

The following is the code of this tutorial, showing the behavior of array views and
copies from the copy_view.py file in this book's code bundle:

import scipy.misc
import matplotlib.pyplot as plt

lena = scipy.misc.lena()
acopy = lena.copy()
aview = lena.view()

Plot the Lena array
plt.subplot(221)
plt.imshow(lena)

#Plot the copy
plt.subplot(222)
plt.imshow(acopy)

#Plot the view
plt.subplot(223)
plt.imshow(aview)

Plot the view after changes

Advanced Indexing and Array Concepts

28

aview.flat = 0
plt.subplot(224)
plt.imshow(aview)

plt.show()

How it works...
As you can see, by changing the view at the end of the program, we changed the original
Lena array. This resulted in three blue (or blank if you are looking at a black-and-white
image) images—the copied array was unaffected. It is important to remember that views
are not read-only.

See also
ff The documentation of the NumPy view() function is at http://docs.scipy.

org/doc/numpy/reference/generated/numpy.ndarray.view.html

Flipping Lena
We will be flipping the SciPy Lena image—all in the name of science, of course, or at least as
a demo. In addition to flipping the image, we will slice it and apply a mask to it.

How to do it...
The steps are as follows:

1.	 Flip the Lena array around the vertical axis using the following code:
plt.imshow(lena[:,::-1])

2.	 Take a slice out of the image and plot it. In this step, we will take a look at the shape
of the Lena array. The shape is a tuple representing the dimensions of the array.
The following code effectively selects the top-left quadrant of the Playboy picture:
plt.imshow(lena[:lena.shape[0]/2,:lena.shape[1]/2])

3.	 Apply a mask to the image by finding all the values in the Lena array that are even
(this is just arbitrary for demo purposes). Copy the array and change the even values
to 0. This has the effect of putting lots of blue dots on the image (dark spots if you
are looking at a black-and-white image):

mask = lena % 2 == 0
masked_lena = lena.copy()
masked_lena[mask] = 0

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.view.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.view.html

Chapter 2

29

All of these efforts result in a 2 x 2 image grid, as shown in the following screenshot:

Here is the complete code for this recipe from the flip_lena.py file in this book's
code bundle:

import scipy.misc
import matplotlib.pyplot as plt

Load the Lena array
lena = scipy.misc.lena()

Plot the Lena array
plt.subplot(221)
plt.title('Original')
plt.axis('off')
plt.imshow(lena)

#Plot the flipped array
plt.subplot(222)
plt.title('Flipped')
plt.axis('off')
plt.imshow(lena[:,::-1])

#Plot a slice array
plt.subplot(223)

Advanced Indexing and Array Concepts

30

plt.title('Sliced')
plt.axis('off')
plt.imshow(lena[:lena.shape[0]/2,:lena.shape[1]/2])

Apply a mask
mask = lena % 2 == 0
masked_lena = lena.copy()
masked_lena[mask] = 0
plt.subplot(224)
plt.title('Masked')
plt.axis('off')
plt.imshow(masked_lena)

plt.show()

See also
ff Installing matplotlib in Chapter 1, Winding Along with IPython

ff Installing SciPy in this chapter

ff Installing PIL in this chapter

Fancy indexing
In this tutorial, we will apply fancy indexing to set the diagonal values of the Lena image to
0. This will draw black lines along the diagonals, crossing it, not because there is something
wrong with the image but just as an exercise. Fancy indexing is indexing that does not involve
integers or slices; it is normal indexing.

How to do it...
We will start with the first diagonal:

1.	 Set the values of the first diagonal to 0.

To set the diagonal values to 0, we need to define two different ranges for the
x and y values:

lena[range(xmax), range(ymax)] = 0

2.	 Set the values of the other diagonal to 0.

To set the values of the other diagonal, we require a different set of ranges,
but the principles stay the same:
lena[range(xmax-1,-1,-1), range(ymax)] = 0

Chapter 2

31

At the end, we get this image with the diagonals marked, as shown in the
following screenshot:

The following is the complete code for this recipe from the fancy.py file in this
book's code bundle:

import scipy.misc
import matplotlib.pyplot as plt

This script demonstrates fancy indexing by setting values
on the diagonals to 0.

Load the Lena array
lena = scipy.misc.lena()
xmax = lena.shape[0]
ymax = lena.shape[1]

Fancy indexing
Set values on diagonal to 0
x 0-xmax
y 0-ymax
lena[range(xmax), range(ymax)] = 0

Set values on other diagonal to 0
x xmax-0
y 0-ymax

Advanced Indexing and Array Concepts

32

lena[range(xmax-1,-1,-1), range(ymax)] = 0

Plot Lena with diagonal lines set to 0
plt.imshow(lena)
plt.show()

How it works...
We defined separate ranges for the x values and y values. These ranges were used to index
the Lena array. Fancy indexing is performed based on an internal NumPy iterator object.
The following steps are performed:

1.	 The iterator object is created.

2.	 The iterator object gets bound to the array.

3.	 Array elements are accessed via the iterator.

See also
ff The fancy indexing implementation is documented at http://docs.scipy.org/

doc/numpy-dev/reference/internals.code-explanations.html#fancy-
indexing-check

Indexing with a list of locations
Let's use the ix_() function to shuffle the Lena image. This function creates a mesh from
multiple sequences.

How to do it...
We will start by randomly shuffling the array indices:

1.	 Create a random indices array with the shuffle() function of the
numpy.random module:
def shuffle_indices(size):
 arr = np.arange(size)
 np.random.shuffle(arr)

 return arr

http://docs.scipy.org/doc/numpy-dev/reference/internals.code-explanations.html#fancy-indexing-check
http://docs.scipy.org/doc/numpy-dev/reference/internals.code-explanations.html#fancy-indexing-check
http://docs.scipy.org/doc/numpy-dev/reference/internals.code-explanations.html#fancy-indexing-check

Chapter 2

33

2.	 Plot the shuffled indices:
plt.imshow(lena[np.ix_(xindices, yindices)])

What we get is a completely scrambled Lena image, as shown in the
following screenshot:

Here is the complete code for the recipe from the ix.py file in this book's
code bundle:

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

Load the Lena array
lena = scipy.misc.lena()
xmax = lena.shape[0]
ymax = lena.shape[1]

def shuffle_indices(size):
 '''
 Shuffles an array with values 0 - size
 '''

Advanced Indexing and Array Concepts

34

 arr = np.arange(size)
 np.random.shuffle(arr)

 return arr

xindices = shuffle_indices(xmax)
np.testing.assert_equal(len(xindices), xmax)
yindices = shuffle_indices(ymax)
np.testing.assert_equal(len(yindices), ymax)

Plot Lena
plt.imshow(lena[np.ix_(xindices, yindices)])
plt.show()

See also
ff The ix_() function's documentation page at http://docs.scipy.org/doc/

numpy/reference/generated/numpy.ix_.html

Indexing with Booleans
Boolean indexing is indexing based on a boolean array and falls under the category of
fancy indexing.

How to do it...
We will apply this indexing technique to an image:

1.	 Image with dots on the diagonal.

This is in some way similar to the Fancy indexing recipe in this chapter. This time,
we select modulo 4 points on the diagonal of the image:
def get_indices(size):
 arr = np.arange(size)
 return arr % 4 == 0

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ix_.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ix_.html

Chapter 2

35

Then we just apply this selection and plot the points:

lena1 = lena.copy()
xindices = get_indices(lena.shape[0])
yindices = get_indices(lena.shape[1])
lena1[xindices, yindices] = 0
plt.subplot(211)
plt.imshow(lena1)

2.	 Select the array values between quarter and three quarters of the maximum value,
and set them to 0:

lena2[(lena > lena.max()/4) &
 (lena < 3 * lena.max()/4)] = 0

The plot with the two new images will look like what is shown in the
following screenshot:

Here is the complete code for this recipe from the boolean_indexing.py file in
this book's code bundle:

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

Load the Lena array

Advanced Indexing and Array Concepts

36

lena = scipy.misc.lena()

def get_indices(size):
 arr = np.arange(size)
 return arr % 4 == 0

Plot Lena
lena1 = lena.copy()
xindices = get_indices(lena.shape[0])
yindices = get_indices(lena.shape[1])
lena1[xindices, yindices] = 0
plt.subplot(211)
plt.imshow(lena1)

lena2 = lena.copy()
Between quarter and 3 quarters of the max value
lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] = 0
plt.subplot(212)
plt.imshow(lena2)

plt.show()

How it works...
Since indexing with Booleans is a form of fancy indexing, the way it works is basically the
same. This means that indexing happens with the help of a special iterator object.

See also
ff Fancy Indexing

Stride tricks for Sudoku
The ndarray class has a strides field, which is a tuple indicating the number of bytes to
step in each dimension when going through an array. Let's apply some stride tricks to the
problem of splitting a Sudoku puzzle into the 3 x 3 squares it is composed of.

Explaining the rules of Sudoku is outside the scope of this book. In
a nutshell, a Sudoku puzzle consists of 3 x 3 squares. Each of these
squares contains nine numbers. For more information see http://
en.wikipedia.org/wiki/Sudoku.

http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/Sudoku

Chapter 2

37

How to do it...
Apply the stride tricks as follows:

1.	 Let's define the sudoku array. This array is filled with the contents of an actual,
solved Sudoku puzzle:
sudoku = np.array([
 [2, 8, 7, 1, 6, 5, 9, 4, 3],
 [9, 5, 4, 7, 3, 2, 1, 6, 8],
 [6, 1, 3, 8, 4, 9, 7, 5, 2],
 [8, 7, 9, 6, 5, 1, 2, 3, 4],
 [4, 2, 1, 3, 9, 8, 6, 7, 5],
 [3, 6, 5, 4, 2, 7, 8, 9, 1],
 [1, 9, 8, 5, 7, 3, 4, 2, 6],
 [5, 4, 2, 9, 1, 6, 3, 8, 7],
 [7, 3, 6, 2, 8, 4, 5, 1, 9]
])

2.	 The itemsize field of ndarray gives us the number of bytes in an array. Given the
itemsize calculate the strides:
strides = sudoku.itemsize * np.array([27, 3, 9, 1])

3.	 Now we can split the puzzle into squares with the as_strided() function of the
np.lib.stride_tricks module:

squares = np.lib.stride_tricks.as_strided
 (sudoku, shape=shape, strides=strides)
print(squares)

The code prints separate Sudoku squares, as follows:
[[[[2 8 7]
 [9 5 4]
 [6 1 3]]

 [[1 6 5]
 [7 3 2]
 [8 4 9]]

 [[9 4 3]
 [1 6 8]
 [7 5 2]]]

 [[[8 7 9]
 [4 2 1]

Advanced Indexing and Array Concepts

38

 [3 6 5]]

 [[6 5 1]
 [3 9 8]
 [4 2 7]]

 [[2 3 4]
 [6 7 5]
 [8 9 1]]]

 [[[1 9 8]
 [5 4 2]
 [7 3 6]]

 [[5 7 3]
 [9 1 6]
 [2 8 4]]

 [[4 2 6]
 [3 8 7]
 [5 1 9]]]]

The following is the complete source code for this recipe from the strides.py
file in this book's code bundle:

import numpy as np

sudoku = np.array([
 [2, 8, 7, 1, 6, 5, 9, 4, 3],
 [9, 5, 4, 7, 3, 2, 1, 6, 8],
 [6, 1, 3, 8, 4, 9, 7, 5, 2],
 [8, 7, 9, 6, 5, 1, 2, 3, 4],
 [4, 2, 1, 3, 9, 8, 6, 7, 5],
 [3, 6, 5, 4, 2, 7, 8, 9, 1],
 [1, 9, 8, 5, 7, 3, 4, 2, 6],
 [5, 4, 2, 9, 1, 6, 3, 8, 7],
 [7, 3, 6, 2, 8, 4, 5, 1, 9]
])

shape = (3, 3, 3, 3)

strides = sudoku.itemsize * np.array([27, 3, 9, 1])

squares = np.lib.stride_tricks.as_strided(sudoku, shape=shape,
strides=strides)
print(squares)

Chapter 2

39

How it works...
We applied stride tricks to split a Sudoku puzzle into its constituent 3 x 3 squares. The strides
tell us the number of bytes we need to skip at each step when going through the Sudoku array.

See also
ff The strides property is documented at http://docs.scipy.org/doc/numpy/

reference/generated/numpy.ndarray.strides.html

Broadcasting arrays
Without knowing it, you might have broadcasted arrays. In a nutshell, NumPy tries to perform an
operation even though the operands do not have the same shape. In this recipe, we will multiply
an array and a scalar. The scalar is extended to the shape of the array operand and then the
multiplication is performed. We will download an audio file and make a new version of it that
is quieter.

How to do it...
Let's start by reading a WAV file:

1.	 We will use standard Python code to download an audio file of Austin Powers.
SciPy has a WAV file module that allows you to load sound data or generate WAV
files. If SciPy is installed, then we should already have this module. The read()
function returns a data array and sample rate. In this example, we care only
about the data:
sample_rate, data = scipy.io.wavfile.read(WAV_FILE)

2.	 Plot the original WAV data with matplotlib. Name the subplot Original:
plt.subplot(2, 1, 1)
plt.title("Original")
plt.plot(data)

3.	 Now we will use NumPy to make a quieter audio sample. It's just a matter of
creating a new array with smaller values by multiplying with a constant. This is
where the magic of broadcasting occurs. In the end, we need to make sure that we
have the same data type as that in the original array, because of the WAV format:
newdata = data * 0.2
newdata = newdata.astype(np.uint8)

4.	 This new array can be written to a new WAV file, as follows:
scipy.io.wavfile.write("quiet.wav",
 sample_rate, newdata)

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.strides.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.strides.html

Advanced Indexing and Array Concepts

40

5.	 Plot the new data array with matplotlib:

plt.subplot(2, 1, 2)
plt.title("Quiet")
plt.plot(newdata)

plt.show()

The result is a plot of the original WAV file data and a new array with smaller values,
as shown in the following screenshot:

Here is the complete code for this recipe from the broadcasting.py file in this
book's code bundle:

import scipy.io.wavfile
import matplotlib.pyplot as plt
import urllib2
import numpy as np

Download audio file
response = urllib2.urlopen('http://www.thesoundarchive.com/
austinpowers/smashingbaby.wav')
print(response.info())

Chapter 2

41

WAV_FILE = 'smashingbaby.wav'
filehandle = open(WAV_FILE, 'w')
filehandle.write(response.read())
filehandle.close()
sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
print("Data type", data.dtype, "Shape", data.shape)

Plot values original audio
plt.subplot(2, 1, 1)
plt.title("Original")
plt.plot(data)

Create quieter audio
newdata = data * 0.2
newdata = newdata.astype(np.uint8)
print("Data type", newdata.dtype, "Shape", newdata.shape)

Save quieter audio file
scipy.io.wavfile.write("quiet.wav",
 sample_rate, newdata)

Plot values quieter file
plt.subplot(2, 1, 2)
plt.title("Quiet")
plt.plot(newdata)

plt.show()

See also
The following links give more background information:

ff The scipy.io.read() function page at http://docs.scipy.org/doc/scipy/
reference/generated/scipy.io.wavfile.read.html

ff The scipy.io.write() function page at http://docs.scipy.org/doc/
scipy/reference/generated/scipy.io.wavfile.write.html

ff The broadcasting concept is explained at http://docs.scipy.org/doc/numpy/
user/basics.broadcasting.html

http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.read.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.read.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

43

3
Getting to Grips with

Commonly Used
Functions

In this chapter, we will cover a number of commonly used functions:

ff sqrt(), log(), arange(), astype(), and sum()

ff ceil(), modf(), where(), ravel(), and take()

ff sort() and outer()

ff diff(), sign(), and eig()

ff histogram() and polyfit()

ff compress() and randint()

We will be discussing these functions in the following recipes:

ff Summing Fibonacci numbers

ff Finding prime factors

ff Finding palindromic numbers

ff The steady state vector

ff Discovering a power law

ff Trading periodically on dips

ff Simulating trading at random

ff Sieving integers with the Sieve of Eratosthenes

Getting to Grips with Commonly Used Functions

44

Introduction
This chapter is about the commonly used NumPy functions. These are the functions that
you will be using on a daily basis. Obviously, the usage may differ for you. There are so many
NumPy functions that it is virtually impossible to know all of them, but the functions in this
chapter are the bare minimum with which we should be familiar.

Summing Fibonacci numbers
In this recipe, we will sum the even-valued terms in the Fibonacci sequence whose values do
not exceed 4 million. The Fibonacci series is a sequence of integers starting with zero, where
each number is the sum of the previous two, except (of course) the first two numbers, zero
and one (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 ...).

The sequence was published by Fibonacci in 1202 and originally did not include zero. Actually,
it was already known to Indian mathematicians in earlier centuries. Fibonacci numbers have
applications in mathematics, computer science, and biology.

For more information, read the Wikipedia article about Fibonacci numbers
at http://en.wikipedia.org/wiki/Fibonacci_number.

This recipe uses a formula based on the golden ratio, which is an irrational number with
special properties comparable to pi. The golden ratio is given by the following formula:

1 5
2

ϕ +
=

We will use the sqrt(), log(), arange(), astype(), and sum() functions. The Fibonacci
sequence's recurrence relation has the following solution, which involves the golden ratio:

()
5

nn

nF
ϕ ϕ −− −

=

How to do it...
The following is the complete code for this recipe from the sum_fibonacci.py file in this
book's code bundle:

import numpy as np

http://en.wikipedia.org/wiki/Fibonacci_number

Chapter 3

45

#Each new term in the Fibonacci sequence is generated by adding the
previous two terms.
#By starting with 1 and 2, the first 10 terms will be:

#1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

#By considering the terms in the Fibonacci sequence whose values do
not exceed four million,
#find the sum of the even-valued terms.

#1. Calculate phi
phi = (1 + np.sqrt(5))/2
print("Phi", phi)

#2. Find the index below 4 million
n = np.log(4 * 10 ** 6 * np.sqrt(5) + 0.5)/np.log(phi)
print(n)

#3. Create an array of 1-n
n = np.arange(1, n)
print(n)

#4. Compute Fibonacci numbers
fib = (phi**n - (-1/phi)**n)/np.sqrt(5)
print("First 9 Fibonacci Numbers", fib[:9])

#5. Convert to integers
optional
fib = fib.astype(int)
print("Integers", fib)

#6. Select even-valued terms
eventerms = fib[fib % 2 == 0]
print(eventerms)

#7. Sum the selected terms
print(eventerms.sum())

The first thing to do is calculate the golden ratio (see http://en.wikipedia.org/wiki/
Golden_ratio), also called the golden section or golden mean.

1.	 Use the sqrt() function to calculate the square root of 5:
phi = (1 + np.sqrt(5))/2

print("Phi", phi)

http://en.wikipedia.org/wiki/Golden_ratio
http://en.wikipedia.org/wiki/Golden_ratio

Getting to Grips with Commonly Used Functions

46

This prints the golden mean:

Phi 1.61803398875

2.	 Next, in the recipe, we need to find the index of the Fibonacci number below 4 million.
A formula for this is given in the Wikipedia page, and we will compute it using that
formula. All we need to do is convert log bases with the log() function. We don't
need to round the result down to the closest integer. This is automatically done for us
in the next step of the recipe:
n = np.log(4 * 10 ** 6 * np.sqrt(5)
 + 0.5)/np.log(phi)

print(n)

The value of n is as follows:

33.2629480359

3.	 The arange() function is a very basic function that many people know. Still, we will
mention it here for completeness:
n = np.arange(1, n)

4.	 There is a convenient formula we can use to calculate the Fibonacci numbers. We
will need the golden ratio and the array from the previous step in this recipe as input
parameters. Print the first nine Fibonacci numbers to check the result:
fib = (phi**n - (-1/phi)**n)/np.sqrt(5)

print("First 9 Fibonacci Numbers", fib[:9])

I could have made a unit test instead of a print statement. A unit test is
a test that tests a small unit of code, such as a function. This variation
of the recipe is left as an exercise for you.

Take a look at Chapter 8, Quality Assurance, for pointers on how to write
a unit test.

We are not starting with the number 0 here, by the way. The aforementioned code
gives us a series as expected:
First 9 Fibonacci Numbers [1. 1. 2. 3. 5. 8. 13. 21.
34.]

You can plug this right into a unit test, if you want.

5.	 Convert to integers.

This step is optional. I think it's nice to have an integer result at the end. Okay, I
actually wanted to show you the astype() function:

Chapter 3

47

fib = fib.astype(int)

print("Integers", fib)

This code gives us the following result, after snipping a bit for brevity:

Integers [1 1 2 3 5 8 13
21 34

 ... snip ... snip ...

 317811 514229 832040 1346269 2178309 3524578]

6.	 Select the even-valued terms.

This recipe demands that we select the even-valued terms now. This should be easy
for you if you followed the Indexing with Booleans recipe in Chapter 2, Advanced
Indexing and Array Concepts:
eventerms = fib[fib % 2 == 0]

print(eventerms)

There we go:

[2 8 34 144 610 2584 10946 46368
196418 832040 3524578]

How it works...
In this recipe, we used the sqrt(), log(), arange(), astype(), and sum() functions.
Their description is as follows:

Function Description
sqrt() This function calculates the square root of array elements (see http://

docs.scipy.org/doc/numpy/reference/generated/numpy.
sqrt.html)

log() This function calculates the natural logarithm of array elements (see http://
docs.scipy.org/doc/numpy/reference/generated/numpy.log.
html#numpy.log)

arange() This function creates an array with the specified range (see http://docs.
scipy.org/doc/numpy/reference/generated/numpy.arange.
html)

astype() This function converts array elements to a specified data type (see http://
docs.scipy.org/doc/numpy/reference/generated/numpy.
chararray.astype.html)

sum() This function calculates the sum of array elements (see http://docs.
scipy.org/doc/numpy/reference/generated/numpy.sum.html)

http://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log
http://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.chararray.astype.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.chararray.astype.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.chararray.astype.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html

Getting to Grips with Commonly Used Functions

48

See also
ff The Indexing with Booleans recipe in Chapter 2, Advanced Indexing and Array Concepts

Finding prime factors
Prime factors (http://en.wikipedia.org/wiki/Prime_factor) are prime numbers
that exactly divide an integer without leaving a remainder. Finding prime factors seems almost
impossible for big numbers. Therefore, prime factors have an application in cryptography.
However, using the right algorithm—Fermat's factorization method (http://en.wikipedia.
org/wiki/Fermat%27s_factorization_method) and NumPy—factoring becomes
relatively easy for small numbers. The idea is to factor a number N into two numbers, c and d,
according to the following equation:

()() 2 2N cd a b a b a b= = + − = −

We can apply the factorization recursively until we get the required prime factors.

How to do it...
The following is the entire code needed to solve the problem of finding the largest prime factor
of 600851475143 (see the fermatfactor.py file in this book's code bundle):

from __future__ import print_function
import numpy as np

#The prime factors of 13195 are 5, 7, 13 and 29.

#What is the largest prime factor of the number 600851475143 ?

N = 600851475143
LIM = 10 ** 6

def factor(n):
 #1. Create array of trial values
 a = np.ceil(np.sqrt(n))
 lim = min(n, LIM)
 a = np.arange(a, a + lim)
 b2 = a ** 2 - n

 #2. Check whether b is a square

http://en.wikipedia.org/wiki/Prime_factor
http://en.wikipedia.org/wiki/Fermat%27s_factorization_method
http://en.wikipedia.org/wiki/Fermat%27s_factorization_method

Chapter 3

49

 fractions = np.modf(np.sqrt(b2))[0]

 #3. Find 0 fractions
 indices = np.where(fractions == 0)

 #4. Find the first occurrence of a 0 fraction
 a = np.ravel(np.take(a, indices))[0]
 # Or a = a[indices][0]

 a = int(a)
 b = np.sqrt(a ** 2 - n)
 b = int(b)
 c = a + b
 d = a - b

 if c == 1 or d == 1:
 return

 print(c, d)
 factor(c)
 factor(d)

factor(N)

The algorithm requires us to try a number of trial values for a:

1.	 Create an array of trial values.

It makes sense to create a NumPy array and eliminate the need for loops.
However, you should be careful not to create an array that is too big in terms of
memory requirements. On my system, an array of a million elements seems to
be just the right size:
a = np.ceil(np.sqrt(n))
lim = min(n, LIM)
a = np.arange(a, a + lim)
b2 = a ** 2 - n

We used the ceil() function to return the ceiling of the input, element-wise.

2.	 Get the fractional part of the b array.

We are now supposed to check whether b is a square. Use the NumPy modf()
function to get the fractional part of the b array:

fractions = np.modf(np.sqrt(b2))[0]

Getting to Grips with Commonly Used Functions

50

3.	 Find 0 fractions.

Call the where() NumPy function to find the indexes of zero fractions, where the
fractional part is 0:

indices = np.where(fractions == 0)

4.	 Find the first occurrence of a zero fraction.

First, call the take() NumPy function with the indices array from the previous
step to get the values of zero fractions. Now latten this array with the ravel()
NumPy function:
a = np.ravel(np.take(a, indices))[0]

This line is a bit convoluted, but it does demonstrate two useful
functions. It would have been simpler to write a = a[indices][0].

The output for this code is the following:

1234169 486847

1471 839

6857 71

How it works...
We applied the Fermat factorization recursively using the ceil(), modf(), where(),
ravel(), and take() NumPy functions. The description of these functions is as follows:

Function Description
ceil() Calculates the ceiling of array elements (see http://docs.scipy.org/

doc/numpy/reference/generated/numpy.ceil.html)
modf() Returns the fractional and integral part of floating-point numbers (see

http://docs.scipy.org/doc/numpy/reference/generated/
numpy.modf.html)

where() Returns array indices based on condition (see http://docs.scipy.org/
doc/numpy/reference/generated/numpy.where.html)

ravel() Returns a flattened array (see http://docs.scipy.org/doc/numpy/
reference/generated/numpy.ravel.html)

take() Takes an element from an array (see http://docs.scipy.org/doc/
numpy/reference/generated/numpy.take.html)

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ceil.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ceil.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.modf.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.modf.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html

Chapter 3

51

Finding palindromic numbers
A palindromic number reads the same both ways. The largest palindrome made from the
product of two 2-digit numbers is 9009 = 91 x 99. Let's try to find the largest palindrome
made from the product of two 3-digit numbers.

How to do it...
The following is the complete program from the palindromic.py file in this book's
code bundle:

import numpy as np

#A palindromic number reads the same both ways.
#The largest palindrome made from the product of two 2-digit numbers
is 9009 = 91 x 99.

#Find the largest palindrome made from the product of two 3-digit
numbers.

#1. Create 3-digits numbers array
a = np.arange(100, 1000)
np.testing.assert_equal(100, a[0])
np.testing.assert_equal(999, a[-1])

#2. Create products array
numbers = np.outer(a, a)
numbers = np.ravel(numbers)
numbers.sort()
np.testing.assert_equal(810000, len(numbers))
np.testing.assert_equal(10000, numbers[0])
np.testing.assert_equal(998001, numbers[-1])

#3. Find largest palindromic number
for number in numbers[::-1]:
 s = str(numbers[i])

 if s == s[::-1]:
 print(s)
 break

Getting to Grips with Commonly Used Functions

52

We will create an array to hold three-digit numbers from 100 to 999 using our favorite NumPy
function, arange().

1.	 Create an array of three-digit numbers.

Check the first and the last element of the array with the assert_equal()
function from the numpy.testing package:

a = np.arange(100, 1000)
np.testing.assert_equal(100, a[0])
np.testing.assert_equal(999, a[-1])

2.	 Create the products array.

Now we will create an array to hold all the possible products of the elements of the
three-digit array with itself. We can accomplish this with the outer() function. The
resulting array needs to be flattened with ravel() to be able to easily iterate over it.
Call the sort() method on the array to make sure that the array is properly sorted.
After that, we can do some sanity checks:

numbers = np.outer(a, a)
numbers = np.ravel(numbers)
numbers.sort()
np.testing.assert_equal(810000, len(numbers))
np.testing.assert_equal(10000, numbers[0])
np.testing.assert_equal(998001, numbers[-1])

The code prints 906609, which is a palindromic number.

How it works...
We saw the outer() function in action. This function returns the outer product of two arrays
(http://en.wikipedia.org/wiki/Outer_product). The outer product of two vectors
(one-dimensional lists of numbers) creates a matrix. This is the opposite of an inner product,
which returns a scalar number for two vectors. The outer product is used in physics, signal
processing, and statistics. The sort() function returns a sorted copy of an array.

There's more...
It might be a good idea to check the result. Find out which two 3-digit numbers produce
our palindromic number by modifying the code a bit. Try implementing the last step in the
NumPy way.

http://en.wikipedia.org/wiki/Outer_product

Chapter 3

53

The steady state vector
A Markov chain is a system that has at least two states. For detailed information on Markov
chains, please refer to http://en.wikipedia.org/wiki/Markov_chain. The state at
time t depends on the state at time t-1, and only the state at t-1. The system switches at
random between these states. The chain doesn't have any memory about the states. Markov
chains are often used to model phenomena in physics, chemistry, finance, and computer
science. For instance, Google's PageRank algorithm uses Markov chains to rank web pages.

I would like to define a Markov chain for a stock. Let's say that we have the states flat, up,
and down. We can determine the steady state based on the end-of-the-day close prices.

Far into the distant future or theoretically after an infinite amount of time, the state of our
Markov chain system will not change anymore. This is called a steady state (see http://
en.wikipedia.org/wiki/Steady_state). A dynamic equilibrium is a type of steady
state. For a stock, achieving a steady state may mean that the related company has become
stable. The stochastic matrix (see http://en.wikipedia.org/wiki/Stochastic_
matrix) A contains the state transition probabilities, and when applied to the steady state,
it yields the same state x. The mathematical notation for this is as follows:

Ax x=

Another way to look at this is as the eigenvector (see http://en.wikipedia.org/wiki/
Eigenvalues_and_eigenvectors) for eigenvalue 1. Eigenvalues and eigenvectors are
fundamental concepts of linear algebra with applications in quantum mechanics, machine
learning, and other sciences.

