
Minimalist Data Wrangling
with Python

Marek Gagolewski

v1.0.3.9011

Dr habil.MarekGagolewski
Deakin University, Australia
Systems Research Institute, Polish Academy of Sciences
Warsaw University of Technology, Poland
https://www.gagolewski.com/

Copyright (C) 2022–2023 by Marek Gagolewski. Some rights reserved.

This open-access textbook is an independent, non-profit project. It is publishedunder
the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License (CC BY-NC-ND 4.0). Please spread the word about it.

This project received no funding, administrative, technical, or editorial support from
Deakin University, Warsaw University of Technology, Polish Academy of Sciences, or
any other source.

Weird is theworld somepeopledecided to immerse themselves in, sohere is amessage
stating the obvious. Every effort has been made in the preparation of this book to en-
sure the accuracy of the information presented. However, the information contained
in this book is provided without warranty, either express or implied. The author will,
of course, not be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Anybug reports/corrections/feature requests arewelcome.Tomake this textbookeven
better, please file them at https://github.com/gagolews/datawranglingpy.

Typeset with XeLATEX. Please be understanding: it was an algorithmic process. Hence,
the results are∈ [good enough, perfect).

Homepage: https://datawranglingpy.gagolewski.com/

Datasets: https://github.com/gagolews/teaching-data

Release: v1.0.3.9011 (2023-11-22T20:17:31+1100)

ISBN: 978-0-6455719-1-2 (v1.0; 2022; Melbourne: Marek Gagolewski)

DOI: 10.5281/zenodo.6451068 (Zenodo)

https://www.gagolewski.com/
https://github.com/gagolews/datawranglingpy
https://datawranglingpy.gagolewski.com/
https://github.com/gagolews/teaching-data
https://doi.org/10.5281/zenodo.6451068

Contents

Preface xiii
0.1 The art of data wrangling . xiii
0.2 Aims, scope, and design philosophy xiv

0.2.1 We needmaths . xv
0.2.2 We need some computing environment xv
0.2.3 We need data and domain knowledge xvi

0.3 Structure . xvii
0.4 The Rules . xix
0.5 About the author . xxi
0.6 Acknowledgements . xxi
0.7 You canmake this book better xxii

I Introducing Python 1

1 Getting startedwith Python 3
1.1 Installing Python . 3
1.2 Working with Jupyter notebooks 4

1.2.1 Launching JupyterLab . 5
1.2.2 First notebook . 5
1.2.3 More cells . 6
1.2.4 Edit vs commandmode 7
1.2.5 Markdown cells . 8

1.3 The best note-taking app . 9
1.4 Initialising each session and getting example data 10
1.5 Exercises . 12

2 Scalar types and control structures in Python 13
2.1 Scalar types . 13

2.1.1 Logical values . 13
2.1.2 Numeric values . 13

Arithmetic operators . 14
Creating named variables 15

2.1.3 Character strings . 15
F-strings (formatted string literals) 16

2.2 Calling built-in functions . 17
2.2.1 Positional and keyword arguments 17
2.2.2 Modules and packages 18

IV CONTENTS

2.2.3 Slots andmethods . 18
2.3 Controlling program flow . 19

2.3.1 Relational and logical operators 19
2.3.2 The if statement . 20
2.3.3 The while loop . 21

2.4 Defining functions . 22
2.5 Exercises . 24

3 Sequential and other types in Python 25
3.1 Sequential types . 25

3.1.1 Lists . 25
3.1.2 Tuples . 26
3.1.3 Ranges . 26
3.1.4 Strings (again) . 27

3.2 Working with sequences . 27
3.2.1 Extracting elements . 27
3.2.2 Slicing . 28
3.2.3 Modifying elements of mutable sequences 29
3.2.4 Searching for specific elements 30
3.2.5 Arithmetic operators . 30

3.3 Dictionaries . 30
3.4 Iterable types . 32

3.4.1 The for loop . 32
3.4.2 Tuple assignment . 34
3.4.3 Argument unpacking (*) 36
3.4.4 Variadic arguments: *args and **kwargs (*) 37

3.5 Object references and copying (*) 37
3.5.1 Copying references . 37
3.5.2 Pass by assignment . 38
3.5.3 Object copies . 38
3.5.4 Modify in place or return a modified copy? 38

3.6 Further reading . 40
3.7 Exercises . 41

II Unidimensional data 43

4 Unidimensional numeric data and their empirical distribution 45
4.1 Creating vectors in numpy . 46

4.1.1 Enumerating elements 47
4.1.2 Arithmetic progressions 48
4.1.3 Repeating values . 49
4.1.4 numpy.r_ (*) . 49
4.1.5 Generating pseudorandom variates 50
4.1.6 Loading data from files 50

4.2 Mathematical notation . 51
4.3 Inspecting the data distribution with histograms 52

4.3.1 heights: A bell-shaped distribution 52

CONTENTS V

4.3.2 income: A right-skewed distribution 53
4.3.3 Howmany bins? . 55
4.3.4 peds: A bimodal distribution (already binned) 57
4.3.5 matura: A bell-shaped distribution (almost) 58
4.3.6 marathon (truncated– fastest runners): A left-skeweddistribu-

tion . 59
4.3.7 Log-scale and heavy-tailed distributions 60
4.3.8 Cumulative probabilities and the empirical cumulative distri-

bution function . 63
4.4 Exercises . 65

5 Processing unidimensional data 67
5.1 Aggregating numeric data . 67

5.1.1 Measures of location . 68
Arithmetic mean andmedian 68
Sensitive to outliers vs robust 69
Sample quantiles . 70

5.1.2 Measures of dispersion 72
Standard deviation (and variance) 73
Interquartile range . 73

5.1.3 Measures of shape . 74
5.1.4 Box (and whisker) plots 75
5.1.5 Further methods (*) . 76

5.2 Vectorised mathematical functions 78
5.2.1 Logarithms and exponential functions 79
5.2.2 Trigonometric functions 80

5.3 Arithmetic operators . 82
5.3.1 Vector-scalar case . 82
5.3.2 Application: Feature scaling 82

Standardisation and z-scores 83
Min-max scaling and clipping 85
Normalisation (𝑙2; dividing by magnitude) 85
Normalisation (𝑙1; dividing by sum) 86

5.3.3 Vector-vector case . 86
5.4 Indexing vectors . 88

5.4.1 Integer indexing . 89
5.4.2 Logical indexing . 89
5.4.3 Slicing . 90

5.5 Other operations . 91
5.5.1 Cumulative sums and iterated differences 91
5.5.2 Sorting . 92
5.5.3 Dealing with tied observations 92
5.5.4 Determining the ordering permutation and ranking 93
5.5.5 Searching for certain indexes (argmin, argmax) 94
5.5.6 Dealing with round-off andmeasurement errors 95
5.5.7 Vectorising scalar operations with list comprehensions . . . 97

5.6 Exercises . 98

VI CONTENTS

6 Continuous probability distributions 101
6.1 Normal distribution . 102

6.1.1 Estimating parameters 102
6.1.2 Data models are useful 104

6.2 Assessing goodness-of-fit . 105
6.2.1 Comparing cumulative distribution functions 105
6.2.2 Comparing quantiles . 107
6.2.3 Kolmogorov–Smirnov test (*) 110

6.3 Other noteworthy distributions 111
6.3.1 Log-normal distribution 111
6.3.2 Pareto distribution . 115
6.3.3 Uniform distribution . 119
6.3.4 Distribution mixtures (*) 121

6.4 Generating pseudorandom numbers 122
6.4.1 Uniform distribution . 123
6.4.2 Not exactly random . 123
6.4.3 Sampling from other distributions 124
6.4.4 Natural variability . 125
6.4.5 Adding jitter (white noise) 127
6.4.6 Independence assumption 127

6.5 Further reading . 128
6.6 Exercises . 128

III Multidimensional data 131

7 Multidimensional numeric data at a glance 133
7.1 Creating matrices . 134

7.1.1 Reading CSV files . 134
7.1.2 Enumerating elements 135
7.1.3 Repeating arrays . 136
7.1.4 Stacking arrays . 136
7.1.5 Other functions . 137

7.2 Reshapingmatrices . 137
7.3 Mathematical notation . 139

7.3.1 Row and column vectors 141
7.3.2 Transpose . 141
7.3.3 Identity and other diagonal matrices 142

7.4 Visualising multidimensional data 142
7.4.1 2D Data . 143
7.4.2 3D Data and beyond . 144
7.4.3 Scatter plot matrix (pairs plot) 147

7.5 Exercises . 148

8 Processingmultidimensional data 151
8.1 From vectors to matrices . 151

8.1.1 Vectorised mathematical functions 151
8.1.2 Componentwise aggregation 151

CONTENTS VII

8.1.3 Arithmetic, logical, and relational operations 152
Matrix vs scalar . 153
Matrix vs matrix . 153
Matrix vs any vector . 156
Row vector vs column vector (*) 156

8.1.4 Other row and column transforms (*) 157
8.2 Indexingmatrices . 159

8.2.1 Slice-based indexing . 159
8.2.2 Scalar-based indexing . 160
8.2.3 Mixed logical/integer vector and scalar/slice indexers 160
8.2.4 Two vectors as indexers (*) 161
8.2.5 Views of existing arrays (*) 162
8.2.6 Adding andmodifying rows and columns 162

8.3 Matrix multiplication, dot products, and the Euclidean norm 163
8.4 Pairwise distances and related methods 165

8.4.1 The Euclideanmetric . 166
8.4.2 Centroids . 168
8.4.3 Multidimensional dispersion and other aggregates 169
8.4.4 Fixed-radius and k-nearest neighbour search 169
8.4.5 Spatial search with K-d trees 171

8.5 Exercises . 173

9 Exploring relationships between variables 175
9.1 Measuring correlation . 176

9.1.1 Pearson’s linear correlation coefficient 176
Perfect linear correlation 177
Strong linear correlation 177
No linear correlation does not imply independence 179
False linear correlations 180
Correlation is not causation 182

9.1.2 Correlation heat map . 182
9.1.3 Linear correlation coefficients on transformed data 184
9.1.4 Spearman’s rank correlation coefficient 186

9.2 Regression tasks . 187
9.2.1 K-nearest neighbour regression 187
9.2.2 From data to (linear) models 189
9.2.3 Least squares method . 190
9.2.4 Analysis of residuals . 193
9.2.5 Multiple regression . 197
9.2.6 Variable transformation and linearisable models (*) 197
9.2.7 Descriptive vs predictive power (*) 199
9.2.8 Fitting regressionmodels with scikit-learn (*) 205
9.2.9 Ill-conditionedmodel matrices (*) 206

9.3 Finding interesting combinations of variables (*) 210
9.3.1 Dot products, angles, collinearity, and orthogonality 210
9.3.2 Geometric transformations of points 212
9.3.3 Matrix inverse . 214

VIII CONTENTS

9.3.4 Singular value decomposition 215
9.3.5 Dimensionality reduction with SVD 217
9.3.6 Principal component analysis 220

9.4 Further reading . 223
9.5 Exercises . 224

IV Heterogeneous data 225

10 Introducing data frames 227
10.1 Creating data frames . 228

10.1.1 Data frames are matrix-like 229
10.1.2 Series . 230
10.1.3 Index . 232

10.2 Aggregating data frames . 234
10.3 Transforming data frames . 236
10.4 Indexing Series objects . 239

10.4.1 Do not use [...] directly 240
10.4.2 loc[...] . 241
10.4.3 iloc[...] . 243
10.4.4 Logical indexing . 243

10.5 Indexing data frames . 243
10.5.1 loc[...] and iloc[...] 243
10.5.2 Adding rows and columns 245
10.5.3 Modifying items . 246
10.5.4 Pseudorandom sampling and splitting 246
10.5.5 Hierarchical indexes (*) 248

10.6 Further operations on data frames 250
10.6.1 Sorting . 250
10.6.2 Stacking and unstacking (long/tall and wide forms) 253
10.6.3 Joining (merging) . 255
10.6.4 Set-theoretic operations and removing duplicates 257
10.6.5 …and (too) manymore 259

10.7 Exercises . 260

11 Handling categorical data 261
11.1 Representing and generating categorical data 261

11.1.1 Encoding and decoding factors 262
11.1.2 Binary data as logical and probability vectors 264
11.1.3 One-hot encoding (*) . 265
11.1.4 Binning numeric data (revisited) 266
11.1.5 Generating pseudorandom labels 268

11.2 Frequency distributions . 268
11.2.1 Counting . 268
11.2.2 Two-way contingency tables: Factor combinations 269
11.2.3 Combinations of evenmore factors 270

11.3 Visualising factors . 272
11.3.1 Bar plots . 272

CONTENTS IX

11.3.2 Political marketing and statistics 274
11.3.3 Pie… don’t even trip . 275
11.3.4 Pareto charts (*) . 276
11.3.5 Heat maps . 278

11.4 Aggregating and comparing factors 279
11.4.1 Mode . 279
11.4.2 Binary data as logical vectors 280
11.4.3 Pearson chi-squared test (*) 281
11.4.4 Two-sample Pearson chi-squared test (*) 282
11.4.5 Measuring association (*) 284
11.4.6 Binned numeric data . 286
11.4.7 Ordinal data (*) . 286

11.5 Exercises . 287

12 Processing data in groups 289
12.1 Basic methods . 290

12.1.1 Aggregating data in groups 292
12.1.2 Transforming data in groups 293
12.1.3 Manual splitting into subgroups (*) 294

12.2 Plotting data in groups . 297
12.2.1 Series of box plots . 297
12.2.2 Series of bar plots . 298
12.2.3 Semitransparent histograms 299
12.2.4 Scatter plots with group information 299
12.2.5 Grid (trellis) plots . 300
12.2.6 Kolmogorov–Smirnov test for comparing ECDFs (*) 300
12.2.7 Comparing quantiles . 303

12.3 Classification tasks . 305
12.3.1 K-nearest neighbour classification 307
12.3.2 Assessing the quality of predictions 309
12.3.3 Splitting into training and test sets 312
12.3.4 Validating manymodels (parameter selection) (*) 313

12.4 Clustering tasks . 314
12.4.1 K-means method . 315
12.4.2 Solving k-means is hard 318
12.4.3 Lloyd algorithm . 318
12.4.4 Local minima . 319
12.4.5 Random restarts . 322

12.5 Further reading . 325
12.6 Exercises . 325

13 Accessing databases 327
13.1 Example database . 327
13.2 Exporting data to a database . 329
13.3 Exercises on SQL vs pandas . 330

13.3.1 Filtering . 331
13.3.2 Ordering . 332

X CONTENTS

13.3.3 Removing duplicates . 332
13.3.4 Grouping and aggregating 334
13.3.5 Joining . 335
13.3.6 Solutions to exercises . 336

13.4 Closing the database connection 339
13.5 Common data serialisation formats for theWeb 340
13.6 Working with many files . 341

13.6.1 File paths . 341
13.6.2 File search . 342
13.6.3 Exception handling . 342
13.6.4 File connections (*) . 342

13.7 Exercises . 343

V Other data types 345

14 Text data 347
14.1 Basic string operations . 347

14.1.1 Unicode as the universal encoding 348
14.1.2 Normalising strings . 348
14.1.3 Substring searching and replacing 349
14.1.4 Locale-aware services in ICU (*) 350
14.1.5 String operations in pandas 351
14.1.6 String operations in numpy (*) 353

14.2 Working with string lists . 355
14.3 Formatted outputs for reproducible report generation 356

14.3.1 Formatting strings . 357
14.3.2 str and repr . 357
14.3.3 Aligning strings . 357
14.3.4 Direct Markdown output in Jupyter 358
14.3.5 Manual Markdown file output (*) 358

14.4 Regular expressions (*) . 360
14.4.1 Regex matching with re 360
14.4.2 Regex matching with pandas 362
14.4.3 Matching individual characters 363

Matching any character 364
Defining character sets 364
Complementing sets . 365
Defining code point ranges 365
Using predefined character sets 365

14.4.4 Alternating and grouping subexpressions 366
Alternation operator . 366
Grouping subexpressions 366
Non-grouping parentheses 366

14.4.5 Quantifiers . 367
14.4.6 Capture groups and references thereto (**) 368

Extracting capture groupmatches 368
Replacing with capture groupmatches 370

CONTENTS XI

Back-referencing . 370
14.4.7 Anchoring . 371

Matching at the beginning or end of a string 371
Matching at word boundaries 371
Looking behind and ahead (**) 371

14.5 Exercises . 372

15 Missing, censored, and questionable data 373
15.1 Missing data . 373

15.1.1 Representing and detecting missing values 374
15.1.2 Computing with missing values 374
15.1.3 Missing at random or not? 376
15.1.4 Discardingmissing values 376
15.1.5 Mean imputation . 377
15.1.6 Imputation by classification and regression (*) 378

15.2 Censored and interval data (*) 379
15.3 Incorrect data . 379
15.4 Outliers . 381

15.4.1 The 3/2 IQR rule for normally-distributed data 381
15.4.2 Unidimensional density estimation (*) 382
15.4.3 Multidimensional density estimation (*) 384

15.5 Exercises . 387

16 Time series 389
16.1 Temporal ordering and line charts 389
16.2 Working with date-times and time-deltas 391

16.2.1 Representation:The UNIX epoch 391
16.2.2 Time differences . 392
16.2.3 Date-times in data frames 392

16.3 Basic operations . 396
16.3.1 Iterated differences and cumulative sums revisited 396
16.3.2 Smoothing with moving averages 399
16.3.3 Detecting trends and seasonal patterns 400
16.3.4 Imputing missing values 403
16.3.5 Plotting multidimensional time series 404
16.3.6 Candlestick plots (*) . 406

16.4 Further reading . 408
16.5 Exercises . 408

Changelog 411

References 415

XII CONTENTS

Minimalist Data Wrangling with Python is envisaged as a student’s first introduction
to data science, providing a high-level overview as well as discussing key concepts in
detail. We explore methods for cleaning data gathered from different sources, trans-
forming, selecting, and extracting features, performing exploratory data analysis and
dimensionality reduction, identifying naturally occurring data clusters, modelling
patterns in data, comparing data between groups, and reporting the results.

For many students around the world, educational resources are hardly affordable.
Therefore, I have decided that this book should remain an independent, non-profit,
open-access project (available both in PDF1 and HTML2 forms). Whilst, for some
people, the presence of a “designer tag” from a major publisher might still be a proxy
for quality, it ismyhope that this publicationwill prove useful to thosewho seek know-
ledge for knowledge’s sake.

Any bug/typo reports/fixes are appreciated. Please submit them via this project’s Git-
Hub repository3. Thank you.

Citation: Gagolewski M. (2023), Minimalist Data Wrangling with Python, Zenodo,
Melbourne, DOI: 10.5281/zenodo.64510684, ISBN: 978-0-6455719-1-2, URL: https://
datawranglingpy.gagolewski.com/.

Make sure to check outDeep R Programming5 [34] too.

1 https://datawranglingpy.gagolewski.com/datawranglingpy.pdf
2 https://datawranglingpy.gagolewski.com/
3 https://github.com/gagolews/datawranglingpy/issues
4 https://dx.doi.org/10.5281/zenodo.6451068
5 https://deepr.gagolewski.com/

https://datawranglingpy.gagolewski.com/datawranglingpy.pdf
https://datawranglingpy.gagolewski.com/
https://github.com/gagolews/datawranglingpy/issues
https://github.com/gagolews/datawranglingpy/issues
https://dx.doi.org/10.5281/zenodo.6451068
https://datawranglingpy.gagolewski.com/
https://datawranglingpy.gagolewski.com/
https://deepr.gagolewski.com/

0
Preface

0.1 The art of datawrangling
Data science6 aims atmaking sense of and generating predictions fromdata that have7
been collected in copious quantities from various sources, such as physical sensors,
surveys, online forms, access logs, and (pseudo)random number generators, to name
a few.They can take diverse forms, e.g., be given as vectors,matrices, or other tensors,
graphs/networks, audio/video streams, or text.

Researchers in psychology, economics, sociology, agriculture, engineering, cyberse-
curity, biotechnology, pharmacy, sports science, medicine, and genetics, amongst
many others, need statistical methods tomake new discoveries and confirm or falsify
existing hypotheses.What ismore, with the increased availability of open data, every-
one can do remarkable work for the common good, e.g., by volunteering for non-
profit NGOs or debunking false news and overzealous acts of wishful thinking on any
side of the political spectrum.

Data scientists, machine learning engineers, statisticians, and business analysts are
the most well-paid specialists8. This is because data-driven decision-making, model-
ling, and prediction proved themselves especially effective in many domains, includ-
ing healthcare, food production, pharmaceuticals, transportation, financial services
(banking, insurance, investment funds), real estate, and retail.

Overall, data science (and its assorted flavours, including operational research, ma-
chine learning, business and artificial intelligence) can be applied wherever we have
some relevant data at hand and there is a need to improve or understand the underly-
ing processes.

Exercise 0.1 Miniaturisation, increased computing power, cheaper storage, and the popularity
of various internet services all caused data to become ubiquitous.Think about howmuch inform-
ation people consume and generate when they interact with news feeds or social media on their
phones.

Data usually do not come in a tidy and tamed form. Data wrangling is the very broad
process of appropriately curating raw information chunks and then exploring the un-
derlying data structure so that they become analysable.

6 Traditionally known as statistics.
7 Yes, data are plural (datum is singular).
8 https://survey.stackoverflow.co/2023/#salary-comp-total

https://survey.stackoverflow.co/2023/#salary-comp-total

XIV PREFACE

0.2 Aims, scope, and design philosophy
This course is envisaged as a student’s first exposure todata science9, providing ahigh-
level overview as well as discussing key concepts at a healthy level of detail.

By no means do we have the ambition to be comprehensive with regard to any topic
we cover. Time for that will come later in separate lectures on calculus,matrix algebra,
probability, mathematical statistics, continuous and combinatorial optimisation, in-
formation theory, stochastic processes, statistical/machine learning, algorithms and
data structures, take a deep breath, databases and big data analytics, operational
research, graphs and networks, differential equations and dynamical systems, time
series analysis, signal processing, etc.

Instead, we lay very solid groundwork for the above by introducing all the objects at
an appropriate level of generality and building the most crucial connections between
them. We provide the necessary intuitions behind the more advanced methods and
concepts.Thisway, further coursesdonotneed towasteour time introducing themost
elementary definitions and answering themetaphysical questions like “butwhy dowe
need that (e.g., matrix multiplication) in the first place”.

For those reasons, in this book, we explore methods for:

• performing exploratory data analysis (e.g., aggregation and visualisation),

• working with varied types of data (e.g., numerical, categorical, text, time series),

• cleaning data gathered from structured and unstructured sources, e.g., by identi-
fying outliers, normalising strings, extracting numbers from text, imputingmiss-
ing data,

• transforming, selecting, and extracting features, dimensionality reduction,

• identifying naturally occurring data clusters,

• discovering patterns in data via approximation/modelling approaches using the
most popular probability distributions and the easiest to understand statist-
ical/machine learning algorithms,

• testing whether two data distributions are significantly different,

• reporting the results of data analysis.

We primarily focus on methods and algorithms that have stood the test of time and
that continue to inspire researchers and practitioners. They all meet the reality check
comprised of the three following properties, whichwe believe are essential in practice:

9Wemight have entitled it Introduction to Data Science (with Python).

PREFACE XV

• simplicity (and thus interpretability, being equipped with no or only a few under-
lying tunable parameters; being based on some sensible intuitions that can be ex-
plained in our own words),

• mathematical analysability (at least to some extent; so that we can understand
their strengths and limitations),

• implementability (not too abstract on the one hand, but also not requiring any
advanced computer-y hocus-pocus on the other).

Note Manymore complex algorithms are merely variations on or clever combinations
of themore basic ones.This iswhyweneed to study these fundamentals in great detail.
Wemight not see it now, but this will become evident as we progress.

0.2.1 We needmaths
Themaths we introduce is themost elementary possible, in a good sense. Namely, we
do not go beyond:

• simple analytic functions (affine maps, logarithms, cosines),

• the natural linear ordering of points on the real line (and the lack thereof in the
case of multidimensional data),

• the sum of squared differences between things (including the Euclidean distance
between points),

• linear vector/matrix algebra, e.g., to represent the most useful geometric trans-
forms (rotation, scaling, translation),

• the frequentist interpretation (as in: in samples of large sizes,we expect that…) of some
common objects from probability theory and statistics.

This is the kind of toolkit that we believe is a sine qua non requirement for every pro-
spective data scientist. We cannot escape falling in love with it.

0.2.2 We need some computing environment
We no longer practice data analysis solely using a piece of paper and a pencil10. Over
the years, dedicated computer programs that solve themost common problems arising
in the most straightforward scenarios were developed, e.g., spreadsheet-like click-
here-click-there standalone statistical packages. Still, we need a tool that will enable
us to respond to any challenge in a manner that is scientifically rigorous, i.e., well or-
ganised and reproducible.

10We acknowledge that some more theoretically inclined readers might ask the question: but why do we
need programming at all? Unfortunately, somemathematicians have forgotten that probability and statistics
are deeply rooted in the so-called real world.Theory beautifully supplements practice and provides us with
very deep insights, but we still need to get our hands dirty from time to time.

XVI PREFACE

This course uses the Python language which we shall introduce from scratch. Con-
sequently, we do not require any prior programming experience.

The 2023 StackOverflow Developer Survey11 lists Python as the second most popular
programming language (slightly behind JavaScript, whose primary use is in Web de-
velopment).Over the last fewyears, it hasproven tobea very robust choice for learning
and applying data wrangling techniques. This is possible thanks to the devoted com-
munity of open-source programmers who wrote the famous high-quality packages
such as numpy, scipy, matplotlib, pandas, seaborn, and scikit-learn.

Nevertheless, Python and its third-party packages are amongst many software tools
which can help extract knowledge from data. Other12 robust open-source choices in-
clude R13 [34, 62, 92, 98] and Julia14.

Important Wewill focus on developing transferable skills: most of what we learn here
can be applied (using different syntax but the same kind of reasoning) in other en-
vironments. Thus, this is a course on data wrangling (with Python), not a course on
Python (with examples in data wrangling).

We want the reader to become an independent user of this computing environment.
Somebody who is not overwhelmed when they are faced with any intermediate-level
data analysis problem. A user whose habitual response to a new challenge is not to
look everything up on the internet even in the simplest possible scenarios. Someone
who will not be replaced by stupid Artificial “Intelligence” in the future.

We believe we have found a healthy trade-off between the minimal set of tools that
need to be mastered and the less frequently used ones that can later be found in the
documentation or online. In other words, the reader will discover the joy of program-
ming and using logical reasoning to tinker with things.

0.2.3 We need data and domain knowledge
There is no data science ormachine learningwithout data, and data’s purpose is to rep-
resent a given problemdomain.Mathematics allows us to study different processes at
a healthy level of abstractness/specificity. Still, we need to be familiar with the reality
behind the numbers we have at hand, for example, by working closely with various
experts in the field of our interest or pursuing study/research therein.

Courses such as this one, out of necessity, must use some generic datasets that are
quite familiar tomost readers (e.g., life expectancy andGDPby country, time to finish
a marathon, yearly household incomes).

Yet, many textbooks introduce statistical concepts using carefully fabricated datasets

11 https://survey.stackoverflow.co/2023
12There are also some commercial solutions available on the market, but we believe that ultimately all

software should be free. Consequently, we are not going to talk about them here at all.
13 https://www.r-project.org/
14 https://julialang.org/

https://survey.stackoverflow.co/2023
https://www.r-project.org/
https://julialang.org/

PREFACE XVII

where everything runs smoothly, and all models work out of the box.This gives a false
sense of security and builds a too cocky a level of confidence. In practice, however,
most datasets are not only unpolished but also uninteresting, even after some care-
ful treatment. Such is life. We will not be avoiding the more difficult and less attractive
problems during our journey.

0.3 Structure
This book is a whole course.We recommend reading it from the beginning to the end.

Thematerial has been divided into five parts.

1. Introducing Python:

• Chapter 1 discusses how to execute the first code chunks in Jupyter Note-
books, which are a flexible tool for the reproducible generation of reports
from data analyses.

• Chapter 2 introduces the basic scalar types in base Python, ways to call exist-
ing and to compose our own functions, and control a code chunk’s execution
flow.

• Chapter 3mentions sequential and other iterable types in base Python.More
advanced data structures (vectors, matrices, data frames) that we introduce
below will build upon these concepts.

2. Unidimensional data:

• Chapter 4 introduces vectors from numpy, which we use for storing data on
the real line (think: individual columns in a tabular dataset).Then,we look at
themost common types of empirical distributions of data, e.g., bell-shaped,
right-skewed, heavy-tailed ones.

• In Chapter 5, we list the most basic ways for processing sequences of num-
bers, including methods for data aggregation, transformation (e.g., stand-
ardisation), and filtering.We also mention that a computer’s floating-point
arithmetic is imprecise and what we can do about it.

• Chapter 6 reviews the most common probability distributions (normal, log-
normal, Pareto, uniform, andmixtures thereof), methods for assessing how
well theyfit empirical data. It also covers pseudorandomnumber generation
which is crucial in experiments based on simulations.

3. Multidimensional data:

• Chapter 7 introduces matrices from numpy. They are a convenient means of
storing multidimensional quantitative data, i.e., many points described by
possibly many numerical features. We also present some methods for their

XVIII PREFACE

visualisation (and the problems arising from our being three-dimensional
creatures).

• Chapter 8 is devoted to basic operations on matrices. We will see that some
of them simply extend upon what we have learnt in Chapter 5, but there
is more: for instance, we discuss how to determine the set of each point’s
nearest neighbours.

• Chapter 9 discusses ways to explore the most basic relationships between
the variables in a dataset: the Pearson and Spearman correlation coefficients
(and what it means that correlation is not causation), 𝑘-nearest neighbour
and linear regression (including the sad cases where a model matrix is ill-
conditioned), and finding interesting combinations of variables that can
help reduce the dimensionality of a problem (via principal component ana-
lysis).

4. Heterogeneous data:

• Chapter 10 introduces Series and DataFrame objects from pandas, which we
can think of as vectors and matrices on steroids. For instance, they allow
rows and columns to be labelled and columns to be of different types. We
emphasise that most of what we learnt in the previous chapters still applies,
but nowwe can do evenmore: runmethods for joining (merging)many data-
sets, converting between long and wide formats, etc.

• InChapter 11,we introduce theways to represent andhandle categorical data
as well as how (not) to lie with statistics.

• Chapter 12 covers the case of aggregating, transforming, and visualising
data in groups defined by one or more qualitative variables. It introduces
an approach to data classification using the 𝑘-nearest neighbours scheme,
which is usefulwhenwe are asked tofill the gaps in a categorical variable.We
will also discover naturally occurring partitions using the 𝑘-means method,
which is an example of a computationally hard optimisation problem that
needs to be tackled with some imperfect heuristics.

• Chapter 13 is an interlude where we solve some pleasant exercises on data
frames and learn the basics of SQL. This will come in handy when our data-
sets do not fit in a computer’s memory.

5. Other data types:

• Chapter 14 discusses ways to handle text data and extract information from
them, e.g., through regular expressions. We also briefly mention the chal-
lenges related to the processing of non-English text, including phrases like
pozdro dlamoich ziomków z Bródna, Viele Grüße und viel Spaß, and χαίρετε.

• Chapter 15 emphasises that some data may be missing or be questionable
(e.g., censored, incorrect, rare) and what we can do about it.

• In Chapter 16, we cover the most basic methods for the processing of time

PREFACE XIX

series because, ultimately, everything changes, and we should be able to
track the evolution of things.

Note (*)Thepartsmarkedwith a single ordouble asterisk canbe skipped thefirst time
we read this book. They are of increased difficulty and are less essential for beginner
students.

0.4 TheRules
Our goal here, in the long run, is for you, dear reader, to become a skilled expert who
is independent, ethical, and capable of critical thinking; one who hopefully will make
some contribution towards making this world a slightly better place. To guide you
through this challenging journey, we have a few tips.

1. Follow the rules.

2. Technical textbooks are not belletristic – purely for shallow amusement. Sometimes a
single page will be very meaning-intense. Do not try to consume too much all at
once. Go for awalk, reflect onwhat you learnt, and build connections between dif-
ferent concepts. In case of any doubt, go back to the previous sections. Learning
is an iterative process, not a linear one.

3. Solve all the suggested exercises.Wemight be introducing ideas or developing crucial
intuitions there as well. Also, try implementing most of the methods you learn
about instead of looking for copy-paste solutions on the internet. How else will
you be able tomaster thematerial and develop the necessary programming skills?

4. Code is an integral part of the text. Each piece of good code is worth 1234 words (on
average). Do not skip it. On the contrary, you are encouraged to play and experi-
mentwith it. Run everymajor line of code, inspect the results generated, and read
more about the functions you use in the official documentation. What is the type
(class) of the object returned? If it is an array or a data frame, what is its shape?
What would happen if we replaced X with Y? Do not fret; your computer will not
blow up.

5. Hardenup15. Your journey towards expertisewill take years, there are no shortcuts,
but it will be quite enjoyable every now and then, so don’t give up. Still, sitting all
day in front of your computer is unhealthy. Exercise and socialise between 28 and
31 times per month for you’re not, nor will ever be, a robot.

6. Learnmaths.Our field has a very long history and stands on the shoulders ofmany
giants; many methods we use these days are merely minor variations on the clas-
sical, fundamental results that date back to Newton, Leibniz, Gauss, and Laplace.

15 Cyclists know.

XX PREFACE

Eventually, youwill need someworking knowledge ofmathematics to understand
them (linear algebra, calculus, probability and statistics). Remember that soft-
ware products/APIs seem to change frequently, but they are just a facade, a flashy
wrapping around the methods we were using for quite a while.

7. Use only methods that you can explain. You ought to refrain from working with al-
gorithms/methods/models whose definitions (pseudocode, mathematical formu-
lae, objective functions they are trying to optimise) and properties you do not
know, understand, or cannot rephrase in your own words. That they might be ac-
cessible or easy to use should not make any difference to you. Also, prefer simple
models over black boxes.

8. Compromises are inevitable16.There will never be a single best metric, algorithm, or
way to solve all the problems. Even though some solutions might be better than
others with regard to specific criteria, this will only be true under certain assump-
tions (if theyfit a theoreticalmodel). Beware that focusing toomuchonone aspect
leads to undesirable consequences with respect to other factors, especially those
that cannot be measured easily. Refraining from improving things might some-
times be better than pushing too hard. Always apply common sense.

9. Bescientificandethical.Makeyour reports reproducible, your toolkitwell-organised,
and all the assumptions you make explicit. Develop a dose of scepticism and im-
partiality towards everything, from marketing slogans, through your ideological
biases, to all hotly debated topics. Most data analysis exercises end up with con-
clusions like: “it’s too early to tell”, “data don’t show it’s either way”, “there is a dif-
ference, but it is hardly significant”, “yeah, but our sample is not representative
for the entire population” – and there is nothing wrong with this. Communicate
in a precise manner [84]. Remember that it is highly unethical to use statistics to
tell lies [94]; this includes presenting only one side of the overly complex reality
and totally ignoring all others (compare Rule#8). Using statistics for doing dread-
ful things (tracking users to find their vulnerabilities, developing products and
services which are addictive) is a huge no-no!

10. The best things in life are free. These include the open-source software and open-
access textbooks (such as this one) we use in our journey. Spread the good news
about themand– if you can–don’t only be a taker: contribute something valuable
yourself (evenas small as reporting typos in theirdocumentationorhelpingothers
in different forums when they are stuck). After all, it is our shared responsibility.

16 Some people would refer to this rule asThere is no free lunch, but in our – overall friendly – world, many
things are actually free (see Rule #10).Therefore, this name is misleading.

PREFACE XXI

0.5 About the author
I,MarekGagolewski17 (pronounced likeMa’rekGong-olive-ski), am currently a Senior
Lecturer in Data Science/Applied AI at Deakin University in Melbourne, VIC, Aus-
tralia, and an Associate Professor at the Systems Research Institute of the Polish
Academy of Sciences.

My research interests are related todata science, inparticular:modelling complexphe-
nomena, developing usable, general-purpose algorithms, studying their analytical
properties, and finding out how people use, misuse, understand, andmisunderstand
methodsofdata analysis in research, commercial, anddecision-making settings. I am
an author of over 90 publications, including journal papers in outlets such as Proceed-
ings of theNational Academy of Sciences (PNAS), Journal of Statistical Software,TheR Journal,
InformationFusion, International Journal ofForecasting,StatisticalModelling,PhysicaA:Stat-
isticalMechanics and its Applications, Information Sciences, Knowledge-Based Systems, IEEE
Transactions on Fuzzy Systems, and Journal of Informetrics.

Inmy “spare” time, I write books for my students: check out myDeep R Programming18
[34]. I also develop open-source data analysis software, such as stringi19 (one of the
most often downloaded R packages), genieclust20 (a fast and robust clustering al-
gorithm in both Python and R), andmany others21.

0.6 Acknowledgements
MinimalistDataWranglingwithPython is basedonmyexperience as an author of a quite
successful textbook Przetwarzanie i analiza danychw języku Python [35] that I wrote with
my former (successful) PhDstudents,MaciejBartoszukandAnnaCena– thanks!Even
though the current book is an entirely different work, its predecessor served as an
excellent testbed for many ideas conveyed here.

The teaching style exercised in this bookhasproven successful inmany similar courses
that yours truly has been responsible for, including at Warsaw University of Techno-
logy, Data Science Retreat (Berlin), andDeakin University (Melbourne). I thank all my
students and colleagues for the feedback given over the last 10+ years.

A thank-you to all the authors and contributors of the Python packages that we use
throughout this course: numpy [45], scipy [93], matplotlib [51], pandas [63], and seaborn
[95], amongst others (as well as the many C/C++/Fortran libraries they provide wrap-
pers for). Their version numbers are given in Section 1.4.

17 https://www.gagolewski.com/
18 https://deepr.gagolewski.com/
19 https://stringi.gagolewski.com/
20 https://genieclust.gagolewski.com/
21 https://github.com/gagolews

https://www.gagolewski.com/
https://deepr.gagolewski.com/
https://stringi.gagolewski.com/
https://genieclust.gagolewski.com/
https://github.com/gagolews

XXII PREFACE

This book was prepared in a Markdown superset called MyST22, Sphinx23, and
TeX (XeLaTeX). Python code chunks were processed with the R (sic!) package
knitr [102]. A little help from Makefiles, custom shell scripts, and Sphinx plugins
(sphinxcontrib-bibtex24, sphinxcontrib-proof25) dotted the j’s and crossed the f ’s.
The Ubuntu Mono26 font is used for the display of code. Typesetting of the main text
relies upon the Alegreya27 and Lato28 typefaces.

This work received no funding, administrative, technical, or editorial support from
Deakin University, Warsaw University of Technology, Polish Academy of Sciences, or
any other source.

0.7 You canmake this book better
When it comes to quality assurance, open, non-profit projects have to resort to the
generosity of the readers’ community.

If you find a typo, a bug, or a passage that could be rewritten or extended for better
readability/clarity, do not hesitate to report it via the Issues tracker available at https:
//github.com/gagolews/datawranglingpy. New feature requests are welcome as well.

22 https://myst-parser.readthedocs.io/en/latest/index.html
23 https://www.sphinx-doc.org/
24 https://pypi.org/project/sphinxcontrib-bibtex
25 https://pypi.org/project/sphinxcontrib-proof
26 https://design.ubuntu.com/font
27 https://www.huertatipografica.com/en
28 https://www.latofonts.com/

https://myst-parser.readthedocs.io/en/latest/index.html
https://www.sphinx-doc.org/
https://pypi.org/project/sphinxcontrib-bibtex
https://pypi.org/project/sphinxcontrib-proof
https://design.ubuntu.com/font
https://www.huertatipografica.com/en
https://www.latofonts.com/
https://github.com/gagolews/datawranglingpy
https://github.com/gagolews/datawranglingpy

Part I

Introducing Python

1
Getting started with Python

1.1 Installing Python
Python1 was designed and implemented by the Dutch programmer Guido van Ros-
sumin the late 1980s. It is an immenselypopular2 object-orientatedprogramming lan-
guage. Over the years, it proved particularly suitable for rapid prototyping. Its name
is a tribute to the funniest British comedy troupe ever.We will surely be having a jolly
good laugh3 along our journey.

In this course, we will be relying on the reference implementation of the Python lan-
guage (called CPython4), version 3.11 (or any later one).

Users of UNIX-like operating systems (GNU/Linux5, FreeBSD, etc.)may download Py-
thon via their native packagemanager (e.g., sudo apt install python3 in Debian and
Ubuntu). Then, additional Python packages (see Section 1.4) can be installed6 by the
said manager or directly from the Python Package Index (PyPI7) via the pip tool.

Users of other operating systems can download Python from the project’s website or
some other distribution available on the market, e.g., Anaconda or Miniconda.

Exercise 1.1 Install Python on your computer.

1 https://www.python.org/
2 https://survey.stackoverflow.co/2023/#most-popular-technologies-language
3Whenwe are all in tears because ofmathematics and programming, those that we shed are often tears

of joy.
4 (*) CPythonwas written in the C programming language. Many Python packages are just convenient

wrappers around code written in C, C++, or Fortran.
5 GNU/Linux is the operating system of choice for machine learning engineers and data scientists both

on the desktop and in the cloud. Switching to a free system at some point cannot be recommended highly
enough.

6 https://packaging.python.org/en/latest/tutorials/installing-packages
7 https://pypi.org/

https://www.python.org/
https://survey.stackoverflow.co/2023/#most-popular-technologies-language
https://packaging.python.org/en/latest/tutorials/installing-packages
https://pypi.org/

4 I INTRODUCING PYTHON

1.2 Workingwith Jupyter notebooks
Jupyter8 brings a web browser-based development environment supporting numer-
ous9 programming languages. Even though, in the long run, it is not the most con-
venient space for exercisingdata science inPython (writing standalone scripts in some
more advanced editors is the preferred option), we chose it here because of its educat-
ive advantages (interactivity, beginner-friendliness, etc.).

Figure 1.1. An example Jupyter notebook.

In Jupyter, we can work with:

• Jupyter notebooks10— .ipynb documents combining code, text, plots, tables, and
other rich outputs; importantly, code chunks can be created, modified, and run,
whichmakes it a fine reporting tool for our basic data science needs; see Figure 1.1;

• code consoles — terminals where we evaluate code chunks in an interactive man-
ner (a read-eval-print loop);

8 https://jupyterlab.readthedocs.io/en/stable
9 https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
10 https://jupyterlab.readthedocs.io/en/stable/user/notebook.html

https://jupyterlab.readthedocs.io/en/stable
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://jupyterlab.readthedocs.io/en/stable/user/notebook.html

1 GETTING STARTED WITH PYTHON 5

• source files in a variety of programming languages — with syntax highlighting
and the ability to send code to the associated consoles;

andmanymore.

Exercise 1.2 Head to the official documentation11 of the Jupyter project.Watch the introductory
video linked in theGet Started section.

Note (*) More advanced studentsmight consider, for example, jupytext12 as ameans
to create .ipynb files directly fromMarkdown documents.

1.2.1 Launching JupyterLab
How we launch JupyterLab (or its lightweight version, Jupyter Notebook) will vary
from system to system.We all need to determine the best way to do it by ourselves.

Some users will be able to start JupyterLab via their start menu/application launcher.
Alternatively, we can open the system terminal (bash, zsh, etc.) and type:

cd our/favourite/directory # change directory
jupyter lab # or jupyter-lab, depending on the system

This should launch the JupyterLab server and open the corresponding app in our fa-
vourite web browser.

Note Some commercial cloud-hosted instances or forks of the open-source Jupyter-
Lab project are available on the market, but we endorse none of them; even though
they might be provided gratis, there are always strings attached. It is best to run our
applications locally, where we are free13 to be in full control over the software environ-
ment. Contrary to the former solution, we do not have to remain on-line to use it.

1.2.2 First notebook
Follow the steps below to create your first notebook.

1. From JupyterLab, create a new notebook running a Python 3 kernel, for example,
by selecting File→New→Notebook from the application menu.

2. Select File→ Rename Notebook and change the filename to HelloWorld.ipynb.

Important The file is stored relative to the running JupyterLab server instance’s
current working directory. Make sure you can locate HelloWorld.ipynb on your

11 https://jupyterlab.readthedocs.io/en/stable/index.html
12 https://jupytext.readthedocs.io/en/latest
13 https://www.youtube.com/watch?v=Ag1AKIl_2GM

https://jupyterlab.readthedocs.io/en/stable/index.html
https://jupytext.readthedocs.io/en/latest
https://www.youtube.com/watch?v=Ag1AKIl_2GM

6 I INTRODUCING PYTHON

disk using your file explorer. On a side note, .ipynb is just a JSONfile that can also
be edited using ordinary text editors.

3. Input the following within the first code cell:

print("G'day!")

4. Press Ctrl+Enter (or Cmd+Return onm**OS) to execute the code cell and display the
result; see Figure 1.2.

Figure 1.2. “Hello, World” in a Jupyter notebook.

1.2.3 More cells
We are on fire. We cannot stop now.

1. Bypressing Enter,we enter theEditmode.Modify the current cell’s contents so that
it becomes:

My first code cell (this is a comment)
print("G'day!") # prints a message (this is a comment too)
print(2+5) # prints a number

2. Press Ctrl+Enter to execute whole code chunk and replace the previous outputs
with the updated ones.

3. Enter another command that prints a message that you would like to share with
theworld.Note that character strings in Pythonmust be enclosed either in double
quotes or in apostrophes.

4. Press Shift+Enter to execute the current code cell, create a new one below, and
then enter the edit mode.

5. In the new cell, input and then execute the following:

import matplotlib.pyplot as plt # the main plotting library
plt.bar(

["Python", "JavaScript", "HTML", "CSS"], # a list of strings
[80, 30, 10, 15] # a list of integers (the respective bar heights)

)

(continues on next page)

1 GETTING STARTED WITH PYTHON 7

(continued from previous page)

plt.title("What makes you happy?")
plt.show()

6. Add three more code cells that display some text or create other bar plots.

Exercise 1.3 Changeprint(2+5) toPRINT(2+5).Run the corresponding code cell and seewhat
happens.

Note In theEditmode, JupyterLabbehaves like an ordinary text editor.Most keyboard
shortcuts known from elsewhere are available, for example:

• Shift+LeftArrow, DownArrow, UpArrow, or RightArrow – select text,

• Ctrl+c – copy,

• Ctrl+x – cut,

• Ctrl+v – paste,

• Ctrl+z – undo,

• Ctrl+] – indent,

• Ctrl+[– dedent,

• Ctrl+/ – toggle comment.

1.2.4 Edit vs commandmode
By pressing ESC, we can enter the Commandmode.

1. Use the arrow DownArrow and UpArrow keys to move between the code cells.

2. Press d,d (d followed by another d) to delete the currently selected cell.

3. Press z to undo the last operation.

4. Press a and b to insert a new blank cell, respectively, above and below the current
one.

5. Note a simple drag and drop can relocate cells.

Important ESC and Enter switch between the Command and Editmodes, respectively.

Example 1.4 In Jupyter notebooks, the linear flow of chunks’ execution is not strongly enforced.
By editing cells in a rather frivolous fashion, we may end up with matter that makes little sense
when it is read from the beginning to the end. For instance:

8 I INTRODUCING PYTHON

In [2]:
x = [1, 2, 3]

In [10]:
sum(x)

Out [10]:
18

In [7]:
sum(y)

Out [7]:
6

In [6]:
x = [5, 6, 7]

In [5]:
y = x

The chunk IDs reveal the true order in which the author has executed them. It is thus best to al-
ways select Restart Kernel and Run All Cells from the Kernel menu to ensure that evaluating con-
tent step by step renders results that meet our expectations.

1.2.5 Markdown cells
So far, we have only been playing with code cells. Notebooks are not just about writing
code, though. They are meant to be read by humans too. Thus, we need some means
to create formatted text.

Markdown is lightweight yet powerful enough markup (pun indented) language
widely used on many popular platforms (e.g., on Stack Overflow and GitHub). We can
convert the current cell to aMarkdown block by pressing m in the Commandmode (note
that by pressing ywe can turn it back to a code cell).

1. Enter the following into a newMarkdown cell:

Section

Subsection

This is the first paragraph. It ~~was~~ *is* **very** nice.
Great success.

This is the second paragraph. Note that a blank line separates
it from the previous one. And now for something completely different:
a bullet list:

* one

(continues on next page)

1 GETTING STARTED WITH PYTHON 9

(continued from previous page)

* two

1. aaa

2. bbbb

* [three](https://en.wikipedia.org/wiki/3)

```python
# some code to display (but not execute)
2+2
```

![Python logo](https://www.python.org/static/img/python-logo.png)

2. Press Ctrl+Enter to display the formatted text.

3. Notice that Markdown cells can be modified in the Edit mode as usual (the Enter
key).

Exercise 1.5 Read the official introduction14 to theMarkdown syntax.

Exercise 1.6 Follow this15 interactiveMarkdown tutorial.

Exercise 1.7 Applywhatyouhave learntbymaking the current Jupyternotebookmore readable.
At the beginning of the report, add a header featuring your name and email address. Before and
after each code cell, explain its purpose and how to interpret the obtained results.

1.3 The best note-taking app
Our learning will not be effective if we do note take good note of the concepts that we
come across during this course, especially if they are new to us. More often than not,
wewill find ourselves in a need to write down the definitions and crucial properties of
the methods we discuss, draw simple diagrams and mind maps to build connections
between different topics, verify the validity of some results, or derive simplemathem-
atical formulae ourselves.

Let us not waste our time finding the best app for our computers, phones, or tablets.
Theversatile note-taking solution is anordinarypiece ofA4paper andapenor apencil.
Loose sheets, 5mmgrid-ruled for graphs and diagrams, work nicely.They can be held
together using a cheap landscape clip folder (the one with a clip on the long side). An

14 https://daringfireball.net/projects/markdown/syntax
15 https://commonmark.org/help/tutorial

https://daringfireball.net/projects/markdown/syntax
https://commonmark.org/help/tutorial

10 I INTRODUCING PYTHON

advantage of this solution is that it can be browsed through like an ordinary notebook.
Also, new pages can be added anywhere, and their ordering altered arbitrarily.

1.4 Initialising each session and getting example data
Fromnow on, we assume that the following commands are issued at the beginning of
each Python session:

import key packages – required:
import numpy as np
import scipy.stats
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

further settings – optional:
pd.set_option("display.notebook_repr_html", False) # disable "rich" output

import os
os.environ["COLUMNS"] = "74" # output width, in characters
np.set_printoptions(linewidth=74)
pd.set_option("display.width", 74)

import sklearn
sklearn.set_config(display="text")

plt.style.use("seaborn-v0_8") # plot style template

_colours = [# the "R4" palette
"#000000f0", "#DF536Bf0", "#61D04Ff0", "#2297E6f0",
"#28E2E5f0", "#CD0BBCf0", "#F5C710f0", "#999999f0"

]

_linestyles = [
"solid", "dashed", "dashdot", "dotted"

]

plt.rcParams["axes.prop_cycle"] = plt.cycler(
each plotted line will have a different plotting style
color=_colours, linestyle=_linestyles*2

)
plt.rcParams["patch.facecolor"] = _colours[0]

np.random.seed(123) # initialise the pseudorandom number generator

The above imports the most frequently used packages (together with their usual ali-

1 GETTING STARTED WITH PYTHON 11

ases, we will get to that later).Then, it sets up some further options that yours truly is
particularly fond of. On a side note, for the discussion on the reproducible pseudor-
andom number generation, please see Section 6.4.2.

Open-source software regularly enjoys feature extensions, API changes, and bugfixes.
It isworthwhile to knowwhich versionof thePython environmentwasused to execute
all the code listed in this book:

import sys
print(sys.version)
3.11.4 (main, Jun 9 2023, 07:59:55) [GCC 12.3.0]

Given below are the versions of the packages that we will be relying on.This informa-
tion can usually be accessed by calling, for example, print(np.__version__), etc.

Package Version
numpy 1.25.2
scipy 1.11.2
matplotlib 3.7.2
pandas 2.1.0
seaborn 0.12.2
sklearn (scikit-learn) (*) 1.3.0
icu (PyICU) (*) 2.11
IPython (*) 8.15.0
mplfinance (*) 0.12.10b0

We expect 99% of our code to work in the (near-)future versions of the environment.
If the diligent reader discovers that this is not the case, filing a bug report at https:
//github.com/gagolews/datawranglingpy will bemuch appreciated (for the benefit of
other students).

Important All example datasets that we use throughout this course are available for
download at https://github.com/gagolews/teaching-data.

Exercise 1.8 Ensure you are comfortable accessing raw data files from the above repository.
Chose any file, e.g., nhanes_adult_female_height_2020.txt in the marek folder, and then
click Raw. It is the URL where you have been redirected to, not the previous one, that includes
the link to be used from within your Python session. Also, note that each dataset starts with sev-
eral comment lines explaining its structure, the meaning of the variables, etc.

https://github.com/gagolews/datawranglingpy
https://github.com/gagolews/datawranglingpy
https://github.com/gagolews/teaching-data

12 I INTRODUCING PYTHON

1.5 Exercises
Exercise 1.9 What is the difference between theEdit and theCommandmode in Jupyter?

Exercise 1.10 How can we format a table inMarkdown?How can we insert an image, a hyper-
link, and an enumerated list?

2
Scalar types and control structures in Python

In this part, we introduce the basics of the Python language itself. Being a general-
purpose tool, various packages supporting data wrangling operations are provided as
third-party extensions. In further chapters, extending upon the concepts discussed
here, we will be able to use numpy, scipy, matplotlib, pandas, seaborn, and other pack-
ages with a healthy degree of confidence.

2.1 Scalar types
Scalars are single or atomic values.Their five ubiquitous types are:

• bool – logical,

• int, float, complex – numeric,

• str – character.

Let us discuss them in detail.

2.1.1 Logical values
There are only two possible logical (Boolean) values: True and False. By typing:

True
True

we instantiate the former.This is adull exerciseunlesswehave fallen into the following
pitfall.

Important Python is a case-sensitive language. Writing “TRUE” or “true” instead of
“True” is an error.

2.1.2 Numeric values
The three numeric scalar types are:

• int – integers, e.g., 1, -42, 1_000_000;

14 I INTRODUCING PYTHON

• float – floating-point (real) numbers, e.g., -1.0, 3.14159, 1.23e-4;

• (*) complex – complex numbers, e.g., 1+2j.

In practice, numbers of the type int and float often interoperate seamlessly.We usu-
ally do not have to think about them as being of distinctive types. On the other hand,
complex numbers are rather infrequently used in basic data science applications (but
see Section 4.1.4).

Exercise 2.1 1.23e-4 and 9.8e5 are examples of numbers in scientific notation, where “e”
stands for “… times 10 to the power of …”. Additionally, 1_000_000 is a decorated (more human-
readable) version of 1000000. Use the print function to check out their values.

Arithmetic operators

Here is the list of available arithmetic operators:

1 + 2 # addition
3
1 - 7 # subtraction
-6
4 * 0.5 # multiplication
2.0
7 / 3 # float division (results are always of the type float)
2.3333333333333335
7 // 3 # integer division
2
7 % 3 # division remainder
1
2 ** 4 # exponentiation
16

The precedence of these operators is quite predictable1, e.g., exponentiation has
higher priority than multiplication and division, which in turn bind more strongly
than addition and subtraction.Thus,

1 + 2 * 3 ** 4
163

is the same as 1+(2*(3**4)) and is different from, e.g., ((1+2)*3)**4).

Note Keep in mind that computers’ floating-point arithmetic is precise only up to a
dozen or so significant digits. As a consequence, the result of 7/3 is only approximate;
hence the 2.3333333333333335 above.We will get discuss this topic in Section 5.5.6.

1 https://docs.python.org/3/reference/expressions.html#operator-precedence

https://docs.python.org/3/reference/expressions.html#operator-precedence

2 SCALAR TYPES AND CONTROL STRUCTURES IN PYTHON 15

Creating named variables

Anamedvariable canbe introduced through the assignmentoperator, `=`. It can store an
arbitrary Python object which we can recall at any later time. Names of variables can
include any lower- and uppercase letters, underscores, and (except at the beginning)
digits.

To make our code easier to understand for humans, it is best to use names that are
self-explanatory, like:

x = 7 # read: let `x` from now on be equal to 7 (or: `x` becomes 7)

“x” is great name: it means something of general interest inmathematics. Let us print out
the value it is bound to:

print(x) # or just `x`
7

New variables can easily be created based on existing ones:

my_2nd_variable = x/3 - 2 # creates `my_2nd_variable`
print(my_2nd_variable)
0.3333333333333335

Existing variables may be rebound to any other value freely:

x = x/3 # let the new `x` be equal to the old `x` (7) divided by 3
print(x)
2.3333333333333335

Exercise 2.2 Define two named variables height (in centimetres) and weight (in kilograms).
Determine the corresponding bodymass index (BMI2).

Note (*) Augmented assignments are also available. For example:

x *= 3
print(x)
7.0

In this context, the above is equivalent to x = x*3. In other words, it creates a new
object. Nevertheless, in some scenarios, augmented assignments maymodify the ob-
jects they act upon in place; compare Section 3.5.

2.1.3 Character strings
Character strings (objects of the type str) store text data. They are created using apo-
strophes or double quotes:

2 https://en.wikipedia.org/wiki/Body_mass_index

https://en.wikipedia.org/wiki/Body_mass_index

16 I INTRODUCING PYTHON

print("spam, spam, #, bacon, and spam")
spam, spam, #, bacon, and spam
print('Cześć! ¿Qué tal?')
Cześć! ¿Qué tal?
print('"G\'day, how\'s it goin\'," he asked.\\\n"All good," she responded.')
"G'day, how's it goin'," he asked.\
"All good," she responded.

We see some examples of escape sequences3 here:

• “\'” is a way to include an apostrophe in an apostrophe-delimited string,

• “\\” enters a backslash,

• “\n” inputs a newline character.

Multiline strings are created using three apostrophes or double quotes:

"""
spam\\spam
tasty\t"spam"
lovely\t'spam'
"""
'\nspam\\spam\ntasty\t"spam"\nlovely\t\'spam\'\n'

Exercise 2.3 Call the print function on the above object to reveal the meaning of the included
escape sequences.

Important Many string operations are available, e.g., for formatting and pattern
searching. They are especially important in the art of data wrangling as information
often arrives in textual form. Chapter 14 covers this topic in detail.

F-strings (formatted string literals)

F-strings are formatted string literals:

x = 2
f"x is equal to {x}"
'x is equal to 2'

Notice the “f” prefix.The “{x}” part was replacedwith the value stored in the x variable.

The formatting of items can be fine-tuned. As usual, it is best to study the doc-
umentation4 in search of interesting features. Here, let us just mention that we
will frequently be referring to placeholders like “{value:width}” and “{value:width.
precision}”, which specify the field width and the number of fractional digits of a

3 https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals
4 https://docs.python.org/3/reference/lexical_analysis.html#f-strings

https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/reference/lexical_analysis.html#f-strings

2 SCALAR TYPES AND CONTROL STRUCTURES IN PYTHON 17

number. This way, we can output a series of values aesthetically aligned one below
another.

π = 3.14159265358979323846
e = 2.71828182845904523536
print(f"""
π = {π:10.8f}
e = {e:10.8f}
πe² = {(π*e**2):10.8f}
""")
##
π = 3.14159265
e = 2.71828183
πe² = 23.21340436

“10.8f” means that a value should be formatted as a float, be of width at least ten
characters (text columns), and use eight fractional digits.

2.2 Calling built-in functions
Wehave a fewbase functions at our disposal. For instance, to round theEuler constant
e to two decimal digits, we can call:

e = 2.718281828459045
round(e, 2)
2.72

Exercise 2.4 Call help("round") to access the function’s manual. Note that the second argu-
ment, called ndigits, which we set to 2, defaults to None. Check what happens when we omit it
during the call.

2.2.1 Positional and keyword arguments
The round function has two parameters, number and ndigits. Thus, the following calls
are equivalent:

print(
round(e, 2), # two arguments matched positionally
round(e, ndigits=2), # positional and keyword argument
round(number=e, ndigits=2), # two keyword arguments
round(ndigits=2, number=e) # the order does not matter for keyword args

)
2.72 2.72 2.72 2.72

Verifying that no other call scheme is permitted is left as an exercise, i.e., positionally
matched arguments must be listed before the keyword ones.

18 I INTRODUCING PYTHON

2.2.2 Modules and packages
Python modules and packages (which are collections of modules) define thousands
of additional functions. For example, math features the most common mathematical
routines:

import math # the math module must be imported before we can use it
print(math.log(2.718281828459045)) # the natural logarithm (base e)
1.0
print(math.floor(-7.33)) # the floor function
-8
print(math.sin(math.pi)) # sin(pi) equals 0 (with small numeric error)
1.2246467991473532e-16

See the official documentation5 for the comprehensive list of objects available. On a
side note, all floating-point computations in any programming language are subject
to round-off errors and other inaccuracies.This is why the result of sin𝜋 is not exactly
0, but some value very close thereto. We will elaborate on this topic in Section 5.5.6.

Packages can be given aliases, for the sake of code readability or due to our being lazy.
For instance, in Chapter 4 we will get used to importing the numpy package under the
np alias:

import numpy as np

And now, instead of writing, for example, numpy.random.rand(), we can call:

np.random.rand() # a pseudorandom value in [0.0, 1.0)
0.6964691855978616

2.2.3 Slots andmethods
Python is an object-orientated programming language. Each object is an instance of
some classwhose name we can reveal by calling the type function:

x = 1+2j
type(x)
<class 'complex'>

Important Classes define two kinds of attributes:

• slots – associated data,

• methods – associated functions.

Exercise 2.5 Call help("complex") to reveal that the complex class defines, amongst others,
the conjugatemethod and the real and imag slots.

5 https://docs.python.org/3/library/math.html

https://docs.python.org/3/library/math.html

2 SCALAR TYPES AND CONTROL STRUCTURES IN PYTHON 19

Here is how we can read the two slots:

print(x.real) # access slot `real` of object `x` of the class `complex`
1.0
print(x.imag)
2.0

And here is an example of a method call:

x.conjugate() # equivalently: complex.conjugate(x)
(1-2j)

Notably, the documentation of this function can be accessed by typing help("complex.
conjugate") (class name – dot –method name).

2.3 Controlling program flow
2.3.1 Relational and logical operators
We have several operators which return a single logical value:

1 == 1.0 # is equal to?
True
2 != 3 # is not equal to?
True
"spam" < "egg" # is less than? (with respect to the lexicographic order)
False

Somemore examples:

math.sin(math.pi) == 0.0 # well, numeric error...
False
abs(math.sin(math.pi)) <= 1e-9 # is close to 0?
True

Logical results can be combined using and (conjunction; for testing if both operands are
true) and or (alternative; for determining whether at least one operand is true). Like-
wise, not stands for negation.

3 <= math.pi and math.pi <= 4 # is it between 3 and 4?
True
not (1 > 2 and 2 < 3) and not 100 <= 3
True

Notice that not 100 <= 3 is equivalent to 100 > 3. Also, based on the de Morgan laws,
not (1 > 2 and 2 < 3) is true if and only if 1 <= 2 or 2 >= 3 holds.

20 I INTRODUCING PYTHON

Exercise 2.6 Assuming that p, q, r are logical and a, b, c, d are variables of the type float,
simplify the following expressions:

• not not p,

• not p and not q,

• not (not p or not q or not r),

• not a == b,

• not (b > a and b < c),

• not (a>=b and b>=c and a>=c),

• (a>b and a<c) or (a<c and a>d).

2.3.2 The if statement
The if statement executes a chunkof code conditionally, basedonwhether theprovided
expression is true or not. For instance, given some variable:

x = np.random.rand() # a pseudorandom value in [0.0, 1.0)

we can react enthusiastically to its being less than 0.5:

if x < 0.5: print("spam!") # note the colon after the tested condition

Actually, we remained cool as a cucumber (nothing was printed) because x is equal to:

print(x)
0.6964691855978616

Multiple elif (else-if) parts canalso be added.Theymaybe followedby anoptional else
part, which is executed if all of the tested conditions turn out to be false.

if x < 0.25: print("spam!")
elif x < 0.5: print("ham!") # i.e., x in [0.25, 0.5)
elif x < 0.75: print("bacon!") # i.e., x in [0.5, 0.75)
else: print("eggs!") # i.e., x >= 0.75
bacon!

If more than one statement is to be executed conditionally, an indented code block can
be introduced.

if x >= 0.25 and x <= 0.75:
print("bacon!")
print("I love it!")

else:
print("I'd rather eat spam!")

(continues on next page)

2 SCALAR TYPES AND CONTROL STRUCTURES IN PYTHON 21

(continued from previous page)

print("more spam!") # executed regardless of the condition's state
bacon!
I love it!
more spam!

Important The indentation must be neat and consistent. We recommend using four
spaces. The reader is encouraged to try to execute the following code chunk and note
the kind of error generated:

if x < 0.5:
print("spam!")

print("ham!") # :(

Exercise 2.7 For agivenBMI, print out the corresponding categoryas definedby theWHO(un-
derweight if below 18.5 kg/m², normal range up to 25.0 kg/m², etc.). Bear inmind that the BMI
is a simplistic measure. Both the medical and statistical communities pointed out its inherent
limitations. Read the Wikipedia article thereon for more details (and appreciate the amount of
data wrangling required for its preparation: tables, charts, calculations; something that we will
be able to perform quite soon, given quality reference data, of course).

Exercise 2.8 (*) Check if it is easy to find on the internet (in reliable sources) some rawdatasets
related to the body mass studies, e.g., measuring subjects’ height, weight, body fat and muscle
mass, etc.

2.3.3 The while loop
The while loop executes a given statement or a series of statements as long as a given
condition is true. For example, here is a simple simulator determining how long we
have to wait until drawing the first number not greater than 0.01 whilst generating
numbers in the unit interval:

count = 0
while np.random.rand() > 0.01:

count = count + 1
print(count)
117

Exercise 2.9 Using the while loop, determine the arithmetic mean of 100 randomly generated
numbers (i.e., the sum of the numbers divided by 100).

22 I INTRODUCING PYTHON

2.4 Defining functions
As a means for code reuse, we can define our own functions. For instance, below is a
procedure that computes theminimum (with respect to the `<` relation) of three given
objects:

def min3(a, b, c):
"""
A function to determine the minimum of three given inputs.

By the way, this is a docstring (documentation string);
call help("min3") later to view it.
"""
if a < b:

if a < c:
return a

else:
return c

else:
if b < c:

return b
else:

return c

Example calls:

print(min3(10, 20, 30),
min3(10, 30, 20),
min3(20, 10, 30),
min3(20, 30, 10),
min3(30, 10, 20),
min3(30, 20, 10))

10 10 10 10 10 10

Note that min3 returns a value. The result it yields can be consumed in further compu-
tations:

x = min3(np.random.rand(), 0.5, np.random.rand()) # minimum of 3 numbers
x = round(x, 3) # transform the result somehow
print(x)
0.5

Exercise 2.10 Write a function named bmiwhich computes and returns a person’s BMI, given
their weight (in kilograms) and height (in centimetres). As documenting functions constitutes a
good development practice, do not forget about including a docstring.

New variables can be introduced inside a function’s body. This can help the function
perform its duties.

2 SCALAR TYPES AND CONTROL STRUCTURES IN PYTHON 23

def min3(a, b, c):
"""
A function to determine the minimum of three given inputs
(alternative version).
"""
m = a # a local (temporary/auxiliary) variable
if b < m:

m = b
if c < m: # be careful! no `else` or `elif` here — it's a separate `if`

m = c
return m

Example call:

m = 7
n = 10
o = 3
min3(m, n, o)
3

All local variables cease to exist after the function is called. Notice that m inside the func-
tion is a variable independent of m in the global (calling) scope.

print(m) # this is still the global `m` from before the call
7

Exercise 2.11 Implement a function max3 which determines the maximum of three given val-
ues.

Exercise 2.12 Write a function med3which defines the median of three given values (the value
that is in-between two other ones).

Exercise 2.13 (*) Indite a function min4 to compute the minimum of four values.

Note Lambda expressions give us an uncomplicated way to define functions using
a single line of code. The are defined using the syntax lambda argument_name: re-

turn_expression.

square = lambda x: x**2 # i.e., def square(x): return x**2
square(4)
16

Objects generated through lambda expressions do not have to be assigned a name:
they can remain anonymous.This is usefulwhen calling amethodwhich takes another
function as its argument. With lambdas, the latter can be generated on the fly.

def print_x_and_fx(x, f):
"""

(continues on next page)

24 I INTRODUCING PYTHON

(continued from previous page)

Arguments: x - some object; f - a function to be called on x
"""
print(f"x = {x} and f(x) = {f(x)}")

print_x_and_fx(4, lambda x: x**2)
x = 4 and f(x) = 16
print_x_and_fx(math.pi/4, lambda x: round(math.cos(x), 5))
x = 0.7853981633974483 and f(x) = 0.70711

2.5 Exercises
Exercise 2.14 What does import xxxxxx as xmean?

Exercise 2.15 What is the difference between if and while?

Exercise 2.16 Name the scalar types we introduced in this chapter.

Exercise 2.17 What is a docstring and how can we create and access it?

Exercise 2.18 What are keyword arguments?

3
Sequential and other types in Python

3.1 Sequential types
Sequential objects store data items that can be accessed by index (position). The three
main sequential types are: lists, tuples, and ranges.

As a matter of fact, strings (which we often treat as scalars) can also be considered of
this kind.Therefore, amongst sequential objects are such diverse classes as:

• lists,

• tuples,

• ranges, and

• strings.

Nobody expected that.

3.1.1 Lists
Lists consist of arbitrary Python objects.They can be created using standalone square
brackets:

x = [True, "two", 3, [4j, 5, "six"], None]
print(x)
[True, 'two', 3, [4j, 5, 'six'], None]

Above is an example list featuring objects of the types: bool, str, int, list (yes, it is
possible to have a list inside another list), and None (the None object is the only of this
kind, it represents a placeholder for nothingness), in this order.

Note We will often be relying on lists when creating vectors in numpy or data frame
columns in pandas. Furthermore, lists of lists of equal lengths can be used to create
matrices.

Each list is mutable. Consequently, its state may freely be changed. For instance, we
can append a new object at its end:

26 I INTRODUCING PYTHON

x.append("spam")
print(x)
[True, 'two', 3, [4j, 5, 'six'], None, 'spam']

The call to the list.appendmethodmodified x in place.

3.1.2 Tuples
Next, tuples are like lists, but they are immutable (read-only): once created, they cannot
be altered.

("one", [], (3j, 4))
('one', [], (3j, 4))

This gave us a triple (a 3-tuple) carrying a string, an empty list, and a pair (a 2-tuple).
Let us stress that we can drop the round brackets and still get a tuple:

1, 2, 3 # the same as `(1, 2, 3)`
(1, 2, 3)

Also:

42, # equivalently: `(42,)`
(42,)

Note the trailing comma; the above notation defines a singleton (a 1-tuple). It is not
the same as the scalar 42 or (42), which is an object of the type int.

Note Having a separate data type representing an immutable sequence makes sense
in certain contexts. For example, a data frame’s shape is its inherent property that
should not be tinkered with. If a tabular dataset has 10 rows and 5 columns, we dis-
allow the user to set the former to 15 (withoutmaking further assumptions, providing
extra data, etc.).

When creating collections of items, we usually prefer lists, as they are more flexible a
data type. Yet, Section 3.4.2 will mention that many functions return tuples. We are
expected to be able to handle themwith confidence.

3.1.3 Ranges
Objects defined by calling range(from, to) or range(from, to, by) represent arith-
metic progressions of integers.

list(range(0, 5)) # i.e., range(0, 5, 1) – from 0 to 5 (exclusive) by 1
[0, 1, 2, 3, 4]
list(range(10, 0, -1)) # from 10 to 0 (exclusive) by -1
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

3 SEQUENTIAL AND OTHER TYPES IN PYTHON 27

We converted the two ranges to ordinary lists as otherwise their display is not partic-
ularly spectacular. Let us point out that the rightmost boundary (to) is exclusive and
that by defaults to 1.

3.1.4 Strings (again)
Recall that we have already discussed character strings in Section 2.1.3.

print("lovely\nspam")
lovely
spam

Strings are most often treated as scalars (atomic entities, as in: a string as a whole).
However, we will soon find out that their individual characters can also be accessed
by index. Furthermore, Chapter 14 will discuss a plethora of operations on parts of
strings.

3.2 Workingwith sequences
3.2.1 Extracting elements
The index operator, `[...]`, can be applied on any sequential object to extract an ele-
ment at a position specified by a single integer.

x = ["one", "two", "three", "four", "five"]
x[0] # the first element
'one'
x[1] # the second element
'two'
x[len(x)-1] # the last element
'five'

The valid indexes are 0, 1, … , 𝑛 − 2, 𝑛 − 1, where 𝑛 is the length (size) of the sequence,
which can be fetched by calling len.

Important Thinkof an index as thedistance from the start of a sequence. For example,
x[3]means “three items away from the beginning”, i.e., the fourth element.

Negative indexes count from the end:

x[-1] # the last element (ultimate)
'five'
x[-2] # the next to last (the last but one, penultimate)
'four'

(continues on next page)

28 I INTRODUCING PYTHON

(continued from previous page)

x[-len(x)] # the first element
'one'

The index operator can be applied on any sequential object:

"string"[3]
'i'

More examples:

range(0, 10)[-1] # the last item in an arithmetic progression
9
(1,)[0] # extract from a 1-tuple
1

Important Thesame “thing” can have differentmeanings in different contexts.There-
fore, wemust always remain vigilant.

For instance, raw square brackets are used to create a list (e.g., [1, 2, 3]) whereas
their presence after a sequential object indicates some form of indexing (e.g., x[1] or
even [1, 2, 3][1]). Similarly, (1, 2) creates a 2-tuple and f(1, 2) denotes a call to a
function fwith two arguments.

3.2.2 Slicing
We can also use slices of the form from:to or from:to:by to select a subsequence of a
given sequence. Slices are similar to ranges, but `:` can only be used within square
brackets.

x = ["one", "two", "three", "four", "five"]
x[1:4] # from the second to the fifth (exclusive)
['two', 'three', 'four']
x[-1:0:-2] # from the last to first (exclusive) by every second backwards
['five', 'three']

In fact, the from and to parts of a slice are optional.When omitted, they default to one
of the sequence boundaries.

x[3:] # from the third element to the end
['four', 'five']
x[:2] # the first two
['one', 'two']
x[:0] # none (the first zero)
[]
x[::2] # every second element from the start

(continues on next page)

3 SEQUENTIAL AND OTHER TYPES IN PYTHON 29

(continued from previous page)

['one', 'three', 'five']
x[::-1] # the elements in reverse order
['five', 'four', 'three', 'two', 'one']

Slicing can be applied on other sequential objects as well:

"spam, bacon, spam, and eggs"[13:17] # fetch a substring
'spam'

Knowing the difference between element extraction and subsetting a sequence (creat-
ing a subsequence) is crucial. For example:

x[0] # extraction (indexing with a single integer)
'one'

It gave the object at that index. Moreover:

x[0:1] # subsetting (indexing with a slice)
['one']

It returned the object of the same type as x (here, a list), even though, in this case, only
one objectwas fetched.However, a slice canpotentially select anynumber of elements,
including zero.

pandasdata frames and numpy arrayswill behave similarly, but therewill bemanymore
indexing options; see Section 5.4, Section 8.2, and Section 10.5.

3.2.3 Modifying elements ofmutable sequences
Lists are mutable: their state can be changed. The index operator can replace the ele-
ments at given indexes.

x = ["one", "two", "three", "four", "five"]
x[0] = "spam" # replace the first element
x[-3:] = ["bacon", "eggs"] # replace last three with given two
print(x)
['spam', 'two', 'bacon', 'eggs']

Exercise 3.1 There are quite a few methods that modify list elements: not only the aforemen-
tioned append, but also insert, remove, pop, etc. Invoke help("list"), read their descriptions,
and call them on a few example lists.

Exercise 3.2 Verify that similar operations cannot be performed on tuples, ranges, and strings.
In other words, check that these types are immutable.

30 I INTRODUCING PYTHON

3.2.4 Searching for specific elements
The in operator and its negation, not in, determine whether an element exists in a
given sequence:

7 in range(0, 10)
True
[2, 3] in [1, [2, 3], [4, 5, 6]]
True

For strings, in tests whether a string includes a specific substring:

"spam" in "lovely spams"
True

Exercise 3.3 In the documentation of thelistand other classes, check out the countandindex
methods.

