

More Python®

Programming for the
Absolute Beginner

Jonathan S. Harbour

Course Technology PTR

A part of Cengage Learning

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

More Python® Programming for the

Absolute Beginner: Jonathan S.
Harbour

Publisher and General Manager, Course

Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:

Sarah Panella

Manager of Editorial Services:

Heather Talbot

Marketing Manager: Mark Hughes

Senior Acquisitions Editor: Mitzi Koontz

Project Editor: Jenny Davidson

Technical Reviewer: Keith Davenport

Interior Layout Tech: Value Chain Software
India

Cover Designer: Mike Tanamachi

Indexer: Broccoli Information Services

Proofreader: Michael Beady

© 2012 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution, in-
formation networks, or information storage and retrieval systems, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act,
without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at cengage.com/permissions Further permissions
questions can be emailed to permissionrequest@cengage.com

Python is a registered trademark of the PSF.

All other trademarks are the property of their respective owners.

All images © Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2011933243

ISBN-13: 978-1-4354-5980-9
ISBN-10: 1-4354-5980-6

Course Technology, a part of Cengage Learning

20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international. cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 13 12 11

eISBN-10: 1-4354-5981-4

This book is dedicated to lone game developers on forums like
The Game Programming Wiki (www.gpwiki.org) who put
enormous passion into their creative works of interactive

fiction, often without recognition. Do what you love and share
it with the world!

www.gpwiki.org

ACKNOWLEDGMENTS

offer my gratitude to those involved in getting this book finished and into
print, especially Mitzi Koontz, Jenny Davidson, Keith Davenport, Mike
Tanamachi, and Michael Beady. I would like to say, I hope it sells a million

copies so I never have to work with any of you again, but that sentiment might be
misunderstood and considered rude! So I will just say thanks!

I

ABOUT THE AUTHOR

onathan S. Harbour has been programming since the 1980s. His first game
system was an Atari 2600, which he disassembled on the floor of his room
as a kid. He has written on C++, C#, Basic, Java, DirectX, Allegro, Lua, Dark-

Basic, Game Boy Advance, Pocket PC, and game consoles. His other recent books
include Beginning Java SE 6 Game Programming, Third Edition; XNA Game Studio 4.0 for
Xbox 360 Developers; Multi-Threaded Game Engine Design; and an earlier book in this
series, Visual Basic .NET Programming for the Absolute Beginner (2003). He holds a mas-
ter’s degree in information systems. Visit him on the web at www.jharbour.com
and www.facebook.com/jharbourcom.

J

www.jharbour.com
www.facebook.com/jharbourcom

This page intentionally left blank

Table of Contents

Python Has Class... 1Chapter 1

Examining the Geometry Program... 2
Getting Started with Python... 2

Python Tools ... 3
Python Language ... 7

Objects in Python... 7
What Came Before?... 7
What’s Coming Next?... 11
OOP: The Python Way... 13
Single Inheritance... 16
Multiple Inheritance .. 17

Summary.. 19

Getting Started with Pygame: The Pie Game......... 21Chapter 2

Examining The Pie Game... 22
Using Pygame.. 22

Printing Text... 23
Looping... 24
Drawing Circles.. 25
Drawing Rectangles .. 27
Drawing Lines... 28
Drawing Arcs .. 30

The Pie Game... 31
Summary.. 34

File I/O, Data, and Fonts: The Trivia Game.......... 35Chapter 3

Examining The Trivia Game... 35
Python Data Types... 36

More Printing ... 37
Getting User Input .. 39
Handling Exceptions .. 40
The Mad Lib Game... 40

File Input/Output... 43
Working with Text Files .. 43

Working with Binary Files .. 45
The Trivia Game... 47

Printing Text with Pygame ... 48
The Trivia Class .. 48
Loading the Trivia Data ... 49
Displaying the Question and Answers... 50
Responding to User Input ... 52
Going to the Next Question.. 53
Main Code.. 54

Summary.. 55

User Input: The Bomb Catcher Game..................... 57Chapter 4

Examining The Bomb Catcher Game... 58
Pygame Events.. 58

Real-Time Event Loop ... 59
Keyboard Events... 60
Mouse Events .. 61

Device Polling... 61
Polling the Keyboard .. 61
Polling the Mouse.. 65

The Bomb Catcher Game... 67
Summary.. 71

Math and Graphics: The Analog Clock Demo..... 73Chapter 5

Examining The Analog Clock Demo... 74
Basic Trigonometry... 74

Circle Theory... 75
Traversing a Circle’s Perimeter.. 79
Circle Demo .. 81

The Analog Clock Demo... 83
Getting the Time ... 84
Drawing the Clock .. 84

Summary.. 92

Bitmap Graphics: The Orbiting Spaceship Demo. . 93Chapter 6

Examining The Orbiting Spaceship Demo.. 93
Using Bitmaps... 94

Loading a Bitmap... 94
Drawing the Background .. 95
Drawing the Planet ... 97

More Python Programming for the Absolute Beginnerviii

Drawing the Spaceship .. 98
Orbiting the Planet... 101

Orbiting.. 101
Rotating ... 103

Summary.. 107

Animation with Sprites: The Escape the Dragon
Game... 109

Chapter 7

Examining The Escape The Dragon Game.. 109
Using Pygame Sprites... 110

Custom Animation ... 110
Loading a Sprite Sheet ... 112
Changing the Frame... 112
Drawing One Frame.. 114
Sprite Groups.. 115
MySprite Class .. 116
Sprite Animation to the Test.. 118

The Escape the Dragon Game... 119
Jumping ... 120
Colliding .. 121
Source Code .. 122

Summary.. 125

Sprite Collision Detection: The Zombie Mob
Game... 127

Chapter 8

Examining The Zombie Mob Game.. 127
Collision Detection Techniques... 128

Rectangle Collision Between Two Sprites... 128
Circle Collision Between Two Sprites .. 129
Pixel-Perfect Masked Collision Between Two Sprites....................................... 130
Rectangle Collision Between a Sprite and a Group.. 130
Rectangle Collision Between Two Groups .. 131

The Zombie Mob Game.. 131
Creating Your Own Module.. 132
Advanced Directional Animation ... 135
Colliding with Zombies ... 138
Getting Health.. 139
Game Source Code .. 141

Summary.. 146

Contents ix

Arrays, Lists, and Tuples: The Block Breaker
Game... 149

Chapter 9

Examining The Block Breaker Game.. 149
Arrays and Lists.. 150

Lists with One Dimension... 150
Creating a Stack-like List ... 153
Creating a Queue-like List... 153
Lists with More Dimensions ... 154

Tuples.. 157
Packing a Tuple.. 158
Unpacking a Tuple .. 158
Searching for Elements.. 159
Counting Elements ... 159
Tuples as Constant Arrays... 159

The Block Breaker Game.. 160
Block Breaker Levels ... 160
Loading and Changing Levels .. 163
Initializing the Game ... 165
Moving the Paddle... 165
Moving the Ball .. 166
Hitting the Paddle... 167
Hitting the Blocks.. 168
Main Code.. 169
MySprite Update .. 170

Summary.. 172

Timing and Sound: The Oil Spill Game................. 173Chapter 10

Examining The Oil Spill Game... 173
Sound.. 174

Loading an Audio File .. 174
Playing an Audio Clip... 175

Building The Oil Spill Game... 175
Gameplay... 176
Source Code .. 179

Summary.. 183

Program Logic: The Snake Game........................... 185Chapter 11

Examining The Snake Game... 185
Building The Snake Game... 186

Hatching a Snake—the SnakeSegment Class.. 187
Raising a Snake—the Snake Class.. 187

More Python Programming for the Absolute Beginnerx

Feeding the Snake—the Food Class ... 188
Initializing the Game ... 189
Program Main... 191
Growth by Eating Food .. 193
Biting One’s Self Is Not Advisable ... 194
Falling off the World .. 195

Teaching the Snake to Move Itself.. 195
Moving Automatically.. 196
Getting the Current Direction... 197
Moving Toward the Food... 197
Other Code Changes ... 198

Summary.. 199

Trigonometry: The Tank Battle Game................. 201Chapter 12

Examining The Tank Battle Game.. 201
Angular Velocity.. 202

Calculating Angular Velocity ... 203
Pygame’s Goofy Rotation... 203
Moving Forward and Backward at Any Angle ... 205
Improved Angle Wrapping ... 206

Building The Tank Battle Game... 206
The Tanks... 207
The Bullets... 211
Main Code.. 212

Summary.. 217

Random Terrain: The Artillery Gunner Game... 219Chapter 13

Examining The Artillery Gunner Game.. 219
Creating the Terrain... 220

Defining the Height Map... 220
Smoothing the Terrain .. 226
Locating Grid Points ... 228

Artillery Cannons.. 230
Placing the Cannons... 230
Drawing the Turrets ... 231
Firing the Cannons ... 232
Shots Are A’Flyin ... 232
Computer Firing .. 233
Scoring a Hit ... 234

The Complete Game.. 235
Summary.. 244

Contents xi

More of Everything: The Dungeon Role-Playing
Game.. 245

Chapter 14

Examining The Dungeon Game... 246
Review of Classic Dungeon RPGs... 246

Rogue .. 247
NetHack.. 248
AngBand... 249
Sword of Fargoal.. 251
Kingdom of Kroz.. 251
ZZT... 251

Creating a Dungeon Level... 252
Understanding ASCII Characters .. 253
Simulating a Text Console Display... 257
Generating Random Rooms.. 260
Generating Random Hallways ... 266

Populating the Dungeon... 272
Adding the Entrance and Exit Portals ... 273
Adding Gold.. 274
Adding Weapons, Armor, and Health Potions .. 276
Adding Monsters.. 277
Complete Dungeon Class .. 278
Adding the Player’s Character ... 283

Advanced Gameplay.. 287
Picking Up Items.. 288
Fighting Monsters ... 291
Moving Monsters ... 295
Visibility Range .. 297
Exiting the Level .. 299
Wrapping Up the Gameplay... 299

Summary.. 304

Installing Python and Pygame........................... 305Appendix A

Installing Python... 305
Installing Pygame.. 309

Pygame Key Codes... 311Appendix B

Index... 317

More Python Programming for the Absolute Beginnerxii

INTRODUCTION

his book continues the study of Python as an introductory text for begin-
ners, following in the footsteps of Python Programming for the Absolute
Beginner, Third Edition by Michael Dawson. I highly recommend reading that

book first if you are an absolute beginner to Python! You will learn the language
quickly with Dawson’s easy-to-follow examples; clear, concise pacing; and impor-
tant concepts. While Dawson’s book will get you started and get you airborne, so
to speak, the book you now hold takes Python into the stratosphere! We will be
learning about the awesome Pygame library, which, if you are so inclined, can
support OpenGL for advanced 3D rendering! But let’s not get too far ahead of our-
selves! The primary focus of this book is on using Pygame for 2D graphics, which
was only just touched upon in the final chapter of our precursor book. More Python
Programming for the Absolute Beginner begins where Python Programming for the Abso-
lute Beginner, Third Edition ended, making the two a complementary pair.

This book teaches most of the important concepts needed to make excellent games
with Python. Not merely a “noob” guide, this book delves into complex subjects
that will keep you busy for months working with these concepts on your own game
ideas. The concepts such as targeting and velocity alone are enough to keep the
average programmer busy making many arcade-style shoot-em-up games. These
concepts are also found in real-time strategy (RTS) games, since the very same con-
cept used to fire a bullet at a target is used to move a character to a destination.
But this book is not just about game programming concepts! We learn the basics
first, starting with Python classes, variable data types, text output, lists and tuples,
and other important fundamentals of the Python language. The examples start off
easy, and by the time you reach the last few chapters you will be using all of the
concepts learned to build more complex games—which means you are doing more
complex Python programming as well.

If you have not read Dawson’s book already, and are a complete newcomer to
programming in general, you may have a somewhat difficult time understanding
all of the code in this book. That is because this book was intended to be a follow-
up of Dawson’s book, and as such, it does not stand on its own as a book “for the
Absolute Beginner,” despite the title. The “More” at the beginning of the title is
the key. If you already have some programming experience, though, in another
language like C++ or Java or C#, then you should be able to get through this book
just fine.

T

This book is based on Python 3.2 and Pygame 1.9. The source code will not compile with earlier
versions of Python.

CHAPTERS
Following is a list of the chapters in this book with a short description of each.

1. Python Has Class
This chapter provides a quick overview of the Python language with an emphasis on object-
oriented programming. While showing how to create classes with constructors, methods, and
properties, this chapter will demonstrate the concepts with a sample program with several
classes related to geometry.

2. Getting Started with Pygame: The Pie Game
This chapter contains an introduction to the Pygame library, which will be used in all future
chapters. Pygame makes it possible to write graphics demos and games with Python, with 2D
shapes and bitmaps.

3. File I/O, Data, and Fonts: The Trivia Game
This chapter teaches how to read and write data with file input/output functions. Sample
code shows how to open a file for reading and writing text and binary data. The file access
code is then used to make a Trivia Game with graphical text output using Pygame’s font
support.

4. User Input: The Bomb Catcher Game
This chapter covers user input with Pygame, which is both event-driven and polled. What this
means is, we can respond to user input events or we can ask Pygame whether there is user
input data. To demonstrate user input, we create a real-time game called Bomb Catcher.

5. Math and Graphics: The Analog Clock Demo
This chapter delves into the complex subjects of math and graphics—that is, using math to
produce interesting special effects with graphics. The sample program shows how to make
an analog clock with real moving hands, using math to rotate the hands.

6. Bitmap Graphics: The Orbiting Spaceship Demo
This chapter is our first exploration into the world of bitmap graphics. Bitmaps can be created
in memory, but are usually loaded from a bitmap file, and used as the artwork in a game. We
will use bitmaps to create a chapter example of a spaceship orbiting a planet.

More Python Programming for the Absolute Beginnerxiv

7. Animation with Sprites: The Escape the Dragon Game
This chapter goes much further into advanced bitmapped graphics programming by intro-
ducing Pygame’s sprite support. We use this awesome feature to create our own sprite class
capable of frame animation, and demonstrate it with a sample game that features sprite
animation.

8. Sprite Collision Detection: The Zombie Mob Game
This chapter is also related to sprite programming, showing how to detect when game objects
collide on the screen, and how to respond to those collisions. This is the basis for most game-
play. To demonstrate, we create a zombie game.

9. Arrays, Lists, and Tuples: The Block Breaker Game
This chapter examines the very important—if not crucial!—subject of arrays, lists, and tuples,
all of which are similar in behavior. The purpose of these is to contain other objects, such as
sprites, or something simple like just numbers or names. We use this information to create
a game that supports level design by defining the game’s levels in a list.

10. Timing and Sound: The Oil Spill Game
This chapter shows how to use Pygame’s timing and audio features. These subjects are not
necessarily related but are often found together because sound effects in a game are often
triggered by events that require timing of one sort or another. We create a sample game called
The Oil Spill Game to demonstrate these concepts.

11. Program Logic: The Snake Game
This chapter shows how to create the classic Snake Game as a tool for learning how to write
source code for game logic. This subject is a simple form of artificial intelligence. We teach
the snake in the sample game how to find food on its own without user input.

12. Trigonometry: The Tank Battle Game
This chapter returns to the overall subject of math to show how trigonometry gives us pow-
erful tools for game programming. We use several trigonometry functions to make The Tank
Battle Game where the tank’s turret rotates to follow the mouse cursor on the screen, and
this is used for targeting the enemy tank.

13. Random Terrain: The Artillery Gunner Game
This chapter explores the rather complex subject of generating random terrain for The
Artillery Gunner Game as the chapter project. We return to vector graphics, rather than

Introduction xv

using bitmaps, to generate a random landscape, place two opposing artillery guns on it, and
then allow the player to take on the computer in trying to blow each other up. This draws on
all of the math we have learned and the game is quite fun.

14. More of Everything: The Dungeon Role–Playing Game
This final chapter is a monumental project that shows in a single go how to make a complete
role-playing game!

Appendix A: Installing Python and Pygame
This appendix has instructions on how to install Python and Pygame.

Appendix B: Pygame Key Codes
This appendix contains a list of key codes used in Pygame.

BOOK RESOURCES
The resource files that accompany this book are available for download online. This affords
us the benefit of being able to update the resource files at any time, while a more traditional
CD-ROM is “set in stone,” so to speak. Plus, if you are a serious developer, downloading the
files online is actually faster than inserting a CD-ROM, copying the files to your hard drive,
and so on.

The files may be downloaded from this location: www.courseptr.com/downloads. Please note
that you will be redirected to the Cengage Learning site. From here, you may search by book
title, ISBN, or author name to receive a list of book resource links.

Alternatively, you may download the book’s resource files from the author’s website at
www.jharbour.com/forum or the author’s Facebook page at www.facebook.com/jharbourcom.
If you cannot find the source code files for any reason, just post a message on the Facebook
page.

STYLES
The following styles will be used in this book to highlight facts and concepts that are
important for the reader to know about in any given chapter.

This is what a Hint looks like. Hints offer additional information or suggestions
on the current topic.

HINT

More Python Programming for the Absolute Beginnerxvi

www.courseptr.com/downloads
www.jharbour.com/forum
www.facebook.com/jharbourcom

This is what a Trap looks like. Traps recommend ways around problem areas that
may help the reader.

This is what a Trick looks like. Tricks are meant to give the reader an additional
way of accomplishing a task that they may find useful.

The Real World

This is a “In The Real World” callout. This style gives the reader some real-
world context that might make the subject seem more relevant.

TRAP

TRICK

Introduction xvii

This page intentionally left blank

1C H A P T E R

PYTHON HAS CLASS

his chapter will read like a whirlwind tour of Python, hitting on primarily
object-oriented programming and making sense of the somewhat strange-
looking syntax of the Python language. Python is a tool and a language.

The language includes the syntax and formatting of code according to the Python
standard. The tool is a software package included with the Python installation that
includes an editor. This is some pretty heavy-hitting material for a first chapter. If
this is your first exposure to programming in Python, don’t let the pacing of this
first chapter throw you off—we cover some important details right away, but the
book does not get harder with each new chapter. Here is what you will learn:

• How to enter Python code into the IDLE editor

• Using the tools that come with Python

• Reviewing the language features of Python

• Perusing the history of programming languages

• Speculating on the next generation programming methodology

• Polymorphism and inheritance

• Writing an example using multiple inheritance

T

EXAMINING THE GEOMETRY PROGRAM
This chapter is a quick romp through Python’s object-oriented programming capabilities to
get you up to speed on programming in Python the “OOP way” right from the beginning. If
you don’t understand everything covered in this chapter all at once, don’t worry about it,
because we will be revisiting all of these concepts in every chapter from here on, while cre-
ating games to learn—no, to master—the language of Python! Our first example is shown in
Figure 1.1.

FIGURE 1.1

The Geometry
Demo is a quick
jaunt through

Python’s object-
oriented

programming
capabilities.

GETTING STARTED WITH PYTHON
Python is both a package of software tools and a language. The Python software package
includes an editor called IDLE, which is short for… actually, nothing. Idle is the name of a
man, not an acronym for integrated development… something, although that seems to fit.
The man’s name, for those with a penchant for useless trivia, is Eric Idle, one of the founding
members of Monty Python, which is where the name comes from: an homage to a British TV
show. The Python language is strange too, so it is an appropriate name. Strange in a beloved
way, of course! If you are completely new to Python and have not read the introductory book
by Michael Dawson (Python Programming for the Absolute Beginner), then you may be pleasantly

More Python Programming for the Absolute Beginner2

surprised to find Python is unlike any other programming language! That makes learning
Python a bit of a challenge, but a rewarding one nonetheless.

Go to http://www.python.org if you want to download the latest Python package
for your operating system of choice.

Python Tools
The Python package includes the Python interpreter and runtime libraries as one would
expect, but it also includes several useful utilities that we will take a look at now.

Module Docs (Pydoc)
The Python package differs depending on the operating system, but most commonly the
package will include Pydoc, the Python documentation tool. This tool is a small search utility
that will locate items in the Python documentation, present the search results in a list, and
then bring up any one item in the default web browser. In the Python program group, this
utility is also called Module Docs. See Figure 1.2.

FIGURE 1.2

Pydoc brings up
help pages in the

default web
browser.

HINT

Chapter 1 • Python Has Class 3

http://www.python.org

Python Manuals (Pyhelp)
Also found in the program menu is an option, Python Manuals, that brings up the Python
documentation in a Windows help file format, shown in Figure 1.3. This version of the doc-
umentation is searchable, but may not be as fast a way to look up what you need to find.

FIGURE 1.3

Python
documentation

displayed as a
Windows help file.

Python (command line)
Python is an interpreted language, which means code is not compiled into an executable file;
it is just interpreted on the fly in real time. That real time nature includes the Python command
prompt, which can accept Python commands one line at a time. Of course, this is a limited
way to write Python code and may be thought of as just a parser rather than “code,” so to
speak. Figure 1.4 shows the command prompt.

IDLE (Python GUI)
IDLE is a text editor and simple development environment for Python programming. Figure
1.5 shows IDLE in action, displaying a pop-up help message for the code currently being typed
in. In this case, it is the syntax for the print() function. But this is not the IDLE editor; it is
just the IDLE command prompt. Yes, we can run an independent prompt like the one shown
previously in Figure 1.4, or use the one built into IDLE. To begin actual editing, use the File
menu and choose New Window, as shown in Figure 1.6. This creates a new source code editor
window, shown in Figure 1.7.

More Python Programming for the Absolute Beginner4

FIGURE 1.4

The Python
command prompt

will interpret
commands.

FIGURE 1.5

IDLE is the text
editor included

with Python.

FIGURE 1.6

Creating a new
source code editor
window with IDLE.

Chapter 1 • Python Has Class 5

FIGURE 1.7

Typing in code into
the new source
code window.

Before doing anything else, you will first want to save the new source code as a file. Until you
do this, you cannot have Python run (or interpret) your code. Use the File menu to save the
file, then open the Run menu, and choose Run Module. You can also run the code by pressing
F5. Now, an interesting thing happens when you run the program. The output goes into the
main IDLE window that originally came up! See Figure 1.8. You should leave the prompt (also
called the Python Shell) open when editing files because it is the main output window for
running programs, even when using a graphical window with Pygame (more on that in the
next chapter).

FIGURE 1.8

Typing code into
the new source
code window.

More Python Programming for the Absolute Beginner6

Python Language
Python, the language, is one very strange-looking programming language that appears to have
been designed by a travelling drama troupe with a penchant for obscure Isles humor of the
sort that Americans find insufferable and indecipherable. Of course, that is only an emotion-
ally charged, higher education–borne opinion, so one is advised to take it with a grain of salt.
Python is also powerful and versatile, and will surprise you with its capabilities—as soon as you
become familiar with it.

It’s really surprisingly difficult to compare Python to a language like C++, for there are no
opening and closing braces or recognizable function names. The constructor for a Python
class is … well, I don’t want to frighten you right off the bat, and have you running back to,
say, BASIC, but a constructor is rather obtuse looking. Not that there’s anything whatsoever
wrong with BASIC! I happen to enjoy an especially awesome tool called QB64 (www.qb64.net),
which is featured in another book entitled Video Game Programming for Kids. IDLE is a very
useful text editor included with the Python package, and we will be using it in this book.

There is an online reference manual for Python located at:
http://docs.python.org/reference.

OBJECTS IN PYTHON
Python is an object-oriented programming language, which means it supports at least some
object-oriented programming concepts. We will spend some time going over those concepts
now because this is an effective way to write code. Object-oriented programming (OOP) is a
methodology. That is, a way of doing things. There have been several large, “umbrella”
methodologies in computer science—that is, methodologies that defined the functionality of
programming languages. A methodology is important for the industry in order to make our
skills transferrable. If every company used their own methodology, then the skills gained
while working for that company would be useless at a different organization. Software engi-
neering is a challenging field, and education is costly, so methodologies are good for everyone
involved—skilled developers, employers, and educators who teach the concepts.

What Came Before?
If you have a natural curiosity, which is common among talented programmers, then you
may be wondering what type of programming came before the object-oriented paradigm.
Let’s peruse the subject a bit, if only to illustrate why this is so important to go over up front
before we have even really started using Python. Let’s peruse where we have come from in
order to appreciate where we are today in terms of programming technology.

HINT

Chapter 1 • Python Has Class 7

www.qb64.net
http://docs.python.org/reference

Structured Programming
Before OOP, the methodology was called procedural or structured programming, which
implies that procedures and structures were used, and this is the case. Procedures are often
called functions, and we still use them today. Yes, even in an OOP program there will be
standalone functions, such as main(). A function contained inside an object is called a
method, and this term has replaced the term function when it is part of an object. But, functions
can still exist outside of an object, and that is a carryover from the previous “age” (method-
ology). Structures are complex user-defined types (UDTs) that can contain many variables
organized together. The most popular structured language was C. But this was a long and
successful methodology that some still adhere to today. The time frame for the structured
movement was the 1980s and 1990s, but of course there was quite a bit of overlap in both
directions. In the electronics industry, many software development kits (SDKs) are still devel-
oped in a structured manner, with libraries of functions supplied to control an electronic
device (such as a video card or embedded system). It might be argued that the development
of the C language (at right around 1970) ushered in structured programming in a major way.
The C language was used to create the UNIX operating system.

Here is a quick example of a structured program in Python.

Structured program

Function definition

def PrintName(name):

 pprint("The name is " + name + ".")

Start of program

PrintName("Jane Doe")

The program produces this output:

The name is Jane Doe.

A comment line in Python begins with the pound character (#).

The function definition begins with the word def, followed by the function name, parameters,
and a colon. There are no code block characters in Python, like the opening brace ({) and
closing brace (}) in C++. In Python, the end of the function is undefined, assumed to end before
the next non-indented line. Let’s try a little experiment to test the behavior of Python. Here’s
our example again, without any comment lines. What do you think it will print out?

HINT

More Python Programming for the Absolute Beginner8

def PrintName(name):

 print("The name is " + name + ".")

print("END")

PrintName("Jane Doe")

The output is:

END

The name is Jane Doe.

This is a surprise to most Python beginners. What’s happening is the print(“END”) line is
indented on the left, so it became the first line of the program, followed by PrintName(“Jane
Doe”), the second line. The function definition is not considered part of the main program, and
is only run when the function is called. What happens if we move the function definition
below the main program like this?

PrintName("Jane Doe")

def PrintName(name):

 print("The name is " + name + ".")

That code actually produces a syntax error because the PrintName function could not be found.
This tells us that Python must parse functions before they are called. In other words, function
defs must be “above” code where the function is called.

Traceback (most recent call last):

 File "FunctionDemo.py", line 4, in <module>

 PrintName("Jane Doe")

NameError: name 'PrintName' is not defined

When saving a source code file with IDLE, be sure to include the extension .PY,
as IDLE does not automatically append the extension.

Sequential Programming
Structured programming evolved from the earlier sequential programming methodology.
This is not a formal textbook description but more of a descriptive one. Sequential programs
required line numbers before each line of code. While it was possible to jump (with goto or
gosub commands) to another line of the program, and that was an early evolution in the
direction of structure, sequential programs had the tendency to get stuck with a certain level

TRAP

Chapter 1 • Python Has Class 9

of complexity, beyond which the code became indecipherable, or impossible to change. The
problem at the time was called “spaghetti code” because of the way the “flow” of the program
seemed to go every which direction. The two most popular sequential languages were BASIC
and FORTRAN, and the heyday for these languages was the 1970s and 1980s. As developers
grew tired of maintaining spaghetti code, a paradigm shift was needed, and structure was
ushered in with the introduction of new structured languages like Pascal and C.

10 print "I am freaking out!"

20 goto 10

Do you actually find this sequential code kind of interesting? I do! It takes me
back a few years. There’s a great (and free) compiler called QB64 at
www.qb64.net, that supports all of the old flavors of BASIC, QBASIC, and
QuickBasic (which is structured, not sequential). In addition, QB64 supports
OpenGL, so there’s potential for advanced graphics and gameplay as well as
support for the old-school variations of BASIC.

Mnemonic Programming
Prior to sequential programming, developers wrote code much closer to the level of the com-
puter hardware, using assembly language. An “assembler” program was like a compiler, but
it would convert mnemonic (“nee-monic”) instructions directly into machine code in an
object or binary file, ready to be run by the processor one byte at a time. One assembly
mnemonic instruction correlates directly to one machine instruction that the processor
understands. This is like speaking the machine’s own language and is very challenging! In
the old days of MS-DOS, these assembly instructions would change the video mode to a graph-
ics mode with 320x200 resolution and 256 (8-bit) color, which was great for an IBM PC game
back in the early 1990s because it was fast. Remember, in this time period, there were no video
cards like we have today, just “video out” built into the ROM BIOS and whatever modes were
supported by an operating system. This was called the infamous “VGA mode 13h” that all
game developers loved at the time.

mov ax, 13h

int 10h

Here is an interesting historical site dedicated to programming VGA mode 13h:
http://www.delorie.com/djgpp/doc/ug/graphics/vga.html.

“AX” is a 16-bit processor register, an actual physical circuit on the processor that was treated
like a general-purpose “variable” of sorts, to use a familiar term without the language of

TRICK

HINT

More Python Programming for the Absolute Beginner10

www.qb64.net
http://www.delorie.com/djgpp/doc/ug/graphics/vga.html

electronics engineering. There were three other general-purpose registers: BX, CX, and DX.
They were themselves upgrades from the earlier 8-bit Intel processors, which had registers
called A, B, C, and D. When 16-bit was developed, these registers were expanded into AL/AH,
BL/BH, CL/CH, and DL/DH, which were two 8-bit parts of each 16-bit register. It’s not as com-
plicated as it might sound at first. Put a value into one or more of these variable registers,
then “launch” a procedure by calling an interrupt. In the case of the VGA mode change, the
interrupt was 10h.

In the Real World

If you like this subject—electronics engineering and assembly language—there is a
modern counterpart to the jobs of old: device driver programming. It is a black art
today, reserved only for those engineers who really understand the hardware. So, you
see, studying assembly language could be a very beneficial (and fun) subject to study
if it interests you.

What’s Coming Next?
Now that we have taken a brief look at the programming methodologies of the past that led
up to this point, as a means of understanding and appreciating the tools and languages we have
today, let’s talk about the current state of the art and what’s coming. Today, object-oriented
programming is still the main methodology used by most professional programmers. It is the
basis for popular industry-leading tools like Visual Studio and the .NET Framework from
Microsoft. The major compiled OOP languages used in business and science today are C++, C#
(“see-sharp”), BASIC (the modern variation known as Visual Basic), and Java. There are others,
but these are the big league players.

Python and LUA are scripting languages. In comparison to compiled languages like C++,
Python and LUA are handled quite differently—interpreted rather than compiled. When you run
a Python program (a file with an extension of .PY), it is not compiled, it is run. You could insert
syntax errors into a function in Python and unless that function is called, Python will never
complain about the errors!

Funny syntax error example

Bad function!

def ErrorProne():

Chapter 1 • Python Has Class 11

 printgobblegobble("Hello there!")

print("See, nothing bad happened. You worry too much!")

There is no function called printgobblegobble() in Python or in this program, so that should
have generated an error! Here is the output:

See, nothing bad happened. You worry too much!

But, if you add a call to the ErrorProne() function, this will be the output:

Traceback (most recent call last):

 File "ErrorProne.py", line 9, in <module>

 ErrorProne()

 File "ErrorProne.py", line 5, in ErrorProne

 printgobblegobble("Hello there!")

NameError: global name 'printgobblegobble' is not defined

Now, there are limits to this apparent ignorance on the part of Python. If you blatantly define
a variable the wrong way, it will generate an error first before running. There’s another weird
thing you can do in Python to totally screw things up: using reserved words as variables.
Behold:

print = 10

print(print)

The first line works just fine, but the second line produces this error:

Traceback (most recent call last):

 File "ErrorProne.py", line 8, in <module>

 print(print)

TypeError: 'int' object is not callable

What this error means is, print has become a variable, an integer to be exact, set to the value
of 10. Then we try to call the old print() function, and Python doesn’t get it. Because the old
print() function has been bypassed. Now, this strange behavior does not apply to reserved
words in the Python language, like while, for, if, and so on, only to functions. I think you will
be surprised to find a great amount of flexibility in Python as a scripting language.

A traditional compiler, like GCC or Visual C++, would pitch a fit before even thinking about
running such code! But then, these are compilers. They parse the flow of a program completely
before converting it into object code. And therein lies the disadvantage: a compiler cannot

More Python Programming for the Absolute Beginner12

work with unknowns, only that which is known, while a scripting language can handle the
unknown very well!

The next methodology will evolve from OOP the way sequential evolved into structured, and
structured into OOP, with telltale signs of the change showing up in the current methodology
before the paradigm change happens. The change happening today to OOP might be called
adaptive programming. In the fast-paced world of today, no one sits down at their computer
with a 200-page manual for WordPerfect or Lotus 1-2-3 like we did in the old days of comput-
ing. There are still people who think “read the manual!” is a reasonable answer to technical
questions, but today it’s rare if a product even comes with a semblance of a manual. Today,
systems must be interactive and adaptable. The next evolution beyond OOP could very well be
entity oriented programming or EOP.

Instead of writing code with objects containing properties (variables) and methods (functions),
imagine using entities—self-contained objects that work together with simple rules to solve
complex problems. That seems to be the direction of A.I. research, and could very well be
adapted into existing OOP languages today. In fact, there are early signs of this already hap-
pening. Ever heard of web services? A web service is a self-contained object that resides online,
and can be used by a program to perform unique services that it did not know how to do.
Those web services might just ask for a parameter for an inventory database and return a list
of items that match the query. This form of program interaction sure beats writing SQL
(structured query language)—the language of relational databases! What about taking it to
the next level? Instead of tapping into a known service, what about querying for a service
online using some sort of repository or search engine?

As another possible example, imagine an online storehouse of game entities that can be used
in a game (most likely pioneered by indie developers or open source teams), where the entity
will come with its own art assets (2D sprites, 3D meshes, textures, audio clips, etc.) and it’s
own behaviors (such as a Python script). An existing game engine that requires assets to be in
a certain format could use this sort of EOP concept to extend gameplay. Imagine you are
playing a game, some sort of world building game like Minecraft (www.minecraft.net), and
you imagine some new character in the game. So, you query for it, “I need a short wooden
chair.” After a slight delay for the query to be sent out, a short wooden chair appears in front
of you in the game. Assuming there is an online repository of game assets for an engine like
Minecraft, it’s not beyond reason to imagine this sort of development to occur.

OOP: The Python Way
We have done enough historical analysis and speculation to trigger some imaginative
thinking, so let’s learn about something concrete and practical now—the current OOP

Chapter 1 • Python Has Class 13

www.minecraft.net

methodology as it is implemented in Python. Or, in other words, creating objects in Python!
Python does support some OOP features, but not all to the degree of a highly specific language
like C++. Let’s get the terminology straight first, before we get started. A class is a blueprint
for an object. A class cannot do anything, because it is a blueprint. An object does not exist
until it is created at runtime. So, when we are writing the code, it is a class definition, not an
object. It is only truly an object when it is created at runtime from the blueprint of a class. A
class function is called a method. A class variable is usually accessed as a property (a sort of
method for getting or setting the value of a variable). When an object is created, the class is
instantiated into the object.

Let’s learn about the specifics of Python’s OOP features. Here is an example:

class BBug(object):

 legs = 0

 distance = 0

 def __init__(self, name, legs):

 self.name = name

 self.legs = legs

 def Walk(self):

 self.distance += 1

 def ToString(self):

 return self.name + " has " + str(self.legs) + " legs" + \

 " and taken " + str(self.distance) + " steps."

Every definition must be followed by a colon at the end of the line. The key word self describes
the current class, and is equivalent to this in C++. All class variables must be prefixed with
“self.” in order to be recognized as members of the class; otherwise, they are treated as local.

The def __init__(self) line begins the class constructor—the first method that runs when
the class is instantiated. Class variables can be declared and initialized outside of the con-
structor when they are declared.

Polymorphism
The term polymorph means “many forms” or “many shapes,” so polymorphism is the ability
to take many forms or shapes. In the context of a class, this means we can use methods with
many shapes—that is, many different sets of parameters. In Python, we can use optional

More Python Programming for the Absolute Beginner14

parameters to make a method more versatile. The constructor of our new Bug class can be
transformed with the use of optional parameters like so:

 def __init__(self, name="Bug", legs=6):

 self.name = name

 self.legs = legs

Likewise, the Walk() method can be upgraded to support an optional parameter:

 def Walk(self,distance=1):

 self.distance += distance

Data Hiding (Encapsulation)
Python does not allow variables or methods to be declared as private or protected, as the scope
of all things is public in Python. But, if you want to write code that makes it look like data
hiding is working, that is definitely doable. For instance, this code might be used to access or
change the distance variable (which we would assume is private, even though it isn’t):

 def GetDistance(self):

 return p_distance

 def SetDistance(self, value):

 p_distance = value

From a data hiding point of view, you could rename distance to p_distance (making it appear
to be a private variable), and then access it using these two methods. That is, if data hiding is
important in your program.

Inheritance
Python supports inheritance of base classes. When a class is defined, the base class is included
in parentheses:

class Car(Vehicle):

In addition, Python supports multiple inheritance; that is, more than one parent or base class
can be inherited from in a child class. For example:

class Car(Body,Engine,Suspension,Interior):

As long as the variables and methods in each parent class do not conflict with each other, the
new child class can access them all without incident. But, if there are any conflicts, the con-
flicted variable or method is used from the parent that comes first in the inheritance ordering.

Chapter 1 • Python Has Class 15

When a Python class inherits from a base class, all of the variables and methods of the parent
are available. Variables can be used, and methods can be overridden. When calling the con-
structor or any method of a base class, we can use super() to refer to the base:

return super().ToString()

But when multiple inheritance is involved, the name of the parent class must be used when
both share the same variable or method name, to resolve the confusion.

Single Inheritance
Let’s look at an example of single-parent inheritance first. Here is a Point class and a Circle
class that inherits from it:

class Point():

 x = 0.0

 y = 0.0

 def __init__(self, x, y):

 self.x = x

 self.y = y

 print("Point constructor")

 def ToString(self):

 return "{X:" + str(self.x) + ",Y:" + str(self.y) + "}"

class Circle(PPoint):

 radius = 0.0

 def __init__(self, x, y, radius):

 super().__init__(x,y)

 self.radius = radius

 print("Circle constructor")

 def ToString(self):

 return super().ToString() + \

 ",{RADIUS=" + str(self.radius) + "}"

We can test these classes simply enough:

More Python Programming for the Absolute Beginner16

p = Point(10,20)

print(p.ToString())

c = Circle(100,100,50)

print(c.ToString())

That produces this output:

Point constructor

{X:10,Y:20}

Point constructor

Circle constructor

{X:100,Y:100},{RADIUS=50}

We can see that Point is simple enough in function, but Circle calls the Point constructor
before its own, and then uses the complex ToString() call from Point and adds its own new
radius property to the mix. This is really helpful to see which is why all of our classes have a
ToString() method.

Multiple inheritance is a quagmire! I recommend avoiding it when possible and
just keeping classes simple and straightforward, with perhaps one level of in-
heritance at most. Give your classes a lot of functionality rather than dividing
them up across several classes, for best results.

Now, when the Circle class is created, the constructor is called with the three parameters
passed to it (100,100,50). Note that the parent (Point) constructor is called to handle the x and
y parameters, while the radius parameter is handled inside Circle:

 def __init__(self, x, y, radius):

 ssuper().__init__(x,y)

 self.radius = radius

The call to super() invokes the constructor of the Point class, which is the parent or base class
of Circle. This works marvelously when single inheritance is used!

Multiple Inheritance
I would be remiss by not at least showing you how multiple inheritance works, even if it is a
quagmire! We essentially cannot use super() to invoke anything in the parent class when
using multiple inheritance, unless the variables and methods of each parent class are unique.
Here is another pair of classes that build on the previous two already shown. Remember when

TRAP

Chapter 1 • Python Has Class 17

I warned you that Python was a strange-looking language? We are now seeing that here! Try
to remember that Python is a script language, not a compiled language. Python code is inter-
preted while it runs.

class Size():

 width = 0.0

 height = 0.0

 def __init__(self,width,height):

 self.width = width

 self.height = height

 print("Size constructor")

 def ToString(self):

 return "{WIDTH=" + str(self.width) + \

 ",HEIGHT=" + str(self.height) + "}"

class Rectangle(PPoint,Size):

 def __init__(self, x, y, width, height):

 Point.__init__(self,x,y)

 Size.__init__(self,width,height)

 print("Rectangle constructor")

 def ToString(self):

 return Point.ToString(self) + "," + Size.ToString(self)

The Size class is a new helper class, while Rectangle is our real focus for the example. Here,
we are inheriting from both Point and Size:

class Rectangle(PPoint,Size):

Point was defined earlier, while Size was defined just above. Now, we could just begin using
Point.x, Point.y, Size.width, and Size.height, as well as the ToString() methods in each.
Python would not complain. But, the idea is to auto-initialize parent classes by calling their
constructors. Otherwise, we are losing all benefit of OOP and might as well just write struc-
tured code! So, the Rectangle constructor must call each parent constructor by name:

 def __init__(self, x, y, width, height):

 Point.__init__(self,x,y)

 Size.__init__(self,width,height)

More Python Programming for the Absolute Beginner18

Note that x and y are passed to Point.__init__(), while width and height are passed to
Size.__init__(). This properly initializes those variables within their respective classes. Of
course we could have just defined x, y, width, and height right inside Rectangle, but this is a
demonstration! In general, I would recommend doing just that to simplify the code! There is
absolutely no reason to use inheritance in this manner in a real-life program. It is purely for
illustration. Testing out our new Size and Rectangle classes:

s = Size(80,70)

print(s.ToString())

r = Rectangle(200,250,40,50)

print(r.ToString())

Produces this output:

Size constructor

{WIDTH=80,HEIGHT=70}

Point constructor

Size constructor

Rectangle constructor

{X:200,Y:250},{WIDTH=40,HEIGHT=50}

Now this is really quite interesting! Size is simple enough to follow, but look at the output
for Rectangle! We have a call to the Point constructor and Size constructor, exactly as planned!
Furthermore, the ToString() method combines the output of Point.ToString() and
Size.ToString() effectively.

SUMMARY
This chapter was very fast paced for the first chapter on Python programming! Is your hair
messy from going so fast? Don’t worry, we’re going to put code like this to use in a practical
way, by actually drawing points, circles, and rectangles, among other things! We will also
create a sprite class for drawing game characters on the screen with animation as a learning
tool for Python! The good news is, this was probably the hardest chapter because it was your
first exposure to not only the strange-looking Python syntax, but also to object-oriented pro-
gramming in all likelihood! As you will find in later chapters, the straightforward approach
to learning a programming language is usually the best way. I hope you are ready to go,
because in the very next chapter we’ll begin learning Pygame!

Chapter 1 • Python Has Class 19

Challenges
1. Open the GeometryDemo.py program and create your own

new class that inherits from Point, called Ellipse, with a
horizontal and vertical radius rather than just a single radius
like the one in Circle.

2. Add a new method to the Rectangle class called CalcArea(),
that returns the area of the Rectangle. The formula is: Area =
Width * Height. Test the method to be sure it works.

3. Add a new method to the Circle class called CalcCircum(),
that returns the circumference around the circle. The formula
is: Circumference = 2 * Pi * Radius (where Pi = 3.14159). Test the
method to be sure it works.

More Python Programming for the Absolute Beginner20

2C H A P T E R

GETTING STARTED WITH

PYGAME: THE PIE GAME

his chapter introduces a game library called Pygame that was developed
to make it possible to draw graphics, get user input, do animation, and use
a timer to make the game run at a consistent frame rate. We’re going to

just get started with Pygame in this chapter, learn the basics of drawing shapes
and text, and will be writing quite a bit of code along the way. As you will see,
Pygame does more than just provide drawing functions for shapes and bitmaps.
Pygame also provides services for getting user input, handling audio playback,
and polling the mouse and keyboard. We will get to these additional topics in due
time.

Here are the topics covered in this chapter:

• Using the Pygame library

• Printing text with fonts

• Using looping to repeat actions

• Drawing circles, rectangles, lines, and arcs

• Creating The Pie Game

T

EXAMINING THE PIE GAME
Our example in this chapter is called The Pie Game. The Pie Game uses Pygame to draw filled-
in pie slices. To draw a pie slice in our Pie Game with Pygame, the user presses number keys
corresponding to the pie pieces. We then use Pygame drawing functions to draw the pie pieces.
The player wins by pressing the keys for all of the pieces without making a mistake.

FIGURE 2.1

The Pie Game.

Pygame must be installed before you can use it, because Pygame is not packaged
with Python. Download Pygame from http://www.pygame.org/download.shtml.
It is important to get the right version of Pygame that goes with the version of
Python you are using. This book uses Python 3.2 with Pygame 1.9. If you need help
getting it installed, please see Appendix A for more details.

USING PYGAME
The first step to using Pygame is to import the Pygame library into our Python program so it
can be used.

import pygame

The next step is to import all of the constants in Pygame so they are more readily accessible
in our code. This is optional but tends to make the code cleaner. Some Python programmers
dislike importing everything from a library due to efficiency concerns, but this makes our
code a whole lot easier to read.

TRAP

More Python Programming for the Absolute Beginner22

http://www.pygame.org/download.shtml

from pygame.locals import *

Now we can initialize Pygame:

pygame.init()

Now that Pygame has been initialized, we have access to all of the resources of the library.
The next order of business is to gain access to the display system and create a window. The
resolution is up to you, but did you note that the screen width and height parameters are
enclosed in parentheses? The (600,500) pair becomes a point with an x and y property. In
Python, source code syntax is loosely enforced by the interpreter, so we can write code like
this where a more strongly typed language—such as C++—would not allow it.

screen = pygame.display.set_mode((600,500))

An excellent Pygame reference manual is found online at:
http://www.pygame.org/docs/index.html.

Printing Text
Pygame supports text output to the graphics window using pygame.font. To draw text, we
must first create a font object:

myfont = pygame.font.Font(None,60)

The name of a TrueType font can be supplied to the pygame.font.Font() constructor, such as
“Arial,” but using None (no quotes) causes the default Pygame font to be used. A point size of
60 is quite large, but this is a simple example. Now, drawing text is not a light process with
Pygame; it’s a heavy process. Meaning, text is not just quickly drawn to the screen, it is ren-
dered onto a surface which is then drawn to the screen. Because this is a rather time-
consuming process, it is advised to create the text surface (or image) in memory first, and
then draw the text as an image. When we simply must draw text in real time, that’s okay, but
if the text doesn’t change, it’s better to pre-render the text onto an image.

white = 255,255,255

blue = 0,0,255

textImage = myfont.render("Hello Pygame", True, white)

The textImage object will be a surface that can be drawn with screen.blit(), our die-hard
drawing function that will be used extensively in all of our games and demos! The first
parameter is obviously the text message; the second parameter is a flag to anti-alias the font
(to improve quality); the third parameter is the color (an RGB value).

HINT

Chapter 2 • Getting Started with Pygame: The Pie Game 23

http://www.pygame.org/docs/index.html

To draw the text, the usual process is to clear the screen, do our drawing, and then refresh
the display. Let’s see all three lines of code:

screen.fill(blue)

screen.blit(textImage, (100,100))

pygame.display.update()

Now, if you run the program at this point, what happens? Go ahead and give it a try. Did you
see the window come up after running the program? Since there is no delay anywhere in our
code, the window should come up and then close just as quickly. A delay is needed. But,
instead of a delay, we’ll go a step further.

Looping
There are two problems with the simplistic example we’ve just seen. First, it just runs once
and then quits. Second, there’s no way to get any user input (even if it did not just immediately
exit). So, let’s look into correcting that oversight. First, we need a loop. This is done in Python
with the while keyword. The while statement will execute the code following the colon until
the condition is false. As long as the while condition is true, it will keep running:

while True:

Next, we will create an event handler. At this early stage, all we want to happen is for
the window to stay up until the user closes it. The close event can be clicking the “X” at the
upper- right corner of the window, or by just pressing any key. Note that the code is indented
within the while loop. Any code that is indented after this point will be contained in the
while loop.

while True:

 ffor event in pygame.event.get():

 iif event.type in (QUIT, KEYDOWN):

 ssys.exit()

Lastly, we add the drawing code and screen refresh indented in the while loop, and this wraps
up the program. Just for the sake of learning, here is the complete program without any blank
lines or comments. The output of the program is shown in Figure 2.2.

More Python Programming for the Absolute Beginner24

FIGURE 2.2

The Hello Pygame
program.

import pygame

from pygame.locals import *

white = 255,255,255

blue = 0,0,200

pygame.init()

screen = pygame.display.set_mode((600,500))

myfont = pygame.font.Font(None,60)

textImage = myfont.render("Hello Pygame", True, white)

while True:

 for event in pygame.event.get():

 if event.type in (QUIT, KEYDOWN):

 sys.exit()

 screen.fill(blue)

 screen.blit(textImage, (100,100))

 pygame.display.update()

Drawing Circles
We can draw many different shapes with the pygame.draw library. Figure 2.3 shows the circle
drawn by the example code shown. To draw a circle, we use pygame.draw.circle(), and pass
a number of parameters to customize the size, color, and position of the circle.

Chapter 2 • Getting Started with Pygame: The Pie Game 25

FIGURE 2.3

The Drawing
Circles example.

import pygame

from pygame.locals import *

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("Drawing Circles")

while True:

 for event in pygame.event.get():

 if event.type in (QUIT, KEYDOWN):

 sys.exit()

 screen.fill((0,0,200))

 ##draw a circle

 ccolor = 255,255,0

 pposition = 300,250

 rradius = 100

 wwidth = 10

 ppygame.draw.circle(screen, color, position, radius, width)

 pygame.display.update()

More Python Programming for the Absolute Beginner26

Drawing Rectangles
To draw a rectangle, we use the pygame.draw.rect() function with a number of parameters.
The window displayed by this program is shown in Figure 2.4. This example is a little more
advanced than the one before. Instead of just drawing a rectangle at the center of the screen,
this example moves the rectangle! The way this works is, we keep track of the rectangle’s
position outside of the while loop (with pos_x and pos_y), and create a pair of velocity variables
(vel_x and vel_y). Inside the while loop, we can update the position using the velocity, and
then some logic keeps the rectangle on the screen. The way this works is, any time the rect-
angle reaches an edge of the screen, the velocity is reversed!

FIGURE 2.4

The Drawing
Rectangles

example.

import pygame

from pygame.locals import *

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("Drawing Rectangles")

pos_x = 300

pos_y = 250

vel_x = 2

vel_y = 1

Chapter 2 • Getting Started with Pygame: The Pie Game 27

while True:

 for event in pygame.event.get():

 if event.type in (QUIT, KEYDOWN):

 sys.exit()

 screen.fill((0,0,200))

 ##move the rectangle

 ppos_x += vel_x

 ppos_y += vel_y

 ##keep rectangle on the screen

 iif pos_x > 500 or pos_x < 0:

 vvel_x = -vel_x

 iif pos_y > 400 or pos_y < 0:

 vvel_y = -vel_y

 ##draw the rectangle

 ccolor = 255,255,0

 wwidth = 0 #solid fill

 ppos = pos_x, pos_y, 100, 100

 ppygame.draw.rect(screen, color, pos, width)

 pygame.display.update()

Drawing Lines
We can draw straight lines using the pygame.draw.line() function. Line drawing is a little
more complex than drawing other shapes, only because both the start position and end posi-
tion of the line must be supplied. We can draw the line in any color and with any desired line
width. Figure 2.5 shows the example running.