How to do it...
The following is the complete code for the steady state vector example from the steady_
state_vector.py file in this book's code bundle:

from __future__ import print_function
from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy as np

today = date.today()

http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Steady_state
http://en.wikipedia.org/wiki/Steady_state
http://en.wikipedia.org/wiki/Stochastic_matrix
http://en.wikipedia.org/wiki/Stochastic_matrix
http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Getting to Grips with Commonly Used Functions

54

start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo('AAPL', start, today)
close = [q[4] for q in quotes]

states = np.sign(np.diff(close))

NDIM = 3
SM = np.zeros((NDIM, NDIM))

signs = [-1, 0, 1]
k = 1

for i, signi in enumerate(signs):
 #we start the transition from the state with the specified sign
 start_indices = np.where(states[:-1] == signi)[0]

 N = len(start_indices) + k * NDIM

 # skip since there are no transitions possible
 if N == 0:
 continue

 #find the values of states at the end positions
 end_values = states[start_indices + 1]

 for j, signj in enumerate(signs):
 # number of occurrences of this transition
 occurrences = len(end_values[end_values == signj])
 SM[i][j] = (occurrences + k)/float(N)

print(SM)
eig_out = np.linalg.eig(SM)
print(eig_out)

idx_vec = np.where(np.abs(eig_out[0] - 1) < 0.1)
print("Index eigenvalue 1", idx_vec)

x = eig_out[1][:,idx_vec].flatten()
print("Steady state vector", x)
print("Check", np.dot(SM, x))

Chapter 3

55

Now we need to obtain the data:

1.	 Obtain 1 year of data.

One way we can do this is with matplotlib (refer to the Installing matplotlib recipe in
Chapter 1, Winding Along with IPython, if necessary). We will retrieve the data of the
last year. Here is the code to do this:

today = date.today()
start = (today.year - 1, today.month, today.day)
quotes = quotes_historical_yahoo('AAPL', start, today)

2.	 Select the close price.

We now have historical data from Yahoo! Finance. The data is represented as a list
of tuples, but we are only interested in the close price.

The first element in the tuple represents the date. It is followed by the open, high,
low, and close prices. The last element is the volume. We can select the close
prices as follows:
close = [q[4] for q in quotes]

The close price is the fifth number in each tuple. We should have a list of about
253 close prices now.

3.	 Determine the states.

We can determine the states by subtracting the price of sequential days with the
diff() NumPy function. The state is then given by the sign of the difference. The
sign() NumPy function returns -1 for a negative number, 1 for a positive number,
and 0 otherwise:

states = np.sign(np.diff(close))

4.	 Initialize the stochastic matrix to 0 values.

We have three possible start states and three possible end states for each transition.
For instance, if we start from an up state, we could switch to:

�� Up

�� Flat

�� Down

Initialize the stochastic matrix with the zeros() NumPy function:

NDIM = 3
SM = np.zeros((NDIM, NDIM))

Getting to Grips with Commonly Used Functions

56

5.	 For each sign, select the corresponding start state indices.

Now the code becomes a bit messy. We will have to use actual loops! We will loop
over the possible signs and select the start state indices corresponding to each
sign. Select the indices with the where() NumPy function. Here, k is a smoothing
constant, which we will discuss later on:

signs = [-1, 0, 1]
k = 1

for i, signi in enumerate(signs):
 #we start the transition from the state with the specified sign
 start_indices = np.where(states[:-1] == signi)[0]

6.	 Smoothing and the stochastic matrix.

We can now count the number of occurrences of each transition. Dividing it by the
total number of transitions for a given start state gives us the transition probabilities
for our stochastic matrix. This is not the best method, by the way, since it could
be overfitting.

In real life, we could have a day when the close price does not change, although this
is unlikely for liquid stock markets. One way to deal with zero occurrences is to apply
additive smoothing (http://en.wikipedia.org/wiki/Additive_smoothing).
The idea is to add a certain constant to the number of occurrences we find, getting
rid of zeroes. The following code calculates the values of the stochastic matrix:
N = len(start_indices) + k * NDIM

skip since there are no transitions possible
if N == 0:
 continue

#find the values of states at the end positions
end_values = states[start_indices + 1]

for j, signj in enumerate(signs):
 # number of occurrences of this transition
 occurrences = len
 (end_values[end_values == signj])
 SM[i][j] = (occurrences + k)/float(N)

print(SM)

http://en.wikipedia.org/wiki/Additive_smoothing

Chapter 3

57

What the aforementioned code does is compute the transition probabilities for each
possible transition based on the number of occurrences and additive smoothing.
On one of the test runs, I got the following matrix:

[[0.5047619 0.00952381 0.48571429]

 [0.33333333 0.33333333 0.33333333]

 [0.33774834 0.00662252 0.65562914]]

7.	 Eigenvalues and eigenvectors.

To get the eigenvalues and eigenvectors we will need the linalg NumPy module and
the eig() function:
eig_out = numpy.linalg.eig(SM)
print(eig_out)

The eig() function returns an array containing the eigenvalues and another array
containing the eigenvectors:

(array([1. , 0.16709381, 0.32663057]), array([[
5.77350269e-01, 7.31108409e-01, 7.90138877e-04],

 [5.77350269e-01, -4.65117036e-01, -9.99813147e-01],

 [5.77350269e-01, -4.99145907e-01, 1.93144030e-02]]))

8.	 Select the eigenvector for eigenvalue 1.

Currently, we are only interested in the eigenvector for eigenvalue 1. In reality, the
eigenvalue might not be exactly 1, so we should build a margin for error. We can
find the index for eigenvalue between 0.9 and 1.1, as follows:
idx_vec = np.where
 (np.abs(eig_out[0] - 1) < 0.1)
print("Index eigenvalue 1", idx_vec)

x = eig_out[1][:,idx_vec].flatten()

The rest of the output for this code is as follows:

Index eigenvalue 1 (array([0]),)

Steady state vector [0.57735027 0.57735027 0.57735027]

Check [0.57735027 0.57735027 0.57735027]

Getting to Grips with Commonly Used Functions

58

How it works...
The values for the eigenvector we get are not normalized. Since we are dealing with
probabilities, they should sum up to one. The diff(), sign(), and eig() functions were
introduced in this example. Their descriptions are as follows:

Function Description
diff() Calculates the discrete difference. By default, the first order (see http://

docs.scipy.org/doc/numpy/reference/generated/numpy.diff.
html).

sign() Returns the sign of array elements (see http://docs.scipy.org/doc/
numpy/reference/generated/numpy.sign.html).

eig() Returns the eigenvalues and eigenvectors of an array (see http://docs.
scipy.org/doc/numpy/reference/generated/numpy.linalg.
eig.html).

See also
ff The Installing matplotlib recipe in Chapter 1, Winding Along with IPython

Discovering a power law
For the purpose of this recipe, imagine that we are operating a hedge fund. Let it sink in; you
are part of the one percent now!

Power laws occur in a lot of places; see http://en.wikipedia.org/wiki/Power_law
for more information. In such a law, one variable is equal to the power of another:

ky cx=

The Pareto principle (see http://en.wikipedia.org/wiki/Pareto_principle) for
instance, is a power law. It states that wealth is unevenly distributed. This principle tells us that
if we group people by their wealth, the size of the groups will vary exponentially. To put it simply,
there are not a lot of rich people, and there are even less billionaires; hence the one percent.

Assume that there is a power law in the closing stock prices log returns. This is a big
assumption, of course, but power law assumptions seem to pop up all over the place.

We don't want to trade too often, because of the involved transaction costs per trade.
Let's say that we would prefer to buy and sell once a month based on a significant correction
(with other words a big drop). The issue is to determine an appropriate signal given that we
want to initiate a transaction for every 1 out of about 20 days.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.diff.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.diff.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.diff.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sign.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sign.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html
http://en.wikipedia.org/wiki/Power_law
http://en.wikipedia.org/wiki/Pareto_principle

Chapter 3

59

How to do it...
The following is the complete code from the powerlaw.py file in this book's code bundle:

from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy as np
import matplotlib.pyplot as plt

#1. Get close prices.
today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo('IBM', start, today)
close = np.array([q[4] for q in quotes])

#2. Get positive log returns.
logreturns = np.diff(np.log(close))
pos = logreturns[logreturns > 0]

#3. Get frequencies of returns.
counts, rets = np.histogram(pos)
0 counts indices
indices0 = np.where(counts != 0)
rets = rets[:-1] + (rets[1] - rets[0])/2
Could generate divide by 0 warning
freqs = 1.0/counts
freqs = np.take(freqs, indices0)[0]
rets = np.take(rets, indices0)[0]
freqs = np.log(freqs)

#4. Fit the frequencies and returns to a line.
p = np.polyfit(rets,freqs, 1)

#5. Plot the results.
plt.title('Power Law')
plt.plot(rets, freqs, 'o', label='Data')
plt.plot(rets, p[0] * rets + p[1], label='Fit')
plt.xlabel('Log Returns')
plt.ylabel('Log Frequencies')
plt.legend()
plt.grid()
plt.show()

Getting to Grips with Commonly Used Functions

60

First let's get the historical end-of-day data for the past year from Yahoo! Finance. After that,
we extract the close prices for this period. These steps are described in the previous recipe:

1.	 Get the positive log returns.

Now calculate the log returns for the close prices. For more information on log
returns, refer to http://en.wikipedia.org/wiki/Rate_of_return.

First we will take the log of the close prices, and then compute the first difference
of these values with the diff() NumPy function. Let's select the positive values
from the log returns:

logreturns = np.diff(np.log(close))
pos = logreturns[logreturns > 0]

2.	 Get the frequencies of the returns.

We need to get the frequencies of the returns with the histogram() function.
Counts and an array of the bins are returned. At the end, we need to take the log
of the frequencies in order to get a nice linear relation:

counts, rets = np.histogram(pos)
0 counts indices
indices0 = np.where(counts != 0)
rets = rets[:-1] + (rets[1] - rets[0])/2
Could generate divide by 0 warning
freqs = 1.0/counts
freqs = np.take(freqs, indices0)[0]
rets = np.take(rets, indices0)[0]
freqs = np.log(freqs)

3.	 Fit the frequencies and returns into a line.

Use the polyfit() function to do a linear fit:

p = np.polyfit(rets,freqs, 1)

4.	 Plot the results.

Finally, we will plot the data and linearly fit it with matplotlib:
plt.title('Power Law')
plt.plot(rets, freqs, 'o', label='Data')
plt.plot(rets, p[0] * rets + p[1], label='Fit')
plt.xlabel('Log Returns')
plt.ylabel('Log Frequencies')
plt.legend()
plt.grid()
plt.show()

http://en.wikipedia.org/wiki/Rate_of_return

Chapter 3

61

We get a nice plot of the linear fit, returns, and frequencies, like this:

How it works...
The histogram() function calculates the histogram of a dataset. It returns the histogram
values and bin edges. The polyfit() function fits data to a polynomial of a given order. In
this case, we chose a linear fit. We discovered a power law—you have to be careful making
such claims, but the evidence looks promising.

See also
ff The Installing matplotlib recipe in Chapter 1, Winding Along with IPython

ff The documentation page for the histogram() function at http://docs.scipy.
org/doc/numpy/reference/generated/numpy.histogram.html

ff The documentation page for the polyfit() function at http://docs.scipy.
org/doc/numpy/reference/generated/numpy.polyfit.html

http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

Getting to Grips with Commonly Used Functions

62

Trading periodically on dips
Stock prices periodically dip and go up. We will take a look at the probability distribution of
the stock price log returns and try a very simple strategy. This strategy is based on regression
towards the mean. This is a concept originally discovered in genetics by Sir Francis Galton. It
was discovered that children of tall parents tend to be shorter than their parents. Children of
short parents tend to be taller than their parents. Of course, this is a statistical phenomenon
and doesn't take into account fundamental factors and trends such as improvement in
nutrition. Regression towards the mean is also relevant to the stock market. However, it
gives no guarantees. If a company starts making bad products or makes bad investments,
regression towards the mean will not save the stock.

Let's start by downloading the historical data for a stock, for instance, AAPL. Next, we
calculate the daily log returns (http://en.wikipedia.org/wiki/Rate_of_return) of
the close prices. We will skip these steps since they were already done in the previous recipe.

Getting ready
If necessary, install matplotlib and SciPy. Refer to the See also section for the
corresponding recipes.

How to do it...
The following is the complete code from the periodic.py file in this book's code bundle:

from __future__ import print_function
from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy as np
import scipy.stats
import matplotlib.pyplot as plt

#1. Get close prices.
today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo('AAPL', start, today)
close = np.array([q[4] for q in quotes])

#2. Get log returns.
logreturns = np.diff(np.log(close))

#3. Calculate breakout and pullback

http://en.wikipedia.org/wiki/Rate_of_return

Chapter 3

63

freq = 0.02
breakout = scipy.stats.scoreatpercentile(logreturns, 100 * (1 - freq)
)
pullback = scipy.stats.scoreatpercentile(logreturns, 100 * freq)

#4. Generate buys and sells
buys = np.compress(logreturns < pullback, close)
sells = np.compress(logreturns > breakout, close)
print(buys)
print(sells)
print(len(buys), len(sells))
print(sells.sum() - buys.sum())

#5. Plot a histogram of the log returns
plt.title('Periodic Trading')
plt.hist(logreturns)
plt.grid()
plt.xlabel('Log Returns')
plt.ylabel('Counts')
plt.show()

Now comes the interesting part:

1.	 Calculate the breakout and pullback.

Let's say we want to trade five times a year, or roughly, every 50 days. One strategy
would be to buy when the price drops by a certain percentage (a pullback), and sell
when the price increases by another percentage (a breakout).

By setting the percentile appropriate for our trading frequency, we can match the
corresponding log returns. SciPy offers the scoreatpercentile() function,
which we will use:

freq = 0.02
breakout = scipy.stats.scoreatpercentile
 (logreturns, 100 * (1 - freq))
pullback = scipy.stats.scoreatpercentile
 (logreturns, 100 * freq)

2.	 Generate buys and sells.

Use the compress() NumPy function to generate buys and sells for our close
price data. This function returns elements based on a condition:
buys = np.compress(logreturns < pullback, close)
sells = np.compress(logreturns > breakout, close)
print(buys)
print(sells)
print(len(buys), len(sells))
print(sells.sum() - buys.sum())

Getting to Grips with Commonly Used Functions

64

The output for AAPL and a 50-day period is as follows:
[77.76375466 76.69249773 102.72 101.2 98.57
]

[74.95502967 76.55980292 74.13759123 80.93512599 98.22]

5 5

-52.1387025726

Thus, we have a loss of 52 dollars if we buy and sell an AAPL share five times. When
I ran the script, the entire market was in recovery mode after a correction. You may
want to look at not just the AAPL stock price but maybe the ratio of AAPL and SPY.
SPY can be used as a proxy for the U.S. stock market.

3.	 Plot a histogram of the log returns.

Just for fun, let's plot the histogram of the log returns with matplotlib:
plt.title('Periodic Trading')
plt.hist(logreturns)
plt.grid()
plt.xlabel('Log Returns')
plt.ylabel('Counts')
plt.show()

This is what the histogram looks like:

Chapter 3

65

How it works...
We encountered the compress() function, which returns an array containing the array
elements of the input that satisfy a given condition. The input array remains unchanged.

See also
ff The Installing matplotlib recipe in Chapter 1, Winding Along with IPython

ff The Installing SciPy recipe in Chapter 2, Advanced Indexing and Array Concepts

ff The Discovering a power law recipe in this chapter

ff The documentation page for the compress() function at http://docs.scipy.
org/doc/numpy/reference/generated/numpy.compress.html

Simulating trading at random
In the previous recipe, we tried out a trading idea. However, we have no benchmark that can
tell us whether the result we got was any good. It is common in such cases to trade at random
under the assumption that we should be able to beat a random process. We will simulate
trading by taking some random days from a trading year. This should illustrate working with
random numbers using NumPy.

Getting ready
If necessary, install matplotlib. Refer to the See also section of the corresponding recipe.

How to do it...
The following is the complete code from the random_periodic.py file in this book's
code bundle:

from __future__ import print_function
from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy as np
import matplotlib.pyplot as plt

def get_indices(high, size):
 #2. Generate random indices
 return np.random.randint(0, high, size)

#1. Get close prices.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.compress.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.compress.html

Getting to Grips with Commonly Used Functions

66

today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo('AAPL', start, today)
close = np.array([q[4] for q in quotes])

nbuys = 5
N = 2000
profits = np.zeros(N)

for i in xrange(N):
 #3. Simulate trades
 buys = np.take(close, get_indices(len(close), nbuys))
 sells = np.take(close, get_indices(len(close), nbuys))
 profits[i] = sells.sum() - buys.sum()

print("Mean", profits.mean())
print("Std", profits.std())

#4. Plot a histogram of the profits
plt.title('Simulation')
plt.hist(profits)
plt.xlabel('Profits')
plt.ylabel('Counts')
plt.grid()
plt.show()

First we need an array filled with random integers:

1.	 Generate random indices.

You can generate random integers with the randint() NumPy function. This will
be linked to random days of a trading year:

return np.random.randint(0, high, size)

2.	 Simulate trades.

You can simulate trades with the random indices from the previous step. Use the
take() NumPy function to extract random close prices from the array of step 1:

buys = np.take(close, get_indices(len(close), nbuys))
sells = np.take(close, get_indices(len(close), nbuys))
profits[i] = sells.sum() - buys.sum()

3.	 Plot a histogram of the profits for a large number of simulations:

plt.title('Simulation')

Chapter 3

67

plt.hist(profits)
plt.xlabel('Profits')
plt.ylabel('Counts')
plt.grid()
plt.show()

Here is a screenshot of the resulting histogram of 2,000 simulations for AAPL, with
five buys and sells in a year:

How it works...
We used the randint() function, which can be found in the numpy.random module. This
module contains more convenient random generators, as described in the following table:

Function Description
rand() Creates an array from a uniform distribution over [0,1] with a shape based

on dimension parameters. If no dimensions are specified, a single float is
returned (see http://docs.scipy.org/doc/numpy/reference/
generated/numpy.random.rand.html).

randn() Sample values from the normal distribution with mean 0 and variance 1.
The dimension parameters function the same as for rand() (see http://
docs.scipy.org/doc/numpy/reference/generated/numpy.
random.randn.html).

randint() Returns an integer array given a low boundary, an optional high bound, and
an optional output shape (see http://docs.scipy.org/doc/numpy/
reference/generated/numpy.random.randint.html).

http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html

Getting to Grips with Commonly Used Functions

68

See also
ff The Installing matplotlib recipe in Chapter 1, Winding Along with IPython

Sieving integers with the Sieve of
Eratosthenes

The Sieve of Eratosthenes (see http://en.wikipedia.org/wiki/Sieve_of_
Eratosthenes) is an algorithm that filters prime numbers. It iteratively identifies multiples
of found primes. The multiples are, by definition, not primes and can be eliminated. This sieve
is efficient for primes less than 10 million. Let's now try to find the 10001st prime number.

How to do it...
The first mandatory step is to create a list of natural numbers:

1.	 Create a list of consecutive integers. NumPy has the arange() function for that:
a = np.arange(i, i + LIM, 2)

2.	 Sieve out the multiples of p.

We are not sure if this is what Eratosthenes wanted us to do, but it works. In the
following code, we are passing a NumPy array and getting rid of all the elements
that have a zero remainder when divided by p:
a = a[a % p != 0]

The following is the entire code for this problem:

from __future__ import print_function
import numpy as np

LIM = 10 ** 6
N = 10 ** 9
P = 10001
primes = []
p = 2

#By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13,
we can see that the 6th prime is 13.

#What is the 10 001st prime number?

def sieve_primes(a, p):

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Chapter 3

69

 #2. Sieve out multiples of p
 a = a[a % p != 0]

 return a

for i in xrange(3, N, LIM):
 #1. Create a list of consecutive integers
 a = np.arange(i, i + LIM, 2)

 while len(primes) < P:
 a = sieve_primes(a, p)
 primes.append(p)

 p = a[0]

print(len(primes), primes[P-1])

71

4
Connecting NumPy with

the Rest of the World

In this chapter, we will cover the following recipes:

ff Using the buffer protocol
ff Using the array interface
ff Exchanging data with MATLAB and Octave
ff Installing RPy2
ff Interfacing with R
ff Installing JPype
ff Sending a NumPy array to JPype
ff Installing Google App Engine
ff Deploying the NumPy code on the Google Cloud
ff Running the NumPy code in a PythonAnywhere web console

Introduction
This chapter is about interoperability. We have to keep reminding ourselves that NumPy
is not alone in the scientific (Python) software ecosystem. Working together with SciPy and
matplotlib is pretty easy. Protocols also exist for interoperability with other Python packages.
Outside of the Python ecosystem languages such as Java, R, C, and Fortran are pretty popular.
We will go into the details of exchanging data with these environments.

Also, we will discuss how to get our NumPy code on the cloud. This is a continuously evolving
technology in a fast-moving space. Many options are available for you, of which Google App
Engine and PythonAnywhere will be covered.

Connecting NumPy with the Rest of the World

72

Using the buffer protocol
C-based Python objects have a so-called buffer interface. Python objects can expose
their data for direct access without the need to copy it. The buffer protocol enables us to
communicate with other pieces of Python software such as the Python Imaging Library (PIL).

We will see an example of saving a PIL image from a NumPy array.

Getting ready
Install PIL and SciPy if necessary. Check out the See also section of this recipe for instructions.

How to do it...
The complete code for this recipe is in the buffer.py file in this book's code bundle:

import numpy as np
import Image #from PIL import Image (Python 3)
import scipy.misc

lena = scipy.misc.lena()
data = np.zeros((lena.shape[0], lena.shape[1], 4), dtype=np.int8)
data[:,:,3] = lena.copy()
img = Image.frombuffer("RGBA", lena.shape, data, 'raw', "RGBA", 0, 1)
img.save('lena_frombuffer.png')

data[:,:,3] = 255
data[:,:,0] = 222
img.save('lena_modified.png')

First we need a NumPy array to play with:

1.	 In previous chapters, we saw how to load the sample image of Lena Söderberg.
Create an array filled with zeros and populate the alpha channel with the image data:
lena = scipy.misc.lena()
data = np.zeros((lena.shape[0], lena.shape[1], 4), dtype=numpy.
int8)
data[:,:,3] = lena.copy()

2.	 Use the PIL API to save the data as an RGBA image:
img = Image.frombuffer("RGBA", lena.shape, data, 'raw', "RGBA", 0,
1)
img.save('lena_frombuffer.png')

Chapter 4

73

3.	 Modify the data array by getting rid of the image data and making the image red.
Save the image with the PIL API:

data[:,:,3] = 255
data[:,:,0] = 222
img.save('lena_modified.png')

The following is the before image:

In computer graphics, the position of the origin is different than in
the usual Cartesian coordinate system you know from high-school
mathematics. The origin is in the top-left corner of the screen, canvas,
or image, and the y axis goes down (see http://en.wikipedia.
org/wiki/2D_computer_graphics#Non-standard_
orientation_of_the_coordinate_system).

The data of the PIL image object has changed by the magic of the buffer interface, and
therefore, we see the following image:

http://en.wikipedia.org/wiki/2D_computer_graphics#Non-standard_orientation_of_the_coordinate_system
http://en.wikipedia.org/wiki/2D_computer_graphics#Non-standard_orientation_of_the_coordinate_system
http://en.wikipedia.org/wiki/2D_computer_graphics#Non-standard_orientation_of_the_coordinate_system

Connecting NumPy with the Rest of the World

74

How it works...
We created a PIL image from a buffer—a NumPy array. After changing the buffer, we saw the
changes being reflected in the image object. We did this without copying the PIL image object;
instead, we directly accessed and modified its data to make a red image out of the picture of
the model. With a few simple changes, the code should work with other PIL-based libraries,
such as Pillow.

See also
ff Installing PIL in Chapter 2, Advanced Indexing and Array Concepts

ff Installing SciPy in Chapter 2, Advanced Indexing and Array Concepts

ff The Python buffer protocol is described at http://docs.python.org/2/c-api/
buffer.html

Using the array interface
The array interface is a yet another mechanism used to communicate with other Python
applications. This protocol, as its name suggests, is only applicable to array-like objects.
A demonstration is in order. Let's use PIL again, but without saving files.

Getting ready
We'll reuse part of the code from the previous recipe, so the prerequisites are similar. We will
skip the first step of the previous recipe here, and assume that it is already known.

How to do it...
The code for this recipe is in the array_interface.py file in this book's code bundle:

from __future__ import print_function
import numpy as np
import Image
import scipy.misc

lena = scipy.misc.lena()
data = np.zeros((lena.shape[0], lena.shape[1], 4), dtype=np.int8)
data[:,:,3] = lena.copy()
img = Image.frombuffer("RGBA", lena.shape, data, 'raw', "RGBA", 0, 1)
array_interface = img.__array_interface__
print("Keys", array_interface.keys())

http://docs.python.org/2/c-api/buffer.html
http://docs.python.org/2/c-api/buffer.html

Chapter 4

75

print("Shape", array_interface['shape'])
print("Typestr", array_interface['typestr'])

numpy_array = np.asarray(img)
print("Shape", numpy_array.shape)
print("Data type", numpy_array.dtype)

The following steps will allow us to explore the array interface:

1.	 The PIL Image object has an __array_interface__ attribute. Let's inspect its
content. The value of this attribute is a Python dictionary:
array_interface = img.__array_interface__
print("Keys", array_interface.keys())
print("Shape", array_interface['shape'])
print("Typestr", array_interface['typestr'])

This code prints the following information:

Keys ['shape', 'data', 'typestr']

Shape (512, 512, 4)

Typestr |u1

2.	 The ndarray NumPy class has an __array_interface__ attribute as well.
We can convert the PIL image into a NumPy array with the asarray() function:

numpy_array = np.asarray(img)
print("Shape", numpy_array.shape)
print("Data type", numpy_array.dtype)

The shape and data type of the array are as follows:

Shape (512, 512, 4)

Data type uint8

As you can see, the shape has not changed.

How it works...
The array interface or protocol lets us share data between array-like Python objects.
Both NumPy and PIL provide such an interface.

See also
ff Using the buffer protocol in this chapter

ff The array interface is described in detail at http://docs.scipy.org/doc/
numpy/reference/arrays.interface.html

http://docs.scipy.org/doc/numpy/reference/arrays.interface.html
http://docs.scipy.org/doc/numpy/reference/arrays.interface.html

Connecting NumPy with the Rest of the World

76

Exchanging data with MATLAB and Octave
MATLAB and its open source alternative, Octave, are popular mathematical applications. The
scipy.io package has the savemat() function, which allows you to store NumPy arrays in
a .mat file as a value of a Python dictionary.

Getting ready
Installing MATLAB or Octave is beyond the scope of this book. The Octave website has some
pointers for installing at http://www.gnu.org/software/octave/download.html.
Check out the See also section of this recipe, for instructions on installing SciPy, if necessary.

How to do it...
The complete code for this recipe is in the octave.py file in this book's code bundle:

import numpy as np
import scipy.io

a = np.arange(7)

scipy.io.savemat("a.mat", {"array": a})

Once you have installed MATLAB or Octave, you need to follow the subsequent steps to
store NumPy arrays:

1.	 Create a NumPy array and call savemat() to store the array in a .mat file.
This function has two parameters—a file name and a dictionary containing
variable names and values.
a = np.arange(7)

scipy.io.savemat("a.mat", {"array": a})

2.	 Navigate to the directory where you created the file. Load the file and check the array:

octave-3.4.0:2> load a.mat

octave-3.4.0:3> array

array =

 0

 1

http://www.gnu.org/software/octave/download.html

Chapter 4

77

 2

 3

 4

 5

 6

See also
ff Installing SciPy in Chapter 2, Advanced Indexing and Array Concepts

ff The SciPy documentation for the savemat() function at http://docs.scipy.
org/doc/scipy-0.14.0/reference/generated/scipy.io.savemat.html

Installing RPy2
R is a popular scripting language used in statistics and data analysis. RPy2 is an interface
between R and Python. We will install RPy2 in this recipe.

How to do it...
If you want to install RPy2 choose one of the following options:

ff Installing with pip or easy_install: RPy2 is available on PYPI, so we can install it
with this command:
$ easy_install rpy2

Alternatively, we can use the following command:

$ sudo pip install rpy2

$ pip freeze|grep rpy2

rpy2==2.4.2

ff Installing from source: We can install RPy2 from the tar.gz source:

$ tar -xzf <rpy2_package>.tar.gz

$ cd <rpy2_package>

$ python setup.py build install

See also
ff The R programming language homepage at http://www.r-project.org/

ff The RPy2 project page is at http://rpy.sourceforge.net/

http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.io.savemat.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.io.savemat.html
http://www.r-project.org/
http://rpy.sourceforge.net/

Connecting NumPy with the Rest of the World

78

Interfacing with R
RPy2 can only be used to call R from Python, and not the other way around. We will import
some sample R datasets and plot the data of one of them.

Getting ready
Install RPy2 if necessary. See the previous recipe.

How to do it...
The complete code for this recipe is in the rdatasets.py file in this book's code bundle:

from rpy2.robjects.packages import importr
import numpy as np
import matplotlib.pyplot as plt

datasets = importr('datasets')
mtcars = datasets.__rdata__.fetch('mtcars')['mtcars']

plt.title('R mtcars dataset')
plt.xlabel('wt')
plt.ylabel('mpg')
plt.plot(mtcars)
plt.grid(True)
plt.show()

The motorcars dataset is described at https://stat.ethz.ch/R-manual/R-devel/
library/datasets/html/mtcars.html. Let's start by loading this sample R dataset:

1.	 Load a dataset into an array with the RPy2 importr() function. This function can
import R packages. In this example, we will import the datasets R package. Create
a NumPy array from the mtcars dataset:
datasets = importr('datasets')
mtcars = np.array(datasets.mtcars)

2.	 Plot the dataset with matplotlib:

plt.plot(mtcars)
plt.show()

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html

Chapter 4

79

The data contains miles per gallon (mpg) and weight (wt) values in lb/1000.
The following screenshot shows the data, which is a two-dimensional array:

See also
ff Installing matplotlib in Chapter 1, Winding Along with IPython

Installing JPype
Jython is the default interoperability solution for Python and Java. However, Jython runs on
the Java virtual machine (JVM). Therefore, it cannot access NumPy modules, which are
mostly written in C. JPype is an open source project that tries to solve this problem. The
interfacing occurs on the native level between Python and JVM. Let's install JPype.