3.2.5 Arithmetic operators
Some arithmetic operatorswere overloaded for certain sequential types.However, they
carry different meanings from those for integers and floats. In particular, `+` joins
(concatenates) strings, lists, and tuples:

"spam" + " " + "bacon"
'spam bacon'
[1, 2, 3] + [4]
[1, 2, 3, 4]

Moreover, `*` duplicates (recycles) a given sequence:

"spam" * 3
'spamspamspam'
(1, 2) * 4
(1, 2, 1, 2, 1, 2, 1, 2)

In each case, a new object has been returned.

3.3 Dictionaries
Dictionaries are sets of key:value pairs, where the value (any Python object) can be
accessed by key (usually1 a string). In other words, they map keys to values.

1 Overall, hashable data types can be used as dictionary keys, e.g., integers, floats, strings, tuples, and
ranges; see hash. It is required that hashable objects be immutable.

3 SEQUENTIAL AND OTHER TYPES IN PYTHON 31

x = {
"a": [1, 2, 3],
"b": 7,
"z": "spam!"

}
print(x)
{'a': [1, 2, 3], 'b': 7, 'z': 'spam!'}

We can also create a dictionary with string keys using the dict functionwhich accepts
any keyword arguments:

dict(a=[1, 2, 3], b=7, z="spam!")
{'a': [1, 2, 3], 'b': 7, 'z': 'spam!'}

The index operator extracts a specific element from a dictionary, uniquely identified
by a given key:

x["a"]
[1, 2, 3]

In this context, x[0] is not valid and raises an error: a dictionary is not an object of
sequential type; a key of 0 does not exist in x. If we are unsure whether a specific key
is defined, we can use the in operator:

"a" in x, 0 not in x, "z" in x, "w" in x # a tuple of four tests' results
(True, True, True, False)

There is also a method called get, which returns an element associated with a given
key, or something else (by default, None) if we have a mismatch:

x.get("a")
[1, 2, 3]
x.get("c") # if missing, returns None by default
x.get("c") is None # indeed
True
x.get("c", "unknown")
'unknown'

We can also add new elements to a dictionary using the following syntax:

x["f"] = "more spam!"
print(x)
{'a': [1, 2, 3], 'b': 7, 'z': 'spam!', 'f': 'more spam!'}

Example 3.4 (*) In practice, we often import JSON files (which is a popular data exchange
format on the internet) exactly in the form of Python dictionaries. Let us demo it quickly:

32 I INTRODUCING PYTHON

import requests
x = requests.get("https://api.github.com/users/gagolews/starred").json()

Now x is a sequence of dictionaries giving the information on the repositories starred by yours
truly on GitHub. As an exercise, the reader is encouraged to inspect its structure.

3.4 Iterable types
All the objects we discussed here are iterable. In other words, we can iterate through
each element contained therein. In particular, the list and tuple functions take any
iterable object and convert it to a sequence of the corresponding type. For instance:

list("spam")
['s', 'p', 'a', 'm']
tuple(range(0, 10, 2))
(0, 2, 4, 6, 8)
list({ "a": 1, "b": ["spam", "bacon", "spam"] })
['a', 'b']

Exercise 3.5 Take a look at the documentation of the extend method for the list class. The
manual page suggests that this operation takes any iterable object. Feed itwitha list, tuple, range,
and a string and see what happens.

Thenotion of iterable objects is essential, as they appear inmany contexts.There exist
quite a fewother iterable types that are, for example, non-sequential:we cannot access
their elements at random using the index operator.

Exercise 3.6 (*) Check out the enumerate, zip, and reversed functions and what kind of iter-
able objects they return.

3.4.1 The for loop
The for loop allows to perform a specific action on each element in an iterable object.
For instance, we can access consecutive items in a list as follows:

x = [1, "two", ["three", 3j, 3], False] # some iterable object
for el in x: # for each element in `x`, let's call it `el`...

print(el) # ... do something on `el`
1
two
['three', 3j, 3]
False

Another common pattern is to traverse a sequential object by means of element in-
dexes:

3 SEQUENTIAL AND OTHER TYPES IN PYTHON 33

for i in range(len(x)): # for i = 0, 1, ..., len(x)-1
print(i, x[i], sep=": ") # sep (label separator) defaults to " "

0: 1
1: two
2: ['three', 3j, 3]
3: False

Example 3.7 Let us compute the elementwise multiplication of two vectors of equal lengths,
i.e., the product of their corresponding elements:

x = [1, 2, 3, 4, 5] # for testing
y = [1, 10, 100, 1000, 10000] # just a test
z = [] # result list – start with an empty one
for i in range(len(x)):

tmp = x[i] * y[i]
print(f"The product of {x[i]:6} and {y[i]:6} is {tmp:6}")
z.append(tmp)

The product of 1 and 1 is 1
The product of 2 and 10 is 20
The product of 3 and 100 is 300
The product of 4 and 1000 is 4000
The product of 5 and 10000 is 50000

The items were printed with a little help of f-strings; see Section 2.1.3. Here is the resulting list:

print(z)
[1, 20, 300, 4000, 50000]

Example 3.8 A dictionarymay be useful for recoding lists of labels:

map = dict(# from=to
apple="red",
pear="yellow",
kiwi="green",

)

And now:

x = ["apple", "pear", "apple", "kiwi", "apple", "kiwi"]
recoded_x = []
for fruit in x:

recoded_x.append(map[fruit]) # or, e.g., map.get(fruit, "unknown")

print(recoded_x)
['red', 'yellow', 'red', 'green', 'red', 'green']

Exercise 3.9 Here is a function that determines the minimum of a given iterable object (com-
pare the built-in min function, see help("min")).

34 I INTRODUCING PYTHON

import math
def mymin(x):

"""
Fetches the smallest element in an iterable object x.
We assume that x consists of numbers only.
"""
curmin = math.inf # infinity is greater than any other number
for e in x:

if e < curmin:
curmin = e # a better candidate for the minimum

return curmin

mymin([0, 5, -1, 100])
-1
mymin(range(5, 0, -1))
1
mymin((1,))
1

Note thatdue to theuse ofmath.inf, the functionoperatesunder theassumption thatall elements
in x are numeric. Rewrite it so that it will work correctly, e.g., in the case of lists of strings.

Exercise 3.10 Author some basic versions (using the for loop) of the built-in max, sum, any, and
all functions.

Exercise 3.11 (*)The glob function in the globmodule lists all files in a given directory whose
namesmatch a specific wildcard, e.g., glob.glob("~/Music/*.mp3") gives the list ofMP3 files
in the currentuser’s homedirectory; seeSection 13.6.1.Moreover,getsize fromtheos.pathmod-
ule returns the size of a file, in bytes. Compose a function that determines the total size of all the
files in a given directory.

3.4.2 Tuple assignment
We can create many variables in one line of code by using the syntax tuple_of_ids =

iterable_object,whichunpacks the iterableobject on the right sideof theassignment
operator:

a, b, c = [1, "two", [3, 3j, "three"]]
print(a)
1
print(b)
two
print(c)
[3, 3j, 'three']

This is useful, for example, when the swapping of two elements is needed:

a, b = 1, 2 # the same as (a, b) = (1, 2) – parentheses are optional
a, b = b, a # swap a and b

(continues on next page)

3 SEQUENTIAL AND OTHER TYPES IN PYTHON 35

(continued from previous page)

print(a)
2
print(b)
1

Another use case is where we fetch outputs of functions that return many objects at
once. For instance, later we will learn about numpy.unique which (depending on argu-
ments passed) may return a tuple of arrays:

import numpy as np
result = np.unique([1, 2, 1, 2, 1, 1, 3, 2, 1], return_counts=True)
print(result)
(array([1, 2, 3]), array([5, 3, 1]))

That this is a tuple of length two can be verified2 as follows:

type(result), len(result)
(<class 'tuple'>, 2)

Now, instead of:

values = result[0]
counts = result[1]

we can write:

values, counts = np.unique([1, 2, 1, 2, 1, 1, 3, 2, 1], return_counts=True)

This gives two separate variables, each storing a different array:

print(values)
[1 2 3]
print(counts)
[5 3 1]

If only the second item is of our interest, we can write:

counts = np.unique([1, 2, 1, 2, 1, 1, 3, 2, 1], return_counts=True)[1]
print(counts)
[5 3 1]

because a tuple is a sequential object.

Example 3.12 (*) The dict.itemsmethod generates an iterable object that can be used to tra-
verse through all the (key, value) pairs:

2We should have already been able to tell that by merely looking at the result: note the round brackets
and the two objects separated by a comma.

36 I INTRODUCING PYTHON

x = { "a": 1, "b": ["spam", "bacon", "spam"] }
print(list(x.items())) # just a demo
[('a', 1), ('b', ['spam', 'bacon', 'spam'])]

We can thus utilise tuple assignments in contexts such as:

for k, v in x.items(): # or: for (k, v) in x.items()...
print(k, v, sep=": ")

a: 1
b: ['spam', 'bacon', 'spam']

Note (**) If there are more values to unpack than then number of identifiers, we can
use the notation like *name inside the tuple_of_identifiers on the left side of the as-
signment operator. Such a placeholder gathers all the surplus objects in the form of a
list:

for a, b, *c, d in [range(4), range(10), range(3)]:
print(a, b, c, d, sep="; ")

0; 1; [2]; 3
0; 1; [2, 3, 4, 5, 6, 7, 8]; 9
0; 1; []; 2

3.4.3 Argument unpacking (*)
Sometimes we will need to call a function with many parameters or call a series of
functions with similar arguments, e.g., when plotting many objects using the same
plotting style like colour, shape, font. In such scenarios, it may be convenient to pre-
prepare the data to be passed as their inputs before making the actual call.

Consider the following function that takes four arguments and dumbly prints them
out:

def test(a, b, c, d):
"It is just a test – print the given arguments"
print("a = ", a, ", b = ", b, ", c = ", c, ", d = ", d, sep="")

Arguments to bematched positionally can bewrapped inside any iterable object and then
unpacked using the asterisk operator:

args = [1, 2, 3, 4] # merely an example
test(*args) # just like test(1, 2, 3, 4)
a = 1, b = 2, c = 3, d = 4

Keyword arguments can be wrapped inside a dictionary and unpackedwith a double aster-
isk:

3 SEQUENTIAL AND OTHER TYPES IN PYTHON 37

kwargs = dict(a=1, c=3, d=4, b=2)
test(**kwargs)
a = 1, b = 2, c = 3, d = 4

Theunpackings can be intertwined. For this reason, the following calls are equivalent:

test(1, *range(2, 4), 4)
a = 1, b = 2, c = 3, d = 4
test(1, **dict(d=4, c=3, b=2))
a = 1, b = 2, c = 3, d = 4
test(*range(1, 3), **dict(d=4, c=3))
a = 1, b = 2, c = 3, d = 4

3.4.4 Variadic arguments: *args and **kwargs (*)
We can also construct a function that takes any number of positional or keyword argu-
ments by including *args or **kwargs (those are customary names) in their parameter
list:

def test(a, b, *args, **kwargs):
"simply prints the arguments passed"
print(

"a = ", a, ", b = ", b,
", args = ", args, ", kwargs = ", kwargs, sep=""

)

For example:

test(1, 2, 3, 4, 5, spam=6, eggs=7)
a = 1, b = 2, args = (3, 4, 5), kwargs = {'spam': 6, 'eggs': 7}

We see that *args gathers all the positionally matched arguments (except a and b,
whichwere set explicitly) into a tuple. On the other hand, **kwargs is a dictionary that
stores all keyword arguments that are notmentioned in the function’s parameter list.

Exercise 3.13 From time to time, we will be coming across *args and **kwargs in various con-
texts. Study what matplotlib.pyplot.plot uses them for (by calling help(plt.plot)).

3.5 Object references and copying (*)
3.5.1 Copying references
It is important to always keep in mind that when writing:

x = [1, 2, 3]
y = x

38 I INTRODUCING PYTHON

the assignment operator does not create a copy of x; both x and y refer to the same
object in the computer’s memory.

Important If x is mutable, any changemade to it will affect y (as, again, they are two
different means to access the same object). This will also be true for numpy arrays and
pandas data frames.

For example:

x.append(4)
print(y)
[1, 2, 3, 4]

3.5.2 Pass by assignment
Arguments are passed to functions by assignment too. In other words, they behave as
if `=` was used: what we get is another reference to the existing object.

def myadd(z, i):
z.append(i)

And now:

myadd(x, 5)
myadd(y, 6)
print(x)
[1, 2, 3, 4, 5, 6]

3.5.3 Object copies
If we find the above behaviour undesirable, we can always make a copy of a fragile
object. It is customary for the mutable types to be equipped with a relevant method:

x = [1, 2, 3]
y = x.copy()
x.append(4)
print(y)
[1, 2, 3]

This did not change the object referred to as y because it is now a different entity.

3.5.4 Modify in place or return amodified copy?
We now know that we can have functions or methods that change the state of a given
object. Consequently, for all the functions we apply, it is important to read their docu-
mentation to determine if theymodify their inputs in place or if they return an entirely
new object.

3 SEQUENTIAL AND OTHER TYPES IN PYTHON 39

Consider the following examples. The sorted function returns a sorted version of an
iterable object:

x = [5, 3, 2, 4, 1]
print(sorted(x)) # returns a sorted copy of x (does not change x)
[1, 2, 3, 4, 5]
print(x) # unchanged
[5, 3, 2, 4, 1]

The list.sortedmethodmodifies the list it is applied on in place:

x = [5, 3, 2, 4, 1]
x.sort() # modifies x in place and returns nothing
print(x)
[1, 2, 3, 4, 5]

Additionally, random.shuffle is a function (not: a method) that changes the state of the
argument:

x = [5, 3, 2, 4, 1]
import random
random.shuffle(x) # modifies x in place, returns nothing
print(x)
[3, 4, 2, 1, 5]

Later we will learn about the Series class in pandas, which represents data frame
columns. It has the sort_values method which, by default, returns a sorted copy of
the object it acts upon:

import pandas as pd
x = pd.Series([5, 3, 2, 4, 1])
print(list(x.sort_values())) # inplace=False
[1, 2, 3, 4, 5]
print(list(x)) # unchanged
[5, 3, 2, 4, 1]

This behaviour can, however, be altered:

x = pd.Series([5, 3, 2, 4, 1])
x.sort_values(inplace=True) # note the argument now
print(list(x)) # changed
[1, 2, 3, 4, 5]

Important We are always advised to study the official3 documentation of every func-
tion we call. Although surely some patterns arise (such as: a method is more likely to
modify an object in place whereas a similar standalone function will be returning a

3 And not some random tutorial on the internet displaying numerous ads.

40 I INTRODUCING PYTHON

copy), ultimately, the functions’ developers are free to come up with some exceptions
to them if they deem it more sensible or convenient.

3.6 Further reading
Our overview of the Python language is by nomeans exhaustive. Still, it touches upon
the most important topics from the perspective of data wrangling.

Wewillmentiona fewadditional standard library features later in this course: list com-
prehensions in Section 5.5.7, exception handling in Section 13.6.3, file connection in
Section 13.6.4, string formatting in Section 14.3.1, pattern searching with regular ex-
pressions in Section 14.4, etc.

We have deliberately decided not to introduce some language constructs whichwe can
easilymanagewithout (e.g., else clauses on for and while loops, the match statement)
or are perhaps too technical for an introductory course (yield, iter and next, sets,
name binding scopes, deep copying of objects, defining new classes, overloading op-
erators, function factories and closures).

Also, we skipped the constructs that do not work well with the third-party packages
we will soon be using (e.g., a notation like x < y < z is not valid if the three involved
variables are numpy vectors of lengths greater than one).

The said simplifications were brought in so the student is not overwhelmed. We
strongly advocate for minimalism in software development. Python is the basis for
one of many possible programming environments for exercising data science. In the
long run, it is best to focus on developing themost transferable skills, as other software
solutions might not enjoy all the Python’s syntactic sugar, and vice versa.

The reader is encouraged to skim through at least the following chapters in the official
Python 3 tutorial4:

• 3. An Informal Introduction to Python5,

• 4. More Control Flow Tools6,

• 5. Data Structures7.

4 https://docs.python.org/3/tutorial/index.html
5 https://docs.python.org/3/tutorial/introduction.html
6 https://docs.python.org/3/tutorial/controlflow.html
7 https://docs.python.org/3/tutorial/datastructures.html

https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/introduction.html
https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/tutorial/datastructures.html

3 SEQUENTIAL AND OTHER TYPES IN PYTHON 41

3.7 Exercises
Exercise 3.14 Name the sequential objects we introduced.

Exercise 3.15 Is every iterable object sequential?

Exercise 3.16 Is dict an instance of a sequential type?

Exercise 3.17 What is the meaning of `+` and `*` operations on strings and lists?

Exercise 3.18 Given a list x of numeric scalars, how can we create a new list of the same length
giving the squares of all the elements in the former?

Exercise 3.19 (*) How can wemake an object copy and when should we do so?

Exercise 3.20 What is the difference between x[0], x[1], x[:0], and x[:1], where x is a se-
quential object?

Part II

Unidimensional data

4
Unidimensional numeric data and their empirical
distribution

Our datawrangling adventure starts themomentwe get access to, or decide to collect,
dozens of data points representing some measurements, such as sensor readings for
some industrial processes, body measures for patients in a clinic, salaries of employ-
ees, sizes of cities, etc.

For instance, consider the heights of adult females (>= 18 years old, in cm) in the lon-
gitudinal study calledNationalHealth andNutrition Examination Survey (NHANES1)
conducted by the US Centres for Disease Control and Prevention.

heights = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_height_2020.txt")

Let us preview a few observations:

heights[:6] # first six
array([160.2, 152.7, 161.2, 157.4, 154.6, 144.7])

This is an example of quantitative (numeric) data. They are in the form of a series of
numbers. It makes sense to apply various mathematical operations on them, includ-
ing subtraction, division, taking logarithms, comparing, and so forth.

Most importantly, here, all the observations are independent of each other. Each value
represents a different person. Our data sample consists of 4 221 points on the real
line (a bag of points whose actual ordering does not matter). In Figure 4.1, we see
that merely looking at the numbers themselves tells us nothing. There are too many
of them.

This is why we are interested in studying amultitude of methods that can bring some
insight into the reality behind the numbers. For example, inspecting their distribu-
tion.

1 https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx

https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx

46 II UNIDIMENSIONAL DATA

130 140 150 160 170 180 190
height

(ji
tt

er
)

Figure 4.1.The heightsdataset is comprised of independent points on the real line.We
added some jitter on the y-axis for dramatic effects only: the points are too plentiful.

4.1 Creating vectors in numpy

In this chapter, we introduce basic ways to create numpy vectors, which are an efficient
data structure for storing and operating on numeric data just like the ones above.

numpy2 [45] is an open-source add-on for numerical computing written by Travis Ol-
iphant and other developers in 2005. Still, the project has a much longer history3 and
stands on the shoulders of many giants (e.g., concepts from the APL and Fortran lan-
guages).

numpy adds support for multidimensional arrays and numerous operations on them,
similar to those available in R, S, GNU Octave, Scilab, Julia, Perl (via Perl Data Lan-

guage), and some numerical analysis libraries such as LAPACK, GNU GSL, etc.

Many other Python packages are built on top of numpy, including: scipy [93], pandas
[63], and scikit-learn [72]. This is why we are advised to study it in great detail.
Whatever we learn about vectors will be beautifully transferable to the case of pro-
cessing columns in data frames.

It is customary to import the numpy package under the np alias:

2 https://numpy.org/doc/stable/reference/index.html
3 https://scipy.github.io/old-wiki/pages/History_of_SciPy

https://numpy.org/doc/stable/reference/index.html
https://scipy.github.io/old-wiki/pages/History_of_SciPy

4 UNIDIMENSIONAL NUMERIC DATA AND THEIR EMPIRICAL DISTRIBUTION 47

import numpy as np

Our code can now refer to the objects defined therein as np.spam, np.bacon, or np.spam.

4.1.1 Enumerating elements
One way to create a vector is by calling the numpy.array function:

x = np.array([10, 20, 30, 40, 50, 60])
x
array([10, 20, 30, 40, 50, 60])

Here, the vector elements were specified by means of an ordinary list. Ranges and
tuples can also be used as content providers. The earnest readers are encouraged to
check it now themselves.

A vector of length (size) 𝑛 is often used to represent a point in an 𝑛-dimensional space
(for example,GPS coordinates of a place onEarth assume𝑛 = 2) or𝑛 readings of some
one-dimensional quantity (e.g., recorded heights of 𝑛 people).
The said length can either be read using the previously mentioned len function:

len(x)
6

or by reading the array’s shape slot:

x.shape
(6,)

A vector is a one-dimensional array. Accordingly, its shape is stored as a tuple of length
1 (the number of dimensions is given by querying x.ndim). We can therefore fetch its
length by accessing x.shape[0].

On a side note, matrices (two-dimensional arrays which we will study in Chapter 7)
will be of shape like (number_of_rows, number_of_columns).

Recall that Python lists, e.g., [1, 2, 3], represent simple sequences of objects of any
kind.Their use cases are very broad, which is both an advantage and something quite
the opposite. Vectors in numpy are like lists, but on steroids. They are powerful in sci-
entific computing because of the underlying assumption that each object they store
is of the same type4. Although it is possible to save references to arbitrary objects

4 (*) Vectors are directly representable as simple arrays in theCprogramming language, inwhichnumpy
procedures arewritten.Operations on vectorswill be very fast provided thatwe are using the functions that
process them as a whole. The readers with some background in other lower-level languages will need to get
out of the habit of acting on individual elements using a for-like loop.

48 II UNIDIMENSIONAL DATA

therein, in most scenarios we will be dealing with vectors of logical values, integers,
and floating-point numbers.Thanks to this, a wide range ofmethods could have been
defined to enable the performing of the most popular mathematical operations.

And so, above we created a sequence of integers:

x.dtype # data type
dtype('int64')

But other element types are possible too. For instance, we can convert the above to a
float vector:

x.astype(float) # or np.array(x, dtype=float)
array([10., 20., 30., 40., 50., 60.])

Let us emphasise that the above is now printed differently (compare the output of
print(x) above).

Furthermore:

np.array([True, False, False, True])
array([True, False, False, True])

gave a logical vector. The constructor detected that the common type of all the ele-
ments is bool. Also:

np.array(["spam", "spam", "bacon", "spam"])
array(['spam', 'spam', 'bacon', 'spam'], dtype='<U5')

This yielded an array of strings inUnicode (i.e., capable of storing any character in any
alphabet, emojis, mathematical symbols, etc.), each of no more than five code points
in length. Chapter 14 will point out that replacing any element with new content res-
ults in the too-long strings’ being truncated.We shall see that this can be remedied by
calling x.astype("<U10").

4.1.2 Arithmetic progressions
numpy’s arange is similar to the built-in range function, but outputs a vector:

np.arange(0, 10, 2) # from 0 to 10 (exclusive) by 2
array([0, 2, 4, 6, 8])

numpy.linspace (linear space) creates a sequence of equidistant points in a given inter-
val:

np.linspace(0, 1, 5) # from 0 to 1 (inclusive), 5 equispaced values
array([0. , 0.25, 0.5 , 0.75, 1.])

Exercise 4.1 Call help(np.linspace) or help("numpy.linspace") to study the meaning of

4 UNIDIMENSIONAL NUMERIC DATA AND THEIR EMPIRICAL DISTRIBUTION 49

the endpoint argument. Find the same documentation page on the numpy project’s website5.
Another way is to use your favourite search engine such as DuckDuckGo and query “linspace
site:numpy.org”6. Always remember to gather information from first-hand sources. You are
expected to become a frequent visitor of this page (and similar ones). In particular, every so often
it is advisable to check out for significant updates at https://numpy.org/news.

4.1.3 Repeating values
numpy.repeat repeats each value a given number of times:

np.repeat(5, 6)
array([5, 5, 5, 5, 5, 5])
np.repeat([1, 2], 3)
array([1, 1, 1, 2, 2, 2])
np.repeat([1, 2], [3, 5])
array([1, 1, 1, 2, 2, 2, 2, 2])

In each case, every element from the list passed as the first argument was repeated
the corresponding number of times, as defined by the second argument.

Moving on. numpy.tile, on the other hand, repeats a whole sequence with recycling:

np.tile([1, 2], 3)
array([1, 2, 1, 2, 1, 2])

Notice the difference between the above and the result of numpy.repeat([1, 2], 3).

See also7 numpy.zeros and numpy.ones for some specialised versions of the above.

4.1.4 numpy.r_ (*)
numpy.r_ gives perhaps the most flexible means for creating vectors involving quite a
few of the aforementioned scenarios. Yet, it has a quirky syntax. For example:

np.r_[1, 2, 3, np.nan, 5, np.inf]
array([1., 2., 3., nan, 5., inf])

Here, nan stands for a not-a-number and is used as a placeholder for missing values
(discussed in Section 15.1) orwrong results, such as the square root of -1 in the domain
of reals. The inf object, on the other hand, means infinity,∞. We can think of it as a
value that is too large to be represented in the set of floating-point numbers.

We see that numpy.r_ uses square brackets instead of the round ones.This is smart for
wementioned in Section 3.2.2 that slices (`:`) cannot be used outside them. And so:

5 https://numpy.org/doc/stable/reference/index.html
6 DuckDuckGo also supports search bangs like “!numpy linspace” which redirect to the official docu-

mentation automatically.
7When we write “see also”, it means that this is an exercise for the reader (Rule #3), in this case: to look

something up in the official documentation.

https://numpy.org/doc/stable/reference/index.html
https://numpy.org/news

50 II UNIDIMENSIONAL DATA

np.r_[0:10:2] # like np.arange(0, 10, 2)
array([0, 2, 4, 6, 8])

What is more, it accepts the following syntactic sugar:

np.r_[0:1:5j] # like np.linspace(0, 1, 5)
array([0. , 0.25, 0.5 , 0.75, 1.])

Here, 5j does not have a literal meaning (a complex number). By an arbitrary conven-
tion, and only in this context, it denotes the output length of the sequence to be gen-
erated. Could the numpy authors do that? Well, they could, and they did. End of story.

Finally, we can combine many chunks into one:

np.r_[1, 2, [3]*2, 0:3, 0:3:3j]
array([1. , 2. , 3. , 3. , 0. , 1. , 2. , 0. , 1.5, 3.])

4.1.5 Generating pseudorandom variates
The automatically attached numpy.randommodule defines many functions to generate
pseudorandom numbers. We will be discussing the reason for our using the pseudo
prefix in Section 6.4, so now let us only quickly take note of a way to sample from the
uniform distribution on the unit interval:

np.random.rand(5) # 5 pseudorandom observations in [0, 1]
array([0.49340194, 0.41614605, 0.69780667, 0.45278338, 0.84061215])

and to pick a few values from a given set with replacement (so that any number can be
generated multiple times):

np.random.choice(np.arange(1, 10), 20) # replace=True
array([7, 7, 4, 6, 6, 2, 1, 7, 2, 1, 8, 9, 5, 5, 9, 8, 1, 2, 6, 6])

4.1.6 Loading data fromfiles
We will usually be reading whole heterogeneous tabular datasets using pandas.

read_csv, being the topic we shall cover in Chapter 10.

It is worth knowing, though, that arrays with elements of the same type can be read
efficiently from text files (e.g., CSV) using numpy.genfromtxt. See the code chunk at
the beginning of this chapter for an example.

Exercise 4.2 Use numpy.genfromtxt to read the population_largest_cities_unnamed8

dataset from GitHub (click Raw to get access to its contents and use the URL you were redirec-
ted to, not the original one).

8 https://github.com/gagolews/teaching-data/blob/-/marek/population_largest_cities_unnamed.txt

https://github.com/gagolews/teaching-data/blob/-/marek/population_largest_cities_unnamed.txt

4 UNIDIMENSIONAL NUMERIC DATA AND THEIR EMPIRICAL DISTRIBUTION 51

4.2 Mathematical notation
Mathematically, we will be denoting number sequences with:

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛),

where 𝑥𝑖 is the 𝑖-th element therein and 𝑛 is the length (size) of the tuple. Using the
programming syntax, 𝑛 corresponds to len(x) or, equivalently, x.shape[0]. Further-
more, 𝑥𝑖 is x[i-1] (because the first element is at index 0).

The bold font (hopefully visible) is to emphasise that 𝒙 is not an atomic entity (𝑥), but
rather a collection thereof. For brevity, instead of saying “let 𝒙 be a real-valued se-
quence9 of length 𝑛”, we shall write “let 𝒙 ∈ ℝ𝑛”. Here:

• the “∈” symbol stands for “is in” or “is a member of ”,
• ℝ denotes the set of real numbers (the very one that includes, 0,−358745.2394,

42 and𝜋, amongst uncountably many others), and
• ℝ𝑛 is the set of real-valued sequences of length𝑛 (i.e.,𝑛 suchnumbers considered
at a time); e.g.,ℝ2 includes pairs such as (1, 2), (𝜋/3, √2/2), and (1/3, 103).

Note Mathematical notation is pleasantly abstract (general) in the sense that 𝒙 can be
anything, e.g., data on the incomes of households, sizes of the largest cities in some
country, or heights of participants in some longitudinal study. At first glance, such
a representation of objects from the so-called real worldmight seem overly simplistic,
especially if we wish to store information on very complex entities. Nonetheless, in
most cases, expressing them as vectors (i.e., establishing a set of numeric attributes
that best describe them in a task at hand) is not only natural but also perfectly suffi-
cient for achieving whatever we aim at.

Exercise 4.3 Consider the following problems:

• Howwould you represent a patient in a clinic (for the purpose of conducting research in car-
diology)?

• Howwould you represent a car in an insurance company’s database (to determinehowmuch
a driver should pay annually for the mandatory policy)?

• Howwould you represent a student in a university (to grant them scholarships)?

In each case, list a few numeric features that best describe the reality of concern. On a side note,
descriptive (categorical) labels can always be encoded as numbers, e.g., female = 1,male = 2, but
this will be the topic of Chapter 11.

9 If 𝒙 ∈ ℝ𝑛, then we often say that 𝒙 is a sequence of 𝑛 numbers, a (numeric) 𝑛-tuple, a 𝑛-dimensional real
vector, a point in a 𝑛-dimensional real space, or an element of a real 𝑛-space, etc. In many contexts, they are syn-
onymic.

52 II UNIDIMENSIONAL DATA

By 𝑥(𝑖) (notice the bracket10) we will denote the 𝑖-th smallest value in 𝒙 (also called the
𝑖-th order statistic). In particular,𝑥(1) is the sampleminimumand 𝑥(𝑛) is themaximum.
The same in Python:

x = np.array([5, 4, 2, 1, 3]) # just an example
x_sorted = np.sort(x)
x_sorted[0], x_sorted[-1] # the minimum and the maximum
(1, 5)

Toavoid the clutter of notation, in certain formulae (e.g., in thedefinitionof the type-7
quantiles in Section 5.1.1), we will be assuming that 𝑥(0) is the same as 𝑥(1) and 𝑥(𝑛+1)
is equivalent to 𝑥(𝑛).

4.3 Inspecting the data distributionwith histograms
Histograms are one of the most intuitive tools for depicting the empirical distribution
of a data sample. We will be drawing them using the classic plotting library matplot-
lib11 [51] (originally developed by John D. Hunter). Let us import it and set its tradi-
tional alias:

import matplotlib.pyplot as plt

4.3.1 heights: A bell-shaped distribution
Let us draw a histogram of the heights dataset; see Figure 4.2.

plt.hist(heights, bins=11, color="lightgray", edgecolor="black")
plt.ylabel("Count")
plt.show()

The data were split into 11 bins and plotted in such a way that the bar heights are pro-
portional to the number of observations falling into each interval. The bins are non-
overlapping, adjacent to each other, and of equal lengths. We can read their coordin-
ates by looking at the bottom side of each rectangular bar. For example, circa 1200
observations fall into the interval [158, 163] (more or less) and roughly 400 into [168,
173] (approximately).

This distribution is in the shape of a bell; nicely symmetrical around about 160 cm.The
most typical (normal) observations are somewhere in the middle, and the probability
mass decreases quickly on both sides. As amatter of fact, in Chapter 6, we will model
this dataset using a normal distribution and obtain an excellent fit. In particular, we
will mention that observations outside the interval [139, 181] are very rare (probability
less than 1%; via the 3𝜎 rule, i.e., expected value ± 3 standard deviations).

10 Some textbooks denote the 𝑖-th order statistic with 𝑥𝑖∶𝑛, but we will not.
11 https://matplotlib.org/

https://matplotlib.org/
https://matplotlib.org/

4 UNIDIMENSIONAL NUMERIC DATA AND THEIR EMPIRICAL DISTRIBUTION 53

130 140 150 160 170 180 190
0

200

400

600

800

1000

1200
Co

un
t

Figure 4.2. A histogramof the heightsdataset: the empirical distribution is nicely bell-
shaped.

4.3.2 income: A right-skewed distribution
For some of us, a normal distribution is a prototypical one – we might expect (wish-
fully think) that many phenomena yield similar regularities. And that is approxim-
ately the case12, e.g., in standardised testing (IQ andother ability scores or personality
traits), physiology (the aboveheights), orwhenquantifyingphysical objects’ attributes
with not-so-precise devices (distribution ofmeasurement errors).Wemight be temp-
ted to think now that everything is normally distributed, but this is very much untrue.

Let us thus consider another dataset. Figure 4.3 depicts the distribution of a simu-
lated13 sample of disposable income of 1 000 randomly chosenUKhouseholds, in Brit-
ish Pounds, for the financial year ending 2020.

income = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/uk_income_simulated_2020.txt")

plt.hist(income, bins=20, color="lightgray", edgecolor="black")
plt.ylabel("Count")
plt.show()

We notice that the probability density quickly increases, reaches its peak at around

12 In fact, we have a proposition stating that the sum or average of many observations or otherwise sim-
pler components of some more complex entity, assuming that they are independent and follow the same
(any!) distribution with finite variance, is approximately normally distributed. This is called the Central
LimitTheorem and it is a very strongmathematical result.

13 For privacy and other reasons, the UK Office for National Statistics does not publish details on indi-
vidual taxpayers. This is why we needed to guesstimate them based on data from a report published at
https://www.ons.gov.uk/peoplepopulationandcommunity.

https://www.ons.gov.uk/peoplepopulationandcommunity

54 II UNIDIMENSIONAL DATA

0 25000 50000 75000 100000 125000 150000 175000 200000
0

50

100

150

200

Co
un

t

Figure 4.3. A histogram of the income dataset: the distribution is right-skewed.

£15 500–£35 000, and then slowly goes down.We say that it has a long tail on the right
or that it is right- or positive-skewed. Accordingly, there are several people earning a de-
cent amount of money. It is quite a non-normal distribution. Most people are rather
unwealthy: their income is way below the per-capita revenue (being the average in-
come for the whole population).

In Section 6.3.1, we will note that such a distribution is frequently encountered in bio-
logy and medicine, social sciences, or technology. For instance, the number of sexual
partners or human weights are believed to be aligned this way.

Note Looking at Figure 4.3, wemight have taken note of the relatively higher bars, as
compared to their neighbours, at c. £100 000 and £120 000. Wemight be tempted to
try to invent a story about why there can be some difference in the relative probability
mass, but we ought to refrain from it. As our data sample is quite small, they might
merely be due to some natural variability (Section 6.4.4). Of course, there might be
some reasons behind it (theoretically), but we cannot read this only by looking at a
singlehistogram. Inotherwords, it is a tool thatweuse to identify somerathergeneral
features of the data distribution (like the overall shape), not the specifics.

Exercise 4.4 There is also the nhanes_adult_female_weight_202014 dataset in our data re-
pository, giving correspondingweights (in kilograms) of theNHANES study participants.Draw
a histogram. Does its shape resemble the income or heights distributionmore?

14 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_weight_2020.
txt

https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_weight_2020.txt

4 UNIDIMENSIONAL NUMERIC DATA AND THEIR EMPIRICAL DISTRIBUTION 55

4.3.3 Howmany bins?
Unless some stronger assumptions about the data distribution are made, choosing
the right number of bins is more art than science:

• too many will result in a rugged histogram,

• too fewmight cause us to miss some important details.

Figure 4.4 illustrates this.

plt.subplot(1, 2, 1) # one row, two columns; the first plot
plt.hist(income, bins=5, color="lightgray", edgecolor="black")
plt.ylabel("Count")
plt.subplot(1, 2, 2) # one row, two columns; the second plot
plt.hist(income, bins=200, color="lightgray", edgecolor="black")
plt.ylabel(None)
plt.show()

0 50000 100000 150000 200000
0

100

200

300

400

500

600

700

Co
un

t

0 50000 100000 150000 200000
0

5

10

15

20

25

30

35

Figure 4.4. Too few and too many histogram bins (the income dataset).

For example, in the histogram with five bins, we miss the information that the
c. £20 000 income is more popular than the c. £10 000 one. (as given by the first two
bars in Figure 4.3). On the other hand, the histogram with 200 bins seems to be too
fine-grained already.

Important Usually, the “truth” is probably somewhere in-between. When preparing
histograms for publication (e.g., in a report or on awebpage), wemight be tempted to
think “one must choose one and only one bin count”. In fact, we do not have to. Even
though some people will insist on it, remember that it is we who are responsible for

56 II UNIDIMENSIONAL DATA

the data being presented in themost unambiguous fashion possible. Providing two or
three histograms can sometimes be a much better idea.

Further, let us be aware that someonemight want to trick us by choosing the number
of bins that depict the reality in good light, when the truth is quite the opposite. For
instance, the histogram on the left above hides the poorest households inside the first
bar – the first income bracket is very wide. If we cannot request access to the original
data, the best thing we can do is to simply ignore such a data visualisation instance
and warn others not to trust it. A true data scientist must be sceptical.

The documentation of matplotlib.pyplot.hist states that the bins argument is
passed to numpy.histogram_bin_edges to determine the intervals into which our data
are to be split. numpy.histogram uses the same function and additionally returns the
corresponding counts (how many observations fall into each bin) instead of plotting
them.

counts, bins = np.histogram(income, 20)
counts
array([131, 238, 238, 147, 95, 55, 29, 23, 10, 12, 5, 7, 4,
3, 2, 0, 0, 0, 0, 1])
bins
array([5750. , 15460.95, 25171.9 , 34882.85, 44593.8 , 54304.75,
64015.7 , 73726.65, 83437.6 , 93148.55, 102859.5 , 112570.45,
122281.4 , 131992.35, 141703.3 , 151414.25, 161125.2 , 170836.15,
180547.1 , 190258.05, 199969.])

Thus, there are 238 observations both in the [15 461, 25 172) and [25 172, 34 883) intervals.

Note A table of ranges and the corresponding counts can be effective for data report-
ing. It ismore informative and takes less space thana series of rawnumbers, especially
if we present them like in the table below.

Table 4.1. Incomes of selected British households; the bin edges are pleasantly round
numbers

income bracket [£1000s] count
0–20 236
20–40 459
40–60 191
60–80 64
80–100 26
100–120 11
120–140 10
140–160 2
160–180 0
180–200 1

4 UNIDIMENSIONAL NUMERIC DATA AND THEIR EMPIRICAL DISTRIBUTION 57

Reporting data in tabular form can also increase the privacy of the subjects (making
subjects less identifiable, which is good) or hide some uncomfortable facts (which is
not so good; “there are ten people in our company earningmore than £200 000 p.a.” –
this can be as much as £10 000 000, but shush).

Exercise 4.5 Findouthowwecanprovide thematplotlib.pyplot.histandnumpy.histogram
functions with custom bin breaks. Plot a histogram where the bin edges are 0, 20 000, 40 000,
etc. (just like in the above table). Also let us highlight the fact that bins do not have to be of equal
sizes: set the last bin to [140 000, 200 000].

Example 4.6 Let us also inspect the bin edges and counts that we see in Figure 4.2:

counts, bins = np.histogram(heights, 11)
counts
array([2, 11, 116, 409, 992, 1206, 948, 404, 110, 20, 3])
bins
array([131.1 , 136.39090909, 141.68181818, 146.97272727,
152.26363636, 157.55454545, 162.84545455, 168.13636364,
173.42727273, 178.71818182, 184.00909091, 189.3])

Exercise 4.7 (*) There are quite a few heuristics to determine the number of bins automagic-
ally, see numpy.histogram_bin_edges for a few formulae. Check out how different values of the
binsargument (e.g.,"sturges","fd") affect thehistogramshapes onbothincomeandheights
datasets. Each has its limitations, none is perfect, but somemight be a sensible starting point for
further fine-tuning.

Wewill get back to the topic of manual data binning in Section 11.1.4.

4.3.4 peds: A bimodal distribution (already binned)
Here are the December 2021 hourly average pedestrian counts15 near the Southern
Cross Station in Melbourne:

peds = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/southern_cross_station_peds_2019_dec.txt")

peds
array([31.22580645, 18.38709677, 11.77419355, 8.48387097,
8.58064516, 58.70967742, 332.93548387, 1121.96774194,
2061.87096774, 1253.41935484, 531.64516129, 502.35483871,
899.06451613, 775. , 614.87096774, 825.06451613,
1542.74193548, 1870.48387097, 884.38709677, 345.83870968,
203.48387097, 150.4516129 , 135.67741935, 94.03225806])

This time, data have already been binned by somebody else. Consequently, we cannot
use matplotlib.pyplot.hist to depict them. Instead, we can rely on a more low-level
function, matplotlib.pyplot.bar; see Figure 4.5.

15 http://www.pedestrian.melbourne.vic.gov.au/

http://www.pedestrian.melbourne.vic.gov.au/

58 II UNIDIMENSIONAL DATA

plt.bar(np.arange(0, 24), width=1, height=peds,
color="lightgray", edgecolor="black")

plt.show()

0 5 10 15 20
0

250

500

750

1000

1250

1500

1750

2000

Figure 4.5. A histogram of the peds dataset: a bimodal (trimodal?) distribution.

This is an example of a bimodal (or even trimodal) distribution: there is a morning
peak and an evening peak (and some analysts probablywould distinguish a lunchtime
one too).

4.3.5 matura: A bell-shaped distribution (almost)
Figure 4.6 depicts a histogram of another interesting dataset which comes in an
already pre-summarised form.

matura = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/matura_2019_polish.txt")

plt.bar(np.arange(0, 71), width=1, height=matura,
color="lightgray", edgecolor="black")

plt.show()

This gives the distribution16 of the 2019 Matura (end of high school) exam scores in
Poland (in %) – Polish literature17 at the basic level.

We expected the distribution to be bell-shaped. However, someone tinkered with it.
Still, knowing that:

16 https://cke.gov.pl/images/_EGZAMIN_MATURALNY_OD_2015/Informacje_o_wynikach/2019/
sprawozdanie/Sprawozdanie%202019%20-%20J%C4%99zyk%20polski.pdf

17 Gombrowicz, Nałkowska, Miłosz, Tuwim, etc.; I recommend.

https://cke.gov.pl/images/_EGZAMIN_MATURALNY_OD_2015/Informacje_o_wynikach/2019/sprawozdanie/Sprawozdanie%202019%20-%20J%C4%99zyk%20polski.pdf

4 UNIDIMENSIONAL NUMERIC DATA AND THEIR EMPIRICAL DISTRIBUTION 59

0 10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.6. A histogram of the matura dataset: a bell-shaped distribution… almost.

• the examiners are good people: we teachers love our students,

• 20 points were required to pass,

• 50 points were given for an essay and beauty is in the eye of the beholder,

it all starts to make sense. Without graphically depicting this dataset, we would not
know that such (albeit lucky for some students) anomalies occurred.

4.3.6 marathon (truncated – fastest runners): A left-skewed distribution
Next, let us consider the 37th PZUWarsawMarathon (2015) results.

marathon = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/37_pzu_warsaw_marathon_mins.txt")

Here are the top five gun times (in minutes):

marathon[:5] # preview first 5 (data are already sorted increasingly)
array([129.32, 130.75, 130.97, 134.17, 134.68])

Plotting the histogramof the data on the participants who finished the 42.2 km run in
less than three hours, i.e., a truncated version of this dataset, reveals that the data are
highly left-skewed; see Figure 4.7.

plt.hist(marathon[marathon < 180], color="lightgray", edgecolor="black")
plt.ylabel("Count")
plt.show()

60 II UNIDIMENSIONAL DATA

130 140 150 160 170 180
0

10

20

30

40

50

60

70

Co
un

t

Figure 4.7. A histogramof a truncated version of the marathondataset: the distribution
is left-skewed.

This was expected. There are only a few elite runners in the game. Yours truly wishes
his personal best will be less than 180minutes someday.We shall see. Running is fun,
and so is walking; why not take a break for an hour and go outside?

Exercise 4.8 Plot the histogram of the untruncated (complete) version of this dataset.

4.3.7 Log-scale and heavy-tailed distributions
Consider the dataset on the populations of cities in the 2000 US Census:

cities = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/other/us_cities_2000.txt")

Let us restrict ourselves only to the cities whose population is not less than 10 000 (an-
other instance of truncating, this time on the other side of the distribution). It turns
out that, even though they constitute roughly 14% of all the US settlements, as much
as about 84% of all the citizens live there.

large_cities = cities[cities >= 10000]

Here are the populations of the five largest cities (can we guess which ones are they?):

large_cities[-5:] # preview last 5 – data are sorted increasingly
array([1517550., 1953633., 2896047., 3694742., 8008654.])

The histogram is depicted in Figure 4.8. It is virtually unreadable because the dis-
tribution is not just right-skewed; it is extremely heavy-tailed. Most cities are small,

4 UNIDIMENSIONAL NUMERIC DATA AND THEIR EMPIRICAL DISTRIBUTION 61

and those that are large, such as New York, are really unique. Had we plotted the
whole dataset (cities instead of large_cities), the results’ intelligibility would be
even worse.

plt.hist(large_cities, bins=20, color="lightgray", edgecolor="black")
plt.ylabel("Count")
plt.show()

0 1 2 3 4 5 6 7 8
1e6

0

500

1000

1500

2000

2500

Co
un

t

Figure 4.8. A histogram of the large_cities dataset: the distribution is extremely
heavy-tailed.

This is why we should rather draw such a distribution on the logarithmic scale; see Fig-
ure 4.9.

logbins = np.geomspace(np.min(large_cities), np.max(large_cities), 21)
plt.hist(large_cities, bins=logbins, color="lightgray", edgecolor="black")
plt.xscale("log")
plt.ylabel("Count")
plt.show()

The log-scale causes the x-axis labels not to increase linearly: it is no longer based on
steps of equal sizes like 0, 1 000 000, 2 000 000,…, and so forth. Instead, the increases
are now geometrical: 10 000, 100 000, 1 000 000, etc.

This is a right-skewed distribution even on the logarithmic scale. Many real-world
datasets behave alike; e.g., the frequencies of occurrences of words in books. On a
side note, Chapter 6 will discuss the Pareto distribution family which yields similar
histograms.

Note We relied on numpy.geomspace to generate bin edges manually:

62 II UNIDIMENSIONAL DATA

104 105 106 107
0

100

200

300

400

500

600

Co
un

t

Figure 4.9. Another histogram of the large_cities dataset: the distribution is right-
skewed even on a logarithmic scale.

np.round(np.geomspace(np.min(large_cities), np.max(large_cities), 21))
array([10001., 13971., 19516., 27263., 38084., 53201.,
74319., 103818., 145027., 202594., 283010., 395346.,
552272., 771488., 1077717., 1505499., 2103083., 2937867.,
4104005., 5733024., 8008654.])

Due to the fact that thenatural logarithmis the inverseof the exponential functionand
vice versa (compare Section 5.2), equidistant points on a logarithmic scale can also be
generated as follows:

np.round(np.exp(
np.linspace(

np.log(np.min(large_cities)),
np.log(np.max(large_cities)),
21

)))
array([10001., 13971., 19516., 27263., 38084., 53201.,
74319., 103818., 145027., 202594., 283010., 395346.,
552272., 771488., 1077717., 1505499., 2103083., 2937867.,
4104005., 5733024., 8008654.])

Exercise 4.9 Draw the histogram of income on the logarithmic scale. Does it resemble a bell-
shaped distribution?Wewill get back to this topic in Section 6.3.1.

4 UNIDIMENSIONAL NUMERIC DATA AND THEIR EMPIRICAL DISTRIBUTION 63

4.3.8 Cumulative probabilities and the empirical cumulative distribution
function

Letusgoback to the heightsdataset.ThehistograminFigure 4.2 toldus that, amongst
others, 28.6% (1 206 of 4 221) of women are approximately 160.2 ± 2.65 cm tall.

Still, sometimes we might be more interested in cumulative probabilities; see Fig-
ure 4.10.They have a different interpretation: we can read that, e.g., 80% of all women
are nomore than roughly 166 cm tall (or that only 20% are taller than this height).

plt.hist(heights, bins=20, cumulative=True, density=True,
color="lightgray", edgecolor="black")

plt.ylabel("Cumulative probability")
plt.show()

130 140 150 160 170 180 190
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e p

ro
ba

bi
lit

y

Figure 4.10. A cumulative histogram of the heights dataset.

Very similar is the plot of the empirical cumulative distribution function (ECDF), which for
a sample 𝒙 = (𝑥1, … , 𝑥𝑛)we denote as ̂𝐹𝑛. And so, at any given point 𝑡 ∈ ℝ, ̂𝐹𝑛(𝑡) is
a step function18 that gives the proportion of observations in our sample that are not greater
than 𝑡:

̂𝐹𝑛(𝑡) = |𝑖 ∶ 𝑥𝑖 ≤ 𝑡|
𝑛 .

We read |𝑖 ∶ 𝑥𝑖 ≤ 𝑡| as the number of indexes like 𝑖 such that the corresponding 𝑥𝑖 is
less than or equal to 𝑡. It can be shown that, given the ordered inputs 𝑥(1) ≤ 𝑥(2) ≤

18We cannot see the steps in Figure 4.11 seeing the points are too plentiful.

64 II UNIDIMENSIONAL DATA

… ≤ 𝑥(𝑛), it holds:

̂𝐹𝑛(𝑡) =
⎧{
⎨{⎩

0 for 𝑡 < 𝑥(1),
𝑘/𝑛 for 𝑥(𝑘) ≤ 𝑡 < 𝑥(𝑘+1),
1 for 𝑡 ≥ 𝑥(𝑛).

Let us underline the fact that drawing the ECDF does not involve binning – we only
need to arrange the observations in an ascending order. Then, assuming that all ob-
servations are unique (there are no ties), the arithmetic progression 1/𝑛, 2/𝑛, … , 𝑛/𝑛
is plotted against them; see Figure 4.1119.

n = len(heights)
heights_sorted = np.sort(heights)
plt.plot(heights_sorted, np.arange(1, n+1)/n, drawstyle="steps-post")
plt.xlabel("t") # LaTeX maths
plt.ylabel("$\\hat{F}_n(t)$, i.e., Prob(height $\\leq$ t)")
plt.show()

130 140 150 160 170 180 190
t

0.0

0.2

0.4

0.6

0.8

1.0

F n
(t)

, i.
e.

, P
ro

b(
he

ig
ht

 t)

Figure 4.11. The empirical cumulative distribution function for the heights dataset.

Thus, for example, the height of 150 cm is not exceeded by 10% of the women.

Note (*) Quantiles (which we introduce in Section 5.1.1) can be considered a general-
ised inverse of the ECDF.

19 (*) We are using (La)TeX maths typesetting within "$...$" to obtain nice plot labels, see [69] for a
comprehensive introduction.

4 UNIDIMENSIONAL NUMERIC DATA AND THEIR EMPIRICAL DISTRIBUTION 65

4.4 Exercises
Exercise 4.10 What is the difference between numpy.arange and numpy.linspace?

Exercise 4.11 (*) What happens when we convert a logical vector to a numeric one? And what
aboutwhenwe convert a numeric vector to a logical one?Wewill discuss that later, but youmight
want to check it yourself now.

Exercise 4.12 Check what happens when we try to create a vector storing a mix of logical, in-
teger, and floating-point values.

Exercise 4.13 What is a bell-shaped distribution?

Exercise 4.14 What is a right-skewed distribution?

Exercise 4.15 What is a heavy-tailed distribution?

Exercise 4.16 What is amulti-modal distribution?

Exercise 4.17 (*)When does logarithmic binningmake sense?

5
Processing unidimensional data

It is extremely rare for our datasets to bring interesting and valid insights out of the
box.The oneswe are using for illustrational purposes in the first part of our book have
already been curated. After all, this is an introductory course. We need to build up
the necessary skills and not overwhelm the tireless reader with toomuch information
all at once. We learn simple things first, learn them well, and then we move to more
complex matters with a healthy level of confidence.

In real life, various data cleansing and feature engineering techniques will need to be per-
formed on data. Most of them are based on the simple operations on vectors that we
cover in this chapter:

• summarising data (for example, computing the median or sum),

• transforming values (applyingmathematical operations on each element, such as
subtracting a scalar or taking the natural logarithm),

• filtering (selectingor removingobservations thatmeet specific criteria, e.g., those
that are larger than the arithmetic mean ± 3 standard deviations).

Important Chapter 10 will be applying the same operations on individual data frame
columns.

5.1 Aggregating numeric data
Recall that in theprevious chapterwediscussed the heightsand incomedatasetswhose
histogramswe gave in Figure 4.2 and Figure 4.3, respectively. Such graphical summar-
ies are based on binned data.They provide uswith snapshots of howmuch probability
mass is allocated in different parts of the data domain.

Instead of dealing with large datasets, we obtained a few counts. The process of bin-
ning and its textual or visual depictions is valuable in determining whether the dis-
tribution is unimodal or multimodal, skewed or symmetric around some point, what
range of values contains most of the observations, and how small or large extreme
values are.

68 II UNIDIMENSIONAL DATA

Too much information may sometimes be overwhelming. Besides, revealing it might
not be a clever idea for privacy or confidentiality reasons1. Consequently, we might
be interested in evenmore synthetic descriptions – data aggregates which reduce the
whole dataset into a single number reflecting one of itsmany characteristics.They can
provide us with a kind of bird’s-eye view of some of its aspects. We refer to such pro-
cesses as data aggregation; see [30, 43].

In this part, we discuss a few noteworthymeasures of:

• location; e.g., central tendency measures such as mean andmedian;

• dispersion; e.g., standard deviation and interquartile range;

• distribution shape; e.g., skewness.

We also introduce box-and-whisker plots.

5.1.1 Measures of location
Arithmeticmean andmedian

Twomainmeasures of central tendency are:

• the arithmetic mean (sometimes for simplicity called the mean or average), defined
as the sum of all observations divided by the sample size:

̄𝑥 = (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)
𝑛 = 1

𝑛
𝑛

∑
𝑖=1

𝑥𝑖,

• themedian, being themiddle value in a sorted version of the sample if its length is
odd or the arithmetic mean of the twomiddle values otherwise:

𝑚 = { 𝑥((𝑛+1)/2) if 𝑛 is odd,
𝑥(𝑛/2)+𝑥(𝑛/2+1)

2 if 𝑛 is even.

They can be computed using the numpy.mean and numpy.median functions.

heights = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_height_2020.txt")

np.mean(heights), np.median(heights)
(160.13679222932953, 160.1)
income = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +

"teaching-data/master/marek/uk_income_simulated_2020.txt")
np.mean(income), np.median(income)
(35779.994, 30042.0)

Let us underline what follows:

1 Nevertheless, we strongly advocate for all information of concern to the public to be openly available,
so that experienced statisticians can put them to good use.

5 PROCESSING UNIDIMENSIONAL DATA 69

• for symmetric distributions, the arithmeticmean and themedian are expected to
be more or less equal,

• for skewed distributions, the arithmetic mean will be biased towards the heavier
tail.

Exercise 5.1 Get the arithmetic mean and median for the 37_pzu_warsaw_marathon_mins
dataset mentioned in Chapter 4.

Exercise 5.2 (*) Write a function that computes the median without the use of numpy.median
(based on its mathematical definition and numpy.sort).

Note (*) Technically, the arithmeticmean can also be computed using the meanmethod
for the numpy.ndarray class. It will sometimes be the case that we have many ways to
perform the same operation.We can even compose itmanually using the sum function.
Thus, all the following expressions are equivalent:

print(
np.mean(income),
income.mean(),
np.sum(income)/len(income),
income.sum()/income.shape[0]

)
35779.994 35779.994 35779.994 35779.994

On the other hand, there exists the numpy.median function but, unfortunately, the me-
dianmethod for vectors is not available.This is why we prefer sticking with functions.

Sensitive to outliers vs robust

The arithmetic mean is strongly influenced by very large or very small observations
(which in some contexts we refer to as outliers). For instance, assume that we are invit-
ing a billionaire to the income dataset:

income2 = np.append(income, [1_000_000_000])
print(np.mean(income), np.mean(income2))
35779.994 1034745.2487512487

Comparing this new result to the previous one, oh we all feel much richer now, right?
In fact, the arithmetic mean reflects the income each of us would get if all the wealth
weregathered insidea singleSantaClaus’s (orRobinHood’s) sackand thendistributed
equally amongst all of us. A noble idea provided that everyone contributes equally to
the society, which unfortunately is not the case.

On the other hand, the median is the value such that 50% of the observations are less
than or equal to it and 50% of the remaining ones are not less than it. Hence, it is
completely insensitive to most of the data points on both the left and the right side of
the distribution:

70 II UNIDIMENSIONAL DATA

print(np.median(income), np.median(income2))
30042.0 30076.0

We cannot thus say that one measure is better than the other. Certainly, for symmet-
rical distributions with no outliers (e.g., heights), themeanwill be better as it uses all
data (and its efficiency can be proven for certain statistical models). For skewed dis-
tributions (e.g., income), the median has a nice interpretation, as it gives the value in
the middle of the ordered sample. Let us still remember that these data summaries
allow us to look at a single data aspect only, and there can be many different, valid
perspectives.The reality is complex.

Sample quantiles

Quantiles generalise the notions of the sample median and of the inverse of the em-
pirical cumulative distribution function (Section 4.3.8).Theyprovide uswith the value
that is not exceeded by the elements in a given sample with a predefined probability.

Before proceeding with a formal definition, which is quite technical, let us point out
that for larger sample sizes, we have the following rule of thumb.

Important For any 𝑝 between 0 and 1, the 𝑝-quantile, denoted 𝑞𝑝, is a value dividing
the sample in such a way that approximately 100𝑝% of observations are not greater
than 𝑞𝑝, and the remaining circa 100(1 − 𝑝)% are not less than 𝑞𝑝.

Quantiles appear under many different names, but they all refer to the same concept.
In particular, we can speak about the 100𝑝-th percentiles, e.g., the 0.5-quantile is the
same as the 50th percentile.

Furthermore:

• 0-quantile (𝑞0) – the minimum (also: numpy.min),

• 0.25-quantile (𝑞0.25) – the first quartile (denoted𝑄1),

• 0.5-quantile (𝑞0.5) – the second quartile a.k.a. median (denoted𝑚 or𝑄2),

• 0.75-quantile (𝑞0.75) – the third quartile (denoted𝑄3),

• 1.0-quantile (𝑞1) – the maximum (also: numpy.max).

Here are the above five aggregates for our two datasets:

np.quantile(heights, [0, 0.25, 0.5, 0.75, 1])
array([131.1, 155.3, 160.1, 164.8, 189.3])
np.quantile(income, [0, 0.25, 0.5, 0.75, 1])
array([5750. , 20669.75, 30042. , 44123.75, 199969.])

Example 5.3 The same as above, but now printed neatly using f-strings; see Section 2.1.3:

5 PROCESSING UNIDIMENSIONAL DATA 71

wh = [0, 0.25, 0.5, 0.75, 1]
qheights = np.quantile(heights, wh)
qincome = np.quantile(income, wh)
print(" heights income")
for i in range(len(wh)):

print(f"q_{wh[i]:<4g} {qheights[i]:10.2f} {qincome[i]:10.2f}")
heights income
q_0 131.10 5750.00
q_0.25 155.30 20669.75
q_0.5 160.10 30042.00
q_0.75 164.80 44123.75
q_1 189.30 199969.00

Exercise 5.4 What is the income bracket for 95% of themost typical UK taxpayers? In other
words, determine the 2.5- and 97.5-percentiles.

Exercise 5.5 Compute themidrange of incomeand heights, being the arithmeticmean of the
minimum and themaximum (this measure is extremely sensitive to outliers).

Note (*) As we do not like the approximately part in the “asymptotic definition” given
above, in this course we shall assume that for any 𝑝 ∈ [0, 1], the 𝑝-quantile is given
by

𝑞𝑝 = 𝑥(⌊𝑘⌋) + (𝑘 − ⌊𝑘⌋)(𝑥(⌊𝑘⌋+1) − 𝑥(⌊𝑘⌋)),

where 𝑘 = (𝑛 − 1)𝑝 + 1 and ⌊𝑘⌋ is the floor function, i.e., the greatest integer less
than or equal to 𝑘 (e.g., ⌊2.0⌋ = ⌊2.001⌋ = ⌊2.999⌋ = 2, ⌊3.0⌋ = ⌊3.999⌋ = 3,
⌊−3.0⌋ = ⌊−2.999⌋ = ⌊−2.001⌋ = −3, and ⌊−2.0⌋ = ⌊−1.001⌋ = −2).
𝑞𝑝 is a function that linearly interpolates between the points featuring the consecutive
order statistics, ((𝑘 − 1)/(𝑛 − 1), 𝑥(𝑘)) for 𝑘 = 1, … , 𝑛. For instance, for 𝑛 = 5, we
connect the points (0, 𝑥(1)), (0.25, 𝑥(2)), (0.5, 𝑥(3)), (0.75, 𝑥(4)), (1, 𝑥(5)). For 𝑛 = 6,
we do the same for (0, 𝑥(1)), (0.2, 𝑥(2)), (0.4, 𝑥(3)), (0.6, 𝑥(4)), (0.8, 𝑥(5)), (1, 𝑥(6));
see Figure 5.1.

Notice that for 𝑝 = 0.5we get the median regardless of whether 𝑛 is even or not.

Note (**) There are many definitions of quantiles across statistical software; see the
method argument to numpy.quantile.They were nicely summarised in [53] as well as in
the correspondingWikipedia2 article. They are all approximately equivalent for large
sample sizes (i.e., asymptotically), but the best practice is to be explicit about which
variantweareusing in the computationswhen reportingdata analysis results. Accord-
ingly, in our case,we say thatwe are relying on the type-7 quantiles as described in [53];
see also [44].

In fact, simply mentioning that our computations are done with numpy version 1.xx

2 https://en.wikipedia.org/wiki/Quantile

https://en.wikipedia.org/wiki/Quantile

72 II UNIDIMENSIONAL DATA

0
4

1
4

2
4

3
4

4
4

p

x(1)

x(2)

x(3)
x(4)

x(5)

q p

n = 5

0
5

1
5

2
5

3
5

4
5

5
5

p

x(1)

x(2)

x(3)
x(4)

x(5)
x(6)

n = 6

Figure 5.1. 𝑞𝑝 as a function of 𝑝 for example vectors of length 5 (left subfigure) and 6
(right).

(as specified in Section 1.4) implicitly implies that the default method parameters are
used everywhere, unless otherwise stated. In many contexts, that is good enough.

5.1.2 Measures of dispersion
Measures of central tendency quantify the location of themost typical value (whatever
that means, and we already know it is complicated). That of dispersion (spread), on
the other hand, will tell us how much variability is in our data. After all, when we say
that the height of a group of people is 160 cm (on average) ± 14 cm (here, 2 standard
deviations), the latter piece of information is a valuable addition (and is very different
from the imaginary ± 4 cm case).

Some degree of variability might be welcome in certain contexts and disastrous in
others. A bolt factory should keep the variance of the fasteners’ diameters as low as
possible: this is how we define quality products (assuming that they all meet, on av-
erage, the required specification). Nevertheless, too much diversity in human beha-
viour, where everyone feels that they are special, is not really sustainable (but lack
thereof would be extremely boring).

Let us explore the different ways in which we can quantify this data aspect.

5 PROCESSING UNIDIMENSIONAL DATA 73

Standard deviation (and variance)

The standard deviation3, is the average distance to the arithmetic mean:

𝑠 = √(𝑥1 − ̄𝑥)2 + (𝑥2 − ̄𝑥)2 + ⋯ + (𝑥𝑛 − ̄𝑥)2

𝑛 =
√
√√
⎷

1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2.

Computing the above with numpy:

np.std(heights), np.std(income)
(7.062021850008261, 22888.77122437908)

The standard deviation quantifies the typical amount of spread around the arithmetic
mean. It is overall adequate for making comparisons across different samples meas-
uring similar things (e.g., heights of males vs of females, incomes in the UK vs in
South Africa). However, without further assumptions, it is quite difficult to express
themeaning of a particular value of 𝑠 (e.g., the statement that the standard deviation
of income is £22 900 is hard to interpret). This measure makes therefore most sense
for data distributions that are symmetric around the mean.

Note (*) For bell-shaped data such as heights (more precisely: for normally-
distributed samples; see the next chapter), we sometimes report ̄𝑥 ± 2𝑠. By the so-
called 2𝜎 rule, the theoretical expectancy is that roughly 95% of data points fall into
the [̄𝑥 − 2𝑠, ̄𝑥 + 2𝑠] interval.

Further, the variance is the square of the standard deviation, 𝑠2. Mind that if data are
expressed in centimetres, then the variance is in centimetres squared,which is not very
intuitive. The standard deviation does not have this drawback. Mathematicians find
the square root annoying though (for many reasons); that is why we will come across
the 𝑠2 every now and then too.

Interquartile range

The interquartile range (IQR) is another popular measure of dispersion. It is defined
as the difference between the third and the first quartile:

IQR = 𝑞0.75 − 𝑞0.25 = 𝑄3 − 𝑄1.

Computing the above is almost effortless:

3 (**) Based on the so-called uncorrected for bias version of the sample variance. We prefer it here for di-
dactical reasons (simplicity, better interpretability). Plus, it is the default one in numpy. Passing ddof=1
(delta degrees of freedom) to numpy.stdwill apply division by 𝑛 − 1 instead of by 𝑛. When used as an estim-
ator of the distribution’s standard deviation, the latter has slightly better statistical properties (which we
normally explore in a course on mathematical statistics, which this one is not). However, we will see later
that the stdmethods in the pandas package have ddof=1 by default. Therefore, we might be interested
in setting ddof=0 therein.

74 II UNIDIMENSIONAL DATA

np.quantile(heights, 0.75) - np.quantile(heights, 0.25)
9.5
np.quantile(income, 0.75) - np.quantile(income, 0.25)
23454.0

The IQR has an appealing interpretation: it is the range comprised of the 50% most
typical values. It is a quite robust measure, as it ignores the 25% smallest and 25%
largest observations. Standard deviation, on the other hand, is extremely sensitive
to outliers.

Furthermore, by range (or support) we will mean a measure based on extremal
quantiles: it is the difference between the maximal andminimal observation.

5.1.3 Measures of shape
From a histogram, we can easily read whether a dataset is symmetric or skewed. It
turns out that we can easily quantify such a characteristic. Namely, the skewness is
given by:

𝑔 =
1
𝑛 ∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)3

(√ 1
𝑛 ∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2)
3 .

For symmetric distributions, skewness is approximately zero. Positive and negative
skewness indicates a heavier right and left tail, respectively.

For example, heights are an instance of an almost-symmetric distribution:

scipy.stats.skew(heights)
0.0811184528074054

Income, on the other hand, is right-skewed:

scipy.stats.skew(income)
1.9768735693998942

Nowwe have them expressed as a single number.

Note (*) It isworth stressing that𝑔 > 0doesnot imply that the samplemean isgreater
than themedian. As an alternativemeasure of skewness, sometimes the practitioners
use:

𝑔′ = ̄𝑥 − 𝑚
𝑠 .

Yule’s coefficient is an example of a robust skewness measure:

𝑔″ = 𝑄3 + 𝑄1 − 2𝑚
𝑄3 − 𝑄1

.

5 PROCESSING UNIDIMENSIONAL DATA 75

The computation thereof on our example datasets is left as an exercise.

Furthermore, kurtosis (or Fisher’s excess kurtosis, compare scipy.stats.kurtosis) de-
scribes whether an empirical distribution is heavy- or thin-tailed.

5.1.4 Box (andwhisker) plots
A box-and-whisker plot (box plot for short) depicts some noteworthy features of a data
sample.

plt.subplot(2, 1, 1) # two rows, one column; the first subplot
plt.boxplot(heights, vert=False)
plt.yticks([1], ["heights"]) # label at y=1
plt.subplot(2, 1, 2) # two rows, one column; the second subplot
plt.boxplot(income, vert=False)
plt.yticks([1], ["income"]) # label at y=1
plt.show()

130 140 150 160 170 180 190

heights

0 25000 50000 75000 100000 125000 150000 175000 200000

income

Figure 5.2. Example box plots.

Each box plot (compare Figure 5.2) consists of:

• the box, which spans between the first and the third quartile:

– the median is clearly marked by a vertical bar inside the box;

– the width of the box corresponds to the IQR;

• the whiskers, which span4 between:

4The 1.5IQR rule is the most popular in the statistical literature, but some plotting software may use
different whisker ranges. See Section 15.4.1 for further discussion.

76 II UNIDIMENSIONAL DATA

– the smallest observation (theminimum) or𝑄1 − 1.5IQR (the left side of the
boxminus 3/2 of its width), whichever is larger, and

– the largest observation (themaximum) or𝑄3 + 1.5IQR (the right side of the
box plus 3/2 of its width), whichever is smaller.

Additionally, all observations that are less than 𝑄1 − 1.5IQR (if any) or greater than
𝑄3 + 1.5IQR (if any) are separately marked.

Note We are used to referring to the individually marked points as outliers. Still, it
does not automaticallymean there is anything anomalous about them.They are atypical
in the sense that they are considerably farther away from the box. But this might as
well indicate someproblems indata quality (e.g.,when someonemade a typo entering
the data). Actually, box plots are calibrated (via the nicely roundmagic constant 1.5) in
such a way that we expect there to be no or only few outliers if the data are normally
distributed. For skewed distributions, there will naturally be many outliers on either
side; see Section 15.4 for more details.

Box plots are based solely on sample quantiles. Most of the statistical packages do not
draw the arithmetic mean. If they do, it is marked with a distinctive symbol.

Exercise 5.6 Call matplotlib.pyplot.plot(numpy.mean(..data..), 0, "bX") to mark
the arithmetic mean with a blue cross. Alternatively, pass showmeans=True (amongst others) to
matplotlib.pyplot.boxplot.

Box plots are particularly beneficial for comparing data samples with each other (e.g.,
body measures of men and women separately), both in terms of the relative shift (loc-
ation) as well as spread and skewness; see, e.g., Figure 12.1.

Example 5.7 (*)Wemay also be interested in a violin plot (Figure 5.3). Its shape is based on a
kernel density estimator, which is a smoothened version of a histogram; see Section 15.4.2.

plt.subplot(2, 1, 1) # two rows, one column; the first subplot
plt.violinplot(heights, vert=False, showextrema=False)
plt.boxplot(heights, vert=False)
plt.yticks([1], ["heights"])
plt.subplot(2, 1, 2) # two rows, one column; the second subplot
plt.violinplot(income, vert=False, showextrema=False)
plt.boxplot(income, vert=False)
plt.yticks([1], ["income"])
plt.show()

5.1.5 Furthermethods (*)
We said that the arithmetic mean is overly sensitive to extreme observations. The
sample median is an example of a robust aggregate — it ignores all but 1–2 middle
observations (we would say it has a high breakdown point). Some measures of central
tendency that are in-between the mean-median extreme include:

5 PROCESSING UNIDIMENSIONAL DATA 77

130 140 150 160 170 180 190

heights

0 25000 50000 75000 100000 125000 150000 175000 200000

income

Figure 5.3. Example violin plots.

• trimmedmeans – the arithmetic mean of all the observations except several, say 𝑝,
the smallest and the greatest ones,

• winsorisedmeans–thearithmeticmeanwith𝑝 smallest and𝑝greatest observations
replaced with the (𝑝 + 1)-th smallest the (𝑝 + 1)-th largest one.

The arithmetic mean is not the only mean of interest. The two other famous means
are the geometric and harmonic ones. The former is more meaningful for averaging
growth rates and speedups whilst the latter can be used for computing the average
speed from speed measurements at sections of identical lengths; see also the notion
of the F measure in Section 12.3.2. Also, the quadratic mean is featured in the defini-
tion of the standard deviation (it is the quadratic mean of the distances to the mean).

As far as spreadmeasures are concerned, the interquartile range (IQR) is a robust stat-
istic. If necessary, the standard deviation might be replaced with:

• mean absolute deviation from the mean: 1
𝑛 ∑𝑛

𝑖=1 |𝑥𝑖 − ̄𝑥|,

• mean absolute deviation from the median: 1
𝑛 ∑𝑛

𝑖=1 |𝑥𝑖 − 𝑚|,
• median absolute deviation from the median: the median of (|𝑥1 − 𝑚|, |𝑥2 −

𝑚|, … , |𝑥𝑛 − 𝑚|).
The coefficient of variation, being the standarddeviationdivided by the arithmeticmean,
is an example of a relative (or normalised) spread measure. It can be appropriate for
comparing data on different scales, as it is unitless (think how standard deviation
changes when you convert betweenmetres and centimetres).

The Gini index, widely used in economics, can also serve as a measure of relative dis-

78 II UNIDIMENSIONAL DATA

persion, but assumes that all data points are nonnegative:

𝐺 =
∑𝑛

𝑖=1 ∑𝑛
𝑗=1 |𝑥𝑖 − 𝑥𝑗|

2(𝑛 − 1)𝑛 ̄𝑥 =
∑𝑛

𝑖=1(𝑛 − 2𝑖 + 1)𝑥(𝑛−𝑖+1)

(𝑛 − 1) ∑𝑛
𝑖=1 𝑥𝑖

.

It is normalised so that it takes values in the unit interval. An index of 0 reflects the
situation where all values in a sample are the same (0 variance; perfect equality). If
there is a single entity in possession of all the “wealth”, and the remaining ones are 0,
then the index is equal to 1.

For amore generic (algebraic) treatment of aggregation functions for unidimensional
data; see, e.g., [11, 30, 31, 43]. Some measures might be better than others under cer-
tain (often strict) assumptions usually explored in a course onmathematical statistics,
e.g., [40].

Overall, numerical aggregates can be used in cases where data are unimodal. Formul-
timodal mixtures or data in groups, they should rather be applied to summarise each
cluster/class separately; compare Chapter 12. Also, Chapter 8 will extend some of the
summaries for the case of multidimensional data.

5.2 Vectorisedmathematical functions
numpy, just like any other comprehensive numerical computing package, library, or en-
vironment (e.g., R, GNU Octave, Scilab, and Julia), defines many basic mathematical
functions:

• absolute value: numpy.abs,

• square and square root: numpy.square and numpy.sqrt, respectively,

• (natural) exponential function: numpy.exp,

• logarithms: numpy.log (the natural logarithm, i.e., base 𝑒), numpy.log10 (base 10),
etc.,

• trigonometric functions: numpy.cos, numpy.sin, numpy.tan, etc., and their inverses:
numpy.arccos, etc.

• rounding and truncating: numpy.round, numpy.floor, numpy.ceil, numpy.trunc.

Each of these functions is vectorised. Applying, say, 𝑓 , on a vector like 𝒙 = (𝑥1, … , 𝑥𝑛),
we obtain a sequence of the same size with all elements appropriately transformed:

𝑓 (𝒙) = (𝑓 (𝑥1), 𝑓 (𝑥2), … , 𝑓 (𝑥𝑛)).

In other words, 𝑓 operates element by element on the whole array.
Vectorised operations are frequently used for making adjustments to data, e.g., as in

5 PROCESSING UNIDIMENSIONAL DATA 79

Figure 6.8, where we discover that the logarithm of the UK incomes has a bell-shaped
distribution.

An example call to the vectorised version of the rounding function:

np.round([-3.249, -3.151, 2.49, 2.51, 3.49, 3.51], 1)
array([-3.2, -3.2, 2.5, 2.5, 3.5, 3.5])

The input list has been automatically converted to a numpy vector.

Important Thanks to the vectorised functions, our code is not only more readable,
but also runs faster: we do not have to employ the generally slow Python-level while or
for loops to traverse through each element in a given sequence.

5.2.1 Logarithms and exponential functions
Here are some significant properties of the natural logarithm and its inverse, the ex-
ponential function. By convention, Euler’s number 𝑒 ≃ 2.718, log 𝑥 = log𝑒 𝑥, and
exp(𝑥) = 𝑒𝑥.