More Python Programming for the Absolute Beginner28

FIGURE 2.5

The Drawing Lines
example.

import pygame

from pygame.locals import *

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("Drawing Lines")

while True:

 for event in pygame.event.get():

 if event.type in (QUIT, KEYDOWN):

 sys.exit()

 screen.fill((0,80,0))

 ##draw the line

 ccolor = 100,255,200

 wwidth = 8

 ppygame.draw.line(screen, color, (100,100), (500,400), width)

 pygame.display.update()

Chapter 2 • Getting Started with Pygame: The Pie Game 29

Drawing Arcs
An arc is a partial circle that can be drawn with the pygame.draw.arc() function. This is another
rather complex shape that requires additional parameters. We have to supply a rectangle that
represents the boundary of the arc, beginning with the upper-left corner and then the width
and height, within which the arc will be drawn. Next, we have to supply the starting angle
and ending angle. Normally, we tend to think about angles in terms of degrees, but trigonom-
etry works with radians, and that is the form of circle measurement we must use. To convert
an angle to radians, we can use the math.radians() function, with the degree angle as the
parameter. Since the math library is required, we have to import math at the top of the
program. Figure 2.6 shows the output of the example listed below.

FIGURE 2.6

The Drawing Arcs
example.

import math

import pygame

from pygame.locals import *

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("Drawing Arcs")

while True:

 for event in pygame.event.get():

 if event.type in (QUIT, KEYDOWN):

More Python Programming for the Absolute Beginner30

 sys.exit()

 screen.fill((0,0,200))

 ##draw the arc

 ccolor = 255,0,255

 pposition = 200,150,200,200

 sstart_angle = math.radians(0)

 eend_angle = math.radians(180)

 wwidth = 8

 ppygame.draw.arc(screen, color, position, start_angle, end_angle, width)

 pygame.display.update()

THE PIE GAME
The Pie Game is a very simple game that does not have much by way of difficulty, but it does
have a rudimentary level of gameplay and a minor “goodie” when the player “wins.” The
gameplay involves just pressing the number keys 1, 2, 3, and 4, in any order. As each number
is pressed, the corresponding pie piece is drawn. When all four pie pieces are completed, then
the pie changes color. The game is shown in Figure 2.7.

FIGURE 2.7

The Pie Game with
two pieces drawn.

Chapter 2 • Getting Started with Pygame: The Pie Game 31

When the player finishes the entire pie, then the color changes to bright green and the num-
bers and pie shapes are drawn in bright green to reflect that the player has won! This might
be a simple game, but it demonstrates a lot of important Pygame concepts that we must learn
to become proficient with this library. This game also demonstrates basic logic code in Python,
and believe it or not, the very important subject of state-based programming. You see, the four
pie pieces are not drawn automatically just when the player presses the correct key (1, 2, 3,
or 4). Instead, a state flag is set when a key is pressed, and that flag is used later to draw the
pie pieces based on that flag. This is a very important concept, as it demonstrates how to handle
events and user interaction indirectly.

import math

import pygame

from pygame.locals import *

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("The Pie Game - Press 1,2,3,4")

myfont = pygame.font.Font(None, 60)

color = 200, 80, 60

width = 4

x = 300

y = 250

radius = 200

position = x-radius, y-radius, radius*2, radius*2

piece1 = False

piece2 = False

piece3 = False

piece4 = False

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit()

 elif event.type == KEYUP:

 if event.key == pygame.K_ESCAPE:

 sys.exit()

 elif event.key == pygame.K_1:

More Python Programming for the Absolute Beginner32

 piece1 = True

 elif event.key == pygame.K_2:

 piece2 = True

 elif event.key == pygame.K_3:

 piece3 = True

 elif event.key == pygame.K_4:

 piece4 = True

 #clear the screen

 screen.fill((0,0,200))

 #draw the four numbers

 textImg1 = myfont.render("1", True, color)

 screen.blit(textImg1, (x+radius/2-20, y-radius/2))

 textImg2 = myfont.render("2", True, color)

 screen.blit(textImg2, (x-radius/2, y-radius/2))

 textImg3 = myfont.render("3", True, color)

 screen.blit(textImg3, (x-radius/2, y+radius/2-20))

 textImg4 = myfont.render("4", True, color)

 screen.blit(textImg4, (x+radius/2-20, y+radius/2-20))

 #should the pieces be drawn?

 if piece1:

 start_angle = math.radians(0)

 end_angle = math.radians(90)

 pygame.draw.arc(screen, color, position, start_angle, end_angle, width)

 pygame.draw.line(screen, color, (x,y), (x,y-radius), width)

 pygame.draw.line(screen, color, (x,y), (x+radius,y), width)

 if piece2:

 start_angle = math.radians(90)

 end_angle = math.radians(180)

 pygame.draw.arc(screen, color, position, start_angle, end_angle, width)

 pygame.draw.line(screen, color, (x,y), (x,y-radius), width)

 pygame.draw.line(screen, color, (x,y), (x-radius,y), width)

 if piece3:

 start_angle = math.radians(180)

 end_angle = math.radians(270)

 pygame.draw.arc(screen, color, position, start_angle, end_angle, width)

Chapter 2 • Getting Started with Pygame: The Pie Game 33

 pygame.draw.line(screen, color, (x,y), (x-radius,y), width)

 pygame.draw.line(screen, color, (x,y), (x,y+radius), width)

 if piece4:

 start_angle = math.radians(270)

 end_angle = math.radians(360)

 pygame.draw.arc(screen, color, position, start_angle, end_angle, width)

 pygame.draw.line(screen, color, (x,y), (x,y+radius), width)

 pygame.draw.line(screen, color, (x,y), (x+radius,y), width)

 #is the pie finished?

 if piece1 and piece2 and piece3 and piece4:

 color = 0,255,0

 pygame.display.update()

SUMMARY
This chapter introduced the Pygame library, which will really make our exploration of Python
a lot more fun than otherwise plain text output to the console would have been!

Challenges
1. Using the examples in this chapter as your starting point, write

a program that draws an ellipse—one of the shapes we did not
cover in the chapter.

2. Take one of the examples, such as the line drawing demo, and
modify it so that 1,000 lines are drawn with random values.
Look at the random library and the random.randint() function.

3. The Drawing Rectangles Demo is the only one that moved the
shape around on the screen. Modify the program so that any
time the box hits an edge of the screen it will also change color!

More Python Programming for the Absolute Beginner34

3C H A P T E R

FILE I/O, DATA, AND

FONTS: THE TRIVIA GAME

he purpose of a file is to store data in a logical way so that it can be read
back later and updated if necessary. To read and write files, then, one has
to understand data types, because the data stored in a file must be specific.

This chapter explores data types and file input/output. This chapter has a sec-
ondary purpose that works well with data types and file I/O: printing text on the
screen with fonts.

Here are the topics covered in this chapter:

• Python data types

• Getting user input

• Handling exceptions

• The Mad Lib Game

• Working with text files

• Working with binary files

• The Trivia Game

EXAMINING THE TRIVIA GAME
The Trivia Game demonstrates the concepts covered in this chapter by reading
trivia questions out of a file and asking the user to choose from the multiple choice

T

answers. The trivia questions and answers can be easily edited with a text editor or even with
IDLE. Figure 3.1 shows what the game will look like when you have finished it in this chapter.

FIGURE 3.1

The Trivia Game.

PYTHON DATA TYPES
Remember that Python is an interpreted script language, not a compiled language like C++,
so it is much more forgiving to the programmer with many more tolerances. A Python variable
can be a string, and then a number, and then a string again, without complaint. For instance:

something = 123

print(something)

something = "ABC"

print(something)

That code produces this output:

123

ABC

More Python Programming for the Absolute Beginner36

Use the str() function when you need to convert a number to a string, and either
the int() or float() function to convert a string with a number in it to a numeric
variable.

More Printing
The print() function can print more than one variable at a time; just separate each one with
a comma. For instance, this:

A = 123

B = "ABC"

C = 456

D = "DEF"

print(A,B,C,D)

produces this:

123 ABC 456 DEF

Note that print() inserts a space in between each item being printed. You can add a blank
line to the text output by print() by inserting the \n character code in a string variable,
such as:

name = "John Carpenter\n"

birth = "11/11/2011"

print(name,birth)

which outputs:

John Carpenter

 11/11/2011

Note that print() still inserted a blank space after the newline character. The print() function
has a second optional parameter that can specify the separator character, which can be
changed from the default space character. In fact, print() has four parameters in total! The
third specifies the newline character, and the fourth specifies the output destination for
redirection (not commonly used).

print("String","Theory", sep='-', end=':')

produces this output:

String-Theory:

HINT

Chapter 3 • File I/O, Data, and Fonts: The Trivia Game 37

There are some values built into Python that we can print out. Let’s print out sys.copyright
to display the copyrights of all the modules used in Python. First, add

import sys

to the program so the sys module is available. Then, print the value:

print(sys.copyright)

This prints out:

Copyright (c) 2001-2011 Python Software Foundation.

All Rights Reserved.

Copyright (c) 2000 BeOpen.com.

All Rights Reserved.

Copyright (c) 1995-2001 Corporation for National Research Initiatives.

All Rights Reserved.

Copyright (c) 1991-1995 Stichting Mathematisch Centrum, Amsterdam.

All Rights Reserved.

Some modules are not automatically loaded by Python. If you think your code is
correct but python.exe is still giving you syntax errors, make sure you are using
the import statement with the required modules.

Another interesting value is sys.platform, which is a string representing the operating system
currently in use. This will be “win32” or “win64” for Windows systems, and will vary according
to the other operating systems supported by Python. If you ever want to know what version
of Python you’re using, you can display it with:

print(sys.version)

which produces output something like this (it will vary from one system to another):

3.2 (r32:88445, Feb 20 2011, 21:29:02) [MSC v.1500 32 bit (Intel)]

How about printing out the date and time? Here’s the code:

import datetime

from datetime import datetime, timezone

print(datetime.now())

TRAP

More Python Programming for the Absolute Beginner38

which produces this output:

2011-06-14 16:52:00.572000

There’s quite a bit more to the datetime class that allows retrieval of specific datetime com-
ponents (month, day, year, etc.).

Getting User Input
We can get user input from the console using the input() function, which returns a string.
The simplest use of the function is to just pause output when a program has finished running.
An optional parameter displays text before waiting for input. For example:

poem = """

Three Rings for the elven kings under the sky,

Seven for the dwarf lords in their halls of stone,

Nine for the mortal men doomed to die,

One for the dark lord on his dark throne.

In the land of mordor where the shadows lie,

One ring to rule them all, One ring to find them,

One ring to bring them all and in the darkness bind them.

 - J.R.R. Tolkien

"""

print(poem)

input("Press Enter to continue...")

To create a lengthy text string on multiple lines, enclose the lines of text in triple
quotes.

This example will wait for the user to press the Enter key before exiting. But, we can also read
the input typed in from the input() function, rather than just look for the Enter key to be
pressed (which returns an empty string, by the way).

name = input("Pray tell, what is thy name? ")

print("Fare thee well, Master", name)

And the output:

Pray tell, what is thy name? Ambivalent Programmer

Fare thee well, Master Ambivalent Programmer

TRICK

Chapter 3 • File I/O, Data, and Fonts: The Trivia Game 39

Python excels at handling groups of information. To create an array-like list of
any data, just set a variable equal to data items in brackets, with each one sepa-
rated with a comma: mylist = [1,2,3,4,5]. Strings and other data types can also be
used.

Handling Exceptions
If you need to have the user type in a number and then use it in a calculation, the text entered
can be converted to a numeric variable with the int() or float() function. But, if the user
types in non-numeric digits, then the program will crash! We can’t allow that to disrupt the
program, because users might type in an invalid input value, and without handling the
likelihood of an error, the program definitely will crash. For example:

Enter a number: ABC

Traceback (most recent call last):

 File "InputDemo.py", line 4, in <module>

 number = float(s)

ValueError: could not convert string to float: 'ABC'

We can handle this problem with a try...except block, which will trap errors. In the example
below, the questionable line occurs inside the try: block, and the code in the except: block
will run if there is an error. In either case, the program continues running.

s = input("Enter a number: ")

try:

 nnumber = float(s)

except:

 nnumber = 0

answer = number * number

print(number,"*",number,"=",answer)

Here is a sample run. If you enter invalid data, then the output will just reflect a value of 0
because of the error handler.

Enter a number: 15

15.0 * 15.0 = 225.0

The Mad Lib Game
This is not the final chapter example, but we know enough about getting input to make a
simple Mad Lib game just for fun. The Mad Lib Game is pretty simple. You ask someone to fill
in some names, things, places, and then use those words and phrases to fill in a story, with

TRICK

More Python Programming for the Absolute Beginner40

often humorous results that are unexpected. The interesting thing about this little program
is how the story is constructed. Instead of building the story out of the user input variables
(guy, girl, food, etc.), it uses string.replace() to do a search-and-replace operation on the story
string, replacing tagged words (in caps) with user data. There are so many useful classes and
methods in the Python modules! Study the Python docs, like an explorer charting an undis-
covered country, and learn what great mysteries lie hidden! That is what sets apart a mediocre
programmer from a great programmer.

print("MAD LIB GAME")

print("Enter answers to the following prompts\n")

guy = input("Name of a famous man: ")

girl = input("Name of a famous woman: ")

food = input("Your favorite food (plural): ")

ship = input("Name of a space ship: ")

job = input("Name of a profession (plural): ")

planet = input("Name of a planet: ")

drink = input("Your favorite drink: ")

number = input("A number from 1 to 10: ")

story = "\nA famous married couple, GUY and GIRL, went on\n" +\

 "vacation to the planet PLANET. It took NUMBER\n" +\

 "weeks to get there travelling by SHIP. They\n" +\

 "enjoyed a luxurious candlelight dinner over-\n" +\

 "looking a DRINK ocean while eating FOOD. But,\n" +\

 "since they were both JOB, they had to cut their\n" +\

 "vacation short."

story = story.replace("GUY", guy)

story = story.replace("GIRL", girl)

story = story.replace("FOOD", food)

story = story.replace("SHIP", ship)

story = story.replace("JOB", job)

story = story.replace("PLANET", planet)

story = story.replace("DRINK", drink)

story = story.replace("NUMBER", number)

print(story)

Chapter 3 • File I/O, Data, and Fonts: The Trivia Game 41

Sample output looks like this (note that it will change based on what the user types in). I have
highlighted the user data in bold to show how the story was constructed.

FIGURE 3.2

The Mad Lib Game.

MAD LIB GAME

Enter answers to the following prompts

Name of a famous man: SStephen Hawking

Name of a famous woman: DDrew Barrymore

Your favorite food (plural): llasagna

Name of a space ship: TTIE Fighter

Name of a profession (plural): pphilanthropists

Name of a planet: TTattooine

Your favorite drink: RRaktajino

A number from 1 to 10: 88

A famous married couple, SStephen Hawking and DDrew Barrymore, went on

vacation to the planet TTattooine. It took 88

weeks to get there travelling by TTIE Fighter. They

enjoyed a luxurious candlelight dinner over

More Python Programming for the Absolute Beginner42

looking a RRaktajino ocean while eating llasagna. But,

since they were both pphilanthropists, they had to cut their

vacation short.

It would take some work to line up the resulting story text evenly on each line. It can be done
but the code was kept on the short and simple side for the sake of illustration.

FILE INPUT/OUTPUT
The simplest form of file is a text file that could be opened with a text editor like Notepad. In
such a file, we can read data with one significant item per line and then read each line into
a variable.

Working with Text Files
To open a file in Python, use the open() function. The first parameter is the filename, and the
second is the open mode. The modes are shown in Table 3.1. In most cases, we will just use
“r” to read, but all of the modes are available and files can be created, appended, overwritten,
and read with the file functions.

T A B L E 3 . 1 T E X T F I L E O P E N M O D E S

Mode Description
“r” Open text file to read data.
“w” Open text file to write data.
“a” Open text file to append data.
“r+” Open text file to read and write data.
“w+” Open text file to write and read data.
“a+” Open text file to append and read data.

The open() function might be called like so:

file = open("data.txt", "r")

To close the file after finishing with it:

file.close()

Chapter 3 • File I/O, Data, and Fonts: The Trivia Game 43

Writing to a Text File
To write data out to a text file, we have to open the file with the “w” write property. There is
one primary way to write text data to a file, using the file.write() function. Surprisingly,
there is no writeline()-type function to write just a singular line (but there is plural
file.writelines() for writing a list of strings), so we have to add a new-line character (\n) to
the end of text that needs to be saved on a separate line.

file = open("data2.txt", "w")

file.write("Sample file writing\n")

file.write("This is line 2\n")

file.close()

Here is another example that writes several lines out at once from a string list:

text_lines = [

 "Chapter 3\n",

 "Sample text data file\n",

 "This is the third line of text\n",

 "The fourth line looks like this\n",

 "Edit the file with any text editor\n"]

file = open("data.txt", "w")

file.writelines(text_lines)

file.close()

Reading from a Text File
To read from a file, we must first open it for reading. The code is similar to opening a file for
writing, but we just need to change the file mode:

file = open("data.txt", "r")

Once a file has been opened, the data inside can be read, and there are a number of functions
available to do this in different ways. To read a single character at a time, use file.read(n),
where n is the number of characters to read:

char = file.read(10)

print(char)

reads 10 characters from the file at the current file pointer position. Repeated calls like this
will continue to read more characters out of the file and advance the position. To read the
whole file into a string variable:

More Python Programming for the Absolute Beginner44

all_data = file.read()

print(all_data)

We can also read a whole line of text data with file.readline(n), where n is an optional
number of characters to read from the current line.

one_line = file.readline()

print(one_line)

To read all of the lines in the entire data file, use file.readlines(). Invoking this function
does not fill the receiving variable with text data. Instead, a list is created with each line an
item in the list. Printing the data in the list variable does not print out the text data as it
appears in the file. For instance, this code:

all_data = file.readlines()

print(all_data)

produces this output:

['Chapter 3\n', 'Sample text data file\n', 'This is the third line of text\n',

'The fourth line looks like this\n', 'Edit the file with any text editor\n']

Strange looking, wouldn’t you agree? Well, since a list was created out of the all_data variable,
it can be indexed like an array with a for loop. Note that the string.strip() modifier is used:
this removes line-feed characters from the end of lines.

print("Lines: ", len(all_data))

for line in all_data:

 print(line.strip())

The output shows the contents of the text file:

Lines: 5

Chapter 3

Sample text data file

This is the third line of text

The fourth line looks like this

Edit the file with any text editor

Working with Binary Files
Binary files contain bytes. The bytes might be encoded integers, encoded floats, encoded lists
(written using pickling, which we’ll cover here shortly), or any other type of data. A PNG
bitmap file can be read with binary file access in Python. Now, interpreting the data afterward

Chapter 3 • File I/O, Data, and Fonts: The Trivia Game 45

is up to you, the programmer, but Python can read the data and supply it in a buffer for
processing. Table 3.2 lists the binary file modes.

T A B L E 3 . 2 B I N A R Y F I L E O P E N M O D E S

Mode Description
“rb” Open binary file to read data.
“wb” Open binary file to write data.
“ab” Open binary file to append data.
“rb+” Open binary file to read and write data.
“wb+” Open binary file to write and read data.
“ab+” Open binary file to append and read data.

Opening a file in binary mode is similar to what we’ve already seen, and might be called
like so:

file = open("data.txt", ""rb")

To close the file after finishing with it:

file.close()

Writing to a Binary File
This is debatable, but I think the most useful sort of binary file is one that contains data
corresponding to a Python structure. Our ability to write a structure to a file and read it back
with the fields intact will really handle any custom data file needs that we are likely to have,
either for a game or any other program. Python has no direct correlation between a user-
defined data type structure and file input/output. But it does provide a library module called
struct with the ability to pack data into a string for output. We can write this data in binary
mode, but interestingly enough, it was really designed for writing text data as a buffer.

The way data is encoded into binary format is with the struct.pack() function. When reading
the data from the file again, it is decoded with struct.unpack(). struct is a Python module.
To use it, we must include it first with an import statement, just like we do with Pygame:

import struct

Let’s see how to read and write a file in binary mode. The following example code writes 1000
integers to a binary file. First, let’s see how to write, and then we’ll read the data back. First,
open the file for binary write mode:

More Python Programming for the Absolute Beginner46

file = open("binary.dat", "wb")

Next, write out 1000 integers to the file:

for n in range(1000):

 ddata = struct.pack('i', n)

 file.write(data)

Lastly, close the file:

file.close()

Reading from a Binary File
Now we’ll see how to read data back out of a binary file and unpack it for display, one value
at a time. To verify that the code is working, we should expect to see the values 0 to 999 come
up. First, we open the file, and calculate the size of an int with struct.calcsize(), so the
struct.unpack() function will know how many bytes to read for each number.

file = open("binary.dat", "rb")

size = struct.calcsize("i")

Next, a while loop reads the data in the file size bytes at a time until all data has been
read. As each value is read, it is unpacked, converted from a list to a simple variable, and
printed out.

bytes_read = file.read(size)

while bytes_read:

 value = struct.unpack("i", bytes_read)

 value = value[0]

 print(value, end=" ")

 bytes_read = file.read(size)

file.close()

Similar code could be written to store additional data to the file in sequence. As long as the
data is read back out in the same order that it was written, then different types of data can
be written to the file.

THE TRIVIA GAME
It’s time to apply what we’ve learned about file input/output to a game that will help
strengthen your grasp of the subject. The game will run in a graphics window using Pygame,
so we will need to learn to use text output.

Chapter 3 • File I/O, Data, and Fonts: The Trivia Game 47

Printing Text with Pygame
We have been printing a lot of text out to the console in this chapter while learning about
file input/output, but there comes a point where the console is no longer sufficient and we
need a higher level of user interaction that only a graphical system can provide. We’ll bump
it up a notch by learning to print text to the screen in graphics mode using Pygame.

The pygame.font module gives us the ability to print font-based text to the screen in graphics
mode. We’ve already used pygame.font in the previous chapter but we’ll review it quickly
again. The class that produces a printable font is pygame.font.Font. By default, passing None
as the font name will cause the pygame.font.Font() constructor to load the default Pygame
font. The second parameter to the constructor is the font point size. This line creates a default
font with a 30-point size:

myfont = pygame.font.Font(None, 30)

We can also specify a font name to choose a custom font for our game:

myfont = pygame.font.Font("Arial", 30)

To print text, the font.render() function creates a bitmap with the text written on it, which
we then draw to the screen using screen.blit().

image = font.render(text, True, (255,255,255))

screen.blit(image, (100, 100))

The Trivia Class
The main program source code in the game is primarily responsible for getting keyboard
input and refreshing the screen. The bulk of the gameplay code is found in a new class called
Trivia. First, we’ll import the modules needed for the game:

import sys, pygame

from pygame.locals import *

Next, we’ll get the Trivia class started. The constructor, __init__(), has a filename parameter
that you pass to it, which contains the trivia data. The data is loaded with a single
file.readlines() function call, and then that data is used in its list by the game. There are
quite a few field variables (also called properties) in the Trivia class, to handle the game logic.
All of the logic is performed by methods in the Trivia class, not in the main program.

class Trivia(object):

 def __init__(self, filename):

 self.data = []

 self.current = 0

More Python Programming for the Absolute Beginner48

 self.total = 0

 self.correct = 0

 self.score = 0

 self.scored = False

 self.failed = False

 self.wronganswer = 0

 self.colors = [white,white,white,white]

Loading the Trivia Data
After the data is loaded, then the trivia data is parsed (from its list object called
trivia_data) and copied one line at a time into a new list called Trivia.data. The reason for
the new list is so we can strip each line of whitespace (main line-feed characters at the end of
each line). The following code is also found in the constructor, __init__().

 #read trivia data from file

 f = open(filename, "r")

 trivia_data = f.readlines()

 f.close()

 #count and clean up trivia data

 for text_line in trivia_data:

 self.data.append(text_line.strip())

 self.total += 1

The trivia data file included with the game has only five questions, but the game supports
more, so you are welcome to add more questions. The theme of this trivia game is astronomy.
Don’t cheat and look at the answers before at least trying to answer them on your own! You
can edit the trivia_data.txt file with any text editor, including IDLE. The format of the trivia
data goes like this: line 1 is the question; lines 2–5 are the answers; line 6 is the correct answer.
See, simple!

What is the name of the 4th planet from the Sun?

Saturn

Mars

Earth

Venus

2

Which planet has the most moons in the solar system?

Uranus

Chapter 3 • File I/O, Data, and Fonts: The Trivia Game 49

Saturn

Neptune

Jupiter

4

Approximately how large is the Sun's diameter (width)?

65 thousand miles

45 million miles

1 million miles

825 thousand miles

3

How far is the Earth from the Sun in its orbit (on average)?

13 million miles

93 million miles

250 thousand miles

800 thousand miles

2

What causes the Earth's oceans to have tides?

The Moon

The Sun

Earth's molten core

Oxygen

1

Displaying the Question and Answers
The bulk of the work in the game is found in the Trivia.show_question() method. It draws
the entire screen for the game: the title, the footer, the score, the question, answers, and does
the colorizing of the answers based on user input. When the player chooses the correct
answer, it is printed in green. But if they choose the wrong answer, it will be printed in red,
and the correct one printed in green. This could have required quite a bit of logic code, but
it was simplified using a list of four colors that is used when drawing the text of each answer.
The key to indexing from one question record (in the loaded data) to another is the
Trivia.current field. Figure 3.3 shows the resulting display when the user gets an answer
right.

More Python Programming for the Absolute Beginner50

FIGURE 3.3

Getting the
answer right.

 def show_question(self):

 print_text(font1, 210, 5, "TRIVIA GAME")

 print_text(font2, 190, 500-20, "Press Keys (1-4) To Answer", purple)

 print_text(font2, 530, 5, "SCORE", purple)

 print_text(font2, 550, 25, str(self.score), purple)

 #get correct answer out of data (first)

 self.correct = int(self.data[self.current+5])

 #display question

 question = self.current // 6 + 1

 print_text(font1, 5, 80, "QUESTION " + str(question))

 print_text(font2, 20, 120, self.data[self.current], yellow)

 #respond to correct answer

 if self.scored:

 self.colors = [white,white,white,white]

 self.colors[self.correct-1] = green

Chapter 3 • File I/O, Data, and Fonts: The Trivia Game 51

 print_text(font1, 230, 380, "CORRECT!", green)

 print_text(font2, 170, 420, "Press Enter For Next Question", green)

 elif self.failed:

 self.colors = [white,white,white,white]

 self.colors[self.wronganswer-1] = red

 self.colors[self.correct-1] = green

 print_text(font1, 220, 380, "INCORRECT!", red)

 print_text(font2, 170, 420, "Press Enter For Next Question", red)

 #display answers

 print_text(font1, 5, 170, "ANSWERS")

 print_text(font2, 20, 210, "1 - " + self.data[self.current+1], self.colors[0])

 print_text(font2, 20, 240, "2 - " + self.data[self.current+2], self.colors[1])

 print_text(font2, 20, 270, "3 - " + self.data[self.current+3], self.colors[2])

 print_text(font2, 20, 300, "4 - " + self.data[self.current+4], self.colors[3])

Responding to User Input
The Trivia Game works by waiting for the user to press the keys 1, 2, 3, or 4, to choose one of
the four answers. When the user presses one of these keys, the Trivia.handle_input() method
is called. If an answer has not already been chosen, then the user input will be compared to
the correct answer, and either self.scored or self.failed will be set to True. The game then
responds to these two flags, and is put into a wait state until the user presses the Enter key
to continue to the next question.

 def handle_input(self,number):

 if not self.scored and not self.failed:

 if number == self.correct:

 self.scored = True

 self.score += 1

 else:

 self.failed = True

 self.wronganswer = number

More Python Programming for the Absolute Beginner52

FIGURE 3.4

Getting the
answer wrong.

Going to the Next Question
After an answer has been chosen, the game displays the result and waits for the user to press
the Enter key to continue. That key triggers a call to the method Trivia.next_question(). If
the game is in the wait state between questions, then the flags are reset, the colors are reset,
and the game jumps to the next question. Since there are 6 lines per question in the data file
(1 question, 4 answers, and 1 number representing the correct answer), the Trivia.current
field is incremented by 6 to jump to the next question.

 def next_question(self):

 if self.scored or self.failed:

 self.scored = False

 self.failed = False

 self.correct = 0

 self.colors = [white,white,white,white]

 self.current += 6

 if self.current >= self.total:

 self.current = 0

Chapter 3 • File I/O, Data, and Fonts: The Trivia Game 53

Main Code
The main code is rather tight since so much gameplay functionality was put into the Trivia
class. First up, we have a helper function called print_text(). It’s reusable because the first
parameter you should pass to the function is a font object.

def print_text(font, x, y, text, color=(255,255,255), shadow=True):

 if shadow:

 imgText = font.render(text, True, (0,0,0))

 screen.blit(imgText, (x-2,y-2))

 imgText = font.render(text, True, color)

 screen.blit(imgText, (x,y))

Next, we have the main program initialization code that creates the Pygame window and gets
things set up for the game.

#main program begins

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("The Trivia Game")

font1 = pygame.font.Font(None, 40)

font2 = pygame.font.Font(None, 24)

white = 255,255,255

cyan = 0,255,255

yellow = 255,255,0

purple = 255,0,255

green = 0,255,0

red = 255,0,0

Next, the trivia object is created (using the Trivia class) and a data file called
trivia_data.txt is loaded. We’ll look at the file in a minute.

#load the trivia data file

trivia = Trivia("trivia_data.txt")

A while loop keeps the game running; it may be considered the game loop. Most of the code is
involved in getting user input with keyboard events. Then it just clears the screen and calls
trivia.show_question() to update the current state of the game. The last line updates the
screen.

#repeating loop

while True:

 for event in pygame.event.get():

More Python Programming for the Absolute Beginner54

 if event.type == QUIT:

 sys.exit()

 elif event.type == KEYUP:

 if event.key == pygame.K_ESCAPE:

 sys.exit()

 elif event.key == pygame.K_1:

 trivia.handle_input(1)

 elif event.key == pygame.K_2:

 trivia.handle_input(2)

 elif event.key == pygame.K_3:

 trivia.handle_input(3)

 elif event.key == pygame.K_4:

 trivia.handle_input(4)

 elif event.key == pygame.K_RETURN:

 trivia.next_question()

 #clear the screen

 screen.fill((0,0,200))

 #display trivia data

 trivia.show_question()

 #update the display

 pygame.display.update()

The Real World start

Python is used in many large-scale software engineering projects due to its versatility.
For example, NASA used Python in the development of software for the Space Shuttle
program! See the success story here: http://www.python.org/about/success/usa.

SUMMARY
This chapter offered a fairly robust coverage of data types, input and printing, file input/
output, and managing data effectively for a game. The end result in The Trivia Game demon-
strated how easily Python can handle data of different types very easily.

Chapter 3 • File I/O, Data, and Fonts: The Trivia Game 55

http://www.python.org/about/success/usa

Challenges
1. Modify The Mad Lib Game by extending the story with your own

scenario using the existing code, with your own user input
questions.

2. Modify the trivia_data.txt data file containing questions for
The Trivia Game, adding several new astronomy questions. As
an alternative, create your own new trivia questions on any
other subject of your choice.

3. Modify The Trivia Game so that when the last question has been
answered, rather than restarting from the beginning, the game
prompts the user whether they would like to play again or just
quit.

More Python Programming for the Absolute Beginner56

4C H A P T E R

USER INPUT: THE BOMB

CATCHER GAME

e have only scratched the surface of Python and Pygame up to this point,
learning how to print text with different fonts and draw lines and shapes
in different colors. Don’t get me wrong, there’s a lot you can do with just

these basic capabilities, but Pygame has so much more to offer! We’re going to
devote this chapter solely to user input. That is, getting user input with the key-
board and mouse. I have mentioned before that Python takes some getting used
to, and Pygame shares that distinction as well because of the nature of Python.
Pygame was actually based on another library entirely: SDL. Simple DirectMedia
Layer (www.libsdl.org) is an open source library that makes 2D graphics drawing
and user input very easy to support on multiple platforms. Since Pygame is based
on SDL, most of the SDL features are supported in Pygame. We’’re going to learn
to use the user input features in this chapter while making a real-time game.

Here are the topics covered in this chapter:

• Learning to use Pygame events

• Learning about real-time loops

• Learning about keyboard and mouse events

• Learning to poll the keyboard and mouse device states

• Writing The Bomb Catcher Game

W

www.libsdl.org

EXAMINING THE BOMB CATCHER GAME
The Bomb Catcher Game is shown in Figure 4.1. This game will help reinforce the information
learned during the chapter about player input. Specifically, this game uses the mouse to move
a red “paddle” at the bottom of the screen, in order to catch yellow “bombs” falling from the
top of the screen.

FIGURE 4.1

The Bomb Catcher
Game.

PYGAME EVENTS
Pygame events handle a variety of things in a Pygame program. We have already used some
of the event types supported by Pygame so they might look familiar to you. Here is the com-
plete list, with the events we’ve already used in bold:

• QUIT

• ACTIVEEVENT

• KEYDOWN

• KEYUP

• MOUSEMOTION

• MOUSEBUTTONUP

More Python Programming for the Absolute Beginner58

• MOUSEBUTTONDOWN

• JOYAXISMOTION

• JOYBALLMOTION

• JOYHATMOTION

• JOYBUTTONUP

• JOYBUTTONDOWN

• VIDEORESIZE

• VIDEOEXPOSE

• USEREVENT

We are not going to address all of the event types, just those related to user input. It is true
that Pygame supports joystick input. The joystick must be plugged in and configured with
the operating system in order for it to work with Pygame. If you wish to try your hand at
joystick programming, by all means, go for it! The code will be similar to what we’re looking
at here for the keyboard and mouse.

It is possible to use both the event system and polling to get keyboard and mouse
input with Pygame. A combination of the two or just use of one or the other will
be based on preference, as it works either way.

Real-Time Event Loop
Event handling in Pygame is done in a real-time loop. A loop is created with the while state-
ment and a while block, in which all code inside the while block is executed repeatedly as
long as the while condition remains true. In many of the examples shown in this book, we
have used

while True:

as the conditional qualifier. This code normally would create an infinite loop, and it does,
except that we have an out with the sys.exit() function.

To respond to a Pygame event, we have to parse the events and look at each one. While there
can be many events happening at a time, there will usually be just one type of event in a simple
demo. More complex programs, and especially games, will have many events happening at
the same time. So, we need to parse the events as they are generated. This is done using

pygame.event.get()

This code will create a list of events that are currently waiting to be processed. We go through
the complete list with a for loop:

TRICK

Chapter 4 • User Input: The Bomb Catcher Game 59

for event in pygame.event.get():

which gives us each event in the queue as they are generated. Typical events will be key
presses, key releases, and mouse movement. The most common event to which we must
respond is QUIT, which happens when the window is closed by the user.

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit()

Keyboard Events
The keyboard events include KEYUP and KEYDOWN. When you want to respond to a key being
pressed, look at the KEYDOWN event, and for released, KEYUP. Often, the best way to respond to
key events is with flag variables. For instance, when the Space key is pressed, a flag such as
space_key = True is set. Then, when the key is released, space_key = False is set. In this way,
we don’t have to respond to events immediately as they happen, but can respond to the flag
variable instead (elsewhere in the program).

One common key to look for in nearly every program is the quit key. Normally, I use Escape
as the default quit key, as a standard way to end a program. We can code a response to the
Escape key like so:

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit()

 elif event.type == KEYDOWN:

 if event.key == pygame.K_ESCAPE:

 sys.exit()

Note in this example that an elif statement had to be used when evaluating the event types.
There is no “switch” or “select” conditional statement in Python, only if...elif...else. This
works pretty well when we only need to work with a few keys. What if we want to look for
input from a large number of keys? In that case, do we have to write an if statement for every
key? One way is to look at the key.name property, which will return a string containing the key
name. Another way is to poll the keyboard (more on this later).

By default, Pygame does not respond repeatedly to a key that is being held down; it only sends
an event the first time the key is pressed, and then another when it is released. To cause

More Python Programming for the Absolute Beginner60

Pygame to generate repeat events as a key is being held down, we have to turn on the key
repeat:

pygame.key.set_repeat(10)

The parameter is a millisecond repeat value. Calling this method without the parameter dis-
ables the key repeat feature.

Mouse Events
The mouse events supported by Pygame include these: MOUSEMOTION, MOUSEBUTTONUP, and
MOUSEBUTTONDOWN. The Pygame documentation is a bit sparse regarding the properties of each
event, so it takes a little digging to find them. We can read these properties in the event
handler when the appropriate event comes up.

For the MOUSEMOTION event, the properties are event.pos, event.rel, and event.buttons.

for event in pygame.event.get():

 if event.type == MOUSEMOTION:

 mouse_x,mouse_y = event.pos

 move_x,move_y = event.rel

For both the MOUSEBUTTONDOWN and MOUSEBUTTONUP events, the properties are event.pos and
event.button.

for event in pygame.event.get():

 elif event.type == MOUSEBUTTONDOWN:

 mouse_down = event.button

 mouse_down_x,mouse_down_y = event.pos

 elif event.type == MOUSEBUTTONUP:

 mouse_up = event.button

 mouse_up_x,mouse_up_y = event.pos

DEVICE POLLING
The event system in Pygame is not the only means at our disposal for detecting user input.
We can also poll the input devices to see if the user is interacting with our program.

Polling the Keyboard
The interface to keyboard polling in Pygame is with pygame.key,get_pressed(). This method
returns a list of bools, which is a big list of flags, one per key. The same key constant values
are used to index the resulting array of bools (such as pygame.K_ESCAPE). The benefit to polling
all of the keys at once is the ability to detect multiple key presses without going through the

Chapter 4 • User Input: The Bomb Catcher Game 61

event system. We could replace the old event handler code to detect the Escape key with the
following:

keys = pygame.key.get_pressed()

if keys[K_ESCAPE]:

 sys.exit()

All of the key code constants in Pygame, such as K_RETURN, correspond to their
ASCII code equivalents, so it is easy to look up a key with any ASCII chart.

We can use a Python function called chr() to return the character string representation of
an ASCII code number. For instance, the lowercase letter ‘a’ is ASCII code 97. Here is a short
game that uses the keyboard and a real-time loop to test your typing speed! It’s not as accurate
without whole words—we’re only testing typing speed one letter at a time, but it is still a good
way to get a handle on the keyboard polling code and support functions. Figure 4.2 shows the
program running. Can you beat my score?

FIGURE 4.2

The Keyboard
Demo tests your

typing speed.

HINT

More Python Programming for the Absolute Beginner62

import sys, random, time, pygame

from pygame.locals import *

def print_text(font, x, y, text, color=(255,255,255)):

 imgText = font.render(text, True, color)

 screen.blit(imgText, (x,y))

#main program begins

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("Keyboard Demo")

font1 = pygame.font.Font(None, 24)

font2 = pygame.font.Font(None, 200)

white = 255,255,255

yellow = 255,255,0

key_flag = False

correct_answer = 97 # "a"

seconds = 11

score = 0

clock_start = 0

game_over = True

#repeating loop

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit()

 elif event.type == KEYDOWN:

 key_flag = True

 elif event.type == KEYUP:

 key_flag = False

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]:

 sys.exit()

 if keys[K_RETURN]:

 if game_over:

 game_over = False

 score = 0

Chapter 4 • User Input: The Bomb Catcher Game 63

 seconds = 11

 clock_start = time.clock()

 current = time.clock() - clock_start

 speed = score * 6

 if seconds-current < 0:

 game_over = True

 elif current <= 10:

 if keys[correct_answer]:

 correct_answer = random.randint(97,122)

 score += 1

 #clear the screen

 screen.fill((0,100,0))

 print_text(font1, 0, 0, "Let's see how fast you can type!")

 print_text(font1, 0, 20, "Try to keep up for 10 seconds...")

 if key_flag:

 print_text(font1, 500, 0, "<key>")

 if not game_over:

 print_text(font1, 0, 80, "Time: " + str(int(seconds-current)))

 print_text(font1, 0, 100, "Speed: " + str(speed) + " letters/min")

 if game_over:

 print_text(font1, 0, 160, "Press Enter to start...")

 print_text(font2, 0, 240, chr(correct_answer-32), yellow)

 #update the display

 pygame.display.update()

There’s quite a bit of new Python code in this small program that would be helpful to study.
Did you notice the random module being used? Look for the function called random.randint().
This is a really helpful function that will generate a random number inside the range (sup-
plied by two parameters). Another very helpful new module is time, which we also have not
seen before. The time.clock() function returns the current number of seconds (with millisec-
onds included as a decimal value) since the program started. I’m using time.clock() here in
a subtraction calculation to come up with a countdown from 10 down to 1. A variable called

More Python Programming for the Absolute Beginner64

seconds starts off at 11, and time.clock() is subtracted from seconds to arrive at a countdown
value. Very useful indeed!

Polling the Mouse
We can also ignore the event system and poll the mouse direction if that would work better
for our needs. There are really just three mouse functions that we need to learn about. The
first one is pygame.mouse.get_pos(), which returns the x and y value pair representing the
mouse’s current position:

pos_x,pos_y = pygame.mouse.get_pos()

Likewise, we can read the mouse’s relative movement in a similar manner with
pygame.mouse.get_rel():

rel_x,rel_y = pygame.mouse.get_rel()

Mouse buttons are read with a call to pygame.mouse.get_pressed(), which returns an array of
the button states.

button1, button2, button3 = pygame.mouse.get_pressed()

Below is a complete example of mouse input that demonstrates both event and polled mouse
input reading. Figure 4.3 shows the Mouse Demo running.

FIGURE 4.3

The Mouse Demo
just displays basic

mouse status
values.

Chapter 4 • User Input: The Bomb Catcher Game 65

import sys, pygame

from pygame.locals import *

def print_text(font, x, y, text, color=(255,255,255)):

 imgText = font.render(text, True, color)

 screen.blit(imgText, (x,y))

#main program begins

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("Mouse Demo")

font1 = pygame.font.Font(None, 24)

white = 255,255,255

mouse_x = mouse_y = 0

move_x = move_y = 0

mouse_down = mouse_up = 0

mouse_down_x = mouse_down_y = 0

mouse_up_x = mouse_up_y = 0

#repeating loop

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit()

 elif event.type == MOUSEMOTION:

 mouse_x,mouse_y = event.pos

 move_x,move_y = event.rel

 elif event.type == MOUSEBUTTONDOWN:

 mouse_down = event.button

 mouse_down_x,mouse_down_y = event.pos

 elif event.type == MOUSEBUTTONUP:

 mouse_up = event.button

 mouse_up_x,mouse_up_y = event.pos

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]:

 sys.exit()

More Python Programming for the Absolute Beginner66

 screen.fill((0,100,0))

 print_text(font1, 0, 0, "Mouse Events")

 print_text(font1, 0, 20, "Mouse position: " + str(mouse_x) +

 "," + str(mouse_y))

 print_text(font1, 0, 40, "Mouse relative: " + str(move_x) +

 "," + str(move_y))

 print_text(font1, 0, 60, "Mouse button down: " + str(mouse_down) +

 " at " + str(mouse_down_x) + "," + str(mouse_down_y))

 print_text(font1, 0, 80, "Mouse button up: " + str(mouse_up) +

 " at " + str(mouse_up_x) + "," + str(mouse_up_y))

 print_text(font1, 0, 160, "Mouse Polling")

 x,y = pygame.mouse.get_pos()

 print_text(font1, 0, 180, "Mouse position: " + str(x) + "," + str(y))

 b1, b2, b3 = pygame.mouse.get_pressed()

 print_text(font1, 0, 200, "Mouse buttons: " +

 str(b1) + "," + str(b2) + "," + str(b3))

 pygame.display.update()

THE BOMB CATCHER GAME
The final chapter example is called The Bomb Catcher Game. It is actually just a very simple
demonstration of mouse input combined with some drawing of basic shapes and a smidgen
of collision detection logic. The “bomb” is really just a yellow circle that falls down from the
top of the screen over and over again. When the “bomb” reaches the bottom of the screen,
the player missed the catch and loses a life (the lives are displayed at the upper left). But if
the bomb hits the paddle, then it is caught and another bomb falls. Each time the player
catches a bomb, they receive 10 points (score is displayed at the upper right). Figure 4.4 shows
the game.

Chapter 4 • User Input: The Bomb Catcher Game 67

FIGURE 4.4

The Bomb
Catching Game.

Be careful when moving a game object (like our trusty bomb here in this game)
using a floating-point velocity value. When converting from a float to an integer,
not only is precision lost, but it’s possible for game objects to get stuck if they
go off the screen due to rounding! I recommend not converting floats to integers
except at the point where the integer form is needed (for drawing or printing),
but maintain the position of game objects using floats.

Bomb Catcher Game

Chapter 4

import sys, random, time, pygame

from pygame.locals import *

def print_text(font, x, y, text, color=(255,255,255)):

 imgText = font.render(text, True, color)

 screen.blit(imgText, (x,y))

#main program begins

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("Bomb Catching Game")

TRAP

More Python Programming for the Absolute Beginner68

font1 = pygame.font.Font(None, 24)

pygame.mouse.set_visible(False)

white = 255,255,255

red = 220, 50, 50

yellow = 230,230,50

black = 0,0,0

lives = 3

score = 0

game_over = True

mouse_x = mouse_y = 0

pos_x = 300

pos_y = 460

bomb_x = random.randint(0,500)

bomb_y = -50

vel_y = 0.7

#repeating loop

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit()

 elif event.type == MOUSEMOTION:

 mouse_x,mouse_y = event.pos

 move_x,move_y = event.rel

 elif event.type == MOUSEBUTTONUP:

 if game_over:

 game_over = False

 lives = 3

 score = 0

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]:

 sys.exit()

 screen.fill((0,0,100))

 if game_over:

 print_text(font1, 100, 200, "<CLICK TO PLAY>")

Chapter 4 • User Input: The Bomb Catcher Game 69

 else:

 #move the bomb

 bomb_y += vel_y

 #has the player missed the bomb?

 if bomb_y > 500:

 bomb_x = random.randint(0, 500)

 bomb_y = -50

 lives -= 1

 if lives == 0:

 game_over = True

 #see if player has caught the bomb

 elif bomb_y > pos_y:

 if bomb_x > pos_x and bomb_x < pos_x + 120:

 score += 10

 bomb_x = random.randint(0, 500)

 bomb_y = -50

 #draw the bomb

 pygame.draw.circle(screen, black, (bomb_x-4,int(bomb_y)-4), 30, 0)

 pygame.draw.circle(screen, yellow, (bomb_x,int(bomb_y)), 30, 0)

 #set basket position

 pos_x = mouse_x

 if pos_x < 0:

 pos_x = 0

 elif pos_x > 500:

 pos_x = 500

 #draw basket

 pygame.draw.rect(screen, black, (pos_x-4,pos_y-4,120,40), 0)

 pygame.draw.rect(screen, red, (pos_x,pos_y,120,40), 0)

 #print # of lives

 print_text(font1, 0, 0, "LIVES: " + str(lives))

 #print score

 print_text(font1, 500, 0, "SCORE: " + str(score))

 pygame.display.update()

More Python Programming for the Absolute Beginner70

SUMMARY
That’s about all we need to know about keyboard and mouse input in order to put them to
good use in just about any type of program, including a game. You know, there’s a lot we can
do with Python and Pygame beyond just games (although that is a fun subject). What about
using the code in this chapter to make a drawing program with the ability for the user to save
and load their drawings?

Challenges
1. The Bomb Catching Game is so minimal that it’s not very much

fun to play. After all, it’s just a glorified mouse demo. How
about sprucing it up a bit? First, we need a delay when the bomb
hits the bottom of the screen. That’s supposed to reflect that
that bomb “blew up,” but nothing happens! When the bomb
hits the bottom, make the game pause for a bit, display a
“BOOM!” message or something, and wait for the user to click
the mouse again before continuing. Or, better yet, use the
timing code shown in the Keyboard Demo earlier in the chapter
to pause the game for a couple seconds after the bomb goes
off, then continue.

2. Using the pygame.draw.arc() function, add a fuse to the top of
the bomb and draw it with a random color repeatedly so the
fuse looks like it’s actually burning! It may take some work to
get the fuse oriented in the right direction. If you need help,
turn back to Chapter 2, which covered arc in details (remember
The Pie Game?).

3. To add some challenge to The Bomb Catching Game, make it so
the bomb falls down at an angle by adding a vel_x variable and
using it (along with the current vel_y) to move the bomb! Just
be sure to use a small vel_x value so the bomb doesn’t go off
the left or right edge of the screen before it reaches the
bottom.

Chapter 4 • User Input: The Bomb Catcher Game 71

5C H A P T E R

MATH AND GRAPHICS: THE

ANALOG CLOCK DEMO

his chapter covers the math module of Python that can perform calcula-
tions such as the common trigonometry functions sine, cosine, tangent,
and others. We will learn to use these and more functions in the math

module that are commonly needed for even the simplest of games. To make the
math more interesting, we will learn to draw a circle manually and then use that
code to create an analog clock with moving hands for the hours, minutes, and
seconds. This will also help lead in to the upcoming chapters on bitmaps and sprite
animation.

Here are the topics covered in this chapter:

• Learning to use basic trigonometry

• A little circle theory

• Traversing a circle’s perimeter

• Drawing a circle manually with sine and cosine

• Creating The Analog Clock Demo

T

EXAMINING THE ANALOG CLOCK DEMO
The Analog Clock Demo shows how to use some of the math functions in Python (covered
in this chapter) to cause the hands of an analog clock to rotate around the clock face. See
Figure 5.1.

FIGURE 5.1

The Analog Clock
Demo.

BASIC TRIGONOMETRY
We’re just going to learn about a few of the functions in the math module of Python, not all
of them. There are several math functions that are consistently used in nearly every video
game you are likely to have played—every serious game, that is, not just examples or demos.
Rotation of a sprite or a mesh (the technical name of a “3D object”) is done with two very
important math functions: sine and cosine.

If you have had a geometry class, I’m sure you have learned about them. In the old days of
video game development, sine and cosine were a problem, because they took a lot of CPU
cycles to perform one calculation! It was a bit of a performance problem on most PCs, in
fact, so an optimization was invented. Take every angle around a circle, 0 to 359, and pre-
calculate sine and cosine for every angle, then store the results in an array. Some games would
perform this pre-calculation at the start of the game, and it could take several seconds. Some

More Python Programming for the Absolute Beginner74

programmers would display a loading screen or introduction to the game while processes
like this were running, rather than just make the player wait.

Circle Theory
Working with angles from 0 to 359 involves degrees, but the natural “language” of trigonom-
etry functions is radians, due to the way a circle is calculated. You might recall that the
circumference (or outside perimeter) of a circle can be calculated with this formula:

C = [PI] * 2 * Radius (or [PI] * Diameter)

where [PI] = 3.14. Python’s math module defines [PI] for us with a lot more decimal digits as
math.pi. Any time you include the math module with import math in the program, then
math.pi can be used in code. It is approximately 3.14159265358979. Sure, you could just use
that number in the program yourself and get similar results. Figure 5.2 illustrates the
calculation.

FIGURE 5.2

Calculating the
circumference of a

circle.