How to do it...
1.	 Download JPype from http://sourceforge.net/projects/jpype/files/.

2.	 Unpack it and run the following command:

$ python setup.py install

http://sourceforge.net/projects/jpype/files/

Connecting NumPy with the Rest of the World

80

Sending a NumPy array to JPype
In this recipe, we will start a JVM and send a NumPy array to it. We will print the received array
using standard Java calls. Obviously, you will need to have Java installed.

How to do it...
The complete code for this recipe is in the hellojpype.py file in this book's code bundle:

import jpype
import numpy as np

#1. Start the JVM
jpype.startJVM(jpype.getDefaultJVMPath())

#2. Print hello world
jpype.java.lang.System.out.println("hello world")

#3. Send a NumPy array
values = np.arange(7)
java_array = jpype.JArray(jpype.JDouble, 1)(values.tolist())

for item in java_array:
 jpype.java.lang.System.out.println(item)

#4. Shutdown the JVM
jpype.shutdownJVM()

First, we need to start the JVM from JPype:

1.	 Start the JVM from JPype; JPype is conveniently able to find the default JVM path:
jpype.startJVM(jpype.getDefaultJVMPath())

2.	 Just because of tradition, let's print "hello world":
jpype.java.lang.System.out.println("hello world")

3.	 Create a NumPy array, convert it into a Python list, and pass it to JPype. Now it's easy
to print the array elements:
values = np.arange(7)
java_array = jpype.JArray
 (jpype.JDouble, 1)(values.tolist())

for item in java_array:

Chapter 4

81

 jpype.java.lang.System.out.
 println(item)

4.	 After we are done, let's shut down the JVM:

jpype.shutdownJVM()

Only one JVM can run at a time in JPype. If we forget to shut down the JVM, it could
lead to unexpected errors. The program output is as follows:

hello world

0.0

1.0

2.0

3.0

4.0

5.0

6.0

JVM activity report :

 classes loaded : 31

JVM has been shutdown

How it works...
JPype allows us to start up and shut down a JVM. It provides wrappers for standard Java API
calls. As we saw in this example, we can pass Python lists to be transformed into Java arrays
by the JArray wrapper. JPype uses the Java Native Interface (JNI), which is a bridge between
native C code and Java. Unfortunately, using JNI hurts performance, so you have to be mindful
of that fact.

See also
ff Installing JPype in this chapter

ff The JPype homepage at http://jpype.sourceforge.net/

Installing Google App Engine
Google App Engine (GAE) enables you to build web applications on the Google Cloud.
Since 2012, there is official support for NumPy; you need a Google account to use GAE.

http://jpype.sourceforge.net/

Connecting NumPy with the Rest of the World

82

How to do it...
The first step is to download GAE:

1.	 Download GAE for your operating system from https://developers.google.
com/appengine/downloads.

From this page, you can download documentation and the GAE Eclipse plugin as
well. If you are developing with Eclipse, you should definitely install it.

2.	 The development environment.

GAE comes with a development environment that simulates the production cloud.
At the time of writing this book, GAE officially supported only Python 2.5 and 2.7.
GAE will try to find Python on your system; however, it may be necessary to set that
yourself, for instance, if you have multiple Python versions. You can set this setting
in the Preferences dialog of the launcher application.

There are two important scripts in the SDK:

�� dev_appserver.py: The development server

�� appcfg.py: Deploys on the cloud

On Windows and Mac, there is a GAE launcher application. The launcher has
Run and Deploy buttons that do the same actions as the aforementioned scripts.

https://developers.google.com/appengine/downloads
https://developers.google.com/appengine/downloads

Chapter 4

83

Deploying the NumPy code on the Google
Cloud

Deploying GAE applications is pretty easy. For NumPy, an extra configuration step is required,
but that will take only minutes.

How to do it...
Let's create a new application:

1.	 Create a new application with the launcher (File | New Application). Name it
numpycloud. This will create a folder with the same name containing the
following files:

�� app.yaml: A YAML application configuration file

�� favicon.ico: An icon

�� index.yaml: An autogenerated file

�� main.py: The main entry point for the web application

2.	 Add NumPy to the libraries.

First we need to let GAE know that we want to use NumPy. Add the following lines
to the app.yaml configuration file in the libraries section:
- name: NumPy
 version: "1.6.1"

This is not the latest NumPy version, but it is the latest version currently supported
by GAE. The configuration file should have the following contents:

application: numpycloud
version: 1
runtime: python27
api_version: 1
threadsafe: yes

handlers:
- url: /favicon\.ico
 static_files: favicon.ico
 upload: favicon\.ico

- url: .*
 script: main.app

libraries:

Connecting NumPy with the Rest of the World

84

- name: webapp2
 version: "2.5.1"
- name: numpy
 version: "1.6.1"

3.	 To demonstrate that we can use NumPy code, let's modify the main.py file. There is
a MainHandler class with a handler method for GET requests. Replace this method
with the following code:
def get(self):
 self.response.out.write
 ('Hello world!
')
 self.response.out.write
 ('NumPy sum = ' + str
 (numpy.arange(7).sum()))

We will have the following code in the end:

import webapp2
import numpy

class MainHandler(webapp2.RequestHandler):
 def get(self):
 self.response.out.write('Hello world!
')
 self.response.out.write('NumPy sum = ' +
 str(numpy.arange(7).sum()))

app = webapp2.WSGIApplication([('/', MainHandler)],
 debug=True)

If you click on the Browse button in the GAE launcher (on Linux, run dev_appserver.py
with the project root as its argument), you should see a web page in your default browser
with the following text:

Hello world!
NumPy sum = 21

How it works...
GAE is free depending on how much of the resources are used. You can create up to 10
web applications. GAE takes the sandboxing approach, which means that NumPy was not
available for a while, but now it is, as demonstrated in this recipe.

Chapter 4

85

Running the NumPy code in a
PythonAnywhere web console

In Chapter 1, Winding Along with IPython, we already saw a PythonAnywhere console in action,
without having an account. This recipe will require you to have an account, but don't worry—it's
free, at least if you don't need too many resources.

Signing up is a pretty straightforward process and will not be covered here. NumPy has
already been installed along with a long list of other Python software. For a complete list,
see https://www.pythonanywhere.com/batteries_included/.

We will set up a simple script that gets price data from Google Finance every minute, and
performs simple statistics with the prices using NumPy.

How to do it...
Once we have signed up, we can log in and take a look at the PythonAnywhere dashboard.

1.	 Write the code. The complete code for this example is as follows:
from __future__ import print_function
import urllib2
import re
import time
import numpy as np

prices = np.array([])

for i in xrange(3):
 req = urllib2.Request('http://finance.google.com/finance/
info?client=ig&q=AAPL')
 req.add_header('User-agent', 'Mozilla/5.0')
 response = urllib2.urlopen(req)
 page = response.read()
 m = re.search('l_cur" : "(.*)"', page)
 prices = np.append(prices, float(m.group(1)))
 avg = prices.mean()

https://www.pythonanywhere.com/batteries_included/

Connecting NumPy with the Rest of the World

86

 stddev = prices.std()

 devFactor = 1
 bottom = avg - devFactor * stddev
 top = avg + devFactor * stddev
 timestr = time.strftime("%H:%M:%S", time.gmtime())

 print(timestr, "Average", avg, "-Std", bottom, "+Std", top)
 time.sleep(60)

Most of this is standard Python, except the bits where we grow a NumPy array
containing prices and calculate the mean and standard deviation of the prices.
A URL is used to download price data in JSON format from Google Finance given
a stock ticker such as AAPL. This URL could change, of course.

Next we parse the JSON with regular expressions to extract a price. This price
is added to a NumPy array. We compute the mean and standard deviation for
the prices. The price is printed with a timestamp bottom and top, based on the
standard deviation multiplied by some factor to be specified by us.

2.	 Upload the code.

After we are done with the code on our local machine, we can upload the script
to PythonAnywhere. Go to the dashboard and click on the Files tab. Upload the
script from the widget at the bottom of the page.

3.	 To run the code, click on the Consoles tab and then on the Bash link.
PythonAnywhere should create a bash console for us right away. We can
now run our program for AAPL with a one standard deviation band, as shown
in the following screenshot:

How it works...
PythonAnywhere is perfect if you want to run NumPy code on a remote server, especially if
you need your program to execute at scheduled times. For the free account at least, it's not
so convenient to do interactive work, since there is a certain lag whenever you enter text in
the web console.

However, as we saw, it is possible to create and test a program locally, and upload it to
PythonAnywhere. This frees resources on your local machine as well. We can do fancy things
such as sending e-mails based on the stock price or scheduling our scripts to be activated
during trading hours. By the way, this is also possible with Google App Engine, but it is done
the Google way, so you will need to learn about their API.

87

5
Audio and Image

Processing

In this chapter, we will cover basic image and audio (WAV files) processing with NumPy
and SciPy. We will use NumPy to do interesting things with sounds and images in the
following recipes:

ff Loading images into memory maps

ff Adding images

ff Blurring images

ff Repeating audio fragments

ff Generating sounds

ff Designing an audio filter

ff Edge detection with the Sobel filter

Introduction
Although all the chapters in this book are fun, in this chapter, we are really going to go
for it and concentrate on having fun. In Chapter 10, Fun with Scikits, you will find a few
more image processing recipes that use scikits-image. Unfortunately, this book does
not have direct support for audio files, so you really need to run the code examples to fully
appreciate the recipes.

Audio and Image Processing

88

Loading images into memory maps
It is recommended to load large files into memory maps. Memory-mapped files only load a
small part of large files. NumPy memory maps are array-like. In this example, we will generate
an image of colored squares and load it into a memory map.

Getting ready
If necessary, install matplotlib. The See also section has a reference to the
corresponding recipe.

How to do it...
We will begin by initializing arrays:

1.	 First we need to initialize the following arrays:

�� An array that holds the image data

�� An array with random coordinates of the centers of the squares

�� An array with random radii (plural of radius) of the squares

�� An array with random colors of the squares

Initialize the arrays:
img = np.zeros((N, N), np.uint8)
NSQUARES = 30
centers = np.random.random_integers(0, N, size=(NSQUARES, 2))
radii = np.random.randint(0, N/9, size=NSQUARES)
colors = np.random.randint(100, 255, size=NSQUARES)

As you can see, we are initializing the first array to zeros. The other arrays are
initialized with functions from the numpy.random package that generate
random integers.

2.	 The next step is to generate the squares. We create the squares using the arrays
in the previous step. With the clip() function, we will make sure that the squares
do not wander outside the image area. The meshgrid() function gives us the
coordinates of the squares. If we give this function two arrays with sizes N and M, it
will give us two arrays of shape N x M. The first array will have its elements repeated
along the x axis. The second array will have its elements repeated along the y axis.
The following example IPython session should make this clearer:

Chapter 5

89

In: x = linspace(1, 3, 3)

In: x

Out: array([1., 2., 3.])

In: y = linspace(1, 2, 2)

In: y

Out: array([1., 2.])

In: meshgrid(x, y)

Out:

[array([[1., 2., 3.],

 [1., 2., 3.]]),

 array([[1., 1., 1.],

 [2., 2., 2.]])]

3.	 Finally, we will set the colors of the squares:
for i in xrange(NSQUARES):
 xindices = range(centers[i][0] - radii[i], centers[i][0]
+ radii[i])
 xindices = np.clip(xindices, 0, N - 1)
 yindices = range(centers[i][1] - radii[i], centers[i][1]
+ radii[i])
 yindices = np.clip(yindices, 0, N - 1)

 if len(xindices) == 0 or len(yindices) == 0:
 continue
 coordinates = np.meshgrid(xindices, yindices)
 img[coordinates] = colors[i]

4.	 Before we load the image data into a memory map, we need to store it in a file
with the tofile() function. Then load the image data from this file into a memory
map with the memmap() function:
img.tofile('random_squares.raw')

img_memmap = np.memmap('random_squares.raw', shape=img.shape)

Audio and Image Processing

90

5.	 To confirm that everything worked fine, we display the image with matplotlib:

plt.imshow(img_memmap)

plt.axis('off')

plt.show()

Notice that we are not displaying the axes. An example of a generated image is
shown here:

Here is the complete source code for this recipe from the memmap.py file in this
book's code bundle:

import numpy as np
import matplotlib.pyplot as plt

N = 512
NSQUARES = 30

Initialize
img = np.zeros((N, N), np.uint8)
centers = np.random.random_integers(0, N, size=(NSQUARES, 2))
radii = np.random.randint(0, N/9, size=NSQUARES)
colors = np.random.randint(100, 255, size=NSQUARES)

Generate squares
for i in xrange(NSQUARES):

Chapter 5

91

 xindices = range(centers[i][0] - radii[i], centers[i][0]
+ radii[i])
 xindices = np.clip(xindices, 0, N - 1)
 yindices = range(centers[i][1] - radii[i], centers[i][1]
+ radii[i])
 yindices = np.clip(yindices, 0, N - 1)

 if len(xindices) == 0 or len(yindices) == 0:
 continue

 coordinates = np.meshgrid(xindices, yindices)
 img[coordinates] = colors[i]

Load into memory map
img.tofile('random_squares.raw')
img_memmap = np.memmap('random_squares.raw', shape=img.shape)

Display image
plt.imshow(img_memmap)
plt.axis('off')
plt.show()

How it works...
We used the following functions in this recipe:

Function Description

zeros() This function gives an array filled with zeros.

random_integers() This function returns an array with random integer values
between a high and low bound.

randint() This function has the same functionality as random_
integers(), except that it uses a half-open interval instead of
a closed interval.

clip() This function clips values of an array, given a minimum and a
maximum.

meshgrid() This function returns coordinate arrays from an array containing x
coordinates and an array containing y coordinates.

tofile() This function writes an array to a file.
memmap() This function creates a NumPy memory map from a file, given the

name of a file. Optionally, you can specify the shape of the array.

axis() This function is the matplotlib function that configures the plot
axes. For instance, we can turn them off.

Audio and Image Processing

92

See also
ff Installing matplotlib in Chapter 1, Winding Along with IPython

ff The NumPy memory map documentation at http://docs.scipy.org/doc/
numpy/reference/generated/numpy.memmap.html

Combining images
In this recipe, we will combine the famous Mandelbrot fractal (see http://
en.wikipedia.org/wiki/Mandelbrot_set) and the image of Lena. The Mandelbrot set
was invented by the mathematician Benoit Mandelbrot. These types of fractals are defined by
a recursive formula, where you calculate the next complex number in a series by multiplying
the current complex number you have by itself and adding a constant to it. More details will be
covered in this recipe.

Getting ready
Install SciPy if necessary. The See also section has a reference to the related recipe.

How to do it...
Start by initializing the arrays, followed by generating and plotting the fractal, and finally
combining the fractal with the Lena image:

1.	 Initialize the x, y, and z arrays, corresponding to the pixels in the image area with the
meshgrid(), zeros(), and linspace() functions:
x, y = np.meshgrid(np.linspace(x_min, x_max, SIZE),
 np.linspace(y_min, y_max, SIZE))
c = x + 1j * y
z = c.copy()
fractal = np.zeros(z.shape, dtype=np.uint8) + MAX_COLOR

2.	 If z is a complex number, we have this relation for a Mandelbrot fractal:

2
1n nz z c+ = +

http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Mandelbrot_set

Chapter 5

93

Here, c is a constant complex number. This can be graphed in the complex plane with
the horizontal axis showing real values and the vertical axis showing imaginary values.
We will use the so-called escape time algorithm to draw the fractal. This algorithm
scans the points in a small region around the origin at a distance of about 2 units. Each
of these points is used as the c value and is assigned a color based on the number of
iterations it takes to escape the region. If it takes more than a predefined number of
iterations to escape, the pixel gets the default background color. For more information,
see the Wikipedia article already mentioned in this recipe:

for n in range(ITERATIONS):
 print(n)
 mask = numpy.abs(z) <= 4
 z[mask] = z[mask] ** 2 + c[mask]
 fractal[(fractal == MAX_COLOR) & (-mask)] = (MAX_COLOR - 1) *
n / ITERATIONS
Plot the fractal with matplotlib:
plt.subplot(211)
plt.imshow(fractal)
plt.title('Mandelbrot')
plt.axis('off')
Use the choose() function to pick a value from the fractal or Lena
array:
plt.subplot(212)
plt.imshow(numpy.choose(fractal < lena, [fractal, lena]))
plt.axis('off')
plt.title('Mandelbrot + Lena')

The resulting image is shown here:

Audio and Image Processing

94

The following is the complete code for this recipe from the mandelbrot.py file in
this book's code bundle:

import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import lena

ITERATIONS = 10
lena = lena()
SIZE = lena.shape[0]
MAX_COLOR = 255.
x_min, x_max = -2.5, 1
y_min, y_max = -1, 1

Initialize arrays
x, y = np.meshgrid(np.linspace(x_min, x_max, SIZE),
 np.linspace(y_min, y_max, SIZE))
c = x + 1j * y
z = c.copy()
fractal = np.zeros(z.shape, dtype=np.uint8) + MAX_COLOR
Generate fractal
for n in range(ITERATIONS):
 mask = np.abs(z) <= 4
 z[mask] = z[mask] ** 2 + c[mask]
 fractal[(fractal == MAX_COLOR) & (-mask)] = (MAX_COLOR - 1) *
n / ITERATIONS

Display the fractal
plt.subplot(211)
plt.imshow(fractal)
plt.title('Mandelbrot')
plt.axis('off')

Combine with lena
plt.subplot(212)
plt.imshow(np.choose(fractal < lena, [fractal, lena]))
plt.axis('off')
plt.title('Mandelbrot + Lena')

plt.show()

Chapter 5

95

How it works...
The following functions were used in this example:

Function Description
linspace() This function returns numbers within a range with a specified

interval between them
choose() This function creates an array by choosing values from arrays based

on a condition
meshgrid() This function returns coordinate arrays from an array containing

x coordinates and an array containing y coordinates

See also
ff The Installing matplotlib recipe in Chapter 1, Winding Along with IPython

ff The Installing SciPy recipe in Chapter 2, Advanced Indexing and Arrays

Blurring images
We can blur images with a Gaussian filter (http://en.wikipedia.org/wiki/Gaussian_
filter). This filter is based on the normal distribution. A corresponding SciPy function
requires the standard deviation as a parameter. In this recipe, we will also plot a Polar rose
and a spiral http://en.wikipedia.org/wiki/Polar_coordinate_system. These
figures are not directly related, but it seemed more fun to combine them here.

How to do it...
We start by initializing the polar plots, after which we will blur the Lena image and plot using
polar coordinates:

1.	 Initialize the polar plots:
NFIGURES = 5

k = np.random.random_integers(1, 5, NFIGURES)

a = np.random.random_integers(1, 5, NFIGURES)

colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']

2.	 To blur Lena, apply the Gaussian filter with a standard deviation of 4:
plt.subplot(212)

blurred = scipy.ndimage.gaussian_filter(lena, sigma=4)

http://en.wikipedia.org/wiki/Gaussian_filter
http://en.wikipedia.org/wiki/Gaussian_filter
http://en.wikipedia.org/wiki/Polar_coordinate_system

Audio and Image Processing

96

plt.imshow(blurred)

plt.axis('off')

3.	 matplotlib has a polar() function, which plots in polar coordinates:

theta = np.linspace(0, k[0] * np.pi, 200)

plt.polar(theta, np.sqrt(theta), choice(colors))

for i in xrange(1, NFIGURES):

 theta = np.linspace(0, k[i] * np.pi, 200)

 plt.polar(theta, a[i] * np.cos(k[i] * theta), choice(colors))

Here is the complete code for this recipe from the spiral.py file in this book's
code bundle:

import numpy as np
import matplotlib.pyplot as plt
from random import choice
import scipy
import scipy.ndimage

Chapter 5

97

Initialization
NFIGURES = 5
k = np.random.random_integers(1, 5, NFIGURES)
a = np.random.random_integers(1, 5, NFIGURES)

colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']

lena = scipy.misc.lena()
plt.subplot(211)
plt.imshow(lena)
plt.axis('off')

Blur Lena
plt.subplot(212)
blurred = scipy.ndimage.gaussian_filter(lena, sigma=4)

plt.imshow(blurred)
plt.axis('off')

Plot in polar coordinates
theta = np.linspace(0, k[0] * np.pi, 200)
plt.polar(theta, np.sqrt(theta), choice(colors))

for i in xrange(1, NFIGURES):
 theta = np.linspace(0, k[i] * np.pi, 200)
 plt.polar(theta, a[i] * np.cos(k[i] * theta), choice(colors))

plt.axis('off')

plt.show()

How it works...
We made use of the following functions in this tutorial:

Function Description
gaussian_
filter()

This function applies a Gaussian filter

random_
integers()

This function returns an array with random integer values
between a high and low bound

polar() This function plots a figure using polar coordinates

Audio and Image Processing

98

See also
ff The scipy.ndimage documentation can be found at http://docs.scipy.org/

doc/scipy-0.14.0/reference/ndimage.html

Repeating audio fragments
As we saw in Chapter 2, Advanced Indexing and Array Concepts, we can do neat things
with WAV files. It's just a matter of downloading the file with the urllib2 standard Python
module and loading it with SciPy. Let's download a WAV file and repeat it three times.
We will skip some of the steps that we've already seen in Chapter 2, Advanced Indexing
and Array Concepts.

How to do it...
1.	 Although NumPy has a repeat() function, in this case, it is more appropriate to

use the tile() function. The repeat() function would have the effect of enlarging
the array by repeating individual elements and not repeating the contents of it. The
following IPython session should clarify the difference between these functions:
In: x = array([1, 2])

In: x

Out: array([1, 2])

In: repeat(x, 3)

Out: array([1, 1, 1, 2, 2, 2])

In: tile(x, 3)

Out: array([1, 2, 1, 2, 1, 2])

Now, armed with this knowledge, apply the tile() function:

repeated = np.tile(data, 3)

2.	 Plot the audio data with matplotlib:
plt.title("Repeated")
plt.plot(repeated)

http://docs.scipy.org/doc/scipy-0.14.0/reference/ndimage.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/ndimage.html

Chapter 5

99

The original sound data and the repeated data plots are shown as follows:

Here is the complete code for this recipe from the repeat_audio.py file in this
book's code bundle:

import scipy.io.wavfile
import matplotlib.pyplot as plt
import urllib2
import numpy as np

response = urllib2.urlopen('http://www.thesoundarchive.com/
austinpowers/smashingbaby.wav')
print(response.info())
WAV_FILE = 'smashingbaby.wav'
filehandle = open(WAV_FILE, 'w')
filehandle.write(response.read())
filehandle.close()
sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
print("Data type", data.dtype, "Shape", data.shape)

Audio and Image Processing

100

plt.subplot(2, 1, 1)
plt.title("Original")
plt.plot(data)

plt.subplot(2, 1, 2)

Repeat the audio fragment
repeated = np.tile(data, 3)

Plot the audio data
plt.title("Repeated")
plt.plot(repeated)
scipy.io.wavfile.write("repeated_yababy.wav",
 sample_rate, repeated)

plt.show()

How it works...
The following are the most important functions in this recipe:

Function Description
scipy.io.wavfile.read() Reads a WAV file into an array
numpy.tile() Repeats an array a specified number of times
scipy.io.wavfile.write() Creates a WAV file out of a NumPy array with a

specified sample rate

See also
ff The scipy.io documentation can be found at http://docs.scipy.org/doc/

scipy-0.14.0/reference/io.html

http://docs.scipy.org/doc/scipy-0.14.0/reference/io.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/io.html

Chapter 5

101

Generating sounds
A sound can be represented mathematically by a sine wave with a certain amplitude,
frequency, and phase. We can randomly select frequencies from a list specified in
http://en.wikipedia.org/wiki/Piano_key_frequencies that comply with
the following formula:

49
12440 2
n−

⋅

Here, n is the number of the piano key. We will number the keys from 1 to 88. We will select
the amplitude, duration, and phase at random.

How to do it...
Begin by initializing random values, then generate sine waves, compose a melody, and finally,
plot the generated audio data with matplotlib:

1.	 Initialize to random values:

�� The amplitude between 200 - 2000

�� The duration to 0.01 - 0.2

�� The frequencies using the formula already mentioned

�� The phase to values between 0 and 2 pi:

NTONES = 89
amps = 2000. * np.random.random((NTONES,)) + 200.
durations = 0.19 * np.random.random((NTONES,)) + 0.01
keys = np.random.random_integers(1, 88, NTONES)
freqs = 440.0 * 2 ** ((keys - 49.)/12.)
phi = 2 * np.pi * np.random.random((NTONES,))

2.	 Write a generate() function to generate sine waves:
def generate(freq, amp, duration, phi):
 t = np.linspace(0, duration, duration * RATE)
 data = np.sin(2 * np.pi * freq * t + phi) * amp

 return data.astype(DTYPE)

http://en.wikipedia.org/wiki/Piano_key_frequencies

Audio and Image Processing

102

3.	 Once we have generated a few tones, we only need to compose a coherent melody.
For now, we will just concatenate the sine waves. This does not give a nice melody,
but can serve as a starting point for more experimenting:
for i in xrange(NTONES):
 newtone = generate(freqs[i], amp=amps[i],
duration=durations[i], phi=phi[i])
 tone = np.concatenate((tone, newtone))

4.	 Plot the generated audio data with matplotlib:
plt.plot(np.linspace(0, len(tone)/RATE, len(tone)), tone)
plt.show()

The generated audio data plot is as follows:

The source code for this example can be found here, and it is from the
tone_generation.py file in this book's code bundle:

import scipy.io.wavfile
import numpy as np

Chapter 5

103

import matplotlib.pyplot as plt

RATE = 44100
DTYPE = np.int16

Generate sine wave
def generate(freq, amp, duration, phi):
 t = np.linspace(0, duration, duration * RATE)
 data = np.sin(2 * np.pi * freq * t + phi) * amp

 return data.astype(DTYPE)

Initialization
NTONES = 89
amps = 2000. * np.random.random((NTONES,)) + 200.
durations = 0.19 * np.random.random((NTONES,)) + 0.01
keys = np.random.random_integers(1, 88, NTONES)
freqs = 440.0 * 2 ** ((keys - 49.)/12.)
phi = 2 * np.pi * np.random.random((NTONES,))

tone = np.array([], dtype=DTYPE)

Compose
for i in xrange(NTONES):
 newtone = generate(freqs[i], amp=amps[i],
duration=durations[i], phi=phi[i])
 tone = np.concatenate((tone, newtone))

scipy.io.wavfile.write('generated_tone.wav', RATE, tone)

Plot audio data
plt.plot(np.linspace(0, len(tone)/RATE, len(tone)), tone)
plt.show()

How it works...
We created a WAV file with randomly generated sounds. The concatenate() function was
used to concatenate sine waves.

See also
ff The concatenate() function is documented at http://docs.scipy.org/doc/

numpy/reference/generated/numpy.concatenate.html

http://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html

Audio and Image Processing

104

Designing an audio filter
I remember learning in the Analog Electronics class about all types of filters. Then we
actually constructed these filters. As you can imagine, it's much easier to make a filter
in software than in hardware.

We will build a filter and apply it to an audio fragment that we will download. We have
done some of these steps before in this chapter, so we will leave out those parts.

How to do it...
The iirdesign() function, as its name suggests, allows us to construct several types
of analog and digital filters. It can be found in the scipy.signal module. This module
contains a comprehensive list of signal processing functions:

1.	 Design the filter with the iirdesign() function of the scipy.signal
module. IIR stands for infinite impulse response; for more information, see
http://en.wikipedia.org/wiki/Infinite_impulse_response.
We are not going to go into all the details of the iirdesign() function. Take a look
at the documentation at http://docs.scipy.org/doc/scipy/reference/
generated/scipy.signal.iirdesign.html if necessary. In short, these are
the parameters we will set:

�� Frequencies normalized from 0 to 1

�� Maximum loss

�� Minimum attenuation

�� Filter type:

b,a = scipy.signal.iirdesign(wp=0.2, ws=0.1, gstop=60,
 gpass=1, ftype='butter')

The configuration of this filter corresponds to a Butterworth bandpass fillter
(http://en.wikipedia.org/wiki/Butterworth_filter). The Butterworth
filter was first described by the physicist Stephen Butterworth in 1930.

2.	 Apply the filter with the scipy.signal.lfilter() function. It accepts as
arguments the values from the previous step and, of course, the data array to filter:
filtered = scipy.signal.lfilter(b, a, data)

When writing the new audio file, make sure that it is of the same data type as the
original data array:
scipy.io.wavfile.write('filtered.wav', sample_rate, filtered.
astype(data.dtype))

http://en.wikipedia.org/wiki/Infinite_impulse_response
http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html
http://en.wikipedia.org/wiki/Butterworth_filter

Chapter 5

105

After plotting the original and filtered data, we get the following plot:

The code for the audio filter is listed as follows:

import scipy.io.wavfile
import matplotlib.pyplot as plt
import urllib2
import scipy.signal

response =urllib2.urlopen('http://www.thesoundarchive.com/
austinpowers/smashingbaby.wav')
print response.info()
WAV_FILE = 'smashingbaby.wav'
filehandle = open(WAV_FILE, 'w')
filehandle.write(response.read())
filehandle.close()
sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
print("Data type", data.dtype, "Shape", data.shape)

plt.subplot(2, 1, 1)
plt.title("Original")

Audio and Image Processing

106

plt.plot(data)

Design the filter
b,a = scipy.signal.iirdesign(wp=0.2, ws=0.1, gstop=60, gpass=1,
ftype='butter')

Filter
filtered = scipy.signal.lfilter(b, a, data)

Plot filtered data
plt.subplot(2, 1, 2)
plt.title("Filtered")
plt.plot(filtered)

scipy.io.wavfile.write('filtered.wav', sample_rate, filtered.
astype(data.dtype))

plt.show()

How it works...
We created and applied a Butterworth bandpass filter. The following functions were introduced
to create the filter:

Function Description
scipy.signal.
iirdesign()

Creates an IIR digital or analog filter. This function has an extensive
parameter list, which is documented at http://docs.scipy.
org/doc/scipy/reference/generated/scipy.signal.
iirdesign.html.

scipy.signal.
lfilter()

Filters an array, given a digital filter.