• log 1 = 0, log 𝑒 = 1; note that logarithms are only defined for 𝑥 > 0: in the limit
as 𝑥 → 0, we have that log 𝑥 → −∞,

• log 𝑥𝑦 = 𝑦 log 𝑥 and hence log 𝑒𝑥 = 𝑥,
• log(𝑥𝑦) = log 𝑥 + log 𝑦 and thus log(𝑥/𝑦) = log 𝑥 − log 𝑦,
• 𝑒0 = 1, 𝑒1 = 𝑒, and 𝑒𝑥 → 0 as 𝑥 → −∞,

• 𝑒log𝑥 = 𝑥,
• 𝑒𝑥+𝑦 = 𝑒𝑥𝑒𝑦 and so 𝑒𝑥−𝑦 = 𝑒𝑥/𝑒𝑦,

• 𝑒𝑥𝑦 = (𝑒𝑥)𝑦.

Both functions are strictly increasing. For 𝑥 ≥ 1, the logarithm grows very slowly
whereas the exponential function increases very rapidly; see Figure 5.4.

plt.subplot(1, 2, 1)
x = np.linspace(np.exp(-2), np.exp(3), 1001)
plt.plot(x, np.log(x), label="$y=\\log x$")
plt.legend()
plt.subplot(1, 2, 2)
x = np.linspace(-2, 3, 1001)
plt.plot(x, np.exp(x), label="$y=\\exp(x)$")
plt.legend()
plt.show()

80 II UNIDIMENSIONAL DATA

0 5 10 15 20

2

1

0

1

2

3 y = log x

2 0 2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 y = exp(x)

Figure 5.4.The natural logarithm (left) and the exponential function (right).

Logarithms of different bases and non-natural exponential functions are also avail-
able. In particular, when drawing plots, we used the base-10 logarithmic scales on the
axes. It holds log10 𝑥 = log𝑥

log10 and its inverse is 10𝑥 = 𝑒𝑥 log10. For example:

10.0**np.array([-1, 0, 1, 2]) # see below
array([0.1, 1. , 10. , 100.])
np.log10([-1, 0.01, 0.1, 1, 2, 5, 10, 100, 1000, 10000])
array([nan, -2. , -1. , 0. , 0.30103, 0.69897,
1. , 2. , 3. , 4.])
##
<string>:1: RuntimeWarning: invalid value encountered in log10

Take note of the warning and the not-a-number (NaN) generated.

Exercise 5.8 Check that when using the log-scale on the x-axis (plt.xscale("log")), the
plot of the logarithm (of any base) is a straight line. Similarly, the log-scale on the y-axis (plt.
yscale("log")) makes the exponential function linear.

5.2.2 Trigonometric functions
Moving on, the trigonometric functions in numpy accept angles in radians. If 𝑥 is the
degree in angles, then to compute its cosine, we should instead write cos(𝑥𝜋/180);
see Figure 5.5.

x = np.linspace(-2*np.pi, 4*np.pi, 1001)
plt.plot(x, np.cos(x))
plt.xticks(

(continues on next page)

5 PROCESSING UNIDIMENSIONAL DATA 81

(continued from previous page)

[-2*np.pi, -np.pi, 0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi, 4*np.pi],
["$-2\\pi$", "$-\\pi$", "0", "$\\pi/2$", "$\\pi$",
"$3\\pi/2$", "$2\\pi$", "$4\\pi$"]

)
plt.show()

2 0 /2 3 /2 2 4
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.5.The cosine.

Some identities worth memorising:

• sin 𝑥 = cos(𝜋/2 − 𝑥),
• cos(−𝑥) = cos 𝑥,
• cos2 𝑥 + sin2 𝑥 = 1, where cos2 𝑥 = (cos 𝑥)2,

• cos(𝑥 + 𝑦) = cos 𝑥 cos 𝑦 − sin 𝑥 sin 𝑦,
• cos(𝑥 − 𝑦) = cos 𝑥 cos 𝑦 + sin 𝑥 sin 𝑦.

We will refer to them later.

Important The classical handbook of mathematical functions and the (in)equalities
related to them is [1], see [70] for its updated version.

82 II UNIDIMENSIONAL DATA

5.3 Arithmetic operators
We can apply the standard binary (two-argument) arithmetic operators `+`, `-`, `*`,
`/`, `**`, `%`, and `//` on vectors too. Belowwe discuss the possible cases of the oper-
ands’ lengths.

5.3.1 Vector-scalar case
Often, we will be referring to the binary operators in contexts where one operand is a
vector and the other is a single value (scalar). For example:

np.array([-2, -1, 0, 1, 2, 3])**2
array([4, 1, 0, 1, 4, 9])
(np.array([-2, -1, 0, 1, 2, 3])+2)/5
array([0. , 0.2, 0.4, 0.6, 0.8, 1.])

In such a case, each element in the vector is being operated upon (e.g., squared, di-
vided by 5) and we get a vector of the same length in return. Hence, in this case, the
operators behave just like the vectorised mathematical functions discussed above.

Mathematically, it is common to assume that the scalar multiplication and, less com-
monly, the addition are performed in this way.

𝑐𝒙 + 𝑡 = (𝑐𝑥1 + 𝑡, 𝑐𝑥2 + 𝑡, … , 𝑐𝑥𝑛 + 𝑡).

Wewill also become used to writing (𝒙 − 𝑡)/𝑐, which is equivalent to (1/𝑐)𝒙 + (−𝑡/𝑐).

5.3.2 Application: Feature scaling
Vector-scalar operations and aggregation functions are the basis for the most com-
monly applied feature scalers:

• standardisation,

• normalisation,

• min-max scaling and clipping.

They can increase the interpretability of data points by bringing them onto a com-
mon, unitless scale.Theymight also be essential when computing pairwise distances
betweenmultidimensional points; see Section 8.4.

The transformations listed above are linear, i.e., of the form 𝒚 = 𝑐𝒙 + 𝑡. We can inter-
pret themgeometrically as scaling (stretching or shrinking) and shifting (translating);
see Figure 5.6 for an illustration.

Note Let 𝒚 = 𝑐𝒙 + 𝑡 and let ̄𝑥, ̄𝑦, 𝑠𝑥, 𝑠𝑦 denote the vectors’ arithmetic means and
standard deviations.The following properties hold.

5 PROCESSING UNIDIMENSIONAL DATA 83

4 3 2 1 0 1 2 3 4

original x

2x

0.5x

0.5x + 2

Figure 5.6. Scaled and shifted versions of an example vector.

• The arithmetic mean and all the quantiles (including, of course, the median), are
equivariantwith respect to translation and scaling; it holds, for instance, ̄𝑦 = 𝑐 ̄𝑥+
𝑡.

• The standard deviation, the interquartile range, and the range are invariant to
translations and equivariant to scaling; e.g., 𝑠𝑦 = 𝑐𝑠𝑥.

As a byproduct, for the variance, we get… 𝑠2
𝑦 = 𝑐2𝑠2

𝑥.

Standardisation and z-scores

A standardised version of a vector 𝒙 = (𝑥1, … , 𝑥𝑛) consists in subtracting, from each
element, the sample arithmetic mean (which we call centring) and then dividing it by
the standard deviation, i.e., 𝒛 = (𝒙 − ̄𝑥)/𝑠.
Thus, we transform each 𝑥𝑖 to obtain:

𝑧𝑖 = 𝑥𝑖 − ̄𝑥
𝑠 .

Consider again the female heights dataset:

heights[-5:] # preview
array([157. , 167.4, 159.6, 168.5, 147.8])

whose mean ̄𝑥 and standard deviation 𝑠 are equal to:

84 II UNIDIMENSIONAL DATA

np.mean(heights), np.std(heights)
(160.13679222932953, 7.062021850008261)

With numpy, standardisation is as simple as applying two aggregation functions and
two arithmetic operations:

heights_std = (heights-np.mean(heights))/np.std(heights)
heights_std[-5:] # preview
array([-0.44417764, 1.02848843, -0.07601113, 1.18425119, -1.74692071])

What we obtained is sometimes referred to as the z-scores. They are nicely inter-
pretable:

• z-score of 0 corresponds to an observation equal to the sample mean (perfectly
average);

• z-score of 1 is obtained for a datum 1 standard deviation above the mean;

• z-score of -2 means that it is a value 2 standard deviations below the mean;

and so forth.

Because of the way they emerge, the mean of the z-scores is always 0 and standard
deviation is 1 (up to a tiny numerical error, as usual; see Section 5.5.6):

np.mean(heights_std), np.std(heights_std)
(1.8920872660373198e-15, 1.0)

Even though the original heightsweremeasured in centimetres, the z-scores are unit-
less (centimetres divided by centimetres).

Important Standardisation enables the comparison of measurements on differ-
ent scales (think: height in centimetres vs weight in kilograms or apples vs or-
anges). It makes the most sense for bell-shaped distributions, in particular normally-
distributed ones. Section 6.1.2 will introduce the 2𝜎 rule for the normal family (but
not necessarily other models!). We will learn that we can expect that 95% of observa-
tions have z-scores between -2 and 2. Further, z-scores less than -3 and greater than
3 are highly unlikely.

Exercise 5.9 We have a patient whose height z-score is 1 and weight z-score is -1. How can we
interpret this information?

Exercise 5.10 What about a patient whose weight z-score is 0 but BMI z-score is 2?

On a side note, sometimes wemight be interested in performing some form of robust
standardisation (e.g., for data with outliers or skewed). In such a case, we can replace
the mean with the median and the standard deviation with the IQR.

5 PROCESSING UNIDIMENSIONAL DATA 85

Min-max scaling and clipping

A less frequently but still noteworthy transformation is calledmin-max scaling and in-
volves subtracting the minimum and then dividing by the range, (𝑥 − 𝑥(1))/(𝑥(𝑛) −
𝑥(1)).

x = np.array([-1.5, 0.5, 3.5, -1.33, 0.25, 0.8])
(x - np.min(x))/(np.max(x)-np.min(x))
array([0. , 0.4 , 1. , 0.034, 0.35 , 0.46])

Here, the smallest value ismapped to0and the largest becomes equal to 1. Let us stress
that, in this context, 0.5doesnot represent thevaluewhich is equal to themean (unless
we are incredibly lucky).

Also, clipping can be used to replace all values less than 0with 0 and those greater than
1 with 1.

np.clip(x, 0, 1)
array([0. , 0.5 , 1. , 0. , 0.25, 0.8])

The function is, of course, flexible. Another popular choice is clipping to [−1, 1]. It
can also be composed by means of the vectorised pairwise minimum and maximum
functions.

np.minimum(1, np.maximum(0, x))
array([0. , 0.5 , 1. , 0. , 0.25, 0.8])

Normalisation (𝑙2; dividing bymagnitude)
Normalisation is the scaling of a given vector so that it is of unit length. Usually, by length
wemean the square rootof the sumof squares, i.e., theEuclidean (𝑙2) normalsoknown
as themagnitude:

‖(𝑥1, … , 𝑥𝑛)‖ = √𝑥2
1 + 𝑥2

2 + ⋯ + 𝑥2𝑛 =
√
√√
⎷

𝑛
∑
𝑖=1

𝑥2
𝑖 .

Its special case for 𝑛 = 2 we know well from high school: the length of a vector (𝑎, 𝑏)
is √𝑎2 + 𝑏2, e.g., ‖(1, 2)‖ = √5 ≃ 2.236. Also, we are advised to program our brains
so that when we see ‖𝒙‖2 next time, we immediately think of the sum of squares.

Consequently, a normalised vector:

𝒙
‖𝒙‖ = (𝑥1

‖𝒙‖ , 𝑥2
‖𝒙‖ , … , 𝑥𝑛

‖𝒙‖) ,

can be determined via:

x = np.array([1, 5, -4, 2, 2.5]) # example vector
x/np.sqrt(np.sum(x**2)) # x divided by the Euclidean norm of x
array([0.13834289, 0.69171446, -0.55337157, 0.27668579, 0.34585723])

86 II UNIDIMENSIONAL DATA

Exercise 5.11 Normalisation is similar to standardisation if dataare already centred (when the
mean was subtracted). Show that we can obtain one from the other via the scaling by√𝑛.

Important A common confusion is that normalisation is supposed tomake datamore
normally distributed. This is not the case5, as we only scale (stretch or shrink) the ob-
servations here.

Normalisation (𝑙1; dividing by sum)
At other times, wemight be interested in considering the Manhattan (𝑙1) norm:

‖(𝑥1, … , 𝑥𝑛)‖1 = |𝑥1| + |𝑥2| + ⋯ + |𝑥𝑛| =
𝑛

∑
𝑖=1

|𝑥𝑖|,

being the sum of absolute values.

x / np.sum(np.abs(x))
array([0.06896552, 0.34482759, -0.27586207, 0.13793103, 0.17241379])

𝑙1 normalisation is frequently applied on vectors of nonnegative values, whose norm-
alised versions can be interpreted as probabilities or proportions: values between 0 and 1
which sum to 1 (or, equivalently, 100%).

Example 5.12 Given some binned data:

c, b = np.histogram(heights, [-np.inf, 150, 160, 170, np.inf])
print(c) # counts
[306 1776 1773 366]

We can convert the counts to empirical probabilities:

p = c/np.sum(c) # np.abs is not needed here
print(p)
[0.07249467 0.42075338 0.42004264 0.08670931]

We did not apply numpy.abs because the values were already nonnegative.

5.3.3 Vector-vector case
So far we have been applying `*`, `+`, etc., on vectors and scalars only. All arithmetic
operators can also be applied on two vectors of equal lengths. In such a case, they will
act elementwisely: taking each element from the first operand and combining it with
the corresponding element from the second argument:

5 (*) A Box–Cox transformation can help achieve this in some datasets; see [10]. Chapter 6 will apply
its particular case: it will turn out that the logarithm of incomes follow a normal distribution (hence, in-
comes follow a log-normal distribution). Generally, there is nothing “wrong” or “bad” about data’s not being
normally-distributed. It is just a nice feature to have in certain contexts.

5 PROCESSING UNIDIMENSIONAL DATA 87

np.array([2, 3, 4, 5]) * np.array([10, 100, 1000, 10000])
array([20, 300, 4000, 50000])

We see that the first element in the left operand (2) wasmultiplied by the first element
in the right operand (10). Then, we multiplied 3 by 100 (the second corresponding ele-
ments), and so forth.

Such a behaviour of the binary operators is inspired by the usual convention in vector
algebra where applying + (or −) on 𝒙 = (𝑥1, … , 𝑥𝑛) and 𝒚 = (𝑦1, … , 𝑦𝑛) means
exactly:

𝒙 + 𝒚 = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛).

Using other operators this way (elementwisely) is less standard in mathematics (for
instance multiplication might denote the dot product), but in numpy it is really con-
venient.

Example 5.13 Let us compute the value of the expressionℎ = −(𝑝1 log 𝑝1 +⋯+𝑝𝑛 log 𝑝𝑛),
i.e., ℎ = − ∑𝑛

𝑖=1 𝑝𝑖 log 𝑝𝑖 (the entropy):

p = np.array([0.1, 0.3, 0.25, 0.15, 0.12, 0.08]) # example vector
-np.sum(p*np.log(p))
1.6790818544987114

The above involves the use of a unary vectorised minus (change sign), an aggregation function
(sum), a vectorised mathematical function (log), and an elementwise multiplication of two vec-
tors of the same lengths.

Example 5.14 Let us assume that – for whatever reason – we would like to plot two mathem-
atical functions, the sine, 𝑓 (𝑥) = sin 𝑥, and a polynomial of degree 7, 𝑔(𝑥) = 𝑥 − 𝑥3/6 +
𝑥5/120 − 𝑥7/5040 for 𝑥 in the interval [−𝜋, 3𝜋/2].
To do this, we can probe the values of 𝑓 and 𝑔 at sufficiently many points using the vectorised
operations discussed so far and then use the matplotlib.pyplot.plot function to draw what
we see in Figure 5.7.

x = np.linspace(-np.pi, 1.5*np.pi, 1001) # many points in the said interval
yf = np.sin(x)
yg = x - x**3/6 + x**5/120 - x**7/5040
plt.plot(x, yf, 'k-', label="f(x)") # black solid line
plt.plot(x, yg, 'r:', label="g(x)") # red dotted line
plt.legend()
plt.show()

Decreasing the number of points in xwill reveal that the plotting functionmerely draws a series
of straight-line segments. Computer graphics is essentially discrete.

Exercise 5.15 Using a single line of code, compute the vector of BMIs of all persons based on the

88 II UNIDIMENSIONAL DATA

3 2 1 0 1 2 3 4 5

3

2

1

0

1 f(x)
g(x)

Figure 5.7.With vectorised functions, it is easy to generate plots like this one.Weused
different line styles so that the plot is readable also when printed in black and white.

nhanes_adult_female_height_20206 and nhanes_adult_female_weight_20207 datasets. It
is assumed that the 𝑖-th elements therein both refer to the same person.

5.4 Indexing vectors
Recall from Section 3.2.1 and Section 3.2.2 that sequential objects in Python (lists,
tuples, strings, ranges) support indexing using scalars and slices:

x = [10, 20, 30, 40, 50]
x[1] # scalar index – extract
20
x[1:2] # slice index – subset
[20]

numpy vectors support two additional indexing schemes: using integer and boolean se-
quences.

6 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_height_2020.
txt

7 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_weight_2020.
txt

https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_height_2020.txt
https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_weight_2020.txt

5 PROCESSING UNIDIMENSIONAL DATA 89

5.4.1 Integer indexing
Indexing with a single integer extracts a particular element:

x = np.array([10, 20, 30, 40, 50])
x[0] # first
10
x[1] # second
20
x[-1] # last
50

We can also use lists of vectors of integer indexes, which return a subvector with ele-
ments at the specified indexes:

x[[0]]
array([10])
x[[0, 1, -1, 0, 1, 0, 0]]
array([10, 20, 50, 10, 20, 10, 10])
x[[]]
array([], dtype=int64)

We added some spaces between the square brackets for readability only: e.g., x[[0]]
could seem slightly more obscure. (What are these double square brackets? Nah, it is
a list inside the index operator.)

5.4.2 Logical indexing
Subsetting using a logical vector of the same length as the indexed vector is possible
too:

x[[True, False, True, True, False]]
array([10, 30, 40])

This returned thefirst, third, and fourth element (selectfirst, omit second, select third,
select fourth, omit fifth).

This is particularly useful as a data filtering technique. Knowing that the relational vec-
tor operators `<`, `<=`, `==`, `!=`, `>=`, and `>` are performed elementwisely, just like
`+`, `*`, etc. For instance:

x >= 30
array([False, False, True, True, True])

Thus, we can write:

x[x >= 30]
array([30, 40, 50])

to mean “select the elements in xwhich are not less than 30”.

90 II UNIDIMENSIONAL DATA

Of course, the indexed vector and the vector specifying the filter do not8 have to be the
same:

y = (x/10) % 2 # whatever
y # equal to 0 if a number is a multiply of 10 times an even number
array([1., 0., 1., 0., 1.])
x[y == 0]
array([20, 40])

Important Sadly, if we wish to combine many logical vectors, we cannot use the and,
or, and not operators.They are not vectorised (this is a limitation at the language level).

Instead, in numpy, we use the `&`, `|`, and `~` operators. Unfortunately, they have a
lower order of precedence than `<`, `<=`, `==`, etc. Therefore, the bracketing of the
comparisons is obligatory.

For example:

x[(20 <= x) & (x <= 40)] # check what happens if we skip the brackets
array([20, 30, 40])

means “elements in x between 20 and 40” (greater than or equal to 20 and less than or
equal to 40).

Also:

len(x[(x < 15) | (x > 35)])
3

Computes the number of elements in x less than 15 or greater than 35 (not between 15
and 35).

Exercise 5.16 Compute the BMIs only of the womenwhose height is between 150 and 170 cm.

5.4.3 Slicing
Just as with ordinary lists, slicing with `:` fetches the elements at indexes in a given
range like from:to or from:to:by.

x[:3] # first three elements
array([10, 20, 30])
x[::2] # every second element
array([10, 30, 50])
x[1:4] # from the second (inclusive) to the fifth (exclusive)
array([20, 30, 40])

8 (*) The indexer is computed first, and its value is passed as an argument to the index operator. Python
neither is a symbolic programming language, nor does it feature any nonstandard evaluation techniques.
In other words, [...] does not care how the indexer was obtained.

5 PROCESSING UNIDIMENSIONAL DATA 91

Important For efficiency reasons, slicing returns a view of existing data. It does not
have to make an independent copy of the subsetted elements: by definition, sliced
ranges are regular.

In other words, both x and its sliced version share the same memory. This is import-
ant when we apply operations which modify a given vector in place, such as the sort
method.

y = np.array([6, 4, 8, 5, 1, 3, 2, 9, 7])
y[::2] *= 10 # modifies parts of y in place
y # has changed
array([60, 4, 80, 5, 10, 3, 20, 9, 70])

This multiplied every second element in y by 10 (i.e., [6, 8, 1, 2, 7]). On the other
hand, indexing with an integer or logical vector always returns a copy.

y[[1, 3, 5, 7]] *= 10 # modifies a new object and then forgets about it
y # has not changed since the last modification
array([60, 40, 80, 50, 10, 30, 20, 90, 70])

This did not modify the original vector, because we applied `*=` on a different object,
which has not even beenmemorised after that operation took place.

5.5 Other operations
5.5.1 Cumulative sums and iterated differences
Recall that the `+` operator acts on two vectors elementwisely and that the numpy.sum
function aggregates all values into a single one. We have a similar function, but vec-
torised in a slightly different fashion. Namely, numpy.cumsum returns the vector of cu-
mulative sums:

np.cumsum([5, 3, -4, 1, 1, 3])
array([5, 8, 4, 5, 6, 9])

This gave, in this order: the first element, the sum of first two elements, the sum of
first three elements, …, the sum of all elements.

Iterated differences are a somewhat inverse operation:

np.diff([5, 8, 4, 5, 6, 9])
array([3, -4, 1, 1, 3])

92 II UNIDIMENSIONAL DATA

It returned the difference between the second and the first element, then the differ-
ence between the third and the second, and so forth. The resulting vector is one ele-
ment shorter than the input one.

We often make use of cumulative sums and iterated differences when processing
time series, e.g., stock exchange data (e.g., by howmuch the price changed since the
previous day?; Section 16.3.1) or determining cumulative distribution functions (Sec-
tion 4.3.8).

5.5.2 Sorting
The numpy.sort function returns a sorted copy of a given vector, i.e., determines the
order statistics.

x = np.array([50, 30, 10, 40, 20, 30, 50])
np.sort(x)
array([10, 20, 30, 30, 40, 50, 50])

The sort method (as in: x.sort()), on the other hand, sorts the vector in place (and
returns nothing).

Exercise 5.17 Readers interested more in chaos than in bringing order should give numpy.
random.permutation a try.This function shuffles the elements in a given vector.

5.5.3 Dealingwith tied observations
Some statistical methods, especially for continuous data9, assume that all observa-
tions in a vector are unique, i.e., there are no ties. In real life, however, some values
might be recorded multiple times. For instance, two marathoners might finish their
runs in exactly the same time, data can be rounded up to a certain number of frac-
tional digits, or it just happens that observations are inherently integer. Therefore,
we should be able to detect duplicated entries.

numpy.unique is a workhorse for dealing with tied observations.

x = np.array([40, 10, 20, 40, 40, 30, 20, 40, 50, 10, 10, 70, 30, 40, 30])
np.unique(x)
array([10, 20, 30, 40, 50, 70])

Returns a sorted10 version of a given vector with duplicates removed.

We can also get the corresponding counts:

np.unique(x, return_counts=True) # returns a tuple of length 2
(array([10, 20, 30, 40, 50, 70]), array([3, 2, 3, 5, 1, 1]))

9Where, theoretically, the probability of obtaining a tie is equal to 0.
10 Later we will mention pandas.uniquewhich lists the values in the order of appearance.

5 PROCESSING UNIDIMENSIONAL DATA 93

It can help determine if all the values in a vector are unique:

np.all(np.unique(x, return_counts=True)[1] == 1)
False

Exercise 5.18 Playwith thereturn_indexargument tonumpy.unique. Itpermitspinpointing
the indexes of the first occurrences of each unique value.

5.5.4 Determining the ordering permutation and ranking
numpy.argsort returns a sequence of indexes that lead to an ordered version of a given
vector (i.e., an ordering permutation).

x = np.array([50, 30, 10, 40, 20, 30, 50])
np.argsort(x)
array([2, 4, 1, 5, 3, 0, 6])

Which means that the smallest element is at index 2, then the second smallest is at
index 4, the third smallest at index 1, etc.Therefore:

x[np.argsort(x)]
array([10, 20, 30, 30, 40, 50, 50])

is equivalent to numpy.sort(x).

Note (**) If there are tiedobservations ina vector x, numpy.argsort(x, kind="stable")

will use a stable sorting algorithm (timsort11, a variant ofmergesort),whichguarantees
that the ordering permutation is unique: tied elements are placed in the order of ap-
pearance.

Next, scipy.stats.rankdata returns a vector of ranks.

x = np.array([50, 30, 10, 40, 20, 30, 50])
scipy.stats.rankdata(x)
array([6.5, 3.5, 1. , 5. , 2. , 3.5, 6.5])

Element 10 is the smallest (“the winner”, say, the quickest racer). Hence, it ranks first.
The two tied elements equal to 30 are the third/fourth on the podium (ex aequo).Thus,
they receive the average rank of 3.5. And so on.

On a side note, there are many methods in nonparametric statistics (those that do
notmake any too particular assumptions about the underlying data distribution) that
are based on ranks. In particular, Section 9.1.4 will cover the Spearman correlation
coefficient.

11 https://github.com/python/cpython/blob/3.7/Objects/listsort.txt

https://github.com/python/cpython/blob/3.7/Objects/listsort.txt

94 II UNIDIMENSIONAL DATA

Exercise 5.19 Consult the manual page of scipy.stats.rankdata and test various methods
for dealing with ties.

Exercise 5.20 What is the interpretation of a rank divided by the length of the sample?

Note (**)Readerswith somebackground indiscretemathematicswill be interested in
the fact that calling numpy.argsort on a vector representing a permutation of elements
generates its inverse. In particular, np.argsort(np.argsort(x, kind="stable"))+1 is
equivalent to scipy.stats.rankdata(x, method="ordinal").

5.5.5 Searching for certain indexes (argmin, argmax)
numpy.argmin and numpy.argmax return the index atwhichwe canfind the smallest and
the largest observation in a given vector.

x = np.array([50, 30, 10, 40, 20, 30, 50])
np.argmin(x), np.argmax(x)
(2, 0)

If there are tied observations, the smallest index is returned.

Using mathematical notation, the former is denoted by:

𝑖 = argmin
𝑗

𝑥𝑗,

and read it as: let 𝑖 be the index of the smallest element in the sequence. Alternatively,
it is the argument of the minimum, whenever:

𝑥𝑖 = min
𝑗

𝑥𝑗,

i.e., the 𝑖-th element is the smallest.

We can use numpy.flatnonzero to fetch the indexeswhere a logical vector has elements
equal to True (Section 11.1.2mentions that a value equal to zero is treated as the logical
False, and as True in all other cases). For example:

np.flatnonzero(x == np.max(x))
array([0, 6])

It is a version of numpy.argmax that lets us decide what we would like to do with the
tied maxima (there are two).

Exercise 5.21 Let x be a vector with possible ties. Create an expression that returns a randomly
chosen index pinpointing one of the sample maxima.

5 PROCESSING UNIDIMENSIONAL DATA 95

5.5.6 Dealingwith round-off andmeasurement errors
Mathematics tells us (the easy proof is left as an exercise for the reader) that a centred
version of a given vector 𝒙, 𝒚 = 𝒙 − ̄𝑥, has the arithmetic mean of 0, i.e., ̄𝑦 = 0.
Of course, it is also true on a computer. Or is it?

heights_centred = (heights - np.mean(heights))
np.mean(heights_centred) == 0
False

The average is actually equal to:

np.mean(heights_centred)
1.3359078775153175e-14

which isalmost zero (0.0000000000000134), butnot exactlyzero (it is zero for anengin-
eer, not a mathematician). We saw a similar result in Section 5.3.2, when performing
standardisation (which involves centring).

Important All floating-point operations on a computer12 (not only in Python) are per-
formed with finite precision of 15–17 decimal digits.

Weknow it fromschool – for example, some fractions cannot be represented as decim-
als.When asked to add ormultiply them, we will always have to apply some rounding
that ultimately leads to precision loss. We know that 1/3 + 1/3 + 1/3 = 1, but using
a decimal representation with one fractional digit, we get 0.3 + 0.3 + 0.3 = 0.9.With
two digits, we obtain 0.33 + 0.33 + 0.33 = 0.99. And so on. This sum will never be
equal exactly to 1 when using a finite precision.

Moreover, errors induced in one operation will propagate onto further ones. Most of-
ten they cancel out, but in extreme cases, they can lead to undesirable consequences
(like for somemodel matrices in linear regression; see Section 9.2.9).

There is no reason to panic, though.The rule to remember is:

Important As the floating-point values arepreciseup to a fewdecimal digits,wemust
refrain from comparing them using the `==` operator, which tests for exact equality.

When a comparison is needed, we need to take some error margin into account.
Ideally, instead of testing x == y, we either inspect the absolute error:

|𝑥 − 𝑦| ≤ 𝜀,

12 Double precision float64 format as defined by the IEEE Standard for Floating-Point Arithmetic
(IEEE 754).

96 II UNIDIMENSIONAL DATA

or, assuming 𝑦 ≠ 0, the relative error:

|𝑥 − 𝑦|
|𝑦| ≤ 𝜀,

where 𝜀 is some small error margin.
For instance, numpy.allclose(x, y) checks (by default) if for all corresponding ele-
ments in both vectors it holds numpy.abs(x-y) <= 1e-8 + 1e-5*numpy.abs(y), which
is a combination of both tests.

np.allclose(np.mean(heights_centred), 0)
True

To avoid sorrow surprises, even the testing of inequalities like x >= 0 should rather be
performed as, say, x >= 1e-8.

Note Our data are often imprecise by nature. When asked about people’s heights,
rarely will they provide a non-integer answer (assuming they know how tall they are
and are not lying about it, but it is a different story).Wewill most likely get data roun-
ded to 0 decimal digits. In our dataset the precision is a bit higher:

heights[:6] # preview
array([160.2, 152.7, 161.2, 157.4, 154.6, 144.7])

But still, there is an inherent observational error. Even if, for example, themean thereof
was computed exactly, the fact that the inputs themselves are not necessarily ideal
makes the estimate approximate as well. We can only hope that these errors will more
or less cancel out in the computations.

Exercise 5.22 Compute the BMIs of all females in the NHANES study. Determine their arith-
metic mean. Compare it to the arithmetic mean computed for BMIs rounded to 1, 2, 3, 4, etc.,
decimal digits.

Note (*) Another problem is related to the fact that floats on a computer use the binary
base, not the decimal one. Therefore, some fractional numbers that we believe to be
representable exactly, require an infinite number of bits. As a consequence, they are
subject to rounding.

0.1 + 0.1 + 0.1 == 0.3 # obviously
False

This is because 0.1, 0.1+0.1+0.1, and 0.3 are literally represented as, respectively:

print(f"{0.1:.19f}, {0.1+0.1+0.1:.19f}, and {0.3:.19f}.")
0.1000000000000000056, 0.3000000000000000444, and 0.2999999999999999889.

5 PROCESSING UNIDIMENSIONAL DATA 97

A suggested introductory reference to the topic of numerical inaccuracies is [41]; see
also [48, 56] for a more comprehensive treatment of numerical analysis.

5.5.7 Vectorising scalar operationswith list comprehensions
List comprehensions of the form [expression for name in iterable] are part of base
Python. They create lists based on transformed versions of individual elements in a
given iterable object. Hence, theymight work in cases where a task at hand cannot be
solved by means of vectorised numpy functions.

For example, here is a way to generate the squares of a few positive natural numbers:

[i**2 for i in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

The result can be passed to numpy.array to convert it to a vector.

Further, given an example vector:

x = np.round(np.random.rand(9)*2-1, 2)
x
array([0.86, -0.37, -0.63, -0.59, 0.14, 0.19, 0.93, 0.31, 0.5])

If we wish to filter out all elements that are not positive, we can write:

[e for e in x if e > 0]
[0.86, 0.14, 0.19, 0.93, 0.31, 0.5]

We can also use the ternary operator of the form x_true if cond else x_false to
return either x_true or x_false depending on the truth value of cond.

e = -2
e**0.5 if e >= 0 else (-e)**0.5
1.4142135623730951

Combined with a list comprehension, we can write, for instance:

[round(e**0.5 if e >= 0 else (-e)**0.5, 2) for e in x]
[0.93, 0.61, 0.79, 0.77, 0.37, 0.44, 0.96, 0.56, 0.71]

This gave the square root of absolute values.

There is also a tool which vectorises a scalar function so that it can be used on numpy

vectors:

98 II UNIDIMENSIONAL DATA

def clip01(x):
"""clip to the unit interval"""
if x < 0: return 0
elif x > 1: return 1
else: return x

clip01s = np.vectorize(clip01) # returns a function object
clip01s([0.3, -1.2, 0.7, 4, 9])
array([0.3, 0. , 0.7, 1. , 1.])

In the above cases, it is much better (faster, more readable code) to rely on vectorised
numpy functions. Still, if the corresponding operations are unavailable (e.g., string pro-
cessing, reading many files), list comprehensions provide a reasonable replacement
therefor.

Exercise 5.23 Write equivalent versions of the above expressions using vectorised numpy func-
tions.

Exercise 5.24 Implement the above expressions using base Python lists, the for loop and the
list.appendmethod (start from an empty list that will store the result).

5.6 Exercises
Exercise 5.25 What are some benefits of using a numpy vector over an ordinary Python list?
What are the drawbacks?

Exercise 5.26 How can we interpret the possibly different values of the arithmetic mean, me-
dian, standard deviation, interquartile range, and skewness, when comparing between heights
of men and women?

Exercise 5.27 There is something scientific and magical about numbers that make us ap-
proach them with some kind of respect. However, taking into account that there are many pos-
sible data aggregates, there is a risk that a party may be cherry-picking – reporting the one that
portrays the analysed entity in a good or bad light. For instance, reporting the mean instead of
the median or vice versa. Is there anything that can be done about it?

Exercise 5.28 Even though, mathematically speaking, all measures can be computed on all
data, it does not mean that it always makes sense to do so. For instance, some distributions will
have skewness of 0.However, let us not automatically assume that they are delightfully symmet-
ric and bell-shaped (e.g., this can be a bimodal distribution). We always ought to visualise our
data. Give some examples of datasets and measures where we should be critical of the obtained
aggregates.

Exercise 5.29 Give some exampleswhere simple data preprocessing can drastically change the
values of chosen sample aggregates.

5 PROCESSING UNIDIMENSIONAL DATA 99

Exercise 5.30 Give themathematical definitions, use cases, and interpretations of standardisa-
tion, normalisation, andmin-max scaling.

Exercise 5.31 How are numpy.log and numpy.exp related to each other? What about numpy.
log vs numpy.log10, numpy.cumsum vs numpy.diff, numpy.min vs numpy.argmin, numpy.sort
vs numpy.argsort, and scipy.stats.rankdata vs numpy.argsort?

Exercise 5.32 What is the difference between numpy.trunc, numpy.floor, numpy.ceil, and
numpy.round?

Exercise 5.33 What happens when we apply `+` on two vectors of different lengths?

Exercise 5.34 List the four ways to index a vector.

Exercise 5.35 What is wrong with the expression x[x >= 0 and x <= 1], where x is a
numeric vector?What about x[x >= 0 & x <= 1]?

Exercise 5.36 What does it mean that slicing returns a view of existing data?

Exercise 5.37 (**) Reflect on the famous13 saying: not everything that can be counted
counts, and not everything that counts can be counted.

Exercise 5.38 (**) Being a data scientist can be a frustrating job, especially when you care for
some causes. Reflect on: some things that count can be counted, but we will not count
them because there’s no budget for them.

Exercise 5.39 (**) Being a data scientist can be a frustrating job, especially when you care for
the truth. Reflect on: some things that count can be counted, but we will not count them
because some people might be offended or find it unpleasant.

Exercise 5.40 (**) Assume you were to become the benevolent dictator of a nation on some re-
mote island.Howwould youmeasure if your people are happy or not? Let us say that youneed to
come up with three quantitative measures (key performance indicators). What would happen if
your policy-making was solely focused on optimising those KPIs?What about the same problem
but with regard to your company and employees?Think about what can go wrong in other areas
of life.

13 https://quoteinvestigator.com/2010/05/26/everything-counts-einstein

https://quoteinvestigator.com/2010/05/26/everything-counts-einstein

6
Continuous probability distributions

Each successful data analyst will deal with hundreds or thousands of datasets in their
lifetime. In the long run, at some level, most of them will be deemed boring. This is
because only a few common patterns will be occurring over and over again.

In particular, the previouslymentioned bell-shapedness and right-skewness are quite
prevalent in the so-called realworld. Surprisingly, however, this is exactlywhen things
become scientific and interesting, allowing us to study various phenomena at an ap-
propriate level of generality.

Mathematically, such idealised patterns in the histogram shapes can be formalised
using the notion of a probability density function (PDF) of a continuous, real-valued random
variable.

Intuitively1, a PDF is a smooth curve that would arise if we drew a histogram for the
entire population (e.g., all women living currently onEarth and beyond or otherwise an
extremely large data sample obtainedby independently querying the sameunderlying
data generating process) in such away that the total area of all the bars is equal to 1 and
the bin sizes are very small.

As stated at the beginning, we do not intend this to be a course in probability theory
and mathematical statistics. Rather, it precedes and motivates them (e.g., [21, 38, 40,
79]). Therefore, our definitions are out of necessity simplified so that they are digest-
ible. For the purpose of our illustrations, we will consider the following characterisa-
tion.

Important (*)We call an integrable function 𝑓 ∶ ℝ → ℝ a probability density function if
𝑓 (𝑥) ≥ 0 for all 𝑥 and ∫∞

−∞ 𝑓 (𝑥) 𝑑𝑥 = 1, i.e., it is nonnegative and normalised in such
a way that the total area under the whole curve is 1.

For any 𝑎 < 𝑏, we treat the area under the fragment of the 𝑓 (𝑥) curve for 𝑥 between
𝑎 and 𝑏, i.e., ∫𝑏

𝑎 𝑓 (𝑥) 𝑑𝑥, as the probability of the underlying real-valued random vari-
able’s (theoretical data generating process’) falling into the [𝑎, 𝑏] interval.

Some distributions appear more frequently than others and appear to fit empirical
data or parts thereof particularly well; compare [27]. In this chapter, we review a few

1 (*)This intuition is, of course, theoretically grounded and is based on the asymptotic behaviour of the
histograms as the estimators of the underlying probability density function, see, e.g., [28] and the many
references therein.

102 II UNIDIMENSIONAL DATA

noteworthy probability distributions: the normal, log-normal, Pareto, and uniform
families (we will also mention the chi-squared, Kolmogorov, and exponential ones in
this course).

6.1 Normal distribution
A normal (Gaussian) distribution has a prototypical, nicely symmetric, bell-shaped dens-
ity. It is described by two parameters: 𝜇 ∈ ℝ (the expected value, at which the PDF
is centred) and 𝜎 > 0 (the standard deviation, saying how much the distribution is
dispersed around 𝜇); compare Figure 6.1.
The probability density function of N(𝜇, 𝜎) is given by:

𝑓 (𝑥) = 1
√2𝜋𝜎2

exp(−(𝑥 − 𝜇)2

2𝜎2) .

3 2 1 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

sit
y

N(0, 1)
N(0, 0.5)
N(1, 0.5)

Figure 6.1. The probability density functions of some normal distributions N(𝜇, 𝜎).
Note that 𝜇 is responsible for shifting and 𝜎 affects scaling/stretching of the probab-
ility mass.

6.1.1 Estimating parameters
A course in statistics (which, again, this one is not, we are merely making an illustra-
tion here), may tell us that the sample arithmetic mean ̄𝑥 and standard deviation 𝑠

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 103

are natural, statistically well-behaving estimators of the said parameters: if all observa-
tions would really be drawn independently from N(𝜇, 𝜎) each, then we expect ̄𝑥 and 𝑠
to be equal to, more or less, 𝜇 and 𝜎 (the larger the sample size, the smaller the error).
Recall the heights (females from the NHANES study) dataset and its bell-shaped his-
togram in Figure 4.2.

heights = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_height_2020.txt")

n = len(heights)
n
4221

Let us estimate the said parameters for this sample:

mu = np.mean(heights)
sigma = np.std(heights, ddof=1)
mu, sigma
(160.13679222932953, 7.062858532891359)

Mathematically, we will denote these two by 𝜇̂ and 𝜎̂ (mu and sigma with a hat) to
emphasise that they are merely guesstimates2 of the unknown respective parameters
𝜇 and 𝜎. On a side note, in this context, the requested ddof=1 estimator has slightly
better statistical properties.

Let us draw the fitted density function (i.e., the PDF of N(160.1, 7.06) which we can
compute using scipy.stats.norm.pdf), on top of the histogram; see Figure 6.2. We
pass density=True to matplotlib.pyplot.hist to normalise the bars’ heights so that
their total area sums to 1.

plt.hist(heights, density=True, color="lightgray", edgecolor="black")
x = np.linspace(np.min(heights), np.max(heights), 1000)
plt.plot(x, scipy.stats.norm.pdf(x, mu, sigma), "r--",

label=f"PDF of N({mu:.1f}, {sigma:.2f})")
plt.ylabel("Density")
plt.legend()
plt.show()

At first glance, this is a genuinely nice match. Before proceeding with an overview of
the ways to assess the goodness-of-fitmore rigorously, we should praise the potential
benefits of having an idealisedmodel of our dataset at our disposal.

2 (*) It might be the case that we will have to obtain the estimates of the probability distribution’s para-

meters by numerical optimisation, for example, by minimising ℒ(𝜇, 𝜎) = ∑𝑛
𝑖=1 ((𝑥𝑖−𝜇)2

𝜎2 + log𝜎2)
with respect to 𝜇 and 𝜎 (corresponding to the objective function in the maximum likelihood estimation
problem for the normal distribution family). In our case, however, we are lucky; there exist open-form for-
mulae expressing the solution to the above, exactly in the form of the samplemean and standard deviation.
For other distributions, things can get a little trickier, though. Furthermore, sometimes we will have many
options for point estimators to choose from,whichmight bemore suitable if data arenot of topquality (e.g.,
contain outliers). For instance, in the normal model, it can be shown that we can also estimate𝜇 and𝜎 via
the sample median and IQR/1.349 (but for different distributions we will need a different calibrator).

104 II UNIDIMENSIONAL DATA

130 140 150 160 170 180 190
0.00

0.01

0.02

0.03

0.04

0.05

D
en

sit
y

PDF of N(160.1, 7.06)

Figure 6.2. A histogram and the probability density function of the fitted normal dis-
tribution for the heights dataset.

6.1.2 Datamodels are useful
If (provided that, assuming that, on condition that) our sample is a realisation of in-
dependent random variables following a given distribution, or a data analyst judges
that suchanapproximationmight be justifiedor beneficial, thenwehave a set ofmany
numbers reduced to merely a few parameters.

In the above case, we might want to risk the statement that data follow the normal
distribution (assumption 1) with parameters 𝜇 = 160.1 and 𝜎 = 7.06 (assumption 2).
Still, the choice of the distribution family is one thing, and the way we estimate the
underlying parameters (in our case, we use 𝜇̂ and 𝜎̂) is another.
This not only saves storage space and computational time, but also – based on what
we can learn from a course in probability and statistics (by appropriately integrating
the PDF) – we can imply facts such as for normally distributed data:

• c. 68% of (i.e., amajority) women are 𝜇 ± 𝜎 tall (the 1𝜎 rule),
• c. 95% of (i.e.,most typical) women are 𝜇 ± 2𝜎 tall (the 2𝜎 rule),
• c. 99.7% of (i.e., almost all) women are 𝜇 ± 3𝜎 tall (the 3𝜎 rule).

Also, if we knew that the distribution of heights ofmen is also normalwith some other
parameters,wecouldbeable tomakesomecomparisonsbetween the twosamples. For
example, we could compute the probability that a woman randomly selected from the
crowd is taller than a male passerby.

Furthermore, there is a range of parametric (assuming some distribution family) stat-

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 105

istical methods that could additionally be used if we assumed the data normality, e.g.,
the t-test to compare the expected values.

Exercise 6.1 Howdifferentmanufacturing industries (e.g., clothing) canmakeuse of suchmod-
els? Are simplifications necessary when dealing with complexity?What are the alternatives?

Important We are always expected to verify the assumptions of amodel that wewish
to apply in practice. In particular, we will soon note that incomes are not normally
distributed. Therefore, we must not refer to the above 2𝜎 or 3𝜎 rule in their case. A
cow neither barks nor can it serve as a screwdriver. Period.

6.2 Assessing goodness-of-fit
6.2.1 Comparing cumulative distribution functions
Bell-shaped histograms are encountered quite frequently in real-world data: e.g.,
measurement errors in physical experiments and standardised tests’ results (like IQ
and other ability scores) tend to be distributed this way, at least approximately.

If we yearn for more precision, there is a better way of assessing the extent to which
a sample deviates from a hypothesised distribution. Namely, we canmeasure the dis-
crepancy between some theoretical cumulative distribution function (CDF) and the em-
pirical one (̂𝐹𝑛; see Section 4.3.8).

Important If 𝑓 is a PDF, then the corresponding theoretical CDF is defined as 𝐹(𝑥) =
∫𝑥

−∞ 𝑓 (𝑡) 𝑑𝑡, i.e., the probability of the underlying randomvariable’s taking a value less
than or equal to 𝑥.
By definition3, eachCDF takes values in the unit interval ([0, 1]) and is nondecreasing.

For the normal distribution family, the values of the theoretical CDF can be computed
by calling scipy.stats.norm.cdf; see Figure 6.3.

x = np.linspace(np.min(heights), np.max(heights), 1001)
probs = scipy.stats.norm.cdf(x, mu, sigma) # sample the CDF at many points
plt.plot(x, probs, "r--", label=f"CDF of N({mu:.1f}, {sigma:.2f})")
heights_sorted = np.sort(heights)
plt.plot(heights_sorted, np.arange(1, n+1)/n,

drawstyle="steps-post", label="Empirical CDF")
(continues on next page)

3The probability distribution of any real-valued random variable 𝑋 can be uniquely defined by means
of a nondecreasing, right (upward) continuous function 𝐹 ∶ ℝ → [0, 1] such that lim𝑥→−∞ 𝐹(𝑥) = 0
and lim𝑥→∞ 𝐹(𝑥) = 1, in which case Pr(𝑋 ≤ 𝑥) = 𝐹(𝑥). The probability density function only exists for
continuous random variables and is defined as the derivative of 𝐹.

106 II UNIDIMENSIONAL DATA

(continued from previous page)

plt.xlabel("x")
plt.ylabel("Prob(height $\\leq$ x)")
plt.legend()
plt.show()

130 140 150 160 170 180 190
x

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

(h
ei

gh
t

 x)

CDF of N(160.1, 7.06)
Empirical CDF

Figure 6.3. The empirical CDF and the fitted normal CDF for the heights dataset: the
fit is superb.

This looks like a superb match.

Example 6.2 𝐹(𝑏)−𝐹(𝑎) = ∫𝑏
𝑎 𝑓 (𝑡) 𝑑𝑡 is the probability of generatinga value in the interval

[𝑎, 𝑏].
Let us empirically verify the 3𝜎 rule:

F = lambda x: scipy.stats.norm.cdf(x, mu, sigma)
F(mu+3*sigma) - F(mu-3*sigma)
0.9973002039367398

Indeed, almost all observations are within [𝜇 − 3𝜎, 𝜇 + 3𝜎], if data are normally distributed.

Note Acommonway to summarise thediscrepancybetween the empirical andagiven
theoretical CDF is by computing the greatest absolute deviation:

𝐷̂𝑛 = sup
𝑡∈ℝ

| ̂𝐹𝑛(𝑡) − 𝐹(𝑡)|,

where the supremum is a continuous version of the maximum.

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 107

It holds:

𝐷̂𝑛 = max{ max
𝑘=1,…,𝑛

{∣ 𝑘−1
𝑛 − 𝐹(𝑥(𝑘))∣} , max

𝑘=1,…,𝑛
{∣ 𝑘

𝑛 − 𝐹(𝑥(𝑘))∣}} ,

i.e., 𝐹 needs to be probed only at the 𝑛 points from the sorted input sample.

def compute_Dn(x, F): # equivalent to scipy.stats.kstest(x, F)[0]
Fx = F(np.sort(x))
n = len(x)
k = np.arange(1, n+1) # 1, 2, ..., n
Dn1 = np.max(np.abs((k-1)/n - Fx))
Dn2 = np.max(np.abs(k/n - Fx))
return max(Dn1, Dn2)

Dn = compute_Dn(heights, F)
Dn
0.010470976524201148

If the difference is sufficiently4 small, then we can assume that a normal model de-
scribes data quite well. This is indeed the case here: we may estimate the probability
of someone being as tall as any given height with an error less than about 1.05%.

6.2.2 Comparing quantiles
AQ-Qplot (quantile-quantile or probability plot) is another graphicalmethod for com-
paring twodistributions.This time, instead ofworkingwith a cumulative distribution
function 𝐹, we will be dealing with its (generalised) inverse, i.e., the quantile function
𝑄.
Given a CDF 𝐹, the corresponding quantile function is defined for any 𝑝 ∈ (0, 1) as:

𝑄(𝑝) = inf{𝑥 ∶ 𝐹(𝑥) ≥ 𝑝},

i.e., the smallest 𝑥 such that the probability of drawing a value not greater than 𝑥 is at
least 𝑝.

Important If aCDF𝐹 is continuous, and this is the assumption in the current chapter,
then𝑄 is exactly its inverse, i.e., it holds𝑄(𝑝) = 𝐹−1(𝑝) for all 𝑝 ∈ (0, 1); compare
Figure 6.4.

The theoretical quantiles can be generated by the scipy.stats.norm.ppf function.
Here, ppf stands for the percent point function which is another (yet quite esoteric)
name for the above𝑄.
For instance, in our N(160.1, 7.06)-distributed heights dataset,𝑄(0.9) is the height
not exceeded by 90% of the female population. In other words, only 10% of American
women are taller than:

4The larger the sample size, the less tolerant regarding the size of this disparitywe are; see Section 6.2.3.

108 II UNIDIMENSIONAL DATA

2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0 N(0, 1)
N(0, 0.5)
N(1, 0.5)

0.00 0.25 0.50 0.75 1.00

3

2

1

0

1

2

3

Figure 6.4.The cumulative distribution functions (left) and the quantile functions (be-
ing the inverse of the CDF; right) of some normal distributions.

scipy.stats.norm.ppf(0.9, mu, sigma)
169.18820963937648

AQ-Qplot draws a version of sample quantiles as a function of the corresponding the-
oretical quantiles.The sample quantiles, introduced in Section 5.1.1, are natural estim-
ators of the theoretical quantile function. However, we also mentioned that there are
quite a few possible definitions thereof in the literature; compare [53].

For simplicity, insteadof using numpy.quantile,wewill assume that the 𝑖
𝑛+1 -quantile

5

is equal to 𝑥(𝑖), i.e., the 𝑖-th smallest value in a given sample (𝑥1, 𝑥2, … , 𝑥𝑛) and con-
sider only 𝑖 = 1, 2, … , 𝑛.
Our simplified setting avoids the problem which arises when the 0- or 1-quantiles of
the theoretical distribution, i.e.,𝑄(0) or𝑄(1), are infinite (and this is the case for the
normal distribution family).

def qq_plot(x, Q):
"""
Draws a Q-Q plot, given:
* x - a data sample (vector)
* Q - a theoretical quantile function
"""

(continues on next page)

5 (*) scipy.stats.probplot uses a slightly different definition (there are many other ones in com-
mon use).

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 109

(continued from previous page)

n = len(x)
q = np.arange(1, n+1)/(n+1) # 1/(n+1), 2/(n+2), ..., n/(n+1)
x_sorted = np.sort(x) # sample quantiles
quantiles = Q(q) # theoretical quantiles
plt.plot(quantiles, x_sorted, "o")
plt.axline((x_sorted[n//2], x_sorted[n//2]), slope=1,

linestyle=":", color="gray") # identity line

Figure 6.5 depicts the Q-Q plot for our example dataset.

qq_plot(heights, lambda q: scipy.stats.norm.ppf(q, mu, sigma))
plt.xlabel(f"Quantiles of N({mu:.1f}, {sigma:.2f})")
plt.ylabel("Sample quantiles")
plt.show()

140 150 160 170 180
Quantiles of N(160.1, 7.06)

130

140

150

160

170

180

190

Sa
m

pl
e q

ua
nt

ile
s

Figure 6.5.The Q-Q plot for the heights dataset. It is a nice fit.

Ideally, the points are expected to be arranged on the 𝑦 = 𝑥 line (which was added
for readability). This would happen if the sample quantiles matched the theoretical
ones perfectly. In our case, there are small discrepancies6 in the tails (e.g., the smal-
lest observationwas slightly smaller thanexpected, and the largest onewas larger than
expected), although it is quite normal a behaviour for small samples and certain distri-
bution families. Still, we can say that we observe a fine fit.

6 (*) We can quantify (informally) the goodness of fit by using the Pearson linear correlation coefficient;
see Section 9.1.1.

110 II UNIDIMENSIONAL DATA

6.2.3 Kolmogorov–Smirnov test (*)
To be scientific, we must yearn for some more formal method that will enable us to
test the null hypothesis stating that a given empirical distribution ̂𝐹𝑛 does not differ
significantly from the theoretical continuous CDF 𝐹:

{ 𝐻0 ∶ ̂𝐹𝑛 = 𝐹 (null hypothesis)
𝐻1 ∶ ̂𝐹𝑛 ≠ 𝐹 (two-sided alternative)

The popular goodness-of-fit test by Kolmogorov and Smirnov can give us a conservat-
ive interval of the acceptable values of 𝐷̂𝑛 (again: the largest deviation between the
empirical and theoretical CDF) as a function of 𝑛 (within the framework of frequent-
ist hypothesis testing).

Namely, if the test statistic 𝐷̂𝑛 is smaller than some critical value𝐾𝑛, thenwe shall deem
the difference insignificant.This is to take into account the fact that realitymight devi-
ate from the ideal. Section 6.4.4 mentions that even for samples that truly come from
a hypothesised distribution, there is some inherent variability. We need to be some-
what tolerant.

Any authoritative textbook in statistics will tell us (and prove) that, under the assump-
tion that ̂𝐹𝑛 is the ECDF of a sample of 𝑛 independent variables really generated from
a continuous CDF 𝐹, the random variable 𝐷̂𝑛 = sup𝑡∈ℝ | ̂𝐹𝑛(𝑡) − 𝐹(𝑡)| follows the
Kolmogorov distribution with parameter 𝑛 (available via scipy.stats.kstwo).
In otherwords, if we generatemany samples of length 𝑛 from𝐹, and compute 𝐷̂𝑛s for
each of them, we expect it to be distributed like in Figure 6.6.

0.00 0.25 0.50 0.75 1.00

0

20

40

60

80

100

D
en

sit
y

n = 10
n = 100
n = 4221

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Figure 6.6. Densities (left) and cumulative distribution functions (right) of some
Kolmogorov distributions.The greater the sample size, the smaller the acceptable de-
viations between the theoretical and empirical CDFs.

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 111

The choice𝐾𝑛 involves a trade-off between our desire to:

• accept the null hypothesis when it is true (data really come from 𝐹), and
• reject it when it is false (data follow some other distribution, i.e., the difference is
significant enough).

These two needs are, unfortunately, mutually exclusive.

In practice, we assume some fixed upper bound (significance level) for making the
former kind of mistake, which we call the type-I error. A nicely conservative (in a good
way7) value that we suggest employing is 𝛼 = 0.001 = 0.1%, i.e., only 1 out of 1000
samples that really come from 𝐹 will be rejected as not coming from 𝐹.
Sucha𝐾𝑛maybedeterminedby considering the inverse of theCDFof theKolmogorov
distribution,Ξ𝑛. Namely,𝐾𝑛 = Ξ−1

𝑛 (1 − 𝛼):

alpha = 0.001 # significance level
scipy.stats.kstwo.ppf(1-alpha, n)
0.029964456376393188

In our case 𝐷̂𝑛 < 𝐾𝑛 because 0.01047 < 0.02996. We conclude that our empirical
(heights) distribution does not differ significantly (at significance level 0.1%) from
the assumed one, i.e., N(160.1, 7.06). In other words, we do not have enough evid-
ence against the statement that data are normally distributed. It is the presumption
of innocence: they are normal enough.

We will go back to this discussion in Section 6.4.4 and Section 12.2.6.

6.3 Other noteworthy distributions
6.3.1 Log-normal distribution
We say that a sample is log-normally distributed, if its logarithm is normally distributed.
Such a behaviour is frequently observed in biology andmedicine (size of living tissue),
social sciences (number of sexual partners), or technology (file sizes). Also, recall that
Figure 6.7 reveals that this is the case for the most8 of the UK taxpayers’ incomes.

income = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/uk_income_simulated_2020.txt")

plt.hist(np.log(income), bins=30, color="lightgray", edgecolor="black")
plt.ylabel("Count")
plt.show()

Let us thus proceed with the fitting of a log-normal model, LN(𝜇, 𝜎). The fitting pro-

7 See Section 12.2.6 for more details.
8 Except for the few richest, who are interesting on their own; see Section 6.3.2 where we discuss the

Pareto distribution.

112 II UNIDIMENSIONAL DATA

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
0

20

40

60

80

Co
un

t

Figure 6.7. A histogram of the logarithm of incomes.

cess is similar to the normal case, but this time we determine the mean and standard
deviation based on the logarithms of data:

lmu = np.mean(np.log(income))
lsigma = np.std(np.log(income), ddof=1)
lmu, lsigma
(10.314409794364623, 0.5816585197803816)

We need to take note of the fact that scipy.stats.lognorm encodes the distribution
via the parameter 𝑠 equal to 𝜎 and scale equal to 𝑒𝜇. Computing the PDF at different
points must done as follows:

x = np.linspace(np.min(income), np.max(income), 101)
fx = scipy.stats.lognorm.pdf(x, s=lsigma, scale=np.exp(lmu))

Figure 6.8 depicts the fitted probability density function togetherwith the histograms
on the log- and original scale.

plt.subplot(1, 2, 1)
logbins = np.geomspace(np.min(income), np.max(income), 31)
plt.hist(income, bins=logbins, density=True,

color="lightgray", edgecolor="black")
plt.plot(x, fx, "r--")
plt.xscale("log") # log-scale on the x-axis
plt.ylabel("Density")

plt.subplot(1, 2, 2)
plt.hist(income, bins=30, density=True, color="lightgray", edgecolor="black")

(continues on next page)

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 113

(continued from previous page)

plt.plot(x, fx, "r--", label=f"PDF of LN({lmu:.1f}, {lsigma:.2f})")
plt.ylabel("Density")
plt.legend()

plt.show()

104 105
0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

sit
y

1e 5

0 50000 100000 150000 200000
0.0

0.5

1.0

1.5

2.0

2.5

D
en

sit
y

1e 5

PDF of LN(10.3, 0.58)

Figure 6.8. A histogram and the probability density function of the fitted log-normal
distribution for the income dataset, on log- (left) and original (right) scale.

Overall, this fit is not too bad. Nonetheless, we are only dealing with a sample of 1000
households; the originalUKOffice ofNational Statistics data9 could tell usmore about
the quality of this model in general, but it is beyond the scope of our simple exercise.

Furthermore, Figure 6.9 gives the quantile-quantile plot on a double logarithmic scale
for the above log-normalmodel. Additionally, we (empirically) verify the hypothesis of
normality (using a “normal” normal distribution, not its “log” version).

plt.subplot(1, 2, 1)
qq_plot(# see above for the definition

income,
lambda q: scipy.stats.lognorm.ppf(q, s=lsigma, scale=np.exp(lmu))

)
plt.xlabel(f"Quantiles of LN({lmu:.1f}, {lsigma:.2f})")
plt.ylabel("Sample quantiles")
plt.xscale("log")
plt.yscale("log")

(continues on next page)

9 https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/
incomeandwealth/bulletins/householddisposableincomeandinequality/financialyear2020

https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/incomeandwealth/bulletins/householddisposableincomeandinequality/financialyear2020

114 II UNIDIMENSIONAL DATA

(continued from previous page)

plt.subplot(1, 2, 2)
mu = np.mean(income)
sigma = np.std(income, ddof=1)
qq_plot(income, lambda q: scipy.stats.norm.ppf(q, mu, sigma))
plt.xlabel(f"Quantiles of N({mu:.1f}, {sigma:.2f})")

plt.show()

104 105

Quantiles of LN(10.3, 0.58)

104

105

Sa
m

pl
e q

ua
nt

ile
s

0 50000 100000
Quantiles of N(35780.0, 22900.22)

0

25000

50000

75000

100000

125000

150000

175000

200000

Figure 6.9. The Q-Q plots for the income dataset vs a fitted log-normal (good fit; left)
and normal (bad fit; right) distribution.

Exercise 6.3 Graphically compare the empirical CDF for income and the theoretical CDF of
LN(10.3, 0.58).
Exercise 6.4 (*) Perform the Kolmogorov–Smirnov goodness-of-fit test as in Section 6.2.3, to
verify that the hypothesis of log-normality is not rejected at the 𝛼 = 0.001 significance level. At
the same time, the income distribution significantly differs from a normal one.

The hypothesis that our data follow a normal distribution is most likely false. On the
other hand, the log-normal model, might be quite adequate. It again reduced the
whole dataset to merely two numbers, 𝜇 and , based on which (and probability the-
ory), we may deduce that:

• the expected average (mean) income is 𝑒𝜇+𝜎2/2,

• median is 𝑒𝜇,

• most probable one (mode) in 𝑒𝜇−𝜎2
,

etc.

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 115

Note Recall again that for skewed distributions such as this one, reporting the mean
might bemisleading.This iswhymost people get angrywhen they read the news about
the prospering economy (“yeah, we’d like to see that kind of money in our pockets”).
Hence, it is not only𝜇 thatmatters, it is also𝜎 that quantifies the discrepancy between
the rich and the poor (too much inequality is bad, but also too much uniformity is to
be avoided).

For a normal distribution, the situation is vastly different.Themean, themedian, and
themostprobable outcomes tend tobe the same: thedistribution is symmetric around
𝜇.
Exercise 6.5 What is the fractionofpeoplewithearningsbelowthemean inourLN(10.3, 0.58)
model? Hint: use scipy.stats.lognorm.cdf to get the answer.

6.3.2 Pareto distribution
Consider again the dataset on the populations of the US cities in the 2000 US Census:

cities = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/other/us_cities_2000.txt")

len(cities), sum(cities) # number of cities, total population
(19447, 175062893.0)

Figure 6.10 gives the histogram of the city sizes with the populations on the log-scale.
It kind of looks like a log-normal distribution again, which the readers can inspect
themselves when they are feeling playful.

logbins = np.geomspace(np.min(cities), np.max(cities), 21)
plt.hist(cities, bins=logbins, color="lightgray", edgecolor="black")
plt.xscale("log")
plt.ylabel("Count")
plt.show()

This time, however, we will be interested in not what is typical, but what is in some
sense anomalous or extreme. Let us look again at the truncated version of the city size
distribution by considering the cities with 10 000 or more inhabitants (i.e., we will
only study the right tail of the original data, just like in Section 4.3.7).

s = 10_000
large_cities = cities[cities >= s]
len(large_cities), sum(large_cities) # number of cities, total population
(2696, 146199374.0)

Plotting the above on a double logarithmic scale can be performed by calling plt.

yscale("log"), which is left as an exercise. Anyway, doing so will lead to a picture
similar to Figure 6.11 below. This reveals something remarkable. The bar tops on the
double log-scale are arrangedmore or less in a straight line.

116 II UNIDIMENSIONAL DATA

100 101 102 103 104 105 106 107
0

500

1000

1500

2000

2500

3000

3500

Co
un

t

Figure 6.10. A histogram of the unabridged cities dataset. Note the log-scale on the
x-axis.

There are many datasets that exhibit this behaviour. We say that they follow a power
law (power in the arithmetic sense, not social one); see [14, 68] for discussion.

Let us introduce the Pareto distribution family which has a prototypical power law-like
density. It is identified by two parameters:

• the (what scipy calls it) scale parameter 𝑠 > 0 is equal to the shift from 0,
• the shape parameter, 𝛼 > 0, controls the slope of the said line on the double log-
scale.

The probability density function of P(𝛼, 𝑠) is given for 𝑥 ≥ 𝑠 by:

𝑓 (𝑥) = 𝛼𝑠𝛼

𝑥𝛼+1 ,

and 𝑓 (𝑥) = 0 otherwise.
𝑠 is usually taken as the sampleminimum (i.e., 10 000 in our case). 𝛼 can be estimated
through the reciprocal of the mean of the scaled logarithms of our observations:

alpha = 1/np.mean(np.log(large_cities/s))
alpha
0.9496171695997675

Figure 6.11 allows us to compare the theoretical density and an empirical histogram
on the log-scale.

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 117

logbins = np.geomspace(s, np.max(large_cities), 21) # bin boundaries
plt.hist(large_cities, bins=logbins, density=True,

color="lightgray", edgecolor="black")
plt.plot(logbins, scipy.stats.pareto.pdf(logbins, alpha, scale=s),

"r--", label=f"PDF of P({alpha:.3f}, {s})")
plt.xscale("log")
plt.yscale("log")
plt.ylabel("Density")
plt.legend()
plt.show()

104 105 106 107
10 10

10 9

10 8

10 7

10 6

10 5

10 4

D
en

sit
y

PDF of P(0.950, 10000)

Figure 6.11. A histogramof the large_cities dataset and the fitted density on a double
log-scale.

Figure 6.12 gives the corresponding Q-Q plot on a double logarithmic scale.

qq_plot(# defined above
large_cities,
lambda q: scipy.stats.pareto.ppf(q, alpha, scale=s)

)
plt.xlabel(f"Quantiles of P({alpha:.3f}, {s})")
plt.ylabel("Sample quantiles")
plt.xscale("log")
plt.yscale("log")
plt.show()

We see that the populations of the largest cities are overestimated. The model could
be better, but the cities are still growing, right?

Example 6.6 (*) It might also be interesting to see how well we can predict the probability of a

118 II UNIDIMENSIONAL DATA

Figure 6.12.The Q-Q plot for the large_cites dataset vs the fitted Paretian model.

randomly selected city being at least a given size. Let us denote by 𝑆(𝑥) = 1 − 𝐹(𝑥) the com-
plementary cumulative distribution function (CCDF; sometimes referred to as the survival
function), and by ̂𝑆𝑛(𝑥) = 1− ̂𝐹𝑛(𝑥) its empirical version. Figure 6.13 compares the empirical
and the fitted CCDFs with probabilities on the linear- and log-scale.

x = np.geomspace(np.min(large_cities), np.max(large_cities), 1001)
probs = scipy.stats.pareto.cdf(x, alpha, scale=s)
n = len(large_cities)
for i in [1, 2]:

plt.subplot(1, 2, i)
plt.plot(x, 1-probs, "r--", label=f"CCDF of P({alpha:.3f}, {s})")
plt.plot(np.sort(large_cities), 1-np.arange(1, n+1)/n,

drawstyle="steps-post", label="Empirical CCDF")
plt.xlabel("x")
plt.xscale("log")
plt.yscale(["linear", "log"][i-1])
if i == 1:

plt.ylabel("Prob(city size > x)")
plt.legend()

plt.show()

In terms of the maximal absolute distance between the two functions, 𝐷̂𝑛, from the left plot we
see that the fit seems acceptable. Still, let us stress that the log-scale overemphasises the relatively
minor differences in the right tail and should not be used for judging the value of 𝐷̂𝑛.

However, that the Kolmogorov–Smirnov goodness-of-fit test rejects the hypothesis of Paretianity
(at a significance level 0.1%) is left as an exercise for the reader.

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 119

104 105 106 107

x

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
(c

ity
 si

ze
 >

 x)
CCDF of P(0.950, 10000)
Empirical CCDF

104 105 106 107

x

10 3

10 2

10 1

100

Figure 6.13. The empirical and theoretical complementary cumulative distribution
functions for the large_cities dataset with probabilities on the linear- (left) and log-
scale (right) and city sizes on the log-scale.

6.3.3 Uniformdistribution
Consider the Polish Lotto lottery, where six numbered balls {1, 2, … , 49} are drawn
without replacement from an urn.We have a dataset that summarises the number of
times each ball has been drawn in all the games in the period 1957–2016.

lotto = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/lotto_table.txt")

lotto
array([720., 720., 714., 752., 719., 753., 701., 692., 716., 694., 716.,
668., 749., 713., 723., 693., 777., 747., 728., 734., 762., 729.,
695., 761., 735., 719., 754., 741., 750., 701., 744., 729., 716.,
768., 715., 735., 725., 741., 697., 713., 711., 744., 652., 683.,
744., 714., 674., 654., 681.])

Each event seems to occurmore or less with the same probability. Of course, the num-
bers on the balls are integer, but in our idealised scenario, we may try modelling this
dataset using a continuous uniform distribution, which yields arbitrary real numbers
on a given interval (𝑎, 𝑏), i.e., between some 𝑎 and 𝑏.We denote such a distribution by
U(𝑎, 𝑏). It has the probability density function given for 𝑥 ∈ (𝑎, 𝑏) by:

𝑓 (𝑥) = 1
𝑏 − 𝑎 ,

and 𝑓 (𝑥) = 0 otherwise.
Notice that scipy.stats.uniform uses parameters a and scale equal to 𝑏 − 𝑎 instead.

120 II UNIDIMENSIONAL DATA

In our case, it makes sense to set 𝑎 = 1 and 𝑏 = 50 and interpret an outcome like
49.1253 as representing the 49th ball (compare the notion of the floor function, ⌊𝑥⌋).

x = np.linspace(1, 50, 1001)
plt.bar(np.arange(1, 50), width=1, height=lotto/np.sum(lotto),

color="lightgray", edgecolor="black", alpha=0.8, align="edge")
plt.plot(x, scipy.stats.uniform.pdf(x, 1, scale=49), "r--",

label="PDF of U(1, 50)")
plt.ylim(0, 0.025)
plt.legend()
plt.show()

0 10 20 30 40 50
0.000

0.005

0.010

0.015

0.020

0.025
PDF of U(1, 50)

Figure 6.14. A histogram of the lotto dataset.

Visually, see Figure 6.14, thismodelmakesmuch sense, but again, somemore rigorous
statistical testing would be required to determine if someone has not been tampering
with the lottery results, i.e., if data does not deviate from the uniform distribution
significantly.

Unfortunately, we cannot use the Kolmogorov–Smirnov test in the version defined
above as data are not continuous. See, however, Section 11.4.3 for the Pearson chi-
squared test that is applicable here.

Exercise 6.7 Does playing lotteries and engaging in gamblingmake rational sense at all, from
the perspective of an individual player?Well, we see that 16 is the most frequently occurring out-
come inLotto,maybe there’s somemagic in it? Also, some people sometimes becamemillionaires,
right?

Note In data modelling (e.g., Bayesian statistics), sometimes a uniform distribution
is chosen as a placeholder for “we know nothing about a phenomenon, so let us just

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 121

assume that every event is equally likely”. Nonetheless, it is quite fascinating that the
real world tends to be structured after all. Emerging patterns are plentiful,most often
they are far from being uniformly distributed. Even more strikingly, they are subject
to quantitative analysis.

6.3.4 Distributionmixtures (*)
Some datasetsmay fail to fit through simplemodels such as the ones described above.
It may sometimes be due to their non-random behaviour: statistics gives just one
means to create data idealisations, we also have partial differential equations, approx-
imation theory, graphs and complex networks, agent-based modelling, and so forth,
which might be worth giving a study (and then try).

Another reason may be that what we observe is, in fact, a mixture (creative combina-
tion) of simpler processes.

The dataset representing the December 2021 hourly averages pedestrian counts near
the Southern Cross Station in Melbourne is a representative instance of such a scen-
ario; compare Figure 4.5.

peds = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/southern_cross_station_peds_2019_dec.txt")

It might not be a bad idea to try to fit a probabilistic (convex) combination of three
normal distributions 𝑓1, 𝑓2, 𝑓3, corresponding to themorning, lunchtime, and evening
pedestrian count peaks.This yields the PDF:

𝑓 (𝑥) = 𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + 𝑤3𝑓3(𝑥),

for some coefficients𝑤1, 𝑤2, 𝑤3 ≥ 0 such that𝑤1 + 𝑤2 + 𝑤3 = 1.
Figure 6.15 depicts a mixture of N(8, 1), N(12, 1), and N(17, 2) with the correspond-
ingweights of 0.35, 0.1, and 0.55.This dataset is quite coarse-grained (we only have 24
bar heights at our disposal). Consequently, the estimated coefficients should be taken
with a pinch of chilli pepper.

plt.bar(np.arange(24), width=1, height=peds/np.sum(peds),
color="lightgray", edgecolor="black", alpha=0.8)

x = np.arange(0, 25, 0.1)
p1 = scipy.stats.norm.pdf(x, 8, 1)
p2 = scipy.stats.norm.pdf(x, 12, 1)
p3 = scipy.stats.norm.pdf(x, 17, 2)
p = 0.35*p1 + 0.1*p2 + 0.55*p3 # weighted combination of 3 densities
plt.plot(x, p, "r--", label="PDF of a normal mixture")
plt.legend()
plt.show()

Important It will frequently be the case in datawrangling thatmore complex entities

122 II UNIDIMENSIONAL DATA

0 5 10 15 20 25
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 PDF of a normal mixture

Figure 6.15. A histogram of the peds dataset and a guesstimated mixture of three nor-
mal distributions.

(models, methods) will be arising as combinations of simpler (primitive) components.
This is why we ought to spend a great deal of time studying the fundamentals.

Note Some data clustering techniques (in particular, the 𝑘-means algorithm that we
briefly discuss later in this course) could be used to split a data sample into disjoint
chunks corresponding to different mixture components.

Also, it might be the case that the mixture components can be explained by another
categorical variable that divides the dataset into natural groups; compare Chapter 12.

6.4 Generating pseudorandomnumbers
A probability distribution is useful not only for describing a dataset. It also enables
us to performmany experiments on data that we do not currently have, but wemight
obtain in the future, to test various scenarios and hypotheses.

Todo this,we cangenerate a randomsample of independent (not related to eachother)
observations.

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 123

6.4.1 Uniformdistribution
Whenmost people say random, they implicitlymean uniformly distributed. For example:

np.random.rand(5)
array([0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897])

gives five observations sampled independently from the uniform distribution on the
unit interval, i.e., U(0, 1).
The same with scipy, but this time the support will be (−10, 15).

scipy.stats.uniform.rvs(-10, scale=25, size=5) # from -10 to -10+25
array([0.5776615 , 14.51910496, 7.12074346, 2.02329754, -0.19706205])

Alternatively, we could do that ourselves by shifting and scaling the output of the
random number generator on the unit interval using the formula numpy.random.

rand(5)*25-10.

6.4.2 Not exactly random
We generate numbers using a computer, which is purely deterministic. Hence, we
shall refer to them as pseudorandom or random-like ones (albeit they are indistinguish-
able from truly random, when subject to rigorous tests for randomness).

To prove it, we can set the initial state of the generator (the seed) via some number and
see what values are produced:

np.random.seed(123) # set seed
np.random.rand(5)
array([0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897])

Then, we set the seed once again via the same number and see how “random” the next
values are:

np.random.seed(123) # set seed
np.random.rand(5)
array([0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897])

Thisenablesus toperformcompletely reproduciblenumerical experiments.This feature
is very welcome. Truly scientific inquiries tend to nourish identical results under the
same conditions.

Note If we do not set the seedmanually, it will be initialised based on the currentwall
time, which is different every… time. As a result, the numbers will seem random to us.

Many Python packages that we will be using in the future, including pandas and
scikit-learn, rely on numpy’s random number generator. We will become used to call-
ing numpy.random.seed to make them predictable.

124 II UNIDIMENSIONAL DATA

Additionally, some of them (e.g., sklearn.model_selection.train_test_split or
pandas.DataFrame.sample) are equipped with the random_state argument, which be-
haves as if we temporarily changed the seed (for just one call to that function). For in-
stance:

scipy.stats.uniform.rvs(size=5, random_state=123)
array([0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897])

This gives the same sequence as above.