Chapter 5 • Math and Graphics: The Analog Clock Demo 75

At a certain point, the number of decimal digits only increase precision by a tiny amount.
Now, if we’re talking about a NASA spacecraft that is travelling billions of miles (like the
Voyager craft that flew past Neptune, Pluto, and left the solar system entirely), then you want
quite a few digits because in the millions and billions of miles, the decimal precision is a
factor! What happens if you walk 1 mile in a certain direction but you are off by just 1 degree?
Not a big deal; it might be a matter of a few inches off course. Extend it to 10 miles, 20 miles,
100 miles, and what happens? That 1 degree will put you a long ways off from the desired
target. Now imagine the Voyager spacecraft heading out toward Neptune, which is about
2.8 billion miles from the sun. Sometimes such a number is hard for the human mind to
grasp, so let’s try some conversions: it is equal to twenty-eight hundred million miles ! It’s like
going clear across the United States one million times, or travelling to the Moon and back
6,000 times! Yes, it’s that far, which is why precision is so important. In contrast, Mars is only
about 30 million miles from Earth at closest approach, and we do not quite have the tech-
nology yet today to send a manned mission there.

In The Real World

By the way, the problem of getting to Mars is not so much the distance as it is solar
radiation that’s dangerous to life in deep space. A space ship with its own magnetic
field is needed to keep the occupants safe from radiation. If you are a fan of Star
Trek and similar sci-fi dramas, that was the original purpose for “force fields,” aka
“shields.”

Using the formula, let’s calculate the circumference of a sample circle with a diameter of, oh,
let’s use the Moon’s diameter of 2,159 miles (3,474 km).

C = [PI] * Diameter

C = 3.14159265358979 * 2159 miles

C = 6,782.6985 miles

Do we really need to know the “.6985” part of a mile? That is about 70% of a mile, or 3,688
feet. What if we round it off to just .69? That results in 3,643 feet, an error of 45 feet! That
isn’t very far considering the large number of miles we’re dealing with here, but what if you
were a rocket scientist working for NASA on the Apollo missions and had to make sure the
ship landed in just the right spot? Now, imagine this compounded by billions of miles! Anyway,
this is the reason why you want to use as many decimal digits as possible when doing rocket

More Python Programming for the Absolute Beginner76

science! Python will use as many digits for [PI] as the computer supports (usually a double,
which is a C++ data type that supports “double precision floating point” numbers with thou-
sands of decimal digits!).

We have learned how to measure a circle, so now let’s learn how to create one. A circle can be
simulated at any radius size using sine and cosine. The starting point, angle 0, is not at the
top like you might naturally assume. The starting point of a circle is at the angle we would
think of as 90 degrees from the top toward the right, as shown in Figure 5.3. All circle calcu-
lations are based on this angle being the starting point of 0.

FIGURE 5.3

The starting point
of a circle is at the
90-degree point.

Going around the circle from this starting point, a full circle in radians is 2 * [PI] radians, equal
to 360 degrees. We can calculate 2 * [PI] approximately as:

2 * 3.14159265358979 = 6.28318530715978

Chapter 5 • Math and Graphics: The Analog Clock Demo 77

Are these digits making your head spin? Don’t sweat it, just round off at any point you want!
6.28 is perfectly acceptable for our purposes. So, a full circle is 6.28 radians. We can use this
to calculate the number of degrees in one radian:

360 / 6.28 = 57.3248

Likewise, we can calculate the number of radians in one degree:

6.28 / 360 = 0.0174

You could use these numbers to convert between degrees and radians with acceptable preci-
sion for most video games. Figure 5.4 shows a circle with four cardinal positions labeled. This
is also important in a video game, because in most cases we need to wrap the angle around
at the 360- degree (2*[PI] radian) point when doing rotations or revolutions.

FIGURE 5.4

Degrees and
radians around a

circle.

Now that you know how to do it the hard way, will you hate me if I tell you it’s built in to
Python already? You can use math.degrees() and math.radians() to convert between them!

More Python Programming for the Absolute Beginner78

If you want to look up the complete reference that lists all of the math functions,
go to the reference site at http://docs.python.org/py3k/library/math.html.

Traversing a Circle’s Perimeter
Are you enjoying this introduction to rocket science? I hope so, because it gets better! We can
sort of “walk” around the perimeter of a circle using the trigonometry functions sine and
cosine. All we need to know is the angle and radius. This has huge ramifications in most video
games. This algorithm we’re about to learn is used in RTS (real-time strategy) games to make
units move to the point on the map where you want them to go! This algorithm is also used
in just about any shooting game to calculate the direction of a bullet or missile or laser beam.
To calculate a point on the circle, we have to get the X and Y value for the coordinate. What’s
a coordinate? It’s a point on the Cartesian coordinate system, shown in Figure 5.5. The X axis
right is positive, the Y axis up is positive, and this represents the computer screen, with the
origin (0,0) at the upper-left corner of the screen. The other three quadrants still exist! They
are just outside the boundary of the screen! It’s just interesting to note that it’s easy to take
for granted that all of the technology we use today someone had to figure out by trial and
error, and once figured out, it evolved quickly.

FIGURE 5.5

X and Y axes on a
Cartesian

coordinate
system.

Calculating X
To calculate the X coordinate of any point around the perimeter of a circle, use the
cosine function. In Python, this is called math.cos(). These functions all require radians as a

HINT

Chapter 5 • Math and Graphics: The Analog Clock Demo 79

http://docs.python.org/py3k/library/math.html

parameter, not degrees. So, if we have to supply radians, but you prefer to work with degrees
in your code, then just convert degrees to radians on the fly. For instance:

X = math.cos(math.radians(90))

This will be a very small number. All of them will be, at any point around the circle! To see
the answer quickly, open up a Python shell and type this:

>>> import math

>>> math.cos(math.radians(90))

6.123233995736766e-17

That isn’t a very easy-to-read number because it’s in scientific notation. It has to be because
this is a very tiny number! There are 16 zeroes after the decimal point before we start seeing
the value. To see a number formatted in a way that’s easier to read, we have to format the
output. Create a string with the formatting codes in it, and that string becomes a string class,
which has a format() function. Pass your decimal variable to string.format() as a parameter.
This is one of the cases where Python’s great versatility makes it also incredibly confusing at
first. Here’s an example:

>>> '{:.2f}'.format(X)

'0.00'

Oh no, there’s nothing there! This is not an error; it just means the number is much, much
smaller than two digits can show. In fact, this number is not just small, it’s infinitesimally
small. The rather granular values typically used in a video game would never use such a small
number. So, for all practical purposes, this number is zero. What we’re seeing is just a very
tiny remnant of the cosine calculation. Let’s get it out to 20 digits:

>>> '{:.20f}'.format(X)

'0.00000000000000006123'

There, we can start to see the number rounded to 20 digits. Let’s extend it out some more to
see what happens:

>>> '{:.30f}'.format(X)

'0.000000000000000061232339957368'

>>> '{:.40f}'.format(X)

'0.0000000000000000612323399573676603586882'

>>> '{:.50f}'.format(X)

'0.00000000000000006123233995736766035868820147291983'

>>> '{:.60f}'.format(X)

'0.000000000000000061232339957367660358688201472919830231284606'

More Python Programming for the Absolute Beginner80

60 digits is getting kind of ridiculous, but it’s helpful to see how Python stores the
number in our X variable with such high precision. Note that the first 16 digits after the
decimal are zero—those are the only important digits. The number really is zero. As we go
around the perimeter of the circle, from 0 to 359 degrees, we will see small values, but
nothing this small. We don’t need to print this number out anyway, as it turns out, we just
need to use it to calculate the boundary of the circle at 90 degrees (which is due south—
remember the orientation!). The next step is to multiply this value by the radius. Think of it
as a microscopic circle around the origin point that’s so small it looks like nothing more than
a single point.

The Python 3.2 online reference manual for string formatting is found at
http://docs.python.org/py3k/library/string.html#formatspec. There are many
more ways to format numbers than the one method shown here to represent
decimal numbers.

Calculating Y
Let’s calculate the Y part of the coordinate so we can begin traversing the perimeter of a circle.
To calculate Y, we use sine, which in Python is done with math.sin(angle). Let’s have the
Python shell prompt do it for us:

>>> math.sin(math.radians(90))

1.0

Would you look at that! We have a normal number of 1.0! Well, let’s think about this for a
minute. 90 degrees on the circle is due south (remember, the starting point is to the right,
due east on the circle). When we want to represent a point due south from any given location,
what is one way to represent that?

(X = 0.0, Y = 1.0)

Multiplying the resulting value by a radius factor causes the point to be moved from the origin
(at the center of the circle) out to the perimeter. So, together, we have this new algorithm for
calculating each point on the perimeter around a circle:

X = math.cos(math.radians(angle)) * radius

Y = math.sin(math.radians(angle)) * radius

Circle Demo
I think that’s more than enough on circle theory! Actually, would you believe there’s more
yet? It’s true, there’s more on this subject, but it’s all incredibly valuable information because
these concepts are at the core of most video games. Everything from making a space ship

HINT

Chapter 5 • Math and Graphics: The Analog Clock Demo 81

http://docs.python.org/py3k/library/string.html#formatspec

move in a certain direction, to causing a tank to fire its cannon, to having pool cue balls
bounce off each other realistically can be done with these concepts related to circle theory.
Let’s get an example up and running so we can see some code in action. Figure 5.6 shows the
Circle Demo program running. Every time the angle reaches 360, a new random color is cho-
sen and the circle is drawn again, one degree at a time.

FIGURE 5.6

Drawing a circle
the “hard way.”

import sys, random, math, pygame

from pygame.locals import *

#main program begins

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("Circle Demo")

screen.fill((0,0,100))

pos_x = 300

pos_y = 250

radius = 200

More Python Programming for the Absolute Beginner82

angle = 360

#repeating loop

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit()

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]:

 sys.exit()

 #increment angle

 angle += 1

 if angle >= 360:

 angle = 0

 r = random.randint(0,255)

 g = random.randint(0,255)

 b = random.randint(0,255)

 color = r,g,b

 #calculate coordinates

 x = math.cos(math.radians(angle)) * radius

 y = math.sin(math.radians(angle)) * radius

 #draw one step around the circle

 pos = (int(pos_x + x), int(pos_y + y))

 pygame.draw.circle(screen, color, pos, 10, 0)

 pygame.display.update()

THE ANALOG CLOCK DEMO
It’s really not much of a stretch to take the code from our Circle Demo and adapt it to make
an analog clock. The difference will be that we need to draw lines from the center of the circle
to the outer perimeter only where the hours, minutes, and seconds hands need to be posi-
tioned, based on the actual time of day. Let’s learn how to do that.

Chapter 5 • Math and Graphics: The Analog Clock Demo 83

Getting the Time
In Python, we use the datetime module (with an import statement) to gain access to the current
time of day. Let’s start by importing both the date and time modules from datetime to make
our code a bit easier to write:

from datetime import datetime, date, time

Now, the key to getting the current date and time for our clock is a function called
datetime.today(). Once we get a “snapshot” of the current date/time, then we can use the
properties returned.

today = datetime.today()

The today variable will not contain the current date and time. Print it out from the Python
prompt:

>>> today = datetime.today()

>>> today

datetime.datetime(2011, 6, 28, 16, 13, 29, 6000)

Each property is accessed by logical name: year, month, day, hour, minute, second, and
microsecond. We can further segregate the date from the time like so:

>>> today.date()

datetime.date(2011, 6, 28)

>>> today.time()

datetime.time(16, 13, 29, 6000)

If we want only the time, we can just grab that by itself, although it doesn’t hurt to have the
date values as well:

>>> T = datetime.today().time()

>>> T

datetime.time(16, 20, 31, 295000)

At this point, the variable T contains the properties T.hour, T.minute, T.second, and
T.microsecond. We can use these properties to make our clock program.

Drawing the Clock
First, we’ll draw a large circle centered in the window, shown in Figure 5.7.

More Python Programming for the Absolute Beginner84

FIGURE 5.7

Getting started
drawing the clock

face.

 pygame.draw.circle(screen, white, (pos_x, pos_y), radius, 6)

Numbers
Next, we’ll draw the numbers around the clock, from 1 to 12. When drawing the number
positions on the clock face, we can perform a simple calculation to find the position of each
one. There are 360 degrees in a circle, and 12 numbers on a clock, so each number will be 360
degrees / 12 = 30 degrees apart. But, we have to account for the fact that angle 0 is pointing
east, while the 12 o’clock position is north (from the center of the circle or clock face). So, we
have to subtract 90 degrees when converting to radians. Figure 5.8 shows the clock at this
stage, with the source code to follow.

There’s one obvious problem with our clock: the hours and minutes hands don’t
move partially in between the hour numbers as time goes on, they just jump from
one number to the next (very much like a digital clock). It could be done by looking
at the next-lower hand’s position and adjusting based on the percentage that
lower hand is around its cycle.

TRAP

Chapter 5 • Math and Graphics: The Analog Clock Demo 85

FIGURE 5.8

Drawing the
numbered

positions on the
clock.

 for n in range(1,13):

 angle = math.radians(n * (360/12) - 90)

 x = math.cos(angle) * (radius-20) - 10

 y = math.sin(angle) * (radius-20) - 10

 print_text(font, pos_x+x, pos_y+y, str(n))

Next, we’ll draw the hour, minute, and second hands. The hours hand will be large, the
minutes hand will be medium, and the seconds hand will be small. First, how do we rotate
the hands so they point at the right number? That’s easy! We have already learned the algo-
rithm for it by drawing the numbered clock positions, which the hours hand will use. The
minutes and seconds hands will be based on 60 rather than 12, so that will require a different
calculation.

Hours
We get the current hour of the day with this line:

datetime.today().hour

The only problem is, the hour property is returned in 24-hour time format. Rather than dig
into the datetime code for a conversion, let’s just wrap it around 12-hour periods with the

More Python Programming for the Absolute Beginner86

modulus character (%). Modulus keeps a value within a certain range. So, if you have a number,
say, 15, but you want the limit to be 10, and have numbers wrap around, then

15 % 10 = 5

and that takes care of it without an if statement. Here’s a solution that keeps the 24-hour
values within a 12-hour time frame:

 today = datetime.today()

 hours = today.hour % 12

Drawing the hour hand in the right position requires a call to pygame.draw.line(). The first
point of the line will be the center of the clock, and the second point will be near the correct
number on the clock face corresponding to the current hour of the day. Figure 5.9 shows the
hour hand pointing in the right direction. The conversion from hours to a degree angle is

hours * (360/12) - 90

(taking into account the correct adjustment for the starting point of the circle toward the
right). The rest of the code is fine-tuning the position on the clock and proper wrapping of
the angle.

FIGURE 5.9

Drawing the
HOUR hand on the

clock.

Chapter 5 • Math and Graphics: The Analog Clock Demo 87

 #draw the hours hand

 hour_angle = wrap_angle(hours * (360/12) - 90)

 hour_angle = math.radians(hour_angle)

 hour_x = math.cos(hour_angle) * (radius-80)

 hour_y = math.sin(hour_angle) * (radius-80)

 target = (pos_x+hour_x,pos_y+hour_y)

 pygame.draw.line(screen, pink, (pos_x,pos_y), target, 25)

The helper function is called wrap_angle(). It accepts an angle in degrees and returns an angle
(also in degrees) wrapped within a 360-degree circle. The function is beyond simple, but it
helps a bit to clean up the code. If we have too many parentheses and inline conversions that
makes the code hard to read.

def wrap_angle(angle):

 return abs(angle % 360)

Minutes
Calculating the position of the minute hand will be very similar to that of the hour hand, but
we have to take into account 60 minutes in a complete hour, while the hours code was based
on 12 segments. Figure 5.10 shows the result, with the code listing below.

FIGURE 5.10

Drawing the
MINUTE hand on

the clock.

More Python Programming for the Absolute Beginner88

 #draw the minutes hand

 min_angle = wrap_angle(minutes * (360/60) - 90)

 min_angle = math.radians(min_angle)

 min_x = math.cos(min_angle) * (radius-60)

 min_y = math.sin(min_angle) * (radius-60)

 target = (pos_x+min_x,pos_y+min_y)

 pygame.draw.line(screen, orange, (pos_x,pos_y), target, 12)

Seconds
Seconds will be a duplication of the minute hand code, only taking the value from the seconds
variable instead. The end result is shown in Figure 5.11, which is the finished Clock Demo!

FIGURE 5.11

Drawing the
SECOND hand on

the clock.

 #draw the seconds hand

 sec_angle = wrap_angle(seconds * (360/60) - 90)

 sec_angle = math.radians(sec_angle)

 sec_x = math.cos(sec_angle) * (radius-40)

 sec_y = math.sin(sec_angle) * (radius-40)

 target = (pos_x+sec_x,pos_y+sec_y)

Chapter 5 • Math and Graphics: The Analog Clock Demo 89

 pygame.draw.line(screen, yellow, (pos_x,pos_y), target, 6)

Finished Code Listing
Just to be thorough, and due to the way the code has been tossed around in this chapter,
following is the complete source code for the Clock Demo.

import sys, random, math, pygame

from pygame.locals import *

from datetime import datetime, date, time

def print_text(font, x, y, text, color=(255,255,255)):

 imgText = font.render(text, True, color)

 screen.blit(imgText, (x,y))

def wrap_angle(angle):

 return angle % 360

#main program begins

pygame.init()

screen = pygame.display.set_mode((600,500))

pygame.display.set_caption("Analog Clock Demo")

font = pygame.font.Font(None, 36)

orange = 220,180,0

white = 255,255,255

yellow = 255,255,0

pink = 255,100,100

pos_x = 300

pos_y = 250

radius = 250

angle = 360

#repeating loop

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit()

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]:

More Python Programming for the Absolute Beginner90

 sys.exit()

 screen.fill((0,0,100))

 #draw one step around the circle

 pygame.draw.circle(screen, white, (pos_x, pos_y), radius, 6)

 #draw the clock numbers 1-12

 for n in range(1,13):

 angle = math.radians(n * (360/12) - 90)

 x = math.cos(angle) * (radius-20)-10

 y = math.sin(angle) * (radius-20)-10

 print_text(font, pos_x+x, pos_y+y, str(n))

 #get the time of day

 today = datetime.today()

 hours = today.hour % 12

 minutes = today.minute

 seconds = today.second

 #draw the hours hand

 hour_angle = wrap_angle(hours * (360/12) - 90)

 hour_angle = math.radians(hour_angle)

 hour_x = math.cos(hour_angle) * (radius-80)

 hour_y = math.sin(hour_angle) * (radius-80)

 target = (pos_x+hour_x,pos_y+hour_y)

 pygame.draw.line(screen, pink, (pos_x,pos_y), target, 25)

 #draw the minutes hand

 min_angle = wrap_angle(minutes * (360/60) - 90)

 min_angle = math.radians(min_angle)

 min_x = math.cos(min_angle) * (radius-60)

 min_y = math.sin(min_angle) * (radius-60)

 target = (pos_x+min_x,pos_y+min_y)

 pygame.draw.line(screen, orange, (pos_x,pos_y), target, 12)

 #draw the seconds hand

 sec_angle = wrap_angle(seconds * (360/60) - 90)

Chapter 5 • Math and Graphics: The Analog Clock Demo 91

 sec_angle = math.radians(sec_angle)

 sec_x = math.cos(sec_angle) * (radius-40)

 sec_y = math.sin(sec_angle) * (radius-40)

 target = (pos_x+sec_x,pos_y+sec_y)

 pygame.draw.line(screen, yellow, (pos_x,pos_y), target, 6)

 #cover the center

 pygame.draw.circle(screen, white, (pos_x,pos_y), 20)

 print_text(font, 0, 0, str(hours) + ":" + str(minutes) + ":" + str(seconds))

 pygame.display.update()

SUMMARY
That concludes our chapter on math and graphics. We covered a lot of very important con-
cepts in this chapter, of a variety that are found in nearly every video game, from a simple
arcade-style game (such as Peggle) to a large, complex strategy game like Command & Conquer
4. In either case, we would find a lot of familiar code where movement, trajectories, and
rotation of objects is concerned. In the next chapter, we’ll be ramping it up another level by
learning how to load and draw bitmaps, and then we’ll use the code from this chapter to cause
a spaceship to orbit around a planet.

Challenges
1. The Circle Demo is the solution for numerous problems in a

typical video game. To gain more experience with the relevant
algorithm for moving around the perimeter of a circle, modify
the program so that different shapes are drawn at each angle
rather than a small filled circle.

2. The Analog Clock Demo is only just functional and barely
passing on the cosmetic side of functionality. See if you can
spruce it up with some better colors, perhaps a different
background color, and different sizes for the numbers and
clock hands.

More Python Programming for the Absolute Beginner92

6C H A P T E R

BITMAP GRAPHICS: THE

ORBITING SPACESHIP DEMO

his chapter explains how to load and draw bitmaps using the
pygame.Surface and pygame.image classes. We have already been using this
class a bit and just taking it for granted up until now out of necessity.

When the Pygame window is created with the call to pygame.display.set_mode(),
a Surface object is returned, which we have called screen up to this point. Now we
will learn more about this elusive Surface class and what its capabilities are
between now and the following chapter, and really in every chapter from now on.
Admittedly, we’ve done some interesting work with vector (line-based) graphics
up to this point, but now it’s time to study bitmaps, which is where you want to
go for a good-looking game.

In this chapter we learn:

• How to load a bitmap

• How to draw a bitmap

• How to make a ship orbit a planet

• How to point an image in the right direction

EXAMINING THE ORBITING SPACESHIP DEMO
The Orbiting Spaceship Demo shows how to use some of the math functions in
Python to cause a spaceship to rotate around a planet, like the NASA Space Shuttle

T

and ISS (International Space Station) orbits the Earth. The calculations are not actual
acceleration-versus-gravity in nature, but just rotation of a point around a center
point based on radius, but the end result looks the same and is good enough for a game.
See Figure 6.1.

FIGURE 6.1

The Orbiting
Spaceship Demo.

USING BITMAPS
In Pygame, a bitmap is called a Surface. The “screen” object that we have been using until
now with very little explanation is itself a Surface object (returned by the
pygame.display.set_mode() function). Rather than demonstrate bitmap programming with
several examples, we’ll just get started on The Orbiting Spaceship Demo from the start and
add to it as we go along.

Loading a Bitmap
First, let’s learn how to load a bitmap, starting with the background image for the chapter
demo. Pygame can handle quite a few bitmap file types via the pygame.image.load() function:

• JPG

• PNG

• GIF

• BMP

More Python Programming for the Absolute Beginner94

• PCX

• TGA

• TIF

• LBM, PBM, PGM, PPM, XPM

Our orbiting spaceship demo must have a background image of space, but I suppose just a
black background would work too. Or, how about drawing random dots all over the back-
ground? You could do that with pygame.gfxdraw.pixel()! The pygame.gfxdraw module is
based on the SDL drawing functions, which offer a few more shapes than pygame.draw has.
Now let’s just load a bitmap:

space = pygame.image.load(“space.png”).convert()

The trailing convert() function converts the image into the native color depth of the program
window as an optimization. This really is required without exception. If you don’t convert an
image at load time, then it will be converted every time you draw it!

There’s another variation of the function called convert_alpha() that you will want to use
when loading foreground objects that have to be drawn with transparency. A TGA or PNG file
can have alpha channel transparency in it, but some formats don’t support it (like the older
BMP format). If you just want to use convert_alpha() every time, even with images without
transparency, there’s no harm in doing that and it would be a bit more consistent.

Be sure to use Surface.convert_alpha() when loading a bitmap with an alpha
channel to tell Pygame you want to preserve the transparency in the image.

Drawing the Background
Drawing a bitmap is done with the Surface object, usually called screen, but it could be
another Surface in memory, like a back buffer. We haven’t covered double buffered drawing
yet, but first things first, we’re just now learning to draw a bitmap for the first time! To draw,
use the Surface object. The Surface class has a function called blit() that draws a bitmap. The
function name is short for “bit block transfer”, a method of drawing by copying a chunk of
memory from one location to another: from system memory to video memory, in this case.
To draw the space bitmap starting at the upper-left corner:

 screen.blit(space, (0,0))

This is assuming the screen (i.e., window) has been initialized to a size that is large
enough to hold the bitmap. I have used a size of 800,600. Here’s our demo at this point
(see Figure 6.2).

TRICK

Chapter 6 • Bitmap Graphics: The Orbiting Spaceship Demo 95

FIGURE 6.2

Drawing the
background

bitmap.

import random, math, pygame

from pygame.locals import *

#main program begins

pygame.init()

screen = pygame.display.set_mode((800,600))

pygame.display.set_caption("Orbit Demo")

#load bitmaps

space = pygame.image.load("space.png").convert()

#repeating loop

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit()

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]:

 sys.exit()

More Python Programming for the Absolute Beginner96

 #draw background

 screen.blit(space, (0,0))

 pygame.display.update()

The online reference manual for Pygame covers the Surface class in detail at this
location: http://pygame.org/docs/ref/surface.html#pygame.Surface. I recom-
mend keeping your web browser pointed here while learning bitmap program-
ming as there will be some features here that you may find interesting but that
are not covered in this chapter.

Drawing the Planet
Now we’ll load and draw the planet image. Note that the artwork for these examples is found
in the resource files for this and every chapter—a fact that is important now that we’re relying
on asset files that have to be loaded for our examples to work properly. First, let’s load the
planet before the while loop:

planet = pygame.image.load("planet2.png").convert_alpha()

Now, to draw the planet in this demo, we want to make it centered in the game window.
Since the image dimensions could change (by someone editing the bitmap file), we would
prefer to get the image dimensions in order to center it with code. This is better than “hard
coding” the size of the bitmap. First, get the width and height of the bitmap using
Surface.get_size(). Optionally, the width and height can be retrieved separately with
Surface.get_width() and Surface.get_height(), respectively.

 width,height = planet.get_size()

 screen.blit(planet, (400-width/2,300-height/2))

In the code here, I have hard-coded the screen center but not the image. The screen’s dimen-
sions could change, but most likely this is something I’ve decided upon before working on the
game. But, it is easy enough to get the center of the screen as well because it is also a
Surface object. Figure 6.3 shows the planet.

HINT

Chapter 6 • Bitmap Graphics: The Orbiting Spaceship Demo 97

http://pygame.org/docs/ref/surface.html#pygame.Surface

FIGURE 6.3

Drawing the
planet bitmap

transparently over
the background.

Drawing the Spaceship
There are two spaceship bitmaps included with this chapter if you would like to use them for
your own sci-fi themed games. The ships are quite nice looking, drawn by artist Ronald Conley
for a game called Starflight—The Lost Colony. This game is free to download and play at
www.starflightgame.com. The artwork is copyrighted but may be shared for non-commercial
use. If you want to borrow any of the artwork from Starflight (or any other source!) for your
own games, please give credit to the artist and source website to avoid legal problems. This
is completely illegal with a commercial game, of course! Let’s load the ship bitmap:

ship = pygame.image.load("freelance.png").convert_alpha()

The next line draws it, and the output is shown in Figure 6.4. Uh oh, the ship image is gigantic!

 screen.blit(ship, (50,50))

We could edit the bitmap with a graphic editor like Microsoft Paint, Paint.net, Gimp, or
another similar tool. But, let’s see if we can just shrink down the ship image with code instead.
In order to do this, we have to sort of cheat. Surface has no means to change the scale of an
image, so we have to shrink the spaceship by some other means. There is a class called
pygame.sprite.Sprite that excels at drawing and manipulating images for use in a game, but
that’s a bit premature at this stage.

More Python Programming for the Absolute Beginner98

www.starflightgame.com

FIGURE 6.4

Drawing the
spaceship bitmap.

Digging around in the Pygame docs (http://pygame.org/docs/ref/index.html), it turns out there
is a module called pygame.transform that will meet our needs. This module has a bunch of
helpful functions for working with images in creative ways, like scaling, flipping, and other
things. First, let’s look at pygame.transform.scale()—a fast scaling function that produces a
quick scaled image but the pixels will look kind of chunky. Let’s try it. This function is added
right after the image is loaded. If you call this function inside the while loop it will just keep
scaling the same image over and over until it’s too tiny to see or too large to fit on the screen!

ship = pygame.image.load("freelance.png").convert_alpha()

width,height = ship.get_size()

ship = pygame.transform.scale(ship, (width//2, height//2))

Do you remember what the double division sign does in Python? It still does division, but it
performs integer division rather than floating-point division. The result of this code is shown
in Figure 6.5. It works! But, admittedly, the image is not very good.

So, let’s try a better scaling function. There is a variation called pygame.transform.smoothscale().
This function takes more time to change the scale of the image because it over-samples the
pixels and smoothes them out using one of two algorithms. For shrinking an image, like what
we want to do, the pixels are averaged. For enlarging an image, a bilinear filter is used (a sort
of blocky anti-aliasing technique). See Figure 6.6. The difference should be pretty clear even
on the printed page, but if you want to really see clearly how the smooth version improves

Chapter 6 • Bitmap Graphics: The Orbiting Spaceship Demo 99

http://pygame.org/docs/ref/index.html

the appearance of the image, you’ll need to open up the source code and run the program,
changing the function call to see the difference.

FIGURE 6.5

Drawing the
spaceship bitmap

scaled by 50%.

ship = pygame.transform.smoothscale(ship, (width//2,height//2))

FIGURE 6.6

Scaling the
spaceship bitmap

with a better
technique.

More Python Programming for the Absolute Beginner100

ORBITING THE PLANET
We have learned how to do basic bitmap drawing now, so we can use this new knowledge to
make our demo. As you may recall from Chapter 5, “Math and Graphics: The Analog Clock
Demo,” the trigonometry functions sine and cosine are used to draw circles and calculate
trajectories. There’s a third function we haven’t used yet, tangent, that is useful in a similar
but tangential way: pointing things in a certain direction. So, here’s what we want to do: make
the spaceship orbit around the planet with sine and cosine, and then have it rotate so the
front is always pointing in the direction it’s moving as it goes around the planet.

Orbiting
Let’s work on just getting the ship to orbit around the planet first. It will look kind of funny
at first going around without changing orientation, although that is exactly how spaceships
orbit planets. Making the ship’s nose always point in the direction it’s moving in orbit is
totally not necessary, and not even realistic! But, for a video game, the usual player has certain
expectations, and this is one of them—make the ship point in the direction it’s going. In some
sci-fi movies, you might have noticed another thing they always do—keep the rocket engines
firing constantly! That is also not done. Spaceships travel ballistically. This word is related to
shooting a gun or cannon. Literally, a ship is fired and then it coasts along its path, just like a
bullet or cannon ball. But, it just doesn’t look cool. If you want realistic, watch the movie
2001: A Space Odyssey. Stanley Kubric got it right! Well, he had to, with the late great Sir Arthur
C. Clark advising him on the making of the movie!

Based on the math code we learned in the previous chapter, we can cause the spaceship to
move around any point on the screen at a certain radius. We’ll set that point at the center of
the screen and rotate the ship around in a circle at a radius of 250 (based on a window size
of 800,600). Now, there’s something we have to remember here, or else run into problems:
the position is at the upper-left corner of the image, not at the center! So, when the ship is
orbiting around the planet, we have to account for the ship size and adjust the position so
that it is moving from the center of the ship image, not the upper-left corner.

Here’s a variation of the Point class introduced way back in Chapter 1 with some
improvements: X and Y properties and an override of __str__() so the class data can be
printed out with pre-coded formatting. Not familiar with Python properties? Well, this is a
good time to learn how they work. Create a pair of “get” and “set” methods that return and
set a private class variable. Then, using the desired name of the property (such as x or y), use
the property() function to assign the “get” and “set” methods associated with that class
variable. The benefit of a property over just using a global variable is the ability to control
its bounds while keeping the code clean.

Chapter 6 • Bitmap Graphics: The Orbiting Spaceship Demo 101

class Point(object):

 def __init__(self, x, y):

 self.__x = x

 self.__y = y

 ##X property

 ddef getx(self):

 rreturn self.__x

 ddef setx(self, x):

 sself.__x = x

 xx = property(getx, setx)

 ##Y property

 ddef gety(self):

 rreturn self.__y

 ddef sety(self, y):

 sself.__y = y

 yy = property(gety, sety)

 def __str__(self):

 return "{X:" + "{:.0f}".format(self.__x) + \

 ",Y:" + "{:.0f}".format(self.__y) + "}"

Putting the Point class to work, we need two instances in our program:

pos = Point(0,0)

old_pos = Point(0,0)

Next, here’s how we’ll move the ship in its “orbit”:

 angle = wrap_angle(angle - 0.1)

 pos.x = math.sin(math.radians(angle)) * radius

 pos.y = math.cos(math.radians(angle)) * radius

Here’s the code to draw the ship, taking into account the image size:

 width,height = ship.get_size()

 screen.blit(ship, (400+pos.x-width//2,300+pos.y-height//2))

The current version of the demo now with the ship orbiting is shown in Figure 6.7.

More Python Programming for the Absolute Beginner102

FIGURE 6.7

The spaceship is
now rotating

around the planet.

Rotating
So far, so good! The ship now will need to be rotated so that it’s pointing in the direction
it’s moving around the planet. This is going to be a little tricky. There’s a little-known
math function that’s pure magic! It’s called math.atan2(), and is a function that calculates
arc-tangent with two parameters. We pass to this function two parameters: delta_y and
delta_x. These delta values represent the difference between the X and Y properties of
two coordinates on the screen. Almost as if by magic, the resulting value returned by
math.atan2() is the angle to the target! All we do after that is rotate the image to that target
angle and it will appear to point in the direction it’s moving.

Now for the tricky part. How do we know where the spaceship image is going to be in the
next frame while the demo is running? By making a prediction! We can write code to predict
where the ship will be in the future! Here’s the magic algorithm: Keep track of the last position
of the ship; then use math.atan2() using the current and last position; then add 180 degrees to
the resulting angle returned by math.atan2(). Do you see how that works? We get the angle
to the previous position of the ship moments ago, and rotate the ship to that angle, but flip it
around 180 degrees, completely backward from that angle, and presto, that is where the ship
is heading! This is another one of those phenomenally awesome functions that is used all the
time in game development for all sorts of things!

Let’s put math.atan2() to work. We’ll need a

Chapter 6 • Bitmap Graphics: The Orbiting Spaceship Demo 103

 delta_x = (pos.x - old_pos.x)

 delta_y = (pos.y - old_pos.y)

 rangle = math.atan2(delta_y, delta_x)

 rangled = wrap_angle(-math.degrees(rangle))

I’ve used the rangle variable to represent the radian angle calculated by math.atan2(),
and the rangled variable is the angle converted to degrees and wrapped. Once the angle is
available, then we can rotate the ship image to the desired angle. This requires the
pygame.transform module again. It’s a pretty useful module, as you can see! The function we
need is pygame.transform.rotate(), with the source image and desired rotation angle as
parameters, and a new image returned. A scratch variable is used for the new image.

 scratch_ship = pygame.transform.rotate(ship, rangled)

Now we can draw the ship. But we can’t use the original ship image that hasn’t changed; we
have to use the new image called scratch_ship, for both the position calculation and drawing.
Note in the code that follows that the scratch_ship image is used to get the width and height.
Surface.get_size() calculates the width and height of the rotated image in this case.

 width,height = sscratch_ship.get_size()

 x = 400+pos.x-width//2

 y = 300+pos.y-height//2

 screen.blit(sscratch_ship, (x,y))

After everything else, all we have to do is “remember” the position of the ship for use next
time through the while loop (also called “the next frame” in game parlance).

 old_pos.x = pos.x

 old_pos.y = pos.y

Figure 6.8 shows the finished program. The complete code listing follows for reference (less
the Point class, which was already shown in its entirety).

More Python Programming for the Absolute Beginner104

FIGURE 6.8

The spaceship
rotates as it orbits

the planet.

import sys, random, math, pygame

from pygame.locals import *

#Point class definition goes here . . .

#print_text function

def print_text(font, x, y, text, color=(255,255,255)):

 imgText = font.render(text, True, color)

 screen.blit(imgText, (x,y))

#wrap_angle function

def wrap_angle(angle):

 return angle % 360

#main program begins

pygame.init()

screen = pygame.display.set_mode((800,600))

pygame.display.set_caption("Orbit Demo")

font = pygame.font.Font(None, 18)

Chapter 6 • Bitmap Graphics: The Orbiting Spaceship Demo 105

#load bitmaps

space = pygame.image.load("space.png").convert_alpha()

planet = pygame.image.load("planet2.png").convert_alpha()

ship = pygame.image.load("freelance.png").convert_alpha()

width,height = ship.get_size()

ship = pygame.transform.smoothscale(ship, (width//2, height//2))

radius = 250

angle = 0.0

pos = Point(0,0)

old_pos = Point(0,0)

#repeating loop

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 sys.exit()

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]:

 sys.exit()

 #draw background

 screen.blit(space, (0,0))

 #draw planet

 width,height = planet.get_size()

 screen.blit(planet, (400-width/2,300-height/2))

 #move the ship

 angle = wrap_angle(angle - 0.1)

 pos.x = math.sin(math.radians(angle)) * radius

 pos.y = math.cos(math.radians(angle)) * radius

 #rotate the ship

 delta_x = (pos.x - old_pos.x)

 delta_y = (pos.y - old_pos.y)

 rangle = math.atan2(delta_y, delta_x)

 rangled = wrap_angle(-math.degrees(rangle))

More Python Programming for the Absolute Beginner106

 scratch_ship = pygame.transform.rotate(ship, rangled)

 #draw the ship

 width,height = scratch_ship.get_size()

 x = 400+pos.x-width//2

 y = 300+pos.y-height//2

 screen.blit(scratch_ship, (x,y))

 print_text(font, 0, 0, "Orbit: " + "{:.0f}".format(angle))

 print_text(font, 0, 20, "Rotation: " + "{:.2f}".format(rangle))

 print_text(font, 0, 40, "Position: " + str(pos))

 print_text(font, 0, 60, "Old Pos: " + str(old_pos))

 pygame.display.update()

 #remember position

 old_pos.x = pos.x

 old_pos.y = pos.y

SUMMARY
This chapter was a fun romp through more rocket science and the addition of the bitmap
features of Pygame! There is just no comparison between vector shapes and bitmap graphics.
As The Orbiting Spaceship Demo in this chapter demonstrated, we can do a lot with bitmaps
and some interesting math functions, and we haven’t even touched upon sprite programming
yet! That’s coming up in the very next chapter.

Challenges
1. Replace the current spaceship image in the orbiting demo with

the additional spaceship bitmap provided with this chapter.
2. Modify the program so that pressing the + and - keys will cause

the spaceship to orbit faster or slower around the planet,
respectively.

3. Using the formula for the circumference of a circle, calculate
the distance travelled by the ship in one complete orbit based
on its radius and display the answer on the screen.

Chapter 6 • Bitmap Graphics: The Orbiting Spaceship Demo 107

This page intentionally left blank

7C H A P T E R

ANIMATION WITH SPRITES:
THE ESCAPE THE DRAGON

GAME
he previous chapter was a pretty good introduction to bitmap graphics
programming. We learned that Pygame has a lot of good features for work-
ing with bitmaps. But, aside from the capabilities of the pygame.transform

module, which includes scaling and rotation of bitmaps, there is no practical way
to do animation with it. This is where the pygame.sprite module takes over, and
that is the subject we’re learning about in this chapter.

In this chapter, you will learn to:

• Manually animate a sprite with a special calculation

• Use features in the pygame.sprite module

• Make a game called Escape the Dragon!

EXAMINING THE ESCAPE THE DRAGON GAME
The sample game in this chapter will help you to understand sprite programming
with Python and Pygame. The premise of the game is very simple: a dragon is
chasing your character, so you must jump over flaming arrows coming toward you
so that they hit the dragon and stop it from chasing you. The concept comes from
one of the mini-games in the Facebook game Ninja Wars.

T

FIGURE 7.1

The Escape the
Dragon Game

features animated
sprites.

USING PYGAME SPRITES
The pygame.sprite module contains a class called Sprite that we can use as a starting point for
our game sprites. I say starting point because pygame.sprite.Sprite is not a complete solution,
it’s just a limited class that knows how to work with groups to update and draw itself. Even
that is a bit of a stretch, given that we have to write the code to do these things. From the
most objective point of view, a Pygame sprite contains an image (image) and a position
(rect). We have to extend this with our own class to provide the features we want in a fully
functional game sprite class.

Custom Animation
Animation with Pygame is a bit tricky, only because we have to know how
pygame.sprite.Sprite works in order to write our own animation code. A Pygame sprite will
be based around its image and rect properties, as already mentioned, so the trick is to wrap
animation code around these two properties. When that is done, then the sprite group will
automatically update the animation frame image and draw the specific frame (rather than
the whole sprite sheet image). Let’s look at a sprite sheet image first to get an idea how this
is going to work. Figure 7.2 shows just such an image.

More Python Programming for the Absolute Beginner110

The animated dragon sprite was drawn by Ari Feldman (www.flyingyogi.com).
You can download his collection of free game sprites, called SpriteLib, from his
website.

FIGURE 7.2

The dragon sprite
image has six

frames of
animation.

Courtesy of Ari
This was cutoff on

my printout.

A sprite sheet image contains rows and columns of “tiles” or “frames,” each of which is one
frame of the animation sequence. Figure 7.3 shows one frame highlighted in a sprite sheet
with the rows and columns labeled for easier reference. Note that they are 0-based! This is
important, as the calculations rely on counting the frame number starting at zero, not one.

FIGURE 7.3

Illustration of the
rows and columns

in a sprite sheet
image.

HINT

Chapter 7 • Animation with Sprites: The Escape the Dragon Game 111

www.flyingyogi.com

The sprite sheet images shown here will be loaded and retained as the master image used for
animation. While a sprite is being moved and drawn in a game, a call to the update() method
will be made by the sprite group automatically, as is the call to draw(). We can write our own
update() method, but draw() is not replaced, it’s passed on to the parent
pygame.sprite.Sprite.draw() method. What we must do is make sure the image property of
pygame.sprite.Sprite contains the image of the current frame of the animation, not the whole
sprite sheet. Because of the way this works, the sprite sheet (master image) will be loaded as
an independent class variable, not loaded directly into Sprite.image.

Loading a Sprite Sheet
When we load the master image, we must tell our sprite class how large one frame is—that
is, the width and height of a single frame are passed as parameters when a new sprite is
created. Usually the most sensible name for the method is load(), and typically it will have a
filename parameter. In addition to frame width and height, we must also tell our sprite class
how many columns there are in the sprite sheet. Take a look at the illustration in Figure 7.3
again for reference. Note that the highlighted frame is under column 3. This is really all we
need to know, the number of columns, because the number of rows does not matter in the
calculation to draw a single frame.

Let’s try writing a function that will get the job done of loading an image and setting a sprite’s
properties. The function definition below requires a filename, width, height, and columns as
parameters. These are the bare essentials for doing sprite animation. We’ll peruse a complete
class listing after going over the theory behind these concepts, so don’t worry about typing
in any of this code just yet.

 def load(self, filename, width, height, columns):

 self.master_image = pygame.image.load(filename).convert_alpha()

 self.frame_width = width

 self.frame_height = height

 self.rect = 0,0,width,height

 self.columns = columns

Changing the Frame
Normally, animation proceeds one frame at a time from first to last. A more advanced ani-
mation system will allow a sprite to animate forward, backward, and within any specified
range of the animation set. We’ll keep it simple by just animating from first to last frame,
then wrapping around to the first frame again. This is pretty easy to write in code:

More Python Programming for the Absolute Beginner112

 self.frame += 1

 if self.frame > self.last_frame:

 self.frame = self.first_frame

The trick is not so much changing the frame number, but making that happen at a certain
time interval. Yes, we have to use timing code! It’s a bit of a challenge to wrap your mind around
at first. At least, it was for me! But once you learn the basic Python code for getting the current
time value in ticks, then the rest of the process is pretty easy to handle.

First, we need to create an object variable from pygame.time.Clock(). I have called my variable
framerate:

framerate = pygame.time.Clock()

When this Clock() method is called, it starts an internal timer running from that point for-
ward that we can use to get incremental time update values, with even the option to set the
game running at a fixed framerate. Inside the main while loop in a game, then, call:

 framerate.tick(30)

The parameter, 30, can be set to any desired framerate. It does a pretty good job of keeping
the game running at this speed, but 30 might be too slow for some games that would run
better at 40 or 60 (the most common framerates used).

That’s the first step, just to get the game loop running at a consistent framerate. Next, we
need a timing variable that works not at the speed of framerates, but at the millisecond level.
The pygame.time module has a method called get_ticks() that will meet our needs for the
purpose of timing sprite animation.

 ticks = pygame.time.get_ticks()

This ticks variable can be passed to our own sprite class’ update() method to give our sprites
independent animation timing at any desired framerate. In the code below, note that unless
the timing is correct, the animation frame does not change.

 def update(self, current_time, rate=0):

 if current_time > self.last_time + rate:

 self.frame += 1

 if self.frame > self.last_frame:

 self.frame = self.first_frame

 self.last_time = current_time

Chapter 7 • Animation with Sprites: The Escape the Dragon Game 113

In addition to the animation frame update code shown here, we also will be copying the
current frame image into Sprite.image (self.image, in this case), which is the subject of the
next paragraph.

Drawing One Frame
Knowing that Sprite.draw() is called automatically by the sprite group, we will not be writing
our own drawing code, only setting up the properties to make the draw happen the way we
want it to. That is done in the update() method of our custom sprite class. Sprite.draw()
expects that Sprite.image and Sprite.rect are set to valid values or else an error will occur
(a common error is an invalid position when the rect is undefined).

To draw a single frame from a sprite sheet, we must calculate the X,Y position of the frame’s
top-left corner, and then copy the frame image based on the frame’s width and height. The
X position represents the column number. The Y position represents the row number. We
calculate Y, or row, by dividing the frame number by the number of columns, and then mul-
tiplying that value by the frame height:

Y = (frame / columns) * height

To calculate the X, or column value, we divide frame by columns again, but this time we only
care about the remainder, not the quotient (in mathematical terms, that is the answer to a
division problem). We can get the remainder by using modulus rather than division, and then
multiply the value by the frame width:

X = (frame % columns) * width

These formulas can be written using Python code to update the Sprite.image used to draw a
single frame. To get the frame image out of the sprite sheet, Surface.blit() could be used,
but there’s a far easier way. Using the X and Y position values along with the frame width and
height, we can just create a Rect and pass it to a different, and rather interesting method
called subsurface(). This does not actually copy or blit the image at all, it just sets up a pointer
to the existing master image! So, in effect, we’re going to be doing lightning-fast updates of
the frame image because no pixels have to be copied at all!

 frame_x = (self.frame % self.columns) * self.frame_width

 frame_y = (self.frame // self.columns) * self.frame_height

 rect = (frame_x, frame_y, self.frame_width, self.frame_height)

 sself.image = self.master_image.subsurface(rect)

More Python Programming for the Absolute Beginner114

Always be on the lookout for awesome coding tricks like using
Surface.subsurface() rather than drawing copies of every frame into an array or
collection! By doing it this way, the code is greatly simplified, and there’s no
performance hit!

Sprite Groups
Pygame uses sprite groups to manage updating and drawing sprites, as a means to handle a
large number of entities usually found in a typical game. This is a good idea, as it saves us the
trouble of doing it manually. It’s odd, though, that the Pygame creators thought to include
an iterated sprite entity manager but did not include even rudimentary animation support.
No matter, we’ll use what is provided and add our own code as needed!

A sprite group is a simple entity container that will call a sprite class’ update() method with
whatever parameters it supports, and then draw all sprites contained in the container. A sprite
group is created with pygame.sprite.Group() like so:

group = pygame.sprite.Group()

group.add(sprite)

where the sprite parameter is a sprite object that has already been created. After creating a
group, any number of sprites can be added to the group container so that they can be managed
more easily, and this also cuts down on global variable use. When we’re ready to update and
draw the sprites in our game, we do this entirely with the group rather than the individual
sprites:

 group.update(ticks)

 group.draw(screen)

The real power here is not containing all game sprites inside one group and using it to manage
them, but creating several groups for each type of game sprite! This allows custom behaviors
to be applied to specific types of sprites managed by their own group container objects.
Another great advantage to using groups is that the updating and drawing code need not
change when game objects are added or removed—the same update() and draw() methods are
called and the group updates all of its attached sprite objects.

Be careful not to accidentally overwrite the base Sprite.rect property with a
basic tuple. That’s an easy mistake to make! Always set Sprite.rect to a new
Rect(), like Rect(0,0,100,100), and not just an undefined tuple like
(0,0,100,100). Python allows you to do that, and it can create the most bizarre
error messages when things are expecting Sprite.rect to be a Rect, but it’s been
replaced with a tuple! This is confusing because some rectangle code still works
with the tuple-ized version!

TRICK

TRAP

Chapter 7 • Animation with Sprites: The Escape the Dragon Game 115

MySprite Class
We can put all of this code into a reusable class which I’ll just call MySprite for lack of a better
name. This class directly inherits (that is, extends) pygame.sprite.Sprite, and works directly
with pygame.sprite.Group, for automated update and drawing. There are quite a few proper-
ties in this enhanced sprite class called MySprite, properties dealing with the animation, the
master image, and so forth, that are not already in the base sprite class. But also, our new
MySprite class is not overly complex, not filled with complex methods or properties, so think
of this class as just a starting point for your own future sprite programming work. This is
intentionally simple, a skeleton class for working with animated sprites. There are also three
properties in the MySprite class: X, Y, and position. These are meant to help with setting the
position of the sprite. Without these properties, we have to modify the rect which is kind of
a pain when you just want to change the X or Y value.

class MySprite(pygame.sprite.Sprite):

 def __init__(self, target):

 pygame.sprite.Sprite.__init__(self) #extend the base Sprite class

 self.master_image = None

 self.frame = 0

 self.old_frame = -1

 self.frame_width = 1

 self.frame_height = 1

 self.first_frame = 0

 self.last_frame = 0

 self.columns = 1

 self.last_time = 0

 #X property

 def _getx(self): return self.rect.x

 def _setx(self,value): self.rect.x = value

 X = property(_getx,_setx)

 #Y property

 def _gety(self): return self.rect.y

 def _sety(self,value): self.rect.y = value

 Y = property(_gety,_sety)

 #position property

 def _getpos(self): return self.rect.topleft

More Python Programming for the Absolute Beginner116

 def _setpos(self,pos): self.rect.topleft = pos

 position = property(_getpos,_setpos)

 def load(self, filename, width, height, columns):

 self.master_image = pygame.image.load(filename).convert_alpha()

 self.frame_width = width

 self.frame_height = height

 self.rect = Rect(0,0,width,height)

 self.columns = columns

 #try to auto-calculate total frames

 rect = self.master_image.get_rect()

 self.last_frame = (rect.width // width) * (rect.height // height) - 1

 def update(self, current_time, rate=30):

 #update animation frame number

 if current_time > self.last_time + rate:

 self.frame += 1

 if self.frame > self.last_frame:

 self.frame = self.first_frame

 self.last_time = current_time

 #build current frame only if it changed

 if self.frame != self.old_frame:

 frame_x = (self.frame % self.columns) * self.frame_width

 frame_y = (self.frame // self.columns) * self.frame_height

 rect = Rect(frame_x, frame_y, self.frame_width, self.frame_height)

 self.image = self.master_image.subsurface(rect)

 self.old_frame = self.frame

 def __str__(self):

 return str(self.frame) + "," + str(self.first_frame) + \

 "," + str(self.last_frame) + "," + str(self.frame_width) + \

 "," + str(self.frame_height) + "," + str(self.columns) + \

 "," + str(self.rect)

Chapter 7 • Animation with Sprites: The Escape the Dragon Game 117

Sprite Animation to the Test
Figure 7.4 shows the output of the Sprite Animation Demo program, and the code listing
follows. The MySprite class was just listed above, so it’s not repeated here; just be sure to
include it in the program’s source code before trying to run the program.