Edge detection with the Sobel filter
The Sobel operator (http://en.wikipedia.org/wiki/Sobel_operator) can be
used for edge detection in images. The edge detection is based on performing a discrete
differentiation on the image intensity. Since an image is two-dimensional, the gradient also
has two components, unless we limit ourselves to one dimension, of course. We will apply the
Sobel filter to the picture of Lena Söderberg.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html
http://en.wikipedia.org/wiki/Sobel_operator

Chapter 5

107

How to do it...
In this section, you will learn how to apply the Sobel filter to detect edges in the Lena image:

1.	 To apply the Sobel filter in the x direction, set the axis parameter to 0:
sobelx = scipy.ndimage.sobel(lena, axis=0, mode='constant')

2.	 To apply the Sobel filter in the y direction, set the axis parameter to 1:
sobely = scipy.ndimage.sobel(lena, axis=1, mode='constant')

3.	 The default Sobel filter only requires the input array:

default = scipy.ndimage.sobel(lena)

Here are the original and resulting image plots, showing edge detection with the
Sobel filter:

Audio and Image Processing

108

The complete edge detection code is as follows:

import scipy
import scipy.ndimage
import matplotlib.pyplot as plt

lena = scipy.misc.lena()

plt.subplot(221)
plt.imshow(lena)
plt.title('Original')
plt.axis('off')

Sobel X filter
sobelx = scipy.ndimage.sobel(lena, axis=0, mode='constant')

plt.subplot(222)
plt.imshow(sobelx)
plt.title('Sobel X')
plt.axis('off')

Sobel Y filter
sobely = scipy.ndimage.sobel(lena, axis=1, mode='constant')

plt.subplot(223)
plt.imshow(sobely)
plt.title('Sobel Y')
plt.axis('off')

Default Sobel filter
default = scipy.ndimage.sobel(lena)

plt.subplot(224)
plt.imshow(default)
plt.title('Default Filter')
plt.axis('off')

plt.show()

How it works...
We applied the Sobel filter to the picture of the famous model Lena Söderberg. As we saw in
this example, we can specify along which axis to do the computation. The default setting is
axis independent.

109

6
Special Arrays and

Universal Functions

In this chapter, we will cover the following recipes:

ff Creating a universal function

ff Finding Pythagorean triples

ff Performing string operations with chararray

ff Creating a masked array

ff Ignoring negative and extreme values

ff Creating a scores table with a recarray function

Introduction
This chapter is about special arrays and universal functions. These are topics that you may not
encounter every day, but they are still important enough to mention here. Universal functions
(Ufuncs) work on arrays element by element, or on scalars. Ufuncs accept a set of scalars
as the input and produce a set of scalars as the output. Universal functions can typically
be mapped onto their mathematical counterparts such as addition, subtraction, division,
multiplication, and so on. The special arrays mentioned here are all subclasses of the basic
NumPy array object, and offer additional functionality.

Creating a universal function
We can create a universal function from a Python function with the frompyfunc() NumPy
function.

Special Arrays and Universal Functions

110

How to do it...
The following steps help us create a universal function:

1.	 Define a simple Python function that doubles the input:
def double(a):
 return 2 * a

2.	 Create the universal function with frompyfunc(). Specify the number of input
arguments and the number of objects (both are equal to 1) returned:

from __future__ import print_function
import numpy as np

def double(a):
 return 2 * a

ufunc = np.frompyfunc(double, 1, 1)
print("Result", ufunc(np.arange(4)))

The code prints the following output when executed:

Result [0 2 4 6]

How it works...
We defined a Python function that doubles the numbers it receives. Actually, we can also
have strings as the input, as that is legal in Python. We created a universal function from this
Python function with the frompyfunc() NumPy function. A universal function is a NumPy
class with special features such as broadcasting and element-by-element processing as
applicable to NumPy arrays. Many NumPy functions are, in fact, universal functions, but
were written in C.

See also
ff The documentation of the frompyfunc() NumPy function is at http://docs.

scipy.org/doc/numpy/reference/generated/numpy.frompyfunc.html

Finding Pythagorean triples
For this tutorial, you may need to read the Wikipedia page about Pythagorean triple
(http://en.wikipedia.org/wiki/Pythagorean_triple). A Pythagorean triple
is a set of three natural numbers, a < b < c, for which 2 2 2a b c+ = .

http://docs.scipy.org/doc/numpy/reference/generated/numpy.frompyfunc.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.frompyfunc.html
http://en.wikipedia.org/wiki/Pythagorean_triple

Chapter 6

111

Here is an example of Pythagorean triples: 2 2 23 4 5+ = .

Pythagorean triples are closely related to the Pythagorean Theorem, which you have probably
learned in high-school geometry.

Pythagorean triples represent the three sides of a right triangle and therefore obey the
Pythagorean Theorem. Let's find the Pythagorean triple that has a components sum of 1,000.
We will do this using Euclid's formula:

2 2 2 2, 2 ,a m n b mn c m n= − = = +

In this example, we will see universal functions in action.

How to do it...
Euclid's formula defines the m and n indices.

1.	 Create arrays to hold these indices:
m = np.arange(33)
n = np.arange(33)

2.	 The second step is to calculate the numbers a, b, and c of the Pythagorean triples
using Euclid's formula. Use the outer() function to get the Cartesian products,
difference, and sums:
a = np.subtract.outer(m ** 2, n ** 2)
b = 2 * np.multiply.outer(m, n)
c = np.add.outer(m ** 2, n ** 2)

3.	 Now, we have a number of arrays containing a, b, and c values. However, we still
need to find the values that conform to the problem's condition. Find the index of
those values with the where() NumPy function:
idx = np.where((a + b + c) == 1000)

4.	 Check the solution with the numpy.testing module:

np.testing.assert_equal
 (a[idx]**2 + b[idx]**2, c[idx]**2)

The following code is from the triplets.py file in this book's code bundle:

from __future__ import print_function
import numpy as np

#A Pythagorean triplet is a set of three natural numbers, a < b < c,
for which,

Special Arrays and Universal Functions

112

#a ** 2 + b ** 2 = c ** 2
#
#For example, 3 ** 2 + 4 ** 2 = 9 + 16 = 25 = 5 ** 2.
#
#There exists exactly one Pythagorean triplet for which a + b + c =
1000.
#Find the product abc.

#1. Create m and n arrays
m = np.arange(33)
n = np.arange(33)

#2. Calculate a, b and c
a = np.subtract.outer(m ** 2, n ** 2)
b = 2 * np.multiply.outer(m, n)
c = np.add.outer(m ** 2, n ** 2)

#3. Find the index
idx = np.where((a + b + c) == 1000)

#4. Check solution
np.testing.assert_equal(a[idx]**2 + b[idx]**2, c[idx]**2)
print(a[idx], b[idx], c[idx])
 # [375] [200] [425]

How it works...
Universal functions are not real functions, but objects representing functions. Ufuncs have
the outer() method, which we saw in action. Many of NumPy's standard universal functions
are implemented in C, and are therefore faster than regular Python code. Ufuncs support
element-by-element processing and type casting, which means fewer loops.

See also
ff The documentation for the outer() universal function at http://docs.scipy.

org/doc/numpy/reference/generated/numpy.ufunc.outer.html

Performing string operations with chararray
NumPy has a specialized chararray object that holds strings. It is a subclass of ndarray
and has special string methods. We will download text from the Python website and use those
methods. The advantages of chararray over a normal array of strings are as follows:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.outer.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.outer.html

Chapter 6

113

ff Whitespace of array elements is automatically trimmed on indexing

ff Whitespace at the ends of strings is also trimmed by comparison operators

ff Vectorized string operations are available, so loops are not needed

How to do it...
Let's create the character array:

1.	 Create the character array as a view:
carray = np.array(html).view(np.chararray)

2.	 Expand tabs to spaces with the expandtabs() function. This function accepts the
tab size as an argument. The value is 8 if not specified:
carray = carray.expandtabs(1)

3.	 Split lines with the splitlines() function into separate lines:

carray = carray.splitlines()

The following is the complete code for this example:

import urllib2
import numpy as np
import re

response = urllib2.urlopen('http://python.org/')
html = response.read()
html = re.sub(r'<.*?>', '', html)
carray = np.array(html).view(np.chararray)
carray = carray.expandtabs(1)
carray = carray.splitlines()
print(carray)

How it works...
We saw the specialized chararray class in action. It offers several vectorized string
operations and convenient behavior regarding whitespace.

See also
ff The documentation for the specialized chararray class is at http://docs.

scipy.org/doc/numpy/reference/generated/numpy.chararray.html

http://docs.scipy.org/doc/numpy/reference/generated/numpy.chararray.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.chararray.html

Special Arrays and Universal Functions

114

Creating a masked array
Masked arrays can be used to ignore missing or invalid data items. A MaskedArray class
from the numpy.ma module is a subclass of ndarray, with a mask. We will use the Lena
Söderberg image as the data source and pretend that some of this data is corrupt. Finally,
we will plot the original image, log values of the original image, the masked array, and log
values thereof.

How to do it...
Let's create the masked array:

1.	 To create a masked array, we need to specify a mask. Create a random mask with
values that are either 0 or 1:
random_mask = np.random.randint
 (0, 2, size=lena.shape)

2.	 Using the mask from the previous step, create a masked array:

masked_array = np.ma.array
 (lena, mask=random_mask)

The following is the complete code for this masked array tutorial:
from __future__ import print_function
import numpy as np
from scipy.misc import lena
import matplotlib.pyplot as plt

lena = lena()
random_mask = np.random.randint(0, 2, size=lena.shape)

plt.subplot(221)
plt.title("Original")
plt.imshow(lena)
plt.axis('off')

masked_array = np.ma.array(lena, mask=random_mask)
print(masked_array)
plt.subplot(222)
plt.title("Masked")
plt.imshow(masked_array)
plt.axis('off')

Chapter 6

115

plt.subplot(223)
plt.title("Log")
plt.imshow(np.log(lena))
plt.axis('off')

plt.subplot(224)
plt.title("Log Masked")
plt.imshow(np.log(masked_array))
plt.axis('off')

plt.show()

Here is a screenshot that shows the resulting images:

How it works...
We applied a random mask to NumPy arrays. This had the effect of ignoring the data that
corresponds to the mask. You can find a range of masked array operations in the numpy.ma
module. In this tutorial, we only demonstrated how to create a masked array.

See also
ff The documentation for the numpy.ma module is at http://docs.scipy.org/

doc/numpy/reference/maskedarray.html

http://docs.scipy.org/doc/numpy/reference/maskedarray.html
http://docs.scipy.org/doc/numpy/reference/maskedarray.html

Special Arrays and Universal Functions

116

Ignoring negative and extreme values
Masked arrays are useful when we want to ignore negative values, for instance, when taking
the logarithm of array values. Another use case for masked arrays is excluding extreme
values. This works based on upper and lower bounds for extreme values.

We will apply these techniques to stock price data. We will skip the steps for downloading
data, as they were already covered in the previous chapters.

How to do it...
We will take the logarithm of an array that contains negative numbers:

1.	 Create an array containing numbers divisible by three:
triples = np.arange(0, len(close), 3)
print("Triples", triples[:10], "...")

Next, create an array with the ones that have the same size as the price data array:
signs = np.ones(len(close))
print("Signs", signs[:10], "...")

Set every third number to be negative, with the help of the indexing tricks you learned
in Chapter 2, Advanced Indexing and Array Concepts.
signs[triples] = -1
print("Signs", signs[:10], "...")

Finally, take the logarithm of this array:
ma_log = np.ma.log(close * signs)
print("Masked logs", ma_log[:10], "...")

This should print the following output for AAPL:

Triples [0 3 6 9 12 15 18 21 24 27] ...

Signs [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] ...

Signs [-1. 1. 1. -1. 1. 1. -1. 1. 1. -1.] ...

Masked logs [-- 5.93655586575 5.95094223368 -- 5.97468290742
5.97510711452 --

 6.01674381162 5.97889061623 --] ...

2.	 Let's define extreme values as being one standard deviation below the mean, or one
standard deviation above the mean (this is just for demonstration purposes). Write
the following code to mask extreme values:
dev = close.std()
avg = close.mean()

Chapter 6

117

inside = numpy.ma.masked_outside
 (close, avg - dev, avg + dev)
print("Inside", inside[:10], "...")

This code prints the first ten elements:
Inside [-- -- -- -- -- -- 409.429675172
 410.240597855 -- --] ...

Plot the original price data, the data after taking the logarithm, the exponent back
again, and finally the data after applying the standard-deviation-based mask.
The following screenshot shows the result (for this run):

The complete program for this tutorial is as follows:

from __future__ import print_function
import numpy as np
from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import matplotlib.pyplot as plt

Special Arrays and Universal Functions

118

def get_close(ticker):
 today = date.today()
 start = (today.year - 1, today.month, today.day)

 quotes = quotes_historical_yahoo(ticker, start, today)

 return np.array([q[4] for q in quotes])

close = get_close('AAPL')

triples = np.arange(0, len(close), 3)
print("Triples", triples[:10], "...")

signs = np.ones(len(close))
print("Signs", signs[:10], "...")

signs[triples] = -1
print("Signs", signs[:10], "...")

ma_log = np.ma.log(close * signs)
print("Masked logs", ma_log[:10], "...")

dev = close.std()
avg = close.mean()
inside = np.ma.masked_outside(close, avg - dev, avg + dev)
print("Inside", inside[:10], "...")

plt.subplot(311)
plt.title("Original")
plt.plot(close)

plt.subplot(312)
plt.title("Log Masked")
plt.plot(np.exp(ma_log))

plt.subplot(313)
plt.title("Not Extreme")
plt.plot(inside)

plt.tight_layout()
plt.show()

Chapter 6

119

How it works...
Functions in the numpy.ma module mask array elements, which we regard as illegal. For
instance, negative values are not allowed for the log() and sqrt() functions. A masked
value is like a NULL or None value in databases and programming. All operations with a
masked value result in a masked value.

See also
ff The documentation for the numpy.ma module is at http://docs.scipy.org/

doc/numpy/reference/maskedarray.html

Creating a scores table with a recarray
function

The recarray class is a subclass of ndarray. These arrays can hold records as in a
database, with different data types. For instance, we can store records about employees,
containing numerical data such as salary and strings such as the employee name.

Modern economic theory tells us that investing boils down to optimizing risk and reward. Risk
is represented by the standard deviation of log returns (see http://en.wikipedia.org/
wiki/Rate_of_return#Arithmetic_and_logarithmic_return). Reward, on the other
hand, is represented by the average of log returns. We can come up with a relative score,
where a high score means low risk and high reward. This is just theoretical and untested, so do
not take it too seriously. We will calculate the scores for several stocks and store them together
with the stock symbol using a table format in a NumPy recarray() function.

How to do it...
Let's start by creating the record array:

1.	 Create a record array with a symbol, standard deviation score, mean score, and overall
score for each record:
weights = np.recarray((len(tickers),),
 dtype=[('symbol', np.str_, 16),
 ('stdscore', float), ('mean', float),
 ('score', float)])

2.	 To keep things simple, initialize the scores in a loop based on the log returns:
for i, ticker in enumerate(tickers):
 close = get_close(ticker)
 logrets = np.diff(np.log(close))
 weights[i]['symbol'] = ticker

http://docs.scipy.org/doc/numpy/reference/maskedarray.html
http://docs.scipy.org/doc/numpy/reference/maskedarray.html
http://en.wikipedia.org/wiki/Rate_of_return#Arithmetic_and_logarithmic_return
http://en.wikipedia.org/wiki/Rate_of_return#Arithmetic_and_logarithmic_return

Special Arrays and Universal Functions

120

 weights[i]['mean'] = logrets.mean()
 weights[i]['stdscore'] = 1/logrets.std()
 weights[i]['score'] = 0

As you can see, we can access elements using the field names we defined in the
previous step.

3.	 We now have some numbers, but they are difficult to compare with each other.
Normalize the scores so that we can combine them later. Here, normalizing
means making sure that the scores add up to one:
for key in ['mean', 'stdscore']:
 wsum = weights[key].sum()
 weights[key] = weights[key]/wsum

4.	 The overall score will just be the average of the intermediate scores. Sort the records
on the overall score to produce a ranking:

weights['score'] = (weights
 ['stdscore'] + weights['mean'])/2
weights['score'].sort()

The following is the complete code for this example:
from __future__ import print_function
import numpy as np
from matplotlib.finance import quotes_historical_yahoo
from datetime import date

tickers = ['MRK', 'T', 'VZ']

def get_close(ticker):
 today = date.today()
 start = (today.year - 1, today.month, today.day)

 quotes = quotes_historical_yahoo(ticker, start, today)

 return np.array([q[4] for q in quotes])

weights = np.recarray((len(tickers),), dtype=[('symbol', np.str_,
16),
 ('stdscore', float), ('mean', float), ('score', float)])

for i, ticker in enumerate(tickers):
 close = get_close(ticker)
 logrets = np.diff(np.log(close))
 weights[i]['symbol'] = ticker
 weights[i]['mean'] = logrets.mean()
 weights[i]['stdscore'] = 1/logrets.std()

Chapter 6

121

 weights[i]['score'] = 0

for key in ['mean', 'stdscore']:
 wsum = weights[key].sum()
 weights[key] = weights[key]/wsum

weights['score'] = (weights['stdscore'] + weights['mean'])/2
weights['score'].sort()

for record in weights:
 print("%s,mean=%.4f,stdscore=%.4f,score=%.4f" %
(record['symbol'], record['mean'], record['stdscore'],
record['score']))

This program produces the following output:

MRK,mean=0.8185,stdscore=0.2938,score=0.2177

T,mean=0.0927,stdscore=0.3427,score=0.2262

VZ,mean=0.0888,stdscore=0.3636,score=0.5561

The score is normalized, so the values are between 0 and 1, and we try to get the optimal
return and risk combinations using the definitions from the start of the recipe. According to
the output, VZ has the highest score, and therefore is the best investment. Of course, this is
just a NumPy demo with little data, so don't consider this a recommendation.

How it works...
We computed scores for several stocks, and stored them in a recarray NumPy object. This
array enables us to mix data of different data types, in this case, stock symbols and numerical
scores. Record arrays allow us to access fields as array members, for example, arr.field.
This tutorial covered the creation of a record array. You can find more record-array-related
functions in the numpy.recarray module.

See also
ff The documentation for the numpy.recarray module is at http://docs.scipy.

org/doc/numpy/reference/generated/numpy.recarray.html

http://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html

123

7
Profiling and Debugging

In this chapter, we will cover the following recipes:

ff Profiling with timeit

ff Profiling with IPython

ff Installing line_profiler

ff Profiling code with line_profiler

ff Profiling code with the cProfile extension

ff Debugging with IPython

ff Debugging with PuDB

Introduction
Debugging is the act of finding and removing bugs from software. Profiling means building a
profile of a program in order to collect information about memory usage or time complexity.
Profiling and debugging are activities that are integral to the life of a developer. This is
especially true for complex software. The good news is that many tools can help you.
We will review techniques popular among NumPy users.

Profiling with timeit
timeit is a module that allows you to time pieces of code. It is part of the standard Python
library. We will time the sort() NumPy function with several array sizes. The classic
quicksort and merge sort algorithms have an average running time of O(N log N), so
we will try to fit our result to such a model.

Profiling and Debugging

124

How to do it...
We will require arrays to sort:

1.	 Create arrays to sort varying sizes containing random integer values:
times = np.array([])

for size in sizes:
 integers = np.random.random_integers
 (1, 10 ** 6, size)

2.	 To measure time, create a timer, give it a function to execute, and specify the
relevant imports. Then, sort 100 times to get data about the sorting times:
def measure():
 timer = timeit.Timer('dosort()',
 'from __main__ import dosort')
 return timer.timeit(10 ** 2)

3.	 Build the measurement time arrays by appending the times one by one:
times = np.append(times, measure())

4.	 Fit the times into the theoretical model of n log n. Since we are varying the array
size as powers of two, this is easy:

fit = np.polyfit(sizes * powersOf2, times, 1)

The following is the complete timing code:
import numpy as np
import timeit
import matplotlib.pyplot as plt

This program measures the performance of the NumPy sort function
and plots time vs array size.
integers = []

def dosort():
 integers.sort()

def measure():
 timer = timeit.Timer('dosort()', 'from __main__ import dosort')

 return timer.timeit(10 ** 2)

powersOf2 = np.arange(0, 19)

Chapter 7

125

sizes = 2 ** powersOf2

times = np.array([])

for size in sizes:
 integers = np.random.random_integers(1, 10 ** 6, size)
 times = np.append(times, measure())

fit = np.polyfit(sizes * powersOf2, times, 1)
print(fit)
plt.title("Sort array sizes vs execution times")
plt.xlabel("Size")
plt.ylabel("(s)")
plt.semilogx(sizes, times, 'ro')
plt.semilogx(sizes, np.polyval(fit, sizes * powersOf2))
plt.grid()
plt.show()

The following screenshot shows the resulting plot for the running time versus
array size:

Profiling and Debugging

126

How it works...
We measured the average running time of the sort() NumPy function. The following
functions were used in this recipe:

Function Description
random_integers() This function creates an array of random integers when a

range is given for the values and array size
append() This function appends a value to a NumPy array
polyfit() This function fits data into a polynomial of a given degree
polyval() This function evaluates a polynomial and returns the

corresponding value for a given value of x
semilogx() This function plots data using a logarithmic scale on

the X axis

See also
ff The documentation for timeit is at http://docs.python.org/2/library/

timeit.html

Profiling with IPython
In IPython, we can profile small snippets of code using timeit. We can also profile a larger
script. We will show both approaches.

How to do it...
First, we will time a small snippet:

1.	 Start IPython in pylab mode:
$ ipython --pylab

Create an array containing 1000 integer values between 0 and 1000:
In [1]: a = arange(1000)

Measure the time taken for searching "the answer to everything"—42,
in the array. Yes, the answer to everything is 42. If you don't believe me,
read http://en.wikipedia.org/wiki/42_%28number%29:

In [2]: %timeit searchsorted(a, 42)
100000 loops, best of 3: 7.58 us per loop

http://docs.python.org/2/library/timeit.html
http://docs.python.org/2/library/timeit.html
http://en.wikipedia.org/wiki/42_%28number%29

Chapter 7

127

2.	 Profile the following small script that inverts a matrix of varying size containing
random values. The .I attribute (that's an uppercase I) of a NumPy matrix
represents the inverse of that matrix:

import numpy as np

def invert(n):
 a = np.matrix(np.random.rand(n, n))

 return a.I

sizes = 2 ** np.arange(0, 12)

for n in sizes:
 invert(n)

Time this code as follows:
In [1]: %run -t invert_matrix.py

IPython CPU timings (estimated):

 User : 6.08 s.

 System : 0.52 s.

Wall time: 19.26 s.

Then profile the script with the p option:

In [2]: %run -p invert_matrix.py

852 function calls in 6.597 CPU seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall
filename:lineno(function)
 12 3.228 0.269 3.228 0.269 {numpy.linalg.
lapack_lite.dgesv}
 24 2.967 0.124 2.967 0.124 {numpy.core.
multiarray._fastCopyAndTranspose}
 12 0.156 0.013 0.156 0.013 {method 'rand' of
'mtrand.RandomState' objects}
 12 0.087 0.007 0.087 0.007 {method 'copy' of
'numpy.ndarray' objects}
 12 0.069 0.006 0.069 0.006 {method 'astype' of
'numpy.ndarray' objects}
 12 0.025 0.002 6.304 0.525 linalg.py:404(inv)

Profiling and Debugging

128

 12 0.024 0.002 6.328 0.527 defmatrix.
py:808(getI)
 1 0.017 0.017 6.596 6.596 invert_matrix.
py:1(<module>)
 24 0.014 0.001 0.014 0.001 {numpy.core.
multiarray.zeros}
 12 0.009 0.001 6.580 0.548 invert_matrix.
py:3(invert)
 12 0.000 0.000 6.264 0.522 linalg.py:244(solve)
 12 0.000 0.000 0.014 0.001 numeric.
py:1875(identity)
 1 0.000 0.000 6.597 6.597 {execfile}
 36 0.000 0.000 0.000 0.000 defmatrix.py:279(__
array_finalize__)
 12 0.000 0.000 2.967 0.247 linalg.py:139(_
fastCopyAndTranspose)
 24 0.000 0.000 0.087 0.004 defmatrix.py:233(__
new__)
 12 0.000 0.000 0.000 0.000 linalg.py:99(_
commonType)
 24 0.000 0.000 0.000 0.000 {method '__array_
prepare__' of 'numpy.ndarray' objects}
 36 0.000 0.000 0.000 0.000 linalg.py:66(_
makearray)
 36 0.000 0.000 0.000 0.000 {numpy.core.
multiarray.array}
 12 0.000 0.000 0.000 0.000 {method 'view' of
'numpy.ndarray' objects}
 12 0.000 0.000 0.000 0.000 linalg.py:127(_to_
native_byte_order)
 1 0.000 0.000 6.597 6.597 interactiveshell.
py:2270(safe_execfile)

How it works...
We ran the aforementioned NumPy code through a profiler. The following table summarizes
the profiler output:

Column Description
ncalls This is the number of calls
tottime This is the total time spent in a function
percall This is the time spent per call, calculated by dividing the total

time by the count of calls
cumtime This is the cumulative time spent in function and functions

called by the function, including recursive calls

Chapter 7

129

See also
ff The IPython magics documentation at http://ipython.org/ipython-doc/

dev/interactive/magics.html

Installing line_profiler
line_profiler was created by one of the developers of NumPy. This module
does line-by-line profiling of Python code. We will describe the necessary installation
steps in this recipe.

Getting ready
You might need to install setuptools. This was covered in a previous recipe; refer to the
See also section if necessary. In order to install the development version, you will need Git.
Installing Git is beyond the scope of this book.

How to do it...
Choose the install option appropriate for you:

ff Install line_profiler with easy_install, using any one of the
following commands:
$ easy_install line_profiler

$ pip install line_profiler

ff Install the development version.

Check out the source with Git:
$ git clone https://github.com/rkern/line_profiler

After checking out the source, build it as follows:

$ python setup.py install

See also
ff Installing IPython in Chapter 1, Winding Along with IPython

http://ipython.org/ipython-doc/dev/interactive/magics.html
http://ipython.org/ipython-doc/dev/interactive/magics.html

Profiling and Debugging

130

Profiling code with line_profiler
Now that we've installed line_profiler, we can start profiling.

How to do it...
Obviously, we will need code to profile:

1.	 Write the following code to multiply a random matrix of varying size by itself. Also, the
thread will sleep for a few seconds. Annotate the function to profile with @profile:
import numpy as np
import time

@profile
def multiply(n):
 A = np.random.rand(n, n)
 time.sleep(np.random.randint(0, 2))
 return np.matrix(A) ** 2

for n in 2 ** np.arange(0, 10):
 multiply(n)

2.	 Run the profiler with the following command:

$ kernprof.py -l -v mat_mult.py

Wrote profile results to mat_mult.py.lprof

Timer unit: 1e-06 s

File: mat_mult.py

Function: multiply at line 4

Total time: 3.19654 s

Line # Hits Time Per Hit % Time Line Contents

==

 4 @profile

 5 def multiply(n):

 6 10 13461 1346.1 0.4 A = numpy.
random.rand(n, n)

 7 10 3000689 300068.9 93.9 time.
sleep(numpy.random.randint(0, 2))

 8 10 182386 18238.6 5.7 return numpy.
matrix(A) ** 2

Chapter 7

131

How it works...
The @profile decorator tells line_profiler which functions to profile. The following table
explains the output of the profiler:

Column Description
Line # The line number in the file
Hits The number of times the line was executed
Time The time spent executing the line
Per Hit The average time spent executing the line
% Time The percentage of time spent executing the line relative to the

time spent executing all the lines
Line
Contents

The content of the line

See also
ff The Github line_profiler project page is at https://github.com/rkern/

line_profiler

Profiling code with the cProfile extension
cProfile is a C extension introduced in Python 2.5. It can be used for deterministic profiling.
Deterministic profiling means that the time measurements obtained are precise and no
sampling is used. This contrasts with statistical profiling, where measurements come from
random samples. We will profile a small NumPy program using cProfile, which transposes
an array with random values.

How to do it...
Again, we require code to profile:

1.	 Write the following transpose() function to create an array with random values
and transpose it:
def transpose(n):
 random_values = np.random.random((n, n))
 return random_values.T

https://github.com/rkern/line_profiler
https://github.com/rkern/line_profiler

Profiling and Debugging

132

2.	 Run the profiler and give it the function to profile:

cProfile.run('transpose (1000)')

The complete code for this tutorial can be found in the following snippet:
import numpy as np
import cProfile

def transpose(n):
 random_values = np.random.random((n, n))
 return random_values.T

cProfile.run('transpose (1000)')

For a 1000 x 1000 array, we get the following output:

4 function calls in 0.029 CPU seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall
filename:lineno(function)

 1 0.001 0.001 0.029 0.029 <string>:1(<module>)

 1 0.000 0.000 0.028 0.028 cprofile_transpose.
py:5(transpose)

 1 0.000 0.000 0.000 0.000 {method 'disable' of
'_lsprof.Profiler' objects}

 1 0.028 0.028 0.028 0.028 {method 'random_
sample' of 'mtrand.RandomState' objects}

The columns in the output are the same as those seen in the IPython profiling recipe.

See also
ff The Python profilers documentation at http://docs.python.org/2/library/

profile.html

ff The working with pstats tutorial at http://pymotw.com/2/profile/#module-
pstats

http://docs.python.org/2/library/profile.html
http://docs.python.org/2/library/profile.html
http://pymotw.com/2/profile/#module-pstats
http://pymotw.com/2/profile/#module-pstats

Chapter 7

133

Debugging with IPython

"If debugging is the process of removing software bugs, then programming must be
the process of putting them in." Edsger Dijkstra, Dutch computer scientist, winner
of the 1972 Turing Award

Debugging is one of those things nobody really likes, but is very important to master. It can
take hours, and because of Murphy's law, you most likely don't have that time. Therefore,
it is important to be systematic and know your tools well. After you've found the bug and
implemented a fix, you should have a unit test in place (if the bug has a related ID from an
issue tracker, I usually name the test by appending the ID at the end). In this way, you will at
least not have to go through the hell of debugging again. Unit testing is covered in the next
chapter. We will debug the following buggy code. It tries to access an array element that is
not present:

import numpy as np

a = np.arange(7)
print(a[8])

The IPython debugger works as the normal Python pdb debugger; it adds features such as tab
completion and syntax highlighting.