6.4.3 Sampling fromother distributions
Generating data from other distributions is possible too; there aremany rvsmethods
implemented in scipy.stats. For example, here is a sample fromN(100, 16):

scipy.stats.norm.rvs(100, 16, size=3, random_state=50489)
array([113.41134015, 46.99328545, 157.1304154])

Pseudorandom deviates from the standard normal distribution, i.e., N(0, 1), can also
be generated using numpy.random.randn. As N(100, 16) is a scaled and shifted version
thereof, the above is equivalent to:

np.random.seed(50489)
np.random.randn(3)*16 + 100
array([113.41134015, 46.99328545, 157.1304154])

Important Conclusions based on simulated data are trustworthy for they cannot be
manipulated. Or can they?

The pseudorandomnumber generator’s seed used above, 50489, is quite suspicious. It
might suggest that someone wanted to prove some point (in this case, the violation of
the 3𝜎 rule).
This is why we recommend sticking to only one seed most of the time, e.g., 123, or –
when performing simulations – setting consecutive seeds for each iteration: 1, 2, ….

Exercise 6.8 Generate 1000 pseudorandom numbers from the log-normal distribution and
draw a histogram thereof.

Note (*) Having a reliable pseudorandom number generator from the uniform dis-
tribution on the unit interval is crucial as sampling from other distributions usually
involves transforming independent U(0, 1) variates.
For instance, realisations of random variables following any continuous cumulative
distribution function 𝐹 can be constructed through the inverse transform sampling (see
[37, 78]):

1. Generate a sample 𝑥1, … , 𝑥𝑛 independently fromU(0, 1).

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 125

2. Transform each 𝑥𝑖 by applying the quantile function, 𝑦𝑖 = 𝐹−1(𝑥𝑖).
Now 𝑦1, … , 𝑦𝑛 follows the CDF 𝐹.

Exercise 6.9 (*) Generate 1000 pseudorandom numbers from the log-normal distribution us-
ing inverse transform sampling.

Exercise 6.10 (**) Generate 1000 pseudorandom numbers from the distribution mixture dis-
cussed in Section 6.3.4.

6.4.4 Natural variability
Even a sample truly generated from a specific distribution will deviate from it, some-
times considerably. Such effects will be especially visible for small sample sizes, but
they usually disappear10 when the availability of data increases.

For example, Figure 6.16 depicts the histograms of nine different samples of size 100,
all drawn independently from the standard normal distribution.

plt.figure(figsize=(plt.rcParams["figure.figsize"][0],)*2) # width=height
for i in range(9):

plt.subplot(3, 3, i+1)
sample = scipy.stats.norm.rvs(size=100, random_state=i+1)
plt.hist(sample, density=True, bins=10,

color="lightgray", edgecolor="black")
plt.ylabel(None)
plt.xlim(-4, 4)
plt.ylim(0, 0.6)

plt.legend()
plt.show()

There is some ruggedness in the bar sizes that a naïve observer might try to interpret
as something meaningful. A competent data scientist must train their eye to ignore
such impurities. In this case, they are only due to random effects. Nevertheless, we
must always be ready to detect cases which are worth attention.

Exercise 6.11 Repeat the above experiment for samples of sizes 10, 1 000, and 10 000.

Example 6.12 (*) Using a simpleMonte Carlo simulation, we can verify (approximately) that
the Kolmogorov–Smirnov goodness-of-fit test introduced in Section 6.2.3 has been calibrated
properly, i.e., that for samples that really follow the assumed distribution, the null hypothesis
is rejected only in roughly 0.1% of the cases.

Let us say we are interested in the null hypothesis referencing the standard normal distribution,
N(0, 1), and sample size 𝑛 = 100. We need to generate many (we assume 10 000 below) such
samples for each of which we compute and store the maximal absolute deviation from the theor-
etical CDF, i.e., 𝐷̂𝑛.

10 Compare the FundamentalTheorem of Statistics (the Glivenko–Cantelli theorem).

126 II UNIDIMENSIONAL DATA

2.5 0.0 2.5
0.0

0.2

0.4

0.6

2.5 0.0 2.5
0.0

0.2

0.4

0.6

2.5 0.0 2.5
0.0

0.2

0.4

0.6

2.5 0.0 2.5
0.0

0.2

0.4

0.6

2.5 0.0 2.5
0.0

0.2

0.4

0.6

2.5 0.0 2.5
0.0

0.2

0.4

0.6

2.5 0.0 2.5
0.0

0.2

0.4

0.6

2.5 0.0 2.5
0.0

0.2

0.4

0.6

2.5 0.0 2.5
0.0

0.2

0.4

0.6

Figure 6.16. All nine samples are normally distributed.

n = 100
distrib = scipy.stats.norm(0, 1) # assumed distribution: N(0, 1)
Dns = []
for i in range(10000): # increase this for better precision

x = distrib.rvs(size=n, random_state=i+1) # really follows distrib
Dns.append(compute_Dn(x, distrib.cdf))

Dns = np.array(Dns)

Now let us compute the proportion of cases which lead to 𝐷̂𝑛 greater than the critical value𝐾𝑛:

len(Dns[Dns >= scipy.stats.kstwo.ppf(1-0.001, n)]) / len(Dns)
0.0016

In theory, this should be equal to 0.001. But our values are necessarily approximate because we

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 127

rely on randomness. Increasing the number of trials from 10000 to, say, 1 000000willmake the
above estimate more precise.

It is also worth checking out that the density histogram of Dns resembles the Kolmogorov distri-
bution that we can compute via scipy.stats.kstwo.pdf.

Exercise 6.13 (*) It might also be interesting to check out the test’s power, i.e., the probabil-
ity that when the null hypothesis is false, it will actually be rejected. Modify the above code in
such a way that x in the for loop is not generated fromN(0, 1), butN(0.1, 1),N(0.2, 1), etc.,
and check the proportion of cases where we deem the sample distribution different fromN(0, 1).
Small differences in the location parameter𝜇are usually ignored, and this improveswith sample
size 𝑛.

6.4.5 Adding jitter (white noise)
Wementioned thatmeasurementsmight be subject to observational error. Rounding
can also occur as early as the data collection phase. In particular, our heights dataset
is precise up to 1 fractional digit. However, in statistics, when we say that data follow
a continuous distribution, the probability of having two identical values in a sample is
0. Therefore, some data analysis methods might assume that there are no ties in the
input vector, i.e., all values are unique.

The easiestway to dealwith suchnumerical inconveniences is to add somewhite noise
with the expected value of 0, either uniformly or normally distributed.

For example, for heights it makes sense to add some jitter fromU[−0.05, 0.05]:

heights_jitter = heights + (np.random.rand(len(heights))*0.1-0.05)
heights_jitter[:6] # preview
array([160.21704623, 152.68870195, 161.24482407, 157.3675293 ,
154.61663465, 144.68964596])

Adding noise alsomight be performed for aesthetic reasons, e.g., when drawing scat-
ter plots.

6.4.6 Independence assumption
Let us generate nine binary digits in a random fashion:

np.random.seed(251) # HIDDEN
np.random.choice([0, 1], 9)
array([1, 1, 1, 1, 1, 1, 1, 1, 1])

We can consider ourselves very lucky; all numbers are the same. So, the next number
must be a “zero”, finally, right?

np.random.choice([0, 1], 1)
array([1])

Wrong.The numbers we generate are independent of each other.There is no history. In

128 II UNIDIMENSIONAL DATA

the abovemodel of randomness (Bernoulli trials; twopossible outcomeswith the same
probability), there is a 50% chance of obtaining a “one” regardless of how many “ones”
were observed previously.

Weshouldnot seekpatternswhere therearenone.Ourbrain formsexpectationsabout
the world, which are difficult to overcome. But the reality could not care less about
what we consider it to be.

6.5 Further reading
For an excellent general introductory course on probability and statistics, see [38, 40]
and also [79].More advanced students are likely to enjoy other classics such as [4, 7, 17,
26]. To go beyond the fundamentals, check out [24]. Topics in random number gener-
ation are covered in [37, 56, 78].

For a more detailed introduction to exploratory data analysis, see the classical books
by Tukey [88, 89] and Tufte [87].

We took the logarithm of the log-normally distributed incomes and obtained a nor-
mally distributed sample. In statistical practice, it is not rare to apply different non-
linear transforms of the input vectors at the data preprocessing stage (see, e.g., Sec-
tion 9.2.6). In particular, the Box–Cox (power) transform [10] is of the form 𝑥 ↦ 𝑥𝜆−1

𝜆
for some 𝜆. Interestingly, in the limit as 𝜆 → 0, this formula yields 𝑥 ↦ log 𝑥 which
is exactly what we were applying in this chapter.

[14, 68] give a nice overview of the power-law-like behaviour of some “rich” or oth-
erwise extreme datasets. It is worth noting that the logarithm of a Paretian sample
divided by the minimum follows an exponential distribution (which we discuss in
Chapter 16). For a comprehensive catalogue of statistical distributions, their proper-
ties, and relationships between them, see [27].

6.6 Exercises
Exercise 6.14 Why is the notion of the mean income confusing the general public?

Exercise 6.15 Whenmanually setting the seed of a random number generator makes sense?

Exercise 6.16 Given a log-normally distributed sample x, how canwe turn it to a normally dis-
tributed one, i.e., y=f(x), with f being…what?

Exercise 6.17 What is the 3𝜎 rule for normally distributed data?
Exercise 6.18 (*) How can we verify graphically if a sample follows a hypothesised theoretical
distribution?

6 CONTINUOUS PROBABILITY DISTRIBUTIONS 129

Exercise 6.19 (*) Explain the meaning of the type I error, significance level, and a test’s power.

Part III

Multidimensional data

7
Multidimensional numeric data at a glance

From the perspective of structured datasets, a vector often represents 𝑛 independent
measurements of the same quantitative property, e.g., heights of 𝑛 different patients,
incomes in𝑛 randomly chosenhouseholds, or ages of𝑛 runners.More generally, these
are all instances of a bag of 𝑛 points on the real line. By far1, we should have become
quite fluent with the methods for processing such one-dimensional arrays.

Let us increase the level of complexity by permitting each of the 𝑛 entities to be de-
scribed by𝑚 features, for any𝑚 ≥ 1. In other words, we will be dealing with 𝑛 points
in an𝑚-dimensional space,ℝ𝑚.

We can arrange all the observations in a table with 𝑛 rows and 𝑚 columns (just like
in spreadsheets). Such an object can be expressed with numpy as a two-dimensional
arraywhichwewill refer to asmatrices.Thanks tomatrices, we can keep the 𝑛 tuples of
length𝑚 together in a single object and process them all at once (or𝑚 tuples of length
𝑛, depending on howwe want to look at them). Very convenient.

Important Just like vectors, matrices were designed to store data of the same type.
Chapter 10will cover data frames, which further increase the degree of complexity (and
freedom). They tolerate mixed data types, e.g., numerical and categorical (this will
enable us to perform data analysis in subgroupsmore easily). Moreover, they let rows
and columns be named.

Manydata analysis algorithms convert data frames tomatrices automatically anddeal
with them as such. From the computational side, it is numpy that does most of the
“mathematical”work. pandas implementsmany recipes for basic datawrangling tasks,
butwewant to goway beyond that. After all, wewould like to be able to tackle anyprob-
lem.

1 Assuming we solved all the suggested exercises, which we did, didn’t we? See Rule #3.

134 III MULTIDIMENSIONAL DATA

7.1 Creatingmatrices
7.1.1 Reading CSVfiles
Tabular data are often stored and distributed in a very portable plain-text format
called CSV (comma-separated values) or variants thereof.We can read themquite eas-
ily with numpy.genfromtxt (or later with pandas.read_csv).

body = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_bmx_2020.csv",
delimiter=",")[1:, :] # skip first row (column names)

Note that the file specifies column names (the first non-comment line; we suggest in-
specting the above CSV file in a web browser). Therefore, we had to skip it manually
(more onmatrix indexing later). Here is a preview of the first few rows:

body[:6, :] # six first rows, all columns
array([[97.1, 160.2, 34.7, 40.8, 35.8, 126.1, 117.9],
[91.1, 152.7, 33.5, 33. , 38.5, 125.5, 103.1],
[73. , 161.2, 37.4, 38. , 31.8, 106.2, 92.],
[61.7, 157.4, 38. , 34.7, 29. , 101. , 90.5],
[55.4, 154.6, 34.6, 34. , 28.3, 92.5, 73.2],
[62. , 144.7, 32.5, 34.2, 29.8, 106.7, 84.8]])

This is an extended version of the National Health and Nutrition Examination Survey
(NHANES2), where the consecutive columns give the following body measurements
of adult females:

body_columns = np.array([
"weight (kg)",
"standing height (cm)", # we know `heights` from the previous chapters
"upper arm len. (cm)",
"upper leg len. (cm)",
"arm circ. (cm)",
"hip circ. (cm)",
"waist circ. (cm)"

])

numpymatrices do not support column naming.This is why we noted them down sep-
arately. It is only a minor inconvenience. pandas data frames will have this capability,
but from the algebraic side, they are not as convenient as matrices for the purpose of
scientific computing.

What we are dealing with is still a numpy array:

2 https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx

https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx

7 MULTIDIMENSIONAL NUMERIC DATA AT A GLANCE 135

type(body) # class of this object
<class 'numpy.ndarray'>

But this time it is a two-dimensional one:

body.ndim # number of dimensions
2

which means that the shape slot is now a tuple of length 2:

body.shape
(4221, 7)

The above gave the total number of rows and columns, respectively.

7.1.2 Enumerating elements
numpy.array can create a two-dimensional array based on a list of lists or vector-like
objects, all of the same lengths. Each of themwill constitute a separate row of the res-
ulting matrix. For example:

np.array([# list of lists
[1, 2, 3, 4], # the first row
[5, 6, 7, 8], # the second row
[9, 10, 11, 12] # the third row

])
array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]])

It gave a 3 × 4 (3-by-4) matrix.

np.array([[1], [2], [3]])
array([[1],
[2],
[3]])

It yielded a 3×1 one;we call a columnvector, but it is a specialmatrix (wewill soon learn
that shapes canmake a significant difference). Moreover:

np.array([[1, 2, 3, 4]])
array([[1, 2, 3, 4]])

It produced a 1 × 4 array (a row vector).

Note An ordinary vector (a unidimensional array) only uses a single pair of square
brackets:

136 III MULTIDIMENSIONAL DATA

np.array([1, 2, 3, 4])
array([1, 2, 3, 4])

7.1.3 Repeating arrays
The previously mentioned numpy.tile and numpy.repeat can also generate some nice
matrices. For instance:

np.repeat([[1, 2, 3, 4]], 3, axis=0)
array([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])

repeats a row vector rowwisely (i.e., over axis 0 – the first one).

Replicatinga columnvector columnwisely (i.e., over axis 1–the secondone) is possible
as well:

np.repeat([[1], [2], [3]], 4, axis=1)
array([[1, 1, 1, 1],
[2, 2, 2, 2],
[3, 3, 3, 3]])

Exercise 7.1 How canwe generate matrices of the following kinds?

⎡
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 2
1 2
1 2
3 4
3 4
3 4
3 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, [1 2 1 2 1 2
1 2 1 2 1 2] , [1 1 2 2 2

3 3 4 4 4] .

7.1.4 Stacking arrays
numpy.column_stack and numpy.row_stack take a tuple of array-like objects and bind
them column- or rowwisely to form a newmatrix:

np.column_stack(([10, 20], [30, 40], [50, 60])) # a tuple of lists
array([[10, 30, 50],
[20, 40, 60]])
np.row_stack(([10, 20], [30, 40], [50, 60]))
array([[10, 20],
[30, 40],
[50, 60]])
np.column_stack((

np.row_stack(([10, 20], [30, 40], [50, 60])),

(continues on next page)

7 MULTIDIMENSIONAL NUMERIC DATA AT A GLANCE 137

(continued from previous page)

[70, 80, 90]
))
array([[10, 20, 70],
[30, 40, 80],
[50, 60, 90]])

Exercise 7.2 Perform similar operations using numpy.append, numpy.vstack, numpy.hstack,
numpy.concatenate, and (*) numpy.c_. Are they worth taking note of, or are they redundant?

Exercise 7.3 Using numpy.insert, add a new row/column at the beginning, end, and in the
middle of an array. Let us stress that this function returns a new array.

7.1.5 Other functions
Many built-in functions generate arrays of arbitrary shapes (not only vectors). For ex-
ample:

np.random.seed(123)
np.random.rand(2, 5) # not: rand((2, 5))
array([[0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897],
[0.42310646, 0.9807642 , 0.68482974, 0.4809319 , 0.39211752]])

The same with scipy:

scipy.stats.uniform.rvs(0, 1, size=(2, 5), random_state=123)
array([[0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897],
[0.42310646, 0.9807642 , 0.68482974, 0.4809319 , 0.39211752]])

Thewaywe specify the output shapesmightdiffer across functions andpackages.Con-
sequently, as usual, it is always best to refer to their documentation.

Exercise 7.4 Check out the documentation of the following functions: numpy.eye, numpy.diag,
numpy.zeros, numpy.ones, and numpy.empty.

7.2 Reshapingmatrices
Let us take an example 3 × 4matrix:

A = np.array([
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]

])

138 III MULTIDIMENSIONAL DATA

Internally, a matrix is represented using a long flat vector where elements are stored
in the row-major3 order:

A.size # total number of elements
12
A.ravel() # the underlying array
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

It is the shape slot that is causing the 12 elements to be treated as if theywere arranged
ona3×4grid, for example indifferent algebraic computationsandduring theprinting
thereof. This arrangement can be altered anytime without modifying the underlying
array:

A.shape = (4, 3)
A
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
[10, 11, 12]])

This way, we obtained a different view of the same data.

For convenience, there is also the reshapemethod that returns a modified version of
the object it is applied on:

A.reshape(-1, 6) # A.reshape(don't make me compute this for you mate!, 6)
array([[1, 2, 3, 4, 5, 6],
[7, 8, 9, 10, 11, 12]])

Here, “-1”means that numpymustdeduceby itself howmany rowswewant in the result.
Twelve elements are supposed to be arranged in six columns, so the maths behind it
is not rocket science.

Thanks to this, generating row or column vectors is straightforward:

np.linspace(0, 1, 5).reshape(1, -1) # one row, guess the number of columns
array([[0. , 0.25, 0.5 , 0.75, 1.]])
np.array([9099, 2537, 1832]).reshape(-1, 1) # one column, guess row count
array([[9099],
[2537],
[1832]])

Reshaping is not the same as matrix transpose, which also changes the order of ele-
ments in the underlying array:

3 (*) Sometimes referred to as a C-style array, as opposed to Fortran-style which is used in, e.g., R.

7 MULTIDIMENSIONAL NUMERIC DATA AT A GLANCE 139

A # before
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
[10, 11, 12]])
A.T # transpose of A
array([[1, 4, 7, 10],
[2, 5, 8, 11],
[3, 6, 9, 12]])

Rows became columns and vice versa.

Note (*) Higher-dimensional arrays are also possible. For example:

np.arange(24).reshape(2, 4, 3)
array([[[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]],
##
[[12, 13, 14],
[15, 16, 17],
[18, 19, 20],
[21, 22, 23]]])

Is an array of “depth” 2, “height” 4, and “width” 3; we can see it as two 4 × 3matrices
stacked together. Theoretically, they can be used for representing contingency tables
forproducts ofmany factors. Still, in our applicationareas,weprefer to stickwith long
data frames instead; see Section 10.6.2.This is due to theirmore aesthetic display and
better handling of sparse data.

7.3 Mathematical notation
Here is some standalone mathematical notation that we shall be employing in this
course. A matrix with 𝑛 rows and𝑚 columns (an 𝑛 × 𝑚matrix)𝐗 can be written as:

𝐗 =
⎡⎢⎢⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑚
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑚

⋮ ⋮ ⋱ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑚

⎤⎥⎥⎥
⎦

.

Mathematically, we denote this as 𝐗 ∈ ℝ𝑛×𝑚. Spreadsheets use a similar display of
data.

We see that 𝑥𝑖,𝑗 ∈ ℝ denotes the element in the 𝑖-th row (e.g., the 𝑖-th observation

140 III MULTIDIMENSIONAL DATA

or case) and the 𝑗-th column (e.g., the 𝑗-th feature or variable), for every 𝑖 = 1, … , 𝑛,
𝑗 = 1, … , 𝑚.
In particular, if𝐗 denoted the body dataset, then 𝑥1,2 would be the height of the first
person.

Important Matrices are a convenient means of representingmany different kinds of
data:

• 𝑛 points in an 𝑚-dimensional space (like 𝑛 observations for which there are 𝑚
measurements/features recorded, where each rowdescribes a different object; ex-
actly the case of the body dataset above) – this is the most common scenario;

• 𝑚 time series sampled at 𝑛 points in time (e.g., prices of𝑚 different currencies on
𝑛 consecutive days; see Chapter 16);

• a single kind of measurement for data in𝑚 groups, each consisting of 𝑛 subjects
(e.g., heights of𝑛males and𝑛 females); here, the order of elements in each column
does not usually matter as observations are not paired; there is no relationship
between 𝑥𝑖,𝑗 and 𝑥𝑖,𝑘 for 𝑗 ≠ 𝑘; a matrix is used merely as a convenient container
for storing a fewunrelated vectors of identical sizes;wewill bedealingwith amore
generic case of possibly nonhomogeneous groups in Chapter 12;

• two-way contingency tables (see Section 11.2.2), where an element 𝑥𝑖,𝑗 gives the
numberof occurrences of itemsat the 𝑖-th level of thefirst categorical variable and,
at the same time, being at the 𝑗-th level of the second variable (e.g., blue-eyed and
blonde-haired);

• graphs and other relationships between objects, e.g., 𝑥𝑖,𝑗 = 0might denote that
the 𝑖-th object is not connected4 with the 𝑗-th one and 𝑥𝑘,𝑙 = 0.2 that there is a
weak connection between 𝑘 and 𝑙 (e.g., who is a friend of whom, whether a user
recommends a particular item);

• images,where 𝑥𝑖,𝑗 represents the intensity of a colour component (e.g., red, green,
blue or shades of grey or hue, saturation, brightness; compare Section 16.4) of a
pixel in the (𝑛 − 𝑖 + 1)-th row and the 𝑗-th column.

Note In practice, more complex and less-structured data can quite often be mapped
to a tabular form. For instance, a set of audio recordings can be described by meas-
uring the overall loudness, timbre, and danceability of each song. Also, a collection
of documents can be described by means of the degrees of belongingness to some
automatically discovered topics (e.g., someone said that Joyce’s Ulysses is 80% travel
literature, 70% comedy, and 50% heroic fantasy, but let us not take it for granted).

4 Such matrices are usually sparse, i.e., have many elements equal to 0. We have special, memory-
efficient data structures for handling these data; see scipy.sparse for more details as this goes beyond
the scope of our introductory course.

7 MULTIDIMENSIONAL NUMERIC DATA AT A GLANCE 141

7.3.1 Row and column vectors
Additionally, will sometimes use the following notation to emphasise that𝐗 consists
of 𝑛 rows:

𝐗 =
⎡⎢⎢⎢
⎣

𝐱1,⋅
𝐱2,⋅
⋮

𝐱𝑛,⋅

⎤⎥⎥⎥
⎦

.

Here, 𝐱𝑖,⋅ is a row vector of length𝑚, i.e., a (1 × 𝑚)-matrix:

𝐱𝑖,⋅ = [𝑥𝑖,1 𝑥𝑖,2 ⋯ 𝑥𝑖,𝑚] .

Alternatively, we can specify the𝑚 columns:

𝐗 = [𝐱⋅,1 𝐱⋅,2 ⋯ 𝐱⋅,𝑚] ,

where 𝐱⋅,𝑗 is a column vector of length 𝑛, i.e., an (𝑛 × 1)-matrix:

𝐱⋅,𝑗 = [𝑥1,𝑗 𝑥2,𝑗 ⋯ 𝑥𝑛,𝑗]𝑇 =
⎡
⎢⎢⎢
⎣

𝑥1,𝑗
𝑥2,𝑗

⋮
𝑥𝑛,𝑗

⎤
⎥⎥⎥
⎦

,

where ⋅𝑇 denotes the transpose of a given matrix (thanks to which we can save some
vertical space, we do not want this book to be 1000 pages long, do we?).

Also, recall that we are used to denoting vectors of length 𝑚 with 𝒙 = (𝑥1, … , 𝑥𝑚). A
vector is a one-dimensional array (not a two-dimensional one), hence a slightly differ-
ent font in the case where ambiguity can be troublesome.

Note To avoid notation clutter, we will often be implicitly promoting vectors like 𝒙 =
(𝑥1, … , 𝑥𝑚) to row vectors 𝐱 = [𝑥1 ⋯ 𝑥𝑚].This is the behaviour that numpy5 uses; see
Chapter 8.

7.3.2 Transpose
The transpose of a matrix𝐗 ∈ ℝ𝑛×𝑚 is an (𝑚 × 𝑛)-matrix𝐘 given by:

𝐘 = 𝐗𝑇 =
⎡⎢⎢⎢
⎣

𝑥1,1 𝑥2,1 ⋯ 𝑥𝑚,1
𝑥1,2 𝑥2,2 ⋯ 𝑥𝑚,2

⋮ ⋮ ⋱ ⋮
𝑥1,𝑛 𝑥2,𝑛 ⋯ 𝑥𝑚,𝑛

⎤⎥⎥⎥
⎦

,

i.e., it enjoys 𝑦𝑖,𝑗 = 𝑥𝑗,𝑖.

5 Some textbooks assume that all vectors are column vectors.

142 III MULTIDIMENSIONAL DATA

Exercise 7.5 Compare the display of an example matrix A and its transpose A.T above.

7.3.3 Identity and other diagonalmatrices
𝐈 denotes the identitymatrix, being a square 𝑛×𝑛matrix (with 𝑛most often clear from
the context) with 0s everywhere except on the main diagonal, where 1s lie.

np.eye(5) # I
array([[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.]])

The identity matrix is a neutral element of the matrix multiplication (Section 8.3).

More generally, anydiagonalmatrix, diag(𝑎1, … , 𝑎𝑛), canbe constructed fromagiven
sequence of elements by calling:

np.diag([1, 2, 3, 4])
array([[1, 0, 0, 0],
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])

7.4 Visualisingmultidimensional data
Let us go back to our body dataset:

body[:6, :] # preview
array([[97.1, 160.2, 34.7, 40.8, 35.8, 126.1, 117.9],
[91.1, 152.7, 33.5, 33. , 38.5, 125.5, 103.1],
[73. , 161.2, 37.4, 38. , 31.8, 106.2, 92.],
[61.7, 157.4, 38. , 34.7, 29. , 101. , 90.5],
[55.4, 154.6, 34.6, 34. , 28.3, 92.5, 73.2],
[62. , 144.7, 32.5, 34.2, 29.8, 106.7, 84.8]])
body.shape
(4221, 7)

This is an example of tabular (“structured”) data.The important property is that the ele-
ments in each row describe the same person.We can freely reorder all the columns at
the same time (change the order of participants), and this dataset will make the same
sense (but sorting a single column and leaving others unchanged will be semantically
invalid).

Mathematically, we consider the above as a set of 4221 points in a seven-dimensional

7 MULTIDIMENSIONAL NUMERIC DATA AT A GLANCE 143

space, ℝ7. Let us discuss how we can try visualising different natural projections
thereof.

7.4.1 2DData
A scatter plot visualises one variable against another one.

plt.plot(body[:, 1], body[:, 3], "o", c="#00000022")
plt.xlabel(body_columns[1])
plt.ylabel(body_columns[3])
plt.show()

130 140 150 160 170 180 190
standing height (cm)

25

30

35

40

45

50

up
pe

r l
eg

 le
n.

 (c
m

)

Figure 7.1. An example scatter plot.

Figure 7.1 depicts upper leg length (the y-axis) vs (versus; against; as a function of)
standing height (the x-axis) in the form of a point cloud with (𝑥, 𝑦) coordinates like
(body[i, 1], body[i, 3]).

Example 7.6 Here are the exact coordinates of the point corresponding to the person of the smal-
lest height:

body[np.argmin(body[:, 1]), [1, 3]]
array([131.1, 30.8])

and here is the one with the greatest upper leg length:

body[np.argmax(body[:, 3]), [1, 3]]
array([168.9, 49.1])

Locate them in Figure 7.1.

144 III MULTIDIMENSIONAL DATA

As the points are abundant, normally we cannot easily see wheremost of them are loc-
ated. As a remedy, we applied the simple trick of plotting the points using a semi-
transparent colour. This gave a kind of a density estimate. Here, the colour specifier
was of the form #rrggbbaa, giving the intensity of the red, green, blue, and alpha
(opaqueness) channel in four series of two hexadecimal digits (between 00 = 0 and ff

= 255).

Overall, theplot reveals that there is a general tendency for small heights andsmall upper
leg lengths to occur frequently together. The same with larger pairs. As there is some
natural variability, this of course does not mean that always the taller the person, the
longer her legs.They just seem to be longer on average. For example, looking at people
of height roughly equal to 160 cm, their upper leg length can be anywhere between 25
ad 50 cm (range). But we expect the majority to lie somewhere between 35 and 40 cm.

Chapter 9 will explore two measures of correlation that will enable us to quantify the
degree of association between variable pairs.

7.4.2 3DData and beyond
If we have more than two variables to visualise, we might be tempted to use, e.g., a
three-dimensional scatter plot like the one in Figure 7.2.

fig = plt.figure()
ax = fig.add_subplot(projection="3d", facecolor="#ffffff00")
ax.scatter(body[:, 1], body[:, 3], body[:, 0], color="#00000011")
ax.view_init(elev=30, azim=60, vertical_axis="y")
ax.set_xlabel(body_columns[1])
ax.set_ylabel(body_columns[3])
ax.set_zlabel(body_columns[0])
plt.show()

Infrequently will such a 3D plot provide us with readable results, though. We are pro-
jecting a three-dimensional reality onto a two-dimensional screen or page. Some in-
formation must inherently be lost. Also, what we see is relative to the position of the
virtual camera.

Exercise 7.7 (*) Try finding an interesting elevation and azimuth angle by playing with the
arguments passed to the mpl_toolkits.mplot3d.axes3d.Axes3D.view_init function. Also,
depict arm circumference, hip circumference, and weight on a 3D plot.

Note (*) Sometimes there might be facilities available to create an interactive scat-
ter plot (running the above from the Python’s console enables this), where the virtual
camera can be freely repositioned with a mouse/touch pad. This can give some more
insight into our data. Also, there are means of creating animated sequences, where
we can fly over the data scene. Some people find it cool, others find it annoying, but
the biggest problem therewith is that they cannot be included in printedmaterial. Yet,
if we are only targeting the display for theWeb (this includes mobile devices), we can

7 MULTIDIMENSIONAL NUMERIC DATA AT A GLANCE 145

����������	�����
��

���

���

���

���

�
�
�
�
����

�
���

�
��	
�

�

��

��

��

��

��

��

������
����	

���
���

���
���

Figure 7.2. A three-dimensional scatter plot reveals almost nothing.

try some Python libraries6 that output HTML+CSS+JavaScript code to be rendered by
a browser engine.

Example 7.8 Instead of drawing a 3D plot, it might be better to play with different marker
colours (or sometimes sizes: think of them as bubbles). Suitable colour maps7 can distinguish
between low and high values of an additional variable, as in Figure 7.3.

plt.scatter(
body[:, 4], # x
body[:, 5], # y
c=body[:, 0], # "z" - colours
cmap=plt.colormaps.get_cmap("copper"), # colour map
alpha=0.5 # opaqueness level between 0 and 1

)
plt.xlabel(body_columns[4])
plt.ylabel(body_columns[5])
plt.axis("equal")
plt.rcParams["axes.grid"] = False
cbar = plt.colorbar()
plt.rcParams["axes.grid"] = True
cbar.set_label(body_columns[0])
plt.show()

We can see some tendency for the weight to be greater as both the arm and the hip circumferences
increase.

6 https://wiki.python.org/moin/NumericAndScientific/Plotting
7 https://matplotlib.org/stable/tutorials/colors/colormaps.html

https://wiki.python.org/moin/NumericAndScientific/Plotting
https://matplotlib.org/stable/tutorials/colors/colormaps.html

146 III MULTIDIMENSIONAL DATA

Figure 7.3. A two-dimensional scatter plot displaying three variables.

Exercise 7.9 Play around with different colour palettes. However, be wary that every 1 in 12
men (8%) and 1 in 200 women (0.5%) have colour vision deficiencies, especially in the red-green
or blue-yellow spectrum.For this reason, somediverging colourmapsmight beworse than others.

A piece of paper is two-dimensional.We only have height and width. Looking around
us,we also understand the notion of depth. So far so good. Butwhen the case ofmore-
dimensional data is concerned, well, suffice it to say that we are three-dimensional
creatures and any attempts towards visualising themwill simply not work, don’t even
trip.

Luckily, this is where mathematics comes to our rescue. With some more knowledge
and intuitions, and this book helps us develop them, it will be as easy8 as imagining a
generic𝑚-dimensional space, and then assuming that, say,𝑚 = 7 or 42.
This is exactly why data science relies on automated methods for knowledge/pattern
discovery. Thanks to them, we can identify, describe, and analyse the structures that
might be present in the data, but cannot be perceived with our imperfect senses.

Note Linear and nonlinear dimensionality reduction techniques can be applied to
visualise someaspects of high-dimensional data in the formof 2D (or 3D) plots. In par-
ticular, the principal component analysis (PCA) finds an interesting angle from which
looking at the data might be worth considering; see Section 9.3.

8This is an old funny joke that most funnymathematicians find funny. Ha.

7 MULTIDIMENSIONAL NUMERIC DATA AT A GLANCE 147

7.4.3 Scatter plotmatrix (pairs plot)
We may also try depicting all pairs of selected variables in the form of a scatter plot
matrix; see Figure 7.4.

def pairplot(X, labels, bins=21, alpha=0.1):
"""
Draws a scatter plot matrix, given:
* X - data matrix,
* labels - list of column names
"""
assert X.shape[1] == len(labels)

k = X.shape[1]
fig, axes = plt.subplots(nrows=k, ncols=k, sharex="col", sharey="row",

figsize=(plt.rcParams["figure.figsize"][0],)*2)
for i in range(k):

for j in range(k):
ax = axes[i, j]
if i == j: # diagonal

ax.text(0.5, 0.5, labels[i], transform=ax.transAxes,
ha="center", va="center", size="x-small")

else:
ax.plot(X[:, j], X[:, i], ".", color="black", alpha=alpha)

And now:

which = [0, 1, 4, 5]
pairplot(body[:, which], body_columns[which])
plt.show()

Plotting variables against themselves is uninteresting (exercise: what would that be?).
Therefore, on the main diagonal, we printed out the variable names.

A scatter plot matrix can be a valuable tool for identifying noteworthy combinations
of columns in our datasets. We see that some pairs of variables are more “structured”
than others, e.g., hip circumference and weight aremore or less aligned on a straight
line. This is why Chapter 9 will be interested in describing the possible relationships
between the variables.

Exercise 7.10 Create a pairs plot where weight, arm circumference, and hip circumference are
on the log-scale.

Exercise 7.11 (*) Call seaborn.pairplot to create a scatter plot matrix with histograms on
themain diagonal, thanks to which you will be able to see how themarginal distributions are
distributed. Note that the matrix must, unfortunately, be converted to a pandas data frame first.

Exercise 7.12 (**)Modify our pairplot function so that it displays the histograms of themar-
ginal distributions on themain diagonal.

148 III MULTIDIMENSIONAL DATA

Figure 7.4.The scatter plot matrix for selected columns in the body dataset.

7.5 Exercises
Exercise 7.13 What is the difference between [1, 2, 3], [[1, 2, 3]], and [[1], [2], [3]]

in the context of array creation?

Exercise 7.14 If A is a matrix with 5 rows and 6 columns, what is the difference between A.

reshape(6, 5) and A.T?

Exercise 7.15 If A is a matrix with 5 rows and 6 columns, what is the meaning of: A.
reshape(-1), A.reshape(3, -1), A.reshape(-1, 3), A.reshape(-1, -1), A.shape = (3,

10), and A.shape = (-1, 3)?

Exercise 7.16 List somemethods to add anew rowandadd anew column to an existingmatrix.

7 MULTIDIMENSIONAL NUMERIC DATA AT A GLANCE 149

Exercise 7.17 Give some ways to visualise three-dimensional data.

Exercise 7.18 How can we set point opaqueness/transparency when drawing a scatter plot?
Whywould we be interested in this?

8
Processingmultidimensional data

8.1 From vectors tomatrices
Let us study how the vector operations that we discussed in, amongst others, Chapter
5 can be extended tomatrices. Inmany cases, we will end up applying the same trans-
form either on every matrix element separately, or on each row or column. They are
all brilliant examples of the write less, do more principle in practice.

8.1.1 Vectorisedmathematical functions
Applying vectorised functions such as numpy.round, numpy.log, and numpy.exp returns
an array of the same shape, with all elements transformed accordingly.

A = np.array([
[0.2, 0.6, 0.4, 0.4],
[0.0, 0.2, 0.4, 0.7],
[0.8, 0.8, 0.2, 0.1]

]) # example matrix that we will be using below

For example:

np.square(A)
array([[0.04, 0.36, 0.16, 0.16],
[0. , 0.04, 0.16, 0.49],
[0.64, 0.64, 0.04, 0.01]])

takes the square of every element.

More generally, we will be denoting such operations with:

𝑓 (𝐗) =
⎡⎢⎢⎢
⎣

𝑓 (𝑥1,1) 𝑓 (𝑥1,2) ⋯ 𝑓 (𝑥1,𝑚)
𝑓 (𝑥2,1) 𝑓 (𝑥2,2) ⋯ 𝑓 (𝑥2,𝑚)

⋮ ⋮ ⋱ ⋮
𝑓 (𝑥𝑛,1) 𝑓 (𝑥𝑛,2) ⋯ 𝑓 (𝑥𝑛,𝑚)

⎤⎥⎥⎥
⎦

.

8.1.2 Componentwise aggregation
Unidimensional aggregation functions (e.g., numpy.mean, numpy.quantile) can be ap-
plied to summarise:

152 III MULTIDIMENSIONAL DATA

• all data into a single number (axis=None, being the default),

• data in each column (axis=0), as well as

• data in each row (axis=1).

Here are the examples corresponding to the above cases:

np.mean(A)
0.39999999999999997
np.mean(A, axis=0)
array([0.33333333, 0.53333333, 0.33333333, 0.4])
np.mean(A, axis=1)
array([0.4 , 0.325, 0.475])

Important Let us repeat, axis=1 does not mean that we get the columnmeans (even
though columns constitute the second axis, andwe count starting at 0). It denotes the
axis alongwhich thematrix is sliced. Sadly, even yours truly sometimes does not get it
right on the first attempt.

Exercise 8.1 Given the nhanes_adult_female_bmx_20201 dataset, compute the mean, stand-
ard deviation, minimum, andmaximum of each bodymeasurement.

We will get back to the topic of the aggregation of multidimensional data in Sec-
tion 8.4.

8.1.3 Arithmetic, logical, and relational operations
Recall that for vectors, binary operators such as `+`, `*`, `==`, `<=`, and `&` as well as
similar elementwise functions (e.g., numpy.minimum) can be applied if both inputs are
of the same length. For example:

np.array([1, 10, 100, 1000]) * np.array([7, -6, 2, 8]) # elementwisely
array([7, -60, 200, 8000])

Alternatively, one input can be a scalar:

np.array([1, 10, 100, 1000]) * -3
array([-3, -30, -300, -3000])

More generally, a set of rules referred to in the numpymanual as broadcasting2 describes
how this package handles arrays of different shapes.

Important Generally, for twomatrices, their column/row numbersmustmatch or be

1 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_bmx_2020.
csv

2 https://numpy.org/devdocs/user/basics.broadcasting.html

https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_bmx_2020.csv
https://numpy.org/devdocs/user/basics.broadcasting.html

8 PROCESSING MULTIDIMENSIONAL DATA 153

equal to 1. Also, if one operand is a one-dimensional array, it will be promoted to a row
vector.

Let us explore all the possible scenarios.

Matrix vs scalar

If one operand is a scalar, then it is going to be propagated over all matrix elements.
For example:

(-1)*A
array([[-0.2, -0.6, -0.4, -0.4],
[-0. , -0.2, -0.4, -0.7],
[-0.8, -0.8, -0.2, -0.1]])

It changed the sign of every element, which is, mathematically, an instance of mul-
tiplying a matrix𝐗 by a scalar 𝑐:

𝑐𝐗 =
⎡⎢⎢⎢
⎣

𝑐𝑥1,1 𝑐𝑥1,2 ⋯ 𝑐𝑥1,𝑚
𝑐𝑥2,1 𝑐𝑥2,2 ⋯ 𝑐𝑥2,𝑚

⋮ ⋮ ⋱ ⋮
𝑐𝑥𝑛,1 𝑐𝑥𝑛,2 ⋯ 𝑐𝑥𝑛,𝑚

⎤⎥⎥⎥
⎦

.

Furthermore:

A**2
array([[0.04, 0.36, 0.16, 0.16],
[0. , 0.04, 0.16, 0.49],
[0.64, 0.64, 0.04, 0.01]])

It took the square3 of each element. Also:

A >= 0.25
array([[False, True, True, True],
[False, False, True, True],
[True, True, False, False]])

It compared each element to 0.25.

Matrix vsmatrix

For twomatrices of identical sizes, we act on the corresponding elements:

B = np.tri(A.shape[0], A.shape[1]) # just an example
B # a lower triangular 0-1 matrix
array([[1., 0., 0., 0.],
[1., 1., 0., 0.],
[1., 1., 1., 0.]])

3This is not the same as matrix-multiply by itself which we cover in Section 8.3.

154 III MULTIDIMENSIONAL DATA

And now:

A * B
array([[0.2, 0. , 0. , 0.],
[0. , 0.2, 0. , 0.],
[0.8, 0.8, 0.2, 0.]])

multiplies each 𝑎𝑖,𝑗 by the corresponding 𝑏𝑖,𝑗.

This extends on the idea fromalgebra that given𝐀,𝐁with𝑛 rows and𝑚 columns each,
the result of+ (or−) would be for instance:

𝐀 + 𝐁 =
⎡⎢⎢⎢
⎣

𝑎1,1 + 𝑏1,1 𝑎1,2 + 𝑏1,2 ⋯ 𝑎1,𝑚 + 𝑏1,𝑚
𝑎2,1 + 𝑏2,1 𝑎2,2 + 𝑏2,2 ⋯ 𝑎2,𝑚 + 𝑏2,𝑚

⋮ ⋮ ⋱ ⋮
𝑎𝑛,1 + 𝑏𝑛,1 𝑎𝑛,2 + 𝑏𝑛,2 ⋯ 𝑎𝑛,𝑚 + 𝑏𝑛,𝑚

⎤⎥⎥⎥
⎦

.

Thanks to the matrix-matrix and matrix-scalar operations we can perform various
tests on a per-element basis, e.g.,

(A >= 0.25) & (A <= 0.75) # logical matrix & logical matrix
array([[False, True, True, True],
[False, False, True, True],
[False, False, False, False]])

Example 8.2 (*) Figure 8.1 depicts a (filled) contour plot of Himmelblau’s function, 𝑓 (𝑥, 𝑦) =
(𝑥2 + 𝑦 − 11)2 + (𝑥 + 𝑦2 − 7)2, for 𝑥 ∈ [−5, 5] and 𝑦 ∈ [−4, 4]. To draw it, we
probed 250 points from the two said ranges and called numpy.meshgrid to generate twomatrices,
both of shape 250 by 250, giving the x- and y-coordinates of all the points on the corresponding
two-dimensional grid.Thanks to this, we were able to use vectorisedmathematical operations to
compute the values of 𝑓 thereon.

x = np.linspace(-5, 5, 250)
y = np.linspace(-4, 4, 250)
xg, yg = np.meshgrid(x, y)
z = (xg**2 + yg - 11)**2 + (xg + yg**2 - 7)**2
plt.contourf(x, y, z, levels=20)
CS = plt.contour(x, y, z, levels=[1, 5, 10, 20, 50, 100, 150, 200, 250])
plt.clabel(CS, colors="black")
plt.show()

To understand the result generated by numpy.meshgrid, here is its output for a smaller number
of probe points:

x = np.linspace(-5, 5, 3)
y = np.linspace(-4, 4, 5)
xg, yg = np.meshgrid(x, y)
xg
array([[-5., 0., 5.],
[-5., 0., 5.],

(continues on next page)

8 PROCESSING MULTIDIMENSIONAL DATA 155

Figure 8.1. An example filled contour plot with additional labelled contour lines.

(continued from previous page)

[-5., 0., 5.],
[-5., 0., 5.],
[-5., 0., 5.]])

Here, each column is the same.

yg
array([[-4., -4., -4.],
[-2., -2., -2.],
[0., 0., 0.],
[2., 2., 2.],
[4., 4., 4.]])

In this case, each row is identical.Thanks to this, calling:

(xg**2 + yg - 11)**2 + (xg + yg**2 - 7)**2
array([[116., 306., 296.],
[208., 178., 148.],
[340., 170., 200.],
[320., 90., 260.],
[340., 130., 520.]])

gives amatrix𝐙 such that 𝑧𝑖,𝑗 is generated by considering the 𝑖-th element in y and the 𝑗-th item
in x, which is exactly what we desired.

156 III MULTIDIMENSIONAL DATA

Matrix vs any vector

An n×mmatrix can also be combined with an n×1 column vector:

A * np.array([1, 10, 100]).reshape(-1, 1)
array([[0.2, 0.6, 0.4, 0.4],
[0. , 2. , 4. , 7.],
[80. , 80. , 20. , 10.]])

The above propagated the column vector over all columns (left to right).

Similarly, combining with a 1×m row vector:

A + np.array([1, 2, 3, 4]).reshape(1, -1)
array([[1.2, 2.6, 3.4, 4.4],
[1. , 2.2, 3.4, 4.7],
[1.8, 2.8, 3.2, 4.1]])

recycles the row vector over all rows (top to bottom).

If one operand is a one-dimensional array or a list of length𝑚, it will be treated as a
row vector. For example:

np.round(A - np.mean(A, axis=0), 3) # matrix - vector
array([[-0.133, 0.067, 0.067, -0.],
[-0.333, -0.333, 0.067, 0.3],
[0.467, 0.267, -0.133, -0.3]])

On a side note, this is an instance of centring of each column. An explicit .reshape(1,
-1)was not necessary.

Mathematically, although it is not necessarily a standard notation, we will allow
adding and subtracting row vectors frommatrices of compatible sizes:

𝐗 + 𝐭 = 𝐗 + [𝑡1 𝑡2 ⋯ 𝑡𝑚] =
⎡⎢⎢⎢
⎣

𝑥1,1 + 𝑡1 𝑥1,2 + 𝑡2 … 𝑥1,𝑚 + 𝑡𝑚
𝑥2,1 + 𝑡1 𝑥2,2 + 𝑡2 … 𝑥2,𝑚 + 𝑡𝑚

⋮ ⋮ ⋱ ⋮
𝑥𝑛,1 + 𝑡1 𝑥𝑛,2 + 𝑡2 … 𝑥𝑛,𝑚 + 𝑡𝑚

⎤⎥⎥⎥
⎦

.

This corresponds to shifting (translating) every row in the matrix.

Exercise 8.3 In the nhanes_adult_female_bmx_20204 dataset, standardise, normalise, and
min-max scale every column (compare Section 5.3.2). A single line of code will suffice in each
case.

Row vector vs column vector (*)

A rowvector combinedwith a columnvector results in an operation’s being performed
on each combination of all pairs of elements in the two arrays (i.e., the cross-product;
not just the corresponding pairs).

4 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_bmx_2020.
csv

https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_bmx_2020.csv

8 PROCESSING MULTIDIMENSIONAL DATA 157

np.arange(1, 8).reshape(1, -1) * np.array([1, 10, 100]).reshape(-1, 1)
array([[1, 2, 3, 4, 5, 6, 7],
[10, 20, 30, 40, 50, 60, 70],
[100, 200, 300, 400, 500, 600, 700]])

Exercise 8.4 Check out that numpy.nonzero relies on similar shape broadcasting rules as the
binary operators we discussed here, but not with respect to all three arguments.

Example 8.5 (*) Himmelblau’s function in Figure 8.1 is only defined by means of arithmetic
operators, which all accept the kind of shape broadcasting that we discuss in this section. Con-
sequently, callingnumpy.meshgrid in that example to evaluate 𝑓 onagrid of pointswasnot really
necessary:

x = np.linspace(-5, 5, 3)
y = np.linspace(-4, 4, 5)
xg = x.reshape(1, -1)
yg = y.reshape(-1, 1)
(xg**2 + yg - 11)**2 + (xg + yg**2 - 7)**2
array([[116., 306., 296.],
[208., 178., 148.],
[340., 170., 200.],
[320., 90., 260.],
[340., 130., 520.]])

See also the sparse parameter in numpy.meshgrid andFigure 12.9where this function turns out
useful after all.

8.1.4 Other row and column transforms (*)
Some functions thatwediscussed in thepreviouspart of this course are equippedwith
the axis argument,which supports processing each rowor column independently. For
example:

np.sort(A, axis=1)
array([[0.2, 0.4, 0.4, 0.6],
[0. , 0.2, 0.4, 0.7],
[0.1, 0.2, 0.8, 0.8]])

sorts every row (separately). Moreover:

scipy.stats.rankdata(A, axis=0)
array([[2. , 2. , 2.5, 2.],
[1. , 1. , 2.5, 3.],
[3. , 3. , 1. , 1.]])

computes the ranks of elements in each column.

Some functionshave thedefault argument axis=-1,whichmeans that they are applied
along the last (i.e., columns in the matrix case) axis:

158 III MULTIDIMENSIONAL DATA

np.diff(A) # axis=1 here
array([[0.4, -0.2, 0.],
[0.2, 0.2, 0.3],
[0. , -0.6, -0.1]])

Still, the aforementioned numpy.mean is amongst the many exceptions to this rule.

Compare the above with:

np.diff(A, axis=0)
array([[-0.2, -0.4, 0. , 0.3],
[0.8, 0.6, -0.2, -0.6]])

which gives the iterated differences for each column separately (along the rows).

If a function in not equipped with the axis argument and – instead – was designed
to work with individual vectors, we can propagate it over all the rows or columns by
calling numpy.apply_along_axis.

For instance, here is another (did you solve the suggested exercise?) way to compute
the column z-scores:

def standardise(x):
return (x-np.mean(x))/np.std(x)

np.round(np.apply_along_axis(standardise, 0, A), 2)
array([[-0.39, 0.27, 0.71, -0.],
[-0.98, -1.34, 0.71, 1.22],
[1.37, 1.07, -1.41, -1.22]])

But, of course, we prefer (x-np.mean(x, axis=0))/np.std(x, axis=0).

Note (*) Matrices are iterable (in the sense of Section 3.4), but in an interesting way.
Namely, an iterator traverses through each row in a matrix. Writing:

r1, r2, r3 = A # A has 3 rows

creates three variables, each representing a separate row in A, the second of which is:

r2
array([0. , 0.2, 0.4, 0.7])

8 PROCESSING MULTIDIMENSIONAL DATA 159

8.2 Indexingmatrices
Recall that for unidimensional arrays, we have four possible choices of indexers (i.e.,
where performing filtering like x[i]):

• scalar (extracts a single element),

• slice (selects a regular subsequence, e.g., every second element or the first six
items; returns a view of existing data: it does not make an independent copy of
the subsetted elements),

• integer vector (selects elements at given indexes),

• logical vector (selects elements that correspond to True in the indexer).

Matrices are two-dimensional arrays. Subsetting thereofwill require two indexes.We
write A[i, j] to select rows given by i and columns given by j. Both i and j can be one
of the four above types, sowe have at least ten different cases to consider (skipping the
symmetric ones).

Important Generally:

• each scalar index reduces the dimensionality of the subsetted object by 1;

• slice-slice and slice-scalar indexing returns a view of the existing array, sowe need
to be careful whenmodifying the resulting object;

• usually, indexing returns a submatrix (subblock), which is a combination of ele-
ments at given rows and columns;

• indexing with two integer or logical vectors at the same time should be avoided.

Let us look at all the possible scenarios in greater detail.

8.2.1 Slice-based indexing
Our favourite example matrix again:

A = np.array([
[0.2, 0.6, 0.4, 0.4],
[0.0, 0.2, 0.4, 0.7],
[0.8, 0.8, 0.2, 0.1]

])

Indexing based on two slices selects a submatrix:

A[::2, 3:] # every second row, skip the first three columns
array([[0.4],
[0.1]])

160 III MULTIDIMENSIONAL DATA

An empty slice selects all elements on the corresponding axis:

A[:, ::-1] # all rows, reversed columns
array([[0.4, 0.4, 0.6, 0.2],
[0.7, 0.4, 0.2, 0.],
[0.1, 0.2, 0.8, 0.8]])

Let us stress that the result is always a matrix.

8.2.2 Scalar-based indexing
Indexing by a scalar selects a given row or column, reducing the dimensionality of the
output object:

A[:, 3]
array([0.4, 0.7, 0.1])

It selected the fourth column and gives a flat vector (we can always use the reshape

method to convert the resulting object back to a matrix).

Furthermore:

A[0, -1]
0.4

It yielded the element (scalar) in the first row and the last column.

8.2.3 Mixed logical/integer vector and scalar/slice indexers
A logical and integer vector-like object can also be used for element selection. If the
other indexer is a slice or a scalar, the result is quite predictable. For instance:

A[[0, -1, 0], ::-1]
array([[0.4, 0.4, 0.6, 0.2],
[0.1, 0.2, 0.8, 0.8],
[0.4, 0.4, 0.6, 0.2]])

It selected the first, the last, and the first row again and reverses the order of columns.

A[A[:, 0] > 0.1, :]
array([[0.2, 0.6, 0.4, 0.4],
[0.8, 0.8, 0.2, 0.1]])

It chose the rows from Awhere the values in the first column of A are greater than 0.1.

A[np.mean(A, axis=1) > 0.35, :]
array([[0.2, 0.6, 0.4, 0.4],
[0.8, 0.8, 0.2, 0.1]])

It fetched the rows whose mean is greater than 0.35.

8 PROCESSING MULTIDIMENSIONAL DATA 161

A[np.argsort(A[:, 0]), :]
array([[0. , 0.2, 0.4, 0.7],
[0.2, 0.6, 0.4, 0.4],
[0.8, 0.8, 0.2, 0.1]])

It ordered thematrix with respect to the values in the first column (all rows permuted
in the same way, together).

Exercise 8.6 In the nhanes_adult_female_bmx_20205 dataset, select all the participants
whose heights are within their mean ± 2 standard deviations.

8.2.4 Two vectors as indexers (*)
With two vectors (logical or integer) things are a tad more horrible, as in this case
not only some form of shape broadcasting comes into play but also all the headache-
inducing exceptions listed in the perhaps not the most clearly written Advanced In-
dexing6 section of the numpy manual. Cheer up, though: things in pandas are much
worse; see Section 10.5.

For the sake of our maintaining sanity, in practice, it is best to be extra careful when
using two vector indexers and stick only to the scenarios discussed below.

For two flat integer indexers, we pick elementwisely:

A[[0, -1, 0, 2, 0], [1, 2, 0, 2, 1]]
array([0.6, 0.2, 0.2, 0.2, 0.6])

It yielded A[0, 1], A[-1, 2], A[0, 0], A[2, 2], and A[0, 1].

To select a submatrix using integer indexes, it is best tomake sure that thefirst indexer
is a column vector, and the second one is a row vector (or some objects like these, e.g.,
compatible lists of lists).

A[[[0], [-1]], [[1, 3]]] # column vector-like list, row vector-like list
array([[0.6, 0.4],
[0.8, 0.1]])

Further, if indexing involves logical vectors, it is best to convert them to integer ones
first (e.g., by calling numpy.flatnonzero).

A[np.flatnonzero(np.mean(A, axis=1) > 0.35).reshape(-1, 1), [[0, 2, 3, 0]]]
array([[0.2, 0.4, 0.4, 0.2],
[0.8, 0.2, 0.1, 0.8]])

The necessary reshaping can be done automatically with the numpy.ix_ function:

5 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_bmx_2020.
csv

6 https://numpy.org/doc/stable/user/basics.indexing.html

https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_bmx_2020.csv
https://numpy.org/doc/stable/user/basics.indexing.html
https://numpy.org/doc/stable/user/basics.indexing.html

162 III MULTIDIMENSIONAL DATA

A[np.ix_(np.mean(A, axis=1) > 0.35, [0, 2, 3, 0])] # np.ix_(rows, cols)
array([[0.2, 0.4, 0.4, 0.2],
[0.8, 0.2, 0.1, 0.8]])

Alternatively, we can always apply indexing twice instead:

A[np.mean(A, axis=1) > 0.45, :][:, [0, 2, 3, 0]]
array([[0.8, 0.2, 0.1, 0.8]])

This is only a mild inconvenience. We will be forced to apply such double indexing
anyway in pandaswhenever selecting rows by position and columns by name is required;
see Section 10.5.

8.2.5 Views of existing arrays (*)
Only the indexing involving two slices or a slice and a scalar returns a view7 on an
existing array. For example:

B = A[:, ::2]
B
array([[0.2, 0.4],
[0. , 0.4],
[0.8, 0.2]])

Now B and A share memory. By modifying B in place, e.g.:

B *= -1

the changes will be visible in A as well:

A
array([[-0.2, 0.6, -0.4, 0.4],
[-0. , 0.2, -0.4, 0.7],
[-0.8, 0.8, -0.2, 0.1]])

This is time andmemory efficient, butmight lead to someunexpected results if we are
being rather absent-minded.We have been warned.

8.2.6 Adding andmodifying rows and columns
With slice/scalar-based indexers, rows/columns/individual elements can be replaced
by new content in a natural way:

A[:, 0] = A[:, 0]**2

With numpy arrays, however, brandnew rows or columns cannot be added via the index

7 https://numpy.org/devdocs/user/basics.copies.html

https://numpy.org/devdocs/user/basics.copies.html

8 PROCESSING MULTIDIMENSIONAL DATA 163

operator. Instead, the whole array needs to be created from scratch using, e.g., one of
the functions discussed in Section 7.1.4. For example:

A = np.column_stack((A, np.sqrt(A[:, 0])))
A
array([[0.04, 0.6 , -0.4 , 0.4 , 0.2],
[0. , 0.2 , -0.4 , 0.7 , 0.],
[0.64, 0.8 , -0.2 , 0.1 , 0.8]])

8.3 Matrixmultiplication, dot products, and the Euclidean norm
Matrix algebra is at the core of all the methods used in data analysis with the matrix
multiply being the most fundamental operation therein (e.g., [20, 39]).

Given 𝐀 ∈ ℝ𝑛×𝑝 and 𝐁 ∈ ℝ𝑝×𝑚, their multiply is a matrix 𝐂 = 𝐀𝐁 ∈ ℝ𝑛×𝑚 such
that 𝑐𝑖,𝑗 is the sum of the 𝑖-th row in 𝐀 and the 𝑗-th column in 𝐁multiplied element-
wisely:

𝑐𝑖,𝑗 = 𝑎𝑖,1𝑏1,𝑗 + 𝑎𝑖,2𝑏2,𝑗 + ⋯ + 𝑎𝑖,𝑝𝑏𝑝,𝑗 =
𝑝

∑
𝑘=1

𝑎𝑖,𝑘𝑏𝑘,𝑗,

for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚. For example:

A = np.array([
[1, 0, 1],
[2, 2, 1],
[3, 2, 0],
[1, 2, 3],
[0, 0, 1],

])
B = np.array([

[1, 0, 0, 0],
[0, 4, 1, 3],
[2, 0, 3, 1],

])

And now:

C = A @ B # or: A.dot(B)
C
array([[3, 0, 3, 1],
[4, 8, 5, 7],
[3, 8, 2, 6],
[7, 8, 11, 9],
[2, 0, 3, 1]])

164 III MULTIDIMENSIONAL DATA

Mathematically, we can denote the above by:

⎡
⎢
⎢
⎢
⎢
⎣

1 0 1
2 2 1
3 2 0
𝟏 𝟐 𝟑
0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡⎢⎢
⎣

1 0 𝟎 0
0 4 𝟏 3
2 0 𝟑 1

⎤⎥⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

3 0 3 1
4 8 5 7
3 8 2 6
7 8 𝟏𝟏 9
2 0 3 1

⎤
⎥
⎥
⎥
⎥
⎦

.

For example, the element in the fourth row and the third column, 𝑐4,3 takes the fourth
row in the left matrix 𝐚4,⋅ = [1 2 3] and the third column in the right matrix 𝐛⋅,3 =
[0 1 3]𝑇 (they are marked in bold), multiplies the corresponding elements and com-
putes their sum, i.e., 𝑐4,3 = 1 ⋅ 0 + 2 ⋅ 1 + 3 ⋅ 3 = 11.

Important Matrixmultiplication canonly be performedon twomatrices of compatible
sizes: the number of columns in the left matrix must match the number of rows in the
right operand.

Another example:

A = np.array([
[1, 2],
[3, 4]

])
I = np.array([# np.eye(2)

[1, 0],
[0, 1]

])
A @ I # or A.dot(I)
array([[1, 2],
[3, 4]])

Wematrix-multiplied 𝐀 by the identity matrix 𝐈, which is the neutral element of the
said operation.This is why the result is identical to𝐀.

Important Inmost textbooks, just like in this one,𝐀𝐁 always denotes thematrixmul-
tiplication.This is a very different operation from the elementwisemultiplication.

Compare the above to:

A * I # elementwise multiplication (the Hadamard product)
array([[1, 0],
[0, 4]])

Exercise 8.7 (*) Show that (𝐀𝐁)𝑇 = 𝐁𝑇𝐀𝑇. Also notice that, typically, matrix multiplica-
tion is not commutative.

Note By definition, matrix multiplication gives a convenient means for denoting

8 PROCESSING MULTIDIMENSIONAL DATA 165

sums of products of corresponding elements inmany pairs of vectors, which we refer
to as dot products.

Given two vectors 𝒙, 𝒚 ∈ ℝ𝑝, their dot (or scalar) product is given by:

𝒙 ⋅ 𝒚 =
𝑝

∑
𝑖=1

𝑥𝑖𝑦𝑖.

Inmatrixmultiplication terms, if 𝐱 is a row vector and 𝐲𝑇 is a column vector, then the
above can be written as 𝐱𝐲𝑇. The result is a single number.

In particular, a dot product of a vector and itself:

𝒙 ⋅ 𝒙 =
𝑝

∑
𝑖=1

𝑥2
𝑖 ,

is the square of the Euclidean norm of 𝒙, which is used to measure themagnitude of a
vector (Section 5.3.2):

‖𝒙‖ =
√
√√
⎷

𝑝
∑
𝑖=1

𝑥2
𝑖 = √𝒙 ⋅ 𝒙 = √𝐱𝐱𝑇 .

It isworth pointing out that the Euclideannorm fulfils (amongst others) the condition
that ‖𝒙‖ = 0 if andonly if𝒙 = 𝟎 = (0, 0, … , 0).Thesamenaturally holds for its square.

Exercise 8.8 Show that𝐀𝑇𝐀 gives the matrix that consists of the dot products of all the pairs
of columns in𝐀 and𝐀𝐀𝑇 stores the dot products of all the pairs of rows.

Section 9.3.2 will note that matrix multiplication can be used as a way to express cer-
tain geometrical transformations of points in a dataset, e.g., scaling and rotating.

Also, Section 9.3.3 briefly discusses the concept of the inverse of a matrix. Further-
more, Section 9.3.4 introduces its singular value decomposition.

8.4 Pairwise distances and relatedmethods
Many data analysis methods rely on the notion of distances between points, which
quantify the extent to which two points (e.g., two rows in amatrix) are different from
each other; compare, e.g., [2]. Here, we will be dealing with the most natural8 dis-
tance called the Euclidean metric. We know it from school, where we measured how
two points are far away from each other using a ruler.

8There are many possible distances, allowing to measure the similarity of points not only in ℝ𝑚, but
also character strings (e.g., the Levenshtein metric), ratings (e.g., cosine dissimilarity), etc. There is even
an encyclopedia of distances, [23].

166 III MULTIDIMENSIONAL DATA

8.4.1 TheEuclideanmetric
Given two points inℝ𝑚, 𝒖 = (𝑢1, … , 𝑢𝑚) and 𝒗 = (𝑣1, … , 𝑣𝑚), the Euclidean metric
is defined in terms of the corresponding Euclidean norm:

‖𝒖 − 𝒗‖ = √(𝑢1 − 𝑣1)2 + (𝑢2 − 𝑣2)2 + ⋯ + (𝑢𝑚 − 𝑣𝑚)2 =
√
√√
⎷

𝑚
∑
𝑖=1

(𝑢𝑖 − 𝑣𝑖)2,

that is, it is the square root of the sumof squared differences between the correspond-
ing coordinates.

Important Given two vectors of equal lengths 𝒙, 𝒚 ∈ ℝ𝑚, the dot product of their
difference:

(𝒙 − 𝒚) ⋅ (𝒙 − 𝒚) = (𝐱 − 𝐲)(𝐱 − 𝐲)𝑇 =
𝑚

∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2,

is nothing else than the square of the Euclidean distance between them.

In particular, for unidimensional data (𝑚 = 1), we have ‖𝒖 − 𝒗‖ = |𝑢1 − 𝑣1|, i.e., the
absolute value of the difference.

Exercise 8.9 Consider the followingmatrix𝐗 ∈ ℝ4×2:

𝐗 =
⎡
⎢⎢⎢
⎣

0 0
1 0

−3
2 1

1 1

⎤
⎥⎥⎥
⎦

.

Calculate (by hand): ‖𝐱1,⋅ − 𝐱2,⋅‖, ‖𝐱1,⋅ − 𝐱3,⋅‖, ‖𝐱1,⋅ − 𝐱4,⋅‖, ‖𝐱2,⋅ − 𝐱4,⋅‖, ‖𝐱2,⋅ − 𝐱3,⋅‖,
‖𝐱1,⋅ − 𝐱1,⋅‖, and ‖𝐱2,⋅ − 𝐱1,⋅‖.
The distances between all the possible pairs of rows in two matrices 𝐗 ∈ ℝ𝑛×𝑚 and
𝐘 ∈ ℝ𝑘×𝑚 can be computed by calling scipy.spatial.distance.cdist.We need to be
careful, though. They bring about a distance matrix of size 𝑛 × 𝑘, which can become
quite large. For instance, for𝑛 = 𝑘 = 100 000, we need roughly 80GBof RAM to store
it.

Here are the distances between all the pairs of points in the same dataset.

X = np.array([
[0, 0],
[1, 0],
[-1.5, 1],
[1, 1]

])
import scipy.spatial.distance
D = scipy.spatial.distance.cdist(X, X)

(continues on next page)

8 PROCESSING MULTIDIMENSIONAL DATA 167

(continued from previous page)

D
array([[0. , 1. , 1.80277564, 1.41421356],
[1. , 0. , 2.6925824 , 1.],
[1.80277564, 2.6925824 , 0. , 2.5],
[1.41421356, 1. , 2.5 , 0.]])

Hence, 𝑑𝑖,𝑗 = ‖𝐱𝑖,⋅ − 𝐱𝑗,⋅‖. That we have zeros on the diagonal is due to the fact that
‖𝒖 − 𝒗‖ = 0 if and only if 𝒖 = 𝒗. Furthermore, ‖𝒖 − 𝒗‖ = ‖𝒗 − 𝒖‖, which implies the
symmetry of𝐃, i.e., it holds𝐃𝑇 = 𝐃.
Figure 8.2 illustrates all six non-trivial pairwise distances. Let us emphasise that our
perception of distance is disturbed. The aspect ratio (the ratio between the range of
the x-axis to the range of the y-axis) is not 1:1. It is thus very important, when judging
spatial relationships between the points, to call matplotlib.pyplot.axis("equal") or
set the axis limits manually (which is left as an exercise).

plt.plot(X[:, 0], X[:, 1], "ko")
for i in range(X.shape[0]-1):

for j in range(i+1, X.shape[0]):
plt.plot(X[[i,j], 0], X[[i,j], 1], "k-", alpha=0.2)
plt.text(

np.mean(X[[i,j], 0]),
np.mean(X[[i,j], 1]),
np.round(D[i, j], 2)

)
plt.show()

1.5 1.0 0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.0

1.8 1.412.69 1.0

2.5

Figure 8.2. Distances between four example points. Their perception is disturbed be-
cause the aspect ratio is not 1:1.

168 III MULTIDIMENSIONAL DATA

Important Some popular techniques in data science rely on computing pairwise dis-
tances, including:

• multidimensional data aggregation (see below),

• 𝑘-means clustering (Section 12.4),
• 𝑘-nearest neighbour regression (Section 9.2.1) and classification (Section 12.3.1),
• missing value imputation (Section 15.1),

• density estimation (which we can use outlier detection, see Section 15.4).

In the sequel, whenever we apply them, we assume that data have been appropriately
preprocessed. In particular, expect that columns are on the same scale (e.g., are stand-
ardised). Otherwise, computing sums of their squared differences might not make
sense at all.

8.4.2 Centroids
So farwe have been only discussingways to aggregate unidimensional data, e.g., each
matrix column separately. It turns out that some of the introduced summaries can be
generalised to the multidimensional case.

For instance, it canbe shown that thearithmeticmeanof a vector (𝑥1, … , 𝑥𝑛) is apoint
𝑐 that minimises the sum of the squared unidimensional distances between itself and
all the 𝑥𝑖s, i.e.,∑

𝑛
𝑖=1 ‖𝑥𝑖 − 𝑐‖2 = ∑𝑛

𝑖=1(𝑥𝑖 − 𝑐)2.

We can define the centroid of a dataset 𝐗 ∈ ℝ𝑛×𝑚 as the point 𝒄 ∈ ℝ𝑚 to which the
overall squared distance is the smallest:

minimise
𝑛

∑
𝑖=1

‖𝐱𝑖,⋅ − 𝒄‖2 w.r.t. 𝒄.

It can be shown that the solution to the above is:

𝒄 = 1
𝑛 (𝐱1,⋅ + 𝐱2,⋅ + ⋯ + 𝐱𝑛,⋅) = 1

𝑛
𝑛

∑
𝑖=1

𝐱𝑖,⋅,

which is the componentwise arithmetic mean. In other words, its 𝑗-th component is
given by:

𝑐𝑗 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖,𝑗.

For example, the centroid of the dataset depicted in Figure 8.2 is:

c = np.mean(X, axis=0)
c
array([0.125, 0.5])

8 PROCESSING MULTIDIMENSIONAL DATA 169

Centroids are the basis for the 𝑘-means clustering method that we discuss in Sec-
tion 12.4.

8.4.3 Multidimensional dispersion and other aggregates
Furthermore, as a measure of multidimensional dispersion, we can consider the nat-
ural generalisation of the standard deviation:

𝑠 =
√
√√
⎷

1
𝑛

𝑛
∑
𝑖=1

‖𝐱𝑖,⋅ − 𝒄‖2,

being the square root of the average squared distance to the centroid. Notice that 𝑠 is
a single number.

np.sqrt(np.mean(scipy.spatial.distance.cdist(X, c.reshape(1, -1))**2))
1.1388041973930374

Note (**) Generalising other aggregation functions is not a trivial task because,
amongst others, there is no natural linear ordering relation in the multidimensional
space (see, e.g., [75]). For instance, anypoint on the convexhull of a dataset could serve
as an analogue of the minimal andmaximal observation.

Furthermore, the componentwisemedian does not behave nicely (itmay, for example,
fall outside the convex hull). Instead, we usually consider a different generalisation
of the median: the point 𝒎 which minimises the sum of distances (not squared),
∑𝑛

𝑖=1 ‖𝐱𝑖,⋅ − 𝒎‖. Sadly, it does not have an analytic solution, but it can be determined
algorithmically.

Note (**) Abagplot [80] is oneof thepossiblemultidimensional generalisationsof the
box-and-whisker plot. Unfortunately, its use is quite limited due to its low popularity
amongst practitioners.

8.4.4 Fixed-radius and k-nearest neighbour search
Several data analysis techniques rely upon aggregating information about what is
happening in the local neighbourhoods of the points. Let 𝐗 ∈ ℝ𝑛×𝑚 be a dataset and
𝒙′ ∈ ℝ𝑚 be some point, not necessarily from𝐗. We have two options:
• fixed-radius search: for some radius 𝑟 > 0, we seek the indexes of all the points in𝐗
whose distance to 𝒙′ is not greater than 𝑟:

𝐵𝑟(𝒙′) = {𝑖 ∶ ‖𝐱𝑖,⋅ − 𝒙′‖ ≤ 𝑟} ;

• few nearest neighbour search: for some (usually small) integer 𝑘 ≥ 1, we seek the

170 III MULTIDIMENSIONAL DATA

indexes of the 𝑘 points in𝐗which are the closest to 𝒙′:

𝑁𝑘(𝒙′) = {𝑖1, 𝑖2, … , 𝑖𝑘},

such that for all 𝑗 ∉ {𝑖1, … , 𝑖𝑘}:

‖𝐱𝑖1,⋅ − 𝒙′‖ ≤ ‖𝐱𝑖2,⋅ − 𝒙′‖ ≤ … ≤ ‖𝐱𝑖𝑘,⋅ − 𝒙′‖ ≤ ‖𝐱𝑗,⋅ − 𝒙′‖.

Important Inℝ1,𝐵𝑟(𝒙′) is an interval of length 2𝑟 centred at 𝒙′, i.e., [𝑥′
1 − 𝑟, 𝑥′

1 + 𝑟].
Inℝ2, 𝐵𝑟(𝒙′) is a circle of radius 𝑟 centred at (𝑥′

1, 𝑥′
2). More generally, we call 𝐵𝑟(𝒙)

an𝑚-dimensional (Euclidean) ball or a solid hypersphere.

Here is an example dataset, consisting of some randomly generated points (see Fig-
ure 8.3).

np.random.seed(777)
X = np.random.randn(25, 2)
x_test = np.array([0, 0])

Local neighbourhoods can be determined by computing the distances between each
point in𝐗 and 𝒙′.

import scipy.spatial.distance
D = scipy.spatial.distance.cdist(X, x_test.reshape(1, -1))

For instance, here are the indexes of the points in 𝐵0.75(𝒙′):

r = 0.75
B = np.flatnonzero(D <= r)
B
array([1, 11, 14, 16, 24])

And here are the 11 nearest neighbours,𝑁11(𝒙′):

k = 11
N = np.argsort(D.reshape(-1))[:k]
N
array([14, 24, 16, 11, 1, 22, 7, 19, 0, 9, 15])

See Figure 8.3 for an illustration (observe that the aspect ratio is set to 1:1 as otherwise
the circle would look like an ellipse).

fig, ax = plt.subplots()
ax.add_patch(plt.Circle(x_test, r, color="red", alpha=0.1))
for i in range(k):

plt.plot(
[x_test[0], X[N[i], 0]],

(continues on next page)

8 PROCESSING MULTIDIMENSIONAL DATA 171

(continued from previous page)

[x_test[1], X[N[i], 1]],
"r:", alpha=0.4

)
plt.plot(X[:, 0], X[:, 1], "bo", alpha=0.1)
for i in range(X.shape[0]):

plt.text(X[i, 0], X[i, 1], str(i), va="center", ha="center")
plt.plot(x_test[0], x_test[1], "rX")
plt.text(x_test[0], x_test[1], "$\\mathbf{x}'$", va="center", ha="center")
plt.axis("equal")
plt.show()

3 2 1 0 1 2 3

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0 1

2

3

4

5

6

78

9

10

11

12

13

14 15
16

17

18

19

20

21

22

23

24 x′

Figure 8.3. Fixed-radius vs few nearest neighbour search.

8.4.5 Spatial searchwithK-d trees
For efficiency reasons, it is better to rely on dedicated spatial search data structures,
especially if we have a large number of neighbourhood-related queries. scipy im-
plements such a search algorithm based on the so-called 𝐾-dimensional trees (𝐾-d
trees9).

Note (*) In𝐾-d trees, thedata space is partitioned intohyperrectangles along the axes
of the Cartesian coordinate system (standard basis). Thanks to such a representation,
all subareas which are too far from the point of interest can be pruned to speed up the
search.

9 In our context, we like referring to them as𝑚-d trees more, but let us stick with the traditional name.

172 III MULTIDIMENSIONAL DATA

Let us create the data structure for searching within the above𝐗matrix.

import scipy.spatial
T = scipy.spatial.KDTree(X)

Assumewe would like tomake queries with regard to the three following pivot points.