FIGURE 7.4

The Sprite
Animation Demo

program.

import pygame

from pygame.locals import *

remember to include MySprite here

#print_text function

def print_text(font, x, y, text, color=(255,255,255)):

 imgText = font.render(text, True, color)

 screen.blit(imgText, (x,y))

#initialize pygame

pygame.init()

screen = pygame.display.set_mode((800,600),0,32)

pygame.display.set_caption("Sprite Animation Demo")

font = pygame.font.Font(None, 18)

More Python Programming for the Absolute Beginner118

framerate = pygame.time.Clock()

#create the dragon sprite

dragon = MySprite(screen)

dragon.load("dragon.png", 260, 150, 3)

group = pygame.sprite.Group()

group.add(dragon)

#main loop

while True:

 framerate.tick(30)

 ticks = pygame.time.get_ticks()

 for event in pygame.event.get():

 if event.type == pygame.QUIT: sys.exit()

 key = pygame.key.get_pressed()

 if key[pygame.K_ESCAPE]: sys.exit()

 screen.fill((0,0,100))

 group.update(ticks)

 group.draw(screen)

 print_text(font, 0, 0, "Sprite: " + str(dragon))

 pygame.display.update()

THE ESCAPE THE DRAGON GAME
Now we’ll use the MySprite class and the new sprite animation code just studied to create a
simple game to demonstrate how to use the new class. Figure 7.5 shows one of the two ways
to finish the game, and this does not bode well for the caveman character!

Chapter 7 • Animation with Sprites: The Escape the Dragon Game 119

FIGURE 7.5

This caveman did
not escape the

dragon!

Jumping
The gameplay is simple—jump over the flaming arrows so they will hit the dragon, and escape!
The Space key is used to jump over the arrows. The way this works is very simple in concept,
but a bit challenging to understand at first. A Y velocity value is set to a negative number like
-8.0. While the player is in “jumping mode,” so to speak, the velocity is increased by a small
amount every frame. In this game, we want the player’s caveman sprite to jump up quickly
but also fall back down quickly to make the game challenging. So, the modifier is a value of
0.5 (added to the velocity every frame). You can see the player jumping over a flaming arrow
by flipping back to Figure 7.1 again. The end result is as follows:

-8.0 + 0.5 = -7.5

-7.5 + 0.5 = -7.0

-7.0 + 0.5 = -6.5

-6.5 + 0.5 = -6.0

-6.0 + 0.5 = -5.5

and so on, until we reach:

-0.5 + 0.5 = 0.0

More Python Programming for the Absolute Beginner120

At this point, the sprite will have peaked at the top of the jump and will begin moving back
down again toward the ground:

0.0 + 0.5 = 0.5

0.5 + 0.5 + 1.0

1.0 + 0.5 = 1.5

and so on until the sprite reaches the starting Y position, at which point the jump cycle ends
and the velocity is no longer used. When the player presses Space to jump again, that velocity
value is restarted at -8.0 again. You can experiment with different heights by adjusting this
and the incremental value to tweak the gameplay. Figure 7.6 shows what happens when the
dragon is hit by enough arrows that it is pushed off the screen. That’s how to win, by jumping
over the arrows so they hit the dragon!

FIGURE 7.6

The dragon was
pushed off the
screen by the

flaming arrows.

Colliding
We haven’t covered sprite collisions yet, and won’t get into it in detail until the next chapter,
so a quick perusal is in order now. There are several functions we can use to detect when two
sprites collide with each other, using either the so-called “bounding rectangle” technique or
“bounding circle.” Bounding rectangle collision detection works by comparing the rectangles
of two sprites to see if they overlap. That is the technique used in this game to determine

Chapter 7 • Animation with Sprites: The Escape the Dragon Game 121

when the arrow has hit the player or the dragon, or when the dragon has “eaten” the player.
Here is one example, comparing the arrow with the dragon sprite to see if there’s a collision:

pygame.sprite.collide_rect(arrow, dragon)

As long as we have inherited from pygame.sprite.Sprite for our own sprite class, then the
rect property will be available, as that is what pygame.sprite.collide_rest() uses to see if the
two sprites have hit each other.

Source Code
Here is the source code for The Escape the Dragon Game. I hope you enjoy it.

import sys, time, random, math, pygame

from pygame.locals import *

insert MySprite class definition here

def print_text(font, x, y, text, color=(255,255,255)):

 imgText = font.render(text, True, color)

 screen.blit(imgText, (x,y))

def reset_arrow():

 y = random.randint(250,350)

 arrow.position = 800,y

#main program begins

pygame.init()

screen = pygame.display.set_mode((800,600))

pygame.display.set_caption("Escape The Dragon Game")

font = pygame.font.Font(None, 18)

framerate = pygame.time.Clock()

#load bitmaps

bg = pygame.image.load("background.png").convert_alpha()

#create a sprite group

group = pygame.sprite.Group()

#create the dragon sprite

dragon = MySprite(screen)

More Python Programming for the Absolute Beginner122

dragon.load("dragon.png", 260, 150, 3)

dragon.position = 100, 230

group.add(dragon)

#create the player sprite

player = MySprite(screen)

player.load("caveman.png", 50, 64, 8)

player.first_frame = 1

player.last_frame = 7

player.position = 400, 303

group.add(player)

#create the arrow sprite

arrow = MySprite(screen)

arrow.load("flame.png", 40, 16, 1)

arrow.position = 800,320

group.add(arrow)

arrow_vel = 8.0

game_over = False

you_win = False

player_jumping = False

jump_vel = 0.0

player_start_y = player.Y

#repeating loop

while True:

 framerate.tick(30)

 ticks = pygame.time.get_ticks()

 for event in pygame.event.get():

 if event.type == QUIT: sys.exit()

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]: sys.exit()

 elif keys[K_SPACE]:

 if not player_jumping:

 player_jumping = True

Chapter 7 • Animation with Sprites: The Escape the Dragon Game 123

 jump_vel = -8.0

 #update the arrow

 if not game_over:

 arrow.X -= arrow_vel

 if arrow.X < -40: reset_arrow()

 #did arrow hit player?

 if pygame.sprite.collide_rect(arrow, player):

 reset_arrow()

 player.X -= 10

 #did arrow hit dragon?

 if pygame.sprite.collide_rect(arrow, dragon):

 reset_arrow()

 dragon.X -= 10

 #did dragon eat the player?

 if pygame.sprite.collide_rect(player, dragon):

 game_over = True

 #did the dragon get defeated?

 if dragon.X < -100:

 you_win = True

 game_over = True

 #is the player jumping?

 if player_jumping:

 player.Y += jump_vel

 jump_vel += 0.5

 if player.Y > player_start_y:

 player_jumping = False

 player.Y = player_start_y

 jump_vel = 0.0

 #draw the background

 screen.blit(bg, (0,0))

More Python Programming for the Absolute Beginner124

 #update sprites

 if not game_over:

 group.update(ticks, 50)

 #draw sprites

 group.draw(screen)

 print_text(font, 350, 560, "Press SPACE to jump!")

 if game_over:

 print_text(font, 360, 100, "G A M E O V E R")

 if you_win:

 print_text(font, 330, 130, "YOU BEAT THE DRAGON!")

 else:

 print_text(font, 330, 130, "THE DRAGON GOT YOU!")

 pygame.display.update()

SUMMARY
Whew, sprite programming requires a lot of code just to get started, doesn’t it? I feel like we
just invented our own Python module just to get animation up and running. The good news
is we now have a great new class called MySprite that can be modified and enhanced for any
purpose from here on out. I’m sure we’ll add new features to it in future chapters.

Challenges
1. Modify the chapter game so that it keeps track of score every

time the player successfully jumps over a flaming arrow
without getting hit.

2. Modify the game further by making it possible to let the player
make high jumps by holding down the Space key longer than
usual.

3. Lastly, add a new feature to the MySprite class. Any new feature
you want that makes it better!

Chapter 7 • Animation with Sprites: The Escape the Dragon Game 125

This page intentionally left blank

8C H A P T E R

SPRITE COLLISION

DETECTION: THE ZOMBIE

MOB GAME
e briefly touched upon the subject of collision detection in Chapter 7 when
we needed to know when the flaming arrows were hitting the player and
the dragon. In that chapter game, just one type of collision detection was

used, between just one sprite and another (one-to-one). However, Pygame supports
several types of collision detection techniques that we will be learning to use in
this chapter. The subject of sprite groups will also become more important as you
will see in the chapter example, called The Zombie Mob Game, which will use a
large group of zombies versus the player for some fast-action gameplay. These are
fairly advanced topics but all of the concepts hold each other up rather than stand
on their own, so the code does get easier after a time.

In this exciting chapter you will learn how to:

• Check for collisions between two sprites

• Check for collisions between whole groups of sprites

• Create an awesome game called The Zombie Mob Game

EXAMINING THE ZOMBIE MOB GAME
The Zombie Mob Game, shown in Figure 8.1, is a fast-paced game in which the
player has to run away from the zombies while collecting food in order to survive.
This type of gameplay helps to demonstrate collision testing quite well because so

W

many sprites are involved in the game. The gameplay will be improved even further in the
next chapter when custom levels are designed for the game while learning about arrays and
tuples.

FIGURE 8.1

The Zombie Mob
Game.

COLLISION DETECTION TECHNIQUES
Pygame supports several forms of collision detection that we can use for several different
circumstances. Why do we need so many? Basically, for optimized code. Some forms of colli-
sion testing will involve just two sprites, while some test all of the sprites in an entire sprite
group. It’s even possible to test two groups against each other and get a list of all affected
sprites in each group! This is a particularly interesting technique for a game like The Zombie
Mob Game where there are item sprites to be picked up, a player sprite, and a large group of
zombie sprites.

Rectangle Collision Between Two Sprites
One-on-one collision testing between just two sprites (rather than testing within a whole
sprite group) is done with the pygame.sprite.collide_rect() function. Two parameters are
passed, and each must be derived from pygame.sprite.Sprite. More specifically, any object
can be passed as a parameter as long as it has a Rect property called rect available. In the
function itself, left.rect and right.rect are used for the collision test, so if your first
“sprite” (or any other object) has a rect property, then it will technically work, and the same

More Python Programming for the Absolute Beginner128

goes for the second parameter called right. The function just returns a bool value (True or
False) as a result of the collision test. This simple function will be your workhorse for custom
sprite collision testing!

Using our custom MySprite class as a basis for examples, here is a simple one:

first = MySprite("battleship.png", 250, 120, 1)

second = MySprite("rowboat.png", 32, 16, 1)

result = ppygame.sprite.collide_rect(first, second)

if result:

 print_text(font, 0, 0, "What were you thinking!?")

 sys.exit()

There’s a variation of this function that we can also use for somewhat better results in
some cases, depending on the sizes of the sprite images. The function is
pygame.sprite.collide_rect_ratio(). The difference is, this function has an additional
parameter—a float—where you can specify a percentage of the rectangle for the sprites to be
used for collision. This is useful when there’s a lot of empty space around the edges of a sprite
image, in which case you’ll want to make the rectangle smaller.

The syntax is a little strange, though, because the function actually creates an instance of a
class with the reduction value, and then that result is passed the two sprite variable names as
additional parameters.

pygame.sprite.collide_rect_ratio(0.75)(first, second)

Circle Collision Between Two Sprites
Circle collision is based on a radius value for each sprite. You can specify the radius yourself
or let the pygame.sprite.collide_circle() function calculate the radius automatically. We
might want to specify our own radius (as a new property of the sprite passed to this function)
in order to fine-tune the collision results. If the radius property is not already there, then the
function just calculates the radius based on the image size. The automatically created circle
will not always produce very accurate collision results because the circle’s radius completely
encompasses the rectangle (that is, the diagonals rather than the width or height).

if pygame.sprite.collide_circle(first, second):

 print_text(font, 0, 0, "Ha, I caught you!")

A variation of this function is also available with a float modifier parameter called
pygame.sprite.collide_circle_ratio().

pygame.sprite.collide_circle_ratio(0.5)(first, second)

Chapter 8 • Sprite Collision Detection: The Zombie Mob Game 129

Pixel-Perfect Masked Collision Between Two Sprites
The last collision testing function in pygame.sprite has the potential to be really awesome if
used correctly! The function is pygame.sprite.collide_mask(), and receives two sprite vari-
ables as parameters, returning a bool.

if pygame.sprite.collide_mask(first, second):

 print_text(font, 0, 0, "Argh, my pixels!")

Now, the awesome part is how this function works: if you supply a mask property in the
sprite class, an image containing mask pixels for the sprite’s collidable pixels, then the func-
tion will use it. Otherwise, the function will generate this mask on its own—and that’s very,
very bad. We definitely do not want a collision routine to mess with pixels every time it’s called!
Imagine if you have just 10 sprites using this function, all colliding with each other—that’s
100 collision function calls, and 200 mask images being generated. So, this function has the
potential to give really great collision results, but you simply must supply the mask image
yourself!

To create a mask, look at the functions in the Surface module for reading and writing pixels.
I’ll give you a few hints: Surface.lock(), Surface.unlock(), Surface.get_at(), and
Surface.set_at(). It’s a lot of work, so unless your game really would benefit from this kind
of precision, just use rectangular or circular collision instead!

Go ahead and give masked collision detection a try, but I don’t recommend using
it unless you have a slow-moving game where extreme precision is important.
The other collision techniques work completely fine for 99 percent of the game-
play I’ve ever seen.

Rectangle Collision Between a Sprite and a Group
The first group collision function we’re going to study now is pygame.sprite.spritecollide().
This function is surprisingly easy to use considering how much work it does. In a single func-
tion call, all of the sprites in a group are tested against another single sprite for collision, and
a list of the collided sprites is returned as a result! The first parameter is the single sprite,
while the second is the group. The third is a bool that really has great potential! Passing
True here will cause all collided sprites in the group to be removed! That’s a lot of hard work
being done for us in a single function call. To manage the “damage,” all sprites removed from
the group are returned in the list!

collide_list = pygame.sprite.spritecollide(arrow, flock_of_birds, False)

Now, there is a variation of this function, which is probably not a big surprise given what
we’ve seen already! The variation is pygame.sprite.spritecollideany(), and is a faster version

HINT

More Python Programming for the Absolute Beginner130

of the function. Rather than returning all of the sprites in a list, it just returns a bool when
a collision occurs with any sprite in the group. So, as soon as a collision occurs, it returns
immediately.

if pygame.sprite.spritecollideany(arrow, flock_of_birds):

 print_text(font, 0, 0, "Nice shot, you got one!")

The only problem is, you will have no way of knowing which sprite in the group was hit,
but depending on gameplay that may not matter. Let me explain how this is useful. Imagine
you have a maze-style game where all the walls of the maze are stored in a sprite group.
Now, any time the player sprite has a collision with one of the walls in that group, it doesn’t
matter which wall, we just want to make the player stop moving. Presto, instant wall collision
handling!

There’s a mistake in the Pygame 1.9 docs related to the spritecollideany()
function: the docs say the return value is a bool, but it is actually the sprite object
in the group that collided with the other sprite passed to the function.

Rectangle Collision Between Two Groups
The last collision detection technique we’ll look at is pygame.sprite.groupcollide(), which
tests for collisions between two sprite groups. This is a potentially very intensive process and
should not be used lightly if there are a very large number of sprites in either group being
passed to it. The return from this function is a dictionary containing key-value pairs. Every
sprite in the first group is added to the dictionary. Then, every sprite from group two that
collides is added to the entry for group one in the dictionary. Some items from group one
may be empty, while some might have many sprites from group two. Two additional bool
parameters specify whether sprites should be removed from group one and two when a col-
lision occurs.

hit_list = pygame.sprite.groupcollide(bombs, cities, True, False)

THE ZOMBIE MOB GAME
We’re going to use the information about collision detection now to make a game with a lot
of sprites on the screen. The Zombie Mob Game pits the player against a mob of zombies. But,
there’s no weapon! This player character is a helpless civilian without weapons, and the goal
is to avoid the zombies while collecting food in order to have energy to keep running away.
The energy level drops every time the player moves, and if the energy reaches zero then the
player won’t be able to move any more and the zombies will have their favorite (and only)
food for dinner—your brains.

HINT

Chapter 8 • Sprite Collision Detection: The Zombie Mob Game 131

Creating Your Own Module
Besides making the game using collision detection techniques, we’re going to explore
modular programming at this point too because our library of code is getting kind of repet-
itive. We have the MySprite class, the print_text() function, and as you may recall, the useful
Point class introduced back in Chapter 6—these will be used frequently. So, we’ll put them in
a separate source code file for reuse. Python make this really easy to do, too! Just put your
code in another file with a .py extension, and call it whatever you want. Then, in the program
code where you want to use that helper code, add an import statement! I’m going to call the
helper library file MyLibrary.py. So, in the game file we’ll add this line:

import MyLibrary

Well, in a manner of speaking. If you do it that way, then you have to add MyLibrary. (with a
period) in front of every class name and function in MyLibrary.py to use it. Not a big deal, but
I want the code to pretty much remain as it has in past chapters. So, we’ll use a variation of
import that includes everything in the file into Python’s global namespace:

from MyLibrary import *

One more thing: Any time you need to reference something in MyLibrary, you’ll have to pass
it as a parameter or create a local reference to the object. The screen variable, for example, is
used for drawing. So, instead of passing it to every function that needs it, we can just call
pygame.display.get_surface() to retrieve the existing surface. The print_text() function
needs this line added, for example.

screen = pygame.display.get_surface()

Below is the source code for the MyLibrary.py file. Now, just go ahead and add any new func-
tions or classes to this file and then copy the file to the folder where any of your Python/
Pygame games are located, so that you can use it. Just note that we will not be including these
classes and functions in any future examples, so take note of where they went!

MyLibrary.py

import sys, time, random, math, pygame

from pygame.locals import *

prints text using the supplied font

def pprint_text(font, x, y, text, color=(255,255,255)):

 imgText = font.render(text, True, color)

 sscreen = pygame.display.get_surface()

 screen.blit(imgText, (x,y))

More Python Programming for the Absolute Beginner132

MySprite class extends pygame.sprite.Sprite

class MySprite(pygame.sprite.Sprite):

 def __init__(self):

 pygame.sprite.Sprite.__init__(self) #extend the base Sprite class

 self.master_image = None

 self.frame = 0

 self.old_frame = -1

 self.frame_width = 1

 self.frame_height = 1

 self.first_frame = 0

 self.last_frame = 0

 self.columns = 1

 self.last_time = 0

 #X property

 def _getx(self): return self.rect.x

 def _setx(self,value): self.rect.x = value

 X = property(_getx,_setx)

 #Y property

 def _gety(self): return self.rect.y

 def _sety(self,value): self.rect.y = value

 Y = property(_gety,_sety)

 #position property

 def _getpos(self): return self.rect.topleft

 def _setpos(self,pos): self.rect.topleft = pos

 position = property(_getpos,_setpos)

 def load(self, filename, width, height, columns):

 self.master_image = pygame.image.load(filename).convert_alpha()

 self.frame_width = width

 self.frame_height = height

 self.rect = Rect(0,0,width,height)

 self.columns = columns

 #try to auto-calculate total frames

Chapter 8 • Sprite Collision Detection: The Zombie Mob Game 133

 rect = self.master_image.get_rect()

 self.last_frame = (rect.width // width) * (rect.height // height) - 1

 def update(self, current_time, rate=30):

 #update animation frame number

 if current_time > self.last_time + rate:

 self.frame += 1

 if self.frame > self.last_frame:

 self.frame = self.first_frame

 self.last_time = current_time

 #build current frame only if it changed

 if self.frame != self.old_frame:

 frame_x = (self.frame % self.columns) * self.frame_width

 frame_y = (self.frame // self.columns) * self.frame_height

 rect = Rect(frame_x, frame_y, self.frame_width, self.frame_height)

 self.image = self.master_image.subsurface(rect)

 self.old_frame = self.frame

 def __str__(self):

 return str(self.frame) + "," + str(self.first_frame) + \

 "," + str(self.last_frame) + "," + str(self.frame_width) + \

 "," + str(self.frame_height) + "," + str(self.columns) + \

 "," + str(self.rect)

#Point class

class Point(object):

 def __init__(self, x, y):

 self.__x = x

 self.__y = y

 #X property

 def getx(self): return self.__x

 def setx(self, x): self.__x = x

 x = property(getx, setx)

 #Y property

 def gety(self): return self.__y

More Python Programming for the Absolute Beginner134

 def sety(self, y): self.__y = y

 y = property(gety, sety)

 def __str__(self):

 return "{X:" + "{:.0f}".format(self.__x) + \

 ",Y:" + "{:.0f}".format(self.__y) + "}"

Advanced Directional Animation
Our Zombie Mob Game uses some artwork to make it look really cool. I was going to make
the zombies just as green circles and the player as a white circle, but that would not make it
onto the cover of any game development magazines or the front page of any web logs, so this
game will be using good artwork! The player character’s artwork is shown in Figure 8.2.

FIGURE 8.2

Sprite sheet of the
animated walking
player character.

Chapter 8 • Sprite Collision Detection: The Zombie Mob Game 135

Note the specifications of this sprite sheet, since we’ll have to know this information for our
source code. There are eight columns across, and eight rows, so that’s 64 total frames. You
can’t tell from the figure, but by opening the bitmap file in a graphic editor to view it, you
will note that the file dimensions are 768 × 768. That breaks down to a frame size of 96 × 96
pixels. But, we don’t really need all of these frames of animation. This is a great sprite sheet
for a game that could use eight directions of movement: north, south, east, west, and all four
diagonals. Our zombie game will just be using the four primary directions—but going to eight
could be an upgrade to the game if you want to tackle it! Figure 8.3 shows the sprite sheet for
the zombie. All of the zombie sprites will share this one bitmap file.

FIGURE 8.3

Sprite sheet of the
animated walking

zombie.

To make these sprites move in the four directions when there are eight animation sequences,
we have to manually control the animation frame ranges. Table 8.1 shows the specifications
for the animations. Since both the player and zombie sprite sheets have the same dimensions,
this applies to both. While studying the table’s figures, use the figures showing the two sprite

More Python Programming for the Absolute Beginner136

sheets as a reference. I’ve found it actually helps to count each frame in each row. Once you
have counted the first few rows, you should notice a pattern emerge—based on the number
of columns (eight). Since this is a pattern, we can use it to automatically calculate the range
for each direction.

T A B L E 8 . 1 S P R I T E S H E E T D I M E N S I O N S

Row Description Start Frame End Frame
0 north 0 7
1 -- 8 15
2 east 16 23
3 -- 24 31
4 south 32 39
5 -- 40 47
6 west 48 55
7 -- 56 63

The direction value will be added to the sprite class as a new property. While we’re at it, we
will also need a velocity property added to MySprite so that the sprite can be moved based on
its direction. So, yes, we will need to open up MyLibrary and make an addition to the
MySprite class. That’s what it’s there for, so don’t be afraid to modify it! Let’s do that right
now while we’re thinking about it:

class MySprite(pygame.sprite.Sprite):

 def __init__(self):

 pygame.sprite.Sprite.__init__(self) #extend the base Sprite class

 self.master_image = None

 self.frame = 0

 self.old_frame = -1

 self.frame_width = 1

 self.frame_height = 1

 self.first_frame = 0

 self.last_frame = 0

 self.columns = 1

 self.last_time = 0

 sself.direction = 0

 self.velocity = Point(0,0)

Chapter 8 • Sprite Collision Detection: The Zombie Mob Game 137

That’s all we have to do to add it as a global property. Oh, it’s not a real Python class property,
but it will work fine this way, like the others. The only time I create a real property with a
get() and set() pair (which are called the accessor/mutator methods, by the way), is when
either one has to do some logic, as was the case with the X and Y properties.

Now, we have a MySprite.direction property available, so what we want to do is set the direc-
tion based on user input. When the player presses the Up key, we will set the direction to 0
(north). Likewise, we’ll do the same for the Right key (2, east), the Down key (4, south), and
the Left key (6, west). The code below takes into account both the arrow keys and W-A-S-D keys
commonly used for movement.

 if keys[K_UP] or keys[K_w]: player.direction = 0

 elif keys[K_RIGHT] or keys[K_d]: player.direction = 2

 elif keys[K_DOWN] or keys[K_s]: player.direction = 4

 elif keys[K_LEFT] or keys[K_a]: player.direction = 6

The direction will then determine the frame range that will be used for animation. So, if you
press the Up key, the range 0 to 7 will be used, and so on according to Table 8.1. The great
thing about the direction property is that we can use it in a simple calculation to set the
range. No if statement is needed!

 player.first_frame = player.direction * player.columns

 player.last_frame = player.first_frame + 8

We’ll want to be sure this code comes before player.update(), which is where animation is
updated.

Colliding with Zombies
Our collision code in the game will involve two stages. First, we’ll use
pygame.sprite.spritecollideany() to see if the player sprite touches any zombie sprite. If
that comes back with a hit, then we’ll do a second collision test using
pygame.sprite.collide_rect_ratio() and reduce the collision boxes by 50 percent for a more
accurate result—which leads to better gameplay. The reason this second stage is needed is
because the frames in the sprite sheets are quite large compared to the actual image pixels
in each frame, so the collision needs to be tightened up a bit for better gameplay. A scratch
sprite object called attacker is used to track when the player has been hit by a zombie. After
the two-stage collision checks pass, then the player loses health, and the zombie is pushed
back a little ways to give the player room to escape. Figure 8.4 shows the player about to be
attacked!

More Python Programming for the Absolute Beginner138

Be careful when writing code that causes something to reverse direction (or any
other state), because if it isn’t also moved out of that position (or state), then it
will keep flip-flopping back and forth and seem to “wig out” on the screen. At
worst, this can actually lock up the game.

 #check for collision with zombies

 attacker = None

 aattacker = pygame.sprite.spritecollideany(player, zombie_group)

 if attacker != None:

 #we got a hit, now do a more precise check

 iif pygame.sprite.collide_rect_ratio(0.5)(player,attacker):

 player_health -= 10

 if attacker.X < player.X: attacker.X -= 10

 elif attacker.X > player.X: attacker.X += 10

 else:

 attacker = None

FIGURE 8.4

The player is
getting attacked
by the zombies!

Getting Health
The health sprite is a little red cross on a white circle that the player can pick up to gain +30
health (of course you may change this if you want to make the game harder or easier!). The

TRAP

Chapter 8 • Sprite Collision Detection: The Zombie Mob Game 139

code to let the player pick up the health sprite looks like this. When the health sprite is picked
up, then the player receives bonus health and it is moved to a new random location on the
screen. Figure 8.5 shows the health sprite and the player needs it badly in this case!

 #check for collision with health

 if pygame.sprite.collide_rect_ratio(0.5)(player,health):

 player_health += 30

 if player_health > 100: player_health = 100

 health.X = random.randint(0,700)

 health.Y = random.randint(0,500)

FIGURE 8.5

That health pickup
is really far away!

The player can move just slightly faster than the zombies, which makes the game
fun. If the player moves at the same or slower speed than the zombies, then the
gameplay would be frustrating. Always give your player the edge over the bad
guys so they’ll keep coming back to play. Frustrating the player is a sure-fire way
to make them quit playing.

If the player gets attacked by the zombies too much and can’t get to the health powerup, then
eventually the health bar runs out and the player dies. This marks the end of the game. There
is no way to reset the game other than by running it again.

TRICK

More Python Programming for the Absolute Beginner140

FIGURE 8.6

Oh no, the player
has died!

Game Source Code
Here, finally, is the complete source code for The Zombie Mob Game. It’s a rather short
listing considering how much gameplay this game is packing! Thanks to the MyLibrary.py
file, we’ve managed to store away the reusable code and tighten up our game’s main code
listing.

Zombie Mob Game

Chapter 8

import itertools, sys, time, random, math, pygame

from pygame.locals import *

from MyLibrary import *

def calc_velocity(direction, vel=1.0):

 velocity = Point(0,0)

 if direction == 0: #north

 velocity.y = -vel

 elif direction == 2: #east

 velocity.x = vel

 elif direction == 4: #south

 velocity.y = vel

 elif direction == 6: #west

Chapter 8 • Sprite Collision Detection: The Zombie Mob Game 141

 velocity.x = -vel

 return velocity

def reverse_direction(sprite):

 if sprite.direction == 0:

 sprite.direction = 4

 elif sprite.direction == 2:

 sprite.direction = 6

 elif sprite.direction == 4:

 sprite.direction = 0

 elif sprite.direction == 6:

 sprite.direction = 2

#main program begins

pygame.init()

screen = pygame.display.set_mode((800,600))

pygame.display.set_caption("Collision Demo")

font = pygame.font.Font(None, 36)

timer = pygame.time.Clock()

#create sprite groups

player_group = pygame.sprite.Group()

zombie_group = pygame.sprite.Group()

health_group = pygame.sprite.Group()

#create the player sprite

player = MySprite()

player.load("farmer walk.png", 96, 96, 8)

player.position = 80, 80

player.direction = 4

player_group.add(player)

#create the zombie sprite

zombie_image = pygame.image.load("zombie walk.png").convert_alpha()

for n in range(0, 10):

 zombie = MySprite()

 zombie.load("zombie walk.png", 96, 96, 8)

 zombie.position = random.randint(0,700), random.randint(0,500)

More Python Programming for the Absolute Beginner142

 zombie.direction = random.randint(0,3) * 2

 zombie_group.add(zombie)

#create heath sprite

health = MySprite()

health.load("health.png", 32, 32, 1)

health.position = 400,300

health_group.add(health)

game_over = False

player_moving = False

player_health = 100

#repeating loop

while True:

 timer.tick(30)

 ticks = pygame.time.get_ticks()

 for event in pygame.event.get():

 if event.type == QUIT: sys.exit()

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]: sys.exit()

 elif keys[K_UP] or keys[K_w]:

 player.direction = 0

 player_moving = True

 elif keys[K_RIGHT] or keys[K_d]:

 player.direction = 2

 player_moving = True

 elif keys[K_DOWN] or keys[K_s]:

 player.direction = 4

 player_moving = True

 elif keys[K_LEFT] or keys[K_a]:

 player.direction = 6

 player_moving = True

 else:

 player_moving = False

 #these things should not happen when the game is over

Chapter 8 • Sprite Collision Detection: The Zombie Mob Game 143

 if not game_over:

 #set animation frames based on player's direction

 player.first_frame = player.direction * player.columns

 player.last_frame = player.first_frame + player.columns-1

 if player.frame < player.first_frame:

 player.frame = player.first_frame

 if not player_moving:

 #stop animating when player is not pressing a key

 player.frame = player.first_frame = player.last_frame

 else:

 #move player in direction

 player.velocity = calc_velocity(player.direction, 1.5)

 player.velocity.x *= 1.5

 player.velocity.y *= 1.5

 #update player sprite

 player_group.update(ticks, 50)

 #manually move the player

 if player_moving:

 player.X += player.velocity.x

 player.Y += player.velocity.y

 if player.X < 0: player.X = 0

 elif player.X > 700: player.X = 700

 if player.Y < 0: player.Y = 0

 elif player.Y > 500: player.Y = 500

 #update zombie sprites

 zombie_group.update(ticks, 50)

 #manually iterate through all the zombies

 for z in zombie_group:

 #set the zombie's animation range

 z.first_frame = z.direction * z.columns

 z.last_frame = z.first_frame + z.columns-1

 if z.frame < z.first_frame:

 z.frame = z.first_frame

More Python Programming for the Absolute Beginner144

 z.velocity = calc_velocity(z.direction)

 #keep the zombie on the screen

 z.X += z.velocity.x

 z.Y += z.velocity.y

 if z.X < 0 or z.X > 700 or z.Y < 0 or z.Y > 500:

 reverse_direction(z)

 #check for collision with zombies

 attacker = None

 attacker = pygame.sprite.spritecollideany(player, zombie_group)

 if attacker != None:

 #we got a hit, now do a more precise check

 if pygame.sprite.collide_rect_ratio(0.5)(player,attacker):

 player_health -= 10

 if attacker.X < player.X:

 attacker.X -= 10

 elif attacker.X > player.X:

 attacker.X += 10

 else:

 attacker = None

 #update the health drop

 health_group.update(ticks, 50)

 #check for collision with health

 if pygame.sprite.collide_rect_ratio(0.5)(player,health):

 player_health += 30

 if player_health > 100: player_health = 100

 health.X = random.randint(0,700)

 health.Y = random.randint(0,500)

 #is player dead?

 if player_health <= 0:

 game_over = True

 #clear the screen

Chapter 8 • Sprite Collision Detection: The Zombie Mob Game 145

 screen.fill((50,50,100))

 #draw sprites

 health_group.draw(screen)

 zombie_group.draw(screen)

 player_group.draw(screen)

 #draw energy bar

 pygame.draw.rect(screen, (50,150,50,180), Rect(300,570,player_health*2,25))

 pygame.draw.rect(screen, (100,200,100,180), Rect(300,570,200,25), 2)

 if game_over:

 print_text(font, 300, 100, "G A M E O V E R")

 pygame.display.update()

In The Real World start

If you really love zombies, then go to the source—George A. Romero, who created
the zombie genre on film starting with the original classic, Night of the Living Dead.
This film has led to modern marvels such as the Resident Evil series starring Milla
Jovovich, TV shows like The Walking Dead, and even remakes of Romero’s films
including the new renditions of The Crazies, Dawn of the Dead, and Day of the Dead.
This is must-watch inspirational material for anyone on the fast-track to make a
zombie game!

SUMMARY
That concludes our experiments in surviving the apocalypse. Sprite collision detection was
also somewhat important in this chapter as well. The Zombie Mob Game was a pretty good
example of several types of collision in practice. As the game code demonstrated, the
response to collision events is extremely important.

More Python Programming for the Absolute Beginner146

Challenges
1. Modify the game so that a new zombie is added to the

zombie_group group every 10 seconds or so, using the timer
variable. This will ramp up the difficulty and give the player a
greater challenge (and also make it impossible to survive at a
certain point, like any good arcade game!).

2. Modify the game so that there is more than one health pickup
sprite.

3. Modify the zombie collision code so that the zombies collide
with each other, using code similar to the collision response
with the player.

Chapter 8 • Sprite Collision Detection: The Zombie Mob Game 147

This page intentionally left blank

9C H A P T E R

ARRAYS, LISTS, AND TUPLES:
THE BLOCK BREAKER GAME

his chapter explores the rather mysterious subject of arrays and the related
subject of tuples that goes along with it. The two are essentially the same
thing: an array when used simply like an array, and a tuple when treated

like a container object with properties and methods. A list is a Python class that
we will also learn to use. We will use this new knowledge to create a game with
pre-defined levels.

In this chapter, you will learn to:

• Define and use arrays and lists

• Use a tuple as a constant array of data

• Create a data-driven game

EXAMINING THE BLOCK BREAKER GAME
The Block Breaker Game uses the concepts presented in this chapter. As a data-
driven game, it will be possible to make changes to the game level definitions
which will change the appearance of those levels and affect the gameplay without
changing any other lines of code. This will be a good demonstration of lists and
tuples.

T

FIGURE 9.1

The Block Breaker
Game.

ARRAYS AND LISTS
Since arrays are just simplified lists, we can combine these two in a single section and cover
lists to encompass both. A list is a container of data—any data you want to store using normal
Python variables. A list can also contain objects based on your own classes, like MySprite. In
fact, a sprite group, such as pygame.sprite.Group, is just a list! So, you should already feel
somewhat familiar with the subject after having used lists already. Lists are considered
mutable because the elements in a list can be changed, and the list can be modified in various
ways by adding, removing, searching, and sorting.

Lists with One Dimension
A list is created by either defining the elements all at once, or by adding elements at a later
time. For example:

ages = [16, 91, 29, 38, 14, 22]

print(ages)

[16, 91, 29, 38, 14, 22]

Lists can contain other data besides integers, such as strings.

names = ["john","jane","dave","robert","andrea","susan"]

print(names)

['john', 'jane', 'dave', 'robert', 'andrea', 'susan']

More Python Programming for the Absolute Beginner150

Changing One Element
We can get the data from any element in the list by index number. The element can also be
changed by referencing the index number. Here, we’ll change the value in index 1, then reset
it afterward.

ages[1] = 1000

print(ages[1])

1000

ages[1] = 91

Adding One Element
New items can be added to the list with the append() method:

ages.append(100)

print(ages)

[16, 91, 29, 38, 14, 22, 100]

An element can be inserted into the middle of the list with the insert() method, which
accepts an index position and a value.

ages.insert(1, 50)

print(ages)

ages.insert(1, 60)

print(ages)

[16, 50, 91, 29, 38, 14, 22, 100, 20, 20, 20]

[16, 60, 50, 91, 29, 38, 14, 22, 100, 20, 20, 20]

Counting Elements
If there are duplicate elements in the list, they can be counted using the count() method.

ages.append(20)

ages.append(20)

ages.append(20)

print(ages)

print(ages.count(20))

[16, 91, 29, 38, 14, 22, 100, 20, 20, 20]

3

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 151

Searching for Elements
A list can be searched for the first occurrence of a specific element with the index() method.
Note that a list is zero-based, so the first item is in index position zero, not one. The first
occurrence of the value 20 in the list at this point is index 7 (the 8th element).

print(ages.index(20))

7

Removing Elements
An element of the list can be removed with the remove() method. The first occurrence of the
value passed will be the one removed, and just one, not all. In the code below, note that the
first occurrence of 20 that was recently added is removed.

ages.remove(20)

print(ages)

[16, 60, 50, 91, 29, 38, 14, 22, 100, 20, 20]

Reversing a List
The entire list can be reversed with the reverse() method. This has the effect of changing
every element in the list. The following code shows the result when the elements in our
sample list have been reversed. They are then returned to the original ordering with a
duplicate call to reverse().

ages.reverse()

print(ages)

[20, 20, 100, 22, 14, 38, 29, 91, 50, 60, 16]

ages.reverse()

Sorting a List
The elements of a list can be sorted with the sort() method. As the sample code below
demonstrates, the sort order can be reversed with a call to reverse(), so a descending sort is
not needed.

ages.sort()

print(ages)

ages.reverse()

print(ages)

[14, 16, 20, 20, 22, 29, 38, 50, 60, 91, 100]

[100, 91, 60, 50, 38, 29, 22, 20, 20, 16, 14]

More Python Programming for the Absolute Beginner152

Creating a Stack-like List
A stack is a list with a first-in, last-out (FILO) mechanism for managing elements, where the
last item added is the first item removed. A method called pop() makes it a little easier to use
a list like a stack by removing the last item on the list. The usual parlance for stack program-
ming is that elements are “pushed” onto the stack, not just added or appended, but we can
use append() for the same purpose. A stack is a great tool for managing short-term memory,
and it is the technique used by compilers and interpreters to read parameters passed to a
function.

stack = []

for i in range(10):

 stack.append(i)

print(stack)

stack.append(10)

print(stack)

n = stack.pop()

m = stack.pop()

print(stack)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[0, 1, 2, 3, 4, 5, 6, 7, 8]

Creating a Queue-like List
A queue is similar to a stack in functionality, but it uses a first-in, first-out (FIFO) mechanism
for managing elements, where the first item added is the first item removed. Python already
has a queue module that can be used for this purpose, so we’re only simulating one with a
list for illustration.

queue = []

for l in range(10):

 queue.append(l)

print(queue)

queue.append(50)

queue.append(60)

queue.append(70)

print(queue)

n = queue[0]

queue.remove(n)

print(queue)

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 153

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 50, 60, 70]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 50, 60, 70]

Lists with More Dimensions
A list can also contain lists, which is called a multi-dimensional list. A two-dimensional list
might be called a grid, since the data will look like a spreadsheet. This is a common technique
for storing game level data. Working with n-dimensional lists in Python can be tricky until
you learn the syntax. Here is a two-dimensional list:

grid = [[1,2,3],[4,5,6],[7,8,9]]

print(grid)

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Note the syntax for creating the list values, with brackets separated by commas. The first
dimension is represented by the outer brackets. If you remove the second dimension, the list
becomes:

grid = []

which is what we would expect. Adding the second dimension is a matter of syntax. To make
the second dimension easier to visualize, we can use a more visually appealing form of
definition:

grid = [

 [1,2,3],

 [4,5,6],

 [7,8,9]]

Python doesn’t “see” an n-dimensional list in this manner, so it is helpful only to the
programmer.

Changing One Element
To change a single element in a two-dimensional list such as this one, we have to use an index
within brackets for the syntax. For example, the following prints out the first “element” of
the list’s first dimension followed by the size of the element:

print(grid[0])

print(len(grid[0]))

[1, 2, 3]

3

More Python Programming for the Absolute Beginner154

Here is another way to display the elements in the list contained in grid[0]:

for n in grid[0]: print(n)

1

2

3

Understanding that an element can be another list helps when working with lists such as
this. Just add a second pair of brackets with an index value to access the values in that inner
list.

grid[0][0] = 100

grid[0][1] = 200

grid[0][2] = 300

print(grid[0])

[100, 200, 300]

Changing Many Elements
The fastest way to fill a list of lists (another term for a two-dimensional list) with data is with
a for loop. The following syntax can be used to fill a new list of lists with a single value:

grid = [

 [10 for col in range(10)]

 for row in range(10)]

for row in grid: print(row)

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

We can also define a whole list with a unique value for each element position. Here is a list
definition for a game level with 12 columns and 10 rows:

level = [

 1,1,1,1,1,1,1,1,1,1,1,1,

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 155

 2,2,2,2,2,2,2,2,2,2,2,2,

 3,3,3,3,3,3,3,3,3,3,3,3,

 1,1,1,1,1,1,1,1,1,1,1,1,

 1,1,1,1,1,0,0,1,1,1,1,1,

 1,1,1,1,1,0,0,1,1,1,1,1,

 1,1,1,1,1,1,1,1,1,1,1,1,

 3,3,3,3,3,3,3,3,3,3,3,3,

 2,2,2,2,2,2,2,2,2,2,2,2,

 1,1,1,1,1,1,1,1,1,1,1,1]

When printing out the list, there will be no formatting of lines because this is just one long
definition of data for an element that just so happens to be the level data for a game. If the
elements must be lined up, then a little bit of finagling of the index has to be done with a
pair of for loops. It helps to remember that the first dimension represents “Y” while the second
or inner dimension represents “X,” if you want to think of the data in the list in terms of X
and Y coordinates. In that case, each row will be processed first, and the elements inside each
row (the columns) will be processed in order per row.

Here’s one way to do it if you wish to have some control over how the values are printed out:

for row in range(10):

 s = ""

 for col in range(12):

 s += str(level[row*10+col]) + " "

 print(s)

1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2 2 2 2 2

2 2 2 2 3 3 3 3 3 3 3 3

3 3 3 3 3 3 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 1 1 1 1 1

1 1 1 1 1 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 3 3 3 3 3 3 3 3

3 3 3 3 3 3 2 2 2 2 2 2

This rather complex formatting of the elements is necessary because this is a single-dimension
list disguised as a two-dimensional one! The tip-off is the index calculation: row * 10 + col,
which is based on the formula for converting an index from two dimensions into one
dimension:

More Python Programming for the Absolute Beginner156

index = (row #) x columns + (column #)

To simplify the code and eliminate this calculation, we can just define the level data as a two-
dimensional list in the definition itself:

level = [

 [1,1,1,1,1,1,1,1,1,1,1,1],

 [2,2,2,2,2,2,2,2,2,2,2,2],

 [3,3,3,3,3,3,3,3,3,3,3,3],

 [1,1,1,1,1,1,1,1,1,1,1,1],

 [1,1,1,1,1,0,0,1,1,1,1,1],

 [1,1,1,1,1,0,0,1,1,1,1,1],

 [1,1,1,1,1,1,1,1,1,1,1,1],

 [3,3,3,3,3,3,3,3,3,3,3,3],

 [2,2,2,2,2,2,2,2,2,2,2,2],

 [1,1,1,1,1,1,1,1,1,1,1,1]]

To print out (or just access the list in general), we have only to treat each row as a list within
the list using a simple for loop:

for row in level: print(row)

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]

[1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

TUPLES
A tuple is similar to a list, but it is read-only, meaning the items cannot be changed once they
have been initialized in code—which makes tuples immutable. The elements in a tuple are
enclosed in parentheses rather than brackets to denote the difference. Once defined, a tuple
can only be replaced. Why use a tuple instead of a list? The main advantage to a tuple is that
it is faster than a list. If you will not be changing the data, then use a tuple for better perfor-
mance. But if you need to change data, then use a list.

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 157

Packing a Tuple
The process of creating a tuple is called packing. Tuples are used often to pass complex data
to and from functions and class methods. A tuple’s data can only be created once and then it
is immutable. In the short example below, a tuple is created containing the values 1 through
5. Then variables a, b, c, d, and e are set to the value of each respective element in the tuple.
If the code looks familiar, that’s because we’ve been using tuples fairly regularly up to this
point without formally recognizing them!

tuple1 = (1,2,3,4,5)

print(tuple1)

(1, 2, 3, 4, 5)

Unpacking a Tuple
Note that the parentheses are optional when working with a tuple, as the following code
illustrates. The process of reading data out of a tuple is called “unpacking.”

a,b,c,d,e = tuple1

print(a,b,c,d,e)

1 2 3 4 5

More complex tuples can be created with code:

data = (100 for n in range(10))

for n in data: print(n)

100

100

100

100

100

100

100

100

100

100

String data can also be stored in a tuple:

names = ("john","jane","dave","robert","andrea","susan")

print(names)

('john', 'jane', 'dave', 'robert', 'andrea', 'susan')

More Python Programming for the Absolute Beginner158

Searching for Elements
Some methods commonly found when working with a list are also available to a tuple, but
only those methods that retrieve data, not change it. Trying to change data in a tuple gener-
ates a run-time error in the Python interpreter.

print(names.index("dave"))

2

Elements in a tuple can be searched using range sequence operators such as in:

print("jane" in names)

True

print("bob" in names)

False

Counting Elements
We can have Python return the number of elements of a specific value stored in a tuple using
the count() method:

print(names.count("susan"))

1

We can also get the length of all elements in a tuple with the len() function:

print(len(names))

6

Tuples as Constant Arrays
Tuples work exceptionally well as a constant array container due to its ability to search and
return data quickly. The syntax will be similar to that for lists, but using parentheses rather
than brackets. Here is a 2D tuple containing level data for a game:

level = (

 (1,1,1,1,1,1,1,1,1,1,1,1),

 (2,2,2,2,2,2,2,2,2,2,2,2),

 (3,3,3,3,3,3,3,3,3,3,3,3),

 (1,1,1,1,1,1,1,1,1,1,1,1),

 (1,1,1,1,1,0,0,1,1,1,1,1),

 (1,1,1,1,1,0,0,1,1,1,1,1),

 (1,1,1,1,1,1,1,1,1,1,1,1),

 (3,3,3,3,3,3,3,3,3,3,3,3),

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 159

 (2,2,2,2,2,2,2,2,2,2,2,2),

 (1,1,1,1,1,1,1,1,1,1,1,1))

Accessing the data in a 2D tuple can be done with the same code used to access a list, using
a for loop or by index.

for row in level: print(row)

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1)

(1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1)

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

THE BLOCK BREAKER GAME
We’re going to put our new knowledge of lists and tuples to work in a game called Block
Breaker. This is a traditional ball-and-paddle game where the goal is to clear all of the blocks
from the playing field while keeping the ball from getting past the paddle. This is essentially
“Ping Pong”–style gameplay for one player. We’re going to build the game section by section
and explain it as we go rather than showing all of the source code at once. Let’s begin with
the imports:

Block Breaker Game

Chapter 9

import sys, time, random, math, pygame

from pygame.locals import *

from MyLibrary import *

Note that MyLibrary.py is needed. We’ll be making a few changes to the library’s source code
here in a bit!

Block Breaker Levels
There are three levels in the game now, but you are welcome to add new levels to the game
or edit the ones already defined. The game code uses len(levels) when changing the game
level, so you can add as many new levels as you want to the levels tuple without having to

More Python Programming for the Absolute Beginner160

change anything in the source code dealing with level changing limits. Figure 9.2 shows the
block sprite sheet image.

FIGURE 9.2

The blocks all
share this image,
which contains 8

frames.

Level 1
Figure 9.3 shows the first level of the game. It is not important to have 1’s defined in the level
1 data; that was just done to help illustrate the level this is referring to. Although the block
image used for the game is treated like an animated sprite, we could have just used a simple
white block and colored it when drawing it with any color value.

FIGURE 9.3

Level 1 of the
game.

levels = (

(1,1,1,1,1,1,1,1,1,1,1,1,

 1,1,1,1,1,1,1,1,1,1,1,1,

 1,1,1,1,1,1,1,1,1,1,1,1,

 1,1,1,1,1,1,1,1,1,1,1,1,

 1,1,1,1,1,0,0,1,1,1,1,1,

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 161

 1,1,1,1,1,0,0,1,1,1,1,1,

 1,1,1,1,1,1,1,1,1,1,1,1,

 1,1,1,1,1,1,1,1,1,1,1,1,

 1,1,1,1,1,1,1,1,1,1,1,1,

 1,1,1,1,1,1,1,1,1,1,1,1),

Level 2
Figure 9.4 shows the second level of the game. Like the level 1 data, the 2’s found herein are
only illustrative. You may change them to any value from 0 to 7, as there are 8 different blocks.

FIGURE 9.4

Level 2.

(2,2,2,2,2,2,2,2,2,2,2,2,

 2,0,0,2,2,2,2,2,2,0,0,2,

 2,0,0,2,2,2,2,2,2,0,0,2,

 2,2,2,2,2,2,2,2,2,2,2,2,

 2,2,2,2,2,2,2,2,2,2,2,2,

 2,2,2,2,2,2,2,2,2,2,2,2,

 2,2,2,2,2,2,2,2,2,2,2,2,

 2,0,0,2,2,2,2,2,2,0,0,2,

 2,0,0,2,2,2,2,2,2,0,0,2,

 2,2,2,2,2,2,2,2,2,2,2,2),

More Python Programming for the Absolute Beginner162

Level 3
Figure 9.5 shows the third and final level of the game.

FIGURE 9.5

Level 3.

(3,3,3,3,3,3,3,3,3,3,3,3,

 3,3,0,0,0,3,3,0,0,0,3,3,

 3,3,0,0,0,3,3,0,0,0,3,3,

 3,3,0,0,0,3,3,0,0,0,3,3,

 3,3,3,3,3,3,3,3,3,3,3,3,

 3,3,3,3,3,3,3,3,3,3,3,3,

 3,3,0,0,0,3,3,0,0,0,3,3,

 3,3,0,0,0,3,3,0,0,0,3,3,

 3,3,0,0,0,3,3,0,0,0,3,3,

 3,3,3,3,3,3,3,3,3,3,3,3),

)

Loading and Changing Levels
There are three functions in the game for working with the levels. First is goto_next_level(),
which just increments the level number, makes sure it’s within the range of defined levels.
Next, the update_blocks() function handles the situation when the level has been cleared.
The load_level() function cycles through the level data to create a sprite group called

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 163

block_group containing all of the blocks for the current level. Note the use of global variable
definitions in these functions—something we have not used very much until now. The
global keyword lets the function make changes to a variable which was defined elsewhere in
the program.

#this function increments the level

def ggoto_next_level():

 global level, levels

 level += 1

 if level > len(levels)-1: level = 0

 load_level()

#this function updates the blocks in play

def uupdate_blocks():

 global block_group, waiting

 if len(block_group) == 0: #all blocks gone?

 goto_next_level()

 waiting = True

 block_group.update(ticks, 50)

#this function sets up the blocks for the level

def lload_level():

 global level, block_image, block_group, levels

 block_image = pygame.image.load("blocks.png").convert_alpha()

 block_group.empty() #reset block group

 for bx in range(0, 12):

 for by in range(0,10):

 block = MySprite()

 block.set_image(block_image, 58, 28, 4)

 x = 40 + bx * (block.frame_width+1)

 y = 60 + by * (block.frame_height+1)

 block.position = x,y

 #read blocks from level data

 num = levels[level][by*12+bx]

 block.first_frame = num-1

 block.last_frame = num-1

 if num > 0: #0 is blank

 block_group.add(block)

More Python Programming for the Absolute Beginner164

Initializing the Game
We have a new function in this game to manage initializing Pygame and loading game assets
such as bitmap files. The code was beginning to grow by leaps and bounds and will be easier
to understand and modify this way.