How to do it...
The following steps illustrate a typical debugging session:

1.	 Start the IPython shell. Run the buggy script in IPython by issuing the
following command:
In [1]: %run buggy.py

--

IndexError Traceback (most recent
call last)

.../site-packages/IPython/utils/py3compat.pyc in execfile(fname,
*where)

 173 else:

 174 filename = fname

--> 175 __builtin__.execfile(filename, *where)

Profiling and Debugging

134

.../buggy.py in <module>()

 2

 3 a = numpy.arange(7)

----> 4 print a[8]

IndexError: index out of bounds

2.	 Now that your program crashed, start the debugger. Set a breakpoint on the line
where the error occurred:
In [2]: %debug

> .../buggy.py(4)<module>()

 2

 3 a = numpy.arange(7)

----> 4 print a[8]

3.	 List the code with the list command, or use the shorthand l:
ipdb> list

 1 import numpy as np

 2

 3 a = np.arange(7)

----> 4 print(a[8])

4.	 We can now evaluate arbitrary code at the line the debugger is currently at:
ipdb> len(a)

7

ipdb> print(a)

[0 1 2 3 4 5 6]

5.	 The call stack is a stack containing information about active functions of a running
program. View the call stack with the bt command:
ipdb> bt

 .../py3compat.py(175)execfile()

 171 if isinstance(fname, unicode):

 172 filename = fname.encode(sys.
getfilesystemencoding())

 173 else:

Chapter 7

135

 174 filename = fname

--> 175 __builtin__.execfile(filename, *where)

> .../buggy.py(4)<module>()

 0 print a[8]

Move up the call stack:
ipdb> u

> .../site-packages/IPython/utils/py3compat.py(175)execfile()

 173 else:

 174 filename = fname

--> 175 __builtin__.execfile(filename, *where)

Move down the call stack:

ipdb> d

> .../buggy.py(4)<module>()

 2

 3 a = np.arange(7)

----> 4 print(a[8])

How it works...
In this tutorial, you learned how to debug a NumPy program using IPython. We set a
breakpoint and navigated the call stack. The following debugger commands were used:

Command Description
list or l Lists the source code
bt Shows the call stack
u Moves up the call stack
d Moves down the call stack

See also
ff The Python debugger documentation at http://docs.python.org/2/library/

pdb.html

ff The ipdb package's homepage at https://pypi.python.org/pypi/ipdb

http://docs.python.org/2/library/pdb.html
http://docs.python.org/2/library/pdb.html
https://pypi.python.org/pypi/ipdb

Profiling and Debugging

136

Debugging with PuDB
PuDB is a visual, full-screen, console-based Python debugger that is easy to install.
PuDB supports cursor keys and vi commands. We can also integrate this debugger
with IPython if required.

How to do it...
We'll start with the installation of pudb:

1.	 To install pudb, we only need to execute the following command (or the equivalent
pip command):
$ sudo easy_install pudb

$ pip install pudb

$ pip freeze|grep pudb

pudb==2014.1

2.	 Let's debug the buggy program from the previous example. Start the debugger
as follows:

$ python -m pudb buggy.py

The following screenshot shows the user interface of the debugger:

The screenshot shows the most important debugging commands at the top. We can also see
the code being debugged, the variables, the stack, and the defined breakpoints. Typing q exits
most menus. Typing n moves the debugger to the next line. We can also move with the cursor
keys or vi j and k keys to, for instance, set a breakpoint by typing b.

See also
ff The PyPi PuDB page is at https://pypi.python.org/pypi/pudb

https://pypi.python.org/pypi/pudb

137

8
Quality Assurance

"If you lie to the computer, it will get you."

 - Perry Farrar, Communications of the ACM, Volume 28

In this chapter, we'll cover the following recipes:

ff Installing Pyflakes

ff Performing static analysis with Pyflakes

ff Analyzing code with Pylint

ff Performing static analysis with Pychecker

ff Testing code with docstrings

ff Writing unit tests

ff Testing code with mocks

ff Testing the BDD way

Introduction
Quality assurance, contrary to popular belief, is not so much about finding bugs as it is about
preventing them. We will discuss two ways to improve code quality, thereby preventing issues.
First, we will carry out static analysis of already existing code. Then, we will cover unit testing;
this includes mocking and Behavior-Driven Development (BDD).

Quality Assurance

138

Installing Pyflakes
Pyflakes is a Python code analysis package. It can analyze code and spot potential
problems such as:

ff Unused imports

ff Unused variables

Getting ready
Install pip or easy_install if necessary.

How to do it...
Choose one of the following options to install pyflakes:

ff Install pyflakes with the pip command:
$ sudo pip install pyflakes

ff Install pyflakes with the easy_install command:
$ sudo easy_install pyflakes

ff Here are two ways of installing this package on Linux:

The Linux package name is pyflakes as well. For instance, on Red Hat do
the following:
$ sudo yum install pyflakes

On Debian/Ubuntu, the command is as follows:

$ sudo apt-get install pyflakes

See also
ff The Pyflakes homepage at https://launchpad.net/pyflakes

https://launchpad.net/pyflakes

Chapter 8

139

Performing static analysis with Pyflakes
We will perform static analysis of part of the NumPy codebase. To do this, we will check out
the code using Git. We will then run static analysis on part of the code using pyflakes.

How to do it...
To check out the NumPy code, we need Git. Installing Git is beyond the scope of this book
(see http://git-scm.com/book/en/v2/Getting-Started-Installing-Git):

1.	 The Git command to retrieve the code is as follows:
$ git clone git://github.com/numpy/numpy.git numpy

Alternatively, download a source archive from https://github.com/numpy/numpy.

2.	 The previous step creates a numpy directory with the entire NumPy code. Go to this
directory, and within it, run the following command:

$ pyflakes *.py

pavement.py:71: redefinition of unused 'md5' from line 69

pavement.py:88: redefinition of unused 'GIT_REVISION' from line 86

pavement.py:314: 'virtualenv' imported but unused

pavement.py:315: local variable 'e' is assigned to but never used

pavement.py:380: local variable 'sdir' is assigned to but never used

pavement.py:381: local variable 'bdir' is assigned to but never used

pavement.py:536: local variable 'st' is assigned to but never used

setup.py:21: 're' imported but unused

setup.py:27: redefinition of unused 'builtins' from line 25

setup.py:124: redefinition of unused 'GIT_REVISION' from line 118

setupegg.py:17: 'setup' imported but unused

setupscons.py:61: 'numpy' imported but unused

setupscons.py:64: 'numscons' imported but unused

setupsconsegg.py:6: 'setup' imported but unused

This runs analysis on the code style and checks for PEP-8 violations in all the Python
scripts within the current directory. You can also analyze a single file if you prefer.

http://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/numpy/numpy

Quality Assurance

140

How it works...
As you can see, it is pretty simple to analyze code style and look for PEP-8 violations with
Pyflakes. The other advantage is speed; however, the number of error types that Pyflakes
reports is limited.

Analyzing code with Pylint
Pylint is another open source static analyzer originally created by Logilab. Pylint is more
complex than Pyflakes; it allows more customization and code checks. However, it is slower
than Pyflakes. For more information, check out the manual at http://www.logilab.org/
card/pylint_manual.

In this recipe, we again download the NumPy code from the Git repository—this step has been
omitted for brevity.

Getting ready
You can install Pylint from the source distribution. However, there are many dependencies,
so you are better off installing with either easy_install or pip. The installation commands
are as follows:

$ easy_install pylint

$ sudo pip install pylint

How to do it...
We will again analyze from the top directory of the NumPy codebase. Notice that we get more
output. In fact, Pylint prints so much text that most of it had to be omitted here:

$ pylint *.py

No config file found, using default configuration

************* Module pavement

C: 60: Line too long (81/80)

C:139: Line too long (81/80)

...

W: 50: TODO

W:168: XXX: find out which env variable is necessary to avoid the pb with
python

http://www.logilab.org/card/pylint_manual
http://www.logilab.org/card/pylint_manual

Chapter 8

141

W: 71: Reimport 'md5' (imported line 143)

F: 73: Unable to import 'paver'

F: 74: Unable to import 'paver.easy'

C: 79: Invalid name "setup_py" (should match (([A-Z_][A-Z0-
9_]*)|(__.*__))$)

F: 86: Unable to import 'numpy.version'

E: 86: No name 'version' in module 'numpy'

C:149: Operator not followed by a space

if sys.platform =="darwin":

 ^^

C:202:prepare_nsis_script: Missing docstring

W:228:bdist_superpack: Redefining name 'options' from outer scope (line
74)

C:231:bdist_superpack.copy_bdist: Missing docstring

W:275:bdist_wininst_nosse: Redefining name 'options' from outer scope
(line 74)

How it works...
Pylint outputs raw text by default; but we can request HTML output if we want. The messages
have the following format:

MESSAGE_TYPE: LINE_NUM:[OBJECT:] MESSAGE

The message type can be one of the following:

ff [R]: This means that refactoring is recommended

ff [C]: This means that there was a code style violation

ff [W]: This is used for warnings about minor issues

ff [E]: This is used for errors or potential bugs

ff [F]: This indicates that a fatal error occurred, blocking further analysis

See also
ff Performing static analysis with Pyflakes

Quality Assurance

142

Performing static analysis with Pychecker
Pychecker is an old, static analysis tool. It is not very actively developed, but it's fast and
good enough to mention here. The last version at the time of writing this book was 0.8.19,
and it was last updated in 2011. Pychecker tries to import each module and process it. It then
searches for issues such as passing an incorrect number of parameters, incorrect format
strings using non-existing methods, and other problems. In this recipe, we will again analyze
code, but this time with Pychecker.

How to do it...
1.	 Download the tar.gz from Sourceforge (http://pychecker.sourceforge.

net/). Unpack the source archive and run the following command:
$ python setup.py install

Alternatively, install Pychecker using pip:

$ sudo pip install http://sourceforge.net/projects/pychecker/
files/pychecker/0.8.19/pychecker-0.8.19.tar.gz/download

2.	 Analyze the code, just as in the previous recipes. The command we need is
as follows:

$ pychecker *.py

...

Warnings...

...

setup.py:21: Imported module (re) not used

setup.py:27: Module (builtins) re-imported

...

http://pychecker.sourceforge.net/
http://pychecker.sourceforge.net/

Chapter 8

143

Testing code with docstrings
Doctests are comment strings embedded in Python code that resemble interactive sessions.
These strings can be used to test certain assumptions or just provide examples. We need to
use the doctest module to run these tests.

Let's write a simple example that is supposed to calculate the factorial but doesn't cover all
possible boundary conditions. In other words, some tests will fail.

How to do it...
1.	 Write the docstring with a test that will pass and another test that will fail. The

docstring text should look like what you would normally see in a Python shell:
"""

Test for the factorial of 3 that should pass.

>>> factorial(3)

6

Test for the factorial of 0 that should fail.

>>> factorial(0)

1

"""

2.	 Write the following NumPy code:
return np.arange(1, n+1).cumprod()[-1]

We want this code to fail on purpose—sometimes. It will create an array of sequential
numbers, calculate the cumulative product of the array, and return the last element.

3.	 Use the doctest module to run the tests:

doctest.testmod()

The following is the complete test example code from the docstringtest.py file in
this book's code bundle:
import numpy as np
import doctest

def factorial(n):
 """

Quality Assurance

144

 Test for the factorial of 3 that should pass.
 >>> factorial(3)
 6

 Test for the factorial of 0 that should fail.
 >>> factorial(0)
 1
 """
 return np.arange(1, n+1).cumprod()[-1]

doctest.testmod()

We can get verbose output with the -v option, as shown here:

$ python docstringtest.py -v

Trying:

 factorial(3)

Expecting:

 6

ok

Trying:

 factorial(0)

Expecting:

 1

**

File "docstringtest.py", line 11, in __main__.factorial

Failed example:

 factorial(0)

Exception raised:

 Traceback (most recent call last):

 File ".../doctest.py", line 1253, in __run

 compileflags, 1) in test.globs

 File "<doctest __main__.factorial[1]>", line 1, in <module>

 factorial(0)

 File "docstringtest.py", line 14, in factorial

 return numpy.arange(1, n+1).cumprod()[-1]

 IndexError: index out of bounds

1 items had no tests:

Chapter 8

145

 __main__

**

1 items had failures:

 1 of 2 in __main__.factorial

2 tests in 2 items.

1 passed and 1 failed.

Test Failed 1 failures.

How it works...
As you can see, we didn't take into account zero and negative numbers. Actually, we got an
index out of bounds error due to an empty array. This is easy to fix, of course, which we
will do in the next tutorial.

See also
ff The official doctest documentation at http://docs.python.org/2/library/

doctest.html

Writing unit tests
Test-driven development (TDD) is the best thing that has happened to software
development this century. One of the most important aspects of TDD is the almost
manic focus on unit testing.

The TDD methodology uses the so-called test-first approach, where we
first write a test that fails and then write the corresponding code to pass
the test. The tests should document the developer's intent, but on a lower
level than functional design. A suite of tests increases confidence by
decreasing the probability of regression and facilitates refactoring.

Unit tests are automated tests that test a small piece of code, usually a function or method.
Python has the PyUnit API for unit testing. As NumPy users, we can make use of the
convenience functions in the numpy.testing module as well. This module, as its name
suggests, is dedicated to testing.

http://docs.python.org/2/library/doctest.html
http://docs.python.org/2/library/doctest.html

Quality Assurance

146

How to do it...
Let's write some code to test:

1.	 Start by writing the following factorial() function:
def factorial(n):
 if n == 0:
 return 1

 if n < 0:
 raise ValueError, "Don't be so negative"

 return np.arange(1, n+1).cumprod()

The code is the same as what we covered in the previous recipe, but we've added a
few checks for boundary conditions.

2.	 Let's write a class; this class will contain the unit tests. It extends the TestCase
class from the unittest module, which is part of standard Python. We run tests by
calling the factorial() function with the following:

�� a positive number—the happy path!

�� boundary condition equal to 0

�� negative numbers, which should result in an error:

class FactorialTest(unittest.TestCase):
 def test_factorial(self):
 #Test for the factorial of 3 that should pass.
 self.assertEqual(6, factorial(3)[-1])
 np.testing.assert_equal(np.array([1, 2, 6]),

 factorial(3))

 def test_zero(self):
 #Test for the factorial of 0 that should pass.
 self.assertEqual(1, factorial(0))

 def test_negative(self):
 #Test for the factorial of negative numbers that

 should fail.
 # It should throw a ValueError, but we expect

 IndexError
 self.assertRaises(IndexError, factorial(-10))

Chapter 8

147

The code for the factorial() function and the unit test in its entirety is as follows:
import numpy as np
import unittest

def factorial(n):
 if n == 0:
 return 1

 if n < 0:
 raise ValueError, "Don't be so negative"

 return np.arange(1, n+1).cumprod()

class FactorialTest(unittest.TestCase):
 def test_factorial(self):
 #Test for the factorial of 3 that should pass.
 self.assertEqual(6, factorial(3)[-1])
 np.testing.assert_equal(np.array([1, 2, 6]), factorial(3))

 def test_zero(self):
 #Test for the factorial of 0 that should pass.
 self.assertEqual(1, factorial(0))

 def test_negative(self):
 #Test for the factorial of negative numbers that should
fail.
 # It should throw a ValueError, but we expect IndexError
 self.assertRaises(IndexError, factorial(-10))

if __name__ == '__main__':
 unittest.main()

The negative numbers test fails, as you can see in the following output:

.E.

==
====

ERROR: test_negative (__main__.FactorialTest)

--

Traceback (most recent call last):

 File "unit_test.py", line 26, in test_negative

 self.assertRaises(IndexError, factorial(-10))

Quality Assurance

148

 File "unit_test.py", line 9, in factorial

 raise ValueError, "Don't be so negative"

ValueError: Don't be so negative

--

Ran 3 tests in 0.001s

FAILED (errors=1)

How it works...
We saw how to implement simple unit tests using the standard unittest Python module.
We wrote a test class that extends the TestCase class from the unittest module. The
following functions were used to perform various tests:

Function Description
numpy.testing.assert_equal() Tests whether two NumPy arrays are equal
unittest.assertEqual() Tests whether two values are equal
unittest.assertRaises() Tests whether an exception is thrown

The testing NumPy package has a number of test functions we should know about,
as follows:

Function Description
assert_almost_equal() This function raises an exception if two

numbers are not equal up to a specified
precision

assert_approx_equal() This function raises an exception if two
numbers are not equal up to a certain
significance

assert_array_almost_equal() This function raises an exception if two arrays
are not equal up to a specified amount of
precision

assert_array_equal() This function raises an exception if two arrays
are not equal

assert_array_less() This function raises an exception if two arrays
do not have the same shape, and the elements
of the first array are strictly less than the
elements of the second array

Chapter 8

149

Function Description
assert_raises() This function fails if a specified exception is

not raised by a callable invoked with the
defined arguments

assert_warns() This function fails if a specified warning is
not thrown

assert_string_equal() This function asserts that two strings are equal

Testing code with mocks
Mocks are objects created as substitutes for real objects with the purpose of testing part of
the behavior of the real objects. If you have seen the movie Body Snatchers, you might already
have an understanding of the basic idea. Generally speaking, mocking is useful only when
the real objects under test are expensive to create, such as a database connection, or when
testing could have undesirable side effects; for instance, we might not want to write to the file
system or a database.

In this recipe, we will test a nuclear reactor—not a real one, of course! This nuclear reactor
class performs a factorial calculation that could, in theory, cause a chain reaction with a
nuclear disaster as consequence. We will mock the factorial computation with a mock,
using the mock package.

How to do it...
First, we will install the mock package; after that, we will create a mock and test a piece
of code:

1.	 To install the mock package, execute the following command:
$ sudo easy_install mock

2.	 The nuclear reactor class has a do_work() method, which calls a dangerous
factorial() method, which we want to mock. Create a mock as follows:

reactor.factorial = MagicMock(return_value=6)

This ensures that the mock returns a value of 6.

3.	 We can check the behavior of a mock and, from that, the behavior of the real
object under test, in several ways. For instance, assert that the potentially explosive
factorial() method was called with the correct arguments, as follows:

reactor.factorial.assert_called_with(3, "mocked")

The complete test code with mocks is as follows:

from __future__ import print_function
from mock import MagicMock

Quality Assurance

150

import numpy as np
import unittest

class NuclearReactor():
 def __init__(self, n):
 self.n = n

 def do_work(self, msg):
 print("Working")

 return self.factorial(self.n, msg)

 def factorial(self, n, msg):
 print(msg)

 if n == 0:
 return 1

 if n < 0:
 raise ValueError, "Core meltdown"

 return np.arange(1, n+1).cumprod()

class NuclearReactorTest(unittest.TestCase):
 def test_called(self):
 reactor = NuclearReactor(3)
 reactor.factorial = MagicMock(return_value=6)
 result = reactor.do_work("mocked")
 self.assertEqual(6, result)
 reactor.factorial.assert_called_with(3, "mocked")

 def test_unmocked(self):
 reactor = NuclearReactor(3)
 reactor.factorial(3, "unmocked")
 np.testing.assert_raises(ValueError)

if __name__ == '__main__':
 unittest.main()

Chapter 8

151

We pass a string to the factorial() method to show that the code with mock does not
exercise the real code. This unit test works in the same way as the unit test in the previous
recipe. The second test here does not test anything. The purpose of the second test is just to
demonstrate what happens if we exercise the real code without mocks.

The output of the tests is as follows:

Working

.unmocked

.

--

Ran 2 tests in 0.000s

OK

How it works...
Mocks do not have any behavior. They are like alien clones pretending to be real people; only
dumber than aliens—an alien clone won't be able to tell you the birthday of the real person it
is replacing. We need to set them up to respond in an appropriate manner. For instance, the
mock returned 6 in this example. We can record what is happening to the mock, how many
times it is being called, and with which arguments.

See also
ff The mock package homepage at http://pypi.python.org/pypi/mock

Testing the BDD way
BDD (Behavior-driven Development) is another hot acronym that you might have come
across. In BDD, we start by defining (in English) the expected behavior of the system under
test according to certain conventions and rules. In this recipe, we will see an example of
those conventions.

The idea behind this approach is that we can have people who may not be able to program,
or write a major part of the tests. A feature written by these people takes the form of a
sentence consisting of several steps. Each step is more or less a unit test that we can write,
for instance, using NumPy. There are many Python BDD frameworks. In this recipe, we use
Lettuce to test the factorial function.

http://pypi.python.org/pypi/mock

Quality Assurance

152

How to do it…
In this section, you will learn how to install Lettuce, set up the tests, and write the
specifications for the tests:

1.	 To install Lettuce, run either of the following commands:
$ pip install lettuce

$ sudo easy_install lettuce

2.	 Lettuce requires a special directory structure for the tests. In the tests directory,
we will have a directory called features containing the factorial.feature file,
along with the functional descriptions and test code in the steps.py file:
./tests:

features

./tests/features:

factorial.feature	 steps.py

3.	 Coming up with business requirements is a hard job. Writing it all down in such a way
that it is easy to test is even harder. Luckily, the requirements for these recipes are
pretty simple—we just write down different input values and the expected output. We
have different scenarios with the Given, When, and Then sections, which correspond
to different test steps. Define the following three scenarios for the factorial feature:
Feature: Compute factorial

 Scenario: Factorial of 0
 Given I have the number 0
 When I compute its factorial
 Then I see the number 1

 Scenario: Factorial of 1
 Given I have the number 1
 When I compute its factorial
 Then I see the number 1

 Scenario: Factorial of 3
 Given I have the number 3
 When I compute its factorial
 Then I see the number 1, 2, 6

Chapter 8

153

4.	 We will define methods that correspond to the steps of our scenario. Pay extra
attention to the text used to annotate the methods. It matches the text in the
business scenarios file, and we use regular expressions to get the input parameters.
In the first two scenarios, we match numbers, and in the last, we match any text.
The fromstring() NumPy function is used to create a string from a NumPy array,
with an integer data type and comma separator in the string. The following code tests
our scenarios:
from lettuce import *
import numpy as np

@step('I have the number (\d+)')
def have_the_number(step, number):
 world.number = int(number)

@step('I compute its factorial')
def compute_its_factorial(step):
 world.number = factorial(world.number)

@step('I see the number (.*)')
def check_number(step, expected):
 expected = np.fromstring(expected, dtype=int, sep=',')
 np.testing.assert_equal(world.number, expected, \
 "Got %s" % world.number)

def factorial(n):
 if n == 0:
 return 1

 if n < 0:
 raise ValueError, "Core meltdown"

 return np.arange(1, n+1).cumprod()

5.	 To run the tests, go to the tests directory and type the following command:

$ lettuce

Feature: Compute factorial # features/factorial.feature:1

 Scenario: Factorial of 0 # features/factorial.feature:3

 Given I have the number 0 # features/steps.py:5

Quality Assurance

154

 When I compute its factorial # features/steps.py:9

 Then I see the number 1 # features/steps.py:13

 Scenario: Factorial of 1 # features/factorial.feature:8

 Given I have the number 1 # features/steps.py:5

 When I compute its factorial # features/steps.py:9

 Then I see the number 1 # features/steps.py:13

 Scenario: Factorial of 3 # features/factorial.feature:13

 Given I have the number 3 # features/steps.py:5

 When I compute its factorial # features/steps.py:9

 Then I see the number 1, 2, 6 # features/steps.py:13

1 feature (1 passed)

3 scenarios (3 passed)

9 steps (9 passed)

How it works...
We defined a feature with three scenarios and corresponding steps. We used NumPy's
testing functions to test the different steps and the fromstring() function to create a
NumPy array from the specifications text.

See also
ff The Lettuce documentation at http://lettuce.it/

http://lettuce.it/

155

9
Speeding Up Code

with Cython

In this chapter, we will cover the following recipes:

ff Installing Cython

ff Building a Hello World program

ff Using Cython with NumPy

ff Calling C functions

ff Profiling the Cython code

ff Approximating factorials with Cython

Introduction
Cython is a relatively young programming language based on Python. It allows coders to mix
the speed of C with the power of Python. The difference with Python is that we can optionally
declare static types. Many programming languages, such as C, have static typing, which
means that we have to tell C the type of variables, function parameters, and return value
types. Another difference is that C is a compiled language, while Python is an interpreted
language. As a rule of thumb, we can say that C is faster but less flexible than Python. From
Cython code, we can generate C or C++ code. After that we can compile the generated code
into Python extension modules.

In this chapter, you will learn about Cython. We will get some simple Cython programs running
together with NumPy. Also, we will profile Cython code.

Speeding Up Code with Cython

156

Installing Cython
In order to use Cython, we need to install it. The Enthought Canopy, Anaconda, and Sage
distributions include Cython. For more information, see https://www.enthought.
com/products/canopy/, https://store.continuum.io/cshop/anaconda/, and
http://sagemath.org/. We will not discuss here how to install these distributions.
Obviously, we need a C compiler to compile the generated C code. On some operating systems
such as Linux, the compiler will already be present. In this recipe, we will assume that you
already have the compiler installed.

How to do it...
We can install Cython using any of the following methods:

ff Install Cython from a source archive by performing the following steps:

�� Download a source archive from http://cython.org/#download.

�� Unpack it.

�� Browse to the directory using the cd command.

�� Run the following command:

$ python setup.py install

ff Install Cython from the PyPI repository with any one of these commands:
$ easy_install cython

$ sudo pip install cython

ff Install Cython on Windows using the unofficial Windows installers from
http://www.lfd.uci.edu/~gohlke/pythonlibs/#cython.

See also
ff The relevant Cython online documentation is at

http://docs.cython.org/src/quickstart/install.html

Building a Hello World program
As is the tradition with programming languages, we will start with a Hello World example.
Unlike Python, we need to compile Cython code. We start with a .pyx file, from which we
will generate C code. This .c file can be compiled and then imported into a Python program.

https://www.enthought.com/products/canopy/
https://www.enthought.com/products/canopy/
https://store.continuum.io/cshop/anaconda/
http://sagemath.org/
http://cython.org/#download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#cython
http://docs.cython.org/src/quickstart/install.html

Chapter 9

157

How to do it...
This section describes how to build a Cython Hello World program:

1.	 First, write some pretty simple code that prints Hello World. This is just normal
Python code, but the file has the pyx extension:
def say_hello():
 print "Hello World!"

2.	 Create a file named setup.py to help build the Cython code:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("hello", ["hello.pyx"])]

setup(
 name = 'Hello world app',
 cmdclass = {'build_ext': build_ext},
 ext_modules = ext_modules
)

As you can see, we specified the file from the previous step and gave our application
a name.

3.	 Build using the following command:

$ python setup.py build_ext --inplace

This generates C code, compiles it for your platform, and produces the
following output:
running build_ext

cythoning hello.pyx to hello.c

building 'hello' extension

creating build

Now we can import our module with the following statement:

from hello import say_hello

How it works...
In this recipe, we created a traditional Hello World example. Cython is a compiled language, so
we need to compile our code. We wrote a .pyx file containing the Hello World code and a
setup.py file used to generate and build the C code.

Speeding Up Code with Cython

158

See also
ff The relevant Cython online documentation is at

http://docs.cython.org/src/quickstart/build.html

Using Cython with NumPy
We can integrate Cython and NumPy code in the same way we can integrate Cython and
Python code. Let's go through an example that analyzes the ratio of up days (days on which a
stock closes higher than the previous day) for a stock. We will apply the formula for binomial
proportion confidence. You can refer to http://en.wikipedia.org/wiki/Binomial_
proportion_confidence_interval for more information. The following formula indicates
how significant the ratio is:

()1p p
n
−

In the formula, p is the probability and n is the number of observations.

How to do it...
This section describes how to use Cython with NumPy, with the following steps:

1.	 Write a .pyx file that contains a function that calculates the ratio of up days and the
associated confidence. First, this function computes the differences between the
prices. Then, it counts the number of positive differences, giving us a ratio for the
proportion of up days. Finally, apply the formula for confidence from the Wikipedia
page in the introduction:
import numpy as np

def pos_confidence(numbers):
 diffs = np.diff(numbers)
 n = float(len(diffs))
 p = len(diffs[diffs > 0])/n
 confidence = np.sqrt(p * (1 - p)/ n)

 return (p, confidence)

2.	 Use the setup.py file from the previous example as a template. Change the obvious
things, such as the name of the .pyx file:
from distutils.core import setup
from distutils.extension import Extension

http://docs.cython.org/src/quickstart/build.html
http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval

Chapter 9

159

from Cython.Distutils import build_ext

ext_modules = [Extension("binomial_proportion", ["binomial_
proportion.pyx"])]

setup(
 name = 'Binomial proportion app',
 cmdclass = {'build_ext': build_ext},
 ext_modules = ext_modules
)

We can now build; see the previous recipe for more details.

3.	 After building, use the Cython module from the previous step by importing. We will
write a Python program that downloads stock price data with matplotlib. Then
we'll apply the confidence() function to the close prices:

from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy
import sys
from binomial_proportion import pos_confidence

#1. Get close prices.
today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo(sys.argv[1], start, today)
close = numpy.array([q[4] for q in quotes])
print pos_confidence(close)

The output of the program for AAPL is as follows:

(0.56746031746031744, 0.031209043355655924)

How it works...
We computed the probability of an up day for AAPL shares and the corresponding confidence.
We put NumPy code in a .pyx file and built it just as in the previous tutorial—by creating a
Cython module. At the end, we imported and used the Cython module.

See also
ff The relevant Cython online documentation is at

http://docs.cython.org/src/tutorial/numpy.html

http://docs.cython.org/src/tutorial/numpy.html

Speeding Up Code with Cython

160

Calling C functions
We can call C functions from Cython. In this example, we call the C log() function.
This function works on a single number only. Remember that the NumPy log() function
can also work with arrays. We will compute the so-called log returns of stock prices.