X_test = np.array([
[0, 0],
[2, 2],
[2, -2]

])

Here are the results for the fixed radius searches (𝑟 = 0.75):

T.query_ball_point(X_test, 0.75)
array([list([1, 11, 14, 16, 24]), list([20]), list([])], dtype=object)

We see that the search was nicely vectorised. We made a query about three points at
the same time. As a result,we received a list-like object storing three lists representing
the indexes of interest. Note that in the case of the third point, there are no elements
in𝐗within the range (ball) of interest, hence the empty index list.
And here are the five nearest neighbours:

distances, indexes = T.query(X_test, 5) # returns a tuple of length 2

We obtained both the distances to the nearest neighbours:

distances
array([[0.31457701, 0.44600012, 0.54848109, 0.64875661, 0.71635172],
[0.20356263, 1.45896222, 1.61587605, 1.64870864, 2.04640408],
[1.2494805 , 1.35482619, 1.93984334, 1.95938464, 2.08926502]])

as well as the indexes:

indexes
array([[14, 24, 16, 11, 1],
[20, 5, 13, 2, 9],
[17, 3, 21, 12, 22]])

Eachof them is amatrixwith three rows (corresponding to thenumber of pivot points)
and five columns (the number of neighbours sought).

Note (*) We expect the 𝐾-d trees to be much faster than the brute-force approach
(where we compute all pairwise distances) in low-dimensional spaces. Nonetheless,
due to the phenomenon called the curse of dimensionality, sometimes already for𝑚 ≥ 5
the speed gains might be very small; see, e.g., [9].

8 PROCESSING MULTIDIMENSIONAL DATA 173

8.5 Exercises
Exercise 8.10 Does numpy.mean(A, axis=0) compute rowwise or columnwise means?

Exercise 8.11 How does shape broadcasting work? List the most common pairs of shape cases
when performing arithmetic operations like addition or multiplication.

Exercise 8.12 What are the possible matrix indexing schemes and how do they behave?

Exercise 8.13 Which kinds of matrix indexers return a view of an existing array?

Exercise 8.14 (*)How canwe select a submatrix comprised of the first and the last row and the
first and the last column?

Exercise 8.15 Why appropriate data preprocessing is required when computing the Euclidean
distance between points?

Exercise 8.16 What is the relationship between the dot product, the Euclidean norm, and the
Euclidean distance?

Exercise 8.17 What is a centroid?How is it defined bymeans of theEuclideandistance between
the points in a dataset?

Exercise 8.18 What is the difference between the fixed-radius and few nearest-neighbours
search?

Exercise 8.19 (*) When𝐾-d trees or other spatial search data structures might be better than
a brute-force search with scipy.spatial.distance.cdist?

9
Exploring relationships between variables

Let us go back toNationalHealth andNutritionExamination Survey (NHANES study)
excerpt that we were playing with in Section 7.4:

body = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_bmx_2020.csv",
delimiter=",")[1:, :] # skip first row (column names)

body[:6, :] # preview: 6 first rows, all columns
array([[97.1, 160.2, 34.7, 40.8, 35.8, 126.1, 117.9],
[91.1, 152.7, 33.5, 33. , 38.5, 125.5, 103.1],
[73. , 161.2, 37.4, 38. , 31.8, 106.2, 92.],
[61.7, 157.4, 38. , 34.7, 29. , 101. , 90.5],
[55.4, 154.6, 34.6, 34. , 28.3, 92.5, 73.2],
[62. , 144.7, 32.5, 34.2, 29.8, 106.7, 84.8]])
body.shape
(4221, 7)

We thus have 𝑛 = 4221 participants and seven different features describing them, in
this order:

body_columns = np.array([
"weight",
"height",
"arm len.",
"leg len.",
"arm circ.",
"hip circ.",
"waist circ."

])

We expect the data in different columns to be related to each other (e.g., a taller per-
son usually tends toweight more). This is why we will now be interested in quantifying
the degree of association between the variables, modelling the possible functional re-
lationships, and finding new interesting combinations of columns.

176 III MULTIDIMENSIONAL DATA

9.1 Measuring correlation
Scatter plots let us identify some simple patterns or structure in data. Figure 7.4 in-
dicates that higher hip circumferences tend to occur more often together with higher
arm circumferences and that the latter does not really tell us much about height.

Let us explore some basic means for measuring (expressing as a single number) the
degree of association between a set of pairs of points.

9.1.1 Pearson’s linear correlation coefficient
The Pearson linear correlation coefficient is given by:

𝑟(𝒙, 𝒚) = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 − ̄𝑥
𝑠𝑥

𝑦𝑖 − ̄𝑦
𝑠𝑦

,

with 𝑠𝑥, 𝑠𝑦 denoting the standard deviations and ̄𝑥, ̄𝑦 being the means of 𝒙 =
(𝑥1, … , 𝑥𝑛) and 𝒚 = (𝑦1, … , 𝑦𝑛), respectively.

Note Look carefully:weare computing themeanof thepairwiseproducts of standard-
ised versions of the two vectors. It is a normalised measure of how they vary together
(co-variance).

(*) Furthermore, Section 9.3.1 mentions that 𝑟 is the cosine of the angle between
centred and normalised versions of the vectors.

Here is how we can compute it manually:

x = body[:, 4] # arm circumference
y = body[:, 5] # hip circumference
x_std = (x-np.mean(x))/np.std(x) # z-scores for x
y_std = (y-np.mean(y))/np.std(y) # z-scores for y
np.mean(x_std*y_std)
0.8680627457873239

And here is the built-in function that implements the same formula:

scipy.stats.pearsonr(x, y)[0]
0.868062745787324

Note the [0] part: the function returns more than we actually need.

Important Basic properties of Pearson’s 𝑟 include:
1. 𝑟(𝒙, 𝒚) = 𝑟(𝒚, 𝒙) (symmetric);

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 177

2. |𝑟(𝒙, 𝒚)| ≤ 1 (bounded from below by -1 and from above by 1);

3. 𝑟(𝒙, 𝒚) = 1 if and only if 𝒚 = 𝑎𝒙 + 𝑏 for some 𝑎 > 0 and any 𝑏, (reaches the
maximumwhen one variable is an increasing linear function of the other one);

4. 𝑟(𝒙, −𝒚) = −𝑟(𝒙, 𝒚) (negative scaling (reflection) of one variable changes the sign
of the coefficient);

5. 𝑟(𝒙, 𝑎𝒚 + 𝑏) = 𝑟(𝒙, 𝒚) for any 𝑎 > 0 and 𝑏 (invariant to translation and scaling of
inputs that does not change the sign of elements).

To getmore insight, belowwe shall illustrate some interesting correlationsusing the fol-
lowing helper function that draws a scatter plot and prints out Pearson’s 𝑟 (and Spear-
man’s 𝜌 discussed in Section 9.1.4; let us ignore it by then):

def plot_corr(x, y, axes_eq=False):
r = scipy.stats.pearsonr(x, y)[0]
rho = scipy.stats.spearmanr(x, y)[0]
plt.plot(x, y, "o")
plt.title(f"$r = {r:.3}$, $\\rho = {rho:.3}$",

fontdict=dict(fontsize=10))
if axes_eq: plt.axis("equal")

Perfect linear correlation

The aforementioned properties imply that 𝑟(𝒙, 𝒚) = −1 if and only if 𝒚 = 𝑎𝒙 + 𝑏 for
some 𝑎 < 0 and any 𝑏 (reaches the minimum when variables are decreasing linear
functions of each other) Furthermore, a variable is trivially perfectly correlated with
itself, 𝑟(𝒙, 𝒙) = 1.
Consequently, we get perfect linear correlation (-1 or 1) when one variable is a scaled and
shifted version (linear function) of the other variable; see Figure 9.1.

x = np.random.rand(100)
plt.subplot(1, 2, 1); plot_corr(x, -0.5*x+3, axes_eq=True) # negative slope
plt.subplot(1, 2, 2); plot_corr(x, 3*x+10, axes_eq=True) # positive slope
plt.show()

A negative correlation means that when one variable increases, the other one de-
creases (like: a car’s braking distance vs velocity).

Strong linear correlation

Next, if two variables are more or less linear functions of themselves, the correlations
will be close to -1 or 1, with the degree of association diminishing as the linear relation-
ship becomes less and less evident; see Figure 9.2.

plt.figure(figsize=(plt.rcParams["figure.figsize"][0],)*2) # width=height
x = np.random.rand(100) # random x (whatever)
y = 0.5*x # y is a linear function of x

(continues on next page)

178 III MULTIDIMENSIONAL DATA

0.00 0.25 0.50 0.75 1.00

2.2

2.4

2.6

2.8

3.0

3.2

r = 1.0, = 1.0

0 1

10.0

10.5

11.0

11.5

12.0

12.5

13.0

r = 1.0, = 1.0

Figure 9.1. Perfect linear correlation (negative and positive).

(continued from previous page)

e = np.random.randn(len(x)) # random Gaussian noise (expected value 0)
plt.subplot(2, 2, 1); plot_corr(x, y) # original y
plt.subplot(2, 2, 2); plot_corr(x, y+0.05*e) # some noise added to y
plt.subplot(2, 2, 3); plot_corr(x, y+0.1*e) # more noise
plt.subplot(2, 2, 4); plot_corr(x, y+0.25*e) # even more noise
plt.show()

Notice again that the arm and hip circumferences enjoy quite high positive degree of
linear correlation.Their scatter plot (Figure 7.4) looks somewhat similar to one of the
cases presented here.

Exercise 9.1 Draw a series of similar plots but for the case of negatively correlated point pairs,
e.g., 𝑦 = −2𝑥 + 5.

Important As a rule of thumb, linear correlation degree of 0.9 or greater (or -0.9 or
smaller) is quite decent. Between -0.8 and0.8weprobably should not be talking about
two variables being linearly correlated at all. Some textbooks aremore lenient, but we
have higher standards. In particular, it is not uncommon in social sciences to consider
0.6 a decent degree of correlation, but this is like building on sand. If a dataset at hand
does not provide us with strong evidence, it is our ethical duty to refrain ourselves
frommakingunjustified statements. It is better to remain silent than to talk gibberish
andmisled the recipients of our exercises on data analysis.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 179

0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

0.4

0.5

r = 1.0, = 1.0

0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

0.5

r = 0.925, = 0.93

0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

r = 0.765, = 0.789

0.00 0.25 0.50 0.75 1.00
0.50

0.25

0.00

0.25

0.50

0.75

1.00

r = 0.398, = 0.368

Figure 9.2. Linear correlation coefficients for data with different amounts of noise.

No linear correlation does not imply independence

For two independent variables, we expect the correlation coefficient be approximately
equal to 0.Nevertheless, correlation close to 0does not necessarilymean that two vari-
ables are unrelated to each other. Pearson’s 𝑟 is a linear correlation coefficient, so we
are quantifying only1 these types of relationships. See Figure 9.3 for an illustration of
this fact.

plt.figure(figsize=(plt.rcParams["figure.figsize"][0],)*2) # width=height
plt.subplot(2, 2, 1)
plot_corr(x, np.random.rand(100)) # independent (not correlated)

(continues on next page)

1 Note that in Section 6.2.3, we were also testing one concrete hypothesis: whether a distribution was
normal or whether it was anything else. We only know that if the data really follow that distribution, the
null hypothesis will not be rejected in 0.1% of the cases.The rest is silence.

180 III MULTIDIMENSIONAL DATA

(continued from previous page)

plt.subplot(2, 2, 2)
plot_corr(x, (2*x-1)**2-1) # quadratic dependence
plt.subplot(2, 2, 3)
plot_corr(x, np.abs(2*x-1)) # absolute value
plt.subplot(2, 2, 4)
plot_corr(x, np.sin(10*np.pi*x)) # sine
plt.show()

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

r = 1.0, = 1.0

0.00 0.25 0.50 0.75 1.00

1.0

0.8

0.6

0.4

0.2

0.0
r = 0.0356, = 0.0147

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0

r = 0.0194, = 0.0147

0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0

r = 0.00917, = 0.0231

Figure 9.3. Are these variable pairs really uncorrelated?

False linear correlations

What is more, sometimes we can detect false correlations – when data are function-
ally dependent, the relationship is not linear, but it kind of looks like linear. Refer to
Figure 9.4 for some examples.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 181

plt.figure(figsize=(plt.rcParams["figure.figsize"][0],)*2) # width=height
plt.subplot(2, 2, 1)
plot_corr(x, np.sin(0.6*np.pi*x)) # sine
plt.subplot(2, 2, 2)
plot_corr(x, np.log(x+1)) # logarithm
plt.subplot(2, 2, 3);
plot_corr(x, np.exp(x**2)) # exponential of square
plt.subplot(2, 2, 4)
plot_corr(x, 1/(x/2+0.2)) # reciprocal
plt.show()

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

r = 0.94, = 0.984

0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
r = 0.996, = 1.0

0.00 0.25 0.50 0.75 1.00

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
r = 0.926, = 1.0

0.00 0.25 0.50 0.75 1.00

1.5

2.0

2.5

3.0

3.5

4.0

4.5

r = 0.949, = 1.0

Figure 9.4. Examplenonlinear relationships that look like linear, at least toPearson’s 𝑟.

No single measure is perfect – we are trying to compress 2𝑛 data points into a single
number— it is obvious that there will bemany different datasets, sometimes remark-
ably diverse, that will yield the same correlation degree.

182 III MULTIDIMENSIONAL DATA

Correlation is not causation

A high correlation degree (either positive or negative) does not mean that there is any
causal relationship between the two variables. We cannot say that having large arm
circumference affects hip size or vice versa. There might be some latent variable that
influences these two (e.g., maybe also related to weight?).

Exercise 9.2 Quite often, medical advice is formulated based on correlations and similar
association-measuring tools.We are expected to know how to interpret them, as it is never a true
cause-effect relationship; rather, it is all about detecting common patterns in larger populations.
For instance, in “obesity increases the likelihood of lower back pain and diabetes” we do not say
that one necessarily implies another or that if you are not overweight, there is no risk of getting
the two said conditions. It might also work the other way around, as lower back pain may lead
to less exercise and then weight gain. Reality is complex. Find similar patterns in sets of health
conditions.

Note Correlation analysis can aid in constructing regressionmodels,wherewewould
like to identify a transformation that expresses a variable as a function of one ormore
other features. For instance, when we say that 𝑦 can be modelled approximately by
𝑎𝑥 + 𝑏, regression analysis can identify the best matching 𝑎 and 𝑏 coefficients; see
Section 9.2.3 for more details.

9.1.2 Correlation heatmap
Calling numpy.corrcoef(body, rowvar=False) determines the linear correlation coef-
ficients between all pairs of variables in our dataset. We can depict them nicely on a
heat map based on a fancified call to matplotlib.pyplot.imshow.

def corrheatmap(R, labels):
"""
Draws a correlation heat map, given:
* R - matrix of correlation coefficients for all variable pairs,
* labels - list of column names
"""
assert R.shape[0] == R.shape[1] and R.shape[0] == len(labels)
k = R.shape[0]

plot the heat map using a custom colour palette
(correlations are in [-1, 1])
plt.imshow(R, cmap=plt.colormaps.get_cmap("RdBu"), vmin=-1, vmax=1)

add text labels
for i in range(k):

for j in range(k):
plt.text(i, j, f"{R[i, j]:.2f}", ha="center", va="center",

color="black" if np.abs(R[i, j])<0.5 else "white")

(continues on next page)

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 183

(continued from previous page)

plt.xticks(np.arange(k), labels=labels, rotation=30)
plt.tick_params(axis="x", which="both",

labelbottom=True, labeltop=True, bottom=False, top=False)

plt.yticks(np.arange(k), labels=labels)
plt.tick_params(axis="y", which="both",

labelleft=True, labelright=True, left=False, right=False)

plt.grid(False)

See Figure 9.5 for the plot.

plt.figure(figsize=(plt.rcParams["figure.figsize"][0],)*2) # width=height
R = np.corrcoef(body, rowvar=False)
order = [4, 5, 6, 0, 2, 1, 3] # chiefly for aesthetics
corrheatmap(R[np.ix_(order, order)], body_columns[order])
plt.show()

Notice that we ordered2 the columns to reveal some naturally occurring variable
clusters: for instance, arm, hip, waist circumference and weight are all quite strongly
correlated.

Of course, we have 1.0s on the main diagonal because a variable is trivially correlated
with itself. Interestingly, this heat map is symmetric which is due to the property
𝑟(𝒙, 𝒚) = 𝑟(𝒚, 𝒙).
Example 9.3 (*) To fetch the row and column index of the most correlated pair of variables
(either positively or negatively), we should first take the upper (or lower) triangle of the correl-
ationmatrix (see numpy.triu or numpy.tril) to ignore the irrelevant and repeating items:

Ru = np.triu(np.abs(R), 1)
np.round(Ru, 2)
array([[0. , 0.35, 0.55, 0.19, 0.91, 0.95, 0.9],
[0. , 0. , 0.67, 0.66, 0.15, 0.2 , 0.13],
[0. , 0. , 0. , 0.48, 0.45, 0.46, 0.43],
[0. , 0. , 0. , 0. , 0.08, 0.1 , 0.03],
[0. , 0. , 0. , 0. , 0. , 0.87, 0.85],
[0. , 0. , 0. , 0. , 0. , 0. , 0.9],
[0. , 0. , 0. , 0. , 0. , 0. , 0.]])

and then find the location of the maximum:

pos = np.unravel_index(np.argmax(Ru), Ru.shape)
pos # (row, column)
(0, 5)

(continues on next page)

2 (**) This can be done automatically by some hierarchical clustering algorithm applied onto the correl-
ation matrix converted to a distance one, e.g., 1 − |𝐑| or 1 − 𝐑2.

184 III MULTIDIMENSIONAL DATA

arm circ.

arm circ.

hip circ.

hip circ.

waist circ.

waist circ.

weight

weight

arm len.

arm len.

height

height

leg len.

leg len.

arm circ. arm circ.

hip circ. hip circ.

waist circ. waist circ.

weight weight

arm len. arm len.

height height

leg len. leg len.

1.00

0.87

0.85

0.91

0.45

0.15

0.08

0.87

1.00

0.90

0.95

0.46

0.20

0.10

0.85

0.90

1.00

0.90

0.43

0.13

-0.03

0.91

0.95

0.90

1.00

0.55

0.35

0.19

0.45

0.46

0.43

0.55

1.00

0.67

0.48

0.15

0.20

0.13

0.35

0.67

1.00

0.66

0.08

0.10

-0.03

0.19

0.48

0.66

1.00

Figure 9.5. A correlation heat map.

(continued from previous page)

body_columns[list(pos)] # indexing by a tuple has a different meaning
array(['weight', 'hip circ.'], dtype='<U11')

Weight and hip circumference is the most strongly correlated pair.

Note that numpy.argmax returns an index in the flattened (unidimensional) array.Wehad to use
numpy.unravel_index to convert it to a two-dimensional one.

Example 9.4 (*) Use seaborn.heatmap to draw the correlation heat map.

9.1.3 Linear correlation coefficients on transformed data
Pearson’s coefficient can also be applied on nonlinearly transformed versions of vari-
ables, e.g., logarithms (remember incomes?), squares, square roots, etc.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 185

Let us consider an excerpt from the 2020 CIA World Factbook3, where we have data
on gross domestic product per capita (based on purchasing power parity) and life ex-
pectancy at birth in many countries.

world = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/world_factbook_2020_subset1.csv",
delimiter=",")[1:, :] # skip first row (column names)

world[:6, :] # preview
array([[2000. , 52.8],
[12500. , 79.],
[15200. , 77.5],
[11200. , 74.8],
[49900. , 83.],
[6800. , 61.3]])

Figure 9.6 depicts these data on a scatter plot.

plt.subplot(1, 2, 1)
plot_corr(world[:, 0], world[:, 1])
plt.xlabel("per capita GDP PPP")
plt.ylabel("life expectancy (years)")
plt.subplot(1, 2, 2)
plot_corr(np.log(world[:, 0]), world[:, 1])
plt.xlabel("log(per capita GDP PPP)")
plt.yticks()
plt.show()

0 50000 100000
per capita GDP PPP

60

70

80

90

lif
e e

xp
ec

ta
nc

y (
ye

ar
s)

r = 0.656, = 0.828

8 10 12
log(per capita GDP PPP)

60

70

80

90
r = 0.807, = 0.828

Figure 9.6. Scatter plots for life expectancy vs gross domestic product (purchasing
power parity) on linear (left) and log-scale (right).

3 https://www.cia.gov/the-world-factbook

https://www.cia.gov/the-world-factbook

186 III MULTIDIMENSIONAL DATA

If we compute Pearson’s 𝑟 between these two, we will note a quite weak linear correla-
tion:

scipy.stats.pearsonr(world[:, 0], world[:, 1])[0]
0.6564719454863747

Anyhow, already the logarithm of GDP is quite strongly linearly correlated with life
expectancy:

scipy.stats.pearsonr(np.log(world[:, 0]), world[:, 1])[0]
0.8066505089380016

which means that modelling our data via 𝒚 = 𝑎 log 𝒙 + 𝑏 could be an idea worth con-
sidering.

9.1.4 Spearman’s rank correlation coefficient
Sometimes we might be interested in measuring the degree of any kind of monotonic
correlation – to what extent one variable is an increasing or decreasing function of
another one (linear, logarithmic, quadratic over the positive domain, etc.). In such a
scenario, the Spearman rank correlation coefficient is frequently used:

𝜌(𝒙, 𝒚) = 𝑟(𝑅(𝒙), 𝑅(𝒚)),

which is4 the Pearson linear coefficient computed over vectors of the corresponding
ranks of all the elements in 𝒙 and 𝒚 (denoted by 𝑅(𝒙) and 𝑅(𝒚), respectively). Hence,
the two following calls are equivalent:

scipy.stats.spearmanr(world[:, 0], world[:, 1])[0]
0.8275220380818622
scipy.stats.pearsonr(

scipy.stats.rankdata(world[:, 0]),
scipy.stats.rankdata(world[:, 1])

)[0]
0.8275220380818622

Let us point out that this measure is invariant with respect to monotone transform-
ations of the input variables (up to the sign). This is because they do not change the
observations’ ranks (or only reverse them).

scipy.stats.spearmanr(np.log(world[:, 0]), -np.sqrt(world[:, 1]))[0]
-0.8275220380818622

Exercise 9.5 We included the 𝜌s in all the outputs generated by our plot_corr function. Re-
view all the above figures.

Exercise 9.6 Apply numpy.corrcoef and scipy.stats.rankdata (with the appropriate axis

4 If a method Y is nothing else than X on transformed data, we do not consider it a totally newmethod.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 187

argument) to compute the Spearman correlationmatrix for all the variable pairs in body. Draw
it on a heat map.

Exercise 9.7 (*) Draw the scatter plots of the ranks of each column in the world and body data-
sets.

9.2 Regression tasks
Let us assume thatwe are given a training/reference set of𝑛 points in an𝑚-dimensional
space represented as a matrix 𝐗 ∈ ℝ𝑛×𝑚 and a set of 𝑛 corresponding numeric
outcomes 𝒚 ∈ ℝ𝑛. Regression aims to find a function between the 𝑚 independ-
ent/explanatory/predictor variables and a chosen dependent/response/predicted variable
that can be applied on any test point 𝒙′ ∈ ℝ𝑚:

̂𝑦′ = 𝑓 (𝑥′
1, 𝑥′

2, … , 𝑥′
𝑚),

and which approximates the reference outcomes in a usableway.

9.2.1 K-nearest neighbour regression
A quite straightforward approach to regression relies on aggregating the reference
outputs that are associated with a few nearest neighbours of the point 𝒙′ tested; com-
pare Section 8.4.4.

In 𝑘-nearest neighbour regression, for afixed 𝑘 ≥ 1 andanygiven𝒙′ ∈ ℝ𝑚, ̂𝑦 = 𝑓 (𝒙′)
is computed as follows.

1. Find the indices𝑁𝑘(𝒙′) = {𝑖1, … , 𝑖𝑘} of the 𝑘 points from𝐗 closest to 𝒙′, i.e., ones
that fulfil for all 𝑗 ∉ {𝑖1, … , 𝑖𝑘}:

‖𝐱𝑖1,⋅ − 𝒙′‖ ≤ … ≤ ‖𝐱𝑖𝑘,⋅ − 𝒙′‖ ≤ ‖𝐱𝑗,⋅ − 𝒙′‖.

2. Return the arithmetic mean of (𝑦𝑖1 , … , 𝑦𝑖𝑘) as the result.
Here is a straightforward implementation that generates the predictions for each
point in X_test:

def knn_regress(X_test, X_train, y_train, k):
t = scipy.spatial.KDTree(X_train.reshape(-1, 1))
i = t.query(X_test.reshape(-1, 1), k)[1] # indices of NNs
y_nn_pred = y_train[i] # corresponding reference outputs
return np.mean(y_nn_pred, axis=1)

For example, let us try expressing weight (the first column) as a function of hip cir-
cumference (the sixth column) in the body dataset:

weight = 𝑓1(hip circumference) (+some error).

188 III MULTIDIMENSIONAL DATA

We can alsomodel the life expectancy at birth in different countries (world dataset) as
a function of their GDP per capita (PPP):

life expectancy = 𝑓2(GDP per capita) (+some error).

Both are instances of the simple regression problem, i.e., where there is only one inde-
pendent variable (𝑚 = 1). We can easily create an appealing visualisation thereof by
means of the following function:

def knn_regress_plot(x, y, K, num_test_points=1001):
"""
x - 1D vector - reference inputs
y - 1D vector - corresponding outputs
K - numbers of near neighbours to test
num_test_points - number of points to test at
"""
plt.plot(x, y, "o", alpha=0.1)
_x = np.linspace(x.min(), x.max(), num_test_points)
for k in K:

_y = knn_regress(_x, x, y, k) # see above
plt.plot(_x, _y, label=f"$k={k}$")

plt.legend()

Figure 9.7 depicts the fitted functions for a few different 𝑘s.

plt.subplot(1, 2, 1)
knn_regress_plot(body[:, 5], body[:, 0], [5, 25, 100])
plt.xlabel("hip circumference")
plt.ylabel("weight")

plt.subplot(1, 2, 2)
knn_regress_plot(world[:, 0], world[:, 1], [5, 25, 100])
plt.xlabel("per capita GDP PPP")
plt.ylabel("life expectancy (years)")

plt.show()

We obtained a smoothened version of the original dataset. The fact that we do not re-
produce the reference data points in an exact manner is reflected by the (figurative)
error term in the above equations. Its role is to emphasise the existence of some nat-
ural data variability; after all, one’s weight is not purely determined by their hip size
and life is not all about money.

For small 𝑘 we adapt to the data points better. This can be worthwhile unless data are
very noisy.The greater the 𝑘, the smoother the approximation at the cost of losing fine
detail and restrictedusability at thedomainboundaries (here: in the left and right part
of the plots).

Usually, the number of neighbours is chosen by trial and error (just like the number of
bins in a histogram; compare Section 4.3.3).

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 189

Figure 9.7. 𝑘-nearest neighbour regression curves for example datasets. The greater
the 𝑘, the more coarse-grained the approximation.

Note (**) Somemethods use weighted arithmetic means for aggregating the 𝑘 refer-
ence outputs, with weights inversely proportional to the distances to the neighbours
(closer inputs are consideredmore important).

Also, instead of few nearest neighbours, we can easily compose some form of fixed-
radius search regression, by simply replacing 𝑁𝑘(𝒙′) with 𝐵𝑟(𝒙′); compare Sec-
tion 8.4.4. Yet, note that this way we might make the function undefined in sparsely
populated regions of the domain.

9.2.2 Fromdata to (linear)models
Unfortunately, to generate predictions for new data points, 𝑘-nearest neighbours re-
gression requires that the training sample is available at all times. It does not synthesise
or simplify the inputs; instead, it works as a kind of a black box. If we were to provide
a mathematical equation for the generated prediction, it would be disgustingly long
and obscure.

In such cases, to emphasise that 𝑓 is dependent on the training sample, we sometimes
use the more explicit notation 𝑓 (𝒙′|𝐗, 𝒚) or 𝑓𝐗,𝒚(𝒙′).
Inmany contexts wemight prefer creating a datamodel instead, in the form of an eas-
ily interpretable mathematical function. A simple yet still quite flexible choice tackles
regression problems via affine maps of the form:

𝑦 = 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑚) = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑚𝑥𝑚 + 𝑐𝑚+1,

190 III MULTIDIMENSIONAL DATA

or, in matrix multiplication terms:

𝑦 = 𝐜𝐱𝑇 + 𝑐𝑚+1,

where 𝐜 = [𝑐1 𝑐2 ⋯ 𝑐𝑚] and 𝐱 = [𝑥1 𝑥2 ⋯ 𝑥𝑚].
For𝑚 = 1, the above simply defines a straight line, which we traditionally denote by:

𝑦 = 𝑎𝑥 + 𝑏,

i.e., where wemapped 𝑥1 ↦ 𝑥, 𝑐1 ↦ 𝑎 (slope), and 𝑐2 ↦ 𝑏 (intercept).
For𝑚 > 1, we obtain different hyperplanes (high-dimensional generalisations of the
notion of a plane).

Important A separate intercept term “+𝑐𝑚+1” in the defining equation can be quite
inconvenient to handle. We will thus restrict ourselves to linear maps like:

𝑦 = 𝐜𝐱𝑇 ,

but where we can possibly have an explicit constant-1 component somewhere inside 𝐱.
For instance:

𝐱 = [𝑥1 𝑥2 ⋯ 𝑥𝑚 1].

Together with 𝐜 = [𝑐1 𝑐2 ⋯ 𝑐𝑚 𝑐𝑚+1], as trivially 𝑐𝑚+1 ⋅ 1 = 𝑐𝑚+1, this new setting
is equivalent to the original one.

Without loss of generality, from now on we assume that 𝐱 is𝑚-dimensional, regard-
less of its having a constant-1 inside or not.

9.2.3 Least squaresmethod
A linear model is uniquely5 encoded using only the coefficients 𝑐1, … , 𝑐𝑚. To find
them, for each point 𝐱𝑖,⋅ from the input (training) set, we typically desire the predicted
value:

̂𝑦𝑖 = 𝑓 (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑚) = 𝑓 (𝐱𝑖,⋅|𝐜) = 𝐜𝐱𝑇
𝑖,⋅,

to be as close to the corresponding reference 𝑦𝑖 as possible.

There aremanymeasures of closeness, but themost popular one6 uses the notion of the
sum of squared residuals (true minus predicted outputs):

SSR(𝒄|𝐗, 𝐲) =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2 =

𝑛
∑
𝑖=1

(𝑦𝑖 − (𝑐1𝑥𝑖,1 + 𝑐2𝑥𝑖,2 + ⋯ + 𝑐𝑚𝑥𝑖,𝑚))2 ,

5 To memorise the model for further reference, we only need to serialise its 𝑚 coefficients, e.g., in a
JSON or CSV file.

6 Due to computability and mathematical analysability, which we usually explore in more advanced
courses on statistical data analysis such as [8, 22, 47].

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 191

which is a function of 𝒄 = (𝑐1, … , 𝑐𝑚) (for fixed𝐗, 𝐲).
The least squares solution to the stated linear regression problemwill be defined by the
coefficient vector 𝒄 thatminimises the SSR. Based on what we said aboutmatrixmul-
tiplication, this is equivalent to solving the optimisation task:

minimise (𝐲 − 𝐜𝐗𝑇) (𝐲 − 𝐜𝐗𝑇)𝑇
w.r.t. (𝑐1, … , 𝑐𝑚) ∈ ℝ𝑚,

because ̂𝐲 = 𝐜𝐗𝑇 gives the predicted values as a row vector (the diligent readers are
encouraged to check that on a piece of paper now), 𝐫 = 𝐲 − ̂𝐲 computes all the 𝑛
residuals, and 𝐫𝐫𝑇 gives their sum of squares.

The method of least squares is one of the simplest and most natural approaches to
regression analysis (curve fitting). Its theoretical foundations (calculus…) were de-
velopedmore than 200 years ago by Gauss and then were polished by Legendre.

Note (*) Had the points lain on a hyperplane exactly (the interpolation problem),
𝐲 = 𝐜𝐗𝑇 would have an exact solution, equivalent to solving the linear systemof equa-
tions 𝐲−𝐜𝐗𝑇 = 𝟎.However, in our settingwe assume that theremight be somemeas-
urement errors or other discrepancies between the reality and the theoretical model.
To account for this, we are trying to solve a more general problem of finding a hyper-
plane for which ‖𝐲 − 𝐜𝐗𝑇‖2 is as small as possible.

This optimisation task can be solved analytically (compute the partial derivatives of
SSRwith respect to each 𝑐1, … , 𝑐𝑚, equate them to 0, and solve a simple system of lin-
ear equations).This spawns 𝐜 = 𝐲𝐗(𝐗𝑇𝐗)−1, where𝐀−1 is the inverse of a matrix𝐀,
i.e., thematrix such that𝐀𝐀−1 = 𝐀−1𝐀 = 𝐈; compare numpy.linalg.inv. As inverting
larger matrices directly is not too robust numerically, we would rather rely on a more
specialised algorithm.

Thescipy.linalg.lstsq function thatweusebelowprovidesaquitenumerically stable
(yet, see Section 9.2.9) procedure that is based on the singular value decomposition of
the model matrix.

Let us go back to the NHANES study excerpt and express weight (the first column) as
function of hip circumference (the sixth column) again, but this time using an affine
map of the form7:

weight = 𝑎 ⋅ hip circumference+ 𝑏 (+some error).

The design (model) matrix𝐗 and the reference 𝒚s are:

7We sometimes explicitly list the error term that corresponds to the residuals. This is to assure the
reader that we are not naïve and that we know what we are doing. We see from the scatter plot of the
involved variables that the data do not lie on a straight line perfectly. Each model is merely an idealisa-
tion/simplification of the described reality. It is wise to remind ourselves about that every so often.

192 III MULTIDIMENSIONAL DATA

x_original = body[:, [5]] # a column vector
X_train = x_original**[1, 0] # hip circumference, 1s
y_train = body[:, 0] # weight

Weused the vectorised exponentiationoperator to convert each𝑥𝑖 (the 𝑖-thhip circum-
ference) to a pair 𝐱𝑖,⋅ = (𝑥1

𝑖 , 𝑥0
𝑖) = (𝑥𝑖, 1), which is a nice trick to append a column of

1s to a matrix. This way, we included the intercept term in the model (as discussed in
Section 9.2.2). Here is a preview:

preview_indices = [4, 5, 6, 8, 12, 13]
X_train[preview_indices, :]
array([[92.5, 1.],
[106.7, 1.],
[96.3, 1.],
[102. , 1.],
[94.8, 1.],
[97.5, 1.]])
y_train[preview_indices]
array([55.4, 62. , 66.2, 77.2, 64.2, 56.8])

Let us determine the least squares solution to our regression problem:

import scipy.linalg
res = scipy.linalg.lstsq(X_train, y_train)

That’s it. The optimal coefficients vector (the one that minimises the SSR) is:

c = res[0]
c
array([1.3052463 , -65.10087248])

The estimated model is:

weight = 1.305 ⋅ hip circumference− 65.1 (+some error).

Let us contemplate the fact that the model is nicely interpretable. For instance, as hip
circumference increases, we expect the weights to be greater and greater. As we said
before, it does not mean that there is some causal relationship between the two (for
instance, there can be some latent variables that affect both of them). Instead, there is
somegeneral tendency regarding how the data align in the sample space. For instance,
that the “best guess” (according to the current model – there can be many; see below)
weight for a person with hip circumference of 100 cm is 65.4 kg.Thanks to such mod-
els, wemight understand certain phenomena better or find some proxies for different
variables (especially if measuring them directly is tedious, costly, dangerous, etc.).

Let us determine the predicted weights for all of the participants:

y_pred = c @ X_train.T
np.round(y_pred[preview_indices], 2) # preview
array([55.63, 74.17, 60.59, 68.03, 58.64, 62.16])

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 193

The scatter plot and the fitted regression line in Figure 9.8 indicates a fair fit but, of
course, there is some natural variability.

plt.plot(x_original, y_train, "o", alpha=0.1) # scatter plot
_x = np.array([x_original.min(), x_original.max()]).reshape(-1, 1)
_y = c @ (_x**[1, 0]).T
plt.plot(_x, _y, "r-") # a line that goes through the two extreme points
plt.xlabel("hip circumference")
plt.ylabel("weight")
plt.show()

Figure 9.8.The least squares line for weight vs hip circumference.

Exercise 9.8 The Anscombe quartet8 is a famous example dataset, where we have four pairs of
variables that have almost identical means, variances, and linear correlation coefficients. Even
though they can be approximated by the same straight line, their scatter plots are vastly different.
Reflect upon this toy example.

9.2.4 Analysis of residuals
The residuals (i.e., the estimation errors – what we expected vs what we got), for the
chosen 6 observations are visualised in Figure 9.9.

r = y_train - y_pred # residuals
np.round(r[preview_indices], 2) # preview
array([-0.23, -12.17, 5.61, 9.17, 5.56, -5.36])

We wanted the squared residuals (on average – across all the points) to be as small

8 https://github.com/gagolews/teaching-data/raw/master/r/anscombe.csv

https://github.com/gagolews/teaching-data/raw/master/r/anscombe.csv

194 III MULTIDIMENSIONAL DATA

90 95 100 105 110
hip circumference

50

55

60

65

70

75

80

w
ei

gh
t

fitted line
predicted output
residual
observed value (reference output)

Figure 9.9. Example residuals in a simple linear regression task.

as possible. The least squares method assures that this is the case relative to the chosen
model, i.e., a linear one. Nonetheless, it still does notmean that what we obtained con-
stitutes a goodfit to the trainingdata.Thus,weneed to perform the analysis of residuals.

Interestingly, the average of residuals is always zero:

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖) = 0.

Therefore, if wewant to summarise the residuals into a single number, we can use, for
example, the root mean squared error instead:

RMSE(𝐲, ̂𝐲) =
√
√√
⎷

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2.

np.sqrt(np.mean(r**2))
6.948470091176111

Hopefullywe can see thatRMSE is a functionof SSR thatwe sought tominimise above.

Alternatively, we can compute the mean absolute error:

MAE(𝐲, ̂𝐲) = 1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖|.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 195

np.mean(np.abs(r))
5.207073583769202

MAE is nicely interpretable: itmeasures by howmany kilogramswe err onaverage. Not
bad.

Exercise 9.9 Fit a regression line explaining weight as a function of the waist circumference
and compute the corresponding RMSE and MAE. Are they better than when hip circumference
is used as an explanatory variable?

Note Generally, fitting simple (involving one independent variable) linearmodels can
only make sense for highly linearly correlated variables. Interestingly, if 𝒚 and 𝒙 are
both standardised, and 𝑟 is their Pearson’s coefficient, then the least squares solution
is given by 𝑦 = 𝑟𝑥.

To verify whether a fitted model is not extremely wrong (e.g., when we fit a linear
model to data that clearly follows a different functional relationship), a plot of resid-
uals against the fitted values can be of help; see Figure 9.10. Ideally, the points are
expected to be aligned totally at random therein, without any dependence structure
(homoscedasticity).

plt.plot(y_pred, r, "o", alpha=0.1)
plt.axhline(0, ls="--", color="red") # horizontal line at y=0
plt.xlabel("fitted values")
plt.ylabel("residuals")
plt.show()

Exercise 9.10 Compare9 the RMSEandMAE for the 𝑘-nearest neighbour regression curves de-
picted in the left side of Figure 9.7. Also, draw the residuals vs fitted plot.

For linear models fitted using the least squares method, it can be shown that it holds:

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̄𝑦)2 = 1
𝑛

𝑛
∑
𝑖=1

(̂𝑦𝑖 − ̄̂𝑦)2 + 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)
2 .

In other words, the variance of the dependent variable (left) can be decomposed into
the sum of the variance of the predictions and the averaged squared residuals. Mul-
tiplying the above by 𝑛, we have that the total sum of squares is equal to the explained
sum of squares plus the residual sum of squares:

TSS = ESS+ RSS.

9 In 𝑘-nearest neighbour regression, we are not aiming tominimise anything in particular. If themodel
is performing well with respect to some metrics such as RMSE or MAE, we can consider ourselves lucky.
Nevertheless, someasymptotic results guarantee the optimality of the outcomes generated for large sample
sizes (e.g., consistency); see, e.g., [22].

196 III MULTIDIMENSIONAL DATA

Figure 9.10. Residuals vs fitted values for the linearmodel explainingweight as a func-
tion of hip circumference. The variance of residuals slightly increases as ̂𝑦𝑖 increases.
This is not ideal, but it could be much worse than this.

We yearn for ESS to be as close to TSS as possible. Equivalently, it would be jolly nice
to have RSS equal to 0.

The coefficient of determination (unadjusted R-Squared, sometimes referred to as simply
the score) is a popular normalised, unitlessmeasure that is easier to interpret than raw
ESS or RSS when we have no domain-specific knowledge of themodelled problem. It
is given by:

𝑅2(𝐲, ̂𝐲) = ESS
TSS

= 1 − RSS
TSS

= 1 − 𝑠2
𝑟

𝑠2𝑦
.

1 - np.var(y_train-y_pred)/np.var(y_train)
0.8959634726270759

Thecoefficient of determination in the current context10 is thus the proportion of vari-
ance of the dependent variable explained by the independent variables in the model.
The closer it is to 1, the better. A dummymodel that always returns themean of 𝒚 gives
R-squared of 0.

In our case,𝑅2 ≃ 0.9 is quite high, which indicates a rather good fit.

Note (*) There are certain statistical results that can be relied upon provided that

10 For amodel that isnot generated via least squares, the coefficient of determination canalso benegative,
particularly when the fit is extremely bad. Also, note that this measure is dataset-dependent. Therefore, it
ought not to be used for comparing models explaining different dependent variables.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 197

the residuals are independent random variables with expectation zero and the same
variance (e.g., the Gauss–Markov theorem). Further, if they are normally distributed,
then we have several hypothesis tests available (e.g., for the significance of coeffi-
cients). This is why in various textbooks such assumptions are additionally verified.
But we do not go that far in this introductory course.

9.2.5 Multiple regression
As another example, let us fit a model involving two independent variables, arm and
hip circumference:

X_train = np.insert(body[:, [4, 5]], 2, 1, axis=1) # append a column of 1s
res = scipy.linalg.lstsq(X_train, y_train)
c = res[0]
np.round(c, 2)
array([1.3 , 0.9 , -63.38])

We fitted the plane:

weight = 1.3 arm circumference+ 0.9 hip circumference− 63.38.

We skip the visualisation part for we do not expect it to result in a readable plot: these
are multidimensional data.The coefficient of determination is:

y_pred = c @ X_train.T
r = y_train - y_pred
1-np.var(r)/np.var(y_train)
0.9243996585518783

Root mean squared error:

np.sqrt(np.mean(r**2))
5.923223870044695

Mean absolute error:

np.mean(np.abs(r))
4.431548244333898

It is a slightly better model than the previous one. We can predict the participants’
weights with better precision, at the cost of an increasedmodel’s complexity.

9.2.6 Variable transformation and linearisablemodels (*)
We are not restricted merely to linear functions of the input variables. By applying
arbitrary transformations upon the columns of the designmatrix, we can covermany
diverse scenarios.

198 III MULTIDIMENSIONAL DATA

For instance, a polynomial model involving two variables:

𝑔(𝑣1, 𝑣2) = 𝛽0 + 𝛽1𝑣1 + 𝛽2𝑣2
1 + 𝛽3𝑣1𝑣2 + 𝛽4𝑣2 + 𝛽5𝑣2

2,

can be obtained by substituting 𝑥1 = 1, 𝑥2 = 𝑣1, 𝑥3 = 𝑣2
1, 𝑥4 = 𝑣1𝑣2, 𝑥5 = 𝑣2,

𝑥6 = 𝑣2
2, and then fitting a linear model involving six variables:

𝑓 (𝑥1, 𝑥2, … , 𝑥6) = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑥6𝑥6.

Thedesignmatrix ismade of rubber, it can handle almost anything. If we have a linear
model, but with respect to transformed data, the algorithm does not care. This is the
beauty of the underlying mathematics; see also [10].

A creative modeller can also turn models such as 𝑢 = 𝑐𝑒𝑎𝑣 into 𝑦 = 𝑎𝑥 + 𝑏 by repla-
cing 𝑦 = log𝑢, 𝑥 = 𝑣, and 𝑏 = log 𝑐. There are numerous possibilities based on the
properties of the log and exp functions listed in Section 5.2. We call them linearisable
models.

As an example, let usmodel the life expectancy at birth in different countries as a func-
tion of their GDP per capita (PPP).

We will consider four different models:

1. 𝑦 = 𝑐1 + 𝑐2𝑥 (linear),
2. 𝑦 = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥2 (quadratic),

3. 𝑦 = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥2 + 𝑐4𝑥3 (cubic),

4. 𝑦 = 𝑐1 + 𝑐2 log 𝑥 (logarithmic).
Here are the helper functions that create the model matrices:

def make_model_matrix1(x):
return x.reshape(-1, 1)**[0, 1]

def make_model_matrix2(x):
return x.reshape(-1, 1)**[0, 1, 2]

def make_model_matrix3(x):
return x.reshape(-1, 1)**[0, 1, 2, 3]

def make_model_matrix4(x):
return (np.log(x)).reshape(-1, 1)**[0, 1]

make_model_matrix1.__name__ = "linear model"
make_model_matrix2.__name__ = "quadratic model"
make_model_matrix3.__name__ = "cubic model"
make_model_matrix4.__name__ = "logarithmic model"

model_matrix_makers = [

(continues on next page)

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 199

(continued from previous page)

make_model_matrix1,
make_model_matrix2,
make_model_matrix3,
make_model_matrix4

]
x_original = world[:, 0]
Xs_train = [make_model_matrix(x_original)

for make_model_matrix in model_matrix_makers]

Fitting the models:

y_train = world[:, 1]
cs = [scipy.linalg.lstsq(X_train, y_train)[0]

for X_train in Xs_train]

Their coefficients of determination are equal to:

for i in range(len(Xs_train)):
R2 = 1 - np.var(y_train - cs[i] @ Xs_train[i].T)/np.var(y_train)
print(f"{model_matrix_makers[i].__name__:20} R2={R2:.3f}")

linear model R2=0.431
quadratic model R2=0.567
cubic model R2=0.607
logarithmic model R2=0.651

The logarithmic model is thus the best (out of the models we considered). The four
models are depicted in Figure 9.11.

plt.plot(x_original, y_train, "o", alpha=0.1)
_x = np.linspace(x_original.min(), x_original.max(), 101).reshape(-1, 1)
for i in range(len(model_matrix_makers)):

_y = cs[i] @ model_matrix_makers[i](_x).T
plt.plot(_x, _y, label=model_matrix_makers[i].__name__)

plt.legend()
plt.xlabel("per capita GDP PPP")
plt.ylabel("life expectancy (years)")
plt.show()

Exercise 9.11 Draw box plots and histograms of residuals for each model as well as the scatter
plots of residuals vs fitted values.

9.2.7 Descriptive vs predictive power (*)
We approximated the life vs GDP relationship using a few different functions. Never-
theless, we see that the above quadratic and cubicmodels possibly do notmakemuch
sense, semantically speaking. Sure, as far as individual points in the training set are con-
cerned, they do fit the data better than the linear model. After all, they have smaller
mean squared errors (again: at these given points). Looking at the way they behave,

200 III MULTIDIMENSIONAL DATA

0 20000 40000 60000 80000 100000 120000 140000
per capita GDP PPP

60

70

80

90

lif
e e

xp
ec

ta
nc

y (
ye

ar
s)

linear model
quadratic model
cubic model
logarithmic model

Figure 9.11. Different models for life expectancy vs GDP.

one does not need a university degree in economics/social policy to conclude that they
are not the best description of how the reality behaves (on average).

Important Naturally, a model’s goodness of fit to observed data tends to improve as
themodel’s complexity increases.TheRazorprinciple (byWilliamofOckhamet al.) ad-
vises that if some phenomenon can be explained inmany different ways, the simplest
explanation shouldbe chosen (donotmultiply entities [here: introduce independent vari-
ables] without necessity).

In particular, the more independent variables we have in the model, the greater the
𝑅2 coefficient will be. We can try correcting for this phenomenon by considering the
adjusted𝑅2:

𝑅̄2(𝐲, ̂𝐲) = 1 − (1 − 𝑅2(𝐲, ̂𝐲)) 𝑛 − 1
𝑛 − 𝑚 − 1,

which, to some extent, penalises more complex models.

Note (**) Model quality measures adjusted for the number of model parameters,𝑚,
can also be useful in automated variable selection. For example, the Akaike Informa-
tion Criterion is a popular measure given by:

AIC = 2𝑚 + 𝑛 log(SSR) − 𝑛 log𝑛.

Furthermore, the Bayes Information Criterion is defined via:

BIC = 𝑚 log𝑛 + 𝑛 log(SSR) − 𝑛 log𝑛.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 201

Unfortunately, they are both dependent on the scale of 𝒚.

We should also be interested in a model’s predictive power, i.e., how well does it gen-
eralise to data points that we do not have now (or pretend we do not have) but might
face in the future. As we observe the modelled reality only at a few different points,
the question is how themodel performs when filling the gaps between the dots it con-
nects.

In particular, wemust be careful when extrapolating the data, i.e., making predictions
outside of its usual domain. For example, the linear model predicts the following life
expectancy for an imaginary country with $500 000 per capita GDP:

cs[0] @ model_matrix_makers[0](np.array([500000])).T
array([164.3593753])

and the quadratic one gives:

cs[1] @ model_matrix_makers[1](np.array([500000])).T
array([-364.10630779])

Nonsense.

Example 9.12 Let us consider the following theoretical illustration. Assume that a true model
of some reality is 𝑦 = 5 + 3𝑥3.

def true_model(x):
return 5 + 3*(x**3)

Still, for some reasonwe are only able to gather a small (𝑛 = 25) sample from thismodel.What
is even worse, it is subject to somemeasurement error:

np.random.seed(42)
x = np.random.rand(25) # random xs on [0, 1]
y = true_model(x) + 0.2*np.random.randn(len(x)) # true_model(x) + noise

The least-squares fitting of 𝑦 = 𝑐1 + 𝑐2𝑥3 to the above gives:

X03 = x.reshape(-1, 1)**[0, 3]
c03 = scipy.linalg.lstsq(X03, y)[0]
ssr03 = np.sum((y-c03 @ X03.T)**2)
np.round(c03, 2)
array([5.01, 3.13])

which is not too far, but still somewhat11 distant from the true coefficients, 5 and 3.

We can also fit amore flexible cubic polynomial, 𝑦 = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥2 + 𝑐4𝑥3:
11 For large𝑛, we expect to pinpoint the true coefficients exactly. In our scenario (independent, normally

distributed errorswith the expectationof 0), the least squaresmethod is themaximum likelihood estimator
of the model parameters. As a consequence, it is consistent.

202 III MULTIDIMENSIONAL DATA

X0123 = x.reshape(-1, 1)**[0, 1, 2, 3]
c0123 = scipy.linalg.lstsq(X0123, y)[0]
ssr0123 = np.sum((y-c0123 @ X0123.T)**2)
np.round(c0123, 2)
array([4.89, 0.32, 0.57, 2.23])

In terms of the SSR, this more complexmodel of course explains the training data better:

ssr03, ssr0123
(1.061211115402956, 0.9619488226837543)

Yet, it is farther away from the truth (which, whilst performing the fitting task based only on
given 𝒙 and 𝒚, is unknown). We may thus say that the first model generalises better on yet-to-
be-observed data; see Figure 9.12 for an illustration.

_x = np.linspace(0, 1, 101)
plt.plot(x, y, "o")
plt.plot(_x, true_model(_x), "--", label="true model")
plt.plot(_x, c0123 @ (_x.reshape(-1, 1)**[0, 1, 2, 3]).T,

label="fitted model y=x**[0, 1, 2, 3]")
plt.plot(_x, c03 @ (_x.reshape(-1, 1)**[0, 3]).T,

label="fitted model y=x**[0, 3]")
plt.legend()
plt.show()

0.0 0.2 0.4 0.6 0.8 1.0

5.0

5.5

6.0

6.5

7.0

7.5

8.0 true model
fitted model y=x**[0, 1, 2, 3]
fitted model y=x**[0, 3]

Figure 9.12. The true (theoretical) model vs some guesstimates (fitted based on noisy
data). More degrees of freedom is not always better.

Example 9.13 (**) We defined the sum of squared residuals (and its function, the root mean
squared error) by means of the averaged deviation from the reference values. They are subject to

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 203

error themselves, though. Even though they are our best-shot approximation of the truth, they
should be taken with a degree of scepticism.

In the above example, given the true (reference) model 𝑓 defined over the domain𝐷 (in our case,
𝑓 (𝑥) = 5+3𝑥3 and𝐷 = [0, 1]) and an empirically fittedmodel ̂𝑓 , we can compute the square
root of the integrated squared error over the whole𝐷:

RMSE(𝑓 , ̂𝑓) = √∫
𝐷

(𝑓 (𝑥) − ̂𝑓 (𝑥))2 𝑑𝑥.

For polynomials and other simple functions, RMSE can be computed analytically. More gener-
ally, we can approximate it numerically by sampling the above at sufficiently many points and
applying the trapezoidal rule (e.g., [74]). As this can be an educative programming exercise, be-
lowwe consider a range of polynomial models of different degrees.

cs, rmse_train, rmse_test = [], [], [] # result containers
ps = np.arange(1, 10) # polynomial degrees
for p in ps: # for each polynomial degree:

c = scipy.linalg.lstsq(x.reshape(-1, 1)**np.arange(p+1), y)[0] # fit
cs.append(c)

y_pred = c @ (x.reshape(-1, 1)**np.arange(p+1)).T # predictions
rmse_train.append(np.sqrt(np.mean((y-y_pred)**2))) # RMSE

_x = np.linspace(0, 1, 101) # many _xs
_y = c @ (_x.reshape(-1, 1)**np.arange(p+1)).T # f(_x)
_r = (true_model(_x) - _y)**2 # residuals
rmse_test.append(np.sqrt(0.5*np.sum(

np.diff(_x)*(_r[1:]+_r[:-1]) # trapezoidal rule for integration
)))

plt.plot(ps, rmse_train, label="RMSE (training set)")
plt.plot(ps, rmse_test, label="RMSE (theoretical)")
plt.legend()
plt.yscale("log")
plt.xlabel("model complexity (polynomial degree)")
plt.show()

Figure 9.13 shows that a model’s ability to make correct generalisations onto unseen data im-
proves as the complexity increases, at least initially. However, then it becomes worse. It is quite a
typical behaviour. In fact, the model with the smallest RMSE on the training set, overfits to the
input sample, see Figure 9.14.

plt.plot(x, y, "o")
plt.plot(_x, true_model(_x), "--", label="true model")
for i in [0, 1, 8]:

plt.plot(_x, cs[i] @ (_x.reshape(-1, 1)**np.arange(ps[i]+1)).T,
label=f"fitted degree-{ps[i]} polynomial")

plt.legend()
plt.show()

204 III MULTIDIMENSIONAL DATA

1 2 3 4 5 6 7 8 9
model complexity (polynomial degree)

10 1

2 × 10 1

3 × 10 1
RMSE (training set)
RMSE (theoretical)

Figure 9.13. Small RMSE on training data does not necessarily imply good generalisa-
tion abilities.

0.0 0.2 0.4 0.6 0.8 1.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0 true model
fitted degree-1 polynomial
fitted degree-2 polynomial
fitted degree-9 polynomial

Figure 9.14. Under- and overfitting to training data.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 205

Important When evaluating a model’s quality in terms of predictive power on un-
seen data, we should go beyond inspecting its behaviour merely on the points from
the training sample. As the truth is usually not known (if it were, we would not need
any guessing), a common approach in case where we have a dataset of a considerable
size is to divide it (randomly; see Section 10.5.4) into two parts:

• training sample (say, 60%) – used to fit a model,

• test sample (the remaining 40%) – used to assess its quality (e.g., by means of
RMSE).

This might emulate an environment where some new data arrives later, see Sec-
tion 12.3.3 for more details.

Furthermore, if model selection is required, we may apply a training/validation/test
split (say, 60/20/20%; see Section 12.3.4). Here, many models are constructed on the
training set, the validation set is used to compute the metrics and choose the best
model, and then the test set gives the final model’s valuation to assure its useful-
ness/uselessness (because we do not want it to overfit to the test set).

Overall,modelsmust never be blindly trusted.Common sensemust always be applied.
The fact that we fitted something using a sophisticated procedure on a dataset that
was hard to obtain does not justify its use. Mediocre models must be discarded, and
we should move on, regardless of how much time/resources we have invested whilst
developing them. Too many bad models go into production and make our daily lives
harder. We need to end this madness.

9.2.8 Fitting regressionmodels with scikit-learn (*)
scikit-learn12 (sklearn; [72]) is a huge Python package built on top of numpy, scipy,
and matplotlib. It has a consistent API and implements or provides wrappers for
many regression, classification, clustering, and dimensionality reduction algorithms
(amongst others).

Important scikit-learn is very convenient. Nevertheless, it permits us to fit models
even when we do not understand themathematics behind them.This is dangerous: it
is like driving a sports car without the necessary skills and, at the same time, wearing
a blindfold. Advanced students and practitioners will appreciate it, but if used by be-
ginners, it needs to be handled with care. We should not mistake something’s being
easily accessible with its being safe to use. Remember that if we are given a procedure
for which we are not able to provide its definition/mathematical properties/explain
its idealised version using pseudocode, we are expected to refrain from using it (see
Rule#7).

12 https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html

206 III MULTIDIMENSIONAL DATA

Because of the above, we shall only present a quick demo of scikit-learn’s API. Let us
do that by fitting amultiple linear regressionmodel for, again, weight as a function of
the arm and the hip circumference:

X_train = body[:, [4, 5]]
y_train = body[:, 0]

In scikit-learn, once we construct an object representing the model to be fitted, the
fitmethod determines the optimal parameters.

import sklearn.linear_model
lm = sklearn.linear_model.LinearRegression(fit_intercept=True)
lm.fit(X_train, y_train)
lm.intercept_, lm.coef_
(-63.38342541094772, array([1.30457807, 0.8986582]))

We, of course, obtained the same solution as with scipy.linalg.lstsq.

Computing the predicted values can be done via the predictmethod. For example, we
can calculate the coefficient of determination:

y_pred = lm.predict(X_train)
import sklearn.metrics
sklearn.metrics.r2_score(y_train, y_pred)
0.9243996585518783

Theabove function is convenient, but canwe really recall the formula for the score and
what it measures?We should always be able to do that.

9.2.9 Ill-conditionedmodelmatrices (*)
Our approach to regression analysis relies on solving an optimisation problem (the
method least squares). Nevertheless, sometimes the “optimal” solution that the al-
gorithm returnsmight have nothing to do with the trueminimum. And this is despite
the fact thatwehave the theoretical results stating that the solution is unique13 (the ob-
jective is convex). The problem stems from our using the computer’s finite-precision
floating point arithmetic; compare Section 5.5.6.

Let us fit a degree-4 polynomial to the life expectancy vs per capita GDP dataset.

x_original = world[:, 0]
X_train = (x_original.reshape(-1, 1))**[0, 1, 2, 3, 4]
y_train = world[:, 1]
cs = dict()

We store the estimatedmodel coefficients in a dictionary because manymethods will
follow next. First, scipy:

13There are methods in statistical learning where there might be multiple local minima – this is even
more difficult; see Section 12.4.4.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 207

res = scipy.linalg.lstsq(X_train, y_train)
cs["scipy_X"] = res[0]
cs["scipy_X"]
array([2.33103950e-16, 6.42872371e-12, 1.34162021e-07,
-2.33980973e-12, 1.03490968e-17])

If we drew the fitted polynomial now (see Figure 9.15), we would see that the fit is
unbelievably bad.The result returned by scipy.linalg.lstsq is now not at all optimal.
All coefficients are approximately equal to 0.

It turns out that the fitting problem is extremely ill-conditioned (and it is not the al-
gorithm’s fault): GDPs range from very small to very large ones. Furthermore, tak-
ing them to the fourth power breeds numbers of ever greater range. Finding the least
squares solution involves some form of matrix inverse (not necessarily directly) and
our model matrix may be close to singular (one that is not invertible).

As a measure of the model matrix’s ill-conditioning, we often use the condition num-
ber, denoted 𝜅(𝐗𝑇). It is the ratio of the largest to the smallest singular values14 of𝐗𝑇,
which are returned by the scipy.linalg.lstsqmethod itself:

s = res[3] # singular values of X_train.T
s
array([5.63097211e+20, 7.90771769e+14, 4.48366565e+09, 6.77575417e+04,
5.76116462e+00])

Note that they are already sorted nonincreasingly. The condition number 𝜅(𝐗𝑇) is
equal to:

s[0] / s[-1] # condition number (largest/smallest singular value)
9.774017021683106e+19

As a rule of thumb, if the condition number is 10𝑘, we are losing 𝑘 digits of numerical
precision when performing the underlying computations. As the above number is ex-
ceptionally large, we are thus currently faced with a very ill-conditioned problem. If
the values in 𝐗 or 𝐲 are perturbed even slightly, we might expect significant changes
in the computed regression coefficients.

Note (**)The least squares regression problem can be solved bymeans of the singular
value decomposition of the model matrix, see Section 9.3.4. Let 𝐔𝐒𝐐 be the SVD of
𝐗𝑇. Then 𝐜 = 𝐔𝐒−1𝐐𝐲, with 𝐒−1 = diag(1/𝑠1,1, … , 1/𝑠𝑚,𝑚). As 𝑠1,1 ≥ … ≥ 𝑠𝑚,𝑚
gives the singular values of𝐗𝑇, the aforementioned condition number can simply be
computed as 𝑠1,1/𝑠𝑚,𝑚.

14 (**) Being themselves the square roots of eigenvalues of𝐗𝑇𝐗. Equivalently,𝜅(𝐗𝑇) = ‖(𝐗𝑇)−1‖ ‖𝐗𝑇‖
with respect to the spectral norm. Seriously, we really need linear algebra when we even remotely think
about practising data science. Let us add it to our life skills bucket list.

208 III MULTIDIMENSIONAL DATA

Let us verify the method used by scikit-learn. As it fits the intercept separately, we
expect it to be slightly better-behaving. Nevertheless, let us keep in mind that it is
merely a wrapper around scipy.linalg.lstsqwith a different API.

import sklearn.linear_model
lm = sklearn.linear_model.LinearRegression(fit_intercept=True)
lm.fit(X_train[:, 1:], y_train)
cs["sklearn"] = np.r_[lm.intercept_, lm.coef_]
cs["sklearn"]
array([6.92257708e+01, 5.05752755e-13, 1.38835643e-08,
-2.18869346e-13, 9.09347772e-19])

Here is the condition number of the underlying model matrix:

lm.singular_[0] / lm.singular_[-1]
1.402603229842854e+16

Thecondition number is also enormous. Still, scikit-learndid notwarn us about this
being the case (insert frowning face emoji here).Hadwe trusted the solution returned
by it, we would end up with conclusions from our data analysis built on sand. As we
said in Section 9.2.8, the package designers assumed that the users know what they
are doing.This is okay, we are all adults here, although some of us are still learning.

Overall, if themodelmatrix is close to singular, the computation of its inverse is prone
to enormous numerical errors. One way of dealing with this is to remove highly cor-
related variables (the multicollinearity problem). Interestingly, standardisation can
sometimesmake the fitting more numerically stable.

Let 𝐙 be a standardised version of the model matrix 𝐗 with the intercept part (the
column of 1s) not included, i.e., with 𝐳⋅,𝑗 = (𝐱⋅,𝑗 − ̄𝑥𝑗)/𝑠𝑗 where ̄𝑥𝑗 and 𝑠𝑗 denotes
the arithmeticmean and standard deviation of the 𝑗-th column in𝐗. If (𝑑1, … , 𝑑𝑚−1)
is the least squares solution for 𝐙, then the least squares solution to the underlying
original regression problem is:

𝒄 = ⎛⎜⎜
⎝

̄𝑦 −
𝑚−1
∑
𝑗=1

𝑑𝑗
𝑠𝑗

̄𝑥𝑗,
𝑑1
𝑠1

, 𝑑2
𝑠2

, … , 𝑑𝑚−1
𝑠𝑚−1

⎞⎟⎟
⎠

,

with the first term corresponding to the intercept.

Let us test this approach with scipy.linalg.lstsq:

means = np.mean(X_train[:, 1:], axis=0)
stds = np.std(X_train[:, 1:], axis=0)
Z_train = (X_train[:, 1:]-means)/stds
resZ = scipy.linalg.lstsq(Z_train, y_train)
c_scipyZ = resZ[0]/stds
cs["scipy_Z"] = np.r_[np.mean(y_train) - (c_scipyZ @ means.T), c_scipyZ]
cs["scipy_Z"]

(continues on next page)

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 209

(continued from previous page)

array([6.35946784e+01, 1.04541932e-03, -2.41992445e-08,
2.39133533e-13, -8.13307828e-19])

The condition number is:

s = resZ[3]
s[0] / s[-1]
139.42792257372344

This is still far from perfect (we would prefer a value close to 1) but nevertheless way
better.

Figure 9.15 depicts the three fitted models, each claiming to be the solution to the ori-
ginal regression problem. Note that, luckily, we know that in our case the logarithmic
model is better than the polynomial one.

plt.plot(x_original, y_train, "o", alpha=0.1)
_x = np.linspace(x_original.min(), x_original.max(), 101).reshape(-1, 1)
_X = _x**[0, 1, 2, 3, 4]
for lab, c in cs.items():

ssr = np.sum((y_train - c @ X_train.T)**2)
plt.plot(_x, c @ _X.T, label=f"{lab:10} SSR={ssr:.2f}")

plt.legend()
plt.ylim(20, 120)
plt.xlabel("per capita GDP PPP")
plt.ylabel("life expectancy (years)")
plt.show()

Important Always check the model matrix’s condition number.

Exercise 9.14 Check the condition numbers of all themodels fitted so far in this chapter via the
least squares method.

To be strict, if we read a paper in, say, social or medical sciences (amongst others)
where the researchers fit a regression model but do not provide the model matrix’s
condition number, it is worthwhile to doubt the conclusions they make.

On a final note, we might wonder why the standardisation is not done automatically
by the least squares solver. As usual with most numerical methods, there is no one-
fits-all solution: e.g., when there are columns of extremely small variance or there are
outliers in data.This iswhyweneed to study all the topics deeply: to be able to respond
flexibly to many different scenarios ourselves.

210 III MULTIDIMENSIONAL DATA

0 20000 40000 60000 80000 100000 120000 140000
per capita GDP PPP

20

40

60

80

100

120

lif
e e

xp
ec

ta
nc

y (
ye

ar
s)

scipy_X SSR=562307.49
sklearn SSR=6018.16
scipy_Z SSR=4334.68

Figure 9.15. Ill-conditionedmodel matrix can give a very wrongmodel.

9.3 Finding interesting combinations of variables (*)
9.3.1 Dot products, angles, collinearity, and orthogonality
Let us note that the dot product (Section 8.3) has a nice geometrical interpretation:

𝒙 ⋅ 𝒚 = ‖𝒙‖ ‖𝒚‖ cos 𝛼,

where 𝛼 is the angle between two given vectors 𝒙, 𝒚 ∈ ℝ𝑛. In plain English, it is the
product of the magnitudes of the two vectors and the cosine of the angle between
them.

We can retrieve the cosine part by computing the dot product of the normalised vectors,
i.e., such that their magnitudes are equal to 1:

cos 𝛼 = 𝒙
‖𝒙‖ ⋅ 𝒚

‖𝒚‖ .

For example, consider two vectors inℝ2, 𝒖 = (1/2, 0) and 𝒗 = (√2/2, √2/2), which
are depicted in Figure 9.16.

u = np.array([0.5, 0])
v = np.array([np.sqrt(2)/2, np.sqrt(2)/2])

Their dot product is equal to:

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 211

np.sum(u*v)
0.3535533905932738

The dot product of their normalised versions, i.e., the cosine of the angle between
them is:

u_norm = u/np.sqrt(np.sum(u*u))
v_norm = v/np.sqrt(np.sum(v*v)) # BTW: this vector is already normalised
np.sum(u_norm*v_norm)
0.7071067811865476

The angle itself can be determined by referring to the inverse of the cosine function,
i.e., arccosine.

np.arccos(np.sum(u_norm*v_norm)) * 180/np.pi
45.0

Notice that we converted the angle from radians to degrees.

0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[0.500, 0.000]

[0.707, 0.707]

Figure 9.16. Example vectors and the angle between them.

Important If two vectors are collinear (codirectional, one is a scaled version of another,
angle0), thencos 0 = 1. If theypoint inoppositedirections (±𝜋 = ±180∘ angle), then
cos±𝜋 = −1. For vectors that are orthogonal (perpendicular,±𝜋

2 = ±90∘ angle), we
get cos±𝜋

2 = 0.

Note (**) The standard deviation 𝑠 of a vector 𝒙 ∈ ℝ𝑛 that has already been centred

212 III MULTIDIMENSIONAL DATA

(whose components’ mean is 0) is a scaled version of its magnitude, i.e., 𝑠 = ‖𝒙‖/√𝑛.
Looking at the definition of the Pearson linear correlation coefficient (Section 9.1.1),
we see that it is the dot product of the standardised versions of two vectors 𝒙 and 𝒚
divided by the number of elements therein. If the vectors are centred, we can rewrite
the formula equivalently as 𝑟(𝒙, 𝒚) = 𝒙

‖𝒙‖ ⋅ 𝒚
‖𝒚‖ and thus 𝑟(𝒙, 𝒚) = cos 𝛼. It is not easy to

imagine vectors in high-dimensional spaces, but from this observationwe can at least
imply the fact that 𝑟 is bounded between -1 and 1. In this context, being not linearly
correlated corresponds to the vectors’ orthogonality.

9.3.2 Geometric transformations of points
For certain square matrices of size𝑚 × 𝑚, matrix multiplication can be thought of as
an application of the corresponding geometrical transformation of points inℝ𝑚

Let𝐗 be amatrix of shape 𝑛 × 𝑚, which we treat as representing the coordinates of 𝑛
points in an𝑚-dimensional space. For instance, if we are given a diagonal matrix:

𝐒 = diag(𝑠1, 𝑠2, … , 𝑠𝑚) =
⎡⎢⎢⎢
⎣

𝑠1 0 … 0
0 𝑠2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑠𝑚

⎤⎥⎥⎥
⎦

,

then 𝐗𝐒 represents scaling (stretching) with respect to the individual axes of the co-
ordinate system because:

𝐗𝐒 =
⎡
⎢
⎢
⎢
⎢
⎣

𝑠1𝑥1,1 𝑠2𝑥1,2 … 𝑠𝑚𝑥1,𝑚
𝑠1𝑥2,1 𝑠2𝑥2,2 … 𝑠𝑚𝑥2,𝑚

⋮ ⋮ ⋱ ⋮
𝑠1𝑥𝑛−1,1 𝑠2𝑥𝑛−1,2 … 𝑠𝑚𝑥𝑛−1,𝑚
𝑠1𝑥𝑛,1 𝑠2𝑥𝑛,2 … 𝑠𝑚𝑥𝑛,𝑚

⎤
⎥
⎥
⎥
⎥
⎦

.

The above can be expressed in numpywithout referring to the matrix multiplication. A
notation like X * np.array([s1, s2, ..., sm]).reshape(1, -1)will suffice (element-
wise multiplication and proper shape broadcasting).

Furthermore, let 𝐐 is an orthonormal15 matrix, i.e., a square matrix whose columns
and rows are unit vectors (normalised), all orthogonal to each other:

• ‖𝐪𝑖,⋅‖ = 1 for all 𝑖,
• 𝐪𝑖,⋅ ⋅ 𝐪𝑘,⋅ = 0 for all 𝑖, 𝑘,
• ‖𝐪⋅,𝑗‖ = 1 for all 𝑗,
• 𝐪⋅,𝑗 ⋅ 𝐪⋅,𝑘 = 0 for all 𝑗, 𝑘.

15 Orthonormal matrices are sometimes simply referred to as orthogonal ones.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 213

In such a case,𝐗𝐐 represents a combination of rotations and reflections.

Important By definition, amatrix𝐐 is orthonormal if and only if𝐐𝑇𝐐 = 𝐐𝐐𝑇 = 𝐈. It
is due to the cos±𝜋

2 = 0 interpretation of the dot products of normalised orthogonal
vectors.

In particular, thematrix representing the rotation inℝ2 about the origin (0, 0) by the
counterclockwise angle 𝛼:

𝐑(𝛼) = [cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼] ,

is orthonormal (which can be easily verified using the basic trigonometric equalities).
Furthermore:

[1 0
0 −1] and [−1 0

0 1] ,

represent the two reflections, one against the x- and the other against the y-axis, re-
spectively. Both are orthonormal matrices too.

Consider a dataset𝐗′ inℝ2:

np.random.seed(12345)
Xp = np.random.randn(10000, 2) * 0.25

and its scaled, rotated, and translated (shifted) version:

𝐗 = 𝐗′ [2 0
0 0.5] [cos 𝜋

6 sin 𝜋
6

− sin 𝜋
6 cos 𝜋

6
] + [3 2] .

t = np.array([3, 2])
S = np.diag([2, 0.5])
S
array([[2. , 0.],
[0. , 0.5]])
alpha = np.pi/6
Q = np.array([

[np.cos(alpha), np.sin(alpha)],
[-np.sin(alpha), np.cos(alpha)]

])
Q
array([[0.8660254, 0.5],
[-0.5 , 0.8660254]])
X = Xp @ S @ Q + t

We can consider𝐗 = 𝐗′𝐒𝐐+ 𝐭 a version of𝐗′ in a new coordinate system (basis), see

214 III MULTIDIMENSIONAL DATA

Figure 9.17. A dataset and its scaled, rotated, and shifted version.

Figure 9.17. Each column in the transformedmatrix is a shifted linear combination of
the columns in the original matrix:

𝐱⋅,𝑗 = 𝑡𝑗 +
𝑚

∑
𝑘=1

(𝑠𝑘,𝑘𝑞𝑘,𝑗)𝐱′
⋅,𝑘.

The computing of such linear combinations of columns is not rare during a dataset’s
preprocessing step, especially if they are on the same scale or are unitless. As amatter
of fact, the standardisation itself is a form of scaling and translation.

Exercise 9.15 Assume that we have a dataset with two columns representing the number of
apples and the number of oranges in clients’ baskets.What orthonormal and scaling transforms
should be applied to obtain a matrix that gives the total number of fruits and surplus apples
(e.g., to convert a row (4, 7) to (11, −3))?

9.3.3 Matrix inverse
The inverse of a squarematrix𝐀 (if it exists) is denoted by𝐀−1. It is thematrix fulfilling
the identity:

𝐀−1𝐀 = 𝐀𝐀−1 = 𝐈.

Noting that the identity matrix 𝐈 is the neutral element of the matrix multiplication,
the above is thus the analogue of the inverse of a scalar: something like3⋅3−1 = 3⋅ 1

3 =
1
3 ⋅ 3 = 1.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 215

Important For any invertible matrices of admissible shapes, it might be shown that
the following noteworthy properties hold:

• (𝐀−1)𝑇 = (𝐀𝑇)−1,

• (𝐀𝐁)−1 = 𝐁−1𝐀−1,

• a matrix equality 𝐀 = 𝐁𝐂 holds if and only if 𝐀𝐂−1 = 𝐁𝐂𝐂−1 = 𝐁; this is also
equivalent to𝐁−1𝐀 = 𝐁−1𝐁𝐂 = 𝐂.

Matrix inverse to identify the inverses of geometrical transformations. Knowing that
𝐗 = 𝐗′𝐒𝐐 + 𝐭, we can recreate the original matrix by applying:

𝐗′ = (𝐗 − 𝐭)(𝐒𝐐)−1 = (𝐗 − 𝐭)𝐐−1𝐒−1.

It is worth knowing that if 𝐒 = diag(𝑠1, 𝑠2, … , 𝑠𝑚) is a diagonal matrix, then its in-
verse is 𝐒−1 = diag(1/𝑠1, 1/𝑠2, … , 1/𝑠𝑚), whichwe can denote as (1/𝐒). In addition,
the inverse of an orthonormal matrix𝐐 is always equal to its transpose,𝐐−1 = 𝐐𝑇.
Luckily, we will not be inverting other matrices in this introductory course.