#this function initializes the game

def ggame_init():

 global screen, font, timer

 global paddle_group, block_group, ball_group

 global paddle, block_image, block, ball

 pygame.init()

 screen = pygame.display.set_mode((800,600))

 pygame.display.set_caption("Block Breaker Game")

 font = pygame.font.Font(None, 36)

 pygame.mouse.set_visible(False)

 timer = pygame.time.Clock()

 #create sprite groups

 paddle_group = pygame.sprite.Group()

 block_group = pygame.sprite.Group()

 ball_group = pygame.sprite.Group()

 #create the paddle sprite

 paddle = MySprite()

 paddle.load("paddle.png")

 paddle.position = 400, 540

 paddle_group.add(paddle)

 #create ball sprite

 ball = MySprite()

 ball.load("ball.png")

 ball.position = 400,300

 ball_group.add(ball)

Moving the Paddle
The code to move the paddle taps into the keyboard and mouse events to see when the user
is moving the mouse. The mouse can be used to move the paddle left or right, but some may

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 165

find the game hard to play that way, so the left and right arrow keys are also supported. There
is a flag called waiting that causes the ball to wait for the player to launch it. This happens
when the game first starts or when the player misses the ball (and loses it). Either a mouse
button or the Space key will launch the ball when the ball is in the waiting state.

#this function moves the paddle

def mmove_paddle():

 global movex,movey,keys,waiting

 paddle_group.update(ticks, 50)

 if keys[K_SPACE]:

 if waiting:

 waiting = False

 reset_ball()

 elif keys[K_LEFT]: paddle.velocity.x = -10.0

 elif keys[K_RIGHT]: paddle.velocity.x = 10.0

 else:

 if movex < -2: paddle.velocity.x = movex

 elif movex > 2: paddle.velocity.x = movex

 else: paddle.velocity.x = 0

 paddle.X += paddle.velocity.x

 if paddle.X < 0: paddle.X = 0

 elif paddle.X > 710: paddle.X = 710

Moving the Ball
There are two functions to manage the ball in the game. reset_ball() is a very simple function
with just one line, but it is important to make this code reusable because this is where the
ball’s velocity is defined. Changing the velocity in just one place—this function—is much bet-
ter than digging through the code for the several instances where the velocity has to be set.
The move_ball() function does quite a bit of work to make the ball move correctly. The ball
needs to move based on its velocity, and also bounce off the edges of the screen. And if the
ball falls down below the paddle, then one “ball” or “life” is lost, which could potentially end
the game.

#this function resets the ball's velocity

def rreset_ball():

 ball.velocity = Point(4.5, -7.0)

#this function moves the ball

def mmove_ball():

More Python Programming for the Absolute Beginner166

 global waiting, ball, game_over, lives

 #move the ball

 ball_group.update(ticks, 50)

 if waiting:

 ball.X = paddle.X + 40

 ball.Y = paddle.Y - 20

 ball.X += ball.velocity.x

 ball.Y += ball.velocity.y

 if ball.X < 0:

 ball.X = 0

 ball.velocity.x *= -1

 elif ball.X > 780:

 ball.X = 780

 ball.velocity.x *= -1

 if ball.Y < 0:

 ball.Y = 0

 ball.velocity.y *= -1

 elif ball.Y > 580: #missed paddle

 waiting = True

 lives -= 1

 if lives < 1: game_over = True

Hitting the Paddle
The collision_ball_paddle() function handles the collision between the ball and paddle. The
ball does not merely bounce off of the paddle by reversing direction. Depending on where the
ball hits the paddle, it will deflect away differently, as is typical for this game genre. Hitting
the paddle’s left side causes the ball to swing to the left, while hitting the right side of the
paddle causes the ball to swing right, regardless of the direction it was moving when it hit.
This gives the player more control over the ball than just keeping it away from the bottom of
the screen.

#this function test for collision between ball and paddle

def ccollision_ball_paddle():

 if pygame.sprite.collide_rect(ball, paddle):

 ball.velocity.y = -abs(ball.velocity.y)

 bx = ball.X + 8

 by = ball.Y + 8

 px = paddle.X + paddle.frame_width/2

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 167

 py = paddle.Y + paddle.frame_height/2

 if bx < px: #left side of paddle?

 ball.velocity.x = -abs(ball.velocity.x)

 else: #right side of paddle?

 ball.velocity.x = abs(ball.velocity.x)

Hitting the Blocks
The collision_ball_blocks() function handles collision detection between the ball and
blocks. More importantly, this function handles collision response—that is, what happens after
the collision takes place. We’re using the pygame.sprite.spritecollideany() function with
the ball and block_group passed as parameters, so the ball will be tested against the whole
block group. There’s some pretty good intelligence in this function that causes the ball to
bounce away from the collided block based on the ball’s position at the time of collision. To
that end, the center of the ball is compared with the center of the paddle. If the ball hits a
block from the left or right, it deflects in X but continues in Y. If the ball hits above or below
the block, it deflects in Y but continues in X. The result isn’t perfect, but offers pretty good
gameplay for such a small investment of code.

#this function tests for collision between ball and blocks

def ccollision_ball_blocks():

 global score, block_group, ball

 hit_block = pygame.sprite.spritecollideany(ball, block_group)

 if hit_block != None:

 score += 10

 block_group.remove(hit_block)

 bx = ball.X + 8

 by = ball.Y + 8

 #hit middle of block from above or below?

 if bx > hit_block.X+5 and bx < hit_block.X + hit_block.frame_width-5:

 if by < hit_block.Y + hit_block.frame_height/2: #above?

 ball.velocity.y = -abs(ball.velocity.y)

 else: #below?

 ball.velocity.y = abs(ball.velocity.y)

 #hit left side of block?

 elif bx < hit_block.X + 5:

More Python Programming for the Absolute Beginner168

 ball.velocity.x = -abs(ball.velocity.x)

 #hit right side of block?

 elif bx > hit_block.X + hit_block.frame_width - 5:

 ball.velocity.x = abs(ball.velocity.x)

 #handle any other situation

 else:

 ball.velocity.y *= -1

Main Code
The main source code for The Block Breaker Game includes calls to initialize the game, setting
up of global variables to their initial values, and of course, the while loop. Due to the use of
so many functions that have already been covered, the main code is much easier to read and
modify, as I’m sure you would agree (compared to the example in previous chapters).

#main program begins

game_init()

game_over = False

waiting = True

score = 0

lives = 3

level = 0

load_level()

#repeating loop

while True:

 timer.tick(30)

 ticks = pygame.time.get_ticks()

 #handle events

 for event in pygame.event.get():

 if event.type == QUIT: sys.exit()

 elif event.type == MOUSEMOTION:

 movex,movey = event.rel

 elif event.type == MOUSEBUTTONUP:

 if waiting:

 waiting = False

 reset_ball()

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 169

 elif event.type == KEYUP:

 if event.key == K_RETURN: goto_next_level()

 #handle key presses

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]: sys.exit()

 #do updates

 if not game_over:

 update_blocks()

 move_paddle()

 move_ball()

 collision_ball_paddle()

 collision_ball_blocks()

 #do drawing

 screen.fill((50,50,100))

 block_group.draw(screen)

 ball_group.draw(screen)

 paddle_group.draw(screen)

 print_text(font, 0, 0, "SCORE " + str(score))

 print_text(font, 200, 0, "LEVEL " + str(level+1))

 print_text(font, 400, 0, "BLOCKS " + str(len(block_group)))

 print_text(font, 670, 0, "BALLS " + str(lives))

 if game_over:

 print_text(font, 300, 380, "G A M E O V E R")

 pygame.display.update()

MySprite Update
Before calling it a day, there are some changes to be made to the MyLibrary.py file to accom-
modate some gameplay needs in this chapter project. The MySprite class gets an update to
make it a little easier to use, as well as give it an important optimization that will cut down
on memory usage. When the MySprite class was created, it had just a simple load() method
for loading a bitmap into the master_image image. Now, we need a way to recycle an image
that is shared by many sprite objects. In the case of The Block Breaker Game in this chapter,
we have about 100 blocks per level. Loading the blocks.png file into every single one would
be a gross waste of memory, not to mention take a bit of time to start up. So, we’ll change

More Python Programming for the Absolute Beginner170

MySprite to support image sharing. A modification is made to load(), and a new method called
set_image() is added.

 def lload(self, filename, width=0, height=0, columns=1):

 self.master_image = pygame.image.load(filename).convert_alpha()

 self.set_image(self.master_image, width, height, columns)

 def sset_image(self, image, width=0, height=0, columns=1):

 self.master_image = image

 if width==0 and height==0:

 self.frame_width = image.get_width()

 self.frame_height = image.get_height()

 else:

 self.frame_width = width

 self.frame_height = height

 rect = self.master_image.get_rect()

 self.last_frame = (rect.width//width)*(rect.height//height)-1

 self.rect = Rect(0,0,self.frame_width,self.frame_height)

 self.columns = columns

There’s one more change to make in MySprite. This change applies to the update() method,
and is a small bug fix. The original update() method just uses timing to change animation
frames. The bug occurs when the range is changed (first_frame and last_frame), without also
changing the frame variable too.

 def uupdate(self, current_time, rate=30):

 iif self.last_frame > self.first_frame:

 #update animation frame number

 if current_time > self.last_time + rate:

 self.frame += 1

 if self.frame > self.last_frame:

 self.frame = self.first_frame

 self.last_time = current_time

 eelse:

 sself.frame = self.first_frame

Chapter 9 • Arrays, Lists, and Tuples: The Block Breaker Game 171

SUMMARY
This chapter demonstrated the great versatility of Python when it comes to creating and using
data with a list or a tuple, and The Block Breaker Game showed how to put these concepts
into practice.

Challenges
1. There’s so much potential in The Block Breaker game, where

should we begin? Of course, with your own new game level!
Add your own new level to the game by adding it to the tuple
called levels at the top of the source code listing. Hint: Add
your new level in front of the others rather than after, so you
can see it come up first.

2. The background of the game is quite boring, just a solid dark
blue color. There’s so much more that could be done with the
background scenery to make the game more interesting and
visually appealing. How about an alpha color cycle that causes
the background to fade in and out while the game is playing?

3. The ball never changes velocity, and this can cause the game to
seem to drag at times, not giving the player enough challenge.
Add an element of unpredictability to the game by tweaking
the ball’s velocity just a bit every time it hits the paddle, using
a random number.

More Python Programming for the Absolute Beginner172

10C H A P T E R

TIMING AND SOUND: THE

OIL SPILL GAME

iming is not necessarily a subject closely associated with sound effects or
music in a game, but we’re going to be using both extensively in this
chapter while making a very interesting game. The chapter project is called

The Oil Spill Game. While studying timing and new gameplay concepts, you will
learn how to load and play sound files.

You will learn how to:

• Load and play a sound using the Pygame mixer

• Use a back buffer to better control drawing

• Create a fast-paced arcade-style game called The Oil Spill Game

EXAMINING THE OIL SPILL GAME
The Oil Spill Game is shown in Figure 10.1. In this game, the player has to clean
up an oil spill using a water cannon that fires a high-pressure stream of water at
the contaminated areas to clean them up. At least, that’s the theory! In reality, we
just use the mouse cursor to click on an oil splotch to clean it up! This game uses
color alpha channel manipulation to erase the oil splotches and is a good exercise
in user input as well as program logic.

T

FIGURE 10.1

The Oil Spill Game
uses timing and
sound with fun

gameplay.

SOUND
The audio system we’re going to use is included with Pygame in the pygame.mixer module. We
will learn how to create an audio clip by loading an audio file and then playing the clip in
game. Pygame offers some advanced features to control the channels for audio playback,
control the mixing of sounds, and even the ability to generate sounds. Pygame does not always
initialize the audio mixer, so it’s best to initialize it on our own just to be sure our program
doesn’t crash upon trying to load and play a file. This only needs to be called once:

pygame.mixer.init()

Loading an Audio File
We use the pygame.mixer.Sound() class to load and manage audio objects. Pygame supports
two audio file formats: uncompressed WAV and OGG audio files. OGG is a good alternative
to MP3 swith no licensing issues. If you wanted to use MP3 in a commercial game, you would
have to license the MP3 technology in order to use it. OGG offers similar quality and com-
pression without the licensing! As a result, OGG is a good choice for longer-running music
tracks in your game. Of course, you can use OGG for regular short-duration sound effects too.
It just tends to be more common to use WAV for shorter audio files and OGG for the longer
ones. That is entirely up to you, though. Since WAV files must be uncompressed, you cannot
load any WAV file created with a special codec. Since they are uncompressed, the file sizes

More Python Programming for the Absolute Beginner174

will tend to be on the large size if they are more than a few seconds in length. Because of the
size issue, OGG is recommended for audio clips longer than a few seconds.

audio_clip = pygame.mixer.Sound("audio_file.wav")

If you have audio files in some format (like WAV or MP3) that you want to convert
to OGG in order to use the format, you will need to convert the files with an
audio converter. One good example is free software called Audacity which
has advanced audio editing features as well. You can download it from
http://audacity.sourceforge.net.

Playing an Audio Clip
The pygame.mixer.Sound() constructor returns a Sound object. Among the several methods in
this class are play() and stop(). These are easy enough to use, but we’re not going to use
Sound for playback, just for loading and storing the audio data. For playing sounds, we’re going
to use pygame.mixer.Channel. This is a class that offers more versatility than Sound for playback.
The Pygame audio mixer handles channels internally, so what we do is request an available
channel.

channel = pygame.mixer.find_channel()

This will request an unused channel and return it so we can use it. If there are no available
channels, then the mixer returns None. Because this may be a problem, if you want to override
that default behavior, then pass True to find_channel() in order to force it to return the lowest-
priority channel available.

channel = pygame.mixer.find_channel(True)

Once we have a channel, we can play a Sound object by using the Channel.play() method:

channel.play(sound_clip)

There are additional features in both the Sound and Channel classes that you can
find in the Pygame documentation online at www.pygame.org/docs/ref/
mixer.html.

BUILDING THE OIL SPILL GAME
The Oil Spill Game is an interesting experiment in color manipulation with the use of alpha
to cause the oil splotches to disappear as the user “wipes” them with the mouse cursor. This
game could be called “stain remover” just as well, and the colors could be changed to any
theme for variations on the theme of “oil cleanup.”

HINT

HINT

Chapter 10 • Timing and Sound: The Oil Spill Game 175

www.pygame.org/docs/ref/mixer.html
www.pygame.org/docs/ref/mixer.html
http://audacity.sourceforge.net

Gameplay
The oil splotches are indeed sprites, each created as a root pygame.sprite.Sprite, and stored
in a sprite group with pygame.sprite.Group. A custom class inherits from MySprite to add some
new features required for the game, but they are otherwise pygame.sprite.Sprite-based
MySprite objects. But there is no source artwork—the circles are drawn onto the sprite image
at load time.

Timing
Timing is important in The Oil Spill Game. Once every second, a new oil sprite is added to a
group that is drawn at a random location on the screen. Each oil sprite has a random radius
so that after a while the screen does indeed begin to look like oil is dripping all over it. The
trick is to add a new oil sprite only once per second, using timing. There are a few ways to do
this, but perhaps the easiest way is with a millisecond timer. First, we create a root time:

 last_time = 0

Then, this root time value is updated whenever the one-second interval is reached using
pygame.time.get_ticks():

 ticks = pygame.time.get_ticks()

 if ticks > last_time + 1000:

 add_oil()

 last_time = ticks

The key is saving the current ticks value in last_time when a timing even occurs. If the ticks
value is not saved in last_time, then it will only happen once and then never again.

Oil Mess
When the mouse cursor moves around on the screen, circle-based collision detection is used
via pygame.sprite.collide_circle_ratio() to determine when the mouse cursor is over an oil
splotch sprite. Figure 10.2 shows the gameplay when the cursor is over such a sprite.

The oil sprites have a custom image that is created in memory (not loaded from a bitmap file).
That image has a dark circle drawn on it with a random radius to represent a single oil splotch.

More Python Programming for the Absolute Beginner176

FIGURE 10.2

Identifying oil
splotches on the
screen with the
mouse cursor.

 image = pygame.Surface((oil.radius,oil.radius)).convert_alpha()

 image.fill((255,255,255,0))

 oil.fadelevel = random.randint(50,150)

 oil_color = 10,10,20,oil.fadelevel

 r2 = oil.radius//2

 pygame.draw.circle(image, oil_color, (r2,r2), r2, 0)

 oil.set_image(image)

Cleaning the Oil
By clicking the mouse on an oil splotch, that has the effect of “cleaning” it because the dark
circle fades out as it is being cleaned and disappears. This is done by changing the alpha
channel color component of the sprite until it is completely invisible. When alpha reaches
zero, then the sprite is removed from the group.

Chapter 10 • Timing and Sound: The Oil Spill Game 177

FIGURE 10.3

Cleaning the oil
splotches by

“washing” them
with the mouse.

Identifying an oil sprite in the group could be done with a group collision method in
pygame.sprite, but I wanted to get a little more control over how collision response
works, so this game iterates the group of oil sprites manually and calls
pygame.sprite.collide_circle_ratio(0.5). This makes the collision radius half of the
normal value to increase the game’s challenge a little bit.

 for oil in oil_group:

 if pygame.sprite.collide_circle_ratio(0.5)(cursor, oil):

 oil_hit = oil

Washing the Background
Although it is not necessary, to make the game a little more fun, clicking the mouse cursor
on the screen causes it to appear to be cleaning the background as well. This helps the player
get a feel for the gameplay before any oil splotches even show up. Two colors are defined:
darktan for the normal background, and tan for the cleaned spots:

darktan = 190,190,110,255

tan = 210,210,130,255

Note that a fourth color component (alpha) is added to these colors. This is required when
working with 32-bit color. If you don’t specify an alpha channel when creating the color, then
it is not available later.

More Python Programming for the Absolute Beginner178

When the user clicks the mouse button anywhere on the screen, a tan circle is drawn to help
the player get a feel for what they need to do in the game. It also makes the game more fun.

 b1,b2,b3 = pygame.mouse.get_pressed()

 mx,my = pygame.mouse.get_pos()

 pos = (mx+30,my+30)

 if b1 > 0:

 pygame.draw.circle(backbuffer, tan, pos, 30, 0)

Source Code
The source code for The Oil Spill Game is not long at all with 147 lines (including blanks and
comments), but the source code is rather packed and efficient, so we’ll list the entire source
code here for easy reference. It is an interesting game. I think there’s potential here by
designing some gameplay challenges, adding scoring, etc.

Oil Spill Game

Chapter 10

import sys, time, random, math, pygame

from pygame.locals import *

from MyLibrary import *

darktan = 190,190,110,255

tan = 210,210,130,255

class OilSprite(MySprite):

 def __init__(self):

 MySprite.__init__(self)

 self.radius = random.randint(0,60) + 30 #radius 30 to 90

 play_sound(new_oil)

 def update(self, timing, rate=30):

 MySprite.update(self, timing, rate)

 def fade(self):

 r2 = self.radius//2

 color = self.image.get_at((r2,r2))

 if color.a > 5:

 color.a -= 5

 pygame.draw.circle(self.image, color, (r2,r2), r2, 0)

 else:

Chapter 10 • Timing and Sound: The Oil Spill Game 179

 oil_group.remove(self)

 play_sound(clean_oil)

#this function initializes the game

def game_init():

 global screen, backbuffer, font, timer, oil_group, cursor, cursor_group

 pygame.init()

 screen = pygame.display.set_mode((800,600))

 pygame.display.set_caption("Oil Spill Game")

 font = pygame.font.Font(None, 36)

 pygame.mouse.set_visible(False)

 timer = pygame.time.Clock()

 #create a drawing surface

 backbuffer = pygame.Surface((800,600))

 backbuffer.fill(darktan)

 #create oil list

 oil_group = pygame.sprite.Group()

 #create cursor sprite

 cursor = MySprite()

 cursor.radius = 60

 image = pygame.Surface((60,60)).convert_alpha()

 image.fill((255,255,255,0))

 pygame.draw.circle(image, (80,80,220,70), (30,30), 30, 0)

 pygame.draw.circle(image, (80,80,250,255), (30,30), 30, 4)

 cursor.set_image(image)

 cursor_group = pygame.sprite.GroupSingle()

 cursor_group.add(cursor)

#this function initializes the audio system

def audio_init():

 global new_oil, clean_oil

 #initialize the audio mixer

 pygame.mixer.init() #not always called by pygame.init()

More Python Programming for the Absolute Beginner180

 #load sound files

 new_oil = pygame.mixer.Sound("new_oil.wav")

 clean_oil = pygame.mixer.Sound("clean_oil.wav")

def play_sound(sound):

 channel = pygame.mixer.find_channel(True)

 channel.set_volume(0.5)

 channel.play(sound)

def add_oil():

 global oil_group, new_oil

 oil = OilSprite()

 image = pygame.Surface((oil.radius,oil.radius)).convert_alpha()

 image.fill((255,255,255,0))

 oil.fadelevel = random.randint(50,150)

 oil_color = 10,10,20,oil.fadelevel

 r2 = oil.radius//2

 pygame.draw.circle(image, oil_color, (r2,r2), r2, 0)

 oil.set_image(image)

 oil.X = random.randint(0,760)

 oil.Y = random.randint(0,560)

 oil_group.add(oil)

#main program begins

game_init()

audio_init()

game_over = False

last_time = 0

#repeating loop

while True:

 timer.tick(30)

 ticks = pygame.time.get_ticks()

 for event in pygame.event.get():

 if event.type == QUIT: sys.exit()

Chapter 10 • Timing and Sound: The Oil Spill Game 181

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]: sys.exit()

 #get mouse input

 b1,b2,b3 = pygame.mouse.get_pressed()

 mx,my = pygame.mouse.get_pos()

 pos = (mx+30,my+30)

 if b1 > 0: pygame.draw.circle(backbuffer, tan, pos, 30, 0)

 #collision test

 oil_hit = None

 for oil in oil_group:

 if pygame.sprite.collide_circle_ratio(0.5)(cursor, oil):

 oil_hit = oil

 if b1 > 0: oil_hit.fade()

 break

 #add new oil sprite once per second

 if ticks > last_time + 1000:

 add_oil()

 last_time = ticks

 #draw backbuffer

 screen.blit(backbuffer, (0,0))

 #draw oil

 oil_group.update(ticks)

 oil_group.draw(screen)

 #draw cursor

 cursor.position = (mx,my)

 cursor_group.update(ticks)

 cursor_group.draw(screen)

 if oil_hit: print_text(font, 0, 0, "OIL SPLOTCH - CLEAN IT!")

 else: print_text(font, 0, 0, "CLEAN")

 pygame.display.update()

More Python Programming for the Absolute Beginner182

SUMMARY
This chapter covered the audio system in Pygame via pygame.mixer and showed how to load
and play a sound file in the context of gameplay events. An interesting game called The Oil
Spill Game was used as a backdrop for an audio demonstration program, but it ended up
having more interesting color and sprite manipulation code with audio something of an
afterthought. Overall, though, there were some valuable concepts and useful source code
presented.

Challenges
1. The Oil Spill Game is more of a demo since there is really no

way to win or lose. What do you think would be a good way to
improve the replay value without using gimmicks like high
score? See if you can come up with ways to improve the
gameplay. Perhaps gradually speeding up the rate at which oil
splotches are added or some other mechanism?

2. Currently, the oil splotches do not move once they have been
added to the sprite group. An interesting challenge would be
to cause the oil splotches to “smear” as they slowly slide
across the screen. How about causing the sprites to move and
leave behind a trail of new oil sprites as they go? Be mindful of
gameplay balance if you choose to take on this challenge,
because it will exponentially add to the number of oil
splotches that the player must clean up!

3. The game has no way to win or lose. At minimum, count the
number of oil sprites and end the game when there are too
many (a fairly large number like 180 will be added in 3 minutes
of gameplay—remember, it’s one sprite per second), and end
the game if a limit is reached.

Chapter 10 • Timing and Sound: The Oil Spill Game 183

This page intentionally left blank

11C H A P T E R

PROGRAM LOGIC: THE

SNAKE GAME

his chapter delves into the subject of program logic. How do complex
games cause many objects on the screen to move and behave differently
without writing code to control each one? Sometimes, it seems that some

games use magical source code, because there doesn’t seem to be any code to
account for what’s going on in the game! How is that even possible? If you have
ever asked questions such as these while learning game programming, then hope-
fully this chapter will start to answer some of them. We can only start because this
is a complex subject. Like most problems in computer science, there are many
solutions, not just one.

Here is what you will learn in this chapter:

• How to manage a complex array as a list

• How to use timing to slow down a game

• How to add logic to make a game play by itself

EXAMINING THE SNAKE GAME
The Snake Game is a classic computer science project dating back decades. It is used
as a way to help students learn program logic, and so it is a steadfast game concept
that remains useful to this day in many a classroom. The premise of the game is
this: you are a baby snake (or the head of a snake, if you wish to look at it that way),

T

and must eat food to grow. Every time one piece of food it consumed, the snake grows by one
length. When food is eaten, another food is added to a random location. The snake will keep
on growing until it is so long that the snake literally can’t move on the screen any more, and
that is when the game ends. Running into any part of the snake’s body at any time ends the
game. Figure 11.1 shows the game in action.

FIGURE 11.1

The Snake Game.

BUILDING THE SNAKE GAME
We’re going to build The Snake Game while exploring program logic in this chapter, rather
than separating the subjects into theory and application. The snake will be made up of seg-
ments, so for an object-oriented programmer, that should get your gears working on a possible
class specification. But we also need an array or list to contain and manage the segments. It
may be helpful to actually build these custom classes first in order to explore program logic.
Like usual, we need our import statements to begin:

Snake Game

Chapter 11

import sys, time, random, math, pygame

from pygame.locals import *

from MyLibrary import *

More Python Programming for the Absolute Beginner186

Hatching a Snake—the SnakeSegment Class
The key component of the snake is a class called SnakeSegment, which derives from MySprite.
Let’s take a quick look and then go over its purpose:

class SnakeSegment(MySprite):

 def __init__(self,color=(20,200,20)):

 MySprite.__init__(self)

 image = pygame.Surface((32,32)).convert_alpha()

 image.fill((255,255,255,0))

 pygame.draw.circle(image, color, (16,16), 16, 0)

 self.set_image(image)

 MySprite.update(self, 0, 30) #create frame image

Raising a Snake—the Snake Class
The SnakeSegment class represents one body segment of the snake, represented by a small,
green-filled circle on the screen. The segments are linked together like a train, with each
segment following the one in front of it. All segments ultimately follow the snake’s head, the
first segment. Which brings us to the Snake class. This class organizes the segments, makes it
possible for the segments to follow each other in order, starting with the head. This class also
draws the entire snake.

class Snake():

 def __init__(self):

 self.velocity = Point(-1,0)

 self.old_time = 0

 head = SnakeSegment((50,250,50))

 head.X = 12*32

 head.Y = 9*32

 self.segments = list()

 self.segments.append(head)

 self.add_segment()

 self.add_segment()

 def update(self,ticks):

 if ticks > self.old_time + 400:

 self.old_time = ticks

 #move body segments

 for n in range(len(self.segments)-1, 0, -1):

 self.segments[n].X = self.segments[n-1].X

Chapter 11 • Program Logic: The Snake Game 187

 self.segments[n].Y = self.segments[n-1].Y

 #move snake head

 self.segments[0].X += self.velocity.x * 32

 self.segments[0].Y += self.velocity.y * 32

 def draw(self,surface):

 for segment in self.segments:

 surface.blit(segment.image, (segment.X, segment.Y))

 def add_segment(self):

 last = len(self.segments)-1

 segment = SnakeSegment()

 start = Point(0,0)

 if self.velocity.x < 0: start.x = 32

 elif self.velocity.x > 0: start.x = -32

 if self.velocity.y < 0: start.y = 32

 elif self.velocity.y > 0: start.y = -32

 segment.X = self.segments[last].X + start.x

 segment.Y = self.segments[last].Y + start.y

 self.segments.append(segment)

Every line of code in the Snake class is essential, but the most significant lines are shown below.
These lines cause the segments of the snake’s “body” to follow each other. Every time the head
moves one step in the direction specified by the player, all of the segments follow. Each seg-
ment replaces the one that was in front of it, while the head segment at the front moves
forward in one of the four directions. Every segment is a sprite, ultimately, and each one uses
its own position for the purpose of drawing. Every time the head takes a step, which occurs
at a fixed time rate, then all of the segments move one space forward.

 #move body segments

 for n in range(len(self.segments)-1, 0, -1):

 self.segments[n].X = self.segments[n-1].X

 self.segments[n].Y = self.segments[n-1].Y

Feeding the Snake—the Food Class
There is a sprite group called food_group that could be used to handle more than one food
item at a time. That might make for some interesting gameplay! But at present, there is just
one food sprite at a time in the game, and that is the goal—to maneuver the snake’s head
toward the food without hitting the snake’s body or any edge of the screen. The Food class
helps by creating a yellow-filled circle representing the food. You could, of course, replace

More Python Programming for the Absolute Beginner188

this manually drawn artwork with custom art to make this a more compelling game, visually,
but the purpose of this chapter is not graphics but logic.

class Food(MySprite):

 def __init__(self):

 MySprite.__init__(self)

 image = pygame.Surface((32,32)).convert_alpha()

 image.fill((255,255,255,0))

 pygame.draw.circle(image, (250,250,50), (16,16), 16, 0)

 self.set_image(image)

 MySprite.update(self, 0, 30) #create frame image

 self.X = random.randint(0,23) * 32

 self.Y = random.randint(0,17) * 32

Initializing the Game
The game_init() function handles the initialization code for The Snake Game. Just remember
to include a global statement for every global variable you use in any function to avoid bugs
or syntax errors. One thing we’re using in this game that hasn’t been mentioned yet is a back
buffer. We actually used a back buffer in the previous chapter example too, but didn’t men-
tion it. The back buffer improves the graphics drawing quality of a game by buffering repeated
draw calls and then drawing only to the screen once with a whole surface. It might seem
wasteful if only a small portion of the screen is being updated, and it is certainly possible to
optimize this technique further by looking into Pygame’s dirty rectangle rendering capabil-
ity, but in the interest of simplicity we’ll stick with what works since it runs fast enough
already.

def game_init():

 global screen, backbuffer, font, timer, snake, food_group

 pygame.init()

 screen = pygame.display.set_mode((24*32,18*32))

 pygame.display.set_caption("Snake Game")

 font = pygame.font.Font(None, 30)

 timer = pygame.time.Clock()

 #create a drawing surface

 backbuffer = pygame.Surface((screen.get_rect().width, \

 screen.get_rect().height))

 #create snake

 snake = Snake()

Chapter 11 • Program Logic: The Snake Game 189

 image = pygame.Surface((60,60)).convert_alpha()

 image.fill((255,255,255,0))

 pygame.draw.circle(image, (80,80,220,70), (30,30), 30, 0)

 pygame.draw.circle(image, (80,80,250,255), (30,30), 30, 4)

 #create food

 food_group = pygame.sprite.Group()

 food = Food()

 food_group.add(food)

Did you notice the rather strange resolution values passed to pygame.display.set_mode()?

 screen = pygame.display.set_mode((24*32,18*32))

In order to make the snake move on the screen in a uniform way, given that each snake
segment is a 32 × 32 image, we have to divide the screen up into a grid of 32 × 32 spaces or
squares. Since the game runs in a window, and not full screen, it doesn’t matter what reso-
lution we use, and calculating the width and height to approximate 800 × 600 (it’s actually
800 × 576) makes it possible for the snake to move clear around the edge of the game display
area. Using our usual 800 × 600 resolution results in the snake not quite fitting on the screen
at the very bottom, as shown in Figure 11.2.

FIGURE 11.2

The window does
not accommodate
a 32 × 32 grid in this

screenshot.

More Python Programming for the Absolute Beginner190

But by using the calculated resolution of 24 “boxes” across and 18 “boxes” down, we have
created a grid of 32 × 32 squares so that the snake can move anywhere on the screen. Taking
that into account, we arrive at the resolution shown in Figure 11.3.

FIGURE 11.3

The resolution is
calculated to
make a grid of

32 × 32 squares.

Program Main
The main program code calls game_init() and includes the while loop that keeps the game
running. We’ll go over the logic of The Snake Game after the listing.

#main program begins

game_init()

game_over = False

last_time = 0

#main loop

while True:

 timer.tick(30)

 ticks = pygame.time.get_ticks()

 #event section

 for event in pygame.event.get():

Chapter 11 • Program Logic: The Snake Game 191

 if event.type == QUIT: sys.exit()

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]: sys.exit()

 elif keys[K_UP] or keys[K_w]:

 snake.velocity = Point(0,-1)

 elif keys[K_DOWN] or keys[K_s]:

 snake.velocity = Point(0,1)

 elif keys[K_LEFT] or keys[K_a]:

 snake.velocity = Point(-1,0)

 elif keys[K_RIGHT] or keys[K_d]:

 snake.velocity = Point(1,0)

 #update section

 if not game_over:

 snake.update(ticks)

 food_group.update(ticks)

 #try to pick up food

 hit_list = pygame.sprite.groupcollide(snake.segments, \

 food_group, False, True)

 if len(hit_list) > 0:

 food_group.add(Food())

 snake.add_segment()

 #see if head collides with body

 for n in range(1, len(snake.segments)):

 if pygame.sprite.collide_rect(snake.segments[0], \

 snake.segments[n]):

 game_over = True

 #check screen boundary

 x = snake.segments[0].X//32

 y = snake.segments[0].Y//32

 if x < 0 or x > 24 or y < 0 or y > 17:

 game_over = True

 #drawing section

 backbuffer.fill((20,50,20))

More Python Programming for the Absolute Beginner192

 snake.draw(backbuffer)

 food_group.draw(backbuffer)

 screen.blit(backbuffer, (0,0))

 if not game_over:

 print_text(font, 0, 0, "Length " + str(len(snake.segments)))

 print_text(font, 0, 20, "Position " + str(snake.segments[0].X//32)+ \

 "," + str(snake.segments[0].Y//32))

 else:

 print_text(font, 0, 0, "GAME OVER")

 pygame.display.update()

Growth by Eating Food
The game works by moving the snake 32 pixels at a time in the direction specified by the user
(via the arrow or W-A-S-D keys). When a new snake segment is added, this direction is taken
into account. This method is found in the Snake class. Note that the direction of the head is
considered when estimating where the new “tail” should be added to the end of the snake.

def add_segment(self):

 last = len(self.segments)-1

 segment = SnakeSegment()

 start = Point(0,0)

 iif self.velocity.x < 0: start.x = 32

 eelif self.velocity.x > 0: start.x = -32

 iif self.velocity.y < 0: start.y = 32

 eelif self.velocity.y > 0: start.y = -32

 segment.X = self.segments[last].X + start.x

 segment.Y = self.segments[last].Y + start.y

 self.segments.append(segment)

This method is called whenever the snake eats food. That happens in the main code
under the while loop with a call to pygame.sprite.groupcollide(). Note that even though
Snake.segments is defined as a list, it still works like a pygame.sprite.Group, because Group is
derived from a list. So, every segment of the snake is compared to the food_group list. Note
that the groupcollide() function does not remove snake segments, but it does remove food
(via the fourth parameter). If there is a hit, a new Food item is added and a new snake segment
is also added. This collision code has the effect of keeping food off the snake’s body. Although
the head is the only sprite that can “eat” food, if a food sprite is added on a space that is

Chapter 11 • Program Logic: The Snake Game 193

occupied by the snake’s body, it is automatically consumed and the snake grows. This could
be seen as a bug, but it ends up being a simple way to add a new food item to a valid location
on the screen. Figure 11.4 shows the snake about to eat some food.

FIGURE 11.4

This already
sizable snake is

about to eat again.

#try to pick up food

hit_list = pygame.sprite.groupcollide(snake.segments, food_group, False, True)

if len(hit_list) > 0:

 food_group.add(Food())

 snake.add_segment()

Biting One’s Self Is Not Advisable
Two additional sections of code are significant from a logic perspective. First, we check for
the case when the head collides with other parts of the snake’s body. Note that the first sprite
is snake.segments[0], which is the head (the first SnakeSegment object added to the list). Next
up is snake.segments[n] which represents each segment of the body. If the head at any time
touches the rest of the body, the game is over. Figure 11.5 shows that state.

#see if head collides with body

for n in range(1, len(snake.segments)):

 if pygame.sprite.collide_rect(snake.segments[0], snake.segments[n]):

 game_over = True

More Python Programming for the Absolute Beginner194

FIGURE 11.5

The snake head
should never

touch its body.

Falling off the World
The next major part of the program logic tests for the condition where the snake goes off the
edge of the screen. This is another way to lose the game. Note that the position of the snake’s
head is maintained with pixel precision, but logic uses the “grid” of 32 × 32 squares for
this logic.

#check screen boundary

head_x = snake.segments[0].X//32

head_y = snake.segments[0].Y//32

if head_x < 0 or head_x > 24 or head_y < 0 or head_y > 17:

 game_over = True

TEACHING THE SNAKE TO MOVE ITSELF
Now that we have a fully playable game available, we can get into the real heavy stuff in this
chapter—program logic. This code isn’t foolproof. The snake will still run into its body seg-
ments with this automatic code. But, it’s a good exercise in rudimentary game logic and it
does a pretty good job of moving toward the food. Figure 11.6 shows the game running in
“Auto” mode.

Chapter 11 • Program Logic: The Snake Game 195

FIGURE 11.6

Teaching the
snake to search for

food on its own.

Moving Automatically
There are two goals to the automatic snake movement mode of the game (triggered with the
Space key). The first goal is to move toward the food. The second goal is for the snake to try
not to turn backward and run into itself. We’ll define a function called auto_move() that will
implement these two basic goals with the help of additional helper functions.

def auto_move():

 direction = get_current_direction()

 food_dir = get_food_direction()

 if food_dir == "left":

 if direction != "right":

 direction = "left"

 elif food_dir == "right":

 if direction != "left":

 direction = "right"

 elif food_dir == "up":

 if direction != "down":

 direction = "up"

 elif food_dir == "down":

More Python Programming for the Absolute Beginner196

 if direction != "up":

 direction = "down"

 #set velocity based on direction

 if direction == "up": snake.velocity = Point(0,-1)

 elif direction == "down": snake.velocity = Point(0,1)

 elif direction == "left": snake.velocity = Point(-1,0)

 elif direction == "right": snake.velocity = Point(1,0)

After adding the modifications to The Snake Game, use the Space key to toggle
auto mode.

Getting the Current Direction
The first helper function is called get_current_direction(). It works by looking at the first
snake body segment to see where it is in relation to the head. Based on this first segment, that
tells us the direction the snake is moving. Again, the logic isn’t perfect, but to make a perfect
snake would involve some incredibly complex code that is very hard to write. The code to
move the snake around its own body at a certain point starts to look like uber-complex path-
finding code found in real-time strategy games. We certainly don’t have time for that here,
even if it would be really neat to learn how to do that. But I think that’s a bit overkill for just
a snake game. So, based on that first segment, we find out where the head is moving and
return that direction.

def get_current_direction():

 global head_x,head_y

 first_segment_x = snake.segments[1].X//32

 first_segment_y = snake.segments[1].Y//32

 if head_x-1 == first_segment_x: return "right"

 elif head_x+1 == first_segment_x: return "left"

 elif head_y-1 == first_segment_y: return "down"

 elif head_y+1 == first_segment_y: return "up"

Moving Toward the Food
The second automation helper function is called get_food_direction(). Like the name says,
it returns a direction that the snake should move in to get to the food, without regard for
running into anything. It just knows which way to go to get to the food. First, the horizontal
or X coordinate is checked. Once the snake is lined up horizontally with the food, then it tells
the snake to move up or down to get to the food.

HINT

Chapter 11 • Program Logic: The Snake Game 197

def get_food_direction():

 global head_x,head_y

 food = Point(0,0)

 for obj in food_group:

 food = Point(obj.X//32,obj.Y//32)

 if head_x < food.x: return "right"

 elif head_x > food.x: return "left"

 elif head_x == food.x:

 if head_y < food.y: return "down"

 elif head_y > food.y: return "up"

Other Code Changes
We have some additional changes to make to The Snake Game to give it an automatic playing
mode. Let’s go over the changes here. There are only a few! Locate the following update()
method in the Snake class and make the changes noted. This makes it so the snake moves
really fast when it’s running in “auto mode.” Although not absolutely necessary, speeding up
the snake when in auto mode makes the game much more interesting.

 def update(self,ticks):

 gglobal step_time #additional code

 if ticks > self.old_time + sstep_time: #modified code

Down in the main program code after the classes and functions, just before the while loop,
add the following code to enable “auto play” mode.

auto_play = False #additional code added

step_time = 400

Inside the while loop, near the top where the keyboard handling code is located, add the
following code to the key handler:

 elif keys[K_SPACE]: #additional code added

 if auto_play:

 auto_play = False

 step_time = 400

 else:

 auto_play = True

 step_time = 100

More Python Programming for the Absolute Beginner198

The last change is added to the end of the while loop inside the if not game_over: code block:

 #additional code added

 if auto_play: auto_move()

SUMMARY
This chapter showed how to write basic program logic in order to solve problems. The Snake
Game was a good experiment for learning program logic, as we were able to make the snake
automatically move toward the food. The logic isn’t perfect, and the snake will run into itself
pretty easily, but it tries and does a pretty good job.

Challenges
1. The Snake Game has so much potential, but that is why it is a

favorite among computer science teachers around the world—
because it is a tough challenge in working with arrays and using
program logic to solve a problem. Let’s make it a little easier
on the player. Instead of just one food at a time, add more food
sprites.

2. This challenge is a cinch: Modify the SnakeSegment class so that
each segment is a different shade of a certain color. Give the
snake more coloration but stay within the same “color theme”
so it doesn’t look random. Can you make it look like a
rattlesnake or a king snake or a cobra?

3. This challenge is a really tough one, so pay attention: Modify
the game so that the game window is four times larger than it
is presently. To make this happen, the grid size will be changed
from 32 × 32 to 16 × 16 for each square. This will double both
the width and height of the grid. The snake body segments will
have to be modified so they are also one-fourth their current
size. This will make the playing field huge!

Chapter 11 • Program Logic: The Snake Game 199

This page intentionally left blank

12C H A P T E R

TRIGONOMETRY: THE TANK

BATTLE GAME

n this chapter, we will study the practical use of trigonometry to cause
sprites to rotate, move in any direction, and “look” at a target point on the
screen. This topic was first introduced back in Chapter 6, “Bitmap Graph-

ics: The Orbiting Spaceship Demo,” where we used trigonometry to cause a space
ship to rotate in a simulated orbit around a planet. The concept is a powerful one
in game programming, so we will explore it further here and learn new ways to
put it to use.

You will learn how to:

• Use trigonometry to calculate the velocity at any angle

• Cause a tank turret to point toward a targeting cursor

• Make a really dumb computer A.I. tank that is easy to kill

EXAMINING THE TANK BATTLE GAME
The Tank Battle Game, shown in Figure 12.1, involves a tank that can be rotated
and moved forward or backward in any direction (by applying angular velocity,
one of our most powerful game programming tools). Furthermore, the tank’s gun
turret rotates independently of the tank chassis, controlled by the mouse that is
represented by a crosshair cursor. The player must maneuver the tank with arrow
or W-A-S-D keys and use the mouse to fire at enemy tanks. The figure shows the

I

interesting gameplay to be found in The Tank Battle Game. Simply use the mouse cursor to
position the crosshair in the direction you wish to fire, and the turret will not only follow the
crosshair but will fire in that very same direction!

FIGURE 12.1

The Tank Battle
Game.

ANGULAR VELOCITY
Angular velocity describes the velocity (or speed) that an object moves at, represented in terms
of X and Y, along any direction among the 360 degrees around the object. The velocity is
calculated from the current angle or direction in which the object is facing, with angle 0
degrees being north (up), 90 degrees east (right), 180 degrees south (down), and 270 degrees
west (left). However, the velocity need not be limited to the four cardinal directions, because
we can calculate angular velocity at any angle, from 0 to 359.999 degrees—and yes, decimals
are relevant as well! A partial degree such as 10.5, represents an angle in between 10 and 11
degrees. It is true that trigonometry functions produce values where angle 0 points to the
right (east) rather than up (north), so we adjust for that by subtracting 90 degrees from an
angle before rotating a sprite.

Pygame uses degrees for sprite rotation. When using trigonometry functions
like math.atan2() for targeting, be sure to convert the resulting radian angle to
degrees with the math.degrees() function before using it to rotate a sprite.

HINT

More Python Programming for the Absolute Beginner202

Calculating Angular Velocity
You have already seen the trigonometry calculations for angular velocity, but we had not put
a name to it at the time (back in Chapter 6). Here are the calculations:

Velocity X = cosine(radian angle)

Velocity Y = sine(radian angle)

We can codify this in Python like so. Note the use of our custom Point class—that is the return
type.

calculates velocity of an angle

def angular_velocity(angle):

 vel = Point(0,0)

 vel.x = math.cos(math.radians(angle))

 vel.y = math.sin(math.radians(angle))

 return vel

Pygame’s Goofy Rotation
We first learned how to rotate a sprite in Chapter 5, “Math and Graphics: The Analog Clock
Demo,” which featured a program that displayed an analog clock with rotating clock pointers.
It’s pretty easy to rotate a sprite that never moves, but just sits in one place. But when you
need to move a sprite and also rotate it, there is a problem. Pygame does not correctly adjust
for the change in image size when a sprite is rotated. Take a look at Figure 12.2. This early
version of The Tank Battle Game shows a tank chassis (without the turret) used as an example
sprite. Note the values printed on the top-left corner. The third line shows the bounding
rectangle of the base sprite image (the tank chassis). According to these numbers, the frame
has a size of 50 × 60, and the center is at (25,30).

Now compare these numbers with those shown in Figure 12.3. When the sprite is rotated 50
degrees, the bounding rectangle changes to 78 × 76, with a center of (39,38). This is normal
for rotation. When a square image is rotated, the corners will require more space at the diag-
onals than they did before. As a result, the image enlarged by 28 × 16 pixels, and the center
moved accordingly. Unfortunately for us, Pygame does not properly take this problem into
account like a proper sprite rotation algorithm should (like you find in most other sprite
libraries, such as sprite handling in Allegro, DirectX, XNA, and others). But, no matter, we
can adjust the sprite ourselves—it just takes a little more work, which is unfortunate given
the impression that Python is a fairly quick and easy language to use.

Chapter 12 • Trigonometry: The Tank Battle Game 203

FIGURE 12.2

A sprite’s
bounding

rectangle with no
rotation.

FIGURE 12.3

A sprite’s
bounding

rectangle with
rotation.

More Python Programming for the Absolute Beginner204

The solution to the bounding rectangle problem with a rotated sprite is to shift the image
by the amount of change in dimensions from the normal image to the rotated image. We
could change the image property internally in the MySprite class so that self.image represents
a rotated sprite at the adjusted position, and then allow pygame.sprite.Sprite and
pygame.sprite.Group to continue to draw the image for us. But, that ended up being even more
work than just taking control of the update and draw process on our own. So, that is the
direction I’ll take here. Let’s see how to do it.

First, we’ll need a scratch image for rotation. I’ve just called it scratch, but you could call it
rotated_image to be more descriptive. Rather than modify MySprite, I’ve opted instead to create
a new class that derives from MySprite, and it is called Tank.

Moving Forward and Backward at Any Angle
Angular velocity can be used for more than just moving a bullet or arrow in any direction.
We can also use it to move a game object (like a tank) forward and backward based on user
input. This is where gameplay becomes really interesting! We can actually rotate our game
sprite left or right, and then move it forward or backward based on the direction it’s pointing.
This is brilliant for vehicles like cars and tanks, because it makes them move more realisti-
cally! We can even make a sprite slow down at whatever direction it’s moving. I have used this
technique to good effect in space combat games where the ship can rotate in any direction
and fire while still going in the direction of its momentum. If you wish to make a sci-fi game,
like an Asteroids clone, you will be able to with the information gleaned in this chapter. For
good measure, here again is the target_angle() function added to MyLibrary in the previous
chapter:

calculates angle between two points

def target_angle(x1,y1,x2,y2):

 delta_x = x2 - x1

 delta_y = y2 - y1

 angle_radians = math.atan2(delta_y,delta_x)

 angle_degrees = math.degrees(angle_radians)

 return angle_degrees

We can use this function, along with a tank’s rotation angle, to cause one of our tanks in The
Tank Battle Game to move forward or backward at any angle. Now, this could be used to move
the enemy tanks as well, but to keep the already rather complex code down to a manageable
level, the enemy tanks will just move in one direction and fire only forward (without rotating
the turret). If you want the enemy tanks to also rotate their turrets and move around more

Chapter 12 • Trigonometry: The Tank Battle Game 205

realistically, that would be a good upgrade to the game that you may wish to make (see the
Challenges at the end of the chapter).

Put into use, this function produces an angle we can use immediately in our gameplay code.
First, we get the velocity, then we update the position of the sprite using that velocity. The
only problem is, pygame.sprite.Sprite (from which our MySprite class is derived) uses integer
properties for the sprite’s position (a Rect, actually). This obliterates our velocity code! Unfor-
tunately, we have to write a workaround for this small problem. The solution is a new property
added to our own new custom class (which will be called Tank), called float_pos. We just have
to be sure to update MySprite.position with the values in float_pos before drawing.

self.velocity = aangular_velocity(angle)

self.float_pos.x += self.velocity.x

self.float_pos.y += self.velocity.y

Despite this capability, The Tank Battle Game just keeps the tanks moving forward at a con-
stant velocity to simplify the gameplay. During testing, I found that targeting with the mouse
cursor and rotating and moving the tank all at once was asking a bit too much from the player.
Instead, the tank moves forward and you may turn left or right.

When in doubt, open up the MyLibrary.py file to see how Sprite handles updates
and position properties.

Improved Angle Wrapping
While we’re adding new code to MyLibrary.py, here’s a minor tweak to the wrap_angle() func-
tion that keeps it in bounds when the angle is negative:

wraps a degree angle at boundary

def wrap_angle(angle):

 return abs(angle % 360)

BUILDING THE TANK BATTLE GAME
I think that is enough information to go on at this point in order to get started on The Tank
Battle Game. This is the most complex game we have developed so far in the book. The com-
plexity is not necessarily due to the game being complex, as in, gameplay, but rather in the
significant amount of workaround code we have to write to get our sprites to behave correctly
when Pygame does not quite handle things in a logical way. It happens. But we just need to
learn how these workarounds work and be aware of any issues that crop up as a result.

HINT

More Python Programming for the Absolute Beginner206

The Tanks
By far the largest class in this game is the Tank class. The reason for its size is that Tank is fully
self-contained. All of the code for initialization and logic is here in the class, including game-
play code, rather than outside in the main program. The Tank.update() function is the largest
one we have seen to date. The class was primarily designed for the player’s tank, not enemy
tanks. But it was easily adapted to enemy tanks with a wrapper class called EnemyTank. Tank,
of course, inherits from MySprite. An interesting feature of Tank is that the chassis and turret
rotate independently of each other, which makes for some very interesting gameplay. The
arrow keys or W-A-S-D keys are used to move the tank, while the turret tracks the mouse cursor
using target_angle(). While moving the tank around, just point with the mouse cursor at
your target and the turret automatically points at it! The gameplay is actually quite fun for
as limited as it is.