How to do it...
We start by writing some Cython code:

1.	 First, import the C log() function from the libc namespace. Then, apply this
function to numbers in a for loop. Finally, use the NumPy diff() function to
get the first-order difference between the log values in the second step:
from libc.math cimport log
import numpy as np

def logrets(numbers):
 logs = [log(x) for x in numbers]
 return np.diff(logs)

Building has been covered in the previous recipes. We only need to change some
values in the setup.py file.

2.	 Again, download the stock price data with matplotlib. Apply the Cython
logrets() function you just created on the prices and plot the result:

from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy as np
from log_returns import logrets
import matplotlib.pyplot as plt

today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo('AAPL', start, today)
close = np.array([q[4] for q in quotes])
plt.plot(logrets(close))
plt.title('Logreturns of AAPL for the previous year')
plt.xlabel('Days')
plt.ylabel('Log returns')
plt.grid()
plt.show()

Chapter 9

161

The resulting plot of the log returns for AAPL looks like what is shown in the
following screenshot:

How it works...
We called the C log() function from Cython code. The function, together with NumPy
functions, was used to calculate log returns of stocks. In this way, we can create our own
specialized API containing convenience functions. The nice thing is that our code should
perform at or near the speed of C code, while looking more or less like Python code.

See also
ff The relevant Cython online documentation is at

http://docs.cython.org/src/tutorial/external.html

http://docs.cython.org/src/tutorial/external.html

Speeding Up Code with Cython

162

Profiling the Cython code
We will profile Cython and NumPy code that tries to approximate the Euler constant with the
following formula:

0

1
!n n

∞

=
∑

See http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 for more
background information.

How to do it...
This section demonstrates how to profile Cython code with the following steps:

1.	 For the NumPy approximation of e, follow these steps:

�� First, we will create an array of 1 to n (n is 40 in our example).

�� Then we will compute the cumulative product of this array, which happens to
be the factorial. After that, we take the reciprocal of the factorials. Finally, we
apply the formula from the Wikipedia page. At the end, we put the standard
profiling code, giving us the following program:
from __future__ import print_function
import numpy as np
import cProfile
import pstats

def approx_e(n=40, display=False):
 # array of [1, 2, ... n-1]
 arr = np.arange(1, n)

 # calculate the factorials and convert to floats
 arr = arr.cumprod().astype(float)

 # reciprocal 1/n
 arr = np.reciprocal(arr)

 if display:
 print(1 + arr.sum())

Repeat multiple times because NumPy is so fast
def run(repeat=2000):

http://en.wikipedia.org/wiki/E_%28mathematical_constant%29

Chapter 9

163

 for i in range(repeat):
 approx_e()

cProfile.runctx("run()", globals(), locals(),
"Profile.prof")

s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats()

approx_e(display=True)

The profiling output and the result for the e approximation are shown in the following
snippet. Refer to Chapter 7, Profiling and Debugging, for more information about the
profiling output:
 8004 function calls in 0.016 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall
filename:lineno(function)

 2000 0.007 0.000 0.015 0.000 numpy_approxe.
py:6(approx_e)

 2000 0.004 0.000 0.004 0.000 {method 'cumprod' of
'numpy.ndarray' objects}

 2000 0.002 0.000 0.002 0.000 {numpy.core.
multiarray.arange}

 2000 0.002 0.000 0.002 0.000 {method 'astype' of
'numpy.ndarray' objects}

 1 0.001 0.001 0.016 0.016 numpy_approxe.
py:20(run)

 1 0.000 0.000 0.000 0.000 {range}

 1 0.000 0.000 0.016 0.016 <string>:1(<module>)

 1 0.000 0.000 0.000 0.000 {method 'disable' of
'_lsprof.Profiler' objects}

2.71828182846

Speeding Up Code with Cython

164

2.	 The Cython code uses the same algorithm as shown in the previous step, but the
implementation is different. There are less convenience functions, and we actually
need a for loop now. Also, we need to specify types for some of the variables. The
code for the .pyx file is shown as follows:
def approx_e(int n=40, display=False):
 cdef double sum = 0.
 cdef double factorial = 1.
 cdef int k

 for k in xrange(1,n+1):
 factorial *= k
 sum += 1/factorial

 if display:
 print(1 + sum)

The following Python program imports the Cython module and does some profiling:
import pstats
import cProfile
import pyximport
pyximport.install()

import approxe

Repeat multiple times because Cython is so fast
def run(repeat=2000):
 for i in range(repeat):
 approxe.approx_e()

cProfile.runctx("run()", globals(), locals(), "Profile.prof")

s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats()

approxe.approx_e(display=True)

This is the profiling output of the Cython code:

 2004 function calls in 0.001 seconds

 Ordered by: internal time

Chapter 9

165

 ncalls tottime percall cumtime percall
filename:lineno(function)

 2000 0.001 0.000 0.001 0.000 {approxe.approx_e}

 1 0.000 0.000 0.001 0.001 cython_profile.
py:9(run)

 1 0.000 0.000 0.000 0.000 {range}

 1 0.000 0.000 0.001 0.001 <string>:1(<module>)

 1 0.000 0.000 0.000 0.000 {method 'disable' of
'_lsprof.Profiler' objects}

2.71828182846

How it works...
We profiled NumPy and Cython code. NumPy is heavily optimized for speed, so we should not
be surprised that both NumPy and Cython programs are high-performing programs. However,
when comparing the total time for 2,000 runs of the approximation code, we realize that
NumPy needs 0.016 seconds while Cython only takes 0.001 seconds. Obviously, the actual
times depend on your hardware, operating system, and other factors, such as other processes
running on your machine. Also, the speedup depends on the type of code, but I hope you
agree that as a rule of thumb, Cython code is faster.

See also
ff The relevant Cython online documentation is at

http://docs.cython.org/src/tutorial/profiling_tutorial.html

Approximating factorials with Cython
The last example is about approximating factorials with Cython. We will use two
approximation methods. First, we will apply the Stirling approximation method
(see http://en.wikipedia.org/wiki/Stirling%27s_approximation for
more information). The formula for the Stirling approximation is as follows:

2
nnn

e
π  

 
 

http://docs.cython.org/src/tutorial/profiling_tutorial.html
http://en.wikipedia.org/wiki/Stirling%27s_approximation

Speeding Up Code with Cython

166

Secondly, we will use the approximation due to Ramanujan, with the following formula:

How to do it...
This section describes how to approximate factorials using Cython. In this recipe, we use
types, which are optional in Cython, as you may remember. In theory, declaring static types
should speed things up. Static typing offers interesting challenges that you may not encounter
when writing Python code, but don't worry; we will try to keep it simple:

1.	 The Cython code that we will write looks like regular Python code, except that we
declare function parameters and a local variable to be an ndarray array. In order to
get the static types to work, we need to cimport NumPy. Also, we have to use the
cdef keyword to declare the type of the local variable:
import numpy
cimport numpy

def ramanujan_factorial(numpy.ndarray n):
 sqrt_pi = numpy.sqrt(numpy.pi, dtype=numpy.float64)
 cdef numpy.ndarray root = (8 * n + 4) * n + 1
 root = root * n + 1/30.
 root = root ** (1/6.)
 return sqrt_pi * calc_eton(n) * root

def stirling_factorial(numpy.ndarray n):
 return numpy.sqrt(2 * numpy.pi * n) * calc_eton(n)

def calc_eton(numpy.ndarray n):
 return (n/numpy.e) ** n

2.	 Building requires us to create a setup.py file, as was shown in the previous
tutorials, but we now include NumPy-related directories by calling the
get_include() function. With this amendment, the setup.py file has
the following content:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

Chapter 9

167

import numpy

ext_modules = [Extension("factorial", ["factorial.pyx"], include_
dirs = [numpy.get_include()])]

setup(
 name = 'Factorial app',
 cmdclass = {'build_ext': build_ext},
 ext_modules = ext_modules
)

3.	 Plot the relative error for both the approximation methods. Calculate the error relative
to the factorial values that we will compute with the NumPy cumprod() function,
as we did throughout the book:

from factorial import ramanujan_factorial
from factorial import stirling_factorial
import numpy as np
import matplotlib.pyplot as plt

N = 50
numbers = np.arange(1, N)
factorials = np.cumprod(numbers, dtype=float)

def error(approximations):
 return (factorials - approximations)/factorials

plt.plot(error(ramanujan_factorial(numbers)), 'b-',
label='Ramanujan')
plt.plot(error(stirling_factorial(numbers)), 'ro',
label='Stirling')
plt.title('Factorial approximation relative errors')
plt.xlabel('n')
plt.ylabel('Relative error')
plt.grid()
plt.legend(loc='best')
plt.show()

Speeding Up Code with Cython

168

The following plot shows the relative error for the Ramanujan approximation (dots)
and the Stirling approximation (line):

How it works...
In this example, we saw a demonstration of Cython's static types. The main ingredients of this
recipe were the following:

ff cimport, which imports C declarations

ff Including directories with the get_include() function

ff The cdef keyword, used to define the type of local variables

See also
ff The relevant Cython online documentation is at

http://docs.cython.org/src/quickstart/cythonize.html

http://docs.cython.org/src/quickstart/cythonize.html

169

10
Fun with Scikits

In this chapter, we will cover the following recipes:

ff Installing scikit-learn
ff Loading an example dataset
ff Clustering Dow Jones stocks with scikit-learn
ff Installing statsmodels
ff Performing a normality test with statsmodels
ff Installing scikit-image
ff Detecting corners
ff Detecting edges
ff Installing pandas
ff Estimating correlation of stock returns with pandas
ff Loading data as pandas objects from statsmodels
ff Resampling time series data

Introduction
Scikits are small, independent projects that are related to SciPy in some way but are not
part of SciPy. These projects are not entirely independent, but operate under an umbrella,
as a consortium of sorts. In this chapter, we will discuss several Scikits projects, such as
the following:

ff scikit-learn, a machine learning package
ff statsmodels, a statistics package
ff scikit-image, an image processing package
ff pandas, a data analysis package

Fun with Scikits

170

Installing scikit-learn
The scikit-learn project aims to provide an API for machine learning. What I like the most
about it is the amazing documentation. We can install scikit-learn with the package manager
of our operating system. This option may or may not be available, depending on the operating
system, but it should be the most convenient route.

Windows users can simply download an installer from the project website. On Debian and
Ubuntu, the project is called python-sklearn. On MacPorts, the ports are called py26-scikits-
learn and py27-scikits-learn. We can also install from source or using easy_install. There
are third-party distributions available from Python(x, y), Enthought, and NetBSD.

Getting ready
You need to have SciPy and NumPy installed. Go back to Chapter 1, Winding Along with
IPython, for instructions if necessary.

How to do it...
Let's now see how we can install the scikit-learn project:

ff Installing with easy_install: Type any one of the following commands at the
command line:
$ pip install -U scikit-learn

$ easy_install -U scikit-learn

This might not work because of permissions, so you might either need to write sudo
in front of the commands, or log in as admin.

ff Installing from source: Download the source from http://pypi.python.org/
pypi/scikit-learn/, unpack and cd into the downloaded folder. Then issue the
following command:

$ python setup.py install

Loading an example dataset
The scikit-learn project comes with a number of datasets and sample images that we can
experiment with. In this recipe, we will load an example dataset included in the scikit-learn
distribution. The datasets hold data as a NumPy two-dimensional array and metadata linked
to the data.

http://pypi.python.org/pypi/scikit-learn/
http://pypi.python.org/pypi/scikit-learn/

Chapter 10

171

How to do it...
We will load a sample dataset of house prices in Boston. It is a tiny dataset, so if you are
looking for a house in Boston, don't get too excited! Other datasets are described at http://
scikit-learn.org/dev/modules/classes.html#module-sklearn.datasets.

We will look at the shape of the raw data and its maximum and minimum values. The shape
is a tuple, representing the dimensions of the NumPy array. We will do the same for the target
array, which contains values that are the learning objectives (determining house price). The
following code from sample_data.py accomplishes our goals:

from __future__ import print_function
from sklearn import datasets

boston_prices = datasets.load_boston()
print("Data shape", boston_prices.data.shape)
print("Data max=%s min=%s" % (boston_prices.data.max(), boston_prices.
data.min()))
print("Target shape", boston_prices.target.shape)
print("Target max=%s min=%s" % (boston_prices.target.max(), boston_
prices.target.min()))

The outcome of our program is as follows:

Data shape (506, 13)

Data max=711.0 min=0.0

Target shape (506,)

Target max=50.0 min=5.0

Clustering Dow Jones stocks with
scikits-learn

Clustering is a type of machine learning algorithm that aims to group items based on
similarities. In this example, we will use the log returns of stocks in the Dow Jones Industrial
Average (DJI or DJIA) index to cluster. Most of the steps of this recipe have already passed the
review in previous chapters.

http://scikit-learn.org/dev/modules/classes.html#module-sklearn.datasets
http://scikit-learn.org/dev/modules/classes.html#module-sklearn.datasets

Fun with Scikits

172

How to do it...
First, we will download the EOD price data for those stocks from Yahoo! Finance. Then,
we will calculate a square affinity matrix. Finally, we will cluster the stocks with the
AffinityPropagation class:

1.	 Download price data for 2011 using the stock symbols of the DJI Index. In this
example, we are only interested in the close price:
2011 to 2012
start = datetime.datetime(2011, 01, 01)
end = datetime.datetime(2012, 01, 01)

#Dow Jones symbols
symbols = ["AA", "AXP", "BA", "BAC", "CAT",
 "CSCO", "CVX", "DD", "DIS", "GE", "HD",
 "HPQ", "IBM", "INTC", "JNJ", "JPM",
 "KO", "MCD", "MMM", "MRK", "MSFT", "PFE",
 "PG", "T", "TRV", "UTX", "VZ", "WMT", "XOM"]

quotes = []

for symbol in symbols:
 try:
 quotes.append(finance.quotes_historical_yahoo(symbol,
start, end, asobject=True))
 except urllib2.HTTPError as e:
 print(symbol, e)

close = np.array([q.close for q in quotes]).astype(np.float)
print(close.shape)

2.	 Calculate the similarities between different stocks using the log returns as the metric.
What we are trying to do is calculate the Euclidean distances for the data points:
logreturns = np.diff(np.log(close))
print(logreturns.shape)

logreturns_norms = np.sum(logreturns ** 2, axis=1)
S = - logreturns_norms[:, np.newaxis] - logreturns_norms[np.
newaxis, :] + 2 * np.dot(logreturns, logreturns.T)

Chapter 10

173

3.	 Give the AffinityPropagation class the result from the previous step. This class
labels the data points, or in our case, stocks with the appropriate cluster number:

aff_pro = sklearn.cluster.AffinityPropagation().fit(S)
labels = aff_pro.labels_

for symbol, label in zip(symbols, labels):
 print('%s in Cluster %d' % (symbol, label))

The complete clustering program is as follows:
from __future__ import print_function
import datetime
import numpy as np
import sklearn.cluster
from matplotlib import finance
import urllib2

#1. Download price data

2011 to 2012
start = datetime.datetime(2011, 01, 01)
end = datetime.datetime(2012, 01, 01)

#Dow Jones symbols
symbols = ["AA", "AXP", "BA", "BAC", "CAT",
 "CSCO", "CVX", "DD", "DIS", "GE", "HD",
 "HPQ", "IBM", "INTC", "JNJ", "JPM",
 "KO", "MCD", "MMM", "MRK", "MSFT", "PFE",
 "PG", "T", "TRV", "UTX", "VZ", "WMT", "XOM"]

quotes = []

for symbol in symbols:
 try:
 quotes.append(finance.quotes_historical_yahoo(symbol,
start, end, asobject=True))
 except urllib2.HTTPError as e:
 print(symbol, e)

close = np.array([q.close for q in quotes]).astype(np.float)
print(close.shape)

Fun with Scikits

174

#2. Calculate affinity matrix
logreturns = np.diff(np.log(close))
print(logreturns.shape)

logreturns_norms = np.sum(logreturns ** 2, axis=1)
S = - logreturns_norms[:, np.newaxis] - logreturns_norms[np.
newaxis, :] + 2 * np.dot(logreturns, logreturns.T)

#3. Cluster using affinity propagation
aff_pro = sklearn.cluster.AffinityPropagation().fit(S)
labels = aff_pro.labels_

for symbol, label in zip(symbols, labels):
 print('%s in Cluster %d' % (symbol, label))

The output with the cluster numbers for each stock is as follows:

(29, 252)

(29, 251)

AA in Cluster 0

AXP in Cluster 6

BA in Cluster 6

BAC in Cluster 1

CAT in Cluster 6

CSCO in Cluster 2

CVX in Cluster 7

DD in Cluster 6

DIS in Cluster 6

GE in Cluster 6

HD in Cluster 5

HPQ in Cluster 3

IBM in Cluster 5

INTC in Cluster 6

JNJ in Cluster 5

JPM in Cluster 4

KO in Cluster 5

MCD in Cluster 5

MMM in Cluster 6

Chapter 10

175

MRK in Cluster 5

MSFT in Cluster 5

PFE in Cluster 7

PG in Cluster 5

T in Cluster 5

TRV in Cluster 5

UTX in Cluster 6

VZ in Cluster 5

WMT in Cluster 5

XOM in Cluster 7

How it works...
The following table is an overview of the functions we used in this recipe:

Function Description
sklearn.cluster.
AffinityPropagation()

Creates an AffinityPropagation object.

sklearn.cluster.
AffinityPropagation.fit()

Computes an affinity matrix from Euclidian distances
and applies affinity propagation clustering.

diff() Calculates differences of numbers within a NumPy
array. If this is not specified, first-order differences
are computed.

log() Calculates the natural log of elements in a NumPy array.
sum() Sums the elements of a NumPy array.
dot() This performs matrix multiplication for two-dimensional

arrays. It also calculates the inner product for one-
dimensional arrays.

See also
ff The relevant documentation is at http://scikit-learn.org/stable/

modules/generated/sklearn.cluster.AffinityPropagation.html

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html

Fun with Scikits

176

Installing statsmodels
The statsmodels package focuses on statistical modeling. We can integrate it with NumPy
and pandas (more about pandas later in this chapter).

How to do it...
Source and binaries can be downloaded from http://statsmodels.sourceforge.net/
install.html. If you are installing from source, run the following command:

$ python setup.py install

If you are using setuptools, the command is as follows:

$ easy_install statsmodels

Performing a normality test with
statsmodels

The statsmodels package has many statistical tests. We will see an example of such
a test—the Anderson-Darling test for normality (http://en.wikipedia.org/wiki/
Anderson%E2%80%93Darling_test).

How to do it...
We will download price data as in the previous recipe, but this time for a single stock. Again,
we will calculate the log returns of the close price of this stock, and use that as an input for
the normality test function.

This function returns a tuple containing a second element—a p-value between 0 and 1.
The complete code for this tutorial is as follows:

from __future__ import print_function
import datetime
import numpy as np
from matplotlib import finance
from statsmodels.stats.adnorm import normal_ad

#1. Download price data

2011 to 2012
start = datetime.datetime(2011, 01, 01)
end = datetime.datetime(2012, 01, 01)

http://statsmodels.sourceforge.net/install.html
http://statsmodels.sourceforge.net/install.html
http://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test
http://en.wikipedia.org/wiki/Anderson%E2%80%93Darling_test

Chapter 10

177

quotes = finance.quotes_historical_yahoo('AAPL', start, end,
asobject=True)

close = np.array(quotes.close).astype(np.float)
print(close.shape)

print(normal_ad(np.diff(np.log(close))))

#Retrieving data for AAPL
#(252,)
#(0.57103805516803163, 0.13725944999430437)

The following shows the output of the script with p-value of 0.13:

Retrieving data for AAPL

(252,)

(0.57103805516803163, 0.13725944999430437)

How it works...
This recipe demonstrated the Anderson-Darling statistical test for normality, as found in
statsmodels. We used the stock price data, which does not have a normal distribution, as
input. For the data, we got a p-value of 0.13. Since probabilities range between 0 and 1, this
confirms our hypothesis.

Installing scikit-image
scikit-image is a toolkit used for image processing that requires PIL, SciPy, Cython, and
NumPy. Windows installers are available too. The toolkit is part of the Enthought Python
Distribution, as well as the Python(x, y) distribution.

How to do it...
As usual, install scikit-image using any one of the following two commands:

$ pip install -U scikit-image

$ easy_install -U scikit-image

Again, you may need to run these commands as root.

Another option is to obtain the latest development version by cloning the Git repository, or
downloading the repository as a source archive from Github. Then run the following command:

$ python setup.py install

Fun with Scikits

178

Detecting corners
Corner detection (http://en.wikipedia.org/wiki/Corner_detection) is a standard
technique in computer vision. scikit-image offers a Harris corner detector, which is great,
since corner detection is pretty complicated. Obviously, we could do it ourselves from scratch,
but that would violate the cardinal rule of not reinventing the wheel.

Getting ready
You might need to install jpeglib on your system to be able to load the scikit-learn image,
which is a JPEG file. If you are on Windows, use the installer; otherwise, download the
distribution, unpack it, and build from the top folder with the following commands:

$./configure

$ make

$ sudo make install

How to do it...
We will load a sample image from scikit-learn. This is not absolutely necessary for this
example; you can use any other image instead:

1.	 scikit-learn currently has two sample JPEG images in a dataset structure. Look at the
first image only:
dataset = load_sample_images()
img = dataset.images[0]

2.	 Since the first edition of this book, the API has changed. For instance, with scikit-
image 0.11.2, we need to first convert values of a color images to grayscale values.
Gray scale the image as follows:
gray_img = rgb2gray(img)

3.	 Call the corner_harris() function to get the coordinates of the corners:

harris_coords = corner_peaks(corner_harris(gray_img))
y, x = np.transpose(harris_coords)

The code for the corner detection is as follows:
from sklearn.datasets import load_sample_images
import matplotlib.pyplot as plt
import numpy as np
from skimage.feature import corner_harris

http://en.wikipedia.org/wiki/Corner_detection

Chapter 10

179

from skimage.feature import corner_peaks
from skimage.color import rgb2gray

dataset = load_sample_images()
img = dataset.images[0]
gray_img = rgb2gray(img)
harris_coords = corner_peaks(corner_harris(gray_img))
y, x = np.transpose(harris_coords)
plt.axis('off')
plt.imshow(img)
plt.plot(x, y, 'ro')
plt.show()

We get an image with dots, where the script detects corners, as shown in the
following screenshot:

How it works...
We applied Harris corner detection on a sample image from scikit-image. The result is
pretty good, as you can see. We could have done this with NumPy only, since it is just
a straightforward, linear algebra type computation; still it, could have become messy.
The scikit-image toolkit has a lot more similar functions, so check out the scikit-image
documentation if you are in need of an image processing routine. Also keep in mind that
the API can undergo rapid changes.

Fun with Scikits

180

See also
ff The related scikit-image documentation is at http://scikit-image.org/docs/

dev/auto_examples/plot_corner.html

Detecting edges
Edge detection is another popular image processing technique (http://en.wikipedia.
org/wiki/Edge_detection). scikit-image has a Canny filter implementation based on the
standard deviation of the Gaussian distribution, which can perform edge detection out of the
box. Besides the image data as a 2D array, this filter accepts the following parameters:

ff Standard deviation of the Gaussian distribution

ff Lower bound threshold

ff Upper bound threshold

How to do it...
We will use the same image as in the previous recipe. The code is almost the same (see
edge_detection.py). Pay extra attention to the line where we call the Canny filter function:

from sklearn.datasets import load_sample_images
import matplotlib.pyplot as plt
import skimage.feature

dataset = load_sample_images()
img = dataset.images[0]
edges = skimage.feature.canny(img[..., 0])
plt.axis('off')
plt.imshow(edges)
plt.show()

http://scikit-image.org/docs/dev/auto_examples/plot_corner.html
http://scikit-image.org/docs/dev/auto_examples/plot_corner.html
http://en.wikipedia.org/wiki/Edge_detection
http://en.wikipedia.org/wiki/Edge_detection

Chapter 10

181

The code produces an image of the edges within the original image, as shown in the
following screenshot:

See also
ff The related documentation is at http://scikit-image.org/docs/dev/auto_

examples/plot_canny.html

Installing pandas
pandas is a Python library used for data analysis. It has some similarities with the R
programming language, which are not coincidental. R is a specialized programming language
popular with data scientists. For instance, R inspired the core DataFrame object in pandas.

http://scikit-image.org/docs/dev/auto_examples/plot_canny.html
http://scikit-image.org/docs/dev/auto_examples/plot_canny.html

Fun with Scikits

182

How to do it...
On PyPi, the project is called pandas. So, you can run either of the following commands:

$ sudo easy_install -U pandas

$ pip install pandas

If you are using a Linux package manager, you will need to install the python-pandas
project. On Ubuntu, do the following:

$ sudo apt-get install python-pandas

You can also install from source (this requires Git unless you download a source archive):

$ git clone git://github.com/pydata/pandas.git

$ cd pandas

$ python setup.py install

See also
ff The related documentation is at http://pandas.pydata.org/pandas-docs/

stable/install.html

Estimating correlation of stock returns with
pandas

A pandas DataFrame is a matrix and dictionary-like data structure similar to the functionality
available in R. In fact, it is the central data structure in pandas, and you can apply all kinds of
operations on it. It is quite common to take a look, for instance, at the correlation matrix of a
portfolio, so let's do that.

How to do it...
First, we will create the DataFrame with pandas for each symbol's daily log returns. Then we
will join these on the date. At the end, the correlation will be printed and a plot will appear:

1.	 To create the data frame, create a dictionary containing stock symbols as keys and
the corresponding log returns as values. The data frame itself has the date as the
index and the stock symbols as column labels:

data = {}

for i, symbol in enumerate(symbols):

http://pandas.pydata.org/pandas-docs/stable/install.html
http://pandas.pydata.org/pandas-docs/stable/install.html

Chapter 10

183

 data[symbol] = np.diff(np.log(close[i]))

Convention: import pandas as pd
df = pd.DataFrame(data,
 index=dates[0][:-1], columns=symbols)

We can now perform operations such as calculating a correlation matrix or plotting on
the data frame:
print(df.corr())
df.plot()

The complete source code, which also downloads the price data, is as follows:
from __future__ import print_function
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
from matplotlib import finance
import numpy as np

2011 to 2012
start = datetime(2011, 01, 01)
end = datetime(2012, 01, 01)

symbols = ["AA", "AXP", "BA", "BAC", "CAT"]

quotes = [finance.quotes_historical_yahoo(symbol, start, end,
asobject=True)
 for symbol in symbols]

close = np.array([q.close for q in quotes]).astype(np.float)
dates = np.array([q.date for q in quotes])

data = {}

for i, symbol in enumerate(symbols):
 data[symbol] = np.diff(np.log(close[i]))

df = pd.DataFrame(data, index=dates[0][:-1], columns=symbols)

print(df.corr())
df.plot()
plt.legend(symbols)
plt.show()

Fun with Scikits

184

AA AXP BA BAC CAT
#AA 1.000000 0.768484 0.758264 0.737625 0.837643
#AXP 0.768484 1.000000 0.746898 0.760043 0.736337
#BA 0.758264 0.746898 1.000000 0.657075 0.770696
#BAC 0.737625 0.760043 0.657075 1.000000 0.657113
#CAT 0.837643 0.736337 0.770696 0.657113 1.000000

Here is the output for the correlation matrix:
 AA AXP BA BAC CAT

AA 1.000000 0.768484 0.758264 0.737625 0.837643

AXP 0.768484 1.000000 0.746898 0.760043 0.736337

BA 0.758264 0.746898 1.000000 0.657075 0.770696

BAC 0.737625 0.760043 0.657075 1.000000 0.657113

CAT 0.837643 0.736337 0.770696 0.657113 1.000000

The following image shows the plot for the log returns of the five stocks:

Chapter 10

185

How it works...
We used the following DataFrame methods:

Method Description
pandas.DataFrame() This function constructs DataFrame with specified data,

index (row), and column labels.
pandas.DataFrame.corr() This function computes pair-wise correlation of columns,

ignoring the missing values. By default, Pearson
correlation is used.

pandas.DataFrame.plot() This function plots the data frame with matplotlib.

See also
ff The related documentation is at http://pandas.pydata.org/pandas-docs/

dev/generated/pandas.DataFrame.html

ff Chapter 4, pandas Primer, from Ivan Idris' book Python Data Analysis,
Packt Publishing

Loading data as pandas objects from
statsmodels

statsmodels has quite a lot of sample datasets in its distribution. The complete list can
be found at https://github.com/statsmodels/statsmodels/tree/master/
statsmodels/datasets.

In this tutorial, we will concentrate on the copper dataset, which contains information about
copper prices, world consumption, and other parameters.

Getting ready
Before we start, we might need to install patsy. patsy is a library that describes statistical
models. It is easy enough to see whether this library is necessary; just run the code. If you
get errors related to patsy, execute any one of the following commands:

$ sudo easy_install patsy

$ pip install --upgrade patsy

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html
https://github.com/statsmodels/statsmodels/tree/master/statsmodels/datasets
https://github.com/statsmodels/statsmodels/tree/master/statsmodels/datasets

Fun with Scikits

186

How to do it...
In this section, we will load a dataset from statsmodels as a pandas DataFrame or
Series object.

1.	 The function we need to call is load_pandas(). Load the data as follows:
data = statsmodels.api.datasets.copper.load_pandas()

This loads the data in a DataSet object, which contains pandas objects.

2.	 The Dataset object has an attribute called exog, which when loaded as a pandas
object, becomes a DataFrame object with multiple columns. It also has an endog
attribute containing values for the world consumption of copper in our case.

Perform an ordinary least squares calculation by creating an OLS object and calling
its fit() method, as follows:
x, y = data.exog, data.endog

fit = statsmodels.api.OLS(y, x).fit()
print("Fit params", fit.params)

This should print the result of the fitting procedure:

Fit params COPPERPRICE 14.222028

INCOMEINDEX 1693.166242

ALUMPRICE -60.638117

INVENTORYINDEX 2515.374903

TIME 183.193035

3.	 The results of the OLS fit can be summarized by the summary() method, as follows:

print(fit.summary())

Chapter 10

187

This will give us the following output for the regression results:

The code required to load the copper dataset is as follows:

from __future__ import print_function
import statsmodels.api

See https://github.com/statsmodels/statsmodels/tree/master/
statsmodels/datasets
data = statsmodels.api.datasets.copper.load_pandas()

x, y = data.exog, data.endog

fit = statsmodels.api.OLS(y, x).fit()
print("Fit params", fit.params)
print()
print("Summary")
print()
print(fit.summary())

Fun with Scikits

188

How it works...
The data in the Dataset class of statsmodels follows a special format. Among others, this
class has the endog and exog attributes. Statsmodels has the load() function, which loads
data as NumPy arrays. Instead, we used the load_pandas() method, which loads data as
pandas objects. We did an OLS fit, basically giving us a statistical model for copper price
and consumption.