As a consequence:

𝐗′ = (𝐗 − 𝐭)𝐐𝑇(1/𝐒).

Let us verify this numerically (testing equality up to some inherent round-off error):

np.allclose(Xp, (X-t) @ Q.T @ np.diag(1/np.diag(S)))
True

9.3.4 Singular value decomposition
It turns out that given any real 𝑛 × 𝑚matrix𝐗with 𝑛 ≥ 𝑚, we can find an interesting
scaling and orthonormal transform that, when applied on a dataset whose columns
are already normalised, yields exactly𝐗.
Namely, the singular value decomposition (SVD in the so-called compact form) is a
factorisation:

𝐗 = 𝐔𝐒𝐐,

where:

• 𝐔 is an 𝑛 × 𝑚 semi-orthonormal matrix (its columns are orthonormal vectors; it
holds𝐔𝑇𝐔 = 𝐈),

• 𝐒 is an𝑚 × 𝑚 diagonal matrix such that 𝑠1,1 ≥ 𝑠2,2 ≥ … ≥ 𝑠𝑚,𝑚 ≥ 0,
• 𝐐 is an𝑚 × 𝑚 orthonormal matrix.

216 III MULTIDIMENSIONAL DATA

Important In data analysis, we usually apply the SVD on matrices that have already
been centred (so that their columnmeans are all 0).

For example:

import scipy.linalg
n = X.shape[0]
X_centred = X - np.mean(X, axis=0)
U, s, Q = scipy.linalg.svd(X_centred, full_matrices=False)

And now:

U[:6, :] # preview first few rows
array([[-0.00195072, 0.00474569],
[-0.00510625, -0.00563582],
[0.01986719, 0.01419324],
[0.00104386, 0.00281853],
[0.00783406, 0.01255288],
[0.01025205, -0.0128136]])

Thenorms of all the columns in𝐔 are all equal to 1 (and hence standard deviations are
1/√𝑛). Consequently, they are on the same scale:

np.std(U, axis=0), 1/np.sqrt(n) # compare
(array([0.01, 0.01]), 0.01)

What is more, they are orthogonal: their dot products are all equal to 0. Regarding
what we said about Pearson’s linear correlation coefficient and its relation to dot
products of normalised vectors, we imply that the columns in 𝐔 are not linearly cor-
related. In some sense, they form independent dimensions.

Now, it holds 𝐒 = diag(𝑠1, … , 𝑠𝑚), with the elements on the diagonal being:

s
array([49.72180455, 12.5126241])

The elements on the main diagonal of 𝐒 are used to scale the corresponding columns
in𝐔.The fact that they are ordered decreasinglymeans that the first column in𝐔𝐒has
the greatest standarddeviation, the second columnhas the secondgreatest variability,
and so forth.

S = np.diag(s)
US = U @ S
np.std(US, axis=0) # equal to s/np.sqrt(n)
array([0.49721805, 0.12512624])

Multiplying𝐔𝐒by𝐐 simply rotates and/or reflects thedataset.Thisbrings𝐔𝐒 to anew
coordinate system where, by construction, the dataset projected onto the direction

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 217

determined by the first row in 𝐐, i.e., 𝐪1,⋅ has the largest variance, projection onto
𝐪2,⋅ has the second largest variance, and so on.

Q
array([[0.86781968, 0.49687926],
[-0.49687926, 0.86781968]])

This is why we refer to the rows in𝐐 as principal directions (or components). Their scaled
versions (proportional to the standard deviations along them) are depicted in Fig-
ure 9.18. Note that we have more or less recreated the steps needed to construct 𝐗
from𝐗′ above (by the way we generated𝐗′, we expect it to have linearly uncorrelated
columns; yet,𝐗′ and𝐔 have different column variances).

plt.plot(X_centred[:, 0], X_centred[:, 1], "o", alpha=0.1)
plt.arrow(

0, 0, Q[0, 0]*s[0]/np.sqrt(n), Q[0, 1]*s[0]/np.sqrt(n), width=0.02,
facecolor="red", edgecolor="white", length_includes_head=True, zorder=2)

plt.arrow(
0, 0, Q[1, 0]*s[1]/np.sqrt(n), Q[1, 1]*s[1]/np.sqrt(n), width=0.02,
facecolor="red", edgecolor="white", length_includes_head=True, zorder=2)

plt.show()

Figure 9.18. Principal directions of an example dataset (scaled so that they are propor-
tional to the standard deviations along them).

9.3.5 Dimensionality reductionwith SVD
Let us consider the following example three-dimensional dataset.

218 III MULTIDIMENSIONAL DATA

chainlink = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/clustering/fcps_chainlink.csv")

Section 7.4 said that the plotting is always done on a two-dimensional surface (be it
the computer screen or book page). We can look at the dataset only from one angle at
a time.

In particular, a scatter plotmatrix only depicts the dataset from the perspective of the
axes of the Cartesian coordinate system (standard basis); see Figure 9.19 (we used a
function we defined in Section 7.4.3).

pairplot(chainlink, ["axis1", "axis2", "axis3"]) # our function
plt.show()

Figure 9.19. Views from the perspective of the main axes.

These viewpoints by nomeansmust reveal the true geometric structure of the dataset.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 219

However,weknow thatwe can rotate the virtual camera andfind somemore interesting
angle. It turns out that our dataset represents two nonintersecting rings, hopefully
visible Figure 9.20.

fig = plt.figure()
ax = fig.add_subplot(1, 3, 1, projection="3d", facecolor="#ffffff00")
ax.scatter(chainlink[:, 0], chainlink[:, 1], chainlink[:, 2])
ax.view_init(elev=45, azim=45, vertical_axis="z")
ax = fig.add_subplot(1, 3, 2, projection="3d", facecolor="#ffffff00")
ax.scatter(chainlink[:, 0], chainlink[:, 1], chainlink[:, 2])
ax.view_init(elev=37, azim=0, vertical_axis="z")
ax = fig.add_subplot(1, 3, 3, projection="3d", facecolor="#ffffff00")
ax.scatter(chainlink[:, 0], chainlink[:, 1], chainlink[:, 2])
ax.view_init(elev=10, azim=150, vertical_axis="z")
plt.show()

�

�

�

�

�

�

�

�

�

� � � �

�

�

�

�

�

�

�
�

�
�

Figure 9.20. Different views of the same dataset.

It turns out that we may find a noteworthy viewpoint using the SVD. Namely, we can
perform the decomposition of a centred dataset which we denote by𝐗:

𝐗 = 𝐔𝐒𝐐.

import scipy.linalg
X_centered = chainlink-np.mean(chainlink, axis=0)
U, s, Q = scipy.linalg.svd(X_centered, full_matrices=False)

Then, considering its rotated/reflected version:

𝐏 = 𝐗𝐐−1 = 𝐔𝐒,

220 III MULTIDIMENSIONAL DATA

we know that its first column has the highest variance, the second column has the
second highest variability, and so on. Itmight indeed beworth looking at that dataset
from thatmost informative perspective.

Figure 9.21 gives the scatter plot for 𝐩⋅,1 and 𝐩⋅,2. Maybe this does not reveal the true
geometric structure of the dataset (no single two-dimensional projection can do that),
but at least it is better than the initial ones (from the pairs plot).

P2 = U[:, :2] @ np.diag(s[:2]) # the same as (U@np.diag(s))[:, :2]
plt.plot(P2[:, 0], P2[:, 1], "o")
plt.axis("equal")
plt.show()

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Figure 9.21.The view from the two principal axes.

Whatwe just did is a kindof dimensionality reduction.We founda viewpoint (in the form
of an orthonormalmatrix, being amixture of rotations and reflections) on𝐗 such that
its orthonormal projection onto the first two axes of the Cartesian coordinate system
is the most informative16 (in terms of having the highest variance along these axes).

9.3.6 Principal component analysis
Principal component analysis (PCA) is a fancy name for the entire process involving our
brainstorming upon what happens along the projections onto the most variable di-
mensions. It can be used not only for data visualisation and deduplication, but also
for feature engineering (as it creates new columns that are linear combinations of ex-
isting ones).

16 (**) The Eckart–Young–Mirsky theorem states that 𝐔⋅,∶𝑘𝐒∶𝑘,∶𝑘𝐐∶𝑘,⋅ (where “∶ 𝑘” denotes “first 𝑘 rows
or columns”) is the best rank-𝑘 approximation of𝐗with respect to both the Frobenius and spectral norms.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 221

Let us consider a few chosen countrywise 2016 Sustainable Society Indices17.

ssi = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/ssi_2016_indicators.csv",
comment="#")

X = np.array(ssi.iloc[:, [3, 5, 13, 15, 19]]) # select columns, make matrix
n = X.shape[0]
X[:6, :] # preview
array([[9.32 , 8.13333333, 8.386 , 8.5757 , 5.46249573],
[8.74 , 7.71666667, 7.346 , 6.8426 , 6.2929302],
[5.11 , 4.31666667, 8.788 , 9.2035 , 3.91062849],
[9.61 , 7.93333333, 5.97 , 5.5232 , 7.75361284],
[8.95 , 7.81666667, 8.032 , 8.2639 , 4.42350654],
[10. , 8.65 , 1. , 1. , 9.66401848]])

Each index is on the scale from 0 to 10.These are, in this order:

1. Safe Sanitation,

2. Healthy Life,

3. Energy Use,

4. Greenhouse Gases,

5. Gross Domestic Product.

Above we displayed the data corresponding to the 6 following countries:

countries = list(ssi.iloc[:, 0]) # select the 1st column from the data frame
countries[:6] # preview
['Albania', 'Algeria', 'Angola', 'Argentina', 'Armenia', 'Australia']

This is a five-dimensional dataset. We cannot easily visualise it. Observing that the
pairs plot does not reveal too much is left as an exercise. Let us thus perform the SVD
decomposition of a standardised version of this dataset, 𝐙 (recall that the centring is
necessary, at the very least).

Z = (X - np.mean(X, axis=0))/np.std(X, axis=0)
U, s, Q = scipy.linalg.svd(Z, full_matrices=False)

The standard deviations of the data projected onto the consecutive principal compon-
ents (columns in𝐔𝐒) are:

s/np.sqrt(n)
array([2.02953531, 0.7529221 , 0.3943008 , 0.31897889, 0.23848286])

It is customary to check the ratios of the cumulative variances explained by the con-
secutive principal components, which is a normalised measure of their importances.
We can compute them by calling:

17 https://ssi.wi.th-koeln.de/

https://ssi.wi.th-koeln.de/

222 III MULTIDIMENSIONAL DATA

np.cumsum(s**2)/np.sum(s**2)
array([0.82380272, 0.93718105, 0.96827568, 0.98862519, 1.])

As in some sense the variability within the first two components covers c. 94% of the
variability of the whole dataset, we can restrict ourselves only to a two-dimensional
projection of this dataset (actually, we are quite lucky here – or someone has selected
these countrywise indices for us in a very clever fashion).

The rows in𝐐 define the loadings, which give the coefficients defining the linear com-
binations of the rows in𝐙 that correspond to the principal components.
Let us try to interpret them.

np.round(Q[0, :], 2) # loadings – the first principal axis
array([-0.43, -0.43, 0.44, 0.45, -0.47])

Thefirst row in𝐐 consists of similar values, but with different signs.We can consider
thema scaled version of the averageEnergyUse (column3),GreenhouseGases (4), and
MINUS Safe Sanitation (1), MINUSHealthy Life (2), MINUS Gross Domestic Product
(5). We could call this a measure of a country’s overall eco-unfriendliness(?) because
countries with low Healthy Life and high Greenhouse Gasses will score highly on this
scale.

np.round(Q[1, :], 2) # loadings – the second principal axis
array([0.52, 0.5 , 0.52, 0.45, -0.02])

The second row in 𝐐 defines a scaled version of the average of Safe Sanitation (1),
Healthy Life (2), Energy Use (3), and Greenhouse Gases (4), almost completely ignor-
ing theGDP (5). Canwe call it ameasure of industrialisation? Something like this. But
this naming is just for fun18.

Figure 9.22 is a scatter plot of the countries projected onto the said two principal dir-
ections. For readability, we only display a few chosen labels. This is merely a projec-
tion/approximation, but it might be an interesting one for some practitioners.

P2 = U[:, :2] @ np.diag(s[:2]) # == Y @ Q[:2, :].T
plt.plot(P2[:, 0], P2[:, 1], "o", alpha=0.1)
which = [# hand-crafted/artisan

141, 117, 69, 123, 35, 80, 93, 45, 15, 2, 60, 56, 14,
104, 122, 8, 134, 128, 0, 94, 114, 50, 34, 41, 33, 77,
64, 67, 152, 135, 148, 99, 149, 126, 111, 57, 20, 63

]
for i in which:

plt.text(P2[i, 0], P2[i, 1], countries[i], ha="center")
plt.axis("equal")

(continues on next page)

18 Nonetheless, someonemight take these results seriously and scribble a research thesis about it. Math-
ematics, unlike the brains of ordinary mortals, does not need our imperfect interpretations/fairy tales to
function properly. We needmore maths in our lives.

9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 223

(continued from previous page)

plt.xlabel("1st principal component (eco-unfriendliness?)")
plt.ylabel("2nd principal component (industrialisation?)")
plt.show()

3 2 1 0 1 2 3
1st principal component (eco-unfriendliness?)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2n
d

pr
in

cip
al

 co
m

po
ne

nt
 (i

nd
us

tr
ia

lis
at

io
n?

)

Turkmenistan
Russia

Kazakhstan

Singapore
Czech Republic Libya

Mongolia

Gabon

Botswana
Angola

Indonesia

Honduras

Bosnia-Herzegovina

Nigeria
Sierra Leone

Bangladesh

Tajikistan
Sri LankaAlbania

MontenegroPortugal
Greece

Cyprus

Estonia

Cuba

LebanonIsrael
Japan Zambia

Tanzania

Uzbekistan
Nepal

Venezuela

South Africa

Peru
Hungary

CambodiaIreland

Figure 9.22. An example principal component analysis of countries.

9.4 Further reading
Other approaches to regression via linear models include ridge and lasso, the latter
having thenice property of automatically getting rid of noninformative variables from
the model. Furthermore, instead of minimising squared residuals, we can also con-
sider, e.g., least absolute deviation.

There aremanyother approaches to dimensionality reduction, also nonlinear ones, in-
cluding kernel PCA, feature agglomeration via hierarchical clustering, autoencoders,
t-SNE, etc.

A popular introductory text in statistical learning is [47]. We recommend [2, 8, 9, 22,
24] for more advanced students. Computing-orientated students could benefit from
checking out [65].

224 III MULTIDIMENSIONAL DATA

9.5 Exercises
Exercise 9.16 Why correlation is not causation?

Exercise 9.17 What does the linear correlation of 0.9mean?What? about the rank correlation
of 0.9? And the linear correlation of 0.0?

Exercise 9.18 How is Spearman’s coefficient related to Pearson’s one?

Exercise 9.19 State the optimisation problem behind the least squares fitting of linear models.

Exercise 9.20 What are the different ways of the numerical summarising of residuals?

Exercise 9.21 Why is it important for the residuals to be homoscedastic?

Exercise 9.22 Is amore complexmodel always better?

Exercise 9.23 Whymust extrapolation be handled with care?

Exercise 9.24 Why did we say that novice users should refrain from using scikit-learn?

Exercise 9.25 What is the condition number of a model matrix and why is it worthwhile to
always check it?

Exercise 9.26 What is the geometrical interpretation of the dot product of two normalised vec-
tors?

Exercise 9.27 How can we verify if two vectors are orthonormal?What is an orthonormal pro-
jection?What is the inverse of an orthonormal matrix?

Exercise 9.28 What is the inverse of a diagonal matrix?

Exercise 9.29 Characterise the general properties of the threematrices obtained by performing
the singular value decomposition of a givenmatrix of shape 𝑛 × 𝑚.
Exercise 9.30 How canwe obtain the first principal component of a given centredmatrix?

Exercise 9.31 Howcanwe compute the ratios of the variances explainedby the consecutive prin-
cipal components?

Part IV

Heterogeneous data

10
Introducing data frames

numpy arrays are an extremely versatile tool for performing data analysis activities and
other numerical computations of various kinds. Even though it is theoretically pos-
sible otherwise, in practice, we only store elements of the same type there: most often
numbers.

pandas1 [63] is amongst over one hundred thousand2 open-source packages and repos-
itories that use numpy to provide additional datawrangling functionality. It was origin-
ally written byWesMcKinney but was heavily inspired by the data.frame3 objects in S
and R as well as tables in relational (think: SQL) databases and spreadsheets.

pandas defines a few classes, of which the most important are:

• DataFrame – for representing tabular data (matrix-like) with columns of possibly
different types, in particular a mix of numerical and categorical variables,

• Series – vector-like objects for storing individual columns,

• Indexand itsderivatives–vector-like (usually) objects for labelling individual rows
and columns in DataFrames and items in Series objects,

• SeriesGroupBy and DataFrameGroupBy – which model observations grouped by a
categorical variable or a combination of factors (Chapter 12),

together with manymethods for:

• transforming/aggregating/processingdata, also ingroupsdeterminedby categor-
ical variables or products thereof,

• reshaping (e.g., fromwide to long format) and joining datasets,

• importing/exporting data from/to various sources and formats, e.g., CSV and
HDF5 files or relational databases,

• handling missing data,

all of which we introduce in this part.

Before we delve into the world of pandas, let us point out that it is customary to load
this package under the following alias:

1 https://pandas.pydata.org/
2 https://libraries.io/pypi/numpy
3 Data frames were first introduced in the 1991 version of the S language [13].

https://pandas.pydata.org/
https://libraries.io/pypi/numpy

228 IV HETEROGENEOUS DATA

import pandas as pd

Important Let us repeat: pandas is built on top of numpy andmost objects therein can
be processed by numpy functions as well. Many other functions, e.g., in scikit-learn,
accept both DataFrame and ndarray objects, but often convert the former to the latter
internally to enable data processing using fast C/C++/Fortran routines.

What we have learnt so far4 still applies. But there is more, hence this part.

10.1 Creating data frames
Data frames can be created, amongst others, using the DataFrame class constructor,
which can be fed, for example, with a numpymatrix:

np.random.seed(123)
pd.DataFrame(

np.random.rand(4, 3),
columns=["a", "b", "c"]

)
a b c
0 0.696469 0.286139 0.226851
1 0.551315 0.719469 0.423106
2 0.980764 0.684830 0.480932
3 0.392118 0.343178 0.729050

Notice that rows and columns are labelled (and how readable that is).

A dictionary of vector-like objects of equal lengths is another common option:

np.random.seed(123)
df = pd.DataFrame(dict(

a = np.round(np.random.rand(5), 2),
b = [1, 2.5, np.nan, 4, np.nan],
c = [True, True, False, False, True],
d = ["A", "B", "C", None, "E"],
e = ["spam", "spam", "bacon", "spam", "eggs"],
f = np.array([

"2021-01-01", "2022-02-02", "2023-03-03", "2024-04-04", "2025-05-05"
], dtype="datetime64[D]"),
g = [

["spam"], ["bacon", "spam"], None, ["eggs", "bacon", "spam"], ["ham"]

(continues on next page)

4 If by any chance some overenthusiastic readers decided to start this superb book at this chapter, it is
now the time to go back to the Preface and learn everything in the right order. See you later.

10 INTRODUCING DATA FRAMES 229

(continued from previous page)

],
))
df
a b c d e f g
0 0.70 1.0 True A spam 2021-01-01 [spam]
1 0.29 2.5 True B spam 2022-02-02 [bacon, spam]
2 0.23 NaN False C bacon 2023-03-03 None
3 0.55 4.0 False None spam 2024-04-04 [eggs, bacon, spam]
4 0.72 NaN True E eggs 2025-05-05 [ham]

This illustrates the possibility of having columns of different types.

Exercise 10.1 Check out pandas.DataFrame.from_dict and from_records in the document-
ation5. Use them to create some example data frames.

Further, data frames can be read from files in different formats, for instance, CSV:

body = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_bmx_2020.csv",
comment="#")

body.head() # display first few rows (5 by default)
BMXWT BMXHT BMXARML BMXLEG BMXARMC BMXHIP BMXWAIST
0 97.1 160.2 34.7 40.8 35.8 126.1 117.9
1 91.1 152.7 33.5 33.0 38.5 125.5 103.1
2 73.0 161.2 37.4 38.0 31.8 106.2 92.0
3 61.7 157.4 38.0 34.7 29.0 101.0 90.5
4 55.4 154.6 34.6 34.0 28.3 92.5 73.2

Reading fromURLs and local files is also supported; compare Section 13.6.1.

Exercise 10.2 Check out other pandas.read_* functions in the pandas documentation. We
will be discussing some of them later.

10.1.1 Data frames arematrix-like
Data frames are modelled through numpymatrices. We can thus already feel quite at
home with them.

For example, a data frame, it is easy to fetch its number of rows and columns:

df.shape
(5, 7)

or the type of each column:

df.dtypes # returns a Series object; see below
a float64

(continues on next page)

5 https://pandas.pydata.org/docs

https://pandas.pydata.org/docs
https://pandas.pydata.org/docs

230 IV HETEROGENEOUS DATA

(continued from previous page)

b float64
c bool
d object
e object
f datetime64[s]
g object
dtype: object

Recall that numpy arrays are equipped with the dtype slot.

10.1.2 Series

There is a separate class for storing individual data frame columns: it is called Series.

s = df.loc[:, "a"] # extract the `a` column; alternatively: df.a
s
0 0.70
1 0.29
2 0.23
3 0.55
4 0.72
Name: a, dtype: float64

Data frames with one column are printed out slightly differently. We get the column
name at the top, but do not have the dtype information at the bottom.

s.to_frame() # or: pd.DataFrame(s)
a
0 0.70
1 0.29
2 0.23
3 0.55
4 0.72

Indexing will be discussed later.

Important It is crucial to know when we are dealing with a Series and when with a
DataFrame object as each of them defines a slightly different set of methods.

Wewill nowbe relyingonobject-orientated syntax (compareSection2.2.3)muchmore
frequently than before.

Example 10.3 By calling:

s.mean()
0.49800000000000005

we refer to pandas.Series.mean (which returns a scalar), whereas:

10 INTRODUCING DATA FRAMES 231

df.mean(numeric_only=True)
a 0.498
b 2.500
c 0.600
dtype: float64

uses pandas.DataFrame.mean (which yields a Series).

Look up these twomethods in the pandasmanual. Note that their argument list is slightly differ-
ent.

Objects of the class Series are vector-like:

s.shape
(5,)
s.dtype
dtype('float64')

They are wrappers around numpy arrays.

s.values
array([0.7 , 0.29, 0.23, 0.55, 0.72])

Most importantly, numpy functions can be called directly on them:

np.mean(s)
0.49800000000000005

As a consequence, what we covered in the part of this book that dealt with vector pro-
cessing still holds for data frame columns (but there will be more).

Series can also be named.

s.name
'a'

This is convenient, especially when we convert them to a data frame as the name sets
the label of the newly created column:

s.rename("spam").to_frame()
spam
0 0.70
1 0.29
2 0.23
3 0.55
4 0.72

232 IV HETEROGENEOUS DATA

10.1.3 Index

Another important class is called Index6. We use it for storing element or axes labels.

The index (lowercase) slot of a data frame stores an object of the class Index (or one of
its derivatives) that gives the row names:

df.index # row labels
RangeIndex(start=0, stop=5, step=1)

The above represents a sequence (0, 1, 2, 3, 4).

Furthermore, the column slot gives:

df.columns # column labels
Index(['a', 'b', 'c', 'd', 'e', 'f', 'g'], dtype='object')

Also, we can label the individual elements in Series objects:

s.index
RangeIndex(start=0, stop=5, step=1)

The set_indexmethod can be applied to make a data frame column act as a sequence
of row labels:

df2 = df.set_index("e")
df2
a b c d f g
e
spam 0.70 1.0 True A 2021-01-01 [spam]
spam 0.29 2.5 True B 2022-02-02 [bacon, spam]
bacon 0.23 NaN False C 2023-03-03 None
spam 0.55 4.0 False None 2024-04-04 [eggs, bacon, spam]
eggs 0.72 NaN True E 2025-05-05 [ham]

This Index object is named:

df2.index.name
'e'

We can also rename the axes on the fly:

df2.rename_axis(index="ROWS", columns="COLS")
COLS a b c d f g
ROWS
spam 0.70 1.0 True A 2021-01-01 [spam]
spam 0.29 2.5 True B 2022-02-02 [bacon, spam]
bacon 0.23 NaN False C 2023-03-03 None

(continues on next page)

6ThenameIndex is confusing not only because it clasheswith the index operator (square brackets), but
also the concept of an index in relational databases. In pandas, we can have nonunique row names.

10 INTRODUCING DATA FRAMES 233

(continued from previous page)

spam 0.55 4.0 False None 2024-04-04 [eggs, bacon, spam]
eggs 0.72 NaN True E 2025-05-05 [ham]

Having a named index slot is handywhenwe decide thatwewant to convert the vector
of row labels back to a standalone column:

df2.rename_axis(index="NEW_COLUMN").reset_index()
NEW_COLUMN a b c d f g
0 spam 0.70 1.0 True A 2021-01-01 [spam]
1 spam 0.29 2.5 True B 2022-02-02 [bacon, spam]
2 bacon 0.23 NaN False C 2023-03-03 None
3 spam 0.55 4.0 False None 2024-04-04 [eggs, bacon, spam]
4 eggs 0.72 NaN True E 2025-05-05 [ham]

There is also an option to get rid of the current index and to replace it with the default
label sequence, i.e., 0, 1, 2, …:

df2.reset_index(drop=True)
a b c d f g
0 0.70 1.0 True A 2021-01-01 [spam]
1 0.29 2.5 True B 2022-02-02 [bacon, spam]
2 0.23 NaN False C 2023-03-03 None
3 0.55 4.0 False None 2024-04-04 [eggs, bacon, spam]
4 0.72 NaN True E 2025-05-05 [ham]

Take note of the fact that reset_index, and many other methods that we have used so
far, do not modify the data frame in place.

Important Wewill soon get used to calling reset_index(drop=True) quite frequently,
sometimes more than once in a single series of commands.

Exercise 10.4 Use the pandas.DataFrame.renamemethod to change the name of the a column
in df to spam.

Also, a hierarchical index – one that is comprised of more than one level – is possible.
For example, here is a sorted (see Section 10.6.1) version of dfwith a new index based
on two columns at the same time:

df.sort_values("e", ascending=False).set_index(["e", "c"])
a b d f g
e c
spam True 0.70 1.0 A 2021-01-01 [spam]
True 0.29 2.5 B 2022-02-02 [bacon, spam]
False 0.55 4.0 None 2024-04-04 [eggs, bacon, spam]
eggs True 0.72 NaN E 2025-05-05 [ham]
bacon False 0.23 NaN C 2023-03-03 None

For the sake of readability, the consecutive repeated spams were not printed.

234 IV HETEROGENEOUS DATA

Example 10.5 Hierarchical indexesmight arise after aggregating data in groups. For example:

nhanes = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_p_demo_bmx_2020.csv",
comment="#").rename({

"BMXBMI": "bmival",
"RIAGENDR": "gender",
"DMDBORN4": "usborn"

}, axis=1)

In Chapter 12, we will get used to writing:

res = nhanes.groupby(["gender", "usborn"])["bmival"].mean()
res # BMI by gender and US born-ness
gender usborn
1 1 25.734110
2 27.405251
2 1 27.120261
2 27.579448
77 28.725000
99 32.600000
Name: bmival, dtype: float64

This returned a Series object with a hierarchical index. Let us fret not, though: reset_index
always comes to our rescue:

res.reset_index()
gender usborn bmival
0 1 1 25.734110
1 1 2 27.405251
2 2 1 27.120261
3 2 2 27.579448
4 2 77 28.725000
5 2 99 32.600000

10.2 Aggregating data frames
Here is another toy data frame:

np.random.seed(123)
df = pd.DataFrame(dict(

u = np.round(np.random.rand(5), 2),
v = np.round(np.random.randn(5), 2),
w = ["spam", "bacon", "spam", "eggs", "sausage"]

), index=["a", "b", "c", "d", "e"])
df

(continues on next page)

10 INTRODUCING DATA FRAMES 235

(continued from previous page)

u v w
a 0.70 0.32 spam
b 0.29 -0.05 bacon
c 0.23 -0.20 spam
d 0.55 1.98 eggs
e 0.72 -1.62 sausage

All numpy functions can be applied directly on individual columns, i.e., objects of the
type Series, because they are vector-like.

u = df.loc[:, "u"] # extract the `u` column (gives a Series; see below)
np.quantile(u, [0, 0.5, 1])
array([0.23, 0.55, 0.72])

Most numpy functions also work if they are fed with data frames, but we will need to
extract the numeric columnsmanually.

uv = df.loc[:, ["u", "v"]] # select two columns (a DataFrame; see below)
np.quantile(uv, [0, 0.5, 1], axis=0)
array([[0.23, -1.62],
[0.55, -0.05],
[0.72, 1.98]])

Sometimes the results will automatically be coerced to a Series object with the index
slot set appropriately:

np.mean(uv, axis=0)
u 0.498
v 0.086
dtype: float64

For convenience, many operations are also available as methods for the Series and
DataFrame classes, e.g., mean, median, min, max, quantile, var, std, and skew.

df.mean(numeric_only=True)
u 0.498
v 0.086
dtype: float64
df.quantile([0, 0.5, 1], numeric_only=True)
u v
0.0 0.23 -1.62
0.5 0.55 -0.05
1.0 0.72 1.98

Also note the describemethod, which returns a few statistics at the same time.

236 IV HETEROGENEOUS DATA

df.describe()
u v
count 5.000000 5.000000
mean 0.498000 0.086000
std 0.227969 1.289643
min 0.230000 -1.620000
25% 0.290000 -0.200000
50% 0.550000 -0.050000
75% 0.700000 0.320000
max 0.720000 1.980000

Exercise 10.6 Check out the pandas.DataFrame.agg method that can apply all aggregates
given by a list of functions. Compose a call equivalent to df.describe().

Note (*) Let us stress that abovewe see the corrected for bias (but still only asymptotic-

ally unbiased) version of standard deviation, given by√ 1
𝑛−1 ∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2; compare
Section 5.1. In pandas, stdmethods assume ddof=1 by default, whereas we recall that
numpy uses ddof=0.

np.round([u.std(), np.std(u), np.std(np.array(u)), u.std(ddof=0)], 3)
array([0.228, 0.204, 0.204, 0.204])

This is an unfortunate inconsistency between the two packages, but please do not
blame the messenger.

10.3 Transforming data frames
By applying the already well-known vectorised mathematical functions from numpy,
we can transform each data cell and return an object of the same type as the input
one.

np.exp(df.loc[:, "u"])
a 2.013753
b 1.336427
c 1.258600
d 1.733253
e 2.054433
Name: u, dtype: float64
np.exp(df.loc[:, ["u", "v"]])
u v
a 2.013753 1.377128
b 1.336427 0.951229
c 1.258600 0.818731

(continues on next page)

10 INTRODUCING DATA FRAMES 237

(continued from previous page)

d 1.733253 7.242743
e 2.054433 0.197899

When applying the binary arithmetic, relational, and logical operators on an object of
the class Series and a scalar or a numpy vector, the operations are performed element-
wisely – a style with which we are already familiar.

For instance, here is a standardised version of the u column:

u = df.loc[:, "u"]
(u - np.mean(u)) / np.std(u)
a 0.990672
b -1.020098
c -1.314357
d 0.255025
e 1.088759
Name: u, dtype: float64

Binary operators act on the elements with corresponding labels. For two objects hav-
ing identical index slots (this is the most common scenario), this is the same as ele-
mentwise vectorisation. For instance:

df.loc[:, "u"] > df.loc[:, "v"] # here: elementwise comparison
a True
b True
c True
d False
e True
dtype: bool

For transforming many numerical columns at once, it is worthwhile either to convert
them to a numeric matrix explicitly and then use the basic numpy functions:

uv = np.array(df.loc[:, ["u", "v"]])
uv2 = (uv-np.mean(uv, axis=0))/np.std(uv, axis=0)
uv2
array([[0.99067229, 0.20286225],
[-1.0200982 , -0.11790285],
[-1.3143573 , -0.24794275],
[0.25502455, 1.64197052],
[1.08875866, -1.47898717]])

or to use the pandas.DataFrame.applymethod which invokes a given function on each
column separately:

uv2 = df.loc[:, ["u", "v"]].apply(lambda x: (x-np.mean(x))/np.std(x))
uv2
u v

(continues on next page)

238 IV HETEROGENEOUS DATA

(continued from previous page)

a 0.990672 0.202862
b -1.020098 -0.117903
c -1.314357 -0.247943
d 0.255025 1.641971
e 1.088759 -1.478987

Anticipating what we cover in the next section, in both cases, we can write df.loc[:,
["u", "v"]] = uv2 to replace the old content. Also, new columns can be added based
on the transformed versions of the existing ones. For instance:

df.loc[:, "uv_squared"] = (df.loc[:, "u"] * df.loc[:, "v"])**2
df
u v w uv_squared
a 0.70 0.32 spam 0.050176
b 0.29 -0.05 bacon 0.000210
c 0.23 -0.20 spam 0.002116
d 0.55 1.98 eggs 1.185921
e 0.72 -1.62 sausage 1.360489

Example 10.7 (*) Binary operations on objects with different index slots are vectorised la-
belwisely:

x = pd.Series([1, 10, 1000, 10000, 100000], index=["a", "b", "a", "a", "c"])
x
a 1
b 10
a 1000
a 10000
c 100000
dtype: int64
y = pd.Series([1, 2, 3, 4, 5], index=["b", "b", "a", "d", "c"])
y
b 1
b 2
a 3
d 4
c 5
dtype: int64

And now:

x * y
a 3.0
a 3000.0
a 30000.0
b 10.0
b 20.0

(continues on next page)

10 INTRODUCING DATA FRAMES 239

(continued from previous page)

c 500000.0
d NaN
dtype: float64

Here, each element in the first Series named a was multiplied by each (there was only one)
element labelled a in the second Series. For d, there were no matches, hence the result’s being
marked as missing; compare Chapter 15.Thus, this behaves like a full outer join-type operation;
see Section 10.6.3.

The above is different from elementwise vectorisation in numpy:

np.array(x) * np.array(y)
array([1, 20, 3000, 40000, 500000])

Labelwise vectorisation can be useful in certain contexts. However, we need to be aware of this
(yet another) incompatibility between the two packages.

10.4 Indexing Series objects
Recall that each DataFrame and Seriesobject is equippedwith a slot called index,which
is an object of the class Index (or subclass thereof), giving the row and element labels,
respectively. It turns out that we may apply the index operator, [...], to subset these
objects not only through the indexers known from the numpy part (e.g., numerical ones,
i.e., by position) but also ones that pinpoint the items via their labels. That is quite a
lot of index-ing.

Let us study different forms thereof in very detail. For illustration, we will be playing
with the two following objects of class Series:

np.random.seed(123)
b = pd.Series(np.round(np.random.rand(10), 2))
b.index = np.random.permutation(np.arange(10))
b
2 0.70
1 0.29
8 0.23
7 0.55
9 0.72
4 0.42
5 0.98
6 0.68
3 0.48
0 0.39
dtype: float64

240 IV HETEROGENEOUS DATA

and:

c = b.copy()
c.index = list("abcdefghij")
c
a 0.70
b 0.29
c 0.23
d 0.55
e 0.72
f 0.42
g 0.98
h 0.68
i 0.48
j 0.39
dtype: float64

They consist of the same values, in the same order, but have different labels (index
slots). In particular, b’s labels are integers that do notmatch the physical element pos-
itions (where 0 would denote the first element, etc.).

Important For numpy vectors, we had four different indexing schemes: via a scalar
(extracts an element at a given position), a slice, an integer vector, and a logical vector.
Series objects are additionally labelled. Therefore, they can also be accessed through
the contents of the index slot.

10.4.1 Do not use [...] directly
Applying the index operator, [...], directly on Series is generally a bad idea:

b[0] # do not use it
0.39
b[[0]] # do not use it
0 0.39
dtype: float64

both do not select the first item, but the item labelled 0.

However:

b[:1] # do not use it
2 0.7
dtype: float64

and

c[0] # there is no label `0`... (do not use it)
0.7

(continues on next page)

10 INTRODUCING DATA FRAMES 241

(continued from previous page)

##
<string>:1: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`

both7 fall back to position-based indexing.

Confusing?Well, with some self-discipline, the solution is easy:

Important We should never apply [...] directly on Series nor DataFrame objects.

To avoid ambiguity,we refer to the loc[...] and iloc[...] accessors for the label- and
position-based filtering, respectively.

10.4.2 loc[...]

Series.loc[...] implements label-based indexing.

b.loc[0]
0.39

This returned the element labelled 0. On the other hand, c.loc[0]will raise a KeyError
because c consists of string labels only. But in this case, we can write:

c.loc["j"]
0.39

Next, we can use lists of labels to select a subset.

b.loc[[0, 1, 0]]
0 0.39
1 0.29
0 0.39

(continues on next page)

7 In pandas 1.5.2, b[:1] still used position-based indexing, i.e., it was equivalent to b.iloc[:1].
This behaviour is going to change in a backward-incompatible manner. This means that in future versions
of the package, the same code will generate the result corresponding to b.loc[:1]. Hence, we will get a
different number of items. Compare:

b.iloc[:1]

2 0.7
dtype: float64

b.loc[:1]

2 0.70
1 0.29
dtype: float64

Just never apply [...] directly on Series nor DataFrame objects and youwill not have to worry about
remembering all the exceptions.

242 IV HETEROGENEOUS DATA

(continued from previous page)

dtype: float64
c.loc[["j", "b", "j"]]
j 0.39
b 0.29
j 0.39
dtype: float64

The result is always of the type Series.

Slicing behaves differently as the range is inclusive (sic!8) at both sides:

b.loc[1:7]
1 0.29
8 0.23
7 0.55
dtype: float64
b.loc[0:4:-1]
0 0.39
3 0.48
6 0.68
5 0.98
4 0.42
dtype: float64
c.loc["d":"g"]
d 0.55
e 0.72
f 0.42
g 0.98
dtype: float64

The above calls return all elements between the two indicated labels.

Note Be careful that if there are repeated labels, then we will be returning all (sic!9)
the matching items:

d = pd.Series([1, 2, 3, 4], index=["a", "b", "a", "c"])
d.loc["a"]
a 1
a 3
dtype: int64

The result is not a scalar but a Series object.

8 Inconsistency; but makes sense when selecting column ranges.
9 Inconsistency; but makes sense for hierarchical indexes with repeated.

10 INTRODUCING DATA FRAMES 243

10.4.3 iloc[...]

Here are some examples of position-based indexing with the iloc[...] accessor. It
is worth stressing that, fortunately, its behaviour is consistent with its numpy coun-
terpart, i.e., the ordinary square brackets applied on objects of the class ndarray. For
example:

b.iloc[0] # the same: c.iloc[0]
0.7

returns the first element.

b.iloc[1:7] # the same: b.iloc[1:7]
1 0.29
8 0.23
7 0.55
9 0.72
4 0.42
5 0.98
dtype: float64

returns the second, third, …, seventh element (not including b.iloc[7], i.e., the eight
one).

10.4.4 Logical indexing
Indexing using a logical vector-like object is also available. For this purpose, we will
usually be using loc[...] with either a logical Series object of identical index slot as
the subsetted object, or a Boolean numpy vector.

b.loc[(b > 0.4) & (b < 0.6)]
7 0.55
4 0.42
3 0.48
dtype: float64

For iloc[...], the indexer must be unlabelled, e.g., be an ordinary numpy vector.

`

10.5 Indexing data frames
10.5.1 loc[...] and iloc[...]

For data frames, iloc and loc can be applied too. Now, however, they require two ar-
guments: a row and a column selector. For example:

244 IV HETEROGENEOUS DATA

np.random.seed(123)
df = pd.DataFrame(dict(

u = np.round(np.random.rand(5), 2),
v = np.round(np.random.randn(5), 2),
w = ["spam", "bacon", "spam", "eggs", "sausage"],
x = [True, False, True, False, True]

))

And now:

df.loc[df.loc[:, "u"] > 0.5, "u":"w"]
u v w
0 0.70 0.32 spam
3 0.55 1.98 eggs
4 0.72 -1.62 sausage

It selected the rows where the values in the u column are greater than 0.5 and then
returns all columns between u and w (inclusive!).

Furthermore:

df.iloc[:3, :].loc[:, ["u", "w"]]
u w
0 0.70 spam
1 0.29 bacon
2 0.23 spam

It fetched the first three rows (by position; iloc is necessary) and then selects two in-
dicated columns.

Compare this to:

df.loc[:3, ["u", "w"]] # df[:3, ["u", "w"]] does not even work; please don't
u w
0 0.70 spam
1 0.29 bacon
2 0.23 spam
3 0.55 eggs

which has four (!) rows.

Important Getting a scrambled numeric index that does not match the physical pos-
itions is quite easy, for instance, in the context of data frame sorting (Section 10.6.1):

df2 = df.sort_values("v")
df2
u v w x
4 0.72 -1.62 sausage True
2 0.23 -0.20 spam True

(continues on next page)

10 INTRODUCING DATA FRAMES 245

(continued from previous page)

1 0.29 -0.05 bacon False
0 0.70 0.32 spam True
3 0.55 1.98 eggs False

Note how different are the following results

df2.loc[:3, :] # up to label 3, inclusive
u v w x
4 0.72 -1.62 sausage True
2 0.23 -0.20 spam True
1 0.29 -0.05 bacon False
0 0.70 0.32 spam True
3 0.55 1.98 eggs False
df2.iloc[:3, :] # always: first three
u v w x
4 0.72 -1.62 sausage True
2 0.23 -0.20 spam True
1 0.29 -0.05 bacon False

Important We can frequently write df.u as a shorter version of df.loc[:, "u"].This
improves the readability in contexts such as:

df.loc[(df.u >= 0.5) & (df.u <= 0.7), ["u", "w"]]
u w
0 0.70 spam
3 0.55 eggs

This accessor is, sadly, not universal. We can verify this by considering a data frame
with a columnnamed, e.g., mean: it clasheswith the built-inmethod. As aworkaround,
we should either use loc[...] or rename the column, for instance, like Mean or MEAN.

Exercise 10.8 Use pandas.DataFrame.drop to select all columns except v in df.

Exercise 10.9 Use pandas.Series.isin (amongst others) to select all rows with spam and ba-
con on the df’s menu.

Exercise 10.10 In the tips10 dataset, select data onmale customerswhere the total billswere in
the [10, 20] interval. Also, select Saturday and Sunday records where the tips were greater than
$5.

10.5.2 Adding rows and columns
loc[...] can also be used to add new columns to an existing data frame:

10 https://github.com/gagolews/teaching-data/raw/master/other/tips.csv

https://github.com/gagolews/teaching-data/raw/master/other/tips.csv

246 IV HETEROGENEOUS DATA

df.loc[:, "y"] = df.loc[:, "u"]**2 # or df.loc[:, "y"] = df.u**2
df
u v w x y
0 0.70 0.32 spam True 0.4900
1 0.29 -0.05 bacon False 0.0841
2 0.23 -0.20 spam True 0.0529
3 0.55 1.98 eggs False 0.3025
4 0.72 -1.62 sausage True 0.5184

Important Notation like “df.new_column = ...” does not work. As we said, only loc
and iloc are universal. For other accessors, this is not necessarily the case.

Exercise 10.11 Use pandas.DataFrame.insert to add anew columnnot necessarily at the end
of df.

Exercise 10.12 Use pandas.DataFrame.append to add a fewmore rows to df.

10.5.3 Modifying items
In the current version of pandas, modifying particular elements gives a warning:

df.loc[:, "u"].iloc[0] = 7 # the same as df.u.iloc[0] = 7
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
df.loc[:, "u"].iloc[0] # testing
7.0

In order to remedy this, it is best to create a copy of a column, modify it, and then to
replace the old contents with the new ones.

u = df.loc[:, "u"].copy()
u.iloc[0] = 42 # or a whole for loop to process them all, or whatever
df.loc[:, "u"] = u
df.loc[:, "u"].iloc[0] # testing
42.0

10.5.4 Pseudorandom sampling and splitting
As a simple application of what we have covered so far, let us consider the ways to
sample several rows from an existing data frame.

We can use the pandas.DataFrame.samplemethod in themost basic scenarios, such as:

• select five rows, without replacement,

• select 20% rows, with replacement,

• rearrange all the rows.

10 INTRODUCING DATA FRAMES 247

For example:

body = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_bmx_2020.csv",
comment="#")

body.sample(5, random_state=123) # 5 rows without replacement
BMXWT BMXHT BMXARML BMXLEG BMXARMC BMXHIP BMXWAIST
4214 58.4 156.2 35.2 34.7 27.2 99.5 77.5
3361 73.7 161.0 36.5 34.5 29.0 107.6 98.2
3759 61.4 164.6 37.5 40.4 26.9 93.5 84.4
3733 120.4 158.8 33.5 34.6 40.5 147.2 129.3
1121 123.5 157.5 35.5 29.0 50.5 143.0 136.4

Notice the random_state argumentwhich controls the seedof thepseudorandomnum-
ber generator so that we get reproducible results. Alternatively, we could call numpy.
random.seed.

Exercise 10.13 Show how the three aforementioned scenarios can be implemented manually
using iloc[...] and numpy.random.permutation or numpy.random.choice.

Inmachine learningpractice,weareused to trainingandevaluatingmachine learning
models on different (mutually disjoint) subsets of the whole data frame.

For instance, Section 12.3.3 mentions that wemay be interested in performing the so-
called training/test split (partitioning), where 80% (or 60% or 70%) of the randomly se-
lected rows would constitute the first new data frame and the remaining 20% (or 40%
or 30%, respectively) would go to the second one.

Given a data frame like:

df = body.head(10) # this is just an example
df
BMXWT BMXHT BMXARML BMXLEG BMXARMC BMXHIP BMXWAIST
0 97.1 160.2 34.7 40.8 35.8 126.1 117.9
1 91.1 152.7 33.5 33.0 38.5 125.5 103.1
2 73.0 161.2 37.4 38.0 31.8 106.2 92.0
3 61.7 157.4 38.0 34.7 29.0 101.0 90.5
4 55.4 154.6 34.6 34.0 28.3 92.5 73.2
5 62.0 144.7 32.5 34.2 29.8 106.7 84.8
6 66.2 166.5 37.5 37.6 32.0 96.3 95.7
7 75.9 154.5 35.4 37.6 32.7 107.7 98.7
8 77.2 159.2 38.5 40.5 35.7 102.0 97.5
9 91.6 174.5 36.1 45.9 35.2 121.3 100.3

one way to perform the aforementioned split is to generate a random permutation of
the set of row indexes:

np.random.seed(123) # reproducibility matters
idx = np.random.permutation(df.shape[0])
idx
array([4, 0, 7, 5, 8, 3, 1, 6, 9, 2])

248 IV HETEROGENEOUS DATA

And then to pick the first 80% of them to construct the data frame number one:

k = int(df.shape[0]*0.8)
df.iloc[idx[:k], :]
BMXWT BMXHT BMXARML BMXLEG BMXARMC BMXHIP BMXWAIST
4 55.4 154.6 34.6 34.0 28.3 92.5 73.2
0 97.1 160.2 34.7 40.8 35.8 126.1 117.9
7 75.9 154.5 35.4 37.6 32.7 107.7 98.7
5 62.0 144.7 32.5 34.2 29.8 106.7 84.8
8 77.2 159.2 38.5 40.5 35.7 102.0 97.5
3 61.7 157.4 38.0 34.7 29.0 101.0 90.5
1 91.1 152.7 33.5 33.0 38.5 125.5 103.1
6 66.2 166.5 37.5 37.6 32.0 96.3 95.7

and the remaining ones to generate the second dataset:

df.iloc[idx[k:], :]
BMXWT BMXHT BMXARML BMXLEG BMXARMC BMXHIP BMXWAIST
9 91.6 174.5 36.1 45.9 35.2 121.3 100.3
2 73.0 161.2 37.4 38.0 31.8 106.2 92.0

Exercise 10.14 In the wine_quality_all11 dataset, leave out all but the white wines. Parti-
tion the resulting data frame randomly into three data frames: wines_train (60% of the rows),
wines_validate (another 20% of the rows), and wines_test (the remaining 20%).

Exercise 10.15 Compose a function kfold which takes a data frame df and an integer 𝑘 > 1
as arguments. Return a list of data frames resulting in stemming from randomly partitioning df
into 𝑘 disjoint chunks of equal (or almost equal if that is not possible) sizes.

10.5.5 Hierarchical indexes (*)
Consider the following DataFrame object with a hierarchical index:

np.random.seed(123)
df = pd.DataFrame(dict(

year = np.repeat([2023, 2024, 2025], 4),
quarter = np.tile(["Q1", "Q2", "Q3", "Q4"], 3),
data = np.round(np.random.rand(12), 2)

)).set_index(["year", "quarter"])
df
data
year quarter
2023 Q1 0.70
Q2 0.29
Q3 0.23
Q4 0.55
2024 Q1 0.72
Q2 0.42

(continues on next page)

11 https://github.com/gagolews/teaching-data/raw/master/other/wine_quality_all.csv

https://github.com/gagolews/teaching-data/raw/master/other/wine_quality_all.csv

10 INTRODUCING DATA FRAMES 249

(continued from previous page)

Q3 0.98
Q4 0.68
2025 Q1 0.48
Q2 0.39
Q3 0.34
Q4 0.73

The index has both levels named, but this is purely for aesthetic reasons.

Indexing using loc[...] by default relates to the first level of the hierarchy:

df.loc[2023, :]
data
quarter
Q1 0.70
Q2 0.29
Q3 0.23
Q4 0.55

Note that we selected all rows corresponding to a given label and dropped (!) this level
of the hierarchy.

Another example:

df.loc[[2023, 2025], :]
data
year quarter
2023 Q1 0.70
Q2 0.29
Q3 0.23
Q4 0.55
2025 Q1 0.48
Q2 0.39
Q3 0.34
Q4 0.73

To access deeper levels, we can use tuples as indexers:

df.loc[(2023, "Q1"), :]
data 0.7
Name: (2023, Q1), dtype: float64
df.loc[[(2023, "Q1"), (2024, "Q3")], :]
data
year quarter
2023 Q1 0.70
2024 Q3 0.98

In certain scenarios, though, itwill probably bemuch easier to subset a hierarchical in-
dex by using reset_index and set_index creatively (togetherwith loc[...] and pandas.
Series.isin, etc.).

250 IV HETEROGENEOUS DATA

Let us stress again that the `:` operator can only be used directly within the square
brackets. Nonetheless, we can always use the slice constructor to create a slice in any
context:

df.loc[(slice(None), ["Q1", "Q3"]), :] # :, ["Q1", "Q3"]
data
year quarter
2023 Q1 0.70
Q3 0.23
2024 Q1 0.72
Q3 0.98
2025 Q1 0.48
Q3 0.34
df.loc[(slice(None, None, -1), slice("Q2", "Q3")), :] # ::-1, "Q2":"Q3"
data
year quarter
2025 Q3 0.34
Q2 0.39
2024 Q3 0.98
Q2 0.42
2023 Q3 0.23
Q2 0.29

10.6 Further operations on data frames
One of the many roles of data frames is to represent tables of values for their nice
presentation, e.g., in reports from data analysis or research papers. Here are some
functions that can aid in their formatting.

10.6.1 Sorting
Let us consider another example dataset. Here are the yearly (for 2018) average air
quality data12 in the Australian state of Victoria.

air = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/air_quality_2018_means.csv",
comment="#")

air = (
air.
loc[air.param_id.isin(["BPM2.5", "NO2"]), :].
reset_index(drop=True)

)

We chose two air quality parameters using pandas.Series.isin, which determines

12 https://discover.data.vic.gov.au/dataset/epa-air-watch-all-sites-air-quality-hourly-averages-yearly

https://discover.data.vic.gov.au/dataset/epa-air-watch-all-sites-air-quality-hourly-averages-yearly
https://discover.data.vic.gov.au/dataset/epa-air-watch-all-sites-air-quality-hourly-averages-yearly

10 INTRODUCING DATA FRAMES 251

whether each element in a Series is enlisted in a given sequence. We could also have
used set_index and loc[...] for that.

Notice that the above code spansmany lines.Weneeded to enclose it in roundbrackets
to avoid a syntax error. Alternatively,we couldhaveusedbackslashes at the endof each
line.

Anyway, here is the data frame:

air
sp_name param_id value
0 Alphington BPM2.5 7.848758
1 Alphington NO2 9.558120
2 Altona North NO2 9.467912
3 Churchill BPM2.5 6.391230
4 Dandenong NO2 9.800705
5 Footscray BPM2.5 7.640948
6 Footscray NO2 10.274531
7 Geelong South BPM2.5 6.502762
8 Geelong South NO2 5.681722
9 Melbourne CBD BPM2.5 8.072998
10 Moe BPM2.5 6.427079
11 Morwell East BPM2.5 6.784596
12 Morwell South BPM2.5 6.512849
13 Morwell South NO2 5.124430
14 Traralgon BPM2.5 8.024735
15 Traralgon NO2 5.776333

sort_values is a convenient means to order the rows with respect to one criterion, be
it numeric or categorical.

air.sort_values("value", ascending=False)
sp_name param_id value
6 Footscray NO2 10.274531
4 Dandenong NO2 9.800705
1 Alphington NO2 9.558120
2 Altona North NO2 9.467912
9 Melbourne CBD BPM2.5 8.072998
14 Traralgon BPM2.5 8.024735
0 Alphington BPM2.5 7.848758
5 Footscray BPM2.5 7.640948
11 Morwell East BPM2.5 6.784596
12 Morwell South BPM2.5 6.512849
7 Geelong South BPM2.5 6.502762
10 Moe BPM2.5 6.427079
3 Churchill BPM2.5 6.391230
15 Traralgon NO2 5.776333
8 Geelong South NO2 5.681722
13 Morwell South NO2 5.124430

It is also possible to take into account more sorting criteria:

252 IV HETEROGENEOUS DATA

air.sort_values(["param_id", "value"], ascending=[True, False])
sp_name param_id value
9 Melbourne CBD BPM2.5 8.072998
14 Traralgon BPM2.5 8.024735
0 Alphington BPM2.5 7.848758
5 Footscray BPM2.5 7.640948
11 Morwell East BPM2.5 6.784596
12 Morwell South BPM2.5 6.512849
7 Geelong South BPM2.5 6.502762
10 Moe BPM2.5 6.427079
3 Churchill BPM2.5 6.391230
6 Footscray NO2 10.274531
4 Dandenong NO2 9.800705
1 Alphington NO2 9.558120
2 Altona North NO2 9.467912
15 Traralgon NO2 5.776333
8 Geelong South NO2 5.681722
13 Morwell South NO2 5.124430

Here, in each group of identical parameters, we get a decreasing order with respect to
the value.

Exercise 10.16 Compare the ordering with respect to param_id and value vs value and then
param_id.

Note (*) Lamentably, DataFrame.sort_values by default does not use a stable al-
gorithm. If a data frame is sorted with respect to one criterion, and then we reorder
it with respect to another one, tied observations are not guaranteed to be listed in the
original order:

(pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/air_quality_2018_means.csv",
comment="#")
.sort_values("sp_name")
.sort_values("param_id")
.set_index("param_id")
.loc[["BPM2.5", "NO2"], :]
.reset_index())

param_id sp_name value
0 BPM2.5 Melbourne CBD 8.072998
1 BPM2.5 Moe 6.427079
2 BPM2.5 Footscray 7.640948
3 BPM2.5 Morwell East 6.784596
4 BPM2.5 Churchill 6.391230
5 BPM2.5 Morwell South 6.512849
6 BPM2.5 Traralgon 8.024735
7 BPM2.5 Alphington 7.848758
8 BPM2.5 Geelong South 6.502762

(continues on next page)

10 INTRODUCING DATA FRAMES 253

(continued from previous page)

9 NO2 Morwell South 5.124430
10 NO2 Traralgon 5.776333
11 NO2 Geelong South 5.681722
12 NO2 Altona North 9.467912
13 NO2 Alphington 9.558120
14 NO2 Dandenong 9.800705
15 NO2 Footscray 10.274531

We lost the ordering based on station names in the two subgroups. To switch to a
mergesort-like method (timsort), we should pass kind="stable".

(pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/air_quality_2018_means.csv",
comment="#")
.sort_values("sp_name")
.sort_values("param_id", kind="stable") # !
.set_index("param_id")
.loc[["BPM2.5", "NO2"], :]
.reset_index())

param_id sp_name value
0 BPM2.5 Alphington 7.848758
1 BPM2.5 Churchill 6.391230
2 BPM2.5 Footscray 7.640948
3 BPM2.5 Geelong South 6.502762
4 BPM2.5 Melbourne CBD 8.072998
5 BPM2.5 Moe 6.427079
6 BPM2.5 Morwell East 6.784596
7 BPM2.5 Morwell South 6.512849
8 BPM2.5 Traralgon 8.024735
9 NO2 Alphington 9.558120
10 NO2 Altona North 9.467912
11 NO2 Dandenong 9.800705
12 NO2 Footscray 10.274531
13 NO2 Geelong South 5.681722
14 NO2 Morwell South 5.124430
15 NO2 Traralgon 5.776333

Exercise 10.17 (*) Perform identical reorderings but using only loc[...], iloc[...], and
numpy.argsort.

10.6.2 Stacking and unstacking (long/tall andwide forms)
Let us discuss some further ways to transform data frames that benefit from, make
sense thanks to, or are possible because they can have columns of various types.

The above air dataset is in the long (tall) format. All measurements are stacked one
after/belowanother. Sucha form is quite convenient for data storage, especiallywhere

254 IV HETEROGENEOUS DATA

there are only a few recorded values but many possible combinations of levels (sparse
data).

The long format might not be optimal in all data processing activities, though; com-
pare [97]. In the part of this book onmatrix processing, it was muchmore natural for
us to have a single observation in each row (e.g., data for each measurement station).

We can unstack the air data frame quite easily:

air_wide = air.set_index(["sp_name", "param_id"]).unstack().loc[:, "value"]
air_wide
param_id BPM2.5 NO2
sp_name
Alphington 7.848758 9.558120
Altona North NaN 9.467912
Churchill 6.391230 NaN
Dandenong NaN 9.800705
Footscray 7.640948 10.274531
Geelong South 6.502762 5.681722
Melbourne CBD 8.072998 NaN
Moe 6.427079 NaN
Morwell East 6.784596 NaN
Morwell South 6.512849 5.124430
Traralgon 8.024735 5.776333

This is the so-called wide format.

A missing value is denoted by NaN (not-a-number); see Section 15.1 for more details.
Interestingly,weobtained ahierarchical index in the columns (sic!) slot.Hence, to drop
the last level of the hierarchy, we had to add the loc[...] part. Also notice that the
index and columns slots are named.

The other way around, we can use the stackmethod:

air_wide.T.rename_axis(index="location", columns="param").\
stack().rename("value").reset_index()

location param value
0 BPM2.5 Alphington 7.848758
1 BPM2.5 Churchill 6.391230
2 BPM2.5 Footscray 7.640948
3 BPM2.5 Geelong South 6.502762
4 BPM2.5 Melbourne CBD 8.072998
5 BPM2.5 Moe 6.427079
6 BPM2.5 Morwell East 6.784596
7 BPM2.5 Morwell South 6.512849
8 BPM2.5 Traralgon 8.024735
9 NO2 Alphington 9.558120
10 NO2 Altona North 9.467912
11 NO2 Dandenong 9.800705
12 NO2 Footscray 10.274531
13 NO2 Geelong South 5.681722

(continues on next page)

10 INTRODUCING DATA FRAMES 255

(continued from previous page)

14 NO2 Morwell South 5.124430
15 NO2 Traralgon 5.776333

Weused the data frame transpose (T) to get a location-major order (less boring an out-
come in this context). Missing values are gone now. We do not need them anymore.
Nevertheless, passing dropna=Falsewould help us identify the combinations of loca-
tion and param for which the readings are not provided.

10.6.3 Joining (merging)
In database design, it is common to normalise the datasets. We do this to avoid the
duplication of information and pathologies stemming from them (e.g., [19]).

Example 10.18 The above air quality parameters are separately described in another data
frame:

param = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/air_quality_2018_param.csv",
comment="#")

param = param.rename(dict(param_std_unit_of_measure="unit"), axis=1)
param
param_id param_name unit param_short_name
0 API Airborne particle index none Visibility Reduction
1 BPM2.5 BAM Particles < 2.5 micron ug/m3 PM2.5
2 CO Carbon Monoxide ppm CO
3 HPM10 Hivol PM10 ug/m3 NaN
4 NO2 Nitrogen Dioxide ppb NO2
5 O3 Ozone ppb O3
6 PM10 TEOM Particles <10micron ug/m3 PM10
7 PPM2.5 Partisol PM2.5 ug/m3 NaN
8 SO2 Sulfur Dioxide ppb SO2

We could have stored themalongside the air data frame, but that would be awaste of space. Also,
if we wanted to modify some datum (note, e.g., the annoying double space in param_name for
BPM2.5), we would have to update all the relevant records.

Instead,we canalwaysmatch the records in both data frames that have the same param_ids, and
join (merge) these datasets only when we really need this.

Let us discuss the possible join operations by studying the two following toy datasets:

A = pd.DataFrame({
"x": ["a0", "a1", "a2", "a3"],
"y": ["b0", "b1", "b2", "b3"]

})
A
x y

(continues on next page)

256 IV HETEROGENEOUS DATA

(continued from previous page)

0 a0 b0
1 a1 b1
2 a2 b2
3 a3 b3

and:

B = pd.DataFrame({
"x": ["a0", "a2", "a2", "a4"],
"z": ["c0", "c1", "c2", "c3"]

})
B
x z
0 a0 c0
1 a2 c1
2 a2 c2
3 a4 c3

They both have one column somewhat in common, x.

The inner (natural) join returns the records that have a match in both datasets:

pd.merge(A, B, on="x")
x y z
0 a0 b0 c0
1 a2 b2 c1
2 a2 b2 c2

The left join of𝐴with 𝐵 guarantees to return all the records from𝐴, even those which
are not matched by anything in 𝐵.

pd.merge(A, B, how="left", on="x")
x y z
0 a0 b0 c0
1 a1 b1 NaN
2 a2 b2 c1
3 a2 b2 c2
4 a3 b3 NaN

The right join of𝐴with 𝐵 is the same as the left join of 𝐵with𝐴:

pd.merge(A, B, how="right", on="x")
x y z
0 a0 b0 c0
1 a2 b2 c1
2 a2 b2 c2
3 a4 NaN c3

Finally, the full outer join is the set-theoretic union of the left and the right join:

10 INTRODUCING DATA FRAMES 257

pd.merge(A, B, how="outer", on="x")
x y z
0 a0 b0 c0
1 a1 b1 NaN
2 a2 b2 c1
3 a2 b2 c2
4 a3 b3 NaN
5 a4 NaN c3

Exercise 10.19 Join air_quality_2018_value13 with air_quality_2018_point14, and then
with air_quality_2018_param15.

Exercise 10.20 Normalise air_quality_201816 so that you get the three separate data frames
mentioned in the previous exercise (value, point, and param).

Exercise 10.21 (*) In the National Health and Nutrition Examination Survey, each parti-
cipant is uniquely identified by their sequence number (SEQN).This token ismentioned in numer-
ous datasets, including:

• demographic variables17,

• bodymeasures18,

• audiometry19,

• andmanymore20.

Join a few chosen datasets that you find interesting.

10.6.4 Set-theoretic operations and removing duplicates
Here are two not at all disjoint sets of imaginary persons:

A = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/some_birth_dates1.csv",
comment="#")

A
Name BirthDate
0 Paitoon Ornwimol 26.06.1958
1 Antónia Lata 20.05.1935
2 Bertoldo Mallozzi 17.08.1972
3 Nedeljko Bukv 19.12.1921
4 Micha Kitchen 17.09.1930

(continues on next page)

13 https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_value.csv.gz
14 https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_point.csv
15 https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_param.csv
16 https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018.csv.gz
17 https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_DEMO.htm
18 https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm
19 https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/AUX_J.htm
20 https://wwwn.cdc.gov/Nchs/Nhanes/continuousnhanes/default.aspx?BeginYear=2017

https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_value.csv.gz
https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_point.csv
https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_param.csv
https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018.csv.gz
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_DEMO.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/AUX_J.htm
https://wwwn.cdc.gov/Nchs/Nhanes/continuousnhanes/default.aspx?BeginYear=2017

258 IV HETEROGENEOUS DATA

(continued from previous page)

5 Mefodiy Shachar 01.10.1914
6 Paul Meckler 29.09.1968
7 Katarzyna Lasko 20.10.1971
8 Åge Trelstad 07.03.1935
9 Duchanee Panomyaong 19.06.1952

and:

B = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/some_birth_dates2.csv",
comment="#")

B
Name BirthDate
0 Hushang Naigamwala 25.08.1991
1 Zhen Wei 16.11.1975
2 Micha Kitchen 17.09.1930
3 Jodoc Alwin 16.11.1969
4 Igor Mazał 14.05.2004
5 Katarzyna Lasko 20.10.1971
6 Duchanee Panomyaong 19.06.1952
7 Mefodiy Shachar 01.10.1914
8 Paul Meckler 29.09.1968
9 Noe Tae-Woong 11.07.1970
10 Åge Trelstad 07.03.1935

Inbothdatasets, there is a single categorical columnwhose elementsuniquely identify
each record (i.e., Name). In the language of relational databases, we would call it the
primary key. In such a case, implementing the set-theoretic operations is relatively
easy, as we can refer to the pandas.Series.isinmethod.

First,𝐴 ∩ 𝐵 (intersection), includes only the rows that are both in𝐴 and in 𝐵:

A.loc[A.Name.isin(B.Name), :]
Name BirthDate
4 Micha Kitchen 17.09.1930
5 Mefodiy Shachar 01.10.1914
6 Paul Meckler 29.09.1968
7 Katarzyna Lasko 20.10.1971
8 Åge Trelstad 07.03.1935
9 Duchanee Panomyaong 19.06.1952

Second,𝐴 ∖ 𝐵 (difference), gives all the rows that are in𝐴 but not in 𝐵:

A.loc[~A.Name.isin(B.Name), :]
Name BirthDate
0 Paitoon Ornwimol 26.06.1958
1 Antónia Lata 20.05.1935
2 Bertoldo Mallozzi 17.08.1972
3 Nedeljko Bukv 19.12.1921

10 INTRODUCING DATA FRAMES 259

Third,𝐴 ∪ 𝐵 (union), returns the rows that exist in𝐴 or are in 𝐵:

pd.concat((A, B.loc[~B.Name.isin(A.Name), :]))
Name BirthDate
0 Paitoon Ornwimol 26.06.1958
1 Antónia Lata 20.05.1935
2 Bertoldo Mallozzi 17.08.1972
3 Nedeljko Bukv 19.12.1921
4 Micha Kitchen 17.09.1930
5 Mefodiy Shachar 01.10.1914
6 Paul Meckler 29.09.1968
7 Katarzyna Lasko 20.10.1971
8 Åge Trelstad 07.03.1935
9 Duchanee Panomyaong 19.06.1952
0 Hushang Naigamwala 25.08.1991
1 Zhen Wei 16.11.1975
3 Jodoc Alwin 16.11.1969
4 Igor Mazał 14.05.2004
9 Noe Tae-Woong 11.07.1970

There are no duplicate rows in any of the above outputs.

Exercise 10.22 Determine (𝐴∪𝐵)∖(𝐴∩𝐵) = (𝐴∖𝐵)∪(𝐵∖𝐴) (symmetric difference).
Exercise 10.23 (*) Determine the union, intersection, and difference of the wine_sample121
and wine_sample222 datasets, where there is no column uniquely identifying the observa-
tions. Hint: consider using pandas.concat and pandas.DataFrame.duplicated or pandas.
DataFrame.drop_duplicates.

10.6.5 …and (too)manymore
Looking at the list of methods for the DataFrame and Series classes in the pan-

das package’s documentation23, we can see that they are abundant. Together with
the object-orientated syntax, we will often find ourselves appreciating the high
readability of even quite complex operation chains such as data.drop_duplicates().
groupby(["year", "month"]).mean().reset_index(); see Chapter 12.

Nevertheless, the methods are probably too plentiful to our taste. Their developers
were overgenerous. They wanted to include a list of all the possible verbs related to
data analysis, even if they can be trivially expressed by a composition of 2-3 simpler
operations from numpy or scipy instead.

As strong advocates of minimalism, we would rather save ourselves from being over-
loaded with toomuch new information.This is why our focus in this book is on devel-
oping themost transferable24 skills. Our approach is also slightlymore hygienic.We do

21 https://github.com/gagolews/teaching-data/raw/master/other/wine_sample1.csv
22 https://github.com/gagolews/teaching-data/raw/master/other/wine_sample2.csv
23 https://pandas.pydata.org/pandas-docs/stable/reference/index.html
24This is also in line with the observation that Python with pandas is not the only environment where

we can work with data frames; e.g., base R and Julia with DataFrame.jl support that too.

https://github.com/gagolews/teaching-data/raw/master/other/wine_sample1.csv
https://github.com/gagolews/teaching-data/raw/master/other/wine_sample2.csv
https://pandas.pydata.org/pandas-docs/stable/reference/index.html

260 IV HETEROGENEOUS DATA

not want the reader to develop a hopelessmindset, the habit of looking everything up
on the internet when faced with even the simplest kinds of problems.We have brains
for a reason.

10.7 Exercises
Exercise 10.24 How are data frames different frommatrices?

Exercise 10.25 What are the use cases of the name slot in Series and Index objects?

Exercise 10.26 What is the purpose of set_index and reset_index?

Exercise 10.27 Why learning numpy is crucial when someonewants to become a proficient user
of pandas?

Exercise 10.28 What is the difference between iloc[...] and loc[...]?

Exercise 10.29 Why applying the index operator [...] directly on a Series or DataFrame ob-
ject is discouraged?

Exercise 10.30 What is the difference between index, Index, and columns?

Exercise 10.31 How can we compute the arithmetic mean and median of all the numeric
columns in a data frame, using a single line of code?

Exercise 10.32 What is a training/test split and how to perform it using numpy and pandas?

Exercise 10.33 What is the difference between stacking and unstacking? Which one yields a
wide (as opposed to long) format?

Exercise 10.34 Name different data frame join (merge) operations and explain how theywork.

Exercise 10.35 How does sorting with respect to more than one criterion work?

Exercise 10.36 Name the basic set-theoretic operations on data frames.

11
Handling categorical data

So far, we have been mostly dealing with quantitative (numeric) data, on which we
were able to apply variousmathematical operations, suchas computing the arithmetic
mean or taking the square thereof. Naturally, not every transformation must always
make sense in every context (e.g.,multiplying temperatures–whatdoes itmeanwhen
we say that it is twice as hot today as compared to yesterday?), but still, the possibilities
were plenty.

Qualitative data (also known as categorical data, factors, or enumerated types) such
as eye colour, blood type, or a flag whether a patient is ill, on the other hand, take a
small number of unique values. They support an extremely limited set of admissible
operations. Namely, we can only determine whether two entities are equal or not.

In datasets involving many features (Chapter 12), categorical variables are often used
for observation grouping (e.g., so that we can compute the best and average time for
marathoners in each age category or draw box plots for finish times of men and wo-
men separately). Also, they may serve as target variables in statistical classification
tasks (e.g., so that we can determine if an email is “spam” or “not spam”).

11.1 Representing and generating categorical data
Common ways to represent a categorical variable with 𝑙 distinct levels {𝐿1, 𝐿2, … , 𝐿𝑙}
is by storing it as:

• a vector of strings,

• a vector of integers between 0 (inclusive) and 𝑙 (exclusive1).
These two are easily interchangeable.

For 𝑙 = 2 (binary data), another convenient representation is by means of logical vec-
tors. This can be extended to a so-called one-hot encoded representation using a lo-
gical vector of length 𝑙.

1This coincides with the possible indexes into an array of length 𝑙. In some other languages, e.g., R, we
would use integers between 1 and 𝑙 (inclusive). Nevertheless, a dataset creator is free to encode the labels
however they want. For example, DMDBORN4 in NHANES has: 1 (born in 50 US states or Washington, DC),
2 (others), 77 (refused to answer), and 99 (do not know).

262 IV HETEROGENEOUS DATA

Let us consider the data on the original whereabouts of the top 16 marathoners (the
37th PZU native Marathon dataset):

marathon = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/37_pzu_warsaw_marathon_simplified.csv",
comment="#")

cntrs = np.array(marathon.country, dtype="str")
cntrs16 = cntrs[:16]
cntrs16
array(['KE', 'KE', 'KE', 'ET', 'KE', 'KE', 'ET', 'MA', 'PL', 'PL', 'IL',
'PL', 'KE', 'KE', 'PL', 'PL'], dtype='<U2')

These are two-letter ISO 3166 country codes encoded as strings (notice the dtype="str"
argument).

Calling pandas.unique determines the set of distinct categories:

cat_cntrs16 = pd.unique(cntrs16)
cat_cntrs16
array(['KE', 'ET', 'MA', 'PL', 'IL'], dtype='<U2')

Hence, cntrs16 is a categorical vector of length 𝑛 = 16 (len(cntrs16)) with data as-
suming one of 𝑙 = 5 different levels (len(cat_cntrs16)).

Note We could have also used numpy.unique (Section 5.5.3) but it would sort the dis-
tinct values lexicographically. In other words, they would not be listed in the order of
appearance.

11.1.1 Encoding and decoding factors
To encode a label vector using a set of consecutive nonnegative integers, we can call
pandas.factorize:

codes_cntrs16, cat_cntrs16 = pd.factorize(cntrs16) # sort=False
cat_cntrs16
array(['KE', 'ET', 'MA', 'PL', 'IL'], dtype='<U2')
codes_cntrs16
array([0, 0, 0, 1, 0, 0, 1, 2, 3, 3, 4, 3, 0, 0, 3, 3])

The code sequence 0, 0, 0, 1, … corresponds to the first, first, first, second, … level in
cat_cntrs16, i.e., Kenya, Kenya, Kenya, Ethiopia, ….

Important Whenwe represent categorical data using numeric codes, it is possible to
introduce non-occurring levels. Such information can be useful, e.g., we could expli-
citly indicate that there were no runners from Australia in the top 16.

Even though we can represent categorical variables using a set of integers, it does

11 HANDLING CATEGORICAL DATA 263

not mean that they become instances of a quantitative type. Arithmetic operations
thereon do not really make sense.

The values between 0 (inclusive) and 5 (exclusive) can be used to index a given array of
length 𝑙 = 5. As a consequence, to decode our factor, we can call:

cat_cntrs16[codes_cntrs16]
array(['KE', 'KE', 'KE', 'ET', 'KE', 'KE', 'ET', 'MA', 'PL', 'PL', 'IL',
'PL', 'KE', 'KE', 'PL', 'PL'], dtype='<U2')

We can use any other set of labels now:

np.array(["Kenya", "Ethiopia", "Morocco", "Poland", "Israel"])[codes_cntrs16]
array(['Kenya', 'Kenya', 'Kenya', 'Ethiopia', 'Kenya', 'Kenya',
'Ethiopia', 'Morocco', 'Poland', 'Poland', 'Israel', 'Poland',
'Kenya', 'Kenya', 'Poland', 'Poland'], dtype='<U8')

It is an instance of the relabelling of a categorical variable.

Exercise 11.1 (**) Here is a way of recoding a variable, i.e., changing the order of labels and
permuting the numeric codes:

new_codes = np.array([3, 0, 2, 4, 1]) # an example permutation of labels
new_cat_cntrs16 = cat_cntrs16[new_codes]
new_cat_cntrs16
array(['PL', 'KE', 'MA', 'IL', 'ET'], dtype='<U2')

Thenwemakeuse of the fact that numpy.argsortapplied on a vector representing a permutation,
determines its very inverse:

new_codes_cntrs16 = np.argsort(new_codes)[codes_cntrs16]
new_codes_cntrs16
array([1, 1, 1, 4, 1, 1, 4, 2, 0, 0, 3, 0, 1, 1, 0, 0])

Verification:

np.all(cntrs16 == new_cat_cntrs16[new_codes_cntrs16])
True

Exercise 11.2 (**) Determine the set of unique values in cntrs16 in the order of appearance
(and not sorted lexicographically), but without using pandas.unique nor pandas.factorize.
Then, encode cntrs16 using this level set.