All of the artwork for the game is included in the resource files for this
chapter.

The Tank Constructor
Now let’s start with the Tank constructor. As is to be expected, a call to the MySprite constructor
comes first. Since we are wrapping MySprite, it makes sense to also handle image loading for
the sprite rather than leaving that entirely in the hands of the programmer (although the
default tank sprite filenames may be replaced).

class Tank(MySprite):

 def __init__(self,tank_file="tank.png",turret_file="turret.png"):

 MySprite.__init__(self)

 self.load(tank_file, 50, 60, 4)

 self.speed = 0.0

 self.scratch = None

 self.float_pos = Point(0,0)

 self.velocity = Point(0,0)

 self.turret = MySprite()

 self.turret.load(turret_file, 32, 64, 4)

 self.fire_timer = 0

The Tank Update Function
This is one monster of an update() function, but it does have some gameplay code as well
as class code. The code in Tank.update() handles the difficult problem of movement so our
main program remains cleaner and easier to understand. The first section of code here in
update() creates the scratch image for the tank’s rotation. Remember, MySprite already does

HINT

Chapter 12 • Trigonometry: The Tank Battle Game 207

animation, and our tank sprite is animated with four frames (see Figure 12.4). I removed the
turret from Ari Feldman’s original tank sprite, separating the two so that the turret could be
moved independently from the chassis.

FIGURE 12.4

The four frames of
animation for the

tank sprite.

The Real World

Credit for the tank artwork featured in this chapter goes to Ari Feldman. Check
out his site for more free game sprites at http://www.widgetworx.com/widgetworx/
portfolio/spritelib.html. The old website, www.flyingyogi.com, still forwards to this
new location at the time of this writing.

The turret sprite image is shown in Figure 12.5. Although there are four frames for the turret,
The Tank Battle Game only uses the first frame. If you want to use the other frames, that
would be an interesting upgrade to the game since the turret looks quite good when animated
as a shot is fired.

More Python Programming for the Absolute Beginner208

http://www.widgetworx.com/widgetworx/portfolio/spritelib.html
http://www.widgetworx.com/widgetworx/portfolio/spritelib.html
www.flyingyogi.com

FIGURE 12.5

The tank turret
also has four

frames of
animation, but are

not used in this
example.

 def update(self,ticks):

 ##update chassis

 MySprite.update(self,ticks,100)

 self.rotation = wrap_angle(self.rotation)

 self.scratch = pygame.transform.rotate(self.image, -self.rotation)

 angle = wrap_angle(self.rotation-90)

 self.velocity = angular_velocity(angle)

 self.float_pos.x += self.velocity.x

 self.float_pos.y += self.velocity.y

 ##warp tank around screen edges (keep it simple)

 if self.float_pos.x < -50: self.float_pos.x = 800

 elif self.float_pos.x > 800: self.float_pos.x = -50

 if self.float_pos.y < -60: self.float_pos.y = 600

 elif self.float_pos.y > 600: self.float_pos.y = -60

 ##transfer float position to integer position for drawing

 self.X = int(self.float_pos.x)

 self.Y = int(self.float_pos.y)

 ##update turret

 self.turret.position = (self.X,self.Y)

 self.turret.last_frame = 0

 self.turret.update(ticks,100)

 self.turret.rotation = wrap_angle(self.turret.rotation)

 angle = self.turret.rotation+90

 self.turret.scratch = pygame.transform.rotate(self.turret.image,

 -angle)

The Tank Draw Function
The Tank.draw() function has a lot of work to do, because it must take into account animation
frames and rotation of the chassis as well as the problematic turret. The turret sprite really

Chapter 12 • Trigonometry: The Tank Battle Game 209

is difficult to manage. It has to move along with the chassis (the main tank sprite), and also
rotate to aim toward the mouse cursor. Because targeting produces results that somewhat
conflicts with Pygame’s normal behavior, we have to adjust the position of the sprite as it is
drawn without affecting the base position of the sprite (otherwise it would appear to shake
or wobble on the screen).

 def draw(self,surface):

 ##draw the chassis

 width,height = self.scratch.get_size()

 center = Point(width/2,height/2)

 surface.blit(self.scratch, (self.X-center.x, self.Y-center.y))

 ##draw the turret

 width,height = self.turret.scratch.get_size()

 center = Point(width/2,height/2)

 surface.blit(self.turret.scratch, (self.turret.X-center.x,

 self.turret.Y-center.y))

The String Override
We have a minor override of the __str__() function so that information about the tank can
be easily returned as a string and used to print out the status of the object for debugging
purposes. Note that the base MySprite string function is called first, and an extra value is just
added to the end of it. This way, we still have the basic information coming from MySprite,
while adding new properties as needed.

 def __str__(self):

 return MySprite.__str__(self) + "," + str(self.velocity)

The EnemyTank Class
The EnemyTank class is derived from Tank, adding some specialty code to make it work a little
better (simple A.I. code). The enemy tank only moves in one direction and fires once per second
in the same direction. This is really simplistic behavior, but we have to start somewhere and
most of the work in this game has been devoted to the player’s tank controls. So, think of the
enemy tank at this point as just a clay pigeon, or a moving target that poses little threat, but
which has potential to be an intelligent foe.

class EnemyTank(Tank):

 def __init__(self,tank_file="enemy_tank.png",turret_file="enemy_turret.png"):

 Tank.__init__(self,tank_file,turret_file)

 def update(self,ticks):

 self.turret.rotation = wrap_angle(self.rotation-90)

More Python Programming for the Absolute Beginner210

 Tank.update(self,ticks)

 def draw(self,surface):

 Tank.draw(self,surface)

The Bullets
The Bullet class helps with projectile management in the game. There are also three addi-
tional helper functions outside of the class that make firing a bullet from any tank rather
easy to do.

class Bullet():

 def __init__(self,position):

 self.alive = True

 self.color = (250,20,20)

 self.position = Point(position.x,position.y)

 self.velocity = Point(0,0)

 self.rect = Rect(0,0,4,4)

 self.owner = ""

 def update(self,ticks):

 self.position.x += self.velocity.x * 10.0

 self.position.y += self.velocity.y * 10.0

 if self.position.x < 0 or self.position.x > 800 \

 or self.position.y < 0 or self.position.y > 600:

 self.alive = False

 self.rect = Rect(self.position.x, self.position.y, 4, 4)

 def draw(self,surface):

 pos = (int(self.position.x), int(self.position.y))

 pygame.draw.circle(surface, self.color, pos, 4, 0)

def fire_cannon(tank):

 position = Point(tank.turret.X, tank.turret.Y)

 bullet = Bullet(position)

 angle = tank.turret.rotation

 bullet.velocity = angular_velocity(angle)

 bullets.append(bullet)

 play_sound(shoot_sound)

Chapter 12 • Trigonometry: The Tank Battle Game 211

 return bullet

def player_fire_cannon():

 bullet = fire_cannon(player)

 bullet.owner = "player"

 bullet.color = (30,250,30)

def enemy_fire_cannon():

 bullet = fire_cannon(enemy_tank)

 bullet.owner = "enemy"

 bullet.color = (250,30,30)

Main Code
Now that we have all of the prerequisite classes and functions done, we can address the main
gameplay code of The Tank Battle Game. At this point, there will be more initialization code
than gameplay code, but we’ll go over each section.

The Header Code
The header for the program is always helpful to see spelled out, even if the import list has
not changed in quite some time.

Tank Battle Game

Chapter 12

import sys, time, random, math, pygame

from pygame.locals import *

from MyLibrary import *

Game Initialization
Our consistent use of game_init() to initialize Pygame, the display, and global variables helps
to organize the source code of the game and make it much more readable. Just be sure to add
any new globals to the global definitions at the top of the function.

#this function initializes the game

def game_init():

 global screen, backbuffer, font, timer, player_group, player, \

 enemy_tank, bullets, crosshair, crosshair_group

 pygame.init()

 screen = pygame.display.set_mode((800,600))

More Python Programming for the Absolute Beginner212

 backbuffer = pygame.Surface((800,600))

 pygame.display.set_caption("Tank Battle Game")

 font = pygame.font.Font(None, 30)

 timer = pygame.time.Clock()

 pygame.mouse.set_visible(False)

 ##load mouse cursor

 crosshair = MySprite()

 crosshair.load("crosshair.png")

 crosshair_group = pygame.sprite.GroupSingle()

 crosshair_group.add(crosshair)

 ##create player tank

 player = Tank()

 player.float_pos = Point(400,300)

 ##create enemy tanks

 enemy_tank = EnemyTank()

 enemy_tank.float_pos = Point(random.randint(50,760), 50)

 enemy_tank.rotation = 135

 ##create bullets

 bullets = list()

The Audio Functions
The Tank Battle Game has rudimentary audio in the form of two sound clips—one for firing
a bullet, another for hitting a target. Audio has not played a large role in any of the examples,
but suffice it to say, sound is extremely important in a production game, and even a little
music wouldn’t hurt. Of course, for a small sample project like this even a small sound clip
here and there is a welcome improvement to what is otherwise purely a graphics and game-
play demo.

this function initializes the audio system

def audio_init():

 global shoot_sound, boom_sound

 ##initialize the audio mixer

 pygame.mixer.init()

Chapter 12 • Trigonometry: The Tank Battle Game 213

 ##load sound files

 sshoot_sound = pygame.mixer.Sound("shoot.wav")

 bboom_sound = pygame.mixer.Sound("boom.wav")

this function uses any available channel to play a sound clip

def play_sound(sound):

 channel = pygame.mixer.find_channel(True)

 channel.set_volume(0.5)

 channel.play(sound)

Gameplay Code
The gameplay code (the main code of the game) follows. This code is rather short considering
how much gameplay there is with the tanks, due to the fact that a lot of that code is found
in the Tank class itself. That’s good news for our gameplay code here, because any duplicate
tanks would have to be updated manually even if in a list. Pay particular attention to the
bullet update code, which is where collision detection between the bullets and tanks occurs.
There is an identifier in the Bullet class called Bullet.owner that is set to either “player” or
“enemy” to aid in collision testing. Without this distinction, it is very hard to keep tanks from
blowing themselves up as soon as they fire a bullet! Figure 12.6 shows the two tanks facing
off. The player’s bullets are green, while the enemy’s bullets are red.

FIGURE 12.6

The player is
getting hit by the

enemy tank!

More Python Programming for the Absolute Beginner214

#main program begins

game_init()

audio_init()

game_over = False

player_score = 0

enemy_score = 0

last_time = 0

mouse_x = mouse_y = 0

#main loop

while True:

 timer.tick(30)

 ticks = pygame.time.get_ticks()

 ##reset mouse state variables

 mouse_up = mouse_down = 0

 mouse_up_x = mouse_up_y = 0

 mouse_down_x = mouse_down_y = 0

 ##event section

 for event in pygame.event.get():

 if event.type == QUIT: sys.exit()

 elif event.type == MOUSEMOTION:

 mouse_x,mouse_y = event.pos

 move_x,move_y = event.rel

 elif event.type == MOUSEBUTTONDOWN:

 mouse_down = event.button

 mouse_down_x,mouse_down_y = event.pos

 elif event.type == MOUSEBUTTONUP:

 mouse_up = event.button

 mouse_up_x,mouse_up_y = event.pos

 ##get key states

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]: sys.exit()

 elif keys[K_LEFT] or keys[K_a]:

 #calculate new direction velocity

Chapter 12 • Trigonometry: The Tank Battle Game 215

 player.rotation -= 2.0

 elif keys[K_RIGHT] or keys[K_d]:

 #calculate new direction velocity

 player.rotation += 2.0

 ##fire cannon!

 if keys[K_SPACE] or mouse_up > 0:

 if ticks > player.fire_timer + 1000:

 player.fire_timer = ticks

 player_fire_cannon()

 ##update section

 if not game_over:

 crosshair.position = (mouse_x,mouse_y)

 crosshair_group.update(ticks)

 ##point tank turret toward crosshair

 angle = target_angle(player.turret.X,player.turret.Y,

 crosshair.X + crosshair.frame_width/2,

 crosshair.Y + crosshair.frame_height/2)

 player.turret.rotation = angle

 ##move tank

 player.update(ticks)

 ##update enemies

 enemy_tank.update(ticks)

 if ticks > enemy_tank.fire_timer + 1000:

 enemy_tank.fire_timer = ticks

 enemy_fire_cannon()

 ##update bullets

 for bullet in bullets:

 bullet.update(ticks)

 if bullet.owner == "player":

 iif pygame.sprite.collide_rect(bullet, enemy_tank):

 player_score += 1

More Python Programming for the Absolute Beginner216

 bullet.alive = False

 play_sound(boom_sound)

 elif bullet.owner == "enemy":

 iif pygame.sprite.collide_rect(bullet, player):

 enemy_score += 1

 bullet.alive = False

 play_sound(boom_sound)

 ##drawing section

 backbuffer.fill((100,100,20))

 for bullet in bullets:

 bullet.draw(backbuffer)

 enemy_tank.draw(backbuffer)

 player.draw(backbuffer)

 crosshair_group.draw(backbuffer)

 screen.blit(backbuffer, (0,0))

 if not game_over:

 print_text(font, 0, 0, "PLAYER " + str(player_score))

 print_text(font, 700, 0, "ENEMY " + str(enemy_score))

 else:

 print_text(font, 0, 0, "GAME OVER")

 pygame.display.update()

 #remove expired bullets

 for bullet in bullets:

 if bullet.alive == False:

 bullets.remove(bullet)

SUMMARY
This chapter showed how to use awesome trigonometry functions to make game sprites
behave like the sprites in a professional game. We learned advanced concepts like targeting
and demonstrated how it works with a game that allows the user to rotate a tank turret to
point at the mouse cursor. This is the basis for even more advanced behaviors such as chasing
and evading another object, and finding a path around obstacles.

Chapter 12 • Trigonometry: The Tank Battle Game 217

Challenges
1. Upgrade The Tank Battle Game so the enemy tanks move more

like the player’s tank, using rotation and angular velocity to
chase after the player.

2. Modify the enemy tanks so that they can rotate their turrets
and fire just like the player’s tank can. This will require some
additional A.I. logic code, though, so be prepared for some
extra work if you take on this challenge!

3. Add a “Health” property to the Tank class and draw a health bar
for each tank. Every successful hit reduces the health. Scoring
only occurs when health drops to zero and the tank is killed.
Then, re-spawn the tank with full health at a new random
location.

More Python Programming for the Absolute Beginner218

13C H A P T E R

RANDOM TERRAIN: THE

ARTILLERY GUNNER GAME

his chapter shows how to create a random side-view terrain generator. The
terrain could be used for a number of different game designs, from a side-
scrolling platformer game, to a shoot-em-up, and others. We’ll use it to

make an Artillery Gunner game. This game will demonstrate how to really use a
height map terrain system effectively.

In this chapter, you will learn:

• About height map terrain.

• How to create an awesome Artillery Gunner game.

• How to decimate the computer player because it has dumb A.I. code

EXAMINING THE ARTILLERY GUNNER GAME
The Artillery Gunner Game is shown in Figure 13.1. Let’s get started working on it
already!

T

FIGURE 13.1

The Artillery
Gunner Game.

CREATING THE TERRAIN
The first thing we’ll focus on is the terrain system for the game. The terrain will be 2D, of
course, and represented from the side-view perspective. The terrain will be a list of height
map points, each representing a height value from the bottom of the screen upward. Despite
the screen bottom being at location 600 (using our default window size of 800 × 600), it works
because the terrain is drawn from the bottom up rather than from the top down. So, a height
value of 100 will be drawn at 600 – 100 or 5500 on the screen as a Y coordinate.

Defining the Height Map
Let’s create the height map data and draw it on the screen with small circles to get a feel for
how it will work. We will pass three parameters to the Terrain class constructor, representing
the minimum height, the maximum height, and the total points across (which may also be
considered the granularity or smoothness of the terrain). We can calculate the distance between
each point by dividing the window width by the number of points. So, for instance, if there
will be 100 points, then they will be separated by 800 / 100 or 88 pixels each.

More Python Programming for the Absolute Beginner220

Terrain Class, First Edition
Here is the start of the class that will do just this small amount of work so far. Note that
height_map is the name of the list containing height values.

class Terrain():

 def __init__(self, min_height, max_height, total_points):

 self.min_height = min_height

 self.max_height = max_height

 self.total_points = total_points+1

 self.grid_size = 800 / total_points

 self.height_map = list()

 height = (self.max_height + self.min_height) / 2

 self.height_map.append(height)

 for n in range(total_points):

 height = random.randint(min_height, max_height)

 self.height_map.append(height)

 def draw(self, surface):

 for n in range(1, self.total_points):

 #draw circle at current point

 x_pos = int(n * self.grid_size)

 pos = (x_pos, height)

 color = (255,255,255)

 pygame.draw.circle(surface, color, pos, 4, 1)

Drawing the Terrain
We’ll write a small test program to see what the terrain looks like at this early stage. The
result of the code is shown in Figure 13.2. From within game_init(), the terrain object is
created:

 #create terrain

 terrain = Terrain(100, 400, 20)

Chapter 13 • Random Terrain: The Artillery Gunner Game 221

FIGURE 13.2

First attempt at
height map terrain.

In the drawing portion of the code, we call on terrain.draw() to have it draw itself to the back
buffer. Then the usual screen updates take place.

 #drawing section

 backbuffer.fill((20,20,120))

 tterrain.draw(backbuffer)

 screen.blit(backbuffer, (0,0))

 pygame.display.update()

Connecting the Dots
Do you find it somewhat confusing, seeing the terrain in this manner? It does look very much
like a scatter chart. If we connect the points, it will look more like what we’d expect. Let’s do
that now. Add the lines in bold.

More Python Programming for the Absolute Beginner222

FIGURE 13.3

Connecting the
height map data

points.

 def draw(self, surface):

 llast_x = 0

 for n in range(1, self.total_points):

 #draw circle at current point

 height = 600 - self.height_map[n]

 x_pos = int(n * self.grid_size)

 pos = (x_pos, height)

 color = (255,255,255)

 pygame.draw.circle(surface, color, pos, 4, 1)

 ##draw line from previous point

 llast_height = 600 - self.height_map[n-1]

 llast_pos = (last_x, last_height)

 ppygame.draw.line(surface, color, last_pos, pos, 2)

 last_x = x_pos

Experiment! Try out different height map random ranges and grid sizes to see
what happens! See if you can come up with some interesting new gameplay ideas.

TRICK

Chapter 13 • Random Terrain: The Artillery Gunner Game 223

At this point, I recommend you do what I just did, experiment with different height map
random ranges and grid sizes to see what happens. The default range is a height of 100 to 400.
Try different values to see what results you get. For instance, Figure 13.4 shows a random
terrain height map array generated with a height range of only 100 to 120 and a grid size of
50 points.

 terrain = Terrain(100, 120, 50)

FIGURE 13.4

A height map with
a random range of
100-120 and 100

points.

Let’s try another. Note that all of these random terrain examples could be used in the game!
They might not give us very good granularity for doing special effects like creating craters in
the ground, but it would work nonetheless.

To demonstrate how radical the terrain can get, try this one out. Yikes! Figure 13.6 shows the
result. It is starting to look like a sample in an audio editing program.

 terrain = Terrain(100, 500, 100)

More Python Programming for the Absolute Beginner224

FIGURE 13.5

A height map with
a random range of
100-500 and only

10 points.

FIGURE 13.6

A jagged terrain
created from a

range of 100-500
and 100 points.

Chapter 13 • Random Terrain: The Artillery Gunner Game 225

Smoothing the Terrain
We’re off to a good start, but playing with manual settings is too much work. What we need
is an algorithm that will smooth out the terrain, give it a less jagged appearance. The way to
do that— or, I should say, one way to do that, as there are many ways!—is to make each point
a random amount up or down relative to the height of the previous point. This will get rid of
the jaggies. Let’s try it out. First, it will be helpful to move the terrain generation code out of
the constructor and into a reusable method. This way we can experiment by re-generating
the terrain several times per run without stopping and restarting the program over and over.
This also means we have to clear out the height map each time because of the way the list is
constructed.

Here are the changes to the constructor, and the new generate() method. The smoothing
algorithm works like this. A random run-length value gets a small random value. The terrain
will continue to randomly move in the same basic direction (up or down) during that run.
When the run is completed, a new run and direction is generated. This causes the points to
stay fairly close to each other, getting rid of the wild jagged edges we saw previously. See
Figure 13.7.

FIGURE 13.7

The height map is
much smoother

with the new
algorithm.

More Python Programming for the Absolute Beginner226

 def __init__(self, min_height, max_height, total_points):

 self.min_height = min_height

 self.max_height = max_height

 self.total_points = total_points+1

 self.grid_size = 800 / total_points

 self.height_map = list()

 self.generate()

 def generate(self):

 #clear list

 if len(self.height_map)>0:

 for n in range(self.total_points):

 self.height_map.pop()

 ##first point

 last_x = 0

 last_height = (self.max_height + self.min_height) / 2

 self.height_map.append(last_height)

 direction = 1

 run_length = 0

 ##remaining points

 for n in range(1, self.total_points):

 rand_dist = random.randint(1, 10) * direction

 height = last_height + rand_dist

 self.height_map.append(int(height))

 if height < self.min_height: direction = -1

 elif height > self.max_height: direction = 1

 last_height = height

 if run_length <= 0:

 run_length = random.randint(1,3)

 direction = random.randint(1,2)

 if direction == 2: direction = -1

 else:

 run_length -= 1

Chapter 13 • Random Terrain: The Artillery Gunner Game 227

Just to show what this algorithm can do, here is a new screenshot in Figure 13.8. Compare
this with the previous one and note the ranges involved. This particular terrain (in both
figures) has a range of 50 to 500, and is comprised of 100 points. Experiment to see what
different results you get!

FIGURE 13.8

This shows the
wide variation of
height maps that

can still be
generated.

Locating Grid Points
Now that the circles have served their purpose, we can get rid of them and just draw the lines.
But first, before doing that, I want to show you an important calculation. We need to be able
to tell where the points are located on the height map based on screen coordinates. The key
to doing that is by using the grid_size property. It is calculated in the Terrain constructor
based on the total_points parameter (the number of divisions for the terrain height map
across the screen). More total points results in a smaller grid and more detailed (less jagged)
terrain.

To determine the grid point on the terrain corresponding to the cursor position, we first get
the cursor position as a pair of integers called mouse_x and mouse_y via the MOUSEMOTION event.
The grid point is then calculated based on the mouse cursor’s X position, divided by the terrain
grid size.

 grid_point = int(mouse_x / terrain.grid_size)

More Python Programming for the Absolute Beginner228

With the grid_point variable a global, we can use it in a modified version of the
Terrain.draw() method to highlight the terrain point corresponding to the mouse cursor
position. This point will seem to move over the terrain based on the cursor’s X position. Presto,
game-ready height map terrain is ready to go! In the modified draw() below, the original
pygame.draw.circle() has been commented out, and another has been inserted within a con-
dition. When the current grid point is the point corresponding to the mouse cursor, via the
grid_point variable, then we can draw it as a solid circle. The result is shown in Figure 13.9.

 def draw(self, surface):

 last_x = 0

 for n in range(1, self.total_points):

 #draw circle at current point

 height = 600 - self.height_map[n]

 x_pos = int(n * self.grid_size)

 pos = (x_pos, height)

 color = (255,255,255)

 ##pygame.draw.circle(surface, color, pos, 4, 1)

 iif n == grid_point:

 ppygame.draw.circle(surface, (0,255,0), pos, 4, 0)

 #draw line from previous point

 last_height = 600 - self.height_map[n-1]

 last_pos = (last_x, last_height)

 pygame.draw.line(surface, color, last_pos, pos, 2)

 last_x = x_pos

This helper method (in Terrain) will make it easier to calculate the height of any point on the
terrain:

 def gget_height(self,x):

 x_point = int(x / self.grid_size)

 return self.height_map[x_point]

Chapter 13 • Random Terrain: The Artillery Gunner Game 229

FIGURE 13.9

The green dot
shows the terrain
grid point at the
cursor position.

ARTILLERY CANNONS
Now that we can get the height of any point on the terrain, we can use that information to
position the artillery guns. The way this will work is, there will be two guns—one controlled
by the player on the left, and one controlled by computer A.I. on the right. They will be posi-
tioned near the left and right edges of the screen.

Placing the Cannons
The artillery guns will be represented with a box and a line coming out of it for the turret.
I’m a programmer, not an artist! But seriously, the game works fine with drawing code, but
you can replace it with bitmaps if you wish. The cannons will be positioned horizontally at X
location 70 on the left (for the player), and X location 700 on the right (for the computer). The
cannons don’t have turrets yet, just a colored box representing the gun’s position. See
Figure 13.10.

def draw_player_cannon(surface,position):

 color = (30,220,30)

 rect = Rect(position.x, position.y, 30, 30)

 pygame.draw.rect(surface, color, rect, 0)

def draw_computer_cannon(surface,position):

More Python Programming for the Absolute Beginner230

 color = (220,30,30)

 rect = Rect(position.x, position.y, 30, 30)

 pygame.draw.rect(surface, color, rect, 0)

FIGURE 13.10

Positioning the
artillery cannons

on the terrain
using height map

data.

Drawing the Turrets
We need a way to keep track of two factors for the artillery cannon: 1) The power which
determines how far a shell will go, and 2) The angle at which the shell will be fired from the
cannon. To keep the computer A.I. simple, it will have a turret with a fixed angle, and it will
just fire at the player using random power (or range) values. We’ll work on that code in a
minute. First, let’s just draw the turrets and let the player change the angle. We will just use
the Up and Down arrow keys for the turret angle. Here is the new draw_player_cannon() func-
tion that uses angular_velocity to calculate the end point of the turret.

def draw_player_cannon(surface,position):

 ##draw turret

 turret_color = (30,180,30)

 start_x = position.x + 15

 start_y = position.y + 15

 start_pos = (start_x, start_y)

 vel = angular_velocity(wrap_angle(player_cannon_angle-90))

Chapter 13 • Random Terrain: The Artillery Gunner Game 231

 end_pos = (start_x + vel.x * 30, start_y + vel.y * 30)

 pygame.draw.line(surface, turret_color, start_pos, end_pos, 6)

 ##draw body

 body_color = (30,220,30)

 rect = Rect(position.x, position.y+15, 30, 15)

 pygame.draw.rect(surface, body_color, rect, 0)

 pygame.draw.circle(surface, body_color, (position.x+15,position.y+15), 15, 0)

The code for the draw_computer_cannon() function is similar, but the turret is pointing in the
other direction (left), and it is red rather than green.

Firing the Cannons
We use similar code to fire a cannon to what was used to draw the turret, since we want the
shell to fire at the same angle as the turret. There are quite a few new globals in this section
of code, which was necessary at this point. player_cannon_power is set using the Left and Right
arrow keys, with a range of 0.0 to 10.0. player_cannon_position of course represents the posi-
tion of the player’s artillery cannon on the screen, with the height value already accounted
for. player_shell_position will represent the current position of a shell fired from the gun
when player_firing is True; otherwise, this code is just ignored. The player can only fire when
a shell is not already in the air. Similar code is used to fire the computer’s cannon shells at
the player.

 angle = wrap_angle(player_cannon_angle - 90)

 player_shell_velocity = angular_velocity(angle)

 player_shell_velocity.x *= player_cannon_power

 player_shell_velocity.y *= player_cannon_power

 player_shell_position = player_cannon_position

 player_shell_position.x += 15

 player_shell_position.y += 15

Shots Are A’Flyin
Once the player has fired, the player_firing variable is True, and that causes the shell (a little
green circle) to launch from the player’s gun. Likewise, when computer_firing is True, a little
red circle launches from the computer’s gun. The position of the shell is updated like so:

 if player_firing:

 player_shell_position.x += player_shell_velocity.x

 player_shell_position.y += player_shell_velocity.y

More Python Programming for the Absolute Beginner232

Now, the real trick to firing a projectile and simulating the arc and causing it to fall on a
target is the use of Y velocity. As the shell is flying through the air, the Y velocity starts off a
negative value, like –8.0. This represents the number of pixels the little shell will move per
frame. Every frame, that Y velocity is increased by a small amount. Over time, the Y velocity
will eventually be 0.0, and it will be flying horizontally for a brief moment. Then, as Y velocity
continues to increase, it will become positive and the shell will begin to arc downward toward
the ground.

 if player_shell_velocity.y < 10.0:

 player_shell_velocity.y += 0.1

Of course, we want the shells to stop if they hit the ground (the height map terrain) or go off
the screen. Here is how we determine when a shell has hit the ground:

 height = 600 - terrain.get_height(player_shell_position.x)

 if player_shell_position.y > height:

 player_firing = False

And here is how we make sure a shell does not continue to fly outside the boundaries of the
screen:

 if player_shell_position.x < 0 or player_shell_position.x > 800:

 player_firing = False

 if player_shell_position.y < 0 or player_shell_position.y > 600:

 player_firing = False

Computer Firing
We want the computer to at least put up the appearance of trying to beat the player to make
the game somewhat fun. I use the word trying because we are not going to spend the time
calculating the exact angle and power to hit the player’s artillery cannon, even though that
is possible. This is old-school rocket science! Believe it or not, this is what computers were
invented to do in the first place. Back in World War II, the first electro-mechanical computers
were put to use crunching artillery gun calculations for the Allies.

Now, the computer’s artillery cannon has a turret that does not move, unlike the player’s
turret which can move. So, the angle does not ever change. It will remain fixed at 315 degrees
(which is the opposite side of 45 degrees). The power factor is another matter, however. This
is a value that we will randomly generate for each shot. If the computer gets a lucky shot
before the player can zero in on the computer’s cannon, then it may just win. But, given that
the number is random, the odds will be rather low (perhaps one shot in 20).

Chapter 13 • Random Terrain: The Artillery Gunner Game 233

player_cannon_angle = 45

player_cannon_power = random.randint(1,10)

The code to move the computer’s shell is the same for the player’s shell. I’ve opted to duplicate
all of the code in this game for the sake of clarity. It would have been more efficient to use a
list of bullets, like the way in which bullets were handled in The Tank Battle Game in the
previous chapter, but The Artillery Gunner Game is a bit more slow-paced and precise, and
will be a more interesting study without any Python language quirks.

Scoring a Hit
Because we are using drawn shapes without tapping into MySprite this time, we can’t take
advantage of Pygame’s built-in collision detection. So, we’ll have to write our own collision
code. This will be pretty simple—we’ll just use the distance function to find out the distance
from one shell to one artillery gun. Let’s write that function now and put it in the MyLibrary.py
file:

calculates distance between two points

def distance(point1, point2):

 delta_x = point1.x - point2.x

 delta_y = point1.y - point2.y

 dist = math.sqrt(delta_x*delta_x + delta_y*delta_y)

 return dist

If the shell is in flight, we can now use the distance() function to check for a collision. A
distance factor of 30 should suffice, since that is the size of the artillery cannons. This is the
last requirement for the game, which is now finished! Figure 13.11 shows the final result.

if player_firing:

 dist = distance(player_shell_position, computer_cannon_position)

 if dist < 30:

 player_score += 1

 player_firing = False

if computer_firing:

 dist = distance(computer_shell_position, player_cannon_position)

 if dist < 30:

 computer_score += 1

 computer_firing = False

More Python Programming for the Absolute Beginner234

FIGURE 13.11

The final version
of The Artillery
Gunner Game!

THE COMPLETE GAME
We’ve been looking at a lot of different sections of code for the game up to this point in the
chapter. Not only that, but we built the game from scratch and evolved the code along the
way. Because there have been too many changes to keep track of in a step-by-step basis, we’ll
include the final code listing for the game here for your perusal. The only asset requirements
are the two audio files (the same boom.wav and shoot.wav files used in the previous chapter).
Be sure to include the MyLibrary.py file in the folder as the game file in order for it to work.

Artillery Gunner Game

Chapter 12

import sys, time, random, math, pygame

from pygame.locals import *

from MyLibrary import *

class Terrain():

 def __init__(self, min_height, max_height, total_points):

 self.min_height = min_height

 self.max_height = max_height

 self.total_points = total_points+1

 self.grid_size = 800 / total_points

Chapter 13 • Random Terrain: The Artillery Gunner Game 235

 self.height_map = list()

 self.generate()

 def generate(self):

 ##clear list

 if len(self.height_map)>0:

 for n in range(self.total_points):

 self.height_map.pop()

 ##first point

 last_x = 0

 last_height = (self.max_height + self.min_height) / 2

 self.height_map.append(last_height)

 direction = 1

 run_length = 0

 ##remaining points

 for n in range(1, self.total_points):

 rand_dist = random.randint(1, 10) * direction

 height = last_height + rand_dist

 self.height_map.append(int(height))

 if height < self.min_height: direction = -1

 elif height > self.max_height: direction = 1

 last_height = height

 if run_length <= 0:

 run_length = random.randint(1,3)

 direction = random.randint(1,2)

 if direction == 2: direction = -1

 else:

 run_length -= 1

 def get_height(self,x):

 x_point = int(x / self.grid_size)

 return self.height_map[x_point]

 def draw(self, surface):

 last_x = 0

 for n in range(1, self.total_points):

More Python Programming for the Absolute Beginner236

 ##draw circle at current point

 height = 600 - self.height_map[n]

 x_pos = int(n * self.grid_size)

 pos = (x_pos, height)

 color = (255,255,255)

 if n == grid_point:

 pygame.draw.circle(surface, (0,255,0), pos, 4, 0)

 ##draw line from previous point

 last_height = 600 - self.height_map[n-1]

 last_pos = (last_x, last_height)

 pygame.draw.line(surface, color, last_pos, pos, 2)

 last_x = x_pos

this function initializes the game

def game_init():

 global screen, backbuffer, font, timer, terrain

 pygame.init()

 screen = pygame.display.set_mode((800,600))

 backbuffer = pygame.Surface((800,600))

 pygame.display.set_caption("Artillery Gunner Game")

 font = pygame.font.Font(None, 30)

 timer = pygame.time.Clock()

 ##create terrain

 terrain = Terrain(50, 400, 100)

this function initializes the audio system

def audio_init():

 global shoot_sound, boom_sound

 pygame.mixer.init()

 shoot_sound = pygame.mixer.Sound("shoot.wav")

 boom_sound = pygame.mixer.Sound("boom.wav")

this function uses any available channel to play a sound clip

def play_sound(sound):

 channel = pygame.mixer.find_channel(True)

Chapter 13 • Random Terrain: The Artillery Gunner Game 237

 channel.set_volume(0.5)

 channel.play(sound)

these functions draw a cannon at the specified position

def draw_player_cannon(surface,position):

 ##draw turret

 turret_color = (30,180,30)

 start_x = position.x + 15

 start_y = position.y + 15

 start_pos = (start_x, start_y)

 vel = angular_velocity(wrap_angle(player_cannon_angle-90))

 end_pos = (start_x + vel.x * 30, start_y + vel.y * 30)

 pygame.draw.line(surface, turret_color, start_pos, end_pos, 6)

 ##draw body

 body_color = (30,220,30)

 rect = Rect(position.x, position.y+15, 30, 15)

 pygame.draw.rect(surface, body_color, rect, 0)

 pygame.draw.circle(surface, body_color, (position.x+15,position.y+15), 15, 0)

def draw_computer_cannon(surface,position):

 ##draw turret

 turret_color = (180,30,30)

 start_x = position.x + 15

 start_y = position.y + 15

 start_pos = (start_x, start_y)

 vel = angular_velocity(wrap_angle(computer_cannon_angle-90))

 end_pos = (start_x + vel.x * 30, start_y + vel.y * 30)

 pygame.draw.line(surface, turret_color, start_pos, end_pos, 6)

 ##draw body

 body_color = (220,30,30)

 rect = Rect(position.x, position.y+15, 30, 15)

 pygame.draw.rect(surface, body_color, rect, 0)

 pygame.draw.circle(surface, body_color, (position.x+15,position.y+15), 15, 0)

#main program begins

game_init()

More Python Programming for the Absolute Beginner238

audio_init()

game_over = False

player_score = 0

enemy_score = 0

last_time = 0

mouse_x = mouse_y = 0

grid_point = 0

player_score = computer_score = 0

player_cannon_position = Point(0,0)

player_cannon_angle = 45

player_cannon_power = 8.0

computer_cannon_position = Point(0,0)

computer_cannon_angle = 315

computer_cannon_power = 8.0

player_firing = False

player_shell_position = Point(0,0)

player_shell_velocity = Point(0,0)

computer_firing = False

computer_shell_position = Point(0,0)

computer_shell_velocity = Point(0,0)

#main loop

while True:

 timer.tick(30)

 ticks = pygame.time.get_ticks()

 ##event section

 for event in pygame.event.get():

 if event.type == QUIT: sys.exit()

 elif event.type == MOUSEMOTION:

 mouse_x,mouse_y = event.pos

 elif event.type == MOUSEBUTTONUP:

 terrain.generate()

 ##get key states

 keys = pygame.key.get_pressed()

 if keys[K_ESCAPE]: sys.exit()

Chapter 13 • Random Terrain: The Artillery Gunner Game 239

 elif keys[K_UP] or keys[K_w]:

 player_cannon_angle = wrap_angle(player_cannon_angle - 1)

 elif keys[K_DOWN] or keys[K_s]:

 player_cannon_angle = wrap_angle(player_cannon_angle + 1)

 elif keys[K_RIGHT] or keys[K_d]:

 if player_cannon_power <= 10.0:

 player_cannon_power += 0.1

 elif keys[K_LEFT] or keys[K_a]:

 if player_cannon_power > 0.0:

 player_cannon_power -= 0.1

 if keys[K_SPACE]:

 if not player_firing:

 play_sound(shoot_sound)

 player_firing = True

 angle = wrap_angle(player_cannon_angle - 90)

 player_shell_velocity = angular_velocity(angle)

 player_shell_velocity.x *= player_cannon_power

 player_shell_velocity.y *= player_cannon_power

 player_shell_position = player_cannon_position

 player_shell_position.x += 15

 player_shell_position.y += 15

 ##update section

 if not game_over:

 ##keep turret inside a reasonable range

 if player_cannon_angle > 180:

 if player_cannon_angle < 270: player_cannon_angle = 270

 elif player_cannon_angle <= 180:

 if player_cannon_angle > 90: player_cannon_angle = 90

 ##calculate mouse position on terrain

 grid_point = int(mouse_x / terrain.grid_size)

More Python Programming for the Absolute Beginner240

 ##move player shell

 if player_firing:

 player_shell_position.x += player_shell_velocity.x

 player_shell_position.y += player_shell_velocity.y

 ##has shell hit terrain?

 height = 600 - terrain.get_height(player_shell_position.x)

 if player_shell_position.y > height:

 player_firing = False

 if player_shell_velocity.y < 10.0:

 player_shell_velocity.y += 0.1

 ##has shell gone off the screen?

 if player_shell_position.x < 0 or player_shell_position.x > 800:

 player_firing = False

 if player_shell_position.y < 0 or player_shell_position.y > 600:

 player_firing = False

 ##move computer shell

 if computer_firing:

 computer_shell_position.x += computer_shell_velocity.x

 computer_shell_position.y += computer_shell_velocity.y

 ##has shell hit terrain?

 height = 600 - terrain.get_height(computer_shell_position.x)

 if computer_shell_position.y > height:

 computer_firing = False

 if computer_shell_velocity.y < 10.0:

 computer_shell_velocity.y += 0.1

 ##has shell gone off the screen?

 if computer_shell_position.x < 0 or computer_shell_position.x > 800:

 computer_firing = False

 if computer_shell_position.y < 0 or computer_shell_position.y > 600:

 computer_firing = False

 else:

Chapter 13 • Random Terrain: The Artillery Gunner Game 241

 ##is the computer ready to fire?

 play_sound(shoot_sound)

 computer_firing = True

 computer_cannon_power = random.randint(1,10)

 angle = wrap_angle(computer_cannon_angle - 90)

 computer_shell_velocity = angular_velocity(angle)

 computer_shell_velocity.x *= computer_cannon_power

 computer_shell_velocity.y *= computer_cannon_power

 computer_shell_position = computer_cannon_position

 computer_shell_position.x += 15

 computer_shell_position.y += 15

 ##look for a hit by player's shell

 if player_firing:

 dist = distance(player_shell_position, computer_cannon_position)

 if dist < 30:

 play_sound(boom_sound)

 player_score += 1

 player_firing = False

 ##look for a hit by computer's shell

 if computer_firing:

 dist = distance(computer_shell_position, player_cannon_position)

 if dist < 30:

 play_sound(boom_sound)

 computer_score += 1

 computer_firing = False

 ##drawing section

 backbuffer.fill((20,20,120))

 ##draw the terrain

 terrain.draw(backbuffer)

 ##draw player's gun

 y = 600 - terrain.get_height(70+15) - 20

 player_cannon_position = Point(70,y)

More Python Programming for the Absolute Beginner242

 draw_player_cannon(backbuffer, player_cannon_position)

 ##draw computer's gun

 y = 600 - terrain.get_height(700+15) - 20

 computer_cannon_position = Point(700,y)

 draw_computer_cannon(backbuffer, computer_cannon_position)

 ##draw player's shell

 if player_firing:

 x = int(player_shell_position.x)

 y = int(player_shell_position.y)

 pygame.draw.circle(backbuffer, (20,230,20), (x,y), 4, 0)

 ##draw computer's shell

 if computer_firing:

 x = int(computer_shell_position.x)

 y = int(computer_shell_position.y)

 pygame.draw.circle(backbuffer, (230,20,20), (x,y), 4, 0)

 ##draw the back buffer

 screen.blit(backbuffer, (0,0))

 if not game_over:

 print_text(font, 0, 0, "SCORE " + str(player_score))

 print_text(font, 0, 20, "ANGLE " + "{:.1f}".format(player_cannon_angle))

 print_text(font, 0, 40, "POWER " + "{:.2f}".format(player_cannon_power))

 if player_firing:

 print_text(font, 0, 60, "FIRING")

 print_text(font, 650, 0, "SCORE " + str(computer_score))

 print_text(font, 650, 20, "ANGLE " + "{:.1f}".format(computer_cannon_angle))

 print_text(font, 650, 40, "POWER " + "{:.2f}".format(computer_cannon_power))

 if computer_firing:

 print_text(font, 650, 60, "FIRING")

 print_text(font, 0, 580, "CURSOR " + str(Point(mouse_x,mouse_y)) + \

 ", GRID POINT " + str(grid_point) + ", HEIGHT " + \

 str(terrain.get_height(mouse_x)))

 else:

Chapter 13 • Random Terrain: The Artillery Gunner Game 243

 print_text(font, 0, 0, "GAME OVER")

 pygame.display.update()

SUMMARY
That concludes The Artillery Gunner Game. I hope you learned a lot and enjoyed your journey
through Python and Pygame. It has been a struggle at times, but a lot of fun overall. Let’s see
what you can do with it now!

Challenges
1. Oh, the possibilities for this game are truly endless! First, it’s

pretty obvious that the game could use a little polish, like
removing the debug messages, removing the height map
terrain “crawler,” and so forth. See if you can add some
finishing touches to the game.

2. The one downer about the game is that nothing really dramatic
happens when you score a hit, other than getting one point. So,
when either the player or computer scores a hit, add some
dramatic flair, like cycling the background color or drawing an
explosion!

3. I would really like to see more done with the terrain’s height
map system. So, when a shell hits the ground, create a crater!
Here’s a hint: Look at the Terrain.get_height() method for
ideas.

More Python Programming for the Absolute Beginner244

14C H A P T E R

MORE OF EVERYTHING: THE

DUNGEON ROLE-PLAYING

GAME
n this chapter, we draw upon the lessons learned in all of the previous
chapters to create our own dungeon role-playing game (RPG). We will pay
particular attention to advanced List programming to manage the data for

the game. You will gain a lot of good experience by building your own RPG based
on the example presented in this chapter. But, unlike most modern RPGs that
feature realistic graphics and animation, our RPG will be an homage to games of
the past, to the early days of computing when creative storytellers had to use text
to describe a fictional world. As you will soon learn, there was an offshoot of the
RPG genre way back when that used text characters to represent the walls, floor,
items, monsters, treasure, and even the player. These text characters were identi-
fied by their “ASCII” character codes—American Standard Code for Information
Interchange. Thus, such games came to be known as “ASCII Dungeons.” The sort
of game we will be creating uses a random dungeon generator, but you can use
the concepts presented to custom design your own game levels.

In this chapter, you will learn how to:

• Generate random dungeon rooms

• Connect the dungeon rooms with hallways

• Add gold, weapons, armor, and health potions

• Add roaming monsters that the player can fight

I

• Roll random character stats for the player and monsters

• Fight monsters with real to-hit, attack, and defense values

• Use your imagination—because this is an ASCII Text RPG!

EXAMINING THE DUNGEON GAME
The Dungeon RPG is shown in Figure 14.1. You will learn to build this game from scratch in
this chapter. Along the way, you will learn many tricks and techniques in Python and Pygame
with advanced lists and classes. And, it is rather fun to play as well!

FIGURE 14.1

The Dungeon RPG
is a Roguelike
game we will
create in this

chapter.

REVIEW OF CLASSIC DUNGEON RPGS
Today’s premiere RPGs, like Diablo III and World of Warcraft (with its many expansions), would
have been unbelievable to developers and gamers in the early 1980s, at the dawn of personal
computers. But technology did not hold imaginative storytellers back; they still wanted to
create worlds in the computer for players to have fun exploring, despite the technology. At
the time, text-based displays were not considered bad technology, or even crude. That is simply
what was available. At the time, game developers (who were really just hobbyists) were

More Python Programming for the Absolute Beginner246

enthralled by what was possible with a computer! They didn’t bemoan the lack of graphics,
because there was no such thing at the time. Let’s take a look at some classic examples of the
genre as we plan to create one of our own design. The individual Roguelike games presented
below, as well as Rogue itself, do not necessarily represent the best games of the genre—these
are the most popular games in the genre.

Rogue
It all started with a game called Rogue, according to most fans old enough to have played
games in the genre in the old days. All games that fall into the genre are called “Roguelike,”
and this has become a recognized term (no space, no dash). According to Wikipedia (http://
en.wikipedia.org/wiki/Roguelike), games that fit the description will have these properties:

1. Randomized game levels
2. Turn-based movement
3. Permanent death

The design credits for Rogue go to Michael Toy, Glenn Wichman, Ken Arnold, and Jon Lane.

The goal of the game was to explore the dungeon down to the lowest level and retrieve a
special item called the Amulet of Yendor, and then make it back up and out of the dungeon
again. Even modern games like the Diablo series follow this basic premise, and one might even
suggest that Diablo is a Roguelike game with improved graphics. But, instead of claiming trea-
sure, your character must defeat a big bad evil boss guy in the last level. Figure 14.2 shows
what the game looked like running on a Unix system.

FIGURE 14.2

Rogue running on a
Unix terminal.

Image courtesy of
Wikipedia.

The gameplay of Rogue is repeatable. What this means is, each level is generated and filled
with monsters using the same code, so every level is based on the same algorithms. The only
difference between levels is the strength of the monsters, which goes up as you descend into
deeper levels. Likewise, the player’s hero character gains better strength, abilities, and

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 247

http://en.wikipedia.org/wiki/Roguelike
http://en.wikipedia.org/wiki/Roguelike

weapons too, so gameplay remains in balance. Figure 14.3 shows the same game running
on an IBM PC.

FIGURE 14.3

Rogue running on
an IBM PC. Image

courtesy of
Wikipedia.

In the real world

Dennis Ritchie, the creator of the C language, is reported to have said that Rogue
wasted more CPU time than anything in history. He was referring to UNIX systems of
the time.

NetHack
NetHack is an open source, freeware implementation of the gameplay found in the original
Rogue game. Releases are maintained and available for download from http://
www.nethack.org. NetHack is a fairly accurate version of the traditional gameplay and there
are numerous variations of the game available (since it is open source). The official NetHack
distribution includes two versions right inside the archive file when you download it. First is
the usual text console version of the game with traditional ASCII characters (for purists), and
this is shown in Figure 14.4.

A second version, shown in Figure 14.5, is included with NetHack and runs in graphics mode,
featuring tiled artwork. No aspect of the gameplay is changed, just the means of displaying
the game.

More Python Programming for the Absolute Beginner248

http://www.nethack.org
http://www.nethack.org

FIGURE 14.4

NetHack running
in a text-mode

console.

FIGURE 14.5

NetHack running
in graphics mode

with tiled artwork.

AngBand
AngBand is another good example of the genre with very familiar gameplay and often more
complex levels. This game doesn’t follow the Rogue recipe to the last ingredient; it goes beyond
to set itself apart from more traditional games. You can download the game for free from the
website http://rephial.org. Figure 14.6 shows AngBand in action.

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 249

http://rephial.org

FIGURE 14.6

AngBand features
an attractive
character set

sporting many
colors.

Like many others in the genre, including NetHack, this game features two versions (catering
to the two types of fans of this genre), a console-mode version and a graphics-mode version.
The graphical version of AngBand is shown in Figure 14.7. The tiled artwork is not a huge
departure from the ANSI text version, but it is enough to make the gameplay perhaps a bit
more intriguing than mere text.

FIGURE 14.7

AngBand running
in graphics mode

with tiled artwork.

More Python Programming for the Absolute Beginner250

Sword of Fargoal
Going back a few years, we find Sword of Fargoal on Commodore 64, published commercially
by EPYX, a popular game publishing company in the 1980s. But this game did not originate
on the C=64; it was ported from an earlier Commodore PET game called Dungeon. It was clearly
a derivative game, but the level generator used a slightly different algorithm than the one in
Rogue. See Figure 14.8.

FIGURE 14.8

Sword of Fargoal
was derived from

this early
Commodore PET

game.

Kingdom of Kroz
Kingdom of Kroz, shown in Figure 14.9, was another classic of the 1980s. Like the similarly early
versions of NetHack, this game employed ANSI characters to display limited animation and
colored text. Kroz had quite complex levels because they were custom designed, not randomly
generated. Believe it or not, this funny-looking screen offered a huge amount of gameplay to
gamers of the time.

ZZT
ZZT was another (perhaps the best) ANSI-based Roguelike game. Figure 14.10 shows one screen
of a much larger level. ZZT supported a lot of advanced gameplay features like portals and
player persistence. It was developed by Tim Sweeney, founder of Epic Games, and this was the
company’s first game. You might recognize the name, for today Epic is responsible for the
awesome Unreal Engine 3 that powers many commercial games on Windows, Xbox 360, Linux,
Mac OS X, and Sony PlayStation 3. It is cutting edge.

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 251

FIGURE 14.9

Kingdom of Kroz.

FIGURE 14.10

ZZT was created
by Epic Games (of

modern Unreal
Engine fame).

CREATING A DUNGEON LEVEL
The key to making a game of this type is setting up an array (or List in Python) to represent
one game level. That array of data is recycled for each level, which is generated randomly. As
the player reaches the stairs or portal to the next level down, the game should generate a new
random level using the current level number with a common random number seed. This

More Python Programming for the Absolute Beginner252

seed makes it possible for the game to re-generate the same levels that the player has already
gone through, while travelling back up to exit out of the dungeon (after finding the Amulet
of Yendor, if we’re following the classic plot). We are going to cover enough information about
the genre to build a level generator, add user input, rudimentary combat with monsters, and
collision detection with the walls. But, the rest of the gameplay will be up to you!