See also
ff The related documentation is at http://statsmodels.sourceforge.net/

stable/datasets/index.html

Resampling time series data
In this tutorial, you will learn how to resample time series with pandas.

How to do it...
We will download the daily price time series data for AAPL and resample it into monthly data
by computing the mean. We will do this by creating a pandas DataFrame and calling its
resample() method:

1.	 Before we can create a pandas DataFrame, we need to create a DatetimeIndex
object to pass to the DataFrame constructor. Create the index from the downloaded
quotes data, as follows:
dt_idx = pandas.DatetimeIndex(quotes.date)

2.	 Once we have the date-time index, we use it together with the close prices to create a
data frame:
df = pandas.DataFrame (quotes.close, index=dt_idx,
columns=[symbol])

3.	 Resample the time series to monthly frequency by computing the mean:
resampled = df.resample('M', how=numpy.mean)
print(resampled)

The resampled time series, as shown in the following lines, has one value for
each month:

 AAPL
2011-01-31 336.932500
2011-02-28 349.680526
2011-03-31 346.005652

http://statsmodels.sourceforge.net/stable/datasets/index.html
http://statsmodels.sourceforge.net/stable/datasets/index.html

Chapter 10

189

2011-04-30 338.960000
2011-05-31 340.324286
2011-06-30 329.664545
2011-07-31 370.647000
2011-08-31 375.151304
2011-09-30 390.816190
2011-10-31 395.532381
2011-11-30 383.170476
2011-12-31 391.251429

4.	 Use the DataFrame plot() method to plot the data:

df.plot()
resampled.plot()
plt.show()

The plot for the original time series is as follows:

Fun with Scikits

190

The resampled data has less data points, and therefore, the resulting plot is choppier,
as shown in the following screenshot:

The complete resampling code is as follows:

from __future__ import print_function
import pandas
import matplotlib.pyplot as plt
from datetime import datetime
from matplotlib import finance
import numpy as np

Download AAPL data for 2011 to 2012
start = datetime(2011, 01, 01)
end = datetime(2012, 01, 01)

symbol = "AAPL"
quotes = finance.quotes_historical_yahoo(symbol, start, end,
asobject=True)

Chapter 10

191

Create date time index
dt_idx = pandas.DatetimeIndex(quotes.date)

#Create data frame
df = pandas.DataFrame(quotes.close, index=dt_idx,
columns=[symbol])

Resample with monthly frequency
resampled = df.resample('M', how=np.mean)
print(resampled)

Plot
df.plot()
plt.title('AAPL prices')
plt.ylabel('Price')

resampled.plot()
plt.title('Monthly resampling')
plt.ylabel('Price')
plt.grid(True)
plt.show()

How it works...
We created a date-time index from a list of dates and times. This index was then used to
create a pandas DataFrame. We then resampled our time series data. A single character
gives the resampling frequency, as listed here:

ff D for daily

ff M for monthly

ff A for annual

The how parameter of the resample() method indicates how the data is sampled.
This defaults to calculating the mean.

See also
ff The related pandas documentation is at http://pandas.pydata.org/pandas-

docs/dev/generated/pandas.DataFrame.resample.html

http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.resample.html
http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.resample.html

193

11
Latest and Greatest

NumPy

In this chapter, we cover the following recipes:

ff Fancy indexing in place of ufuncs with the at() method

ff Partial sorting via selection of the fast median with the partition() function

ff Skipping NaNs with the nanmean(), nanvar(), and nanstd() functions

ff Creating value-initialized arrays with the full() and full_like() functions

ff Random sampling with numpy.random.choice()

ff Using the datetime64 type and the related API

Introduction
Since the first edition of NumPy Cookbook, the NumPy team has introduced new features; I
will describe them in this chapter. It's probably unlikely that you read the first edition of this
book and are now reading the second edition. I wrote the first edition in 2012 and used the
then available features. NumPy has many features, so you can't expect coverage of all of
them, but the functionality I've described in this chapter is relatively important.

Latest and Greatest NumPy

194

Fancy indexing in place for ufuncs with the
at() method

The at() method was added to the NumPy universal function class in NumPy 1.8. This
method allows fancy indexing in-place. Fancy indexing is indexing that does not involve
integers or slices, which is normal indexing. "In-place" means that the data of the input array
will be altered.

The signature for the at() method is ufunc.at(a, indices[, b]). The indices array
corresponds to the elements to operate on. We must specify the b array only for universal
functions with two operands.

How to do it...
The following steps demonstrate how the at() method works:

1.	 Create an array with 7 random integers from -4 to 4 with a seed of 44:
np.random.seed(44)
a = np.random.random_integers(-4, 4, 7)
print(a)

The array appears as follows:

[0 -1 -3 -1 -4 0 -1]

2.	 Apply the at() method of the sign universal function to the third and fifth
array elements:

np.sign.at(a, [2, 4])
print(a)

We get the following altered array:

[0 -1 -1 -1 -1 0 -1]

See also
ff The NumPy universal function documentation is at http://docs.scipy.org/

doc/numpy/reference/ufuncs.html

http://docs.scipy.org/doc/numpy/reference/ufuncs.html
http://docs.scipy.org/doc/numpy/reference/ufuncs.html

Chapter 11

195

Partial sorting via selection for fast median
with the partition() function

The partition() subroutine does partial sorting. This should be less work than
normal sorting.

Refer to http://en.wikipedia.org/wiki/Partial_sorting for more
information. A useful scenario is selecting the top five (or some other
number) items of a group. Partial sorting doesn't preserve the right
order within the set of the top elements.

The first parameter of the subroutine is the input array to sort. The second parameter is
an integer or a list of integers corresponding to the indices of the array elements. The
partition() subroutine sorts items at those indices correctly. One specified index gives
two partitions. Multiple indices result in more than two partitions. The algorithm guarantees
that items in partitions smaller than a correctly sorted item come before that item. Otherwise,
they are put behind that item.

How to do it...
Let's illustrate this explanation with an example:

1.	 Create an array with random numbers to sort:
np.random.seed(20)
a = np.random.random_integers(0, 7, 9)
print(a)

The array has the following elements:

[3 2 7 7 4 2 1 4 3]

2.	 Partially sort the array by partitioning it into two roughly equal parts:

print(np.partition(a, 4))

We get the following result:

[2 3 1 2 3 7 7 4 4]

http://en.wikipedia.org/wiki/Partial_sorting

Latest and Greatest NumPy

196

How it works...
We partially sorted a nine-element array. The function guaranteed only that one element in
the middle, at index 4, is at the right place. This corresponds to attempting to select the top
five items of the array without caring about the order within the top five set. Since the correctly
sorted item is in the middle, this also returns the median of the array.

See also
ff The relevant NumPy documentation is at http://docs.scipy.org/doc/numpy/

reference/generated/numpy.partition.html

Skipping NaNs with the nanmean(), nanvar(),
and nanstd() functions

It is common to attempt to estimate how variable the arithmetic mean, variance, and standard
deviation of a set of data are.

A simple, but effective, method is called jackknife resampling (refer to http://
en.wikipedia.org/wiki/Jackknife_resampling). The idea behind jackknife
resampling is to create datasets from the original data by leaving out one value each time.
In essence, we are attempting to estimate what will occur if at least one of the values is
incorrect. For every new dataset, we recalculate the statistical estimator we are interested in.
This helps us understand how the estimator varies.

How to do it...
We will apply jackknife resampling to random data. We will skip every array element once by
setting it to NaN (Not a Number). The nanmean(), nanvar(), and nanstd() can then be
used to compute the arithmetic mean, variance, and standard deviation:

1.	 First initialize a 30 x 3 array for the estimates, as follows:
estimates = np.zeros((len(a), 3))

2.	 Loop through the array and create a new dataset by setting one value to NaN at every
iteration of the loop. For every new dataset, calculate the estimates:
for i in xrange(len(a)):
 b = a.copy()
 b[i] = np.nan
 estimates[i,] = [np.nanmean(b), np.nanvar(b),
 np.nanstd(b)]

http://docs.scipy.org/doc/numpy/reference/generated/numpy.partition.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.partition.html
http://en.wikipedia.org/wiki/Jackknife_resampling
http://en.wikipedia.org/wiki/Jackknife_resampling

Chapter 11

197

3.	 Print the variance for every estimator:

print("Estimator variance", estimates.var(axis=0))

The following output appears on the screen:

Estimator variance [0.00079905 0.00090129 0.00034604]

How it works...
We estimated the variances of the arithmetic mean, variance, and standard deviation of a
data set with jackknife resampling. This indicates how much the arithmetic mean, variance
and standard deviation vary. The code for this recipe is in the jackknife.py file in this
book's code bundle:

from __future__ import print_function
import numpy as np

np.random.seed(46)
a = np.random.randn(30)
estimates = np.zeros((len(a), 3))

for i in xrange(len(a)):
 b = a.copy()
 b[i] = np.nan

 estimates[i,] = [np.nanmean(b), np.nanvar(b), np.nanstd(b)]

print("Estimator variance", estimates.var(axis=0))

See also
ff The documentation page for nanmean() is at http://docs.scipy.org/doc/

numpy-dev/reference/generated/numpy.nanmean.html

ff The documentation page for nanvar() is at http://docs.scipy.org/doc/
numpy-dev/reference/generated/numpy.nanvar.html

ff The documentation page for nanstd() is at http://docs.scipy.org/doc/
numpy-dev/reference/generated/numpy.nanstd.html

http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.nanmean.html
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.nanmean.html
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.nanvar.html
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.nanvar.html
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.nanstd.html
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.nanstd.html

Latest and Greatest NumPy

198

Creating value initialized arrays with the
full() and full_like() functions

The full() and full_like()functions are new additions to NumPy meant to facilitate
initialization. Here's what the documentation says about them:

>>> help(np.full)

Return a new array of given shape and type, filled with `fill_value`.

>>> help(np.full_like)

Return a full array with the same shape and type as a given array.

How to do it...
Let's see how full() and full_like() function:

1.	 Create a 1 by 2 array with full(), filled with the lucky number 7:
print(np.full((1, 2), 7))

Accordingly, we get the following array:
array([[7., 7.]])

The array elements are floating-point numbers.

2.	 Specify an integer data type, as follows:
print(np.full((1, 2), 7, dtype=np.int))

The output changes accordingly:

array([[7, 7]])

3.	 The full_like() function checks the metadata of an array and reuses it for
the new array. For example, create an array using linspace(), and apply it as a
template for the full_like() function:
a = np.linspace(0, 1, 5)
print(a)
array([0. , 0.25, 0.5 , 0.75, 1.])
print(np.full_like(a, 7))
array([7., 7., 7., 7., 7.])

4.	 Again, we filled the array with the lucky number 7. To modify the data type to integer,
use the following line:

print(np.full_like(a, 7, dtype=np.int))
array([7, 7, 7, 7, 7])

Chapter 11

199

How it works...
We produced arrays with full() and full_like(). The full() function filled the array
with the number 7. The full_like() function reused the metadata of an array for the
creation of a new array. Both functions let you specify the data type of the array.

Random sampling with numpy.random.
choice()

Bootstrapping is a procedure similar to jackknifing. The basic bootstrapping method has the
following steps:

1.	 Generate samples from the original data of size N. Visualize the original data sample
as a bowl of numbers. We create new samples by taking numbers at random from the
bowl. After taking a number, we return it to the bowl.

2.	 For each generated sample, we compute the statistical estimator of interest
(for example, the arithmetic mean).

How to do it...
We will apply numpy.random.choice() to do bootstrapping:

1.	 Generate a data sample following the binomial distribution that simulates flipping a
fair coin five times:
N = 400
np.random.seed(28)
data = np.random.binomial(5, .5, size=N)

2.	 Generate 30 samples and compute their means (more samples will give a
better result):
bootstrapped = np.random.choice(data, size=(N, 30))
means = bootstrapped.mean(axis=0)

3.	 Visualize the arithmetic means distribution with a matplotlib box plot:

plt.title('Bootstrapping demo')
plt.grid()
plt.boxplot(means)
plt.plot(3 * [data.mean()], lw=3, label='Original mean')
plt.legend(loc='best')
plt.show()

Latest and Greatest NumPy

200

Refer to the following annotated plot for the end result:

How it works...
We simulated an experiment involving flipping a fair coin five times. We bootstrapped the
data by creating samples and computing the corresponding means. Then we used numpy.
random.choice() to bootstrap. We visualized the means with a matplotlib box plot.
If you are not familiar with box plots, the annotations in the plot will hopefully help you. The
following elements of the box plot are of importance:

ff The median represented by a line in a box.

ff Upper and lower quartiles shown as edges of the box.

ff Whiskers indicating boundaries for outliers. By default, these are set at 1.5 * (Q3 –
Q1) from the edges of the box, which is also known as the interquartile range.

See also
ff The NumPy numpy.random.choice() documentation is at http://docs.

scipy.org/doc/numpy-dev/reference/generated/numpy.random.
choice.html

ff The matplotlib boxplot() function documentation is at http://matplotlib.
org/api/pyplot_api.html

ff The Wikipedia page about box plots is at http://en.wikipedia.org/wiki/
Box_plot

http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.random.choice.html
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.random.choice.html
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.random.choice.html
http://matplotlib.org/api/pyplot_api.html
http://matplotlib.org/api/pyplot_api.html
http://en.wikipedia.org/wiki/Box_plot
http://en.wikipedia.org/wiki/Box_plot

Chapter 11

201

Using the datetime64 type and related API
The datetime64 type represents a date and the corresponding time. You need NumPy 1.7.0
or later versions to use this data type.

How to do it...
To get acquainted with datetime64, follow these steps:

1.	 Create a datetime64 from a string, as follows:
print(np.datetime64('2015-05-21'))

The preceding line prints the following output:
numpy.datetime64('2015-05-21')

We created a datetime64 type for May 21, 2015, using the YYYY-MM-DD format,
where Y corresponds to the year, M corresponds to the month, and D corresponds to
the day of the month. NumPy complies with the ISO 8601 standard—an international
standard for representing dates and times.

2.	 ISO 8601 also defines the YYYY-MM-DD, YYYY-MM, and YYYYMMDD formats. Check
these out for yourself, as follows:
print(np.datetime64('20150521'))
print(np.datetime64('2015-05'))

The code prints the following lines:

numpy.datetime64('20150521')

numpy.datetime64('2015-05')

3.	 By default, ISO 8601 uses the local time zone. The time can be specified using the
T[hh:mm:ss] format. For example, we can define January 1, 1578, and the time
9:18 p.m. as follows:
local = np.datetime64('1578-01-01T21:18')
print(local)

The following line shows the result:

numpy.datetime64('1578-01-01T21:18Z')

Latest and Greatest NumPy

202

4.	 A string in the -[hh:mm] format defines an offset relative to the UTC time zone. We
can create a datetime64 type with 8 hours of offset, as follows:
with_offset = np.datetime64('1578-01-01T21:18-0800')
print(with_offset)

We then see the following line on the screen:
numpy.datetime64('1578-01-02T05:18Z')

The Z at the end stands for Zulu time, which is how UTC is sometimes referred to.

5.	 Subtract the two datetime64 objects from each other:

print(local - with_offset)

The result appears as follows:
numpy.timedelta64(-480,'m')

Subtracting creates a timedelta64 NumPy object, which in this case indicates a
480-minute delta.

How it works...
You learned about the datetime64 NumPy type. This data type allows us to manipulate
dates and times with ease. Its features include simple arithmetic and creation of arrays
using the normal NumPy capabilities. Please refer to the datetime_demo.py file in this
book's code bundle:

import numpy as np

print(np.datetime64('2015-05-21'))
#numpy.datetime64('2015-05-21')

print(np.datetime64('20150521'))
print(np.datetime64('2015-05'))
#numpy.datetime64('20150521')
#numpy.datetime64('2015-05')

local = np.datetime64('1578-01-01T21:18')
print(local)
#numpy.datetime64('1578-01-01T21:18Z')

with_offset = np.datetime64('1578-01-01T21:18-0800')
print(with_offset)
#numpy.datetime64('1578-01-02T05:18Z')

print(local - with_offset)

Chapter 11

203

See also
ff The relevant NumPy documentation is at http://docs.scipy.org/doc/numpy/

reference/arrays.datetime.html

ff The relevant Wikipedia page is at http://en.wikipedia.org/wiki/ISO_8601

http://docs.scipy.org/doc/numpy/reference/arrays.datetime.html
http://docs.scipy.org/doc/numpy/reference/arrays.datetime.html
http://en.wikipedia.org/wiki/ISO_8601

205

12
Exploratory and
Predictive Data

Analysis with NumPy

In this chapter, we cover the following recipes:

ff Exploring atmospheric pressure

ff Exploring the day-to-day pressure range

ff Studying annual atmospheric pressure averages

ff Analyzing maximum visibility

ff Predicting pressure with an autoregressive model

ff Predicting pressure with a moving average model

ff Studying intrayear average pressure

ff Studying extreme values of atmospheric pressure

Introduction
Data analysis is one of the most important use cases of NumPy. Depending on our goals, we
can distinguish between many phases and types of data analysis. In this chapter, we will talk
about exploratory and predictive data analysis. Exploratory data analysis probes the data for
clues. At this stage, we are probably unfamiliar with the dataset. Predictive analysis tries to
predict something about the data using a model.

Exploratory and Predictive Data Analysis with NumPy

206

The data comes from the Dutch meteorological institute KNMI. It is specifically about the
weather station at De Bilt, where the KNMI headquarters is located. In these recipes, we
will inspect atmospheric pressure and maximum visibility (see http://www.knmi.nl/
climatology/daily_data/download.html).

I modified and converted the textual data from the KNMI to the NumPy-specific .npy format,
saved as a 40996 x 5 array. The array contains daily values for five variables:

ff The date in the YYYYMMDD format

ff The average daily atmospheric pressure

ff The highest daily atmospheric pressure

ff The lowest daily atmospheric pressure

ff The maximum daily visibility

Exploring atmospheric pressure
In this recipe, we will take a look at the daily mean sea level pressure (in 0.1 hPa) calculated
from 24 hourly values. This includes printing descriptive statistics and visualizing the
probability distribution. In nature, we often deal with the normal distribution, so the
normality test from Chapter 10, Fun with Scikits, will come in handy.

The complete code is in the exploring.py file in this book's code bundle:

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.stats.adnorm import normal_ad

data = np.load('cbk12.npy')

Multiply to get hPa values
meanp = .1 * data[:,1]

Filter out 0 values
meanp = meanp[meanp > 0]

Get descriptive statistics
print("Max", meanp.max())
print("Min", meanp.min())
mean = meanp.mean()
print("Mean", mean)
print("Median", np.median(meanp))
std = meanp.std()

http://www.knmi.nl/climatology/daily_data/download.html
http://www.knmi.nl/climatology/daily_data/download.html

Chapter 12

207

print("Std dev", std)

Check for normality
print("Normality", normal_ad(meanp))

#histogram with Gaussian PDF
plt.subplot(211)
plt.title('Histogram of average atmospheric pressure')
_, bins, _ = plt.hist(meanp, np.sqrt(len(meanp)), normed=True)
plt.plot(bins, 1/(std * np.sqrt(2 * np.pi)) * np.exp(- (bins -
mean)**2/(2 * std**2)), 'r-', label="Gaussian PDF")
plt.grid()
plt.legend(loc='best')
plt.xlabel('Average atmospheric pressure (hPa)')
plt.ylabel('Frequency')

boxplot
plt.subplot(212)
plt.boxplot(meanp)
plt.title('Boxplot of average atmospheric pressure')
plt.ylabel('Average atmospheric pressure (hPa)')
plt.grid()

Improves spacing of subplots
plt.tight_layout()
plt.show()

Getting ready
Install statsmodels, if you haven't installed already, for the normality test (see the Installing
scikits-statsmodels recipe Chapter 10, Fun with Scikits).

How to do it...
Follow these steps to explore the daily atmospheric pressure:

1.	 Load the data with the load() function:
data = np.load('cbk12.npy')

2.	 Normally data needs to be processed and cleaned up. In this case, multiply the
values to get values in hPa and remove 0 values corresponding to the missing values:
Multiply to get hPa values
meanp = .1 * data[:,1]

Filter out 0 values
meanp = meanp[meanp > 0]

Exploratory and Predictive Data Analysis with NumPy

208

3.	 Get descriptive statistics, including maximum, minimum, arithmetic mean, median,
and standard deviation:
print("Max", meanp.max())
print("Min", meanp.min())
mean = meanp.mean()
print("Mean", mean)
print("Median", np.median(meanp))
std = meanp.std()
print("Std dev", std)

You should see the following values:
Max 1048.3
Min 962.1
Mean 1015.14058231
Median 1015.8
Std dev 9.85889134337

4.	 Apply the normality test from Chapter 10, Fun with Scikits, as follows:
print("Normality", normal_ad(meanp))

The following values appear on the screen:
Normality (72.685781095773564, 0.0)

It is also nice to visualize the distribution of values with a histogram and a box plot.
Refer to the following plot for the end result:

Chapter 12

209

See also
ff The Performing a normality test with statsmodels recipe from Chapter 10,

Fun with Scikits

ff For an explanation of box plots, see the Random sampling with numpy.random.
choice() recipe from Chapter 11, Latest and Greatest NumPy

ff The documentation of the load() function is at http://docs.scipy.org/doc/
numpy/reference/generated/numpy.load.html

Exploring the day-to-day pressure range
The daily pressure range is the difference of the daily highs and lows. With real-world data, we
sometimes have missing values. Here, we can potentially lack values for the high and/or low
pressures of a given day. It's possible to fill those gaps with a smart algorithm. However, let's
keep it simple and just ignore them. After calculating the ranges, we will do a similar analysis
as in the previous recipe, but we will use functions that can deal with NaN values. Also, we will
look at the relation between months and ranges.

The corresponding code is in the day_range.py file in this book's code bundle:

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import calendar as cal

data = np.load('cbk12.npy')

Multiply to get hPa values
highs = .1 * data[:,2]
lows = .1 * data[:,3]

Filter out 0 values
highs[highs == 0] = np.nan
lows[lows == 0] = np.nan

Calculate range and stats
ranges = highs - lows
print("Minimum daily range", np.nanmin(ranges))
print("Maximum daily range", np.nanmax(ranges))

print("Average daily range", np.nanmean(ranges))
print("Standard deviation", np.nanstd(ranges))

http://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html

Exploratory and Predictive Data Analysis with NumPy

210

Get months
dates = data[:,0]
months = (dates % 10000)/100
months = months[~np.isnan(ranges)]

monthly = []
month_range = np.arange(1, 13)

for month in month_range:
 indices = np.where(month == months)
 monthly.append(np.nanmean(ranges[indices]))

plt.bar(month_range, monthly)
plt.title('Monthly average of daily pressure ranges')
plt.xticks(month_range, cal.month_abbr[1:13])
plt.ylabel('Monthly Average (hPa)')
plt.grid()
plt.show()

How to do it...
The first steps of this recipe are almost the same as those of the previous recipe, so we will
skip them. Follow along for the analysis of the daily pressure range:

1.	 We could leave missing values at their current 0 value. However, it is usually safer to
set them to NaN to avoid confusion. Set the missing values to NaN, as follows:
highs[highs == 0] = np.nan
lows[lows == 0] = np.nan

2.	 Compute the ranges, minima, maxima, mean, and standard deviations with the
nanmin(), nanmax(), nanmean(), and nanstd() functions:
ranges = highs - lows
print("Minimum daily range", np.nanmin(ranges))
print("Maximum daily range", np.nanmax(ranges))

print("Average daily range", np.nanmean(ranges))
print("Standard deviation", np.nanstd(ranges))

The result appears on the screen:

Minimum daily range 0.4

Maximum daily range 41.7

Average daily range 6.11945360571

Standard deviation 4.42162136692

Chapter 12

211

3.	 As I mentioned previously, the dates are given in the YYYYMMDD format. With a
bit of arithmetic, we can easily get the months. Also, we ignore the month values
corresponding to the NaN range values:
dates = data[:,0]
months = (dates % 10000)/100
months = months[~np.isnan(ranges)]

4.	 Average the ranges by month, as follows:

monthly = []
month_range = np.arange(1, 13)

for month in month_range:
 indices = np.where(month == months)
 monthly.append(np.nanmean(ranges[indices]))

In the last step, we draw a matplotlib bar chart of monthly average values of daily
pressure ranges. Refer to the following plot for the end result:

Exploratory and Predictive Data Analysis with NumPy

212

How it works...
We analyzed the daily ranges of atmospheric pressure. Further, we visualized the monthly
averages of the daily range. There seems to be a pattern leading to smaller daily atmospheric
pressure ranges in summer. Of course, more work is necessary to make certain.

See also
ff The Exploring atmospheric pressure recipe

Studying annual atmospheric pressure
averages

You may have heard of global warming, which claims that temperature is rising steadily each
year. Since pressure is another thermodynamic variable, we may expect pressure also to
follow a trend. The complete code for this recipe is in the annual.py file in this book's
code bundle:

import numpy as np
import matplotlib.pyplot as plt

data = np.load('cbk12.npy')

Multiply to get hPa values
avgs = .1 * data[:,1]
highs = .1 * data[:,2]
lows = .1 * data[:,3]

Filter out 0 values
avgs = np.ma.array(avgs, mask = avgs == 0)
lows = np.ma.array(lows, mask = lows == 0)
highs = np.ma.array(highs, mask = highs == 0)

Get years
years = data[:,0]/10000

Initialize annual stats arrays
y_range = np.arange(1901, 2014)
nyears = len(y_range)
y_avgs = np.zeros(nyears)

Chapter 12

213

y_highs = np.zeros(nyears)
y_lows = np.zeros(nyears)

Compute stats
for year in y_range:
 indices = np.where(year == years)
 y_avgs[year - 1901] = np.mean(avgs[indices])
 y_highs[year - 1901] = np.max(highs[indices])
 y_lows[year - 1901] = np.min(lows[indices])

plt.title('Annual atmospheric pressure for De Bilt(NL)')
plt.ticklabel_format(useOffset=900, axis='y')

plt.plot(y_range, y_avgs, label='Averages')

Plot ignoring NaNs
h_mask = np.isfinite(y_highs)
plt.plot(y_range[h_mask], y_highs[h_mask], '^', label='Highs')

l_mask = np.isfinite(y_lows)
plt.plot(y_range[l_mask], y_lows[l_mask], 'v', label='Lows')

plt.xlabel('Year')
plt.ylabel('Atmospheric pressure (hPa)')
plt.grid()
plt.legend(loc='best')
plt.show()

How to do it...
To check for a trend, let's plot the average, maximum, and minimum annual atmospheric
pressures with the following steps:

1.	 Initialize the annual statistics arrays:
y_range = np.arange(1901, 2014)
nyears = len(y_range)
y_avgs = np.zeros(nyears)
y_highs = np.zeros(nyears)
y_lows = np.zeros(nyears)

Exploratory and Predictive Data Analysis with NumPy

214

2.	 Compute the annual statistics:
for year in y_range:
 indices = np.where(year == years)
 y_avgs[year - 1901] = np.mean(avgs[indices])
 y_highs[year - 1901] = np.max(highs[indices])
 y_lows[year - 1901] = np.min(lows[indices])

3.	 Plot, ignoring the NaN values, as follows:

h_mask = np.isfinite(y_highs)
plt.plot(y_range[h_mask], y_highs[h_mask], '^', label='Highs')

l_mask = np.isfinite(y_lows)
plt.plot(y_range[l_mask], y_lows[l_mask], 'v', label='Lows')

Refer to the following plot for the end result:

Chapter 12

215

How it works...
The average annual pressure seems to be flat or fluctuating a bit, but without any trend. We
used the isfinite() function to ignore the NaN values in the final plot. This function checks
for infinite and NaN values.

See also
ff The Exploring atmospheric pressure recipe

ff The isfinite() function documentation is at http://docs.scipy.org/doc/
numpy/reference/generated/numpy.isfinite.html

Analyzing maximum visibility
If you've gone through all the recipes in this chapter so far, you might need a break from
atmospheric pressure. So let's look into visibility instead. The data file has a column for a
maximum visibility, which the KNMI describes as follows:

"Maximum visibility; 0: <100 m, 1:100-200 m, 2:200-300 m,..., 49:4900-5000 m,
50:5-6 km, 56:6-7 km, 57:7-8 km,..., 79:29-30 km, 80:30-35 km, 81:35-40 km,...,
89: >70 km)"

Visibility here is a discrete variable, so averaging values may not make sense. Also, it seems
that we have a lot of 0 values for the period between 1901 and 1950 for almost every day.
I don't believe that De Bilt was extra foggy in that period. For the purpose of this recipe, we
define mist as visibility between 1 and 2 km, which corresponds to the values of 10 and 20 in
the data file. Let's also define haze as visibility between 2 and 5 km. This in turn corresponds
to 20 and 50 in our data file.