Hint: check out the return_index argument to numpy.unique and numpy.searchsorted.

Furthermore, pandas includes2 a special dtype for storing categorical data.Namely,we
can write:

2 https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html

https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html

264 IV HETEROGENEOUS DATA

cntrs16_series = pd.Series(cntrs16, dtype="category")

or, equivalently:

cntrs16_series = pd.Series(cntrs16).astype("category")

These two yield a Series object displayed as if it was represented using string labels:

cntrs16_series.head() # preview
0 KE
1 KE
2 KE
3 ET
4 KE
dtype: category
Categories (5, object): ['ET', 'IL', 'KE', 'MA', 'PL']

Instead, it is encoded using the aforementioned numeric representation:

np.array(cntrs16_series.cat.codes)
array([2, 2, 2, 0, 2, 2, 0, 3, 4, 4, 1, 4, 2, 2, 4, 4], dtype=int8)
cntrs16_series.cat.categories
Index(['ET', 'IL', 'KE', 'MA', 'PL'], dtype='object')

This time the labels are sorted lexicographically.

Most often we will be storing categorical data in data frames as ordinary strings, un-
less a relabelling on the fly is required:

(marathon.iloc[:16, :].country.astype("category")
.cat.reorder_categories(

["KE", "IL", "MA", "ET", "PL"]
)
.cat.rename_categories(

["Kenya", "Israel", "Morocco", "Ethiopia", "Poland"]
).astype("str")

).head()
0 Kenya
1 Kenya
2 Kenya
3 Ethiopia
4 Kenya
Name: country, dtype: object

11.1.2 Binary data as logical and probability vectors
Binary data is a special case of the qualitative setting, where we only have 𝑙 = 2 cat-
egories. For example:

• 0, e.g., healthy/fail/off/non-spam/absent/…),

11 HANDLING CATEGORICAL DATA 265

• 1, e.g., ill/success/on/spam/present/…).

Usually, the interesting or noteworthy category is denoted by 1.

Important When converting logical to numeric, False becomes 0 and True becomes
1. Conversely, 0 is converted to False and anything else (including -0.326) to True.

Hence, instead of working with vectors of 0s and 1s, wemight equivalently be playing
with logical arrays. For example:

np.array([True, False, True, True, False]).astype(int)
array([1, 0, 1, 1, 0])

The other way around:

np.array([-2, -0.326, -0.000001, 0.0, 0.1, 1, 7643]).astype(bool)
array([True, True, True, False, True, True, True])

or, equivalently:

np.array([-2, -0.326, -0.000001, 0.0, 0.1, 1, 7643]) != 0
array([True, True, True, False, True, True, True])

Important It is not rare to work with vectors of probabilities, where the 𝑖-th element
therein, say p[i], denotes the likelihood of an observation’s belonging to the class 1.
Consequently, the probability of being a member of the class 0 is 1-p[i]. In the case
where we would rather work with crisp classes, we can simply apply the conversion
(p>=0.5) to get a logical vector.

Exercise 11.3 Given a numeric vector x, create a vector of the same length as x whose 𝑖-th ele-
ment is equal to "yes" if x[i] is in the unit interval and to "no" otherwise. Use numpy.where,
which can act as a vectorised version of the if statement.

11.1.3 One-hot encoding (*)
Let 𝒙 be a vector of 𝑛 integer labels in {0, ..., 𝑙 − 1}. Its one-hot-encoded version is a 0/1
(or, equivalently, logical) matrix𝐑 of shape 𝑛 × 𝑙 such that 𝑟𝑖,𝑗 = 1 if and only if 𝑥𝑖 = 𝑗.
For example, if 𝒙 = (0, 1, 2, 1) and 𝑙 = 4, then:

𝐑 =
⎡⎢⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0

⎤⎥⎥⎥
⎦

.

One can easily verify that each row consists of one and only one 1 (the number of 1s

266 IV HETEROGENEOUS DATA

per one row is 1). Such a representation is adequate when solving a multiclass classi-
fication problem by means of 𝑙 binary classifiers. For example, if spam, bacon, and hot
dogs are on the menu, then spam is encoded as (1, 0, 0), i.e., yeah-spam, nah-bacon,
and nah-hot dog. We can build three binary classifiers, each narrowly specialising in
sniffing one particular type of food.

Example 11.4 Write a function to one-hot encode a given categorical vector represented using
character strings.

Example 11.5 Compose a function to decode a one-hot-encodedmatrix.

Example 11.6 (*) We can also work with matrices like 𝐏 ∈ [0, 1]𝑛×𝑙, where 𝑝𝑖,𝑗 denotes the
probability of the 𝑖-th object’s belonging to the 𝑗-th class. Given an example matrix of this kind,
verify that in each row the probabilities sum to 1 (up to a small numeric error).Then, decode such
amatrix by choosing the greatest element in each row.

11.1.4 Binning numeric data (revisited)
Numerical data can be converted to categorical via binning (quantisation). Even
though this causes information loss, it may open some new possibilities. In fact, we
needed binning to draw all the histograms in Chapter 4. Also, reporting observation
counts in each bin instead of raw data enables us to include them in printed reports
(in the form of tables).

Note We are strong proponents of openness and transparency. Thus, we always
encourage all entities (governments, universities, non-profits, corporations, etc.) to
share raw, unabridged versions of their datasets under the terms of some open data
license. This is to enable public scrutiny and to get the most out of the possibilities
they can bring for benefit of the community.

Of course, sometimes the sharing of unprocessed information can violate the privacy
of the subjects. In such a case, it might be worthwhile to communicate them in a
binned form.

Note Rounding is a kind of binning. In particular, numpy.round rounds to the nearest
tenths, hundredths, …, as well as tens, hundreds, …. It is useful if data are naturally
imprecise, andwedonotwant to give the impression that it is otherwise.Nonetheless,
rounding can easily introduce tied observations, which are problematic on their own;
see Section 5.5.3.

Consider the 16 best marathon finish times (in minutes):

mins = np.array(marathon.mins)
mins16 = mins[:16]
mins16

(continues on next page)

11 HANDLING CATEGORICAL DATA 267

(continued from previous page)

array([129.32, 130.75, 130.97, 134.17, 134.68, 135.97, 139.88, 143.2 ,
145.22, 145.92, 146.83, 147.8 , 149.65, 149.88, 152.65, 152.88])

numpy.searchsorted can determine the interval where each value in mins falls.

bins = [130, 140, 150]
codes_mins16 = np.searchsorted(bins, mins16)
codes_mins16
array([0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3])

Bydefault, the intervals are of the form (𝑎, 𝑏] (not including 𝑎, including 𝑏).The code 0
corresponds to values less than the first bin edge, whereas the code 3 represent items
greater than or equal to the last boundary.

pandas.cut gives us another interface to the same binningmethod. It returns a vector-
like object with dtype="category", with very readable labels generated automatically
(and ordered; see Section 11.4.7):

cut_mins16 = pd.Series(pd.cut(mins16, [-np.inf, 130, 140, 150, np.inf]))
cut_mins16.iloc[[0, 1, 6, 7, 13, 14, 15]].astype("str") # preview
0 (-inf, 130.0]
1 (130.0, 140.0]
6 (130.0, 140.0]
7 (140.0, 150.0]
13 (140.0, 150.0]
14 (150.0, inf]
15 (150.0, inf]
dtype: object
cut_mins16.cat.categories.astype("str")
Index(['(-inf, 130.0]', '(130.0, 140.0]', '(140.0, 150.0]',
'(150.0, inf]'],
dtype='object')

Example 11.7 (*)We can create a set of the corresponding categories manually, for example, as
follows:

bins2 = np.r_[-np.inf, bins, np.inf]
np.array(

[f"({bins2[i]}, {bins2[i+1]}]" for i in range(len(bins2)-1)]
)
array(['(-inf, 130.0]', '(130.0, 140.0]', '(140.0, 150.0]',
'(150.0, inf]'], dtype='<U14')

Exercise 11.8 (*) Check out the numpy.histogram_bin_edges function which tries to determ-
ine some informative interval boundaries based on a few simple heuristics. Recall that numpy.
linspace and numpy.geomspace can be used for generating equidistant bin edges on linear and
logarithmic scales, respectively.

268 IV HETEROGENEOUS DATA

11.1.5 Generating pseudorandom labels
numpy.random.choice creates a pseudorandom sample with categories picked with
given probabilities:

np.random.seed(123)
np.random.choice(

a=["spam", "bacon", "eggs", "tempeh"],
p=[0.7, 0.1, 0.15, 0.05],
replace=True,
size=16

)
array(['spam', 'spam', 'spam', 'spam', 'bacon', 'spam', 'tempeh', 'spam',
'spam', 'spam', 'spam', 'bacon', 'spam', 'spam', 'spam', 'bacon'],
dtype='<U6')

If we generate a sufficiently long vector, we will expect "spam" to occur approximately
70% of the time, and "tempeh" to be drawn in 5% of the cases, etc.

11.2 Frequency distributions
11.2.1 Counting
pandas.Series.value_counts creates a frequency table in the form of a Series object
equipped with a readable index (element labels):

pd.Series(cntrs16).value_counts() # sort=True, ascending=False
KE 7
PL 5
ET 2
MA 1
IL 1
Name: count, dtype: int64

By default, data are ordered with respect to the counts, decreasingly.

If we already have an array of integer codes between 0 and 𝑙 − 1, numpy.bincount will
return the number of times each code appears therein.

counts_cntrs16 = np.bincount(codes_cntrs16)
counts_cntrs16
array([7, 2, 1, 5, 1])

A vector of counts can easily be turned into a vector of proportions (fractions) or per-
centages (if we multiply them by 100):

11 HANDLING CATEGORICAL DATA 269

counts_cntrs16 / np.sum(counts_cntrs16) * 100
array([43.75, 12.5 , 6.25, 31.25, 6.25])

Almost 31.25% of the top runners were from Poland (this marathon is held in Warsaw
after all…).

Exercise 11.9 Using numpy.argsort, sort counts_cntrs16 increasingly together with the cor-
responding items in cat_cntrs16.

11.2.2 Two-way contingency tables: Factor combinations
Some datasets may bear many categorical columns, each having possibly different
levels. Let us now consider all the runners in the marathon dataset:

marathon.loc[:, "age"] = marathon.category.str.slice(1) # first two chars
marathon.loc[marathon.age >= "60", "age"] = "60+" # too few runners aged 70+
marathon = marathon.loc[:, ["sex", "age", "country"]]
marathon.head()
sex age country
0 M 20 KE
1 M 20 KE
2 M 20 KE
3 M 20 ET
4 M 30 KE

The three columns are: sex, age (in 10-year brackets), and country. We can, of course,
analyse the data distribution in each column individually, but this we leave as an exer-
cise. Instead, we note that some interesting patterns might also arise when we study
the combinations of levels of different variables.

Here are the levels of the sex and age variables:

pd.unique(marathon.sex)
array(['M', 'F'], dtype=object)
pd.unique(marathon.age)
array(['20', '30', '50', '40', '60+'], dtype=object)

Wehave 2 ⋅ 5 = 10 combinations thereof.We can use pandas.DataFrame.value_counts
to determine the number of observations at each two-dimensional level:

counts2 = marathon.loc[:, ["sex", "age"]].value_counts()
counts2
sex age
M 30 2200
40 1708
20 879
50 541
F 30 449
40 262

(continues on next page)

270 IV HETEROGENEOUS DATA

(continued from previous page)

20 240
M 60+ 170
F 50 43
60+ 19
Name: count, dtype: int64

These can be converted to a two-way contingency table, which is a matrix that gives the
number of occurrences of each pair of values from the two factors:

V = counts2.unstack(fill_value=0)
V
age 20 30 40 50 60+
sex
F 240 449 262 43 19
M 879 2200 1708 541 170

For example, there were 19 women aged at least 60 amongst the marathoners. Jolly
good.

The marginal (one-dimensional) frequency distributions can be recreated by comput-
ing the rowwise and columnwise sums of V:

np.sum(V, axis=1)
sex
F 1013
M 5498
dtype: int64
np.sum(V, axis=0)
age
20 1119
30 2649
40 1970
50 584
60+ 189
dtype: int64

11.2.3 Combinations of evenmore factors
pandas.DataFrame.value_counts canalso beusedwith a combinationofmore than two
categorical variables:

counts3 = (marathon
.loc[

marathon.country.isin(["PL", "UA", "SK"]),
["country", "sex", "age"]

]
.value_counts()
.rename("count")

(continues on next page)

11 HANDLING CATEGORICAL DATA 271

(continued from previous page)

.reset_index()
)
counts3
country sex age count
0 PL M 30 2081
1 PL M 40 1593
2 PL M 20 824
3 PL M 50 475
4 PL F 30 422
5 PL F 40 248
6 PL F 20 222
7 PL M 60+ 134
8 PL F 50 26
9 PL F 60+ 8
10 UA M 20 8
11 UA M 30 8
12 UA M 50 3
13 UA F 30 2
14 UA M 40 2
15 SK F 50 1
16 SK M 40 1
17 SK M 60+ 1

The display is in the long format (compare Section 10.6.2) because we cannot nicely
print a three-dimensional array. Yet, we can always partially unstack the dataset, for
aesthetic reasons:

counts3.set_index(["country", "sex", "age"]).unstack()
count
age 20 30 40 50 60+
country sex
PL F 222.0 422.0 248.0 26.0 8.0
M 824.0 2081.0 1593.0 475.0 134.0
SK F NaN NaN NaN 1.0 NaN
M NaN NaN 1.0 NaN 1.0
UA F NaN 2.0 NaN NaN NaN
M 8.0 8.0 2.0 3.0 NaN

Let us again appreciate how versatile is the concept of data frames. Not only can we
represent data to be investigated (one rowper observation, variables possibly ofmixed
types) but also we can store the results of such analyses (neatly formatted tables).

272 IV HETEROGENEOUS DATA

11.3 Visualising factors
Methods for visualising categorical data are by no means fascinating (unless we use
them as grouping variables inmore complex datasets, but this is a topic that we cover
in Chapter 12).

11.3.1 Bar plots
Example data:

x = (marathon.age.astype("category")
.cat.reorder_categories(["20", "30", "40", "50", "60+"])
.value_counts(sort=False)

)
x
age
20 1119
30 2649
40 1970
50 584
60+ 189
Name: count, dtype: int64

Bar plots are self-explanatory and hence will do the trick most of the time; see Fig-
ure 11.1.

ind = np.arange(len(x)) # 0, 1, 2, 3, 4
plt.bar(ind, height=x, color="lightgray", edgecolor="black", alpha=0.8)
plt.xticks(ind, x.index)
plt.show()

The ind vectorgives thex-coordinatesof thebars; here: consecutive integers.By calling
matplotlib.pyplot.xtickswe assign them readable labels.

Exercise 11.10 Drawa bar plot for the fivemost prevalent foreign (i.e., excluding Polish)mara-
thoners’ originalwhereabouts.Addabar that represents “all other” countries.Depict percentages
instead of counts, so that the total bar height is 100%. Assign a different colour to each bar.

A bar plot is a versatile tool for visualising the counts also in the two-variable case; see
Figure 11.2. Let us now use a pleasant wrapper around matplotlib.pyplot.bar offered
by the statistical data visualisation package called seaborn3 [95] (written by Michael
Waskom).

3 https://seaborn.pydata.org/

https://seaborn.pydata.org/

11 HANDLING CATEGORICAL DATA 273

20 30 40 50 60+
0

500

1000

1500

2000

2500

Figure 11.1. Runners’ age categories.

v = (marathon.loc[:, ["sex", "age"]].value_counts(sort=False)
.rename("count").reset_index()

)
sns.barplot(x="age", hue="sex", y="count", data=v)
plt.show()

20 30 40 50 60+
age

0

500

1000

1500

2000

co
un

t

sex
F
M

Figure 11.2. Number of runners by age category and sex.

274 IV HETEROGENEOUS DATA

Note It is customary to call a single function fromseabornand thenperformaseriesof
additional calls to matplotlib to tweak the display details. We should remember that
the former uses the latter to achieve its goals, not vice versa. seaborn is particularly
convenient for plotting grouped data.

Exercise 11.11 (*) Draw a similar chart using matplotlib.pyplot.bar.

Exercise 11.12 (**) Create a stacked bar plot similar to the one in Figure 11.3, where we have
horizontal bars for data that have been normalised so that, for each sex, their sum is 100%.

 0% 20% 40% 60% 80% 100%

F

M

20 30 40 50 60+

Figure 11.3. An example stacked bar plot: age distribution for different sexes amongst
all the runners.

11.3.2 Politicalmarketing and statistics
Even such a simple chart as bar plot can be manipulated. In the second round of the
presidential elections that were held in Poland in 2020, Andrzej Duda won against
Rafał Trzaskowski. Figure 11.4 gives the official results thatmight have beenpresented
by the pro-government media outlets:

plt.bar([1, 2], height=[51.03, 48.97], width=0.25,
color="lightgray", edgecolor="black", alpha=0.8)

plt.xticks([1, 2], ["Duda", "Trzaskowski"])
plt.ylabel("%")
plt.xlim(0, 3)
plt.ylim(48.9, 51.1)
plt.show()

11 HANDLING CATEGORICAL DATA 275

Duda Trzaskowski

49.00

49.25

49.50

49.75

50.00

50.25

50.50

50.75

51.00
%

Figure 11.4. Such a great victory! Wait… Just look at the y-axis tick marks…

Another media conglomerate could have reported it like in Figure 11.5:

plt.bar([1, 2], height=[51.03, 48.97], width=0.25,
color="lightgray", edgecolor="black", alpha=0.8)

plt.xticks([1, 2], ["Duda", "Trzaskowski"])
plt.ylabel("%")
plt.xlim(0, 3)
plt.ylim(0, 250)
plt.yticks([0, 100])
plt.show()

Important We must always read the axis tick marks. Also, when drawing bar plots,
we must never trick the reader for this is unethical; compare Rule#9. More issues in
statistical deception are explored, e.g., in [94].

11.3.3 Pie… don’t even trip
Wearedefinitely not going todiscuss the infamouspie charts because their use indata
analysis has been widely criticised for a long time (it is difficult to judge the ratios of
areas of their slices). Do not draw them. Ever. Goodmorning.

276 IV HETEROGENEOUS DATA

Duda Trzaskowski
0

100

%

Figure 11.5. It was a draw! So close!

11.3.4 Pareto charts (*)
As a general (empirical) rule, it is usually the case that most instances of something’s
happening (usually 70–90%) are due to only a few causes (10–30%). This is known as
the Pareto principle (with 80% vs 20% being an often cited rule of thumb).

Example 11.13 Chapter 6 modelled the US cities’ population dataset using the Pareto distribu-
tion (the very same Pareto, but a different, yet related mathematical object). We discovered that
only c. 14% of the settlements (those with 10 000 or more inhabitants) are home to as much as
84% of the population. Hence, wemay say that this data domain follows the Pareto rule.

Here is a dataset4 fabricated by the Clinical Excellence Commission in New South
Wales, Australia, listing the most frequent causes of medication errors:

cat_med = np.array([
"Unauthorised drug", "Wrong IV rate", "Wrong patient", "Dose missed",
"Underdose", "Wrong calculation","Wrong route", "Wrong drug",
"Wrong time", "Technique error", "Duplicated drugs", "Overdose"

])
counts_med = np.array([1, 4, 53, 92, 7, 16, 27, 76, 83, 3, 9, 59])
np.sum(counts_med) # total number of medication errors
430

Let us display the dataset ordered with respect to the counts, decreasingly:

med = pd.Series(counts_med, index=cat_med).sort_values(ascending=False)
med

(continues on next page)

4 https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/pareto-charts

https://www.cec.health.nsw.gov.au/CEC-Academy/quality-improvement-tools/pareto-charts

11 HANDLING CATEGORICAL DATA 277

(continued from previous page)

Dose missed 92
Wrong time 83
Wrong drug 76
Overdose 59
Wrong patient 53
Wrong route 27
Wrong calculation 16
Duplicated drugs 9
Underdose 7
Wrong IV rate 4
Technique error 3
Unauthorised drug 1
dtype: int64

Pareto chartsmay aid in visualising the datasets where the Pareto principle is likely to
hold, at least approximately.They include bar plots with some extras:

• bars are listed in decreasing order,

• the cumulative percentage curve is added.

The plotting of the Pareto chart is a little tricky because it involves using two different
Y axes (as usual, fine-tuning the figure and studying the manual of the matplotlib

package is left as an exercise.)

x = np.arange(len(med)) # 0, 1, 2, ...
p = 100.0*med/np.sum(med) # percentages

fig, ax1 = plt.subplots()
ax1.set_xticks(x-0.5, med.index, rotation=60)
ax1.set_ylabel("%")
ax1.bar(x, height=p, color="lightgray", edgecolor="black")

ax2 = ax1.twinx() # creates a new coordinate system with a shared x-axis
ax2.plot(x, np.cumsum(p), "ro-")
ax2.grid(visible=False)
ax2.set_ylabel("cumulative %")

fig.tight_layout()
plt.show()

Figure 11.6 shows that the first five causes (less than 40%) correspond to c. 85% of the
medication errors. More precisely, the cumulative probabilities are:

med.cumsum()/np.sum(med)
Dose missed 0.213953
Wrong time 0.406977
Wrong drug 0.583721
Overdose 0.720930

(continues on next page)

278 IV HETEROGENEOUS DATA

Dos
e m

iss
ed

W
ro

ng t
im

e
W

ro
ng d

ru
g

Ove
rd

os
e

W
ro

ng p
at

ien
t

W
ro

ng r
ou

te
W

ro
ng c

alc
ulat

ion
Duplic

at
ed

 dru
gs

Under
dos

e
W

ro
ng I

V ra
te

Te
ch

niq
ue e

rro
r

Unau
th

or
ise

d dru
g

0

5

10

15

20

%

20

40

60

80

100

cu
m

ul
at

iv
e %

Figure 11.6. An example Pareto chart: themost frequent causes formedication errors.

(continued from previous page)

Wrong patient 0.844186
Wrong route 0.906977
Wrong calculation 0.944186
Duplicated drugs 0.965116
Underdose 0.981395
Wrong IV rate 0.990698
Technique error 0.997674
Unauthorised drug 1.000000
dtype: float64

Note that there is an explicit assumption here that a single error is only due to a single
cause. Also, we presume that each medication error has a similar degree of severity.

Policymakers and quality controllers often rely on similar simplifications. They most
probably aregoing tobeaddressingonly the topcauses. Ifweeverwonderedwhysome
processes (mal)function the way they do, there is a hint above. Inventing something
more effective yet so simple at the same time requires muchmore effort.

It would be also nice to report the number of cases where no mistakes are made and
the caseswhere errors are insignificant.Healthcareworkers are doing awonderful job
for our communities, especially in the public system.Why add to their stress?

11.3.5 Heatmaps
Two-waycontingency tables canbedepictedbymeansof aheatmap,where each count
influences the corresponding cell’s colour intensity; see Figure 11.7.

11 HANDLING CATEGORICAL DATA 279

V = marathon.loc[:, ["sex", "age"]].value_counts().unstack(fill_value=0)
sns.heatmap(V, annot=True, fmt="d", cmap=plt.colormaps.get_cmap("copper"))
plt.show()

20 30 40 50 60+
age

F
M

se
x

240 449 262 43 19

879 2200 1708 541 170

250

500

750

1000

1250

1500

1750

2000

Figure 11.7. A heat map for the marathoners’ sex and age category.

As an exercise, draw a similar heat map using matplotlib.pyplot.imshow.

11.4 Aggregating and comparing factors
11.4.1 Mode
The only operation on categorical data on which we can rely is counting.

counts = marathon.country.value_counts()
counts.head()
country
PL 6033
GB 71
DE 38
FR 33
SE 30
Name: count, dtype: int64

Therefore, as far as qualitative data aggregation is concerned, what we are left with is
themode, i.e., the most frequently occurring value.

280 IV HETEROGENEOUS DATA

counts.index[0] # counts are sorted
'PL'

Important Amodemight be ambiguous.

It turns out that amongst the fastest 22 runners (a nicely round number), there is a tie
between Kenya and Poland – both meet our definition of a mode:

counts = marathon.country.iloc[:22].value_counts()
counts
country
KE 7
PL 7
ET 3
IL 3
MA 1
MD 1
Name: count, dtype: int64

To avoid any bias, it is always best to report all the potential mode candidates:

counts.loc[counts == counts.max()].index
Index(['KE', 'PL'], dtype='object', name='country')

If one value is required, though, we can pick one at random (calling numpy.random.

choice).

11.4.2 Binary data as logical vectors
Recall that we are used to representing binary data as logical vectors or, equivalently,
vectors of 0s and 1s.

Perhaps the most useful arithmetic operation on logical vectors is the sum. For ex-
ample:

np.sum(marathon.country == "PL")
6033

This gave the number of elements that are equal to "PL" because the sum of 0s and 1s
is equal to the number of 1s in the sequence. Note that (country == "PL") is a logical
vector that represents a binary categorical variable with levels: not-Poland (False) and
Poland (True).

If we divide the above result by the length of the vector, we will get the proportion:

np.mean(marathon.country == "PL")
0.9265857779142989

11 HANDLING CATEGORICAL DATA 281

Roughly 93% of the runners were from Poland. As this is greater than 0.5, "PL” is def-
initely the mode.

Exercise 11.14 What is themeaning ofnumpy.all,numpy.any,numpy.min,numpy.max,numpy.
cumsum, and numpy.cumprod applied on logical vectors?

Note (**) Having the 0/1 (or zero/non-zero) vs False/True correspondence permits
us to perform some logical operations using integer arithmetic. In mathematics, 0
is the annihilator of multiplication and the neutral element of addition, whereas 1 is
the neutral element of multiplication. In particular, assuming that p and q are logical
values and a and b are numeric ones, we have, what follows:

• p+q != 0means that at least one value is True and p+q == 0 if and only if both are
False;

• more generally, p+q == 2 if both elements are True, p+q == 1 if only one is True (we
call it exclusive-or, XOR), and p+q == 0 if both are False;

• p*q != 0means that both values are True and p*q == 0 holdswhenever at least one
is False;

• 1-p corresponds to the negation of p (changes 1 to 0 and 0 to 1);

• p*a + (1-p)*b is equal to a if p is True and equal to b otherwise.

11.4.3 Pearson chi-squared test (*)
The Kolmogorov–Smirnov test described in Section 6.2.3 verifies whether a given
sample differs significantly fromahypothesised continuous5 distribution, i.e., it works
for numeric data.

For binned/categorical data, we can use a classical and easy-to-understand test de-
veloped by Karl Pearson in 1900. It is supposed to judge whether the differences
between the observed proportions ̂𝑝1, … , ̂𝑝𝑙 and the theoretical ones 𝑝1, … , 𝑝𝑙 are sig-
nificantly large or not:

{ 𝐻0 ∶ ̂𝑝𝑖 = 𝑝𝑖 for all 𝑖 = 1, … , 𝑙 (null hypothesis)
𝐻1 ∶ ̂𝑝𝑖 ≠ 𝑝𝑖 for some 𝑖 = 1, … , 𝑙 (alternative hypothesis)

Having such a test is beneficial, e.g.,when the datawehave at hand are based on small
surveys that are supposed to serve as estimates ofwhatmight be happening in a larger
population.

Going back to our political example from Section 11.3.2, it turns out that one of the
pre-election polls indicated that 𝑐 = 516 out of 𝑛 = 1017 people would vote for the
first candidate. We have ̂𝑝1 = 50.74% (Duda) and ̂𝑝2 = 49.26% (Trzaskowski). If we
would like to test whether the observed proportions are significantly different from

5 (*) There exists a discrete version of the Kolmogorov–Smirnov test, but it is defined in a different way
than in Section 6.2.3; compare [3, 16].

282 IV HETEROGENEOUS DATA

each other, we could test them against the theoretical distribution 𝑝1 = 50% and
𝑝2 = 50%, which states that there is a tie between the competitors (up to a sampling
error).

A natural test statistic is based on the relative squared differences:

𝑇̂ = 𝑛
𝑙

∑
𝑖=1

(̂𝑝𝑖 − 𝑝𝑖)
2

𝑝𝑖
.

c, n = 516, 1017
p_observed = np.array([c, n-c]) / n
p_expected = np.array([0.5, 0.5])
T = n * np.sum((p_observed-p_expected)**2 / p_expected)
T
0.2212389380530986

Similarly to the continuous case in Section 6.2.3, we reject the null hypothesis, if:

𝑇̂ ≥ 𝐾.

The critical value𝐾 is computed based on the fact that, if the null hypothesis is true, 𝑇̂
follows the𝜒2 (chi-squared, hence the nameof the test) distributionwith 𝑙−1degrees
of freedom, see scipy.stats.chi2.

We thus need to query the theoretical quantile function to determine the test statistic
that is not exceeded in 99.9% of the trials (under the null hypothesis):

alpha = 0.001 # significance level
scipy.stats.chi2.ppf(1-alpha, len(p_observed)-1)
10.827566170662733

As 𝑇̂ < 𝐾 (because 0.22 < 10.83), we cannot deem the two proportions significantly
different. In other words, this poll did not indicate (at the significance level 0.1%) any
of the candidates as a clear winner.

Exercise 11.15 Assuming 𝑛 = 1017, determine the smallest 𝑐, i.e., the number of respondents
claiming they would vote for Duda, that leads to the rejection of the null hypothesis.

11.4.4 Two-sample Pearson chi-squared test (*)
Let us consider the data depicted in Figure 11.3 and test whether the runners’ age dis-
tributions differ significantly betweenmen and women.

V = marathon.loc[:, ["sex", "age"]].value_counts().unstack(fill_value=0)
c1, c2 = np.array(V) # first row, second row
c1 # women
array([240, 449, 262, 43, 19])
c2 # men
array([879, 2200, 1708, 541, 170])

11 HANDLING CATEGORICAL DATA 283

There are 𝑙 = 5 age categories. First, denote the total number of observations in both
groups with 𝑛′ and 𝑛″.

n1 = c1.sum()
n2 = c2.sum()
n1, n2
(1013, 5498)

The observed proportions in the first group (females), denoted as ̂𝑝′
1, … , ̂𝑝′

𝑙, are, re-
spectively:

p1 = c1/n1
p1
array([0.23692004, 0.44323791, 0.25863771, 0.04244817, 0.01875617])

Here are the proportions in the second group (males), ̂𝑝″
1, … , ̂𝑝″

𝑙 :

p2 = c2/n2
p2
array([0.15987632, 0.40014551, 0.31065842, 0.09839942, 0.03092033])

Wewould like to verify whether the corresponding proportions are equal (up to some
sampling error):

{ 𝐻0 ∶ ̂𝑝′
𝑖 = ̂𝑝″

𝑖 for all 𝑖 = 1, … , 𝑙 (null hypothesis)
𝐻1 ∶ ̂𝑝′

𝑖 ≠ ̂𝑝″
𝑖 for some 𝑖 = 1, … , 𝑙 (alternative hypothesis)

In otherwords,we are interestedwhether the categorical data in the two groups come
from the same discrete probability distribution.

Taking the estimated expected proportions:

̄𝑝𝑖 =
𝑛′

𝑖 ̂𝑝′
𝑖 + 𝑛″

𝑖 ̂𝑝″
𝑖

𝑛′ + 𝑛″ ,

for all 𝑖 = 1, … , 𝑙, the test statistic this time is equal to:

𝑇̂ = 𝑛′
𝑙

∑
𝑖=1

(̂𝑝′
𝑖 − ̄𝑝𝑖)

2

̄𝑝𝑖
+ 𝑛″

𝑙
∑
𝑖=1

(̂𝑝″
𝑖 − ̄𝑝𝑖)

2

̄𝑝𝑖
,

which is a variation on the one-sample theme presented in the previous subsection.

pp = (n1*p1+n2*p2)/(n1+n2)
T = n1 * np.sum((p1-pp)**2 / pp) + n2 * np.sum((p2-pp)**2 / pp)
T
75.31373854741857

It can be shown that, if the null hypothesis is true, the test statistic approximately fol-
lows the 𝜒2 distribution with 𝑙 − 1 degrees of freedom6. The critical value 𝐾 is equal
to:

6 Notice that [74] in Section 14.3 recommends 𝑙 degrees of freedom, but we do not agree with this rather
informal reasoning. Also, simple Monte Carlo simulations suggest that 𝑙 − 1 is a better candidate.

284 IV HETEROGENEOUS DATA

alpha = 0.001 # significance level
scipy.stats.chi2.ppf(1-alpha, len(p1)-1)
18.46682695290317

As 𝑇̂ ≥ 𝐾 (because 75.31 ≥ 18.47), we reject the null hypothesis. And so, the runners’
age distribution differs across sexes (at significance level 0.1%).

11.4.5 Measuring association (*)
Let us consider the Australian Bureau of Statistics National Health Survey 20187 data
on the prevalence of certain medical conditions as a function of age. Here is the ex-
tracted contingency table:

l = [
["Arthritis", "Asthma", "Back problems", "Cancer (malignant neoplasms)",
"Chronic obstructive pulmonary disease", "Diabetes mellitus",
"Heart, stroke and vascular disease", "Kidney disease",
"Mental and behavioural conditions", "Osteoporosis"],

["15-44", "45-64", "65+"]
]
C = 1000*np.array([

[360.2, 1489.0, 1772.2],
[1069.7, 741.9, 433.7],
[1469.6, 1513.3, 955.3],
[28.1, 162.7, 237.5],
[103.8, 207.0, 251.9],
[135.4, 427.3, 607.7],
[94.0, 344.4, 716.0],
[29.6, 67.7, 123.3],
[2218.9, 1390.6, 725.0],
[36.1, 312.3, 564.7],

]).astype(int)
pd.DataFrame(C, index=l[0], columns=l[1])
15-44 45-64 65+
Arthritis 360000 1489000 1772000
Asthma 1069000 741000 433000
Back problems 1469000 1513000 955000
Cancer (malignant neoplasms) 28000 162000 237000
Chronic obstructive pulmonary disease 103000 207000 251000
Diabetes mellitus 135000 427000 607000
Heart, stroke and vascular disease 94000 344000 716000
Kidney disease 29000 67000 123000
Mental and behavioural conditions 2218000 1390000 725000
Osteoporosis 36000 312000 564000

Cramér’s 𝑉 is one of a few ways to measure the degree of association between two

7 https://www.abs.gov.au/statistics/health/health-conditions-and-risks/
national-health-survey-first-results/2017-18

https://www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/2017-18

11 HANDLING CATEGORICAL DATA 285

categorical variables. It is equal to 0 (the lowest possible value) if the two variables are
independent (there is no association between them) and 1 (the highest possible value)
if they are tied.

Given a two-way contingency table𝐶with 𝑛 rows and𝑚 columns and assuming that:

𝑇 =
𝑛

∑
𝑖=1

𝑚
∑
𝑗=1

(𝑐𝑖,𝑗 − 𝑒𝑖,𝑗)2

𝑒𝑖,𝑗
,

where:

𝑒𝑖,𝑗 =
(∑𝑚

𝑘=1 𝑐𝑖,𝑘) (∑𝑛
𝑘=1 𝑐𝑘,𝑗)

∑𝑛
𝑖=1 ∑𝑚

𝑗=1 𝑐𝑖,𝑗
,

the Cramér coefficient is given by:

𝑉 =
√
√√
⎷

𝑇
min{𝑛 − 1, 𝑚 − 1} ∑𝑛

𝑖=1 ∑𝑚
𝑗=1 𝑐𝑖,𝑗

.

Here, 𝑐𝑖,𝑗 gives the actually observed counts and 𝑒𝑖,𝑗 denotes the number thatwewould
expect to see if the two variables were really independent.

scipy.stats.contingency.association(C)
0.316237999724298

The above means that there might be a small association between age and the preval-
ence of certain conditions. In other words, it might be the case that some conditions
are more prevalent in some age groups than others.

Exercise 11.16 Compute the Cramér𝑉 using only numpy functions.

Example 11.17 (**)We can easily verify the hypothesis whether𝑉 does not differ significantly
from 0, i.e., whether the variables are independent. Looking at 𝑇, we see that this is essentially
the test statistic in Pearson’s chi-squared goodness-of-fit test.

E = C.sum(axis=1).reshape(-1, 1) * C.sum(axis=0).reshape(1, -1) / C.sum()
T = np.sum((C-E)**2 / E)
T
3715440.465191512

If the data are really independent, 𝑇 follows the chi-squared distribution 𝑛 + 𝑚 − 1. As a con-
sequence, the critical value𝐾 is equal to:

alpha = 0.001 # significance level
scipy.stats.chi2.ppf(1-alpha, C.shape[0] + C.shape[1] - 1)
32.90949040736021

As𝑇 is much greater than𝐾, we conclude (at significance level 0.1%) that the health conditions
are not independent of age.

286 IV HETEROGENEOUS DATA

Exercise 11.18 (*) Take a look at Table 19: Comorbidity of selected chronic conditions in
the National Health Survey 20188, where we clearly see that many disorders co-occur. Visualise
them on some heat maps and bar plots (including data grouped by sex and age).

11.4.6 Binned numeric data
Generally,modes aremeaningless for continuous data, where repeated values are – at
least theoretically – highly unlikely. It might make sense to compute them on binned
data, though.

Looking at a histogram, e.g., in Figure 4.2, the mode is the interval corresponding to
the highest bar (hopefully assuming there is only one). If we would like to obtain a
single number, we can choose for example the middle of this interval as the mode.

For numeric data, the mode will heavily depend on the coarseness and type of bin-
ning; compare Figure 4.4 and Figure 6.8.Thus, the question “what is themost popular
income” is overall a quite difficult one to answer.

Exercise 11.19 Compute some informative modes for the uk_income_simulated_20209 data-
set. Play around with different numbers of bins on linear and logarithmic scales and see how
they affect the mode.

11.4.7 Ordinal data (*)
The case where the categories can be linearly ordered, is called ordinal data. For in-
stance, Australian university grades are: F (fail) < P (pass) < C (credit) < D (distinction)
< HD (high distinction), some questionnaires use Likert-type scales such as “strongly
disagree” < “disagree” < “neutral” < “agree” < “strongly agree”, etc.

With a linear ordering we can go beyond themode. Due to the existence of order stat-
istics and observation ranks, we can also easily define sample quantiles. Nevertheless,
the standardmethods for resolving ties will not work: we need to be careful.

For example, the median of a sample of student grades (P, P, C, D, HD) is C, but (P, P,
C, D, HD, HD) is either C or D - we can choose one at random or just report that the
solution is ambiguous (C+? D-? C/D?).

Another option, of course, is to treat ordinal data as numbers (e.g., F = 0, P = 1, …, HD
= 4). In the latter example, the median would be equal to 2.5.

There are some cases, though, where the conversion of labels to consecutive integers
is far from optimal. For instance, where it gives the impression that the “distance”
between different levels is always equal (linear).

Exercise 11.20 (**)Thegrades_results10 dataset represents the grades (F,P,C,D,HD)of 100

8 https://www.abs.gov.au/statistics/health/health-conditions-and-risks/
national-health-survey-first-results/2017-18

9 https://github.com/gagolews/teaching-data/raw/master/marek/uk_income_simulated_2020.txt
10 https://github.com/gagolews/teaching-data/raw/master/marek/grades_results.txt

https://www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/2017-18
https://github.com/gagolews/teaching-data/raw/master/marek/uk_income_simulated_2020.txt
https://github.com/gagolews/teaching-data/raw/master/marek/grades_results.txt

11 HANDLING CATEGORICAL DATA 287

students attending an imaginary course in an Australian university. You can load it in the form
of an ordered categorical Series by calling:

grades = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/grades_results.txt", dtype="str")

grades = pd.Series(pd.Categorical(grades,
categories=["F", "P", "C", "D", "HD"], ordered=True))

grades.value_counts() # note the order of labels
F 30
P 29
C 23
HD 22
D 19
Name: count, dtype: int64

Howwould youdetermine theaveragegrade representedas anumber between0and 100, taking
into account that for a P you need at least 50%, C is given for ≥ 60%,D for ≥ 70%, andHD for only
(!) 80% of the points. Come up with a pessimistic, optimistic, and best-shot estimate, and then
compare your result to the true corresponding scores listed in the grades_scores11 dataset.

11.5 Exercises
Exercise 11.21 Does it make sense to compute the arithmetic mean of a categorical variable?

Exercise 11.22 Name the basic use cases for categorical data.

Exercise 11.23 (*)What is a Pareto chart?

Exercise 11.24 How canwe deal with the case of the mode being nonunique?

Exercise 11.25 What is the meaning of the sum andmean for binary data (logical vectors)?

Exercise 11.26 What is themeaningofnumpy.mean((x > 0) & (x < 1)),wherex is anumeric
vector?

Exercise 11.27 List someways to visualisemultidimensional categorical data (combinations of
two or more factors).

Exercise 11.28 (*) State the null hypotheses verified by the one- and two-sample chi-squared
goodness-of-fit tests.

Exercise 11.29 (*) How is Cramér’s𝑉 defined and what values does it take?

11 https://github.com/gagolews/teaching-data/raw/master/marek/grades_scores.txt

https://github.com/gagolews/teaching-data/raw/master/marek/grades_scores.txt

12
Processing data in groups

Let us consider another subset of the US Centres for Disease Control and Prevention
National Health and Nutrition Examination Survey, this time carrying some body
measures (P_BMX1) together with demographics (P_DEMO2).

nhanes = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_p_demo_bmx_2020.csv",
comment="#")

nhanes = (
nhanes
.loc[

(nhanes.DMDBORN4 <= 2) & (nhanes.RIDAGEYR >= 18),
["RIDAGEYR", "BMXWT", "BMXHT", "BMXBMI", "RIAGENDR", "DMDBORN4"]

] # age >= 18 and only US and non-US born
.rename({

"RIDAGEYR": "age",
"BMXWT": "weight",
"BMXHT": "height",
"BMXBMI": "bmival",
"RIAGENDR": "gender",
"DMDBORN4": "usborn"

}, axis=1) # rename columns
.dropna() # remove missing values
.reset_index(drop=True)

)

We consider only the adult (at least 18 years old) participants, whose country of birth
(the US or not) is well-defined. Let us recode the usborn and gender variables (for read-
ability) and introduce the BMI categories:

nhanes.loc[:, "usborn"] = (# NOT: nhanes.usborn = ..., it will not work
nhanes.usborn.astype("category")
.cat.rename_categories(["yes", "no"]).astype("str") # recode usborn

)
nhanes.loc[:, "gender"] = (

nhanes.gender.astype("category")
.cat.rename_categories(["male", "female"]).astype("str") # recode gender

)

(continues on next page)

1 https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm
2 https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_DEMO.htm

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_DEMO.htm

290 IV HETEROGENEOUS DATA

(continued from previous page)

nhanes.loc[:, "bmicat"] = pd.cut(# new column
nhanes.bmival,
bins= [0, 18.5, 25, 30, np.inf],
labels=["underweight", "normal", "overweight", "obese"]

)

Here is a preview of this data frame:

nhanes.head()
age weight height bmival gender usborn bmicat
0 29 97.1 160.2 37.8 female no obese
1 49 98.8 182.3 29.7 male yes overweight
2 36 74.3 184.2 21.9 male yes normal
3 68 103.7 185.3 30.2 male yes obese
4 76 83.3 177.1 26.6 male yes overweight

We have a mix of categorical (gender, US born-ness, BMI category) and numerical
(age, weight, height, BMI) variables. Unless we had encoded qualitative variables as
integers, this would not be possible with plain matrices, at least not with a single one.

In this section, we will treat the categorical columns as grouping variables. This way,
wewill be able to e.g., summarise or visualise the data in each group separately. Suffice
it to say that it is likely that data distributions vary across different factor levels. It is
much like having many data frames stored in one object, e.g., the heights of women
andmen separately.

nhanes is thus an example of heterogeneous data at their best.

12.1 Basicmethods
DataFrame and Series objects are equipped with the groupbymethods, which assist in
performing a wide range of operations in data groups defined by one or more data
frame columns (compare [96]).

They return objects of the classes DataFrameGroupBy and SeriesGroupby:

type(nhanes.groupby("gender"))
<class 'pandas.core.groupby.generic.DataFrameGroupBy'>
type(nhanes.groupby("gender").height) # or (...)["height"]
<class 'pandas.core.groupby.generic.SeriesGroupBy'>

Important When we wish to browse the list of available attributes in the pandas

manual, it is worth knowing that DataFrameGroupBy and SeriesGroupBy are separate
types. Still, they have manymethods and slots in common.

12 PROCESSING DATA IN GROUPS 291

Exercise 12.1 Skim through the documentation3 of the said classes.

For example, the pandas.DataFrameGroupBy.size method determines the number of
observations in each group:

nhanes.groupby("gender").size()
gender
female 4514
male 4271
dtype: int64

It returns an object of the type Series.We can also perform the groupingwith respect
to a combination of levels in two qualitative columns:

nhanes.groupby(["gender", "bmicat"], observed=True).size()
gender bmicat
female underweight 93
normal 1161
overweight 1245
obese 2015
male underweight 65
normal 1074
overweight 1513
obese 1619
dtype: int64

This yields a Series with a hierarchical index (Section 10.1.3). Nevertheless, we can
always call reset_index to convert it to standalone columns:

nhanes.groupby(
["gender", "bmicat"], observed=True

).size().rename("counts").reset_index()
gender bmicat counts
0 female underweight 93
1 female normal 1161
2 female overweight 1245
3 female obese 2015
4 male underweight 65
5 male normal 1074
6 male overweight 1513
7 male obese 1619

Take note of the rename part. It gave us some readable column names.

Furthermore, it is possible to group rows in a data frame using a list of any Series

objects, i.e., not just column names in a given data frame; see Section 16.2.3 for an
example.

Exercise 12.2 (*) Note the difference between pandas.GroupBy.count and pandas.GroupBy.
sizemethods (by reading their documentation).

3 https://pandas.pydata.org/pandas-docs/stable/reference/groupby.html

https://pandas.pydata.org/pandas-docs/stable/reference/groupby.html

292 IV HETEROGENEOUS DATA

12.1.1 Aggregating data in groups
The DataFrameGroupBy and SeriesGroupBy classes are equipped with several well-
known aggregation functions. For example:

nhanes.groupby("gender").mean(numeric_only=True).reset_index()
gender age weight height bmival
0 female 48.956580 78.351839 160.089189 30.489189
1 male 49.653477 88.589932 173.759541 29.243620

The arithmetic mean was computed only on numeric columns4.

Alternatively, we can apply the aggregate only on specific columns:

nhanes.groupby("gender")[["weight", "height"]].mean().reset_index()
gender weight height
0 female 78.351839 160.089189
1 male 88.589932 173.759541

By the way, we said we should never apply [...] directly on Series nor DataFrame objects.
However, what we have above is a DataFrameGroupBy object, i.e., it is a different story.
Column selection works well on it.

Another example:

nhanes.groupby(["gender", "bmicat"]).height.mean().reset_index()
gender bmicat height
0 female underweight 161.976344
1 female normal 160.149182
2 female overweight 159.573012
3 female obese 160.286452
4 male underweight 174.073846
5 male normal 173.443855
6 male overweight 173.051685
7 male obese 174.617851
##
<string>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.

Further, the most common aggregates that we described in Section 5.1 can be gener-
ated by calling the describemethod:

nhanes.groupby("gender").height.describe().T
gender female male
count 4514.000000 4271.000000
mean 160.089189 173.759541

(continues on next page)

4 (*) In this example, we called pandas.GroupBy.mean. Note that it has slightly different functional-
ity from pandas.DataFrame.mean and pandas.Series.mean, which all needed to be implemented
separately so that we can use them in complex operation chains. Still, they all call the underlying numpy.
mean function.Object-orientated programminghas its pros (more expressive syntax) and cons (sometimes
more redundancy in the API design).

12 PROCESSING DATA IN GROUPS 293

(continued from previous page)

std 7.035483 7.702224
min 131.100000 144.600000
25% 155.300000 168.500000
50% 160.000000 173.800000
75% 164.800000 178.900000
max 189.300000 199.600000

We have applied the transpose (T) to get a more readable (“tall”) result.

If different aggregates are needed, we can call aggregate to apply a custom list of func-
tions:

(nhanes.
groupby("gender")[["height", "weight"]].
aggregate(["mean", len, lambda x: (np.max(x)+np.min(x))/2]).
reset_index()

)
gender height weight
mean len <lambda_0> mean len <lambda_0>
0 female 160.089189 4514 160.2 78.351839 4514 143.45
1 male 173.759541 4271 172.1 88.589932 4271 139.70

Interestingly, the result’s columns slot uses a hierarchical index.

Note The column names in the output object are generated by reading the applied
functions’ __name__ slots; see, e.g., print(np.mean.__name__).

mr = lambda x: (np.max(x)+np.min(x))/2
mr.__name__ = "midrange"
(nhanes.

loc[:, ["gender", "height", "weight"]].
groupby("gender").
aggregate(["mean", mr]).
reset_index()

)
gender height weight
mean midrange mean midrange
0 female 160.089189 160.2 78.351839 143.45
1 male 173.759541 172.1 88.589932 139.70

12.1.2 Transforming data in groups
Wecan easily transform individual columns relative to different data groups bymeans
of the transformmethod for GroupBy objects.

294 IV HETEROGENEOUS DATA

def std0(x, axis=None):
return np.std(x, axis=axis, ddof=0)

std0.__name__ = "std0"

def standardise(x):
return (x-np.mean(x, axis=0))/std0(x, axis=0)

nhanes.loc[:, "height_std"] = (
nhanes.
loc[:, ["height", "gender"]].
groupby("gender").
transform(standardise)

)

nhanes.head()
age weight height bmival gender usborn bmicat height_std
0 29 97.1 160.2 37.8 female no obese 0.015752
1 49 98.8 182.3 29.7 male yes overweight 1.108960
2 36 74.3 184.2 21.9 male yes normal 1.355671
3 68 103.7 185.3 30.2 male yes obese 1.498504
4 76 83.3 177.1 26.6 male yes overweight 0.433751

The new column gives the relative z-scores: a woman with a relative z-score of 0 has
height of 160.1 cm, whereas a man with the same z-score has height of 173.8 cm.

We can check that the means and standard deviations in both groups are equal to 0
and 1:

(nhanes.
loc[:, ["gender", "height", "height_std"]].
groupby("gender").
aggregate(["mean", std0])

)
height height_std
mean std0 mean std0
gender
female 160.089189 7.034703 -1.351747e-15 1.0
male 173.759541 7.701323 3.145329e-16 1.0

Note that we needed to use a custom function for computing the standard de-
viation with ddof=0. This is likely a bug in pandas that nhanes.groupby("gender").
aggregate([np.std]) somewhat passes ddof=1 to numpy.std,

Exercise 12.3 Create a data frame comprised of the five tallest men and the five tallest women.

12.1.3 Manual splitting into subgroups (*)
It turns out that GroupBy objects and their derivatives are iterable; compare Section 3.4.
As a consequence, the grouped data frames and series can be easily processed manu-
ally in case where the built-in methods are insufficient (i.e., not so rarely).

12 PROCESSING DATA IN GROUPS 295

Let us consider a small sample of our data frame.

grouped = (nhanes.head()
.loc[:, ["gender", "weight", "height"]].groupby("gender")

)
list(grouped)
[('female', gender weight height
0 female 97.1 160.2), ('male', gender weight height
1 male 98.8 182.3
2 male 74.3 184.2
3 male 103.7 185.3
4 male 83.3 177.1)]

Theway Python formatted the above output is imperfect, sowe need to contemplate it
for a tick. We see that when iterating through a GroupBy object, we get access to pairs
giving all the levels of the grouping variable and the subsets of the input data frame
corresponding to these categories.

Here is a simple example where wemake use of the above fact:

for level, df in grouped:
level is a string label
df is a data frame - we can do whatever we want
print(f"There are {df.shape[0]} subject(s) with gender=`{level}`.")

There are 1 subject(s) with gender=`female`.
There are 4 subject(s) with gender=`male`.

We see that splitting followed bymanual processing of the chunks in a loop is quite te-
dious in the casewherewewouldmerely like to compute somebasic aggregates.These
scenarios are extremely common. Nowonder why the pandas developers introduced a
convenient interface in the form of the pandas.DataFrame.groupby and pandas.Series.

groupbymethods and the DataFrameGroupBy and SeriesGroupby classes. Still, for more
ambitious tasks, the low-level way to perform the splitting will come in handy.

Exercise 12.4 (**)Using themanual splittingandmatplotlib.pyplot.boxplot, drawabox-
and-whisker plot of heights grouped by BMI category (four boxes side by side).

Exercise 12.5 (**) Using the manual splitting, compute the relative z-scores of the height
column separately for each BMI category.

Example 12.6 Let us also demonstrate that the splitting can be donemanually without the use
of pandas. Namely, calling numpy.split(a, ind) returns a list with a (being an array-like ob-
ject, e.g., a vector, a matrix, or a data frame) partitioned rowwisely into len(ind)+1 chunks at
indexes given by ind. For example:

a = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
for e in np.split(a, [2, 6]):

print(repr(e))
array(['one', 'two'], dtype='<U5')
array(['three', 'four', 'five', 'six'], dtype='<U5')
array(['seven', 'eight', 'nine'], dtype='<U5')

296 IV HETEROGENEOUS DATA

To split a data frame into groups defined by a categorical column, we can first sort it with respect
to the criterion of interest, for instance, the gender data:

nhanes_srt = nhanes.sort_values("gender", kind="stable")

Then, we can use numpy.unique to fetch the indexes of first occurrences of each series of identical
labels:

levels, where = np.unique(nhanes_srt.gender, return_index=True)
levels, where
(array(['female', 'male'], dtype=object), array([0, 4514]))

This can now be used for dividing the sorted data frame into chunks:

nhanes_grp = np.split(nhanes_srt, where[1:]) # where[0] is not interesting
/home/gagolews/.virtualenvs/python3-default/lib/python3.11/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will be removed in a future version. Please use 'DataFrame.transpose' instead.
return bound(*args, **kwds)

We obtained a list of data frames split at rows specified by where[1:]. Here is a preview of the
first and the last row in each chunk:

for i in range(len(levels)):
process (levels[i], nhanes_grp[i])
print(f"level='{levels[i]}'; preview:")
print(nhanes_grp[i].iloc[[0, -1], :], end="\n\n")

level='female'; preview:
age weight height bmival gender usborn bmicat height_std
0 29 97.1 160.2 37.8 female no obese 0.015752
8781 67 82.8 147.8 37.9 female no obese -1.746938
##
level='male'; preview:
age weight height bmival gender usborn bmicat height_std
1 49 98.8 182.3 29.7 male yes overweight 1.108960
8784 74 59.7 167.5 21.3 male no normal -0.812788

Within each subgroup, we can apply any operation we have learnt so far: our imagination is the
onlymajor limiting factor. For instance, we can aggregate some columns:

nhanes_agg = [
dict(

level=t.gender.iloc[0], # they are all the same here – take first
height_mean=np.round(np.mean(t.height), 2),
weight_mean=np.round(np.mean(t.weight), 2)

)
for t in nhanes_grp

]
print(nhanes_agg[0])
{'level': 'female', 'height_mean': 160.09, 'weight_mean': 78.35}
print(nhanes_agg[1])
{'level': 'male', 'height_mean': 173.76, 'weight_mean': 88.59}

12 PROCESSING DATA IN GROUPS 297

The resulting list of dictionaries can be combined to form a data frame:

pd.DataFrame(nhanes_agg)
level height_mean weight_mean
0 female 160.09 78.35
1 male 173.76 88.59

Furthermore, there is a simple trick that allows grouping with respect to more than one column.
We can apply numpy.unique on a string vector that combines the levels of the grouping variables,
e.g., by concatenating them like nhanes_srt.gender + "___" + nhanes_srt.bmicat (assum-
ing that nhanes_srt is ordered with respect to these two criteria).

12.2 Plotting data in groups
The seaborn package is particularly convenient for plotting grouped data – it is highly
interoperable with pandas.

12.2.1 Series of box plots
Figure 12.1 depicts a box plot with four boxes side by side:

sns.boxplot(x="bmival", y="gender", hue="usborn",
data=nhanes, palette="Paired")

plt.show()

20 30 40 50 60 70 80 90
bmival

female

male

ge
nd

er

usborn
no
yes

Figure 12.1.The distribution of BMIs for different genders and countries of birth.

298 IV HETEROGENEOUS DATA

Let us contemplate for a while how easy it is now to compare the BMI distribution in
different groups. Here, we have two grouping variables, as specified by the y and hue

arguments.

Exercise 12.7 Create a similar series of violin plots.

Exercise 12.8 (*) Add the average BMIs in each group to the above box plot using matplotlib.
pyplot.plot. Check ylim to determine the range on the y-axis.

12.2.2 Series of bar plots
On the other hand, Figure 12.2 shows a bar plot representing a contingency table. It
was obtained in a different way from that used in Chapter 11:

sns.barplot(
y="counts", x="gender", hue="bmicat", palette="Paired",
data=(

nhanes.
groupby(["gender", "bmicat"], observed=True).
size().
rename("counts").
reset_index()

)
)
plt.show()

female male
gender

0

250

500

750

1000

1250

1500

1750

2000

co
un

ts

bmicat
underweight
normal
overweight
obese

Figure 12.2. Number of persons for each gender and BMI category.

Exercise 12.9 Draw a similar bar plot where the bar heights sum to 100% for each gender.

12 PROCESSING DATA IN GROUPS 299

Exercise 12.10 Using the two-sample chi-squared test, verify whether the BMI category distri-
butions for men and women differ significantly from each other.

12.2.3 Semitransparent histograms
Figure 12.3 illustrates that playing with semitransparent objects can make comparis-
ons more intuitive (the alpha argument).

sns.histplot(data=nhanes, x="weight", hue="usborn", alpha=0.33,
element="step", stat="density", common_norm=False)

plt.show()

50 100 150 200 250
weight

0.000

0.005

0.010

0.015

0.020

0.025

D
en

sit
y

usborn
no
yes

Figure 12.3. The weight distribution of the US-born participants has a higher mean
and variance.

By passing common_norm=False, we scaled each histogram separately, so that it repres-
ents a density function (are under each curve is 1). It is the behaviour we desire when
the samples are of different lengths.

12.2.4 Scatter plots with group information
Scatter plots for grouped data can display category information using points of differ-
ent colours and/or styles, compare Figure 12.4.

sns.scatterplot(x="height", y="weight", hue="gender", style="gender",
data=nhanes, alpha=0.2, markers=["o", "v"])

plt.show()

300 IV HETEROGENEOUS DATA

Figure 12.4. Weight vs height grouped by gender.

12.2.5 Grid (trellis) plots
Grid plot (also knownas trellis, panel, conditioning, or lattice plots) are away to visual-
ise data separately for each factor level. All the plots share the same coordinate ranges
whichmakes them easily comparable. For instance, Figure 12.5 depicts a series of his-
tograms of weights grouped by a combination of two categorical variables.

grid = sns.FacetGrid(nhanes, col="gender", row="usborn")
grid = grid.map(sns.histplot, "weight", stat="density", color="lightgray")
plt.show()

Exercise 12.11 Pass hue="bmicat" additionally to seaborn.FacetGrid.

Important Grid plots can feature any kind of data visualisation we have discussed so
far (e.g., histograms, bar plots, scatter plots).

Exercise 12.12 Draw a trellis plot with scatter plots of weight vs height grouped by BMI cat-
egory and gender.

12.2.6 Kolmogorov–Smirnov test for comparing ECDFs (*)
Figure 12.6 compares the empirical cumulative distribution functions of the weight
distributions for US and non-US born participants.

for usborn, weight in nhanes.groupby("usborn").weight:
sns.ecdfplot(data=weight, legend=False, label=usborn)

(continues on next page)

12 PROCESSING DATA IN GROUPS 301

0.000

0.005

0.010

0.015

0.020

0.025

0.030
D

en
sit

y
usborn = no | gender = female usborn = no | gender = male

50 100 150 200 250
weight

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
en

sit
y

usborn = yes | gender = female

50 100 150 200 250
weight

usborn = yes | gender = male

Figure 12.5. Distribution of weights for different genders and countries of birth.

(continued from previous page)

plt.legend(title="usborn")
plt.show()

We have used manual splitting of the weight column into subgroups and then
plotted the two ECDFs separately because a call to seaborn.ecdfplot(data=nhanes,

x="weight", hue="usborn") does not honour our wish to use alternating lines styles
(most likely due to a bug).

A two-sample Kolmogorov–Smirnov test can be used to check whether two ECDFs ̂𝐹′
𝑛

(e.g., theweight of theUS-bornparticipants) and ̂𝐹″
𝑚 (e.g., theweight of non-US-born

persons) are significantly different from each other:

{ 𝐻0 ∶ ̂𝐹′
𝑛 = ̂𝐹″

𝑛 (null hypothesis)
𝐻1 ∶ ̂𝐹′

𝑛 ≠ ̂𝐹″
𝑛 (two-sided alternative)

302 IV HETEROGENEOUS DATA

50 100 150 200 250
weight

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

usborn
no
yes

Figure 12.6. Empirical cumulative distribution functions of weight distributions for
different birthplaces.

The test statisticwill be a variationof theone-sample settingdiscussed inSection6.2.3.
Namely, let:

𝐷̂𝑛,𝑚 = sup
𝑡∈ℝ

| ̂𝐹′
𝑛(𝑡) − ̂𝐹″

𝑚(𝑡)|.

Computing the above is slightly trickier than in the previous case5. Luckily, an appro-
priate procedure is available in scipy.stats:

x12 = nhanes.set_index("usborn").weight
x1 = x12.loc["yes"] # first sample
x2 = x12.loc["no"] # second sample
Dnm = scipy.stats.ks_2samp(x1, x2)[0]
Dnm
0.22068075889911914

Assuming significance level 𝛼 = 0.001, the critical value is approximately (for larger
𝑛 and𝑚) equal to:

𝐾𝑛,𝑚 = √− log(𝛼/2)(𝑛 + 𝑚)
2𝑛𝑚 .

5 Remember that this is an introductory course, andwe are still being very generous here.We encourage
the readers to upskill themselves (later, of course) not only in mathematics, but also in programming (e.g.,
algorithms and data structures).

12 PROCESSING DATA IN GROUPS 303

alpha = 0.001
np.sqrt(-np.log(alpha/2) * (len(x1)+len(x2)) / (2*len(x1)*len(x2)))
0.04607410479813944

As usual, we reject the null hypothesis when 𝐷̂𝑛,𝑚 ≥ 𝐾𝑛,𝑚, which is exactly the case
here (at significance level 0.1%). In other words, weights of US- and non-US-born
participants differ significantly.

Important Frequentist hypothesis testing only takes into account the deviation
between distributions that is explainable due to sampling effects (the assumed ran-
domness of the data generation process). For large sample sizes, even very small de-
viations6 will be deemed statistically significant, but it does not mean that we consider
them as practically significant.

For instance, we might discover that a very costly, environmentally unfriendly, and
generally inconvenient for everyone upgrade leads to a process’ improvement: we re-
ject thenull hypothesis stating that twodistributions are equal.Nevertheless, a careful
inspection told us that the gains are roughly 0.5%. In such a case, it is worthwhile to
apply good old common sense and refrain from implementing it.

Exercise 12.13 Compare between the ECDFs of weights ofmen andwomenwho are between 18
and 25 years old. Determine whether they are significantly different.

Important Some statistical textbooks andmany researchpapers in the social sciences
(amongst many others) employ the significance level of 𝛼 = 5%, which is often criti-
cised as too high7. Many stakeholders aggressively push towards constant improve-
ments in terms of inventing bigger, better, faster, more efficient things. In this con-
text, larger 𝛼 generates more sensational discoveries: it considers smaller differences
as already significant.This all adds to what we call the reproducibility crisis in the em-
pirical sciences.

We, on the other hand, claim that it is better to err on the side of being cautious.This,
in the long run, is more sustainable.

12.2.7 Comparing quantiles
Plotting quantiles in two samples against each other can also give us some further
(informal) insight with regard to the possible distributional differences. Figure 12.7
depicts an example Q-Q plot (see also the one-sample version in Section 6.2.2), where
we see that the distributions have similar shapes (points more or less lie on a straight

6 Including those that are merely due to round-off errors.
7 For similar reasons, we do not introduce the notion of p-values. Most practitioners tend to misunder-

stand them anyway.

304 IV HETEROGENEOUS DATA

line), but they are shifted and/or scaled (if they were, they would be on the identity
line).

x = nhanes.weight.loc[nhanes.usborn == "yes"]
y = nhanes.weight.loc[nhanes.usborn == "no"]
xd = np.sort(x)
yd = np.sort(y)
if len(xd) > len(yd): # interpolate between quantiles in a longer sample

xd = np.quantile(xd, np.arange(1, len(yd)+1)/(len(yd)+1))
else:

yd = np.quantile(yd, np.arange(1, len(xd)+1)/(len(xd)+1))
plt.plot(xd, yd, "o")
plt.axline((xd[len(xd)//2], xd[len(xd)//2]), slope=1,

linestyle=":", color="gray") # identity line
plt.xlabel(f"Sample quantiles (weight; usborn=yes)")
plt.ylabel(f"Sample quantiles (weight; usborn=no)")
plt.show()

50 75 100 125 150 175 200 225
Sample quantiles (weight; usborn=yes)

40

60

80

100

120

140

160

180

Sa
m

pl
e q

ua
nt

ile
s (

w
ei

gh
t;

us
bo

rn
=n

o)

Figure 12.7. A two-sample Q-Q plot.

Notice that we interpolated between the quantiles in a larger sample to match the
length of the shorter vector.

12 PROCESSING DATA IN GROUPS 305

12.3 Classification tasks
Let us consider a small sample of white, rather sweet wines from a much larger wine
quality8 dataset.

wine_train = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/other/sweetwhitewine_train2.csv",
comment="#")

wine_train.head()
alcohol sugar bad
0 10.625271 10.340159 0
1 9.066111 18.593274 1
2 10.806395 6.206685 0
3 13.432876 2.739529 0
4 9.578162 3.053025 0

We are given each wine’s alcohol and residual sugar content, as well as a binary cat-
egorical variable stating whether a group of sommeliers deem a given beverage quite
bad (1) or not (0). Figure 12.8 reveals that subpar wines are rather low in… alcohol and,
to some extent, sugar.

sns.scatterplot(x="alcohol", y="sugar", data=wine_train,
hue="bad", style="bad", markers=["o", "v"], alpha=0.5)

plt.xlabel("alcohol")
plt.ylabel("sugar")
plt.legend(title="bad")
plt.show()

Someone answer the door!We have a delivery of a few newwine bottles. Interestingly,
their alcohol and sugar contents have been given on their respective labels.

wine_test = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/other/sweetwhitewine_test2.csv",
comment="#").iloc[:, :-1]

wine_test.head()
alcohol sugar
0 9.315523 10.041971
1 12.909232 6.814249
2 9.051020 12.818683
3 9.567601 11.091827
4 9.494031 12.053790

We would like to determine which of the wines from the test set might be not-bad
without asking an expert for their opinion. In other words, we would like to exercise
a classification task (see, e.g., [8, 47]). More formally:

8 http://archive.ics.uci.edu/ml/datasets/Wine+Quality

http://archive.ics.uci.edu/ml/datasets/Wine+Quality
http://archive.ics.uci.edu/ml/datasets/Wine+Quality

306 IV HETEROGENEOUS DATA

Figure 12.8. Scatter plot for sugar vs alcohol content forwhite, rather sweetwines, and
whether they are considered bad (1) or drinkable (0) by some experts.

Important Assume we are given a set of training points 𝐗 ∈ ℝ𝑛×𝑚 and the cor-
responding reference outputs 𝒚 ∈ {𝐿1, 𝐿2, … , 𝐿𝑙}𝑛 in the form of a categorical vari-
able with 𝑙 distinct levels. The aim of a classification algorithm is to predict what the
outputs for each point from a possibly different dataset 𝐗′ ∈ ℝ𝑛′×𝑚, i.e., ̂𝒚′ ∈
{𝐿1, 𝐿2, … , 𝐿𝑙}𝑛′ , might be.

In other words, we are asked to fill the gaps in a categorical variable. Recall that in a
regression problem (Section 9.2), the reference outputs were numerical.

Exercise 12.14 Which of the following are instances of classification problems and which are
regression tasks?

• Detect email spam.

• Predict a market stock price (good luck with that).

• Assess credit risk.

• Detect tumour tissues inmedical images.

• Predict the time-to-recovery of cancer patients.

• Recognise smiling faces on photographs (kind of creepy).

• Detect unattended luggage in airport security camera footage.

What kind of data should you gather to tackle them?

12 PROCESSING DATA IN GROUPS 307

12.3.1 K-nearest neighbour classification
One of the simplest approaches to classification is based on the information about a
test point’s nearest neighbours living in the training sample; compare Section 8.4.4.

Fix 𝑘 ≥ 1. Namely, to classify some 𝒙′ ∈ ℝ𝑚:

1. Find the indexes 𝑁𝑘(𝒙′) = {𝑖1, … , 𝑖𝑘} of the 𝑘 points from 𝐗 closest to 𝒙′, i.e.,
ones that fulfil for all 𝑗 ∉ {𝑖1, … , 𝑖𝑘}:

‖𝐱𝑖1,⋅ − 𝒙′‖ ≤ … ≤ ‖𝐱𝑖𝑘,⋅ − 𝒙′‖ ≤ ‖𝐱𝑗,⋅ − 𝒙′‖.

2. Classify 𝒙′ as ̂𝑦′ = mode(𝑦𝑖1 , … , 𝑦𝑖𝑘), i.e., assign it the label that most frequently
occurs amongst its 𝑘 nearest neighbours. If a mode is nonunique, resolve the ties
at random.

It is thus a similar algorithm to 𝑘-nearest neighbour regression (Section 9.2.1). We
only replaced the quantitativemean with the qualitativemode.

This is a variation on the theme: if you don’t know what to do in a given situation, try
to mimic what the majority of people around you are doing or saying. For instance, if
you don’t know what to think about a particular wine, discover that amongst the five
most similar ones (in terms of alcohol and sugar content) three are said to be awful.
Now you can claim that you don’t like it because it’s not sweet enough.Thanks to this,
others will take you for a very refined wine taster.

Let us apply a 5-nearest neighbour classifier on the standardised versionof thedataset.
As we are about to use a technique based on pairwise distances, it would be best if the
variables were on the same scale. Thus, we first compute the z-scores for the training
set:

X_train = np.array(wine_train.loc[:, ["alcohol", "sugar"]])
means = np.mean(X_train, axis=0)
sds = np.std(X_train, axis=0)
Z_train = (X_train-means)/sds

Then, we determine the z-scores for the test set:

Z_test = (np.array(wine_test.loc[:, ["alcohol", "sugar"]])-means)/sds

Let us stress that we referred to the aggregates computed for the training set. This is
a representative example of a situationwhere we cannot simply use a built-inmethod
from pandas. Instead, we apply what we have learnt about numpy.

To make the predictions, we will use the following function:

def knn_class(X_test, X_train, y_train, k):
nnis = scipy.spatial.KDTree(X_train).query(X_test, k)[1]
nnls = y_train[nnis] # same as: y_train[nnis.reshape(-1)].reshape(-1, k)
return scipy.stats.mode(nnls.reshape(-1, k), axis=1, keepdims=False)[0]

308 IV HETEROGENEOUS DATA

First, we fetched the indexes of each test point’s nearest neighbours (amongst the
points in the training set). Then, we read their corresponding labels; they are stored
in a matrix with 𝑘 columns. Finally, we computed the modes in each row. As a con-
sequence, we have each point in the test set classified.

And now:

k = 5
y_train = np.array(wine_train.bad)
y_pred = knn_class(Z_test, Z_train, y_train, k)
y_pred[:10] # preview
array([1, 0, 0, 1, 1, 0, 1, 0, 0, 1])

Note Unfortunately, scipy.stats.mode does not resolve possible ties at random: e.g.,
themode of (1, 1, 1, 2, 2, 2) is always 1.Nevertheless, in our case, 𝑘 is odd and the num-
ber of possible classes is 𝑙 = 2, so the mode is always unique.

Figure 12.9 shows how nearest neighbour classification categorises different regions
of a sectionof the two-dimensional plane.Thegreater the 𝑘, the smoother thedecision
boundaries. Naturally, in regions corresponding to few training points, we do not ex-
pect the classification accuracy to be acceptable9.

x1 = np.linspace(Z_train[:, 0].min(), Z_train[:, 0].max(), 100)
x2 = np.linspace(Z_train[:, 1].min(), Z_train[:, 1].max(), 100)
xg1, xg2 = np.meshgrid(x1, x2)
Xg12 = np.column_stack((xg1.reshape(-1), xg2.reshape(-1)))
ks = [5, 25]
for i in range(len(ks)):

plt.subplot(1, len(ks), i+1)
yg12 = knn_class(Xg12, Z_train, y_train, ks[i])
plt.scatter(Z_train[y_train == 0, 0], Z_train[y_train == 0, 1],

c="black", marker="o", alpha=0.5)
plt.scatter(Z_train[y_train == 1, 0], Z_train[y_train == 1, 1],

c="#DF536B", marker="v", alpha=0.5)
plt.contourf(x1, x2, yg12.reshape(len(x2), len(x1)),

cmap="gist_heat", alpha=0.5)
plt.title(f"$k={ks[i]}$", fontdict=dict(fontsize=10))
plt.xlabel("alcohol")
if i == 0: plt.ylabel("sugar")

plt.show()

Example 12.15 (*)The same with the scikit-learn package:

import sklearn.neighbors
knn = sklearn.neighbors.KNeighborsClassifier(k)

(continues on next page)

9 (*) As an exercise, we could author a fixed-radius classifier; compare Section 8.4.4. In sparsely popu-
lated regions, the decision might be “unknown”.

12 PROCESSING DATA IN GROUPS 309

� � � �

�������

�

�

�

�

�

�
�
�
�
�

���

� � � �

�������

�

�

�

�

�

����

Figure 12.9. 𝑘-nearest neighbour classification of a whole, dense, two-dimensional
grid of points for different 𝑘.

(continued from previous page)

knn.fit(Z_train, y_train)
y_pred2 = knn.predict(Z_test)

We can verify that the results are identical to the ones above by calling:

np.all(y_pred2 == y_pred)
True

12.3.2 Assessing the quality of predictions
It is time to reveal the truth: our test wines, it turns out, have already been assessed
by some experts.

y_test = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/other/sweetwhitewine_test2.csv",
comment="#")

y_test = np.array(y_test.bad)
y_test[:10] # preview
array([1, 0, 0, 1, 0, 0, 1, 0, 1, 1])

The accuracy score is themost straightforwardmeasure of the similarity between these
true labels (denoted 𝒚′ = (𝑦′

1, … , 𝑦′
𝑛′)) and the ones predicted by the classifier (de-

noted ̂𝒚′ = (̂𝑦′
1, … , ̂𝑦′

𝑛′)). It is defined as a ratio between the correctly classified in-

310 IV HETEROGENEOUS DATA

stances and all the instances:

Accuracy(𝒚′, ̂𝒚′) =
∑𝑛′

𝑖=1 𝟏(𝑦′
𝑖 = ̂𝑦′

𝑖)
𝑛′ ,

where the indicator function 𝟏(𝑦′
𝑖 = ̂𝑦′

𝑖) = 1 if and only if 𝑦′
𝑖 = ̂𝑦′

𝑖 and 0 otherwise.
Computing the above for our test sample gives:

np.mean(y_test == y_pred)
0.706

Thus, 71%of thewineswere correctly classifiedwith regard to their true quality. Before
we get too enthusiastic, let us note that our dataset is slightly imbalanced in terms of
the distribution of label counts:

pd.Series(y_test).value_counts() # contingency table
0 330
1 170
Name: count, dtype: int64

It turns out that the majority of the wines (330 out of 500) in our sample are truly de-
licious. Notice that a dummy classifier which labels all the wines as great would have
accuracy of 66%. Our 𝑘-nearest neighbour approach to wine quality assessment is not
that usable after all.

It is therefore always beneficial to analyse the corresponding confusionmatrix, which is
a two-way contingency table summarising the correct decisions and errors wemake.

C = pd.DataFrame(
dict(y_pred=y_pred, y_test=y_test)

).value_counts().unstack(fill_value=0)
C
y_test 0 1
y_pred
0 272 89
1 58 81

In the binary classification case (𝑙 = 2) such as this one, its entries are usually referred
to as (see also the table below):

• TN – the number of cases where the true 𝑦′
𝑖 = 0 and the predicted ̂𝑦′

𝑖 = 0 (true
negative),

• TP – the number of instances such that the true 𝑦′
𝑖 = 1 and the predicted ̂𝑦′

𝑖 = 1
(true positive),

• FN – howmany times the true 𝑦′
𝑖 = 1 but the predicted ̂𝑦′

𝑖 = 0 (false negative),
• FN – howmany times the true 𝑦′

𝑖 = 0 but the predicted ̂𝑦′
𝑖 = 1 (false positive).