Understanding ASCII Characters
When creating a Roguelike game in graphics mode using a library like Pygame, assuming we
want the game to look and feel authentic, we have to simulate the text display. This affords
us the benefit of making the game look authentic, but giving us the ability to do anything we
want with graphics. What is a character set? It’s a numbered list of characters. The standard
encoding for characters is called ASCII.

ASCII Character Set
A single character has an “ASCII code,” and there are 256 characters total. You might have
noticed that a typical PC keyboard has only about 100 keys. That’s true. The ASCII table
includes some special characters used for drawing boxes on the old console displays back in
the 1970s and 1980s.

The correct pronunciation of ASCII is “Ask-ee.”

The ASCII codes will be treated like animation frames, and the character set like a sprite sheet.
Each character will be handled like one frame of a large animation set. The first 31 characters
on the line below were known as non-printing characters because they were not printed on the
old console displays. These first 31 characters were used for special codes that would do things
on the console display. For instance, ASCII code 10 is the linefeed character, while ASCII code
13 is the newline character. When these codes are “printed out,” they perform an action rather
than display a character. Incidentally, the last character on this first line is ASCII code 32,
which is Space, the first printable character. The first two characters, which look like little
happy faces, were often used for the player character in Roguelike games.

 • ¶ §

! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _ `

a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ Ç

ü é â ä à å ç ê ë è ï î ì Ä Å É æ Æ ô ö ò û ù ÿ Ö Ü ¢ £ ¥ ƒ á

HINT

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 253

í ó ú ñ Ñ a o ¿ ¬ ½ ¼ ¡ « »

 α

ß μ ± ÷ ° · · ²

Printing ASCII Characters
In Python, we can print ASCII characters to the console or in graphics mode with Pygame
using the same font printing functions we’ve been using all along. But, you may be wondering,
where to you get the ASCII characters that you want to print, if they aren’t all represented on
the keyboard? There are three ways to do this.

First, you can find an ASCII table (such as from a website) and copy and paste the characters
into your program, as a string. For instance, to print the [PI] character to the console, copy
the [PI] character out of an ASCII table and paste it into your print() function call, like so:

print("Pi looks like this: ")

The second way is similar, but doesn’t require copying and pasting the character. Instead, we
just embed the character into the string with an Alt key sequence. This is a bit of a hacker
trick that most PC users don’t know about anymore today, because command prompts and
shells are not commonly used today. What you do is, hold down the Alt key, and type in the
ASCII code using the numeric keypad. You need to know the ASCII code, of course, but we’ll
solve that little problem here shortly. This doesn’t work with the Python IDLE editor or a
Python prompt, so you’ll have to use a text editor like Notepad. Try Alt+100 to see what is
displayed.

But, both of those are clunky ways to print ASCII characters. The third, and preferred, way is
to use code to convert an ASCII code into a character. Python has just a function called
chr(). You have to know the ASCII code of the character you want to print, so keep an ASCII
table handy. Figure 14.11 is one such table created with the following Python code.

print("ASCII code 100 = " + chr(100))

ASCII code 100 = d

The ASCII Table Program
Let’s write a short program to generate an ASCII table that can be used as a reference. Remem-
ber, the Python console will not display many of escape sequence, non-printing characters.
This program aligns the ASCII table into eight columns

cols = 8

rows = 256//cols

table = list("" for n in range(rows+1))

char = 1

More Python Programming for the Absolute Beginner254

#create strings filled with table data

for col in range(1,cols+1):

 for row in range(1,rows+1):

 table[row] += '{:3.0f}'.format(char) + ' '

 if char not in (9,10,13): #skip movement chars

 table[row] += chr(char)

 table[row] += '\t'

 char += 1

#print the ASCII table

for row in table: print(row)

Want to play a prank on your friends? Create a password using a common word
that’s easy to guess, but insert ASCII code 255 into the password. That’s an-
other space character!

This short Python program produces the output shown in Figure 14.11. Many of the characters
will not show up in the Python Shell output window. The console was simply not designed
to handle escape sequence characters. For our purposes, of using the ASCII chart as a sprite
sheet, we don’t need to be concerned with the original purpose of those codes. There’s another
more complicated problem with the console’s output—the default encoding is most likely
Unicode. So, only the first 128 characters (0 to 127) in the ASCII character set can be printed
normally, while the extended codes (up to 255) will be encoded with Unicode characters.
Suffice it to say, our little program has issues with character encoding.

An Improved ASCII Table Program
Here’s one way to resolve the problem. Rather than using lookup code (with the chr() func-
tion), we can store the ASCII character set as a string and index into it with the ASCII code
representing an index. This is kind of a cheat but it produces the nice-looking table we want
to use as a reference. The code for formatting the characters into a table is the same, but the
call to chr() has been replaced with an index into the chars string with chars[char]. The result
is shown in Figure 14.12, and it looks just right! However, you may not be able to type in this
code, especially into the IDLE editor, due to the character codes. So, please open up the source
code file ASCII Table 2.py from the chapter resources in order to run the program.

TRICK

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 255

FIGURE 14.11

Output from the
ASCII Table

program.

chars = \

" • ¶§ ·!\"#$%&'()*+,-./0123456789:;<=>?@"\
"ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ Ç"\

"üéâäàåçêëèïîìÄÅÉæÆôöòûùÿÖÜ¢£¥ ƒáíóúñÑao¿ ¬½¼¡«» "\

" αß μ ± ÷ °·· ² ?º"

cols = 8

rows = 256//cols

table = list("" for n in range(rows+1))

char = 0

for col in range(1,cols+1):

 for row in range(1,rows+1):

 table[row] += '{:3.0f}'.format(char) + ' '

 ttable[row] += chars[char]

 table[row] += '\t'

 char += 1

More Python Programming for the Absolute Beginner256

print(len(chars))

for row in table: print(row)

FIGURE 14.12

An improved ASCII
Table program
now produces

useful output we
can use as a
reference.

Simulating a Text Console Display
Now that we understand the ASCII character set, we can use this information to simulate a
text console display for our own Roguelike game. Since we’re only simulating a console display,
and not duplicating one perfectly, we can cheat a little on the dimensions. The old console
displays that Roguelike games were played on could display text characters—80 across and 25
down. We’ll extend it to 80 × 45 for a better ratio, since most modern LCD screens have a
widescreen orientation now with a ratio of 4:3 or 16:9 or similar. In these terms, an old CRT
(cathode ray tube) monitor had a ratio of 8:2.5. It worked, though, because the characters were
taller than they were wide. Figure 14.13 shows an illustration of that space with the actual
number of tiles we have available.

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 257

FIGURE 14.13

This 80 × 45 grid
represents the

space available for
one game level.

Keeping Track of Tiles
Since each character represents one gameplay “tile,” then what we have is a game level that
will support 80 × 45 = 3,600 tiles. That is actually quite a lot of space, considering that the
game has many such levels (down into the depths).

Now, to fill the game level, we need a pair of objects: a list and a MySprite. First, the list will
be created and filled with a default value.

tiles = list()

for y in range(0,45):

 for x in range(0,80):

 tiles.append(8)

ASCII Table as a Sprite
Next, the MySprite object will be created, and a sprite sheet containing all of the ASCII char-
acters will be loaded and treated like frames of animation. The bitmap is shown in Figure
14.14. This file is supplied with the chapter resource files, and is called ascii8x12.png.

FIGURE 14.14

A sprite sheet
containing ASCII

characters.

More Python Programming for the Absolute Beginner258

text = MySprite()

text.load("ascii8x12.png", 8, 12, 32)

Drawing the Dungeon Level
Now we can simply draw the dungeon level by referencing the tiles list, which contains the
ASCII code of each tile, and using that as the animation frame index in the sprite. Multiply
this process across 80 columns and 45 rows, as the following code does, and we have a level
filled with a default ASCII character as shown in Figure 14.15. At this point, the “basic
mechanics” of the game is working! This was the hard part. Now, we can focus on generating
a random level with rooms and passages.

FIGURE 14.15

The first trial run
of The Dungeon

Game with
working level data.

for y in range(0,45):

 for x in range(0,80):

 index = y * 80 + x

 value = tiles[index]

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 259

 text.X = 30 + x * 8

 text.Y = 30 + y * 12

 text.frame = text.last_frame = value

 text.update(0)

 text.draw(surface)

Generating Random Rooms
A hallmark feature of Roguelike games is endless replay value because the game levels are
randomly generated. Every time you play, the game will be different! To generate a single
level, we will fill it with rooms. Now, this is where some creative programming comes in,
because there are many ways to do this. In the example presented here, there are eight total
rooms in one level—four above, four below. You might take a different approach and generate
one large room in the middle with several smaller rooms scattered around it. There are many
possibilities! Go ahead and experiment with the Python/Pygame code found here in this
chapter and see what interesting new game levels you can come up with!

Creating the Dungeon Class
We have reached a complexity level that requires a class to continue further with the con-
struction of our dungeon. Here is a class called Dungeon that will help organize the data and
code. This class will be responsible for generating and drawing random levels. Of particular
interest are the two helper methods: getCharAt() and setCharAt(). We will need these to gen-
erate a random level. Note that, as was the case in all previous chapters, the MyLibrary.py file
must be found in the same folder as the game file so that classes like MySprite are available.

class Dungeon():

 def __iinit__(self):

 #create the font sprite

 self.text = MySprite()

 self.text.load("ascii8x12.png", 8, 12, 32)

 #create the level list

 self.tiles = list()

 for n in range(0,80*45):

 self.tiles.append(-1)

 def ggetCharAt(self, x, y):

 index = y * 80 + x

 return self.tiles[index]

More Python Programming for the Absolute Beginner260

 def ssetCharAt(self, x, y, char):

 index = y * 80 + x

 self.tiles[index] = char

 def ddraw(self, surface, offx, offy):

 for y in range(0,45):

 for x in range(0,80):

 value = self.getCharAt(x,y)

 if value >= 0:

 self.text.X = offx + x * 8

 self.text.Y = offy + y * 12

 self.text.frame = value

 self.text.last_frame = value

 self.text.update(0)

 self.text.draw(surface)

Now, the prototype will just generate random levels every time the Space key is pressed. This
is an important step, to validate whether the level generating algorithm is free of bugs. We
don't want rooms overlapping or hallways missing the mark. To generate the rooms, we will
use a rectangle to represent each room, and a list will turn the rooms into an easy-to-manage
array. There are three main ASCII codes that will be used to build a dungeon level:

1. Code 175, Char: ' ' (background)
2. Code 177, Char: ' ' (hallways)
3. Code 218, Char: ' ' (rooms)

Generating the Northern Rooms
Let’s start off with the top of the level, in which we will put four rooms. Each room will have
a slightly random position (within a small variance) and a slightly random size (with a min-
imum and maximum). After creating the rooms, the Dungeon.generate() method then fills in
the tiles array/list with the room data.

def ggenerate(self, emptyChar=175, roomChar=218, hallChar=177):

 #clear existing level

 for index in range(0,80*45):

 self.tiles[index] = emptyChar

 #create random rooms

 self.rooms = list()

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 261

 PL = 4

 PH = 8

 SL = 5

 SH = 14

 room = Rect(0 + random.randint(1,PL),

 0 + random.randint(1,PH),

 random.randint(SL,SH),

 random.randint(SL,SH))

 self.rooms.append(room)

 room = Rect(20 + random.randint(1,PL),

 0 + random.randint(1,PH),

 random.randint(SL,SH),

 random.randint(SL,SH))

 self.rooms.append(room)

 room = Rect(40 + random.randint(1,PL),

 0 + random.randint(1,PH),

 random.randint(SL,SH),

 random.randint(SL,SH))

 self.rooms.append(room)

 room = Rect(60 + random.randint(1,PL),

 0 + random.randint(1,PH),

 random.randint(SL,SH),

 random.randint(SL,SH))

 self.rooms.append(room)

 #add rooms to level

 for room in self.rooms:

 for y in range(room.y,room.y+room.height):

 for x in range(room.x,room.x+room.width):

 self.setCharAt(x, y, roomChar)

More Python Programming for the Absolute Beginner262

Figure 14.16 shows the result so far. We’re making good progress already, and it seems to be
moving along quickly now with the Dungeon class.

FIGURE 14.16

The four northern
rooms have been

generated.

Generating the Southern Rooms
Next, we use similar code with a few minor changes to the Y position of each to generate the
four southern rooms, and end up with the level shown in Figure 14.17.

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 263

FIGURE 14.17

The four southern
rooms have been

generated.

 room = Rect(0 + random.randint(1,PL),

 22 + random.randint(1,PH),

 random.randint(SL,SH),

 random.randint(SL,SH))

 self.rooms.append(room)

 room = Rect(20 + random.randint(1,PL),

 22 + random.randint(1,PH),

 random.randint(SL,SH),

 random.randint(SL,SH))

 self.rooms.append(room)

 room = Rect(40 + random.randint(1,PL),

 22 + random.randint(1,PH),

 random.randint(SL,SH),

 random.randint(SL,SH))

More Python Programming for the Absolute Beginner264

 self.rooms.append(room)

 room = Rect(60 + random.randint(1,PL),

 22 + random.randint(1,PH),

 random.randint(SL,SH),

 random.randint(SL,SH))

 self.rooms.append(room)

This room code is now working great! However, there’s a lot of repeated code here with only
minor differences in the code from one room to the next. We can take advantage of this
repeatability by writing a reusable method that will work for all eight rooms. So, let’s abolish
the room generation code just written and replace it with calls to this new method:

def createRoom(self,x,y,rposx,rposy,rsizel,rsizeh):

 room = Rect(x + random.randint(1,rposx),

 y + random.randint(1,rposy),

 random.randint(rsizel,rsizeh),

 random.randint(rsizel,rsizeh))

 self.rooms.append(room)

Using this new helper method, the code to generate all eight rooms (within generate()) is
much more manageable. This will also make it much easier to experiment with different level
generation algorithms. This is an example of a proper method, created to eliminate or opti-
mize repeating code. The variables PL, PH, SL, and SH, represent the random position and size
of each room. Feel free to experiment with different values!

 PL = 4

 PH = 8

 SL = 5

 SH = 14

 self.rooms = list()

 self.createRoom(0,0,PL,PH,SL,SH)

 self.createRoom(20,0,PL,PH,SL,SH)

 self.createRoom(40,0,PL,PH,SL,SH)

 self.createRoom(60,0,PL,PH,SL,SH)

 self.createRoom(0,22,PL,PH,SL,SH)

 self.createRoom(20,22,PL,PH,SL,SH)

 self.createRoom(40,22,PL,PH,SL,SH)

 self.createRoom(60,22,PL,PH,SL,SH)

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 265

Generating Random Hallways
The hallways or passages connect the rooms, and are the key to making random levels. To
generate the hallways, we will make some assumptions that other Roguelike algorithms might
not make. In other words, there are probably more creative path-finding algorithms that link
any one room to any other room in the level. But, let’s try to keep it simple and connect two
rooms that are near each other.

While running the game, at any time press the Space key to re-generate the level.
This is good for testing and debugging the game, but should be removed when
the game is finished.

Horizontal Hallways
We’ll plan our hallway code with reusability in mind first (and wisely put it into a method
from the start). First, we have the source room. Pick a random location along the right edge
of the room for the starting point of the hallway. Then, move the hallway toward the right,
one tile at a time, until it reaches the position of the destination room. If we have hit the
destination room already, then that’s it, the hallway is finished. But, most likely, the hallway
will need to go up or down to reach the room. So, if the position of the room is below or above,
we route the hall up or down accordingly until we bump into it. Let’s see how it will look
first, then show the code. First, in Figure 14.18, we have the condition where the hall ran
straight across into the second room without any turns needed.

TRICK

More Python Programming for the Absolute Beginner266

FIGURE 14.18

A straight
passageway.

Next, we can show the condition where a hallway might need to angle up or down to get to
the destination room, which is the situation shown in Figure 14.19. At this point, we can
repeat the process between the northern four rooms, and then for the southern four rooms.
Let’s see the new Dungeon.createHallRight() method first.

Some random dungeons will look fantastic, while some will look horrid. It’s a
matter of fine-tuning the algorithm to meet your design expectations. Most
likely the best modifications to make will be to the random ranges used to set
the position and size of each room. The hallways usually work fine if the rooms
are reasonably placed.

HINT

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 267

FIGURE 14.19

An angled
passageway.

def createHallRight(self,src,dst,hallChar):

 pathx = src.x + src.width

 pathy = src.y + random.randint(1,src.height-2)

 self.setCharAt(pathx,pathy,hallChar)

 if pathy > dst.y and pathy < dst.y + dst.height:

 while pathx < dst.x:

 pathx += 1

 self.setCharAt(pathx,pathy,hallChar)

 else:

 while pathx < dst.x+1:

 pathx += 1

 self.setCharAt(pathx,pathy,hallChar)

More Python Programming for the Absolute Beginner268

 if pathy < dst.y+1:

 self.setCharAt(pathx,pathy,hallChar)

 while pathy < dst.y:

 pathy += 1

 self.setCharAt(pathx,pathy,hallChar)

 else:

 self.setCharAt(pathx,pathy,hallChar)

 while pathy > dst.y + dst.height:

 pathy -= 1

 self.setCharAt(pathx,pathy,hallChar)

Because three hallways connect four rooms, we have six total hallways to create. Note how it
is a simple connection of one room to another. This could be replaced with a for loop but the
code is more “self documenting” this way.

 self.createHallRight(self.rooms[0],self.rooms[1],hallChar)

 self.createHallRight(self.rooms[1],self.rooms[2],hallChar)

 self.createHallRight(self.rooms[2],self.rooms[3],hallChar)

 self.createHallRight(self.rooms[4],self.rooms[5],hallChar)

 self.createHallRight(self.rooms[5],self.rooms[6],hallChar)

 self.createHallRight(self.rooms[6],self.rooms[7],hallChar)

Vertical Hallways
At this point, we have the northern rooms and southern rooms connected to each other, but
the north and south “wings,” so to speak, are not accessible to each other. For that, we need
vertical hallways as well. We don’t want too many hallways, or it will be too easy to clear the
level. Instead, we’ll connect the north and south wings with just one hall, and we’ll do it by
choosing a random room so it will be different every time.

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 269

FIGURE 14.20

A hallway now
connects the

north and south
wings.

def createHallDown(self,src,dst,hallChar):

 pathx = src.x + random.randint(src.width-2)

 pathy = src.y + src.height

 self.setCharAt(pathx,pathy,hallChar)

 if pathx > dst.x and pathx < dst.x + dst.width:

 while pathy < dst.y:

 pathy += 1

 self.setCharAt(pathx,pathy,hallChar)

 else:

 while pathy < dst.y+1:

 pathy += 1

 self.setCharAt(pathx,pathy,hallChar)

 if pathx < dst.x+1:

 self.setCharAt(pathx,pathy,hallChar)

 while pathx < dst.x:

 pathx += 1

More Python Programming for the Absolute Beginner270

 self.setCharAt(pathx,pathy,hallChar)

 else:

 self.setCharAt(pathx,pathy,hallChar)

 while pathx > dst.x + dst.width:

 pathx -= 1

 self.setCharAt(pathx,pathy,hallChar)

The choice of which rooms on the north to connect down south is entirely up to you. Perhaps
you will connect a north room on the left with a south room on the right, and create a long,
winding corridor between them? For the example, we will stick with a simple downward path
that will angle left or right to reach the target room.

 choice = random.randint(0,3)

 print("choice:" + str(choice) + "," + str(choice+4))

 self.createHallDown(self.rooms[choice],self.rooms[choice+4],hallChar)

Try connecting the rooms vertically with one horizontal hallway to invert the
overall look of the dungeon! You might even make such changes with random
rolls so that sometimes they just happen without code changes. Another type
of dungeon that would be compelling might have one large room with small
rooms arrayed around it. The important thing is making sure your algorithm cre-
ates a reasonable dungeon every time so the player is never given an impossible
level.

Handling Range Errors
When experimenting with code such as this, with various algorithms for generating rooms,
it often happens that we try to draw a room or hall outside the borders of the screen. It just
happens.

IndexError: list assignment index out of range

So, it would be helpful to trap those errors when they occur rather than allowing the game
to simply crash. Trapping such an error helps to diagnose the logic bug. First, we can modify
Dungeon.setCharAt() so that it checks the ranges before trying to set a tile in the dungeon. We
can also modify Dungeon.getCharAt(), although errors will be fewer there. This version will
avoid crashing the program due to a range error. The purpose is not to let the user keep
playing, but to notify you when a crash is about to happen, in order to fix the bug. I used this
very code to solve a bug in the hall generation code and you will need it too when you exper-
iment with new algorithms. When the game is finished, though, you can safely comment out
these debugging lines.

HINT

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 271

def getCharAt(self, x, y):

 if x < 0 or x > 79 or y < 0 or y > 44:

 print("error: x,y = ", x, y)

 return

 index = y * 80 + x

 if index < 0 or index > 80*45:

 print("error: index = ", index)

 return

 return self.tiles[index]

def setCharAt(self, x, y, char):

 if x < 0 or x > 79 or y < 0 or y > 44:

 print("error: x,y = ", x, y)

 return

 index = y * 80 + x

 if index < 0 or index > 80*45:

 print("error: index = ", index)

 return

 self.tiles[index] = char

Do you prefer levels jam-packed with halls and rooms? Our generator leaves a
lot of empty space because these are just the major rooms and halls. Using the
code available, you can generate smaller off-shoot rooms and halls in any unused
area. Some Roguelike games would even add rooms connected with hidden
passages!

POPULATING THE DUNGEON
There are two ways to populate the dungeon: an easy way, and a hard way. The easy way
involves just dropping things right into the tile array so that an ASCII character shows up in
that location. The player can then interact with it based on that ASCII code. If that code
represents treasure, then the player picks it up. If the code is a portal, then the player moves.
If it’s a monster, the player fights.

The hard way is to maintain secondary lists of objects (treasure, portals, monsters, etc.), and
draw these items over the tiles of the dungeon structure, so to speak. This gives the benefit
of a more attractive appearance at the cost of some very challenging code to write and
maintain.

HINT

More Python Programming for the Absolute Beginner272

One could argue in favor of both techniques, or even suggest other alternatives. For the sake
of everyone’s sanity, we’re going to use the easy method in this chapter. Not only is it much
less difficult to work with the code, but the game will be more useful to educators who want
to use this game as an experiment testbed for “bot” A.I. projects, and sticking with a list of
tiles that contains everything in the game makes the code much more accessible.

Adding the Entrance and Exit Portals
The entrance portal will be a tile in one of the rooms that sends the player up to the previous
level (or out of the dungeon if it’s the first level). We want to position the entrance portal in
a room so that the player starts off in that location. It would be best if the exit was not in the
same room or else the player can quickly skip the whole level! First, we’ll choose a random
room, and then just position the portal in the middle of the room.

 choice = random.randint(0,7)

 self.entrance_x = self.rooms[choice].x + self.rooms[choice].width//2

 self.entrance_y = self.rooms[choice].y + self.rooms[choice].height//2

 self.setCharAt(x,y,29) #entry portal

 print("entrance:",choice,x,y)

We use class variables for the entrance in order to keep track of it more easily for positioning
the player. The exit portal will be a tile in a random location in the level that takes the player
down to the next level below. The goal of the game in classic Rogue is to reach the last level
and claim the Amulet of Yendor, then make your way back up again.

 choice2 = random.randint(0,7)

 while choice2 == choice:

 choice2 = random.randint(0,7)

 x = self.rooms[choice2].x + self.rooms[choice2].width//2

 y = self.rooms[choice2].y + self.rooms[choice2].height//2

 self.setCharAt(x,y,30) #exit portal

 print("exit:",choice2,x,y)

The end result of our new entrance and exit portal code is shown in Figure 14.21. The entrance
portal looks like an “up” arrow, while the exit looks like a “down” arrow (ASCII codes 29 and
30, respectively). You may change these to different characters if you wish. Do you see how
easy it was to add these tiles using the “easy” level array? Just set any position in the dungeon
to any code from 0 to 255, and that change instantly shows up. You could even add new secret
passages or cause “cave-ins.”

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 273

FIGURE 14.21

The entrance and
exit portals.

Adding Gold
We’ll follow the old-school Roguelike approach and use “G” to represent gold. To add random
gold throughout the level, just pick a random location, check to make sure it isn’t solid rock
(the “background” or “empty” character is 175), which is a character with a dot pattern that
makes it appear dark gray. You can change that character if you wish, but just be sure to be
consistent in your code. It wouldn’t be a bad idea to define constants for these characters.

But, instead of looking specifically at the empty tile code, let’s look for the room code instead,
and only drop gold into a room. This eliminates some code we would have to write to pick up
gold in the halls, and centers gameplay in the rooms.

Now, let’s add some random gold. First, choose a random number of drops, then scatter them
around the level on valid tiles. This is where it becomes handy to have an ASCII table for
reference. Figure 14.22 shows the result of the random gold scattered around the level. Isn’t
it remarkable how easy it is to add each new feature to the game? That is because we’re
building on a solid foundation of code.

More Python Programming for the Absolute Beginner274

FIGURE 14.22

Random gold has
been added to the

level.

 drops = random.randint(5,20)

 for n in range(1,drops):

 tile = 175

 while tile == 175:

 x = random.randint(0,79)

 y = random.randint(0,44)

 tile = self.getCharAt(x,y)

 self.setCharAt(x,y,70) #'G'

Don’t be concerned with dropping items on top of each other with this random
code. It won’t happen! The algorithms look exclusively for a room code for the
item’s position, so a previously dropped item at any location will have changed
the code already.

HINT

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 275

Adding Weapons, Armor, and Health Potions
In addition to gold, we want to give the player a few random item drops here and there to
make the dungeon seem to have been explored before, to give it some character. Usually there
will be one or two weapon and armor items here and there in each level, perhaps where a
poor adventurer met his fate long ago. In some games, monsters will drop items when you
kill them. Using the technique shown above to add gold to the level, you can add any item
you wish to the level in a similar way. You could even booby-trap some items, so that the
player takes damage after picking up an item! To pick up an item or gold, of course, just add
it to the player’s gold count or inventory, and remove it from the level by setting that tile to
a room or hall code.

So, let’s just add one “W” and one “A” to the level, representing one weapon and one armor
item, and two “H” items representing health potions (for healing). You can use this code to
add any other items you wish. There are even some ASCII codes that look sort of like these
items (if you use your imagination!).We don’t need to keep track of the strengths of these
items, or their value, because those random numbers can just be generated when the player
picks them up! See the section titled “Advanced Gameplay” for more details on picking up
items.

The code to drop an item is the same for gold, so we have some code again that needs to be
put into a reusable method. Let’s take the “gold code” and write a new method called
Dungeon.putCharInRandomRoom(). This code can be reused endlessly to add anything you want
in the dungeon, including monsters. In the lower levels, you might want to limit the health
potions, or make them only restore a small amount of health, to increase the difficulty of the
game. After all, the player gets essentially free gear upgrades by just finding those items, so
don’t make it too easy!

 self.putCharInRandomRoom(roomChar,86) #'W'

 self.putCharInRandomRoom(roomChar,64) #'A'

 self.putCharInRandomRoom(roomChar,71) #'H'

 self.putCharInRandomRoom(roomChar,71) #'H'

Here is the new method:

def putCharInRandomRoom(self,targetChar,itemChar):

 tile = 0

 while tile != targetChar:

 x = random.randint(0,79)

 y = random.randint(0,44)

 tile = self.getCharAt(x,y)

 self.setCharAt(x,y,itemChar)

More Python Programming for the Absolute Beginner276

FIGURE 14.23

Can you spot the
[W]eapon,

[A]rmor, and
[H]ealth potion

items?

Adding Monsters
Ah, monsters! We need a good, strong antagonist to make a story interesting. Monsters can
be represented with any ASCII code, so peruse the table and find some really gnarly looking
characters for your monsters! Then add them using the same code we wrote for the gold.
Monsters should look scary. Choose the scariest-looking ASCII codes you can for the monsters.
For instance, any of these characters might be a classic one-eyed “beholder”: , , , @. A
“basilisk” might be represented with: ß or B. In the classic Roguelike gameplay, you want the
monsters to get stronger and scarier as the player reaches deeper levels, and start with basic
scary animals near the top, like giant rats, rabid wolves, etc.

Due to the additional work required, we might want to manage the monsters in the main
program rather than inside the Dungeon class. But just to get things started, here’s some code
that will add several “M” characters to the dungeon. Remember, the character is just a place-
holder, without any data behind it. When the player encounters the monster, all of its info
will be generated on the fly.

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 277

 num = random.randint(5,10)

 for n in range(0,num):

 self.putCharInRandomRoom(roomChar,20)

Complete Dungeon Class
That’s a lot of code we’ve gone over in a short time. The complete source code for this game
can be found in the Chapter 14 resource files (found at www.courseptr.com/downloads). We’ll
go over the final code for the game later in this chapter. Right now, let’s just see a complete
listing of the Dungeon class now that it’s finished. The file is called Dungeon.py.

import sys, time, random, math, pygame

from pygame.locals import *

from MyLibrary import *

class Dungeon():

 def __init__(self,offsetx,offsety):

 #create the font sprite

 self.text = MySprite()

 self.text.load("ascii8x12.png", 8, 12, 32)

 #create the level list

 self.tiles = list()

 for n in range(0,80*45):

 self.tiles.append(-1)

 self.offsetx = offsetx

 self.offsety = offsety

 self.generate()

 def generate(self, emptyChar=175, roomChar=218, hallChar=177):

 self.emptyChar = emptyChar

 self.roomChar = roomChar

 self.hallChar = hallChar

 #clear existing level

 for index in range(0,80*45):

 self.tiles[index] = emptyChar

 #create random rooms

 PL = 4

More Python Programming for the Absolute Beginner278

www.courseptr.com/downloads

 PH = 8

 SL = 5

 SH = 14

 self.rooms = list()

 self.createRoom(0,0,PL,PH,SL,SH)

 self.createRoom(20,0,PL,PH,SL,SH)

 self.createRoom(40,0,PL,PH,SL,SH)

 self.createRoom(60,0,PL,PH,SL,SH)

 self.createRoom(0,22,PL,PH,SL,SH)

 self.createRoom(20,22,PL,PH,SL,SH)

 self.createRoom(40,22,PL,PH,SL,SH)

 self.createRoom(60,22,PL,PH,SL,SH)

 #connect the rooms with halls

 self.createHallRight(self.rooms[0],self.rooms[1],hallChar)

 self.createHallRight(self.rooms[1],self.rooms[2],hallChar)

 self.createHallRight(self.rooms[2],self.rooms[3],hallChar)

 self.createHallRight(self.rooms[4],self.rooms[5],hallChar)

 self.createHallRight(self.rooms[5],self.rooms[6],hallChar)

 self.createHallRight(self.rooms[6],self.rooms[7],hallChar)

 #choose a random northern room to connect with the south

 choice = random.randint(0,3)

 print("choice:" + str(choice) + "," + str(choice+4))

 self.createHallDown(self.rooms[choice],self.rooms[choice+4],hallChar)

 #add rooms to level

 for room in self.rooms:

 for y in range(room.y,room.y+room.height):

 for x in range(room.x,room.x+room.width):

 self.setCharAt(x, y, roomChar)

 #add entrance portal

 choice = random.randint(0,7)

 self.entrance_x = self.rooms[choice].x + self.rooms[choice].width//2

 self.entrance_y = self.rooms[choice].y + self.rooms[choice].height//2

 self.setCharAt(self.entrance_x,self.entrance_y,29) #entry portal

 print("entrance:",choice,self.entrance_x,self.entrance_y)

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 279

 #add entrance and exit portals

 choice2 = random.randint(0,7)

 while choice2 == choice:

 choice2 = random.randint(0,7)

 x = self.rooms[choice2].x + self.rooms[choice2].width//2

 y = self.rooms[choice2].y + self.rooms[choice2].height//2

 self.setCharAt(x,y,30) #exit portal

 print("exit:",choice2,x,y)

 #add random gold

 drops = random.randint(5,20)

 for n in range(1,drops):

 self.putCharInRandomRoom(roomChar,70) #'G'

 #add weapon, armor, and health potiions

 self.putCharInRandomRoom(roomChar,86) #'W'

 self.putCharInRandomRoom(roomChar,64) #'A'

 self.putCharInRandomRoom(roomChar,71) #'H'

 self.putCharInRandomRoom(roomChar,71) #'H'

 #add some monsters

 num = random.randint(5,10)

 for n in range(0,num):

 self.putCharInRandomRoom(roomChar,20)

 def putCharInRandomRoom(self,targetChar,itemChar):

 tile = 0

 while tile != targetChar:

 x = random.randint(0,79)

 y = random.randint(0,44)

 tile = self.getCharAt(x,y)

 self.setCharAt(x,y,itemChar)

 def createRoom(self,x,y,rposx,rposy,rsizel,rsizeh):

 room = Rect(x + random.randint(1,rposx),

 y + random.randint(1,rposy),

 random.randint(rsizel,rsizeh),

 random.randint(rsizel,rsizeh))

More Python Programming for the Absolute Beginner280

 self.rooms.append(room)

 def createHallRight(self,src,dst,hallChar):

 pathx = src.x + src.width

 pathy = src.y + random.randint(1,src.height-2)

 self.setCharAt(pathx,pathy,hallChar)

 if pathy > dst.y and pathy < dst.y + dst.height:

 while pathx < dst.x:

 pathx += 1

 self.setCharAt(pathx,pathy,hallChar)

 else:

 while pathx < dst.x+1:

 pathx += 1

 self.setCharAt(pathx,pathy,hallChar)

 if pathy < dst.y+1:

 self.setCharAt(pathx,pathy,hallChar)

 while pathy < dst.y:

 pathy += 1

 self.setCharAt(pathx,pathy,hallChar)

 else:

 self.setCharAt(pathx,pathy,hallChar)

 while pathy > dst.y + dst.height:

 pathy -= 1

 self.setCharAt(pathx,pathy,hallChar)

 def createHallDown(self,src,dst,hallChar):

 pathx = src.x + random.randint(1,src.width-2)

 pathy = src.y + src.height

 self.setCharAt(pathx,pathy,hallChar)

 if pathx > dst.x and pathx < dst.x + dst.width:

 while pathy < dst.y:

 pathy += 1

 self.setCharAt(pathx,pathy,hallChar)

 else:

 while pathy < dst.y+1:

 pathy += 1

 self.setCharAt(pathx,pathy,hallChar)

 if pathx < dst.x+1:

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 281

 self.setCharAt(pathx,pathy,hallChar)

 while pathx < dst.x:

 pathx += 1

 self.setCharAt(pathx,pathy,hallChar)

 else:

 self.setCharAt(pathx,pathy,hallChar)

 while pathx > dst.x + dst.width:

 pathx -= 1

 self.setCharAt(pathx,pathy,hallChar)

 def getCharAt(self, x, y):

 if x < 0 or x > 79 or y < 0 or y > 44:

 print("error: x,y = ", x, y)

 return

 index = y * 80 + x

 if index < 0 or index > 80*45:

 print("error: index = ", index)

 return

 return self.tiles[index]

 def setCharAt(self, x, y, char):

 if x < 0 or x > 79 or y < 0 or y > 44:

 print("error: x,y = ", x, y)

 return

 index = y * 80 + x

 if index < 0 or index > 80*45:

 print("error: index = ", index)

 return

 self.tiles[index] = char

 def draw(self, surface):

 for y in range(0,45):

 for x in range(0,80):

 char = self.getCharAt(x,y)

 if char >= 0 and char <= 255:

 self.draw_char(surface, x, y, char)

 else:

 pass #empty tile

More Python Programming for the Absolute Beginner282

 def draw_char(self, surface, tilex, tiley, char):

 self.text.X = self.offsetx + tilex * 8

 self.text.Y = self.offsety + tiley * 12

 self.text.frame = char

 self.text.last_frame = char

 self.text.update(0)

 self.text.draw(surface)

Adding the Player’s Character
We now have a playable random dungeon level generator, and have populated the dungeon
with things. The player’s character (PC) is a special character that will not be merely added
to the dungeon; it will be maintained with separate variables. After all, we have to keep track
of the player’s stats. This is best done with a custom Player class. When the game begins,
usually the player can participate in “rolling” the character’s stats. We will just fill them in
randomly for the chapter example, but you may want to add a feature to your own game
where you can customize the player or re-roll the stats before moving on.

Our player variable will be global, not part of the Dungeon class. So, let’s assume the player
object is created before the dungeon object (in the main program code), and go from there.
When the level is generated, we can just position the player using the Dungeon.entrance_x and
Dungeon.entrance_y variables. We’ll skimp on some of the code at this point because the com-
plete source code for the main file is shown later.

 dungeon.generate()

 player.x = dungeon.entrance_x+1

 player.y = dungeon.entrance_y+1

The Player Class
The Player class has all of the variables and methods needed to manage the player’s stats and
position. We will draw the player’s ASCII character separately from the rest of the dungeon,
over the top of the dungeon tiles. Here, now, is a highly developed Player class with a helper
function called Die used to generate random numbers like from a die roll. The class will be
added to a new Python source code file called Player.py. Just to be thorough, note the required
import statements. Note that the Monster class has been appended to the bottom of this listing,
as it inherits directly from Player.

import sys, time, random, math, pygame

from pygame.locals import *

from MyLibrary import *

from Dungeon import *

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 283

def Die(faces):

 roll = random.randint(1,faces)

 return roll

class Player():

 def __init__(self,dungeon,level,name):

 self.dungeon = dungeon

 self.alive = True

 self.x = 0

 self.y = 0

 self.name = name

 self.gold = 0

 self.experience = 0

 self.level = level

 self.weapon = level

 self.weapon_name = "Club"

 self.armor = level

 self.armor_name = "Rags"

 self.roll()

 def roll(self):

 self.str = 6 + Die(6) + Die(6)

 self.dex = 6 + Die(6) + Die(6)

 self.con = 6 + Die(6) + Die(6)

 self.int = 6 + Die(6) + Die(6)

 self.cha = 6 + Die(6) + Die(6)

 self.max_health = 10 + Die(self.con)

 self.health = self.max_health

 def levelUp(self):

 self.str += Die(6)

 self.dex += Die(6)

 self.con += Die(6)

 self.int += Die(6)

 self.cha += Die(6)

 self.max_health += Die(6)

 self.health = self.max_health

More Python Programming for the Absolute Beginner284

 def draw(self,surface,char):

 self.dungeon.draw_char(surface,self.x,self.y,char)

 def move(self,movex,movey):

 char = self.dungeon.getCharAt(self.x + movex, self.y + movey)

 if char not in (self.dungeon.roomChar,self.dungeon.hallChar):

 return False

 else:

 self.x += movex

 self.y += movey

 return True

 def moveUp(self): return self.move(0,-1)

 def moveDown(self): return self.move(0,1)

 def moveLeft(self): return self.move(-1,0)

 def moveRight(self): return self.move(1,0)

 def addHealth(self,amount):

 self.health += amount

 if self.health < 0:

 self.health = 0

 elif self.health > self.max_health:

 self.health = self.max_health

 def addExperience(self,xp):

 cap = math.pow(10,self.level)

 self.experience += xp

 if self.experience > cap:

 self.levelUp()

 def getAttack(self):

 attack = self.str + Die(20)

 return attack

 def getDefense(self):

 defense = self.dex + self.armor

 return defense

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 285

 def getDamage(self,defense):

 damage = Die(8) + self.str + self.weapon - defense

 return damage

class Monster(Player):

 ddef __init__(self,dungeon,level,name):

 PPlayer.__init__(self,dungeon,level,name)

 sself.gold = random.randint(1,4) * level

 sself.str = 1 + Die(6) + Die(6)

 sself.dex = 1 + Die(6) + Die(6)

Moving the Player Character
Now we have enough built up to move and draw the player’s character (which brings a whole
new meaning to the word!). In the event handler of the main program, we’ll respond to key
press events in order to move the player’s character. What happens is, we try to move the
player in one of the four directions. If that way is blocked by any code other than a room or
hall code, then that is an object and we should respond to it before moving over it. Note that
some of the code for the event handler has been skipped so we can focus on the important
stuff.

 if event.key == K_ESCAPE: sys.exit()

 elif event.key == K_SPACE:

 dungeon.generate(TILE_EMPTY,TILE_ROOM,TILE_HALL)

 player.x = dungeon.entrance_x+1

 player.y = dungeon.entrance_y+1

 elif event.key==K_UP or event.key==K_w:

 if player.moveUp() == False:

 playerCollision(0,-1)

 elif event.key==K_DOWN or event.key==K_s:

 if player.moveDown() == False:

 playerCollision(0,1)

 elif event.key==K_RIGHT or event.key==K_d:

 if player.moveRight() == False:

 playerCollision(1,0)

More Python Programming for the Absolute Beginner286

 elif event.key==K_LEFT or event.key==K_a:

 if player.moveLeft() == False:

 playerCollision(-1,0)

When the up, down, left, or right keys are pressed, we “simulate” movement in that direction
by calling Player.MoveUp(), Player.MoveDown(), and so on. These methods return True if the
movement is legal, or False if there’s an obstacle in the way. If that happens, we need to
respond to the “collision” with the obstacle. That is handled by a helper function in our main
program, called playerCollision(). This is some early code that just tries to identify the
obstacle and print a message to the console. But, this is all we need to complete the game.
Now, if the player tries to move into a wall, the game won’t let them!

def playerCollision(stepx,stepy):

 global TILE_EMPTY,TILE_ROOM,TILE_HALL,dungeon,player,level

 char = dungeon.getCharAt(player.x + stepx, player.y + stepy)

 if char == 29: #portal up

 print("portal up")

 elif char == 30: #portal down

 print("portal down")

 elif char == TILE_EMPTY: #wall

 print("You ran into the wall--ouch!")

ADVANCED GAMEPLAY
In this section, we cover the advanced gameplay options that bring the game to life, covering
fighting, visibility, item pickups, A.I. movement, and others. By this point, we have a fully
interactive game but incomplete gameplay with the finished Dungeon, Player, and Monster
classes. To remedy the gameplay issue, we’ll include a complete listing of the code, one section
at a time. Let’s begin with the initialization. In order for this program to run, be sure to include
the Dungeon.py and Player.py files in the same folder, along with the ASCII font file,
ascii8x12.png.

import sys, time, random, math, pygame

from pygame.locals import *

from MyLibrary import *

from Dungeon import *

from Player import *

def game_init():

 global screen, backbuffer, font1, font2, timer

 pygame.init()

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 287

 screen = pygame.display.set_mode((700,650))

 backbuffer = pygame.Surface((700,650))

 pygame.display.set_caption("Dungeon Game")

 font1 = pygame.font.SysFont("Courier New", size=18, bold=True)

 font2 = pygame.font.SysFont("Courier New", size=14, bold=True)

 timer = pygame.time.Clock()

def Die(faces):

 roll = random.randint(1,faces)

 return roll

Picking Up Items
To enable item pickups, the player must have an inventory, which presumes he or she has a
backpack of some sort. We can make that assumption if we want, but an inventory system
requires quite a bit of design and forethought. We can’t just add items to a list. How do we
display them? There’s no feature in the game to display an inventory system. Perhaps a sec-
ondary screen that hides the dungeon and shows the inventory? That’s a feasible idea, but
not one we’re going to explore in this chapter. I will encourage you to pursue this idea if you
wish, but we’ll stick with the simple approach with weapons and armor.

The simple approach is this: The player has an attack and defense value for fighting monsters.
When you pick up a weapon or armor in the dungeon, if that item is better than what you
currently have, then it is auto-equipped. If not, it is turned into gold. A more complex Rogue-
like game would make you return to a shop and sell the items, but that is another rather
complex feature that would take a very long time to explain, and so it is beyond the scope of
this chapter. We need a whole book to explore these ideas! In fact, whole books have been
written on them.

Previously, we added several items to the game (“W,” “A,” “G,” and “H”), so let’s deal with
those first, and then you can use similar code for any other types of items you wish to add to
the game. To do this, we return to the playerCollision() function again, in the main program
code. Here’s an example of picking up gold.

def playerCollision(stepx,stepy):

 global TILE_EMPTY,TILE_ROOM,TILE_HALL,dungeon,player,level

 yellow = (220,220,0)

 green = (0,220,0)

 #get object at location

 char = dungeon.getCharAt(player.x + stepx, player.y + stepy)

More Python Programming for the Absolute Beginner288

 if char == 29: #portal up

 message("portal up")

 elif char == 30: #portal down

 message("portal down")

 elif char == TILE_EMPTY: #wall

 message("You ran into the wall--ouch!")

 eelif char == 70: #gold

 ggold = random.randint(1,level)

 pplayer.gold += gold

 ddungeon.setCharAt(player.x+stepx, player.y+stepy, TILE_ROOM)

 mmessage("You found " + str(gold) + " gold!", yellow)

To handle weapons, we need to look for the ASCII code used for a weapon drop. In the
Dungeon class, this was the “W” character, ASCII code 86. We’ll write some code to give the
player a random new weapon when they pick up a “W.”

 elif char == 86: #weapon

 weapon = random.randint(1,level+2)

 if level <= 5: #low levels get crappy stuff

 temp = random.randint(0,2)

 else:

 temp = random.randint(3,6)

 if temp == 0: name = "Dagger"

 elif temp == 1: name = "Short Sword"

 elif temp == 2: name = "Wooden Club"

 elif temp == 3: name = "Long Sword"

 elif temp == 4: name = "War Hammer"

 elif temp == 5: name = "Battle Axe"

 elif temp == 6: name = "Halberd"

 if weapon >= player.weapon:

 player.weapon = weapon

 player.weapon_name = name

 message("You found a " + name + " +" + str(weapon) + "!",yellow)

 else:

 player.gold += 1

 message("You discarded a worthless " + name + ".")

 dungeon.setCharAt(player.x+stepx, player.y+stepy, TILE_ROOM)

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 289

We’ll use similar code for armor pickups. The code for an armor item is “A,” 64.

 elif char == 64: #armor

 armor = random.randint(1,level+2)

 if level <= 5: #low levels get crappy stuff

 temp = random.randint(0,2)

 else:

 temp = random.randint(3,7)

 if temp == 0: name = "Cloth"

 elif temp == 1: name = "Patchwork"

 elif temp == 2: name = "Leather"

 elif temp == 3: name = "Chain"

 elif temp == 4: name = "Scale"

 elif temp == 5: name = "Plate"

 elif temp == 6: name = "Mithril"

 elif temp == 7: name = "Adamantium"

 if armor >= player.armor:

 player.armor = armor

 player.armor_name = name

 message("You found a " + name + " +" + str(armor) + "!",yellow)

 else:

 player.gold += 1

 message("You discarded a worthless " + name + ".")

 dungeon.setCharAt(player.x+stepx, player.y+stepy, TILE_ROOM)

Lastly, we have health potions to pick up, character “H,” 71.

 elif char == 71: #health

 heal = 0

 for n in range(0,level):

 heal += Die(6)

 player.addHealth(heal)

 dungeon.setCharAt(player.x+stepx, player.y+stepy, TILE_ROOM)

 message("You drank a healing potion worth " + str(heal) + \

 " points!", green)

It’s been a while since we’ve seen a build of the game, so let’s see what it looks like at this
point. The message() function is a helper that displays action messages below the dungeon.
Just for the variety, the room character has been replaced with a blank space, which is black.

More Python Programming for the Absolute Beginner290

Now the rooms are black and the outer dungeon is solid-looking. You may use either theme
or use another one entirely if you wish. This just shows the variety of options.

FIGURE 14.24

Picking up a new
weapon.

Fighting Monsters
Combat in most RPGs follows very specific rules that we will try to emulate. The basic premise
for combat in modern RPGs may differ from the way it was done in Rogue, but we’ll do our
best to make combat fun. There are three factors involved in combat:

• Defender’s defense value

• Attacker’s attack value

• Attacker’s damage value

You might have noticed that we already have methods in the Player class for doing these
things, so we’re all ready to go as far as the code is concerned. Let’s dig into the calculations
to understand how combat works.

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 291

Calculating Defense
To calculate the defense value used for a to-hit roll, which determines whether the attack
succeeds, we use the following formula:

Defense = DEXTERITY + Armor Value

Let’s face it, we’re going to fake it here regarding monster armor, and just throw a random
number out for use as armor, based on the current dungeon level. So, given the current dun-
geon level, we’ll multiply that by a random number. Let’s say the current level is 5. Therefore,
whatever number we roll for the monster’s dexterity will be multiplied by 5.

Calculating Attack
The formula for the attack value is as follows:

Attack = STRENGTH + D20

The “D20” means rolling a 20-sided die. There’s a wide variance in the attack value with such
a many-sided die. This reflects the effect of combat, where some swings totally miss and some
hit the enemy. Based on this attack value, we compare it to the monster’s defense value. If
attack is greater than defense, then the “to-hit” roll succeeds. Damage is calculated next.

Calculating Damage
If the to-hit roll succeeds, then the defender takes damage. That amount will be based on the
following calculation:

Damage = D8 + STRENGTH + Weapon Damage - Defense

As you can see, the Defense value is used twice: first, to calculate to-hit, and secondly, to
calculate damage. That’s good! It means the stats of the defender are very important to the
gameplay.

Combat Rounds
The game will only recognize one fight at a time. When the player attacks a monster, there’s
no turning back, no way to flee. A global monster object will remember the current monster
being fought.

monster = Monster(dungeon,level,"Grue")

Hitting a Monster
Unfortunately, to build a really comprehensive combat system like this requires that we keep
track of each monster individually in a list, which is just too overwhelming for this single
chapter project. So, we’re going to cheat a bit. All of the logic for rolling to-hit chance, damage,

More Python Programming for the Absolute Beginner292

and so on, could be written given the methods are already written in Player, but one hit will
kill every monster. Where we’ll make it difficult is in the amount of damage that the player
takes as a result. Some high-level monsters could potentially kill the player with a single blow
too, if the player’s armor class is not up to the pounding. The only time an attack will continue
for more than one round is if the player misses completely!

We can use the playerCollision() function again to attack a monster.

 elif char == 20: #monster

 attack_monster(player.x+stepx, player.y+stepy, 20)

Let’s write that important function now. Working with the to-hit, attack, damage, defense
values is a lot of fun! The combat calculations are often the most enjoyable part of building
an RPG. If you want to make improvements or change the logic, you are welcome to make
this game your own. Figure 14.25 shows the result of a battle with a Grue! Note that gold was
dropped where the Grue died. Can you spot the player? It’s in the room on the lower left
corner.

FIGURE 14.25

Fighting a nasty
Grue in the
dungeon.

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 293

def attack_monster(x,y,char):

 global dungeon, TILE_ROOM

 monster = Monster(dungeon,level,"Grue")

 #player's attack

 defense = monster.getDefense()

 attack = player.getAttack()

 damage = player.getDamage(defense)

 battle_text = "You hit the " + monster.name + " for "

 if attack == 20 + player.str: #critical hit?

 damage *= 2

 battle_text += str(damage) + " CRIT points!"

 dungeon.setCharAt(x, y, 70) #drop gold

 elif attack > defense: #to-hit?

 if damage > 0:

 battle_text += str(damage) + " points."

 dungeon.setCharAt(x, y, 70) #drop gold

 else:

 battle_text += "no damage!"

 damage = 0

 else:

 battle_text = "You missed the " + monster.name + "!"

 damage = 0

 #monster's attack

 defense = player.getDefense()

 attack = monster.getAttack()

 damage = monster.getDamage(defense)

 if attack > defense: #to-hit?

 if damage > 0:

 #if damage is overwhelming, halve it

 if damage > player.max_health: damage /= 2

 battle_text += " It hit you for " + str(damage) + " points."

 player.addHealth(-damage)

 else:

 battle_text += " It no damage to you."

 else:

 battle_text += " It missed you."