Air pollution could reduce visibility, especially on clear days. We can define clear days as those
with visibility higher than 30 km, or the value of 79 in our data file. Ideally, we should use air
pollution data, but unfortunately, we don't have that. As far as I know, the air pollution levels
around this particular weather station are not very high. It is interesting to know the number
of clear days per year. The code for the analysis is in the visibility.py file in this book's
code bundle:

import numpy as np
import matplotlib.pyplot as plt

data = np.load('cbk12.npy')

Get minimum visibility
visibility = data[:,4]

http://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html

Exploratory and Predictive Data Analysis with NumPy

216

doy
doy = data[:,0] % 10000

doy_range = np.unique(doy)

Initialize arrays
ndoy = len(doy_range)
mist = np.zeros(ndoy)
haze = np.zeros(ndoy)

Compute frequencies
for i, d in enumerate(doy_range):
 indices = np.where(d == doy)
 selection = visibility[indices]

 mist_truth = (10 < selection) & (selection < 20)
 mist[i] = len(selection[mist_truth])/(1. * len(selection))

 haze_truth = (20 < selection) & (selection < 50)
 haze[i] = len(selection[haze_truth])/(1. * len(selection))

Get years
years = data[:,0]/10000

Initialize annual stats arrays
y_range = np.arange(1901, 2014)
nyears = len(y_range)
y_counts = np.zeros(nyears)

Get annual counts
for year in y_range:
 indices = np.where(year == years)
 selection = visibility[indices]
 y_counts[year - 1901] = len(selection[selection > 79])

plt.subplot(211)
plt.plot(np.arange(1, 367), mist, color='.25', label='mist')
plt.plot(np.arange(1, 367), haze, color='0.75', lw=2, label='haze')
plt.title('Probability of mist and haze')
plt.xlabel('Day of the year')

Chapter 12

217

plt.ylabel('Probability')
plt.grid()
plt.legend(loc='best')

plt.subplot(212)
plt.plot(y_range, y_counts)
plt.xlabel('Year')
plt.ylabel('Number of clear days')
plt.title('Annual counts of clear days')
plt.grid()
plt.tight_layout()
plt.show()

How to do it...
Follow these steps to plot annual counts of clear days, the day of year (1-366) against the
probability of haze and mist:

1.	 Compute the probability of haze and mist with following code block:
for i, d in enumerate(doy_range):
 indices = np.where(d == doy)
 selection = visibility[indices]

 mist_truth = (10 < selection) & (selection < 20)
 mist[i] = len(selection[mist_truth])/(1. * len(selection))

 haze_truth = (20 < selection) & (selection < 50)
 haze[i] = len(selection[haze_truth])/(1. * len(selection))

2.	 Get the annual counts using this snippet:

for year in y_range:
 indices = np.where(year == years)
 selection = visibility[indices]
 y_counts[year - 1901] = len(selection[selection > 79])

Exploratory and Predictive Data Analysis with NumPy

218

Refer to the following plot for the end result:

How it works...
As you can see, we start getting clear days after 1950. This is not due to extra foggy weather
before 1950, but because of the phenomenon of missing or invalid data. The drop in the
last year is also due to incomplete data. After 1980, we see a definite rise of clear days.
This is supposed to be the period when global warming and climate change increased too.
Unfortunately, we don't have data directly linked to air pollution, but our exploratory analysis
indicates the existence of a trend.

Mist seems to occur mostly in the first and last two months of the year. You can draw similar
conclusions about haze. Obviously, haze is more probable than mist, which is probably a good
thing. You could also plot a histogram to make sure. However, keep in mind that you need to
ignore 0 values as I mentioned earlier.

Chapter 12

219

See also
ff The Exploring atmospheric pressure recipe

ff The Studying annual atmospheric pressure averages recipe

ff The relevant Wikipedia page at http://en.wikipedia.org/wiki/Visibility

Predicting pressure with an autoregressive
model

A very simple predictive model takes the current value of a variable and extrapolates it to
the next period. To extrapolate, we can use a simple mathematical function. Since a variety
of functions can be approximated by polynomials as in the Taylor series, polynomials of low
degree might do the trick. What this boils down to is regression of the previous values to the
next values. The corresponding models are therefore called autoregressive.

We have to be careful about overfitting. Cross-validation is a common approach to split the
data into train and test sets. We fit the data using the train set and test the fit with the test
set. This should reduce bias (see the autoregressive.py file in this book's code bundle):

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt

data = np.load('cbk12.npy')

Load average pressure
meanp = .1 * data[:,1]

Split point for test and train data
cutoff = 0.9 * len(meanp)

for degree, marker in zip(xrange(1, 4), ['o', 'x','.']):
 poly = np.polyfit(meanp[:cutoff - 1], meanp[1:cutoff], degree)
 print('Polynomial coefficients', poly)

 fit = np.polyval(poly, meanp[cutoff:-1])
 error = np.abs(meanp[cutoff + 1:] - fit)/fit
 plt.plot(error, marker, color=str(.25* degree), label='Degree ' +
str(degree))
 plt.plot(np.full(len(error), error.mean()), lw=degree, label='Mean
for degree ' + str(degree))

http://en.wikipedia.org/wiki/Visibility

Exploratory and Predictive Data Analysis with NumPy

220

 print("Absolute mean relative error", error.mean(), 'for polynomial
of degree', degree)
 print()

plt.title('Relative test errors for polynomial fits')
plt.ylabel('Relative error')
plt.grid()
plt.legend(loc='best')
plt.show()

How to do it...
With the following steps, we will fit atmospheric pressure using polynomials of
varying degrees:

1.	 Define a cutoff for the test and train sets:
cutoff = 0.9 * len(meanp)

2.	 Fit the data with the polyfit() and polyval() functions:
poly = np.polyfit(meanp[:cutoff - 1], meanp[1:cutoff], degree)
print('Polynomial coefficients', poly)

fit = np.polyval(poly, meanp[cutoff:-1])

3.	 Calculate the relative error:

error = np.abs(meanp[cutoff + 1:] - fit)/fit

This code prints the following output:
Polynomial coefficients [0.995542 4.50866543]

Absolute mean relative error 0.00442472512506 for polynomial of
degree 1

Polynomial coefficients [-1.79946321e-04 1.17995347e+00
2.77195814e+00]

Absolute mean relative error 0.00421276856088 for polynomial of
degree 2

Polynomial coefficients [3.17914507e-06 -6.62444552e-03
4.44558056e+00 2.76520065e+00]

Absolute mean relative error 0.0041906802632 for polynomial of
degree 3

Chapter 12

221

Refer to the following plot for the end result:

How it works...
The mean relative errors for the three polynomials are very close—around .004—so we see a
single line in the plot (it would be interesting to know what the typical measurement error is
for atmospheric pressure), which is smaller than a percent. We see some potential outliers,
but not too many. Most of the heavy lifting was done by the polyfit() and polyval()
functions, which respectively fit data to a polynomial and evaluate the polynomial.

See also
ff The Exploring atmospheric pressure recipe

ff The Wikipedia page about cross-validation at http://en.wikipedia.org/wiki/
Cross-validation_%28statistics%29

ff The documentation for polyfit() is at http://docs.scipy.org/doc/numpy/
reference/generated/numpy.polyfit.html

ff The documentation for polyval() is at http://docs.scipy.org/doc/numpy/
reference/generated/numpy.polyval.html

http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyval.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyval.html

Exploratory and Predictive Data Analysis with NumPy

222

Predicting pressure with a moving average
model

A simple way to model atmospheric pressure is to assume that values dance around a mean
μ. We then assume in the simplest case that deviations of consecutive values ε from the
mean follow this equation:

1t t tP µ ε θε −= + +

The relation is linear and in the simplest case, we need to estimate only one parameter—θ.
To do so, we will require SciPy functionality. The full code for this recipe is in the
moving_average.py file in this book's code bundle:

from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime as dt
from scipy.optimize import leastsq

data = np.load('cbk12.npy')

Load average pressure
meanp = .1 * data[:,1]

cutoff = 0.9 * len(meanp)

def model(p, ma1):
 return p * ma1

def error(p, t, ma1):
 return t - model(p, ma1)

p0 = [.9]
mu = meanp[:cutoff].mean()
params = leastsq(error, p0, args=(meanp[1:cutoff] - mu,
meanp[:cutoff-1] - mu))[0]
print(params)

abs_error = np.abs(error(params, meanp[cutoff+1:] - mu,
meanp[cutoff:-1] - mu))

Chapter 12

223

plt.plot(abs_error, label='Absolute error')
plt.plot(np.full_like(abs_error, abs_error.mean()), lw=2,
label='Absolute mean error')
plt.title('Absolute error for the moving average model')
plt.ylabel('Absolute error (hPa)')
plt.grid()
plt.legend(loc='best')
plt.show()

Getting started
If necessary, install SciPy by following the instructions in the Installing SciPy recipe of
Chapter 2, Advanced Indexing and Array Concepts.

How to do it...
The following steps apply the moving average model to atmospheric pressure.

1.	 Define the following functions:
def model(p, ma1):
 return p * ma1

def error(p, t, ma1):
 return t - model(p, ma1)

2.	 Use the functions from the previous step to fit a moving average model with the
leastsq() function and initial guess of 0.9 for the model parameter:
p0 = [.9]
mu = meanp[:cutoff].mean()
params = leastsq(error, p0, args=(meanp[1:cutoff] - mu,
meanp[:cutoff-1] - mu))[0]

3.	 Compute the absolute error after fitting using the test dataset:

abs_error = np.abs(error(params, meanp[cutoff+1:] - mu,
meanp[cutoff:-1] - mu))

Exploratory and Predictive Data Analysis with NumPy

224

Refer to the following plot of the absolute error for each data point in the dataset:

How it works...
The leastsq() function fits a model by minimizing errors. It requires a function that
computes the error of the fit and an initial guess for model parameters.

See also
ff The Exploring atmospheric pressure recipe

ff The Wikipedia page about the moving average model at http://en.wikipedia.
org/wiki/Moving-average_model

ff The documentation for leastsq() is at http://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.leastsq.html

Studying intrayear average pressure
It's interesting to explore the atmospheric pressure within a year. In particular, it may
be informative to check for patterns related with variability, and therefore, predictability.
The reason is that atmospheric pressure in some months can vary much, and reduce
predictability. In this recipe, we will plot monthly box plots and monthly variance of
atmospheric pressure.

http://en.wikipedia.org/wiki/Moving-average_model
http://en.wikipedia.org/wiki/Moving-average_model
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html

Chapter 12

225

The recipe code is in the intrayear.py file in this book's code bundle. Please pay extra
attention to the highlighted sections:

import numpy as np
import matplotlib.pyplot as plt
import calendar as cal

data = np.load('cbk12.npy')

Multiply to get hPa values
meanp = .1 * data[:,1]

Get months
dates = data[:,0]
months = (dates % 10000)/100

monthly = []
vars = np.zeros(12)
month_range = np.arange(1, 13)

for month in month_range:
 indices = np.where(month == months)
 selection = meanp[indices]

 # Filter out 0 values
 selection = selection[selection > 0]

 monthly.append(selection)
 vars[month - 1] = np.var(selection)

def plot():
 plt.xticks(month_range, cal.month_abbr[1:13])
 plt.grid()
 plt.xlabel('Month')

plt.subplot(211)
plot()
plt.title('Atmospheric pressure box plots')
plt.boxplot(monthly)
plt.ylabel('Atmospheric pressure (hPa)')

plt.subplot(212)

Exploratory and Predictive Data Analysis with NumPy

226

plot()

Display error bars using standard deviation
plt.errorbar(month_range, vars, yerr=vars.std())
plt.plot(month_range, np.full_like(month_range, np.median(vars)),
lw=3, label='Median')

Shades the region above the median
plt.fill_between(month_range, vars, where=vars>np.median(vars),
color='0.5')
plt.title('Variance of atmospheric pressure')
plt.ylabel('Variance')
plt.legend(loc='best')

plt.show()

How to do it...
While we are exploring, the steps tend to be repeated, and there is an overlap between this
recipe and the other recipes in this book. The following steps are new in this recipe:

1.	 Display error bars using the standard deviation:
plt.errorbar(month_range, vars, yerr=vars.std())

2.	 Shade the region of the plot with values above the median:

plt.fill_between(month_range, vars,
where=vars>np.median(vars), color='0.5')

Refer to the following plot for the end result:

Chapter 12

227

How it works...
We matched months to measurements of atmospheric pressure. We used the matches
to draw box plots and visualize monthly variance. This study shows that the atmospheric
pressure variance is above the median in the coldest months of January, February, November,
and December. From the plots, we see that the pressure ranges narrow in the warm summer
months. This is consistent with the results from the other recipes.

See also
ff The Exploring atmospheric pressure recipe

ff The Studying annual atmospheric pressure averages recipe

ff The documentation for var() is at http://docs.scipy.org/doc/numpy/
reference/generated/numpy.var.html

http://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html

Exploratory and Predictive Data Analysis with NumPy

228

Studying extreme values of atmospheric
pressure

Outliers are a problem because they influence our understanding of data. In this recipe, we
define outliers to be away from the first or third quartile of the data by at least 1.5 times
the interquartile range. The interquartile range is the distance between the first and third
quartiles. Let's count the outliers for each month of the year. The complete code is in the
extreme.py file in this book's code bundle:

import numpy as np
import matplotlib.pyplot as plt
import calendar as cal

data = np.load('cbk12.npy')

Multiply to get hPa values
meanp = .1 * data[:,1]

Filter out 0 values
meanp = np.ma.array(meanp, mask = meanp == 0)

Calculate quartiles and irq
q1 = np.percentile(meanp, 25)
median = np.percentile(meanp, 50)
q3 = np.percentile(meanp, 75)

irq = q3 - q1

Get months
dates = data[:,0]
months = (dates % 10000)/100

m_low = np.zeros(12)
m_high = np.zeros(12)
month_range = np.arange(1, 13)

for month in month_range:
 indices = np.where(month == months)
 selection = meanp[indices]
 m_low[month - 1] = len(selection[selection < (q1 - 1.5 * irq)])
 m_high[month - 1] = len(selection[selection > (q3 + 1.5 * irq)])

plt.xticks(month_range, cal.month_abbr[1:13])
plt.bar(month_range, m_low, label='Low outliers', color='.25')
plt.bar(month_range, m_high, label='High outliers', color='0.5')
plt.title('Atmospheric pressure outliers')
plt.xlabel('Month')

Chapter 12

229

plt.ylabel('# of outliers')
plt.grid()
plt.legend(loc='best')
plt.show()

How to do it...
To plot the number of outliers for each month of the year, do the following steps:

1.	 Compute the quartiles and the interquartile range with the percentile() function:
q1 = np.percentile(meanp, 25)
median = np.percentile(meanp, 50)
q3 = np.percentile(meanp, 75)

irq = q3 - q1

2.	 Count the number of outliers, as follows:

for month in month_range:
 indices = np.where(month == months)
 selection = meanp[indices]
 m_low[month - 1] = len(selection[selection < (q1 - 1.5 * irq)])
 m_high[month - 1] = len(selection[selection > (q3 + 1.5 *
irq)])

Refer to the following plot for the end result:

Exploratory and Predictive Data Analysis with NumPy

230

How it works...
It looks like we got outliers mostly on the lower side and they are less probable in summer.
The outliers on the higher side seem to occur only during certain months. We found the
quartiles with the percentile() function, using the fact that a quarter corresponds to
25 percent.

See also
ff The Exploring atmospheric pressure recipe

ff The documentation for the percentile() function is at http://docs.scipy.
org/doc/numpy-dev/reference/generated/numpy.percentile.html

http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.percentile.html
http://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.percentile.html

231

Index
A
additive smoothing

URL 56
annual atmospheric pressure averages

studying 212, 213
append() function 126
arange() function 47
array interface

URL 75
using 74, 75

arrays
broadcasting 39-41

astype() function 47
atmospheric pressure

exploring 206-209
extreme values, studying 228-230

audio filter
designing 104-106

audio fragments
repeating 98, 99

autoregressive 219

B
Behavior-driven Development (BDD) 151-154
binomial proportion confidence

URL 158
Boolean indexing 34-36
bootstrapping 199
box plots

URL 200
broadcasting

URL 41
buffer interface 72

buffer protocol
URL 73
using 72-74

Butterworth filter
URL 104

C
Canny filter 180
ceil() function 50
C functions

calling 160, 161
chararray

URL 113
used, for performing string

operations 112, 113
choose() function 95
clustering

about 171
Dow Jones stocks, with scikits-learn 171-175

code
analyzing, Pylint used 140, 141
profiling, cProfile extension used 131, 132
profiling, line_profiler used 130, 131
testing, docstrings used 143-145
testing, mocks used 149-151

compress() function 65
concatenate() function

URL 103
copies

creating 26-28
corner detection

about 178, 179
URL 178

232

cProfile extension
used, for profiling code 131, 132

cross-validation
about 219
URL 221

Cython
about 155
code, profiling 162-165
factorials, approximating 165-168
installing 156
installing, from source archive 156
installing on Windows, URL 156
online documentation, URL 156
using, with NumPy 158, 159

D
data

exchanging, MATLAB used 76, 77
exchanging, Octave used 76, 77
loading, as pandas objects from

statsmodels 185-188
datetime64 type

using 201-203
day-to-day pressure range

exploring 209-212
Debian

PIL, installing 22
diff() function 58
dips

trading periodically 62-65
docstrings

used, for testing code 143-145
doctest

URL 145
Dow Jones stocks

clustering, with scikits-learn 171-175

E
easy_install

used, for installing IPython 3
used, for installing PIL 22
used, for installing scikit-learn 170
used, for installing SciPy 21

edge detection
about 180, 181

with Sobel filter 106-108
eigenvector

URL 53
eig() function 58
Enthought

URL 7
escape time algorithm 93
exploratory data analysis 205
extreme values

ignoring 116-119

F
factorials

approximating, with Cython 165-168
fancy indexing

about 30-32
for ufuncs, at() method used 194
URL 32

Fermat's factorization method
URL 48

Fibonacci numbers
summing 44-47
URL 44

Fibonacci series 44
frompyfunc() NumPy function

URL 110
full() function

used, for creating value initialized arrays 198
full_like() function

used, for creating value initialized arrays 198

G
Gaussian filter

URL 95
gfortran

URL 21
Git

URL 139
golden ratio

about 44
URL 45

Google App Engine (GAE)
installing 81

Google cloud
NumPy code, deploying 83, 84

233

H
Hello World program

building 156, 157
histogram() function

URL 61

I
IIR (infinite impulse response)

URL 104
images

blurring 95-97
combining 92-95
loading, into memory maps 88-92
resizing 23-26

interquartile range 228
intrayear average pressure

studying 224-227
ipdb package

URL 135
IPython

about 1
debugging with 133-135
installing 2
installing, from source 3
installing, on Linux 2, 3
installing, on Mac OS X 2
installing, on Windows 2
installing, with easy_install 3
installing, with pip 3
profiling with 126-128
URL 1

IPython magics documentation
URL 129

IPython notebook
exporting 11
exporting, options 11, 12
running 8-10
running, in pylab mode 9
running, with inline figures 9
saving 12
URL 11

IPython shell
features 4

URL 6
using 4-6

isfinite() function
URL 215

ix_() function
URL 34

J
jackknife resampling

about 196
URL 196

Java virtual machine (JVM) 79
JPype

about 79
installing 79
NumPy array, sending to 80, 81
URL 79

L
leastsq() function

about 224
URL 224

Lena
flipping 28-30

Lettuce documentation
URL 154

line_profiler
installing 129
used, for profiling code 130, 131

linspace() function 95
Linux

IPython, installing 3
matplotlib, installing 8
SciPy, installing 21

list of locations
indexing with 32-34

load() function
URL 209

log() function 47
log returns

URL 60

234

M
Mac OS X

IPython, installing 2
matplotlib, installing 8
SciPy, installing 21

Mandelbrot fractal
URL 92

manual pages
reading 6

Markov chain 53
masked array

creating 114, 115
MATLAB

used, for exchanging data 76, 77
matplotlib

installing 7
installing, on Linux 8
installing, on Mac OS X 8
installing, on Windows 7
URL 8

matplotlib boxplot() function
URL 200

maximum visibility
analyzing 215-218

memory maps
images, loading into 88-92

meshgrid() function 95
mocks

about 149
URL 151
used, for testing code 149-151

modf() function 50
moving average model

pressure, predicting with 222-224
URL 224

N
nanmean() function

URL 197
NaNs

skipping, nanmean() function used 196, 197
skipping, nanstd() function used 196, 197
skipping, nanvar() function used 196, 197

nanstd() function
URL 197

nanvar() function
URL 197

negative values
ignoring 116-119

normality test
performing, statsmodels used 176, 177
URL 176

notebook server
about 8
configuring 13-15

NumPy
about 19
array, sending to JPype 80, 81
code, deploying on Google cloud 83, 84
code, running in Python Anywhere web

console 85, 86
Cython, using 158, 159
URL, for documentation 196

NumPy functions
ceil() 50
modf() 50
ravel() 50
take() 50
where() 50

numpy.ma module
URL 115

NumPy memory map
URL 92

numpy.random.choice()
used, for random sampling 199, 200

numpy.recarray module
URL 121

NumPy universal function
URL 194

NumPy view() function
URL 28

O
Octave

URL 76
used, for exchanging data 76, 77

OpenSSL
URL 16

outer() function
URL 52

235

outer product
URL 52

outer() universal function
URL 112

overfitting 219

P
palindromic numbers

finding 51, 52
pandas

data loading as objects, from
statsmodel 185-188

installing 181, 182
stock returns correlation, estimating 182-185

Pareto principle
URL 58

partial sorting
URL 195

partition() function
used for partial sorting via selection, for fast

median 195, 196
passwd() function

URL 16
percentile() function

URL 230
PIL

installing 22
installing, easy_install used 22
installing, on Debian 22
installing, on Ubuntu 22
installing, on Windows 22
installing, pip used 22

Pillow
URL 22

pip
used, for installing IPython 3
used, for installing PIL 22
used, for installing SciPy 21

plot() function
URL 11

polyfit() function
about 126
URL 61

polyval() function
about 126
URL 221

power law
discovering 58-61
URL 58

pressure
predicting, with autoregressive

model 219-221
predicting, with moving average

model 222-224
prime factors

finding 48-50
URL 48

profiler output
% Time 131
cumtime 128
Hits 131
Line # 131
Line Contents 131
ncalls 128
percall 128
Per Hit 131
tottime 128

pstats tutorial
URL 132

pudb
debugging with 136

Pychecker
URL 142
used, for performing static analysis 142

Pyflakes
about 138
installing 138
URL 138
used, for performing static analysis 139, 140

Pylint
about 140
URL 140
used, for analyzing code 140, 141

PyPi pudb page
URL 136

Pythagorean Theorem 111
Pythagorean triples

finding 110-112
URL 110

Python Anywhere web console
NumPy code, running 85, 86

Python debugger documentation
URL 135

236

Python Image Library. See PIL
Python profilers documentation

URL 132

R
R

interfacing with 78, 79
URL 77

rand() function 67
randint() function 67
randn() function 67
random_integers() function 126
ravel() function 50
recarray function

used, for creating score table 119-121
repeat() function

URL 26
RPy2

installing 77
URL 77

S
Sage distributions

URL 156
sampling

random sampling, numpy.random.choice()
used 199, 200

savemat() function
URL 77

scikit-image
installing 177
URL, for documentation 180

scikit-learn
example dataset, loading 170, 171
installing 170
installing, easy_install used 170
installing, from source 170
URL 175

Scikits 169
SciPy

installation, checking 21
installing 20
installing, easy_install used 21
installing, from source 20, 21
installing, on Linux 21

installing, on Mac OS X 21
installing, on Windows 21
installing, pip used 21
mailing list, URL 22

scipy.io documentation
URL 100

scipy.io.read() function
URL 41

scipy.io.write() function
URL 41

scipy.ndimage documentation
URL 98

scipy.signal.iirdesign() function
URL 106

SciPy stack
installing 8

scores table
creating, recarray function used 119-121

semilogx() function 126
Sieve of Eratosthenes

URL 68
used, for sieving integers 68

sign() function 58
sinc() function

URL 11
Sobel filter

used, for edge detection 106-108
Sobel operator

URL 106
sounds

generating 101-103
Sourceforge

URL 8
sqrt() function

URL 47
standard deviation of log returns 119
static analysis

performing, Pychecker used 142
performing, Pyflakes used 139

statsmodels
installing 176
used, for performing normality test 176, 177

steady state vector 53-56
Stirling approximation method

URL 165
stochastic matrix

URL 53

237

stock returns
correlation, estimating with

pandas 182-185
strides property

URL 39
string operations

performing, with chararray 112, 113
Sudoku

stide tricks 36-39
URL 36

sum() function
URL 47

SymPy
profile, exploring 16-18
URL 18

T
take() function 50
Test-driven development (TDD) 145
test-first approach 145
timeit

profiling with 123-126
URL 126

time series data
resampling 188-191
URL 191

trading
simulating, at random 65-67

U
Ubuntu

PIL, installing 22
unit tests

assert_almost_equal() function 148
assert_approx_equal() function 148

assert_array_almost_equal() function 148
assert_array_equal() function 148
assert_array_less() function 148
assert_raises() function 149
assert_string_equal() function 149
assert_warns() function 149
numpy.testing.assert_equal() function 148
unittest.assertEqual() function 148
unittest.assertRaises() function 148
writing 145

universal function (Ufuncs)
creating 109, 110

V
value initialized arrays

creating, with full() function 198
creating, with full_like() function 198, 199

var() function
URL 227

views
creating 26-28

W
web notebook

importing 12, 13
where() function

URL 50
Windows

IPython, installing 2
matplotlib, installing 7
PIL, installing 22
SciPy, installing 21
setuptools, installing 2

Thank you for buying
NumPy Cookbook

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning NumPy Array
ISBN: 978-1-78398-390-2 Paperback: 164 pages

Supercharge your scientific Python computations by
understanding how to use the NumPy library effectively

1.	 Improve the performance of calculations with
clean and efficient NumPy code.

2.	 Analyze large data sets using statistical functions
and execute complex linear algebra and
mathematical computations.

3.	 Perform complex array operations in a
simple manner.

Learning SciPy for Numerical
and Scientific Computing
Second Edition
ISBN: 978-1-78398-770-2 Paperback: 188 pages

Quick solutions to complex numerical problems in
physics, applied mathematics, and science with SciPy

1.	 Use different modules and routines from the SciPy
library quickly and efficiently.

2.	 Create vectors and matrices and learn how to
perform standard mathematical operations
between them or on the respective array in a
functional form.

3.	 A step-by-step tutorial that will help users solve
research-based problems from various areas of
science using Scipy.

Please check www.PacktPub.com for information on our titles

NumPy Beginner's Guide
Second Edition
ISBN: 9978-1-78216-608-5 Paperback: 310 pages

An action packed guide using real world examples of the
easy to use, high performance, free open source NumPy
mathematical library

1.	 Perform high performance calculations with clean
and efficient NumPy code.

2.	 Analyze large data sets with statistical functions.

3.	 Execute complex linear algebra and mathematical
computations.

NumPy Cookbook
ISBN: 978-1-84951-892-5 Paperback: 226 pages

Over 70 interesting recipes for learning the Python open
source mathematical library, NumPy

1.	 Do high performance calculations with clean and
efficient NumPy code.

2.	 Analyze large sets of data with statistical
functions.

3.	 Execute complex linear algebra and mathematical
computations.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Winding Along with IPython

	Introduction
	Installing IPython
	Using IPython as a shell
	Reading manual pages
	Installing matplotlib
	Running an IPython notebook
	Exporting an IPython notebook
	Importing a web notebook
	Configuring a notebook server
	Exploring the SymPy profile

	Chapter 2
: Advanced Indexing and Array Concepts
	Introduction
	Installing SciPy
	Installing PIL
	Resizing images
	Creating views and copies
	Flipping Lena
	Fancy indexing
	Indexing with a list of locations
	Indexing with Booleans
	Stride tricks for Sudoku
	Broadcasting arrays

	Chapter 3
: Getting to Grips with Commonly Used Functions
	Introduction
	Summing Fibonacci numbers
	Finding prime factors
	Finding palindromic numbers
	The steady state vector
	Discovering a power law
	Trading periodically on dips
	Simulating trading at random
	Sieving integers with the Sieve of Eratosthenes

	Chapter 4
: Connecting NumPy with the Rest of the World
	Introduction
	Using the buffer protocol
	Using the array interface
	Exchanging data with MATLAB and Octave
	Installing RPy2
	Interfacing with R
	Installing JPype
	Sending a NumPy array to JPype
	Installing Google App Engine
	Deploying the NumPy code on the Google Cloud
	Running the NumPy code in a PythonAnywhere web console

	Chapter 5
: Audio and Image Processing
	Introduction
	Loading images into memory maps
	Combining images
	Blurring images
	Repeating audio fragments
	Generating sounds
	Designing an audio filter
	Edge detection with the Sobel filter

	Chapter 6
: Special Arrays and Universal Functions
	Introduction
	Creating a universal function
	Finding Pythagorean triples
	Performing string operations with chararray
	Creating a masked array
	Ignoring negative and extreme values
	Creating a scores table with a recarray function

	Chapter 7
: Profiling and Debugging
	Introduction
	Profiling with timeit
	Profiling with IPython
	Installing line_profiler
	Profiling code with line_profiler
	Profiling code with the cProfile extension
	Debugging with IPython
	Debugging with PuDB

	Chapter 8
: Quality Assurance
	Introduction
	Installing Pyflakes
	Performing static analysis with Pyflakes
	Analyzing code with Pylint
	Performing static analysis with Pychecker
	Testing code with docstrings
	Writing unit tests
	Testing code with mocks
	Testing the BDD way

	Chapter 9
: Speeding Up Code
with Cython
	Introduction
	Installing Cython
	Building a Hello World program
	Using Cython with NumPy
	Calling C functions
	Profiling the Cython code
	Approximating factorials with Cython

	Chapter 10
: Fun with Scikits
	Introduction
	Installing scikit-learn
	Loading an example dataset
	Clustering Dow Jones stocks with
scikits-learn
	Installing statsmodels
	Performing a normality test with statsmodels
	Installing scikit-image
	Detecting corners
	Detecting edges
	Installing pandas
	Estimating correlation of stock returns with pandas
	Loading data as pandas objects from statsmodels
	Resampling time series data

	Chapter 11
: Latest and Greatest NumPy
	Introduction
	Fancy indexing in place for ufuncs with the at() method
	Partial sorting via selection for fast median with the partition() function
	Skipping NaNs with the nanmean(), nanvar(), and nanstd() functions
	Creating value initialized arrays with the full() and full_like() functions
	Random sampling with numpy.random.choice()
	Using the datetime64 type and related API

	Chapter 12
: Exploratory and Predictive Data Analysis with NumPy
	Introduction
	Exploring atmospheric pressure
	Exploring the day-to-day pressure range
	Studying annual atmospheric pressure averages
	Analyzing maximum visibility
	Predicting pressure with an autoregressive model
	Predicting pressure with a moving average model
	Studying intrayear average pressure
	Studying extreme values of atmospheric pressure

	Index