More Python Programming for the Absolute Beginner294

 #display battle results

 message(battle_text)

 #did the player survive?

 if player.health <= 0: player.alive = False

Moving Monsters
When moving monsters, we have a lot of options, and it depends on what you want the
monsters to do in the game. We really don’t want them to just immediately start chasing the
player. But what if the player stumbles upon a monster? If the player is close enough, the
monster definitely should move toward the player! Just remember, this is a turn-based game,
so things only happen when the player moves. We can borrow some of the visibility code to
see when the player is close enough to a monster to trigger the A.I. code for movement. It’s
important to make sure the monster doesn’t go through any walls or gold or items. If a mon-
ster moves over gold or other items in our “easy” dungeon tile algorithm, those items are
erased by the monster’s code.

Let’s begin by inserting some logic into the user input section of code so that monsters will
move when the player moves. This code is found in the main loop in the event handler.

 elif event.key==K_UP or event.key==K_w:

 if player.moveUp() == False:

 playerCollision(0,-1)

 eelse:

 mmove_monsters()

 elif event.key==K_DOWN or event.key==K_s:

 if player.moveDown() == False:

 playerCollision(0,1)

 eelse:

 mmove_monsters()

 elif event.key==K_RIGHT or event.key==K_d:

 if player.moveRight() == False:

 playerCollision(1,0)

 eelse:

 mmove_monsters()

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 295

 elif event.key==K_LEFT or event.key==K_a:

 if player.moveLeft() == False:

 playerCollision(-1,0)

 eelse:

 mmove_monsters()

Although the Monster class inherits from Player, and thus it has the move methods available,
we can’t use them! Monsters in the tilemap are just placeholders until the player stumbles
into them. No, we have to move things in the dungeon with new code. With these two helper
functions, move_monsters() and move_monster(), every time the player makes a move, the
monsters all move too! Better yet, they move inside their current room and do not walk over
anything or bump into any of the walls.

def move_monsters():

 #find monsters

 for y in range(0,44):

 for x in range(0,79):

 tile = dungeon.getCharAt(x,y)

 if tile == 20: #monster?

 move_monster(x,y,20)

def move_monster(x,y,char):

 global TILE_ROOM

 movex = 0

 movey = 0

 dir = random.randint(1,4)

 if dir == 1: movey = -1

 elif dir == 2: movey = 1

 elif dir == 3: movex = -1

 elif dir == 4: movex = 1

 c = dungeon.getCharAt(x + movex, y + movey)

 if c == TILE_ROOM:

 dungeon.setCharAt(x, y, TILE_ROOM) #delete old position

 dungeon.setCharAt(x+movex, y+movey, char) #move to new position

More Python Programming for the Absolute Beginner296

Visibility Range
Let’s just admit it: the game isn’t really all that scary if you can see the whole level immediately
from a bird’s-eye view! What we need to implement is a scheme to hide everything that is
beyond the player’s visible range. Some Roguelike games tend to reveal the level and keep it
visible as the player explores, as a sort of built-in mapping system. Some reveal the dungeon
as you go, but darken areas that are no longer visible due to lighting. These are really great
features that add to the depth of the gameplay. What can we do very simply to create a similar
effect without getting bogged down in complex code? To hide everything not in view of the
player requires a ray-casting system. It’s not hard to write code to do that, but the code does
require more explanation than we can get into in this single chapter.

Learn how a line-of-sight ray-casting algorithm can be added to the game in my
book Visual C# Game Programming for Teens, published in 2011 by Course PTR.
That entire book is devoted to RPG techniques.

To reveal the level and keep it visible requires an extra flag attached to every tile that deter-
mines whether it has been “seen” or not. That would require modifications to the dungeon
code, which I am not prepared to do at this point. We will take a simple but effective approach:
simulating a torch light around the player. This adds an interesting new dimension to the
gameplay. What if the player runs out of lamp oil or candles? We could reduce the player’s
visibility to a tiny circle, but enlarge it if the player has a light source. Wouldn’t that be spooky,
wandering around when you can only see a few feet in front of you? Only a fool would take
the chance of running into a Grue in the dark!

This is surprisingly easier than one might expect it to be. All we have to do is go back to
the Dungeon.draw() method, duplicate it, and skip any tiles that are a certain range
from the player. Or, rather, pass the method new parameters, position and radius, and have
it draw only the tiles within that range. Since this is a dramatic change to the game, we’ll
make it an option that doesn’t have to be on all the time. We’ll call this new method
Dungeon.draw_radius(). This surprisingly small amount of code produces the dramatic result
shown in Figure 14.26.

TRICK

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 297

FIGURE 14.26

Now you can only
see as far as the

player’s lamp
allows—ooh,

scary!

def draw_radius(self, surface, rx, ry, radius):

 left = rx - radius

 if left < 0: left = 0

 top = ry - radius

 if top < 0: top = 0

 right = rx + radius

 if right > 79: right = 79

 bottom = ry + radius

 if bottom > 44: bottom = 44

 for y in range(top,bottom):

 for x in range(left,right):

 char = self.getCharAt(x,y)

 if char >= 0 and char <= 255:

 self.draw_char(surface, x, y, char)

More Python Programming for the Absolute Beginner298

Exiting the Level
The player may enter an entrance portal to go up a level, or an exit portal to go down a level.
These “portals” might simply be stairs or steps between the levels, not really magical tele-
porters, but the game code treats them as such. Upon touching an entrance portal, the current
level will be reduced by one, and the level re-generated. A real Roguelike game—that is, one
intended for release with polish and detail—will keep track of the levels so the player doesn’t
get to cheat by just going in and out of a portal to re-fill the level with gold and items again.
When a room has been cleared, it should remain cleared of items, but perhaps monsters could
re-spawn after a while. We already detect when the player touches the entry or exit portals,
so it’s just a matter of updating the level variable and re-rolling the dungeon.

Wrapping Up the Gameplay
Now it’s time to wrap up this game. We need to add a few basic things, like displaying the
current level, the player’s stats and gold, and other informative details. We will go over the
basic code here, and you can use it to display any additional information you want in the
game.

Printing Game Stats
The following function handles most of the information presented on the screen regarding
the player’s stats, current dungeon level, and so on.

def print_stats():

 print_text(font2, 0, 615, "STR")

 print_text(font2, 40, 615, "DEX")

 print_text(font2, 80, 615, "CON")

 print_text(font2, 120, 615, "INT")

 print_text(font2, 160, 615, "CHA")

 print_text(font2, 200, 615, "DEF")

 print_text(font2, 240, 615, "ATT")

 fmt = "{:3.0f}"

 print_text(font2, 0, 630, fmt.format(player.str))

 print_text(font2, 40, 630, fmt.format(player.dex))

 print_text(font2, 80, 630, fmt.format(player.con))

 print_text(font2, 120, 630, fmt.format(player.int))

 print_text(font2, 160, 630, fmt.format(player.cha))

 print_text(font2, 200, 630, fmt.format(player.getDefense()))

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 299

 #get average damage

 global att,attlow,atthigh

 att[0] = att[1]

 att[1] = att[2]

 att[2] = att[3]

 att[3] = att[4]

 att[4] = (player.getAttack() + att[0] + att[1] + att[2] + att[3]) // 5

 if att[4] < attlow: attlow = att[4]

 elif att[4] > atthigh: atthigh = att[4]

 print_text(font2, 240, 630, str(attlow) + "-" + str(atthigh))

 print_text(font2, 300, 615, "LVL")

 print_text(font2, 300, 630, fmt.format(player.level))

 print_text(font2, 360, 615, "EXP")

 print_text(font2, 360, 630, str(player.experience))

 print_text(font2, 440, 615, "WPN")

 print_text(font2, 440, 630, str(player.weapon) + ":" + player.weapon_name)

 print_text(font2, 560, 615, "ARM")

 print_text(font2, 560, 630, str(player.armor) + ":" + player.armor_name)

 print_text(font2, 580, 570, "GOLD " + str(player.gold))

 print_text(font2, 580, 585, "HLTH " + str(player.health) + "/" + \

 str(player.max_health))

Common Messages
The game needed a consistent way to display information about events happening in the
game, like combat rolls and so forth. The message() function handles this, while the actual
message is printed later.

def message(text,color=(255,255,255)):

 global message_text, message_color

 message_text = text

 message_color = color

Remaining Code
Finally, we arrive at the main program logic in Game.py. Thus far, we have had two major
helper classes in Player.py and Dungeon.py, which significantly cleaned up the code in
Game.py, which we have been going over for the last few pages. Now, we can present just the

More Python Programming for the Absolute Beginner300

core logic of the game. It is surprisingly simple considering how much is going on. You have
already seen the event handler code, but it is shown here again so the code is not interrupted.

#define ASCII codes used for dungeon

TILE_EMPTY = 177

TILE_ROOM = 31

TILE_HALL = 31

#main program begins

game_init()

game_over = False

last_time = 0

dungeon = Dungeon(30, 30)

dungeon.generate(TILE_EMPTY,TILE_ROOM,TILE_HALL)

player = Player(dungeon, 1, "Player")

player.x = dungeon.entrance_x+1

player.y = dungeon.entrance_y+1

level = 1

message_text = "Welcome, brave adventurer!"

message_color = 0,200,50

draw_radius = False

#used to estimate attack damage

att = list(0 for n in range(0,5))

attlow=90

atthigh=0

#main loop

while True:

 timer.tick(30)

 ticks = pygame.time.get_ticks()

 ##event section

 for event in pygame.event.get():

 if event.type == QUIT: sys.exit()

 elif event.type == KEYDOWN:

 if event.key == K_ESCAPE: sys.exit()

 elif event.key == K_TAB:

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 301

 ##toggle map mode

 draw_radius = not draw_radius

 elif event.key == K_SPACE:

 dungeon.generate(TILE_EMPTY,TILE_ROOM,TILE_HALL)

 player.x = dungeon.entrance_x+1

 player.y = dungeon.entrance_y+1

 elif event.key==K_UP or event.key==K_w:

 if player.moveUp() == False:

 playerCollision(0,-1)

 else:

 move_monsters()

 elif event.key==K_DOWN or event.key==K_s:

 if player.moveDown() == False:

 playerCollision(0,1)

 else:

 move_monsters()

 elif event.key==K_RIGHT or event.key==K_d:

 if player.moveRight() == False:

 playerCollision(1,0)

 else:

 move_monsters()

 elif event.key==K_LEFT or event.key==K_a:

 if player.moveLeft() == False:

 playerCollision(-1,0)

 else:

 move_monsters()

 ##clear the background

 backbuffer.fill((20,20,20))

 ##draw the dungeon

 if draw_radius:

 dungeon.draw_radius(backbuffer, player.x, player.y, 6)

 else:

 dungeon.draw(backbuffer)

 ##draw the player's little dude

 player.draw(backbuffer,0)

More Python Programming for the Absolute Beginner302

 ##draw the back buffer

 screen.blit(backbuffer, (0,0))

 print_text(font1, 0, 0, "Dungeon Level " + str(level))

 print_text(font1, 600, 0, player.name)

 ##special message text

 print_text(font2, 30, 570, message_text, message_color)

 print_stats()

 pygame.display.update()

With the lamp mode toggled on (toggle it with the Tab key) and all of the information dis-
played on the screen, our game is now finished! See Figure 14.27 for the final result.

FIGURE 14.27

Our RPG is
finished with many
of the features of a

great Roguelike
game.

Chapter 14 • More of Everything: The Dungeon Role-Playing Game 303

SUMMARY
This chapter was a singularly monumental effort to build an old-school RPG in a single go. I
think we’ve succeeded in getting the most important aspects of the gameplay in, given the
limited space. There’s more that could be done with the game, of course, but that might be
said of anything and everything when we’re talking about game programming. I trust you
will do something fun with it above and beyond the chapter example.

Challenges
1. Make it possible to enter the portals and go up to the previous

level, or down to the next level. To make this work, you will
need to look into the random module to see how to set a
common random number seed so that the random dungeon
levels look the same each time the game is played. We don’t
want the levels to repeat forever, just during that single run.

2. Add some more monsters to the game, beyond the single group
that has been added. Give them some more interesting
movements by writing better A.I. code. For starters, monsters
should chase and attack if the player gets too close!

3. Create a better user interface using bars for some of the stats
(like health) instead of just numbers. Consider adding a limited
inventory system and perhaps even a shop at the top level
where the player can to go sell gear and get better stuff, heal
damage, and so on.

More Python Programming for the Absolute Beginner304

AA P P E N D I X

INSTALLING PYTHON AND

PYGAME

his appendix shows step by step how to install Python and Pygame with
figures detailing each step. Python and Pygame are both very easy to
install, and equally easy to use, but someone who is not familiar with these

tools may not know where to start. This appendix explains the steps.

INSTALLING PYTHON
The website for Python is http://www.python.org. This book uses Python 3.2. If you
have an earlier version already installed, like 2.7, the code in this book will not
compile with that earlier 2.x version. The Python language changed with 3.0. If
you have a later version after 3.2, then the code in this book should compile, but I
can’t guarantee it (obviously because that’s in the future). Python is pretty easy to
install, so I recommend installing 3.2 if you have the option of which version to
install.

The download page for Python 3.2.1 is found at http://www.python.org/download/
releases/3.2.1/.

If you are using Windows, you will want to download the “Windows x86” version.
If you know for sure that you have 64-bit Windows, then download the “Windows
x86-64” version. Likewise, if you have a Mac, download either the 32-bit or 64-bit
version of the Python installer for Mac, depending on which version of OS X you
have.

T

http://www.python.org
http://www.python.org/download/releases/3.2.1/
http://www.python.org/download/releases/3.2.1/

For easy reference, the following steps will go through the steps for installing Python (for
beginners). Advanced readers may skip this section. First, when running the installer, we are
presented with the first screen shown in Figure A-1.

FIGURE A.1

The first screen
that comes up

with the Python
3.2 installer.

The next screen, shown in Figure A.2, allows you to change the default installation folder. I
recommend leaving it at the default location, for the benefit of file associations, but you may
change it if you need to.

Next up is the installation options screen shown in Figure A.3. I recommend just leaving these
options at their default values, unless you have a reason to change them.

More Python Programming for the Absolute Beginner306

FIGURE A.2

Selecting the
installation folder.

FIGURE A.3

Installation
options.

Appendix A • Installing Python and Pygame 307

Next, we are presented with the final screen before installation begins, shown in Figure A.4.
Upon clicking the Finish button, the installer will install the files into the location you
specified.

FIGURE A.4

Preparing to begin
the installation.

Finally, we see that the installation begins, as shown in Figure A.5. This will simply show the
progress as the Python files are installed on your computer.

More Python Programming for the Absolute Beginner308

FIGURE A.5

Installation of the
Python files.

INSTALLING PYGAME
Pygame must be installed after Python, because it is an add-on library. Pygame does not auto-
matically get installed with Python. Despite the name, Pygame was not created by the same
developers that created Python itself. So, we must download and install Pygame separately.
This must be done after Python has already been installed.

There may be a new version of Pygame by the time you read this, but I strongly recommend
installing version 1.9, since that is the version covered in this book. If a new 2.x has been
released, you may have problems compiling the code with a newer version of Pygame. There’s
nothing wrong with 1.9. New versions of libraries like Pygame are released with new features,
not necessarily to fix problems. So, go ahead and download Pygame 1.9.

The website for Pygame is found at http://www.pygame.org.

The latest installer for Pygame 1.9 that supports Python 3.2 is a file called pygame-
1.9.2.a0.win32-py3.2.msi. Note that new files will likely be added to the list of installers in the
future, but this is the version you want to use for Python 3.2.

Appendix A • Installing Python and Pygame 309

http://www.pygame.org

There is an alternate site of installers for Pygame and many other Python libraries at this site:
http://www.lfd.uci.edu/~gohlke/pythonlibs/. You can scroll down this comprehensive list to
find Pygame.

When you run the Pygame installer, it will automatically detect the Python installation folder
and will install itself into that location. There are really no options that you will need to
change.

More Python Programming for the Absolute Beginner310

http://www.lfd.uci.edu/~gohlke/pythonlibs/

BC H A P T E R

PYGAME KEY CODES

ollowing is a list of all the key codes recognized by Pygame, either with key
events or key polling. See Chapter 4 for details on how to use these key
codes.

T A B L E B . 1 : P Y G A M E K E Y C O D E S

Key ASCII Common Name
K_BACKSPACE \b backspace

K_TAB \t tab

K_CLEAR clear

K_RETURN \r return

K_PAUSE pause

K_ESCAPE ^[escape

K_SPACE space

K_EXCLAIM ! exclaim

K_QUOTEDBL " quotedbl

K_HASH # hash

K_DOLLAR $ dollar

F

T A B L E B . 1 : P Y G A M E K E Y C O D E S (C O N T .)

Key ASCII Common Name
K_AMPERSAND & ampersand

K_QUOTE ' quote

K_LEFTPAREN (left parenthesis

K_RIGHTPAREN) right parenthesis

K_ASTERISK * asterisk

K_PLUS + plus sign

K_COMMA , comma

K_MINUS - minus sign

K_PERIOD . period

K_SLASH / forward slash

K_0 0 0

K_1 1 1

K_2 2 2

K_3 3 3

K_4 4 4

K_5 5 5

K_6 6 6

K_7 7 7

K_8 8 8

K_9 9 9

K_COLON : colon

K_SEMICOLON ; semicolon

K_LESS < less-than sign

K_EQUALS = equals sign

K_GREATER > greater-than sign

K_QUESTION ? question mark

K_AT @ at

K_LEFTBRACKET [left bracket

K_BACKSLASH \ backslash

K_RIGHTBRACKET] right bracket

K_CARET ^ caret

K_UNDERSCORE _ underscore

K_BACKQUOTE ` grave

K_a a a

K_b b b

K_c c c

K_d d d

More Python Programming for the Absolute Beginner312

T A B L E B . 1 : P Y G A M E K E Y C O D E S (C O N T .)

Key ASCII Common Name
K_e e e

K_f f f

K_g g g

K_h h h

K_i i i

K_j j j

K_k k k

K_l l l

K_m m m

K_n n n

K_o o o

K_p p p

K_q q q

K_r r r

K_s s s

K_t t t

K_u u u

K_v v v

K_w w w

K_x x x

K_y y y

K_z z z

K_DELETE delete

K_KP 0 keypad 0

K_KP 1 keypad 1

K_KP 2 keypad 2

K_KP 3 keypad 3

K_KP 4 keypad 4

K_KP 5 keypad 5

K_KP 6 keypad 6

K_KP 7 keypad 7

K_KP 8 keypad 8

K_KP 9 keypad 9

K_KP_PERIOD . keypad period

K_KP_DIVIDE / keypad divide

K_KP_MULTIPLY * keypad multiply

K_KP_MINUS - keypad minus

Appendix B • Pygame Key Codes 313

T A B L E B . 1 : P Y G A M E K E Y C O D E S (C O N T .)

Key ASCII Common Name
K_KP_PLUS + keypad plus

K_KP_ENTER \r keypad enter

K_KP_EQUALS = keypad equals

K_UP up arrow

K_DOWN down arrow

K_RIGHT right arrow

K_LEFT left arrow

K_INSERT insert

K_HOME home

K_END end

K_PAGEUP page up

K_PAGEDOWN page down

K_F1 F1

K_F2 F2

K_F3 F3

K_F4 F4

K_F5 F5

K_F6 F6

K_F7 F7

K_F8 F8

K_F9 F9

K_F10 F10

K_F11 F11

K_F12 F12

K_F13 F13

K_F14 F14

K_F15 F15

K_NUMLOCK numlock

K_CAPSLOCK capslock

K_SCROLLOCK scrollock

K_RSHIFT right shift

K_LSHIFT left shift

K_RCTRL right ctrl

K_LCTRL left ctrl

K_RALT right alt

K_LALT left alt

K_RMETA right meta

More Python Programming for the Absolute Beginner314

T A B L E B . 1 : P Y G A M E K E Y C O D E S (C O N T .)

Key ASCII Common Name
K_LMETA left meta

K_LSUPER left windows key

K_RSUPER right windows key

K_MODE mode shift

K_HELP help

K_PRINT print screen

K_SYSREQ sysrq

K_BREAK break

K_MENU menu

K_POWER power

K_EURO euro

Appendix B • Pygame Key Codes 315

This page intentionally left blank

INDEX

Special Characters
(pound character), 8
% (modulus character), 87
8-bit Intel processors, 11
16-bit register, 10–11

a
accessor/mutator methods, 138
adaptive programming, 13
all_data variable, 45
American Standard Code for Information

Interchange. See ASCII
Analog Clock Demo, 83–92

code for, 89–90
drawing clock, 84–92

hours, 86–88
minutes, 88–89
numbers, 85–86
seconds, 89–90

getting time for, 84
AngBand RPG, 249–250
angular velocity, in Tank Battle Game,

202–206
calculating, 203
moving forward and backward at angle,

205–206
and rotation, 203–205

animation, with sprites, 109–125
Escape the Dragon Game, 119–125
frames for, 112–115
MySprite class, 116–117

overview, 110–112
sprite groups, 115
sprite sheets, 112
testing, 118–119

append() method, 151, 153
arcs, drawing, 30–31
Arnold, Ken, 247
arrays, 150–157

elements in
adding, 151
changing, 151
counting, 151
removing, 152
reversing, 152
searching for, 152
sorting, 152

multi-dimensional, 154–157
changing many elements in, 155–157
changing one element in, 154–155

one-dimensional, 150–153
queue-like, 153–154
stack-like, 153
tuples as constant, 159–160

Artillery Gunner Game, 219–244
cannons in, 230–235

drawing turrets, 231–232
firing, 232–235
placing, 230–231
scoring hits, 234–235

code for, 235–244
overview, 219–220

Terrain class, 220–230
locating grid points in, 228–230
smoothing terrain, 226–228

ASCII (American Standard Code for
Information Interchange), 253–257

character set, 253–254
key code constants, 62
NetHack, 248–249
overview, 245
printing of, 254
table as sprite, 258–259
table program for, 254–257

assembler program, 10
Audacity software, 175
audio. See sound
auto_move() function, 196
AX register, 10

b
BASIC language, 7, 10
binary files, 45–47

open modes, 46
reading from, 47
writing to, 46–47

bitmap graphics, 94–100
loading, 94–95
in Orbiting Spaceship Demo

drawing background, 95–97
drawing planet, 97–98
drawing spaceship, 98–100

blit() function, 95
Block Breaker Game

code for, 169–170
hitting blocks, 168–169
initializing, 165
levels in, 160–164

level 1, 161–162
level 2, 162
level 3, 163

loading and changing, 163–164
moving ball, 166–167
MySprite class update, 170–171
paddle in

hitting, 167–168
moving, 165–166

block_group sprite group, 164
blocks.png file, 170
Bomb Catching Game, 67–71
bounding circle technique, 121
bounding rectangle technique, 121
Bug class, 15
Bullet class, 211–212, 214
Bullet.owner identifier, 214

c
C language, 8
CalcArea() method, 20
CalcCircum() method, 20
cannons, in Artillery Gunner Game, 230–235

drawing turrets, 231–232
firing, 232–235
placing, 230–231
scoring hit, 234–235

Cartesian coordinate system, 79
cathode ray tube (CRT) monitor, 257
Channel class, 175
Channel.play() method, 175
chr() function, 62, 254–255
Circle class, 16–17
circle collisions, 129
Circle Demo, 81–83
circles

drawing, 25–26
theory for, 75–79
traversing perimeter, 79–81

calculating X, 79–81
calculating Y, 81

class definition, 14

More Python Programming for the Absolute Beginner318

classes, 14
Clock() method, 113
collision detection

circle collisions, 129
masked collisions, 130
rectangle collisions

between sprite and group, 130–131
between two groups, 131
between two sprites, 128–129

Zombie Mob Game
code for, 141–146
custom modules for, 132–135
directional animation, 135–138
overview, 127–128

collision_ball_blocks() function, 168
collision_ball_paddle() function, 167
colon, 14
color alpha channel manipulation, 173
command prompt, 4–6
compilers, 12–13
computer_firing variable, 232
Conley, Ronald, 98
convert() function, 95
convert_alpha() function, 95
cosine math function, 74–75
count() method, 151, 159
counting elements

in lists and arrays, 151
in tuples, 159

CRT (cathode ray tube) monitor, 257

d
darktan color, 178
data types, 36–43

handling exceptions for, 40
and input() function, 39–40
Mad Lib Game, 40–43

and print() function, 37–39
date module, 84

datetime class, 39
datetime.today() function, 84
Dawson, Michael, 2
def __init__(self) line, 14
def word, 8
Defense value, 292
degrees, 75
delta_x parameter, 103
delta_y parameter, 103
detection, collision. See collision detection
device polling, 61–67

keyboard, 61–65
mouse, 65–67

Die function, 283
distance() function, 234
draw() method, 112, 115
draw_computer_cannon() function, 232
drawing

arcs, 30–31
circles, 25–26
lines, 28–29
rectangles, 27–28

Drawing Rectangles Demo, 34
draw_player_cannon() function, 231
Dungeon class, 263, 287
Dungeon RPG. See RPGs
Dungeon.createHallRight() method, 267
Dungeon.draw() method, 297
Dungeon.draw_radius() method, 297
Dungeon.entrance_x variable, 283
Dungeon.entrance_y variable, 283
Dungeon.generate() method, 261
Dungeon.py file, 278, 287

e
elements

in lists and arrays
adding, 151
changing, 151

Index 319

counting, 151
removing, 152
reversing, 152
searching for, 152
sorting, 152

in tuples
counting, 159
searching for, 159

elif statement, 60
Ellipse class, 20
encapsulation, in Python, 15
EnemyTank class, 207
entities, 13
EOP (Entity Oriented Programming), 13
Epic Games company, 251
ErrorProne() function, 12
Escape key, 60, 62
Escape the Dragon Game, 119–125

code for, 122–125
colliding, 121–122
jumping, 120–121

event.button property, 61
event.buttons property, 61
event.pos property, 61
event.rel property, 61
events, for Pygame library, 58–61

keyboard events, 60–61
mouse events, 61
real-time loop, 59–60

except block, 40
exceptions, handling, 40
exiting level, in Dungeon RPG, 299

f
Feldman, Ari, 111, 208
FIFO (first-in, first-out) mechanism, 153
file input/output, 43–47

for binary files, 45–47
reading from, 47

writing to, 46–47
for text files, 43–45

reading from, 44–45
writing to, 44

File menu
New Window option, 4–5
saving file, 6

file.readline(n) function, 45
file.readlines() function, 45, 48
file.read(n) function, 44
file.write() function, 44
file.writelines() fuction, 44
FILO (first-in, last-out) mechanism, 153
find_channel() method, 175
firing cannons, in Artillery Gunner Game,

232–235
first-in, first-out (FIFO) mechanism, 153
first-in, last-out (FILO) mechanism, 153
float() function, 37, 40
floating-point velocity value, 68
font.render() function, 48
food_group sprite group, 188, 193
for loop, 59–60, 155, 160
format() function, 80
FORTRAN language, 10
framerate variable, 113
frames, for sprites

changing, 112–114
drawing one, 114–115

function definition, 9
functions, 8

g
game_init() function, 189, 191, 212, 221
games. See also RPGs

Artillery Gunner, 219–244
cannons in, 230–235
code for, 235–244
overview, 219–220

More Python Programming for the Absolute Beginner320

Terrain class, 220–230
Block Breaker

code for, 169–170
hitting blocks, 168–169
initializing, 165
levels in, 160–164
moving ball, 166–167
MySprite class update, 170–171
paddle in, 165–168

Bomb Catching Game, 67–71
Epic Games company, 251
Escape the Dragon, 119–125

code for, 122–125
colliding, 121–122
jumping, 120–121

game_init() function, 189, 191, 212, 221
Mad Lib, 40–43
Oil Spill, 176–179

code for, 179–182
oil, 176–178
timing in, 176
washing background, 178–179

Pygame library, 21–34
events for, 58–61
installing, 309–310
key codes for, 311–315
overview, 22, 30–31
reference manual, 23
using, 22–31

Roguelike games, 246–247
RTS games, 79
Snake, 185–199

biting self, 194–195
falling off world, 195
Food class, 188–189
growth by eating food, 193–194
initializing, 189–191
moving snake automatically, 195–199
program main, 191–193

Snake class, 187–188
SnakeSegment class, 187

SpriteLib sprites, 111
Starflight—The Lost Colony game, 98
Tank Battle, 201–218

angular velocity in, 202–206
Bullet class, 211–212
calculating, 203
main code, 212–218
moving forward and backward at angle,

205–206
overview, 201–202
and rotation, 203–205
Tank class, 207–211

Trivia, 47–56
code for, 53
displaying question and answers, 50–52
going to next question, 53
loading trivia data for, 49–50
printing text in, 48
responding to user input, 52–53
Trivia class for, 48–49

Video Game Programming for Kids book, 7
Visual C# Game Programming for Teens book,

297
Zombie Mob, 127–128

code for, 141–146
custom modules for, 132–135
directional animation, 135–138

generate() method, 226, 265
GeometryDemo.py program, 20
get() method, 138
getCharAt() method, 260, 271
get_current_direction() function, 197
get_food_direction() function, 197
get_ticks() method, 113
global keyword, 164
gosub command, 9
goto command, 9

Index 321

goto_next_level() function, 163
grid_point variable, 229
grid_size property, 228

h
hallways, in Dungeon RPG, 266–272

handling range errors, 271–272
horizontal, 266–269
vertical, 269–271

handling exceptions, 40
health sprite, 139–140
hour property, 86

i
IDLE editor, 2, 7, 255
Idle, Eric, 2
IDLE (Python GUI), 4–6
image property, 110
import statement, 46
in sequence operator, 159
index() method, 152
inheritance

multiple inheritance, 16–17
in Python, 15–16
single inheritance, 16–17

__init__() function, 48–49
input() function, 39–40
insert() method, 151
installing

Pygame, 309–310
Python, 305–309

int() function, 37
integer division, 99

j
joystick input, 59

k
key code constants, ASCII code, 62

Keyboard Demo, 62
keyboard events, for Pygame library, 60–61
keyboard polling, 61–65
KEYDOWN event, 60
key.name property, 60
KEYUP event, 60
Kingdom of Kroz RPG, 251

l
Lane, Jon, 247
language, of Python, 7
len() function, 159–160
lines, drawing, 28–29
list class, 149, 258
lists, 150–157

elements in
adding, 151
changing, 151
counting, 151
removing, 152
reversing, 152
searching for, 152
sorting, 152

multi-dimensional, 154–157
changing many elements in, 155–157
changing one element in, 154–155

one-dimensional, 150–153
queue-like, 153–154
stack-like, 153

load() method, 112, 170–171
loading

data, for Trivia Game, 49–50
files, for sounds, 174–175
load_level() function, 163–164
loat_pos property, 206
logic, programming in Snake Game, 185–199

biting self, 194–195
falling off world, 195
Food class, 188–189

More Python Programming for the Absolute Beginner322

growth by eating food, 193–194
initializing, 189–191
moving snake automatically, 195–199
program main, 191–193
Snake class, 187–188
SnakeSegment class, 187

looping, 24–25
LUA language, 11

m
Mad Lib Game, 40–43
mask property, 130
masked collisions, 130
master_image image, 170
math module, 75
math.atan2() function, 103, 202
math.cos() function, 79–80
math.degrees() function, 78, 202
math.radians() function, 30–31, 78
math.sin(angle) function, 81
message() function, 290, 300
methods, 8, 14
mnemonic programming, 10–11
Module Docs (Pydoc), 3
modulus character (%), 87
Monster class, 283, 287, 296
monsters, in Dungeon RPG

creating, 277–278
fighting, 291–295
hitting, 295–296

Monty Python, 2
Mouse Demo, 65
mouse events, for Pygame library, 61
mouse polling, 65–67
MOUSEBUTTONDOWN event, 61
MOUSEBUTTONUP event, 61
MOUSEMOTION event, 61, 228
move_ball() function, 166
move_monster() function, 296

move_monsters() function, 296
MP3 audio files, 174
multi-dimensional arrays, 154–157

changing many elements in, 155–157
changing one element in, 154–155

multi-dimensional lists, 154–157
changing many elements in, 155–157
changing one element in, 154–155

multiple inheritance, 15–17
MyLibrary.py file, 132, 141, 160, 170, 206, 233,

235
MySprite class, 116–117, 119, 129, 132, 137,

170–171, 205
MySprite object, 258
MySprite.direction property, 138

n
\n character, 37, 44
NetHack RPG, 248–249
new source code editor window, 4–6
New Window option, File menu, 4–5
non-indented line, 8
non-printing characters, 253

o
object-oriented programming. See OOP
objects, 14
OGG audio files, 174–175
Oil Spill Game, 176–179

code for, 179–182
oil

cleaning, 177–178
mess, 176–177

timing in, 176
washing background, 178–179

one-dimensional arrays, 150–153
one-dimensional lists, 150–153
OOP (object-oriented programming), 2, 7–20

prior methodologies, 7–11

Index 323

mnemonic programming, 10–11
sequential programming, 9–10
structured programming, 8–9

in Python, 13–16
encapsulation, 15
inheritance, 15–16
polymorphism, 14–15

open() function, 43
open modes

binary file, 46
text file, 43

OpenGL, 10
Orbiting Spaceship Demo

planet in, 101–107
orbiting, 101–103
rotating, 103–107

using bitmaps in
drawing background, 95–97
drawing planet, 97–98
drawing spaceship, 98–100

p
packing tuples, 158
paddle, in Block Breaker Game

hitting, 167–168
moving, 165–166

PI number, 75
Pie Game. See Pygame library
planet, in Orbiting Spaceship Demo, 101–107

orbiting, 101–103
rotating, 103–107

play() method, 175
Player class, 283, 287, 291
player_cannon_position variable, 232
player_cannon_power variable, 232
playerCollision() function, 287–288
player_firing variable, 232
Player.MoveDown() method, 287
Player.MoveUp() method, 287

Player.py file, 283, 287
player_shell_position variable, 232
player.update() function, 138
playing audio, 175
PNG (Portable Network Graphics) bitmap

file, 45
Point class, 16–18, 101–102, 132, 203
Point.__init__() method, 19
Point.ToString() method, 19
polymorphism, in Python, 14–15
pop() method, 153
Portable Network Graphics (PNG) bitmap

file, 45
pound character (#), 8
print() function, 4, 9, 12, 37–39, 48, 254
printing text, 23–24
PrintName() function, 9
print_text() function, 54, 132
procedural programming, 8
procedures, 8
program logic, Snake Game, 185–199

biting self, 194–195
falling off world, 195
Food class, 188–189
growth by eating food, 193–194
initializing, 189–191
moving snake automatically, 195–199
program main, 189–191
Snake class, 187–188
SnakeSegment class, 187

property() function, 101
putCharInRandomRoom() method, 276
Pydoc (Module Docs), 3
Pygame library, 21–34

events for, 58–61
keyboard events, 60–61
mouse events, 61
real-time loop, 59–60

installing, 309–310

More Python Programming for the Absolute Beginner324

key codes for, 311–315
overview, 22, 30–31
reference manual, 23
using, 22–31

drawing arcs, 30–31
drawing circles, 25–26
drawing lines, 28–29
drawing rectangles, 27–28
looping, 24–25
printing text, 23–24

pygame1.9.2.a0.win32-py3.2.msi file, 309
pygame.display.get_surface() function, 132
pygame.display.set_mode() method, 93–94,

190
pygame.draw.arc() function, 30–31
pygame.draw.circle() function, 25–26
pygame.draw.line() function, 28–29, 87
pygame.draw.rect() function, 27–28
pygame.font module, 48
pygame.font.Font() constructor, 23, 48
pygame.gfxdraw module, 95
pygame.gfxdraw.pixel() function, 95
pygame.image class, 93
pygame.image.load() function, 94
pygame.key,get_pressed() method, 61
pygame.mixer module, 174
pygame.mixer.Channel class, 175
pygame.mixer.Sound() class, 174–175
pygame.mouse.get_pos() function, 65
pygame.mouse.get_pressed() function, 65
pygame.mouse.get_rel() function, 65
pygame.sprite module, 110
pygame.sprite.collide_circle() function, 129
pygame.sprite.collide_circle_ratio() function,

129, 176, 178
pygame.sprite.collide_mask() function, 130
pygame.sprite.collide_rect() function, 128
pygame.sprite.collide_rect_ratio() function,

129, 138

pygame.sprite.collide_rest() method, 122
pygame.sprite.Group class, 115, 176, 193
pygame.sprite.groupcollide() function, 131,

193
pygame.sprite.Sprite class, 98, 122, 128, 176,

205–206
pygame.sprite.spritecollide() function, 130
pygame.sprite.spritecollideany() function,

130–131, 138, 168
pygame.Surface class, 93
pygame.time module, 113
pygame.time.get_ticks() method, 176
pygame.transform module, 99, 104
pygame.transform.rotate() function, 104
pygame.transform.scale() function, 99
pygame.transform.smoothscale() function, 99
Pyhelp (Python Manuals), 4
Python

command line, 4
documentation tool, 3
installing, 305–309
software package, 2

Python GUI (IDLE), 4–6
Python Manuals (Pyhelp), 4
Python Programming for the Absolute Beginner

book, 2
Python Shell, 6

q
QB64 tool, 7, 10
QBASIC language, 10
queue-like arrays, 153–154
queue-like lists, 153–154
QuickBasic language, 10
QUIT event, 60

r
radians, 75
radius property, 129

Index 325

random.randint() function, 34, 64
rangle variable, 104
reading

from binary files, 47
from text files, 44–45

real-time strategy (RTS) games, 79
rect property, 110, 116, 122
Rectangle class, 18–19
rectangle collisions

between sprite and group, 130–131
between two groups, 131
between two sprites, 128–129

rectangles, drawing, 27–28
remove() method, 152
removing elements, in lists and arrays, 152
reserved words, 12
reset_ball() function, 166
ret property, 128
reverse() method, 152
reversing elements, in lists and arrays, 152
Ritchie, Dennis, 248
Rogue RPG, 247–248
Roguelike games, 246–247
Romero, George A., 146
rooms, in Dungeon RPG, 260–265

Dungeon class, 260–261
northern, 261–263
southern, 263–265

RPGs (role-playing games), 245–304
and ASCII characters, 253–257

character set, 253–254
printing of, 254
table program for, 254–257

classics, 246–252
AngBand, 249–250
Kingdom of Kroz, 251
NetHack, 248–249
Rogue, 247–248
Sword of Fargoal, 251

ZZT, 251–252
exiting level, 299
hallways in, 266–272

handling range errors, 271–272
horizontal, 266–269
vertical, 269–271

message() function in, 300
monsters

creating, 277–278
fighting, 291–295
hitting, 295–296

overview, 246
picking up items, 288–291
player character, 283–287

moving, 286–287
Player class, 283–286

populating dungeon, 272–287
with armor, 276–277
entrance and exit portals, 273–274
with gold, 274–275
with health potions, 276–277
with weapons, 276–277

printing game stats, 299–300
rooms in, 260–265

Dungeon class, 260–261
northern, 261–263
southern, 263–265

text console display for, 257–260
ASCII table as sprite, 258–259
drawing, 259–260
keeping track of tiles, 258

visibility range, 297–298
RTS (real-time strategy) games, 79
Run menu, 6
Run Module option, 6

s
scratch_ship image, 104
screen object, 95

More Python Programming for the Absolute Beginner326

screen.blit() function, 23, 48
scripting languages, 11
SDKs (software development kits), 8
SDL (Simple DirectMedia Layer)

drawing functions, 95
library, 57

searching elements
in lists and arrays, 152
in tuples, 159

self key word, 14
self.failed flag, 52
self.scored flag, 52
sequential programming, 9–10
set() method, 138
setCharAt() method, 260, 271
set_image() method, 171
shortcuts, F5 key, 6
Simple DirectMedia Layer. See SDL
sine math function, 74–75
single inheritance, 16–17
Size class, 18–19
Size.__init__() method, 19
Size.ToString() method, 19
Snake class, 193, 198
Snake Game, 185–199

biting self, 194–195
falling off world, 195
Food class, 188–189
growth by eating food, 193–194
initializing, 189–191
moving snake automatically, 195–199
program main, 189–191
Snake class, 187–188
SnakeSegment class, 187

snake.segments[0] sprite, 194
software development kits (SDKs), 8
sort() method, 152
sorting, elements, in lists and arrays, 152
sound, 174–175

loading files, 174–175
playing audio, 175

Sound class, 175
Space key, 60
Space Shuttle program, 55
spaghetti code, 10
Sprite class, 110, 112, 130, 137
sprite groups, 115
sprite sheets, 112, 136–137
Sprite.draw() method, 114
Sprite.image property, 114
SpriteLib sprites, 111
Sprite.rect property, 114–115
sprites, 109–125. See also animation, with

sprites;
collision detection
Escape the Dragon Game, 119–125

code for, 122–125
colliding, 121–122
jumping, 120–121

frames for
changing, 112–114
drawing one, 114–115

MySprite class, 116–117
overview, 110–112
sprite groups, 115
sprite sheets, 112
testing, 118–119

stack-like arrays, 153
stack-like lists, 153
Starflight—The Lost Colony game, 98
starting point, 110
state-based programming, 32
stop() function, 175
str() function, 37, 210
string.format() function, 80
string.replace() function, 41
string.strip() function, 45
struct library module, 46

Index 327

struct.calcsize() function, 47
struct.pack() function, 46
struct.unpack() function, 46–47
structured programming, 8–9
subsurface() method, 114–115
super() method, 16–17
Surface class, 93–95, 97
Surface.convert_alpha() function, 95
Surface.get_at() function, 130
Surface.get_height() function, 97
Surface.get_size() function, 97, 104
Surface.get_width() function, 97
Surface.lock() function, 130
Surface.set_at() function, 130
Surface.unlock() function, 130
Sweeney, Tim, 251
Sword of Fargoal RPG, 251
sys.copyright value, 38
sys.exit() function, 59
sys.platform value, 38

t
T variable, 84
tan color, 178
tangent math function, 101
Tank Battle Game, 201–218

angular velocity in, 202–206
calculating, 203
moving forward and backward at angle,

205–206
and rotation, 203–205

Bullet class, 211–212
main code, 212–218

audio functions, 213–214
game initialization, 212–213
gameplay code, 214
header code, 212

overview, 201–202
Tank class, 205–211

constructor, 207
draw function, 209–210
and EnemyTank class, 210–211
string override for, 210
update function, 207–209

Tank class, 205–211
constructor, 207
draw function, 209–210
and EnemyTank class, 210–211
string override for, 210
update function, 207–209

Tank.update() function, 207
target_angle() function, 205
Terrain class, in Artillery Gunner Game,

220–230
locating grid points in, 228–230
smoothing terrain, 226–228

Terrain.draw() method, 222, 229
testing sprites, 118–119
text files, 43–45

open modes, 43
reading from, 44–45
writing to, 44

text, printing, 23–24
textImage object, 23
T.hour property, 84
ticks variable, 113
time, getting for Analog Clock Demo, 84
time interval, 113
time module, 64, 84
time.clock() function, 64–65
T.microsecond property, 84
T.minute property, 84
tools and utilities, 3–6

IDLE (Python GUI), 4–6
Module Docs (Pydoc), 3
Python (command line), 4
Python Manuals (Pyhelp), 4

ToString() method, 17–19

More Python Programming for the Absolute Beginner328

total_points parameter, 228
Toy, Michael, 247
trigonometry, 74–83

Circle Demo, 81–83
circle theory, 75–79
traversing circle perimeter, 79–81

calculating X, 79–81
calculating Y, 81

triple quotes, 39
Trivia class, 48–49, 54
Trivia Game, 47–56

code for, 53
displaying question and answers, 50–52
going to next question, 53
loading trivia data for, 49–50
printing text in, 48
responding to user input, 52–53
Trivia class for, 48–49

trivia object, 54
Trivia.current field, 50, 53
Trivia.data list, 49
trivia_data.txt file, 49, 54
Trivia.handle_input() method, 51
Trivia.next_question() method, 53
Trivia.show_question() method, 50, 54
try: block, 40
try…except block, 40
T.second property, 84
tuples, 157–160

as constant arrays, 159–160
elements in, 159
packing, 158
unpacking, 158

u
UDTs (user-defined types), 8
Unicode characters, 255
UNIX operating system, 8
unpacking tuples, 158

update() method, 112–115, 171, 198
update_blocks() function, 163
user-defined types (UDTs), 8
utilities. See tools and utilities

v
velocity, in Tank Battle Game, 202–206

calculating, 203
moving forward and backward at angle,

205–206
and rotation, 203–205

VGA mode 13h, 10
Video Game Programming for Kids book, 7
Visual C# Game Programming for Teens book, 297

w
waiting flag, 166
Walk() method, 15
WAV audio files, 174–175
while block, for Pygame library, 59–60
while keyword, 24
while loop, 24, 27, 191
while statement, 59
Wichman, Glenn, 247
Windows help file format, 4
Windows x86-64 version, installing Python,

305
wrap_angle() function, 88, 206
write property, 44
writing

to binary files, 46–47
to text files, 44

x
X axis, 79
X property, 101

y
Y axis, 79

Index 329

Y property, 101

z
Zombie Mob Game, 127–128

code for, 141–146
custom modules for, 132–135
directional animation, 135–138

ZZT RPG, 251–252

More Python Programming for the Absolute Beginner330

	Cover
	TABLE OF CONTENTS
	Chapter 1 PYTHON HAS CLASS
	Examining the Geometry Program
	Getting Started with Python
	Python Tools
	Python Language

	Objects in Python
	What Came Before?
	What's Coming Next?
	OOP: The Python Way
	Single Inheritance
	Multiple Inheritance

	Summary

	Chapter 2 GETTING STARTED WITH PYGAME: THE PIE GAME
	Examining The Pie Game
	Using Pygame
	Printing Text
	Looping
	Drawing Circles
	Drawing Rectangles
	Drawing Lines
	Drawing Arcs

	The Pie Game
	Summary

	Chapter 3 FILE I/O, DATA, AND FONTS: THE TRIVIA GAME
	Examining The Trivia Game
	Python Data Types
	More Printing
	Getting User Input
	Handling Exceptions
	The Mad Lib Game

	File Input/Output
	Working with Text Files
	Working with Binary Files

	The Trivia Game
	Printing Text with Pygame
	The Trivia Class
	Loading the Trivia Data
	Displaying the Question and Answers
	Responding to User Input
	Going to the Next Question
	Main Code

	Summary

	Chapter 4 USER INPUT: THE BOMB CATCHER GAME
	Examining The Bomb Catcher Game
	Pygame Events
	Real-Time Event Loop
	Keyboard Events
	Mouse Events

	Device Polling
	Polling the Keyboard
	Polling the Mouse

	The Bomb Catcher Game
	Summary

	Chapter 5 MATH AND GRAPHICS: THE ANALOG CLOCK DEMO
	Examining The Analog Clock Demo
	Basic Trigonometry
	Circle Theory
	Traversing a Circle's Perimeter
	Circle Demo

	The Analog Clock Demo
	Getting the Time
	Drawing the Clock

	Summary

	Chapter 6 BITMAP GRAPHICS: THE ORBITING SPACESHIP DEMO
	Examining The Orbiting Spaceship Demo
	Using Bitmaps
	Loading a Bitmap
	Drawing the Background
	Drawing the Planet
	Drawing the Spaceship

	Orbiting the Planet
	Orbiting
	Rotating

	Summary

	Chapter 7 ANIMATION WITH SPRITES: THE ESCAPE THE DRAGON GAME
	Examining The Escape The Dragon Game
	Using Pygame Sprites
	Custom Animation
	Loading a Sprite Sheet
	Changing the Frame
	Drawing One Frame
	Sprite Groups
	MySprite Class
	Sprite Animation to the Test

	The Escape the Dragon Game
	Jumping
	Colliding
	Source Code

	Summary

	Chapter 8 SPRITE COLLISION DETECTION: THE ZOMBIE MOB GAME
	Examining The Zombie Mob Game
	Collision Detection Techniques
	Rectangle Collision Between Two Sprites
	Circle Collision Between Two Sprites
	Pixel-Perfect Masked Collision Between Two Sprites
	Rectangle Collision Between a Sprite and a Group
	Rectangle Collision Between Two Groups

	The Zombie Mob Game
	Creating Your Own Module
	Advanced Directional Animation
	Colliding with Zombies
	Getting Health
	Game Source Code

	Summary

	Chapter 9 ARRAYS, LISTS, AND TUPLES: THE BLOCK BREAKER GAME
	Examining The Block Breaker Game
	Arrays and Lists
	Lists with One Dimension
	Creating a Stack-like List
	Creating a Queue-like List
	Lists with More Dimensions

	Tuples
	Packing a Tuple
	Unpacking a Tuple
	Searching for Elements
	Counting Elements
	Tuples as Constant Arrays

	The Block Breaker Game
	Block Breaker Levels
	Loading and Changing Levels
	Initializing the Game
	Moving the Paddle
	Moving the Ball
	Hitting the Paddle
	Hitting the Blocks
	Main Code
	MySprite Update

	Summary

	Chapter 10 TIMING AND SOUND: THE OIL SPILL GAME
	Examining The Oil Spill Game
	Sound
	Loading an Audio File
	Playing an Audio Clip

	Building The Oil Spill Game
	Gameplay
	Source Code

	Summary

	Chapter 11 PROGRAM LOGIC: THE SNAKE GAME
	Examining The Snake Game
	Building The Snake Game
	Hatching a Snake—the SnakeSegment Class
	Raising a Snake—the Snake Class
	Feeding the Snake—the Food Class
	Initializing the Game
	Program Main
	Growth by Eating Food
	Biting One's Self Is Not Advisable
	Falling off the World

	Teaching the Snake to Move Itself
	Moving Automatically
	Getting the Current Direction
	Moving Toward the Food
	Other Code Changes

	Summary

	Chapter 12 TRIGONOMETRY: THE TANK BATTLE GAME
	Examining The Tank Battle Game
	Angular Velocity
	Calculating Angular Velocity
	Pygame's Goofy Rotation
	Moving Forward and Backward at Any Angle
	Improved Angle Wrapping

	Building The Tank Battle Game
	The Tanks
	The Bullets
	Main Code

	Summary

	Chapter 13 RANDOM TERRAIN: THE ARTILLERY GUNNER GAME
	Examining The Artillery Gunner Game
	Creating the Terrain
	Defining the Height Map
	Smoothing the Terrain
	Locating Grid Points

	Artillery Cannons
	Placing the Cannons
	Drawing the Turrets
	Firing the Cannons
	Shots Are A'Flyin
	Computer Firing
	Scoring a Hit

	The Complete Game
	Summary

	Chapter 14 MORE OF EVERYTHING: THE DUNGEON ROLE-PLAYING GAME
	Examining The Dungeon Game
	Review of Classic Dungeon RPGs
	Rogue
	NetHack
	AngBand
	Sword of Fargoal
	Kingdom of Kroz
	ZZT

	Creating a Dungeon Level
	Understanding ASCII Characters
	Simulating a Text Console Display
	Generating Random Rooms
	Generating Random Hallways

	Populating the Dungeon
	Adding the Entrance and Exit Portals
	Adding Gold
	Adding Weapons, Armor, and Health Potions
	Adding Monsters
	Complete Dungeon Class
	Adding the Player's Character

	Advanced Gameplay
	Picking Up Items
	Fighting Monsters
	Moving Monsters
	Visibility Range
	Exiting the Level
	Wrapping Up the Gameplay

	Summary

	Appendix A: INSTALLING PYTHON AND PYGAME
	Installing Python
	Installing Pygame

	Appendix B: PYGAME KEY CODES
	INDEX