12 PROCESSING DATA IN GROUPS 311

The terms positive and negative refer to the output predicted by a classifier, i.e., they
indicate whether some ̂𝑦′

𝑖 is equal to 1 and 0, respectively.

Table 12.1.The different cases of true vs predicted labels in a binary classification task
(𝑙 = 2)

𝑦′
𝑖 = 0 𝑦′

𝑖 = 1

̂𝑦′
𝑖 = 0 TrueNegative False Negative (Type II error)
̂𝑦′
𝑖 = 1 False Positive (Type I error) True Positive

Ideally, the number of false positives and false negatives should be as low as possible.
The accuracy score only takes the rawnumber of true negatives (TN) and true positives
(TP) into account:

Accuracy(𝒚′, ̂𝒚′) = TN+ TP
TN+ TP+ FN+ FP

.

Consequently, it might not be a valid metric in imbalanced classification problems.

There are, fortunately, some more meaningful measures in the case where class 1 is
less prevalent andwheremispredicting it is consideredmore hazardous thanmaking
an inaccurate predictionwith respect to class 0. After all, most will agree that it is bet-
ter to be surprised by a vino mislabelled as bad, than be disappointed with a highly
recommended product where we have already built some expectations around it. Fur-
ther, getting a virus infection not recognisedwherewe are genuinely sick can bemore
dangerous for the people aroundus than being asked to stay at homewith nothing but
a headache.

Precision answers the question: If the classifier outputs 1, what is the probability that
this is indeed true?

Precision(𝒚′, ̂𝒚′) = TP
TP+ FP

=
∑𝑛′

𝑖=1 𝑦′
𝑖 ̂𝑦′

𝑖

∑𝑛′

𝑖=1 ̂𝑦′
𝑖

.

C = np.array(C) # convert to matrix
C[1,1]/(C[1,1]+C[1,0]) # precision
0.5827338129496403
np.sum(y_test*y_pred)/np.sum(y_pred) # equivalently
0.5827338129496403

When a classifier labels a vino as bad, in 58% of cases it is veritably undrinkable.

Recall (sensitivity, hit rate, or truepositive rate) addresses thequestion: If the true class
is 1, what is the probability that the classifier will detect it?

Recall(𝒚′, ̂𝒚′) = TP
TP+ FN

=
∑𝑛′

𝑖=1 𝑦′
𝑖 ̂𝑦′

𝑖

∑𝑛′

𝑖=1 𝑦′
𝑖

.

312 IV HETEROGENEOUS DATA

C[1,1]/(C[1,1]+C[0,1]) # recall
0.4764705882352941
np.sum(y_test*y_pred)/np.sum(y_test) # equivalently
0.4764705882352941

Only 48% of the really bad wines will be filtered out by the classifier.

The F measure (or 𝐹1 measure), is the harmonic10 mean of precision and recall in the
case where we would rather have them aggregated into a single number:

F(𝒚′, ̂𝒚′) = 1
1

Precision+ 1
Recall

2

= (1
2 (Precision−1 + Recall−1))

−1
= TP
TP+ FP+FN

2
.

C[1,1]/(C[1,1]+0.5*C[0,1]+0.5*C[1,0]) # F
0.5242718446601942

Overall, we can conclude that our classifier is rather weak.

Exercise 12.16 Would you use precision or recall in each of the following settings?

• Medical diagnosis,

• medical screening,

• suggestions of potential matches in a dating app,

• plagiarism detection,

• wine recommendation.

12.3.3 Splitting into training and test sets
The training set was used as a source of knowledge about our problem domain. The
𝑘-nearest neighbour classifier is technicallymodel-free. As a consequence, to generate
a new prediction, we need to be able to query all the points in the database every time.

Nonetheless, most statistical/machine learning algorithms, by construction, general-
ise thepatternsdiscovered in thedataset in the formofmathematical functions (often-
times, very complicated ones), that arefitted byminimising some errormetric. Linear
regression analysis bymeans of the least squares approximation uses exactly this kind
of approach. Logistic regression for abinary response variablewouldbe a conceptually
similar classifier, but it is beyond our introductory course.

Either way, we used a separate test set to verify the quality of our classifier on so-far
unobserved data, i.e., its predictive capabilities. We do not want our model to fit to the
training data too closely. This could lead to its being completely useless when filling
the gaps between the points it was exposed to. This is like being a student who can

10 (*) For any vector of nonnegative values, its minimum≤ its harmonic mean≤ its arithmetic mean.

12 PROCESSING DATA IN GROUPS 313

only repeat what the teacher says, and when faced with a slightly different real-world
problem, they panic and say complete gibberish.

In the above example, the training and test sets were created by yours truly. Normally,
however, the data scientists split a single data frame into two parts themselves; see
Section 10.5.4. This way, they can mimic the situation where some test observations
become available after the learning phase is complete.

12.3.4 Validatingmanymodels (parameter selection) (*)
In statisticalmodelling, there often aremany hyperparameters that need to be tweaked.
For example:

• which independent variables should be used for model building,

• what is the best way to preprocess them; e.g., which of them should be standard-
ised,

• if an algorithm has some tunable parameters, what is their best combination; for
instance, which 𝑘 should we use in the 𝑘-nearest neighbours search.

At initial stages of data analysis, we usually tune them up by trial and error. Later, but
this is already beyond the scope of this introductory course, we are used to exploring
all the possible combinations thereof (exhaustive grid search) or making use of some
local search-based heuristics (e.g., greedy optimisers such as hill climbing).

These always involve verifying the performance of many different classifiers, for ex-
ample, 1-, 3-, 9, and 15-nearest neighbours-based ones. For each of them, we need to
compute separate quality metrics, e.g., the F measures. Then, we promote the classi-
fier which enjoys the highest score. Unfortunately, if we do it recklessly, this can lead
to overfitting, this time with respect to the test set. The obtained metrics might be too
optimistic and can poorly reflect the real performance of the solution on future data.

Assuming that our dataset carries a decent number of observations, to overcome this
problem, we can perform a random training/validation/test split:

• training sample (e.g., 60% of randomly chosen rows) – for model construction,

• validation sample (e.g., 20%)–used to tune thehyperparameters ofmanyclassifiers
and to choose the best one,

• test (hold-out) sample (e.g., the remaining 20%) – used to assess the goodness of fit
of the best classifier.

This common sense-based approach is not limited to classification. We can validate
different regressionmodels in the same way.

Important We would like to obtain a valid estimate of a classifier’s performance on
previously unobserved data. For this reason, the test (hold-out) sample must neither
be used in the training nor the validation phase.

314 IV HETEROGENEOUS DATA

Exercise 12.17 Determine thebestparameter setting for the 𝑘-nearest neighbour classification
of the color variable based on standardised versions of some physicochemical features (chosen
columns) of wines in the wine_quality_all11 dataset. Create a 60/20/20% dataset split. For
each 𝑘 = 1, 3, 5, 7, 9, compute the corresponding Fmeasure on the validation test. Evaluate the
quality of the best classifier on the test set.

Note (*) Instead of a training/validation/test split, we can use various cross-validation
techniques, especially on smaller datasets. For instance, in a 5-fold cross-validation, we
split the original training set randomly into five disjoint parts: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 (more or
less of the same size).Weuse each combination of four chunks as training sets and the
remaining part as the validation set, for which we generate the predictions and then
compute, say, the F measure:

training set validation set F measure

𝐵 ∪ 𝐶 ∪ 𝐷 ∪ 𝐸 𝐴 𝐹𝐴
𝐴 ∪ 𝐶 ∪ 𝐷 ∪ 𝐸 𝐵 𝐹𝐵
𝐴 ∪ 𝐵 ∪ 𝐷 ∪ 𝐸 𝐶 𝐹𝐶
𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐸 𝐷 𝐹𝐷
𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷 𝐸 𝐹𝐸

In the end, we can determine the average F measure, (𝐹𝐴 + 𝐹𝐵 + 𝐹𝐶 + 𝐹𝐷 + 𝐹𝐸)/5,
as a basis for assessing different classifiers’ quality.

Once the best classifier is chosen, we can use the whole training sample to fit the final
model and then consider the separate test sample to assess its quality.

Furthermore, for highly imbalanced labels, some form of stratified sampling might
be necessary. Such problems are typically explored in more advanced courses in stat-
istical learning.

Exercise 12.18 (**) Redo the above exercise (assessing thewine colour classifiers), but this time
maximise the Fmeasure obtained by a 5-fold cross-validation.

12.4 Clustering tasks
So far, we have been implicitly assuming that either each dataset comes from a single
homogeneous distribution, orwe have a categorical variable that naturally defines the
groups that we can split the dataset into. Nevertheless, it might be the case that we
are given a sample coming from a distribution mixture, where some subsets behave

11 https://github.com/gagolews/teaching-data/raw/master/other/wine_quality_all.csv

https://github.com/gagolews/teaching-data/raw/master/other/wine_quality_all.csv

12 PROCESSING DATA IN GROUPS 315

differently, but a grouping variable has not been provided at all (e.g., we have height
and weight data but no information about the subjects’ sexes).

Clusteringmethods (also known as segmentation or quantisation; see, e.g., [2, 99]) par-
tition a dataset into groups based only on the spatial structure of the points’ relative
densities. In the 𝑘-meansmethod, whichwe discuss below, the cluster structure is de-
termined based on the points’ proximity to 𝑘 carefully chosen group centroids; com-
pare Section 8.4.2.

12.4.1 K-meansmethod
Fix 𝑘 ≥ 2. In the 𝑘-meansmethod12, we seek 𝑘 pivot points, 𝒄1, 𝒄2, … , 𝒄𝑘 ∈ ℝ𝑚, such
that the sum of squared distances between the input points in 𝐗 ∈ ℝ𝑛×𝑚 and their
closest pivots is minimised:

minimise
𝑛

∑
𝑖=1

min {‖𝐱𝑖,⋅ − 𝒄1‖2, ‖𝐱𝑖,⋅ − 𝒄2‖2, … , ‖𝐱𝑖,⋅ − 𝒄𝑘‖2} w.r.t. 𝒄1, 𝒄2, … , 𝒄𝑘.

Let us introduce the label vector 𝒍 such that:
𝑙𝑖 = argmin

𝑗
‖𝐱𝑖,⋅ − 𝒄𝑗‖2,

i.e., it is the index of the pivot closest to 𝐱𝑖,⋅.

We will consider all the points 𝐱𝑖,⋅ with 𝑖 such that 𝑙𝑖 = 𝑗 as belonging to the same,
𝑗-th, cluster (point group). This way 𝒍 defines a partition of the original dataset into 𝑘
nonempty, mutually disjoint subsets.

Now, the above optimisation task can be equivalently rewritten as:

minimise
𝑛

∑
𝑖=1

‖𝐱𝑖,⋅ − 𝒄𝑙𝑖‖
2 w.r.t. 𝒄1, 𝒄2, … , 𝒄𝑘.

And this is why we refer to the above objective function as the (total)within-cluster sum
of squares (WCSS). This problem looks easier, but let us not be tricked; 𝑙𝑖s depend on
𝒄𝑗s.They vary together. We have just made it less explicit.

It can be shown that given a fixed label vector 𝒍 representing a partition, 𝒄𝑗 must be
the centroid (Section 8.4.2) of the points assigned thereto:

𝒄𝑗 = 1
𝑛𝑗

∑
𝑖∶𝑙𝑖=𝑗

𝐱𝑖,⋅,

where 𝑛𝑗 = |{𝑖 ∶ 𝑙𝑖 = 𝑗}| gives the number of 𝑖s such that 𝑙𝑖 = 𝑗, i.e., the size of the 𝑗-th
cluster.

Here is an example dataset (see below for a scatter plot):
12We do not have to denote the number of clusters with 𝑘. We could be speaking about the 2-means, 3-

means, 𝑙-means, or ü-meansmethod too. Nevertheless, somemainstream practitioners consider 𝑘-means
as a kind of a brand name, let us thus refrain from adding to their confusion. Interestingly, another widely
known algorithm is called fuzzy (weighted) 𝑐-means [6].

316 IV HETEROGENEOUS DATA

X = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/blobs1.txt", delimiter=",")

We can call scipy.cluster.vq.kmeans2 to find 𝑘 = 2 clusters:

import scipy.cluster.vq
C, l = scipy.cluster.vq.kmeans2(X, 2)

The discovered cluster centres are stored in a matrix with 𝑘 rows and𝑚 columns, i.e.,
the 𝑗-th row gives 𝐜𝑗.

C
array([[0.99622971, 1.052801],
[-0.90041365, -1.08411794]])

The label vector is:

l
array([1, 1, 1, ..., 0, 0, 0], dtype=int32)

As usual in Python, indexing starts at 0. So for 𝑘 = 2we only obtain the labels 0 and 1.
Figure 12.10 depicts the two clusters together with the cluster centroids. We use l as
a colour selector in my_colours[l] (this is a clever instance of the integer vector-based
indexing). It seems that we correctly discovered the very natural partitioning of this
dataset into two clusters.

plt.scatter(X[:, 0], X[:, 1], c=np.array(["black", "#DF536B"])[l])
plt.plot(C[:, 0], C[:, 1], "yX")
plt.axis("equal")
plt.show()

Here are the cluster sizes:

np.bincount(l) # or, e.g., pd.Series(l).value_counts()
array([1017, 1039])

The label vector l can be added as a new column in the dataset. Here is a preview:

Xl = pd.DataFrame(dict(X1=X[:, 0], X2=X[:, 1], l=l))
Xl.sample(5, random_state=42) # some randomly chosen rows
X1 X2 l
184 -0.973736 -0.417269 1
1724 1.432034 1.392533 0
251 -2.407422 -0.302862 1
1121 2.158669 -0.000564 0
1486 2.060772 2.672565 0

We can now enjoy all the techniques for processing data in groups that we have dis-

12 PROCESSING DATA IN GROUPS 317

6 4 2 0 2 4 6

3

2

1

0

1

2

3

4

Figure 12.10. Two clusters discovered by the 𝑘-means method. Cluster centroids are
marked separately.

cussed so far. In particular, computing the columnwisemeans gives nothing else than
the above cluster centroids:

Xl.groupby("l").mean()
X1 X2
l
0 0.996230 1.052801
1 -0.900414 -1.084118

The label vector l can be recreated by computing the distances between all the points
and the centroids and then picking the indexes of the closest pivots:

l_test = np.argmin(scipy.spatial.distance.cdist(X, C), axis=1)
np.all(l_test == l) # verify they are identical
True

Important By construction13, the 𝑘-meansmethod can only detect clusters of convex
shapes (such as Gaussian blobs).

Exercise 12.19 Perform the clustering of the wut_isolation14 dataset and notice how non-
sensical, geometrically speaking, the returned clusters are.

13 (*) And its relation to Voronoi diagrams.
14 https://github.com/gagolews/teaching-data/raw/master/clustering/wut_isolation.csv

https://github.com/gagolews/teaching-data/raw/master/clustering/wut_isolation.csv

318 IV HETEROGENEOUS DATA

Exercise 12.20 Determine a clustering of the wut_twosplashes15 dataset and display the res-
ults on a scatter plot. Compare themwith those obtained on the standardised version of the data-
set. Recall what we said about the Euclidean distance and its perception being disturbed when a
plot’s aspect ratio is not 1:1.

Note (*) An even simpler classifier than the 𝑘-nearest neighbours one described
above builds upon the concept of the nearest centroids.Namely, it first determines the
centroids (componentwise arithmetic means) of the points in each class.Then, a new
point (from the test set) is assigned to the class whose centroid is the closest thereto.
The implementation of such a classifier is left as a rather straightforward exercise for
the reader. As an application, we recommend using it to extrapolate the results gener-
ated by the 𝑘-means method (for different 𝑘s) to previously unobserved data, e.g., all
points on a dense equidistant grid.

12.4.2 Solving k-means is hard
Unfortunately, the 𝑘-means method – the identification of label vectors/cluster
centres that minimise the total within-cluster sum of squares – relies on solving a
computationally hard combinatorial optimisation problem (e.g., [58]). In otherwords,
the search for the truly (i.e., globally) optimal solution takes, for larger 𝑛 and 𝑘, an im-
practically long time.

As a consequence, we must rely on some approximate algorithms which all have one
drawback in common. Namely, whatever they return can be suboptimal. Hence, they
can constitute a possibly meaningless solution.

The documentation of scipy.cluster.vq.kmeans2 is, of course, honest about it. It
states that themethod attempts tominimise theEuclideandistance between observations and
centroids. Further, sklearn.cluster.KMeans, which implements a similar algorithm,
mentions that the procedure is very fast […], but it falls in local minima. That is why it can
be useful to restart it several times.

To understandwhat it all means, it will be very educational to study this issue inmore
detail. This is because the discussed approach to clustering is not the only hard prob-
lem in data science (selecting an optimal set of independent variables with respect to
AIC or BIC in linear regression is another example).

12.4.3 Lloyd algorithm
Technically, there is no such thing as the 𝑘-means algorithm. There are many proced-
ures, based on numerous different heuristics, that attempt to solve the 𝑘-means prob-
lem. Unfortunately, neither of them is perfect.This is not possible.

Perhaps the most widely known and easiest to understand method is traditionally at-

15 https://github.com/gagolews/teaching-data/raw/master/clustering/wut_twosplashes.csv

https://github.com/gagolews/teaching-data/raw/master/clustering/wut_twosplashes.csv

12 PROCESSING DATA IN GROUPS 319

tributed to Lloyd [61]. It is based on the fixed-point iteration and. For a given 𝐗 ∈
ℝ𝑛×𝑚 and 𝑘 ≥ 2:
1. Pick initial cluster centres 𝒄1, … , 𝒄𝑘 randomly.

2. For each point in the dataset, 𝐱𝑖,⋅, determine the index of its closest centre 𝑙𝑖:

𝑙𝑖 = argmin
𝑗

‖𝐱𝑖,⋅ − 𝒄𝑗‖2.

3. Compute the centroids of the clusters defined by the label vector 𝒍, i.e., for every
𝑗 = 1, 2, … , 𝑘:

𝒄𝑗 = 1
𝑛𝑗

∑
𝑖∶𝑙𝑖=𝑗

𝐱𝑖,⋅,

where 𝑛𝑗 = |{𝑖 ∶ 𝑙𝑖 = 𝑗}| gives the size of the 𝑗-th cluster.
4. If the objective function (total within-cluster sumof squares) has not changed sig-
nificantly since the last iteration (say, the absolute value of the difference between
the last and the current loss is less than 10−9), then stop and return the current
𝒄1, … , 𝒄𝑘 as the result. Otherwise, go to Step 2.

Exercise 12.21 (*) Implement the Lloyd algorithm in the form of a function kmeans(X, C),
where X is the data matrix (𝑛 × 𝑚) and where the rows in C, being a 𝑘 × 𝑚 matrix, give the
initial cluster centres.

12.4.4 Localminima
Theway the above algorithm is constructed implies what follows.

Important Lloyd’s method guarantees that the centres 𝒄1, … , 𝒄𝑘 it returns cannot be
significantly improved any further by repeating Steps 2 and 3 of the algorithm. Still, it
does not necessarilymean that they yield the globally optimal (the best possible)WCSS.
We might as well get stuck in a localminimum, where there is no better positioning
thereof in the neighbourhoods of the current cluster centres; compare Figure 12.11. Yet,
had we looked beyond them, we could have found a superior solution.

A variant of the Lloyd method is given in scipy.cluster.vq.kmeans2, where the ini-
tial cluster centres are picked at random. Let us test its behaviour by analysing three
chosen categories from the 2016 Sustainable Society Indices16 dataset.

ssi = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/ssi_2016_categories.csv",
comment="#")

X = ssi.set_index("Country").loc[:,

(continues on next page)

16 https://ssi.wi.th-koeln.de/

https://ssi.wi.th-koeln.de/

320 IV HETEROGENEOUS DATA

0.0 0.2 0.4 0.6 0.8 1.0

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Figure 12.11. An example function (of only one variable; our problem is much higher-
dimensional) with many local minima. How can we be sure there is no better min-
imum outside of the depicted interval?

(continued from previous page)

["PersonalDevelopmentAndHealth", "WellBalancedSociety", "Economy"]
].rename({

"PersonalDevelopmentAndHealth": "Health",
"WellBalancedSociety": "Balance",
"Economy": "Economy"

}, axis=1) # rename columns
n = X.shape[0]
X.loc[["Australia", "Germany", "Poland", "United States"], :] # preview
Health Balance Economy
Country
Australia 8.590927 6.105539 7.593052
Germany 8.629024 8.036620 5.575906
Poland 8.265950 7.331700 5.989513
United States 8.357395 5.069076 3.756943

It is a three-dimensional dataset, where each point (row) corresponds to a different
country. Let us find a partition into 𝑘 = 3 clusters.

k = 3
np.random.seed(123) # reproducibility matters
C1, l1 = scipy.cluster.vq.kmeans2(X, k)
C1
array([[7.99945084, 6.50033648, 4.36537659],

(continues on next page)

12 PROCESSING DATA IN GROUPS 321

(continued from previous page)

[7.6370645 , 4.54396676, 6.89893746],
[6.24317074, 3.17968018, 3.60779268]])

The objective function (total within-cluster sum of squares) at the returned cluster
centres is equal to:

import scipy.spatial.distance
def get_wcss(X, C):

D = scipy.spatial.distance.cdist(X, C)**2
return np.sum(np.min(D, axis=1))

get_wcss(X, C1)
446.5221283436733

Is it acceptable or not necessarily? We are unable to tell. What we can do, however, is
to run the algorithm again, this time from a different starting point:

np.random.seed(1234) # different seed - different initial centres
C2, l2 = scipy.cluster.vq.kmeans2(X, k)
C2
array([[7.80779013, 5.19409177, 6.97790733],
[6.31794579, 3.12048584, 3.84519706],
[7.92606993, 6.35691349, 3.91202972]])
get_wcss(X, C2)
437.51120966832775

It is a better solution (we are lucky; it might as well have been worse). But is it the best
possible? Again, we cannot tell, alone in the dark.

Does a potential suboptimality affect theway the data points are grouped? It is indeed
the case here. Let us look at the contingency table for the two label vectors:

pd.DataFrame(dict(l1=l1, l2=l2)).value_counts().unstack(fill_value=0)
l2 0 1 2
l1
0 8 0 43
1 39 6 0
2 0 57 1

Important Clusters are essentially unordered.The label vector (1, 1, 2, 2, 1, 3) repres-
ents the same clustering as the label vectors (3, 3, 2, 2, 3, 1) and (2, 2, 3, 3, 2, 1).

By looking at the contingency table, we see that clusters 0, 1, and 2 in l1 correspond,
respectively, to clusters 2, 0, and 1 in l2 (via a kind of majority voting). We can relabel
the elements in l1 to get a more readable result:

322 IV HETEROGENEOUS DATA

l1p = np.array([2, 0, 1])[l1]
pd.DataFrame(dict(l1p=l1p, l2=l2)).value_counts().unstack(fill_value=0)
l2 0 1 2
l1p
0 39 6 0
1 0 57 1
2 8 0 43

Much better. It turns out that 8+6+1 countries are categorised differently. We would
definitely not want to initiate any diplomatic crisis because of our not knowing that
the above algorithmmight return suboptimal solutions.

Exercise 12.22 (*) Determine which countries are affected.

12.4.5 Random restarts
Therewill never be any guarantees, butwe can increase the probability of generating a
satisfactory solution by simply restarting the method multiple times frommany ran-
domly chosen points and picking the best17 solution (the one with the smallestWCSS)
identified as the result.

Let us make 1000 such restarts:

wcss, Cs = [], []
for i in range(1000):

C, l = scipy.cluster.vq.kmeans2(X, k, seed=i)
Cs.append(C)
wcss.append(get_wcss(X, C))

The best of the local minima (no guarantee that it is the global one, again) is:

np.min(wcss)
437.51120966832775

It corresponds to the cluster centres:

Cs[np.argmin(wcss)]
array([[7.80779013, 5.19409177, 6.97790733],
[7.92606993, 6.35691349, 3.91202972],
[6.31794579, 3.12048584, 3.84519706]])

They are the same as C2 above (up to a permutation of labels). We were lucky18, after
all.

17 If we have many different heuristics, each aiming to approximate a solution to the 𝑘-means problem,
from the practical point of view it does not really matter which one returns the best solution – they are
merely our tools to achieve a higher goal. Ideally, we could run all of them many times and get the result
that corresponds to the smallest WCSS. It is crucial to do our best to find the optimal set of cluster centres –
the more approaches we test, the better the chance of success.

18 Mind who is the benevolent dictator of the pseudorandom number generator’s seed.

12 PROCESSING DATA IN GROUPS 323

It is very educational to look at the distribution of the objective function at the identi-
fied local minima to see that, proportionally, in the case of this dataset it is not rare to
end up in a quite bad solution; see Figure 12.12.

plt.hist(wcss, bins=100)
plt.show()

450 500 550 600 650
0

100

200

300

400

500

Figure 12.12. Within-cluster sum of squares at the results returned by different runs
of the 𝑘-means algorithm. Sometimes wemight be very unlucky.

Also, Figure 12.13 depicts all the cluster centres to which the algorithm converged.We
see that we should not be trusting the results generated by a single run of a heuristic
solver to the 𝑘-means problem.
Example 12.23 (*) The scikit-learn package has an algorithm that is similar to the Lloyd’s
one.Themethod is equipped with the n_init parameter (which defaults to 10) which automatic-
ally applies the aforementioned restarting.

import sklearn.cluster
np.random.seed(123)
km = sklearn.cluster.KMeans(k, n_init=10)
km.fit(X)
KMeans(n_clusters=3, n_init=10)
km.inertia_ # WCSS – not optimal!
437.5467188958928

Still, there are no guarantees: the solution is suboptimal too. As an exercise, pass n_init=100,
n_init=1000, and n_init=10000 and determine the returnedWCSS.

Note It is theoretically possible that a developer from the scikit-learn team, when

324 IV HETEROGENEOUS DATA

Figure 12.13. Traces of different cluster centres our k-means algorithm converged to.
Some are definitely not optimal, and therefore the method must be restarted a few
times to increase the likelihood of pinpointing the true solution.

they see the above result, will make a tweak in the algorithm so that after an update
to the package, the returned minimum will be better. This cannot be deemed a bug
fix, though, as there are no bugs here. Improving the behaviour of the method in this
example will lead to its degradation in others.There is no free lunch in optimisation.

Note Somedatasets aremorewell-behaving than others.The 𝑘-meansmethod is over-
all quite usable, but wemust always be cautious.

We recommend performing at least 100 random restarts. Also, if a report from data
analysis does not say anything about the number of tries performed, we are advised

12 PROCESSING DATA IN GROUPS 325

to assume that the results are gibberish19. Peoplewill complain about our being a pain,
but we know better; compare Rule#9.

Exercise 12.24 Runthe𝑘-meansmethod,𝑘 = 8, on thesipu_unbalance20 dataset frommany
random sets of cluster centres.Note the value of the total within-cluster sum of squares. Also, plot
the cluster centres discovered. Do theymake sense? Compare these to the case where you start the
method from the following cluster centres which are close to the global minimum.

𝐂 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−15 5
−12 10
−10 5
15 0
15 10
20 5
25 0
25 10

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

12.5 Further reading
An overall noteworthy introduction to classification is [47] and [8]. Nevertheless, as
we said earlier, we recommend going through a solid course in matrix algebra and
mathematical statistics first, e.g., [20, 39] and [21, 38, 40]. For advanced theoretical
(probabilistic, information-theoretic) results, see, e.g., [9, 22].

Hierarchical clustering algorithms (see, e.g., [32, 66]) are also worthwhile as they
do not require asking for a fixed number of clusters. Furthermore, density-based
algorithms (DBSCAN and its variants) [12, 25, 59] utilise the notion of fixed-radius
search that we introduced in Section 8.4.4.

There are quite a fewways that aim to assess the quality of clustering results, but their
meaningfulness is somewhat limited; see [36] for discussion.

12.6 Exercises
Exercise 12.25 Name the data type of the objects that the DataFrame.groupbymethod returns.

Exercise 12.26 What is the relationship between the GroupBy, DataFrameGroupBy, and
SeriesGroupBy classes?

Exercise 12.27 What are relative z-scores and how can we compute them?

19 For instance, R’s stats::kmeans automatically uses nstart=1. It is not rare, unfortunately, that
data analysts only stick with the default arguments.

20 https://github.com/gagolews/teaching-data/raw/master/clustering/sipu_unbalance.csv

https://github.com/gagolews/teaching-data/raw/master/clustering/sipu_unbalance.csv

326 IV HETEROGENEOUS DATA

Exercise 12.28 Why and when the accuracy score might not be the best way to quantify a clas-
sifier’s performance?

Exercise 12.29 What is the difference between recall and precision, both in terms of how they
are defined and where they are the most useful?

Exercise 12.30 Explain how the 𝑘-nearest neighbour classification and regression algorithms
work.Why do we say that they are model-free?

Exercise 12.31 In the context of 𝑘-nearest neighbour classification, why it might be important
to resolve the potential ties at randomwhen computing themode of the neighbours’ labels?

Exercise 12.32 What is the purpose of a training/test and a training/validation/test set split?

Exercise 12.33 Give the formula for the total within-cluster sum of squares.

Exercise 12.34 Are there any cluster shapes that cannot be detected by the 𝑘-meansmethod?
Exercise 12.35 Why do we say that solving the 𝑘-means problem is hard?
Exercise 12.36 Why restarting Lloyd’s algorithm many times is necessary? Why are reports
from data analysis that do not mention the number of restarts not trustworthy?

13
Accessing databases

pandas is convenient for working with data that fit into memory and which can be
stored in individual CSVfiles. Still, larger information banks in a shared environment
will often be made available to us via relational (structured) databases such as Postgr-
eSQL or MariaDB, or a wide range of commercial products.

Most commonly, we use SQL (Structured Query Language) to define the data chunks1
we wish to analyse. Then, we fetch them from the database driver in the form of a
pandas data frame. This enables us to perform the operations we are already familiar
with, e.g., various transformations or visualisations.

Below we make a quick introduction to the basics of SQL using SQLite2, which is
a lightweight, flat-file, and server-less open-source database management system.
Overall, SQLite is a sensible choice for data of even hundreds or thousands of giga-
bytes in size that fit on a single computer’s disk.This is more than enough for playing
with our data science projects or prototypingmore complex solutions.

Important In this chapter, we will learn that the syntax of SQL is very readable: it
is modelled after the natural (English) language. The purpose of this introduction is
not to compose own queries nor to design new databanks. The latter is covered by a
separate course on database systems; see, e.g., [15, 19].

13.1 Example database
In this chapter, wewill be workingwith a simplified data dump of the Q&A site Travel
Stack Exchange3, which we downloaded4 on 2017-10-31. It consists of five separate
data frames.

1 Technically, there are ways to use pandas with data that do not fit into memory. However, SQL is
usually amore versatile choice. If we have toomuch data, we can always fetch their random samples (this is
what statistics is for) or pre-aggregate the information on the server side.This should be sufficient formost
intermediate-level users.

2 https://sqlite.org/
3 https://travel.stackexchange.com/
4 https://archive.org/details/stackexchange

https://sqlite.org/
https://travel.stackexchange.com/
https://travel.stackexchange.com/
https://archive.org/details/stackexchange

328 IV HETEROGENEOUS DATA

First, Tags gives, amongst others, topic categories (TagName) and howmany questions
mention them (Count):

Tags = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/travel_stackexchange_com_2017/Tags.csv.gz",
comment="#")

Tags.head(3)
Count ExcerptPostId Id TagName WikiPostId
0 104 2138.0 1 cruising 2137.0
1 43 357.0 2 caribbean 356.0
2 43 319.0 4 vacations 318.0

Second, Users provides information on the registered users.

Users = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/travel_stackexchange_com_2017/Users.csv.gz",
comment="#")

Users.head(3)
AccountId Age CreationDate ... Reputation UpVotes Views
0 -1.0 NaN 2011-06-21T15:16:44.253 ... 1.0 2472.0 0.0
1 2.0 40.0 2011-06-21T20:10:03.720 ... 101.0 1.0 31.0
2 7598.0 32.0 2011-06-21T20:11:02.490 ... 101.0 1.0 14.0
##
[3 rows x 11 columns]

Third, Badges recalls all rewards handed to the users (UserId) for their engaging in vari-
ous praiseworthy activities:

Badges = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/travel_stackexchange_com_2017/Badges.csv.gz",
comment="#")

Badges.head(3)
Class Date Id Name TagBased UserId
0 3 2011-06-21T20:16:48.910 1 Autobiographer False 2
1 3 2011-06-21T20:16:48.910 2 Autobiographer False 3
2 3 2011-06-21T20:16:48.910 3 Autobiographer False 4

Fourth, Posts lists all the questions and answers (the latter do not have ParentId set to
NaN).

Posts = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/travel_stackexchange_com_2017/Posts.csv.gz",
comment="#")

Posts.head(3)
AcceptedAnswerId ... ViewCount
0 393.0 ... 419.0
1 NaN ... 1399.0
2 NaN ... NaN
##
[3 rows x 17 columns]

13 ACCESSING DATABASES 329

Fifth, Votes list all the up-votes (VoteTypeId equal to 2) and down-votes (VoteTypeId of
3) to all the posts.

Votes = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/travel_stackexchange_com_2017/Votes.csv.gz",
comment="#")

Votes.head(3)
BountyAmount CreationDate Id PostId UserId VoteTypeId
0 NaN 2011-06-21T00:00:00.000 1 1 NaN 2
1 NaN 2011-06-21T00:00:00.000 2 1 NaN 2
2 NaN 2011-06-21T00:00:00.000 3 2 NaN 2

Exercise 13.1 See the README5 file for a detailed description of each column. Note that rows
are uniquely defined by their respective Ids. They are relations between the data frames, e.g.,
Users.Id vs Badges.UserId, Posts.Id vs Votes.PostId, etc. Moreover, for privacy reasons,
some UserIdsmight bemissing. In such a case, they are encodedwith a not-a-number; compare
Chapter 15.

13.2 Exporting data to a database
Let us establish a connection with the to-be SQLite database. In our case, this will be
an ordinary file stored on the computer’s disk:

import tempfile, os.path
dbfile = os.path.join(tempfile.mkdtemp(), "travel.db")
print(dbfile)
/tmp/tmphl4m35f0/travel.db

The above defines the file path (compare Section 13.6.1) where the database is going to
be stored.We use a randomly generated filename inside the local file system’s (we are
on Linux) temporary directory, /tmp.This is just a pleasant exercise, andwewill not be
using this database afterwards.The reader might prefer setting a filename relative to
the current working directory (as given by os.getcwd), e.g., dbfile = "travel.db".

We can now connect to the database:

import sqlite3
conn = sqlite3.connect(dbfile)

The database might now be queried: we can add new tables, insert new rows, and re-
trieve records.

5 https://github.com/gagolews/teaching-data/raw/master/travel_stackexchange_com_2017/README.
md

https://github.com/gagolews/teaching-data/raw/master/travel_stackexchange_com_2017/README.md

330 IV HETEROGENEOUS DATA

Important In the end, wemust not forget about the call to conn.close().

Our data are already in the form of pandas data frames.Therefore, exporting them to
the database is straightforward. We only need to make a series of calls to the pandas.
DataFrame.to_sqlmethod.

Tags.to_sql("Tags", conn, index=False)
Users.to_sql("Users", conn, index=False)
Badges.to_sql("Badges", conn, index=False)
Posts.to_sql("Posts", conn, index=False)
Votes.to_sql("Votes", conn, index=False)

Note (*) It is possible to export data that do not fit into memory by reading them in
chunks of considerable, but not too large, sizes. In particular pandas.read_csv has the
nrows argument that lets us read several rows fromafile connection; see Section 13.6.4.
Then,pandas.DataFrame.to_sql(..., if_exists="append") canbeused toappendnew
rows to an existing table.

Exporting data can be done without pandas as well, e.g., when they are to be fetched
from XML or JSON files (compare Section 13.5) and processed manually, row by row.
Intermediate-level SQLusers cancallconn.execute("CREATE TABLE t..."), followedby
conn.executemany("INSERT INTO t VALUES(?, ?, ?)", l), and thenconn.commit().This
will create a new table (here: named t) populated by a list of records (e.g., in the form
of tuples or numpy vectors). For more details, see the manual6 of the sqlite3 package.

13.3 Exercises on SQL vs pandas
We can use pandas to fetch the results of any SQL query in the form of a data frame.
For example:

pd.read_sql_query("""
SELECT * FROM Tags LIMIT 3

""", conn)
Count ExcerptPostId Id TagName WikiPostId
0 104 2138.0 1 cruising 2137.0
1 43 357.0 2 caribbean 356.0
2 43 319.0 4 vacations 318.0

Theabove query selected all columns (SELECT *) and the first three rows (LIMIT 3) from
the Tags table.

6 https://docs.python.org/3/library/sqlite3.html

https://docs.python.org/3/library/sqlite3.html

13 ACCESSING DATABASES 331

Exercise 13.2 For the above andall the followingSQLqueries,write the equivalent Python code
that generates the same result using pandas functions andmethods. In each case, theremight be
more than one equally fine solution. In case of any doubt about themeaning of the queries, please
refer to the SQLite documentation7. Example solutions are provided at the end of this section.

Example 13.3 For a reference query:

res1a = pd.read_sql_query("""
SELECT * FROM Tags LIMIT 3

""", conn)

The equivalent pandas implementationmight look like:

res1b = Tags.head(3)

To verify that the results are equal, we can call:

pd.testing.assert_frame_equal(res1a, res1b) # no error == OK

Noerrormessagemeans that the test is passed.The cordial thingabout theassert_frame_equal
function is that it ignores small round-off errors introduced by arithmetic operations.

Nonetheless, the results generated by pandasmight be the same up to the reordering of rows.
In sucha case, before callingpandas.testing.assert_frame_equal, we can invokeDataFrame.
sort_values on both data frames to sort themwith respect to 1 or 2 chosen columns.

13.3.1 Filtering
Exercise 13.4 From Tags, select two columns TagName and Count and rows for which TagName
is equal to one of the three choices provided.

res2a = pd.read_sql_query("""
SELECT TagName, Count
FROM Tags
WHERE TagName IN ('poland', 'australia', 'china')

""", conn)
res2a
TagName Count
0 china 443
1 australia 411
2 poland 139

Hint: use pandas.Series.isin.

Exercise 13.5 Select a set of columns from Postswhose rows fulfil a given set of conditions.

res3a = pd.read_sql_query("""
SELECT Title, Score, ViewCount, FavoriteCount

(continues on next page)

7 https://sqlite.org/lang.html

https://sqlite.org/lang.html

332 IV HETEROGENEOUS DATA

(continued from previous page)

FROM Posts
WHERE PostTypeId=1 AND

ViewCount>=10000 AND
FavoriteCount BETWEEN 35 AND 100

""", conn)
res3a
Title ... FavoriteCount
0 When traveling to a country with a different c... ... 35.0
1 How can I do a "broad" search for flights? ... 49.0
2 Tactics to avoid getting harassed by corrupt p... ... 42.0
3 Flight tickets: buy two weeks before even duri... ... 36.0
4 OK we're all adults here, so really, how on ea... ... 79.0
5 How to intentionally get denied entry to the U... ... 53.0
6 How do you know if Americans genuinely/literal... ... 79.0
7 OK, we are all adults here, so what is a bidet... ... 38.0
8 How to cope with too slow Wi-Fi at hotel? ... 41.0
##
[9 rows x 4 columns]

13.3.2 Ordering
Exercise 13.6 Select the Title and Score columns from Postswhere ParentId ismissing (i.e.,
the post is, in fact, a question) and Title is well-defined. Then, sort the results by the Score
column, decreasingly (descending order). Finally, return only the first five rows (e.g., top five
scoring questions).

res4a = pd.read_sql_query("""
SELECT Title, Score
FROM Posts
WHERE ParentId IS NULL AND Title IS NOT NULL
ORDER BY Score DESC
LIMIT 5

""", conn)
res4a
Title Score
0 OK we're all adults here, so really, how on ea... 306
1 How do you know if Americans genuinely/literal... 254
2 How to intentionally get denied entry to the U... 219
3 Why are airline passengers asked to lift up wi... 210
4 Why prohibit engine braking? 178

Hint: use pandas.DataFrame.sort_values and numpy.isnan or pandas.isnull.

13.3.3 Removing duplicates
Exercise 13.7 Get all unique badge names for the user with Id=23.

13 ACCESSING DATABASES 333

res5a = pd.read_sql_query("""
SELECT DISTINCT Name
FROM Badges
WHERE UserId=23

""", conn)
res5a
Name
0 Supporter
1 Student
2 Teacher
3 Scholar
4 Beta
5 Nice Question
6 Editor
7 Nice Answer
8 Yearling
9 Popular Question
10 Taxonomist
11 Notable Question

Hint: use pandas.DataFrame.drop_duplicates.

Exercise 13.8 For each badge handed to the user with Id=23, extract the award year store it in
a new column named Year.Then, select only the unique pairs (Name, Year).

res6a = pd.read_sql_query("""
SELECT DISTINCT

Name,
CAST(strftime('%Y', Date) AS FLOAT) AS Year

FROM Badges
WHERE UserId=23

""", conn)
res6a
Name Year
0 Supporter 2011.0
1 Student 2011.0
2 Teacher 2011.0
3 Scholar 2011.0
4 Beta 2011.0
5 Nice Question 2011.0
6 Editor 2012.0
7 Nice Answer 2012.0
8 Yearling 2012.0
9 Nice Question 2012.0
10 Nice Question 2013.0
11 Yearling 2013.0
12 Popular Question 2014.0
13 Yearling 2014.0
14 Taxonomist 2014.0

(continues on next page)

334 IV HETEROGENEOUS DATA

(continued from previous page)

15 Notable Question 2015.0
16 Nice Question 2017.0

Hint:useBadges.Date.astype("datetime64[s]").dt.strftime("%Y").astype("float");
see Chapter 16.

13.3.4 Grouping and aggregating
Exercise 13.9 Count how many badges of each type the user with Id=23 won. Also, for each
badge type, compute theminimal, average, andmaximal receiving year. Return only the top four
badges (with respect to the counts).

res7a = pd.read_sql_query("""
SELECT

Name,
COUNT(*) AS Count,
MIN(CAST(strftime('%Y', Date) AS FLOAT)) AS MinYear,
AVG(CAST(strftime('%Y', Date) AS FLOAT)) AS MeanYear,
MAX(CAST(strftime('%Y', Date) AS FLOAT)) AS MaxYear

FROM Badges
WHERE UserId=23
GROUP BY Name
ORDER BY Count DESC
LIMIT 4

""", conn)
res7a
Name Count MinYear MeanYear MaxYear
0 Nice Question 4 2011.0 2013.25 2017.0
1 Yearling 3 2012.0 2013.00 2014.0
2 Popular Question 3 2014.0 2014.00 2014.0
3 Notable Question 2 2015.0 2015.00 2015.0

Exercise 13.10 Count how many unique combinations of pairs (Name, Year) for the badges
won by the user with Id=23 are there. Then, return only the rows having Count greater than 1
and order the results by Count decreasingly. In other words, list the badges received more than
once in any given year.

res8a = pd.read_sql_query("""
SELECT

Name,
CAST(strftime('%Y', Date) AS FLOAT) AS Year,
COUNT(*) AS Count

FROM Badges
WHERE UserId=23
GROUP BY Name, Year
HAVING Count > 1
ORDER BY Count DESC

(continues on next page)

13 ACCESSING DATABASES 335

(continued from previous page)

""", conn)
res8a
Name Year Count
0 Popular Question 2014.0 3
1 Notable Question 2015.0 2

Note that WHERE is performed before GROUP BY, and HAVING is applied thereafter.

13.3.5 Joining
Exercise 13.11 Join (merge) Tags, Posts, and Users for all posts with OwnerUserId not equal
to -1 (i.e., the tags which were created by “alive” users). Return the top six records with respect to
Tags.Count.

res9a = pd.read_sql_query("""
SELECT Tags.TagName, Tags.Count, Posts.OwnerUserId,

Users.Age, Users.Location, Users.DisplayName
FROM Tags
JOIN Posts ON Posts.Id=Tags.WikiPostId
JOIN Users ON Users.AccountId=Posts.OwnerUserId
WHERE OwnerUserId != -1
ORDER BY Tags.Count DESC, Tags.TagName ASC
LIMIT 6

""", conn)
res9a
TagName Count ... Location DisplayName
0 canada 802 ... Mumbai, India hitec
1 europe 681 ... Philadelphia, PA Adam Tuttle
2 visa-refusals 554 ... New York, NY Benjamin Pollack
3 australia 411 ... Mumbai, India hitec
4 eu 204 ... Philadelphia, PA Adam Tuttle
5 new-york-city 204 ... Mumbai, India hitec
##
[6 rows x 6 columns]

Exercise 13.12 First, create an auxiliary (temporary) table named UpVotesTab, wherewe store
the information about the number of up-votes (VoteTypeId=2) that each post has received.Then,
join (merge) this tablewithPostsand fetch somedetails about thefive questions (PostTypeId=1)
with the most up-votes.

res10a = pd.read_sql_query("""
SELECT UpVotesTab.*, Posts.Title FROM
(

SELECT PostId, COUNT(*) AS UpVotes
FROM Votes
WHERE VoteTypeId=2
GROUP BY PostId

) AS UpVotesTab
(continues on next page)

336 IV HETEROGENEOUS DATA

(continued from previous page)

JOIN Posts ON UpVotesTab.PostId=Posts.Id
WHERE Posts.PostTypeId=1
ORDER BY UpVotesTab.UpVotes DESC LIMIT 5

""", conn)
res10a
PostId UpVotes Title
0 3080 307 OK we're all adults here, so really, how on ea...
1 38177 254 How do you know if Americans genuinely/literal...
2 24540 221 How to intentionally get denied entry to the U...
3 20207 211 Why are airline passengers asked to lift up wi...
4 96447 178 Why prohibit engine braking?

13.3.6 Solutions to exercises
In this section we provide examples of solutions to the above exercises.

Example 13.13 To obtain a result equivalent to res2a, we need basic filtering only:

res2b = (
Tags.
loc[

Tags.TagName.isin(["poland", "australia", "china"]),
["TagName", "Count"]

].
reset_index(drop=True)

)

Let us verify whether the two data frames are identical:

pd.testing.assert_frame_equal(res2a, res2b) # no error == OK

Example 13.14 To generate res3awith pandas only, we need somemore complex filteringwith
loc[...]:

res3b = (
Posts.
loc[

(Posts.PostTypeId == 1) & (Posts.ViewCount >= 10000) &
(Posts.FavoriteCount >= 35) & (Posts.FavoriteCount <= 100),
["Title", "Score", "ViewCount", "FavoriteCount"]

].
reset_index(drop=True)

)
pd.testing.assert_frame_equal(res3a, res3b) # no error == OK

Example 13.15 For res4a, some filtering and sorting is all we need:

res4b = (

(continues on next page)

13 ACCESSING DATABASES 337

(continued from previous page)

Posts.
loc[

Posts.ParentId.isna() & (~Posts.Title.isna()),
["Title", "Score"]

].
sort_values("Score", ascending=False).
head(5).
reset_index(drop=True)

)
pd.testing.assert_frame_equal(res4a, res4b) # no error == OK

Example 13.16 The key to res5a is the pandas.DataFrame.drop_duplicatesmethod:

res5b = (
Badges.
loc[Badges.UserId == 23, ["Name"]].
drop_duplicates().
reset_index(drop=True)

)
pd.testing.assert_frame_equal(res5a, res5b) # no error == OK

Example 13.17 For res6a, we first need to add a new column to the copy of Badges:

Badges2 = Badges.copy() # otherwise we would destroy the original object
Badges2.loc[:, "Year"] = (

Badges2.Date.astype("datetime64[s]").dt.strftime("%Y").astype("float")
)

Then, we apply some basic filtering and the removal of duplicated rows:

res6b = (
Badges2.
loc[Badges2.UserId == 23, ["Name", "Year"]].
drop_duplicates().
reset_index(drop=True)

)
pd.testing.assert_frame_equal(res6a, res6b) # no error == OK

Example 13.18 For res7a, we can use pandas.DataFrameGroupBy.aggregate:

Badges2 = Badges.copy()
Badges2.loc[:, "Year"] = (

Badges2.Date.astype("datetime64[s]").dt.strftime("%Y").astype("float")
)
res7b = (

Badges2.
loc[Badges2.UserId == 23, ["Name", "Year"]].
groupby("Name")["Year"].
aggregate([len, "min", "mean", "max"]).

(continues on next page)

338 IV HETEROGENEOUS DATA

(continued from previous page)

sort_values("len", ascending=False).
head(4).
reset_index()

)
res7b.columns = ["Name", "Count", "MinYear", "MeanYear", "MaxYear"]

Had we not converted Year to float, we would obtain a meaningless average year, without any
warning.

Unfortunately, the rows inres7aandres7bare ordereddifferently.For testing,weneed to reorder
them in the same way:

pd.testing.assert_frame_equal(
res7a.sort_values(["Name", "Count"]).reset_index(drop=True),
res7b.sort_values(["Name", "Count"]).reset_index(drop=True)

) # no error == OK

Example 13.19 For res8a, we first count the number of values in each group:

Badges2 = Badges.copy()
Badges2.loc[:, "Year"] = (

Badges2.Date.astype("datetime64[s]").dt.strftime("%Y").astype("float")
)
res8b = (

Badges2.
loc[Badges2.UserId == 23, ["Name", "Year"]].
groupby(["Name", "Year"]).
size().
rename("Count").
reset_index()

)

The HAVING part is performed after WHERE and GROUP BY.

res8b = (
res8b.
loc[res8b.Count > 1, :].
sort_values("Count", ascending=False).
reset_index(drop=True)

)
pd.testing.assert_frame_equal(res8a, res8b) # no error == OK

Example 13.20 To obtain a result equivalent to res9a, we need tomerge Postswith Tags, and
thenmerge the result with Users:

res9b = pd.merge(Posts, Tags, left_on="Id", right_on="WikiPostId")
res9b = pd.merge(Users, res9b, left_on="AccountId", right_on="OwnerUserId")

Then, some filtering and sorting will do the trick:

13 ACCESSING DATABASES 339

res9b = (
res9b.
loc[

(res9b.OwnerUserId != -1) & (~res9b.OwnerUserId.isna()),
["TagName", "Count", "OwnerUserId", "Age", "Location", "DisplayName"]

].
sort_values(["Count", "TagName"], ascending=[False, True]).
head(6).
reset_index(drop=True)

)

In SQL, “not equals to -1” implies IS NOT NULL.

pd.testing.assert_frame_equal(res9a, res9b) # no error == OK

Example 13.21 To obtain a result equivalent to res10a, wefirst need to create an auxiliary data
frame that corresponds to the subquery.

UpVotesTab = (
Votes.
loc[Votes.VoteTypeId==2, :].
groupby("PostId").
size().
rename("UpVotes").
reset_index()

)

And now:

res10b = pd.merge(UpVotesTab, Posts, left_on="PostId", right_on="Id")
res10b = (

res10b.
loc[res10b.PostTypeId==1, ["PostId", "UpVotes", "Title"]].
sort_values("UpVotes", ascending=False).
head(5).
reset_index(drop=True)

)
pd.testing.assert_frame_equal(res10a, res10b) # no error == OK

13.4 Closing the database connection
We said we should not forget about:

conn.close()

This gives some sense of closure. Such a relief.

340 IV HETEROGENEOUS DATA

13.5 Common data serialisation formats for theWeb
CSV files are an all-round way to exchange tabular data between different program-
ming and data analysis environments.

For unstructured or non-tabularly-structured data, XML and JSON (and its superset,
YAML)are the commonformatsof choice, especially for communicatingwithdifferent
Web APIs.

We recommend solving the following exercises tomake surewe can fetch data in these
formats. Sadly, often this will require some quite tedious labour, neither art nor sci-
ence; see also [91] and [18].

Exercise 13.22 Consider the Web API for accessing8 the on-street parking bay sensor data in
Melbourne, VIC, Australia. Using the json package, convert the data9 in the JSON format to a
data frame.

Exercise 13.23 Australian Radiation Protection and Nuclear Safety Agency publishes10 UV
data for different Aussie cities.Using the xmlpackage, convert thisXMLdataset11 to a data frame.

Exercise 13.24 (*) Check out the EnglishWikipedia article with a list of 20th-century classical
composers12. Using pandas.read_html, convert the Climate Data table included therein to a
data frame.

Exercise 13.25 (*) Using the lxml package, author a function that converts each bullet list fea-
tured in a givenWikipedia article (e.g., this one13), to a list of strings.

Exercise 13.26 (**) Import an archived version of a Stack Exchange14 site that you find inter-
esting and store it in an SQLite database. You can find the relevant data dumps here15.

Exercise 13.27 (**) Download16 and then import an archived version of one of thewikis hosted
by theWikimedia Foundation17 (e.g., thewhole EnglishWikipedia) so that it can be stored in an
SQLite database.

8 https://data.melbourne.vic.gov.au/explore/dataset/on-street-parking-bay-sensors/api
9 https://data.melbourne.vic.gov.au/api/explore/v2.1/catalog/datasets/

on-street-parking-bay-sensors/exports/json
10 https://www.arpansa.gov.au/our-services/monitoring/ultraviolet-radiation-monitoring/

ultraviolet-radation-data-information
11 https://uvdata.arpansa.gov.au/xml/uvvalues.xml
12 https://en.wikipedia.org/wiki/List_of_20th-century_classical_composers
13 https://en.wikipedia.org/wiki/Category:Fr%C3%A9d%C3%A9ric_Chopin
14 https://stackexchange.com/
15 https://archive.org/details/stackexchange
16 https://meta.wikimedia.org/wiki/Data_dumps
17 https://wikimediafoundation.org/

https://data.melbourne.vic.gov.au/explore/dataset/on-street-parking-bay-sensors/api
https://data.melbourne.vic.gov.au/api/explore/v2.1/catalog/datasets/on-street-parking-bay-sensors/exports/json
https://www.arpansa.gov.au/our-services/monitoring/ultraviolet-radiation-monitoring/ultraviolet-radation-data-information
https://uvdata.arpansa.gov.au/xml/uvvalues.xml
https://en.wikipedia.org/wiki/List_of_20th-century_classical_composers
https://en.wikipedia.org/wiki/List_of_20th-century_classical_composers
https://en.wikipedia.org/wiki/Category:Fr%C3%A9d%C3%A9ric_Chopin
https://stackexchange.com/
https://archive.org/details/stackexchange
https://meta.wikimedia.org/wiki/Data_dumps
https://wikimediafoundation.org/

13 ACCESSING DATABASES 341

13.6 Workingwithmany files
For themass-processing ofmanyfiles, it is worth knowing of themost basic functions
for dealing with file paths, searching for files, etc. Usually, we will be looking up ways
to complete specific tasks at hand, e.g., how to read data from a ZIP-like archive, on
the internet. After all, contrary to the basic operations of vectors, matrices, and data
frames, they are not amongst the actions that we perform frequently.

Good development practices related to data storage are described in [46].

13.6.1 File paths
UNIX-like operating systems, including GNU/Linux and mOS, use slashes, “/”, as
path separators, e.g., "/home/marek/file.csv".Win*s, however, uses backslashes, “\”,
whichhave a specialmeaning in character strings (escape sequences; seeSection2.1.3).
Therefore, they should be input as, e.g., "c:\\users\\marek\\file.csv". Alternatively,
we canuse raw strings,where the backslash is treated literally, e.g., r"c:\users\marek\
file.csv".

When constructing file paths programmatically, it is thus best to rely on os.path.join,
which takes care of the system-specific nuances.

import os.path
os.path.join("~", "Desktop", "file.csv") # we are on GNU/Linux
'~/Desktop/file.csv'

The tilde, “~”, denotes the current user’s home directory.

For storing auxiliary data, we can use the system’s temporary directory. See the tem-
pfilemodule for functions that generate appropriate file paths therein. For instance,
a subdirectory inside the temporary directory can be created via a call to tempfile.

mkdtemp.

Important Wewill frequently be referring to file paths relative to the working direct-
ory of the currently executed Python session (e.g., from which IPython/Jupyter note-
book server was started); see os.getcwd.

All non-absolute file names (ones that do not start with “~”, “/”, “c:\\”, and the like),
for example, "filename.csv" or os.path.join("subdir", "filename.csv") are always
relative to the current working directory.

For instance, if the working directory is "/home/marek/projects/python", then
"filename.csv" refers to "/home/marek/projects/python/filename.csv".

Also, “..” denotes the current working directory’s parent directory. Thus, "../

filename2.csv" resolves to "/home/marek/projects/filename2.csv".

342 IV HETEROGENEOUS DATA

Exercise 13.28 Print the current working directory by calling os.getcwd. Next, download the
file air_quality_2018_param18 and save it in the current Python session’s working directory
(e.g., in yourweb browser, right-click on theweb page’s canvas and select Save Page As…). Load
with pandas.read_csv by passing "air_quality_2018_param.csv" as the input path.

Exercise 13.29 (*) Download the aforementioned file programmatically (if you have not done
so yet) using the requestsmodule.

13.6.2 File search
glob.glob and os.listdir generate a list of files in a given directory (and possibly all
its subdirectories).

os.path.isdir and os.path.isfile determine the type of a given object in the file sys-
tem.

Exercise 13.30 Write a function that computes the total size of all the files in a given directory
and all its subdirectories.

13.6.3 Exception handling
Accessing resources on the disk or the internet can lead to errors, for example, when
the file is not found. The try..except statement can be used if we want to be able to
react to any of the envisaged errors

try:
statements to execute
x = pd.read_csv("file_not_found.csv")
print(x.head()) # this will not be executed if the above raises an error

except OSError:
if an exception occurs, we can handle it here
print("File has not been found")

File has not been found

For more details, refer to the documentation19.

13.6.4 File connections (*)
Basic ways of opening and reading from/writing to file connections are described in
the documentation20. Section 14.3.5 shows an example where we create a Markdown
file manually.

They may be useful if we wish to process large files chunk by chunk. In particular,
pandas.read_csv accepts a file handler (see open). Then, passing the nrows argument
we can indicate the number of rows to fetch.

18 https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_param.csv
19 https://docs.python.org/3/tutorial/errors.html
20 https://docs.python.org/3/tutorial/inputoutput.html

https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_param.csv
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/inputoutput.html

13 ACCESSING DATABASES 343

13.7 Exercises
Exercise 13.31 Find an example of an XML and JSON file. Which one is more human-
readable? Do they differ in terms of capabilities?

Exercise 13.32 What is wrong with constructing file paths like "~" + "\\" + "filename.

csv"?

Exercise 13.33 What are the benefits of using a SQL databasemanagement system in data sci-
ence activities?

Exercise 13.34 (*)Howcanwepopulateadatabasewithgigabytes ofdata read frommanyCSV
files?

Part V

Other data types

14
Text data

In [33], it is noted that effective processing of character strings is needed at various
stages of data analysis pipelines: from data cleansing and preparation, through in-
formation extraction, to report generation; compare, e.g., [91] and [18]. Pattern search-
ing, string collation and sorting, normalisation, transliteration, and formatting are ubiquitous
in text mining, natural language processing, and bioinformatics.Means for the handling of
string data should be included in each statistician’s or data scientist’s repertoire to complement
their numerical computing and data wrangling skills.

In this chapter, we discuss the handiest string operations in base Python, together
with their vectorised versions in numpy and pandas. We also mention some more ad-
vanced features of the Unicode ICU library.

14.1 Basic string operations
Recall from Section 2.1.3 that the str class represents individual character strings:

x = "spam"
type(x)
<class 'str'>

There are a few binary operators overloaded for strings, e.g., `+` stands for string con-
catenation:

x + " and eggs"
'spam and eggs'

`*` duplicates a given string:

x * 3
'spamspamspam'

Chapter 3 noted that str is a sequential type. As a consequence, we can extract indi-
vidual code points and create substrings using the index operator:

x[-1] # last letter
'm'

348 V OTHER DATA TYPES

Strings are immutable, but parts thereof can always be reused in conjunctionwith the
concatenation operator:

x[:2] + "ecial"
'special'

14.1.1 Unicode as the universal encoding
It is worth knowing that all strings in Python (from version 3.0) use Unicode1, which
is a universal encoding capable of representing c. 150 000 characters covering letters
andnumbers in contemporary andhistoric alphabets/scripts,mathematical, political,
phonetic, and other symbols, emojis, etc.

Note Despite thewide support for Unicode, sometimes our own or other readers’ dis-
play (e.g., web browsers when viewing an HTML version of the output report) might
not be able to render all code points properly, e.g., due to missing fonts. Still, we can
rest assured that they are processed correctly if string functions are applied thereon.

14.1.2 Normalising strings
Dirty text data are a pain, especially if similar (semantically) tokens are encoded in
manydifferentways. For the sakeof stringmatching,wemightwant, e.g., theGerman
"groß", "GROSS", and " gross " to compare all equal.

str.strip removes whitespaces (spaces, tabs, newline characters) at both ends of
strings (see also str.lstrip and str.rstrip for their nonsymmetric versions).

str.lower and str.upper change letter case. For caseless comparison/matching, str.
casefold might be a slightly better option as it unfolds many more code point se-
quences:

"Groß".lower(), "Groß".upper(), "Groß".casefold()
('groß', 'GROSS', 'gross')

Note (*)More advanced string transliteration2 can be performedbymeans of the ICU3
(International Components for Unicode) library. Its Python bindings are provided by
the PyICU package. Unfortunately, the package is not easily available onW****ws.

For instance, converting all code points to ASCII (English) might be necessary when

1 (*) More precisely, Python strings are UTF-8-encoded. Most web pages and APIs are nowadays served
in UTF-8. But we can still occasionally encounter files encoded in ISO-8859-1 (Western Europe), Windows-
1250 (Eastern Europe), Windows-1251 (Cyrillic), GB18030 and Big5 (Chinese), EUC-KR (Korean), Shift-JIS
and EUC-JP (Japanese), amongst others.They can be converted using the str.decodemethod.

2 https://unicode-org.github.io/icu/userguide/transforms/general
3 https://icu.unicode.org/

https://unicode-org.github.io/icu/userguide/transforms/general
https://icu.unicode.org/

14 TEXT DATA 349

identifiers are expected to miss some diacritics that would normally be included (as
in "Gągolewski" vs "Gagolewski"):

import icu # PyICU package
(icu.Transliterator

.createInstance("Lower; Any-Latin; Latin-ASCII")

.transliterate(
"Χαίρετε! Groß gżegżółka — © La Niña – köszönöm – Gągolewski"

)
)
'chairete! gross gzegzolka - (C) la nina - koszonom - gagolewski'

Converting between different Unicode Normalisation Forms4 (also available in the
unicodedata package and via pandas.Series.str.normalize) might be used for the re-
moval of some formatting nuances:

icu.Transliterator.createInstance("NFKD; NFC").transliterate("¼ąr²")
'¼ąr2'

14.1.3 Substring searching and replacing
Determining if a string has a particular fixed substring can be done in several ways.

For instance, the in operator verifies whether a particular substring occurs at least
once:

food = "bacon, spam, spam, srapatapam, eggs, and spam"
"spam" in food
True

The str.countmethod determines the number of occurrences of a substring:

food.count("spam")
3

To locate the first pattern appearance, we call str.index:

food.index("spam")
7

str.replace substitutes matching substrings with new content:

food.replace("spam", "veggies")
'bacon, veggies, veggies, srapatapam, eggs, and veggies'

Exercise 14.1 Read the manual of the following methods: str.startswith, str.endswith,
str.find, str.rfind, str.rindex, str.removeprefix, and str.removesuffix.

4 https://www.unicode.org/faq/normalization.html

https://www.unicode.org/faq/normalization.html

350 V OTHER DATA TYPES

The splitting of long strings at specific fixed delimiters can be done via:

food.split(", ")
['bacon', 'spam', 'spam', 'srapatapam', 'eggs', 'and spam']

See also str.partition. The str.joinmethod implements the inverse operation:

", ".join(["spam", "bacon", "eggs", "spam"])
'spam, bacon, eggs, spam'

Moreover, Section 14.4 will discuss pattern matching with regular expressions. They
can be useful in, amongst others, extracting more abstract data chunks (numbers,
URLs, email addresses, IDs) from strings.

14.1.4 Locale-aware services in ICU (*)
Recall that relational operators such as `<` and `>=` perform the lexicographic com-
paring of strings (like in a dictionary or an encyclopedia):

"spam" > "egg"
True

Wehave: "a" < "aa" < "aaaaaaaaaaaaa" < "ab" < "aba" < "abb" < "b" < "ba" < "baaaaaaa"
< "bb" < "Spanish Inquisition".

The lexicographic ordering (character-by-character, from left to right) is not necessar-
ily appropriate for strings with numerals:

"a9" < "a123" # 1 is smaller than 9
False

Additionally, it only takes into account the numeric codes (see Section 14.4.3) corres-
ponding to each Unicode character. Consequently, it does not work well with non-
English alphabets:

"MIELONECZKĄ" < "MIELONECZKI"
False

In Polish,Awith ogonek (Ą) is expected to sort afterA and beforeB, let alone I. However,
their corresponding numeric codes in theUnicode table are: 260 (Ą), 65 (A), 66 (B), and
73 (I).The resulting ordering is thus incorrect, as far as natural language processing is
concerned.

It is best to perform string collation using the services provided by ICU. Here is an
example of German phone book-like collation where "ö" is treated the same as "oe":

c = icu.Collator.createInstance(icu.Locale("de_DE@collation=phonebook"))
c.setStrength(0) # ignore case and some diacritics
c.compare("Löwe", "loewe")
0

14 TEXT DATA 351

A result of 0means that the strings are deemed equal.

In some languages, contractions occur, e.g., in Slovak andCzech, two codepoints "ch"
are treated as a single entity and are sorted after "h":

icu.Collator.createInstance(icu.Locale("sk_SK")).compare("chladný", "hladný")
1

This means that we have "chladný" > "hladný" (the first argument is greater than the
second one). Compare the above to something similar in Polish:

icu.Collator.createInstance(icu.Locale("pl_PL")).compare("chłodny", "hardy")
-1

That is, "chłodny" < "hardy" (the first argument is less than the second one).

Also, with ICU, numeric collation is possible:

c = icu.Collator.createInstance()
c.setAttribute(

icu.UCollAttribute.NUMERIC_COLLATION,
icu.UCollAttributeValue.ON

)
c.compare("a9", "a123")
-1

Which is the correct result: "a9" is less than "a123" (compare the above to the example
where we used the ordinary `<`).

14.1.5 String operations in pandas

String sequences in pandas.Series are by default5 using the broadest possible object
data type:

pd.Series(["spam", "bacon", "spam"])
0 spam
1 bacon
2 spam
dtype: object

This allows for missing values encoding by means of the None object (which is of the
type None, not str); compare Section 15.1.

Vectorised versions of base string operations are available via the pandas.Series.str
accessor. We thus have pandas.Series.str.strip, pandas.Series.str.split, pandas.
Series.str.find, and so forth. For instance:

5 https://pandas.pydata.org/pandas-docs/stable/user_guide/text.html

https://pandas.pydata.org/pandas-docs/stable/user_guide/text.html

352 V OTHER DATA TYPES

x = pd.Series(["spam", "bacon", None, "buckwheat", "spam"])
x.str.upper()
0 SPAM
1 BACON
2 None
3 BUCKWHEAT
4 SPAM
dtype: object

But there is more. For example, a function to compute the length of each string:

x.str.len()
0 4.0
1 5.0
2 NaN
3 9.0
4 4.0
dtype: float64

Vectorised concatenation of strings can be performed using the overloaded `+` oper-
ator:

x + " and spam"
0 spam and spam
1 bacon and spam
2 NaN
3 buckwheat and spam
4 spam and spam
dtype: object

To concatenate all items into a single string, we call:

x.str.cat(sep="; ")
'spam; bacon; buckwheat; spam'

Conversion to numeric:

pd.Series(["1.3", "-7", None, "3523"]).astype(float)
0 1.3
1 -7.0
2 NaN
3 3523.0
dtype: float64

Select substrings:

x.str.slice(2, -1) # like x.iloc[i][2:-1] for all i
0 a
1 co

(continues on next page)

14 TEXT DATA 353

(continued from previous page)

2 None
3 ckwhea
4 a
dtype: object

Replace substrings:

x.str.slice_replace(0, 2, "tofu") # like x.iloc[i][2:-1] = "tofu"
0 tofuam
1 tofucon
2 None
3 tofuckwheat
4 tofuam
dtype: object

Exercise 14.2 Consider the nasaweather_glaciers6 data frame. All glaciers are assigned
11/12-character unique identifiers as defined by theWGMS convention that forms the glacier ID
number by combining the following five elements.

1. 2-character political unit (first two letters of the ID),

2. 1-digit continent code (the third letter),

3. 4-character drainage code (next four),

4. 2-digit free position code (next two),

5. 2- or 3-digit local glacier code (the remaining ones).

Extract the five chunks and store them as independent columns in the data frame.

14.1.6 String operations in numpy (*)
There is a huge overlap between the numpy and pandas capabilities for string handling,
with the latter beingmore powerful. After all, numpy is a workhorse for numerical com-
puting. Still, some readers might find the following useful.

Asmentioned inour introduction tonumpyvectors, objects of the typendarray canstore
not only numeric and logical data, but also character strings. For example:

x = np.array(["spam", "bacon", "egg"])
x
array(['spam', 'bacon', 'egg'], dtype='<U5')

Here, the data type “<U5”means that we deal withUnicode strings of length no greater
than five. Unfortunately, replacing elements with too long a content will spawn trun-
cated strings:

6 https://github.com/gagolews/teaching-data/raw/master/other/nasaweather_glaciers.csv

https://github.com/gagolews/teaching-data/raw/master/other/nasaweather_glaciers.csv

354 V OTHER DATA TYPES

x[2] = "buckwheat"
x
array(['spam', 'bacon', 'buckw'], dtype='<U5')

To remedy this, we first need to recast the vector manually:

x = x.astype("<U10")
x[2] = "buckwheat"
x
array(['spam', 'bacon', 'buckwheat'], dtype='<U10')

Conversion from/to numeric is also possible:

np.array(["1.3", "-7", "3523"]).astype(float)
array([1.300e+00, -7.000e+00, 3.523e+03])
np.array([1, 3.14, -5153]).astype(str)
array(['1.0', '3.14', '-5153.0'], dtype='<U32')

The numpy.char7 module includes several vectorised versions of string routines, most
of which we discussed above. For example:

x = np.array([
"spam", "spam, bacon, and spam",
"spam, eggs, bacon, spam, spam, and spam"

])
np.char.split(x, ", ")
array([list(['spam']), list(['spam', 'bacon', 'and spam']),
list(['spam', 'eggs', 'bacon', 'spam', 'spam', 'and spam'])],
dtype=object)
np.char.count(x, "spam")
array([1, 2, 4])

Vectorised operations that we would normally perform through the binary operators
(i.e., `+`, `*`, `<`, etc.) are available through standalone functions:

np.char.add(["spam", "bacon"], " and spam")
array(['spam and spam', 'bacon and spam'], dtype='<U14')
np.char.equal(["spam", "bacon", "spam"], "spam")
array([True, False, True])

The function that returns the length of each string is also noteworthy:

np.char.str_len(x)
array([4, 21, 39])

7 https://numpy.org/doc/stable/reference/routines.char.html

https://numpy.org/doc/stable/reference/routines.char.html

14 TEXT DATA 355

14.2 Workingwith string lists
pandas nicely supports lists of strings of varying lengths. For instance:

x = pd.Series([
"spam",
"spam, bacon, spam",
"potatoes",
None,
"spam, eggs, bacon, spam, spam"

])
xs = x.str.split(", ", regex=False)
xs
0 [spam]
1 [spam, bacon, spam]
2 [potatoes]
3 None
4 [spam, eggs, bacon, spam, spam]
dtype: object

And now, e.g., looking at the last element:

xs.iloc[-1]
['spam', 'eggs', 'bacon', 'spam', 'spam']

reveals that it is indeed a list of strings.

There are a few vectorised operations that enable us to work with such variable length
lists, such as concatenating all strings:

xs.str.join("; ")
0 spam
1 spam; bacon; spam
2 potatoes
3 None
4 spam; eggs; bacon; spam; spam
dtype: object

selecting, say, the first string in each list:

xs.str.get(0)
0 spam
1 spam
2 potatoes
3 None
4 spam
dtype: object

or slicing:

356 V OTHER DATA TYPES

xs.str.slice(0, -1) # like xs.iloc[i][0:-1] for all i
0 []
1 [spam, bacon]
2 []
3 None
4 [spam, eggs, bacon, spam]
dtype: object

Exercise 14.3 (*) Using pandas.merge, join the countries8, world_factbook_20209, and
ssi_2016_dimensions10 datasets based on the country names. Note that some manual data
cleansing will be necessary beforehand.

Exercise 14.4 (**) Given a Series object xs that includes lists of strings, convert it to a 0/1 rep-
resentation.

1. Determine the list of all unique strings; let us call it xu.

2. Create a data frame x with xs.shape[0] rows and len(xu) columns such that x.iloc[i,
j] is equal to 1 if xu[j] is amongst xs.loc[i] and equal to 0 otherwise. Set the column
names to xs.

3. Given x (and only x: neither xs nor xu), perform the inverse operation.

For example, for the above xs object, x should look like:

bacon eggs potatoes spam
0 0 0 0 1
1 1 0 0 1
2 0 0 1 0
3 0 0 0 0
4 1 1 0 1

14.3 Formatted outputs for reproducible report generation
Some good development practices related to reproducible report generation are dis-
cussed in [82, 100, 101]. Note that the paradigm of literate programming was intro-
duced by D. Knuth in [55].

Reports from data analysis can be prepared, e.g., in Jupyter Notebooks or by writing
directly to Markdown files which we can later compile to PDF or HTML. Below we
briefly discuss how to output nicely formatted objects programmatically.

8 https://github.com/gagolews/teaching-data/raw/master/other/countries.csv
9 https://github.com/gagolews/teaching-data/raw/master/marek/world_factbook_2020.csv
10 https://github.com/gagolews/teaching-data/raw/master/marek/ssi_2016_dimensions.csv

https://github.com/gagolews/teaching-data/raw/master/other/countries.csv
https://github.com/gagolews/teaching-data/raw/master/marek/world_factbook_2020.csv
https://github.com/gagolews/teaching-data/raw/master/marek/ssi_2016_dimensions.csv

14 TEXT DATA 357

14.3.1 Formatting strings
Inclusion of textual representation of data stored in existing objects can easily be
done using f-strings (formatted string literals; see Section 2.1.3) of the type f"...

{expression}...". For instance:

pi = 3.14159265358979323846
f"π = {pi:.2f}"
'π = 3.14'

creates a string showing the value of the variable pi formatted as a float rounded to
two places after the decimal separator.

Note (**) Similar functionality can be achieved using the str.formatmethod:

"π = {:.2f}".format(pi)
'π = 3.14'

as well as the `%` operator overloaded for strings, which uses sprintf-like value place-
holders known to some readers from other programming languages (such as C):

"π = %.2f" % pi
'π = 3.14'

14.3.2 str and repr

The str and repr functions can create string representations of many objects:

x = np.array([1, 2, 3])
str(x)
'[1 2 3]'
repr(x)
'array([1, 2, 3])'

The former is more human-readable, and the latter is slightly more technical. Note
that repr often returns an output that can be interpreted as executable Python code
with no or few adjustments. Nonetheless, pandas objects are amongst the many ex-
ceptions to this rule.

14.3.3 Aligning strings
str.center, str.ljust, str.rjust can be used to centre-, left-, or right-align a string
so that it is of at least givenwidth.Thismightmake the display thereofmore aesthetic.
Very long strings, possibly containing whole text paragraphs can be dealt with using
the wrap and shorten functions from the textwrap package.

358 V OTHER DATA TYPES

14.3.4 DirectMarkdown output in Jupyter
Further, with IPython/Jupyter, we can output strings that will be directly interpreted
as Markdown-formatted:

import IPython.display
x = 2+2
out = f"*Result*: $2^2=2\\cdot 2={x}$." # LaTeX math
IPython.display.Markdown(out)

Result: 22 = 2 ⋅ 2 = 4.
Recall from Section 1.2.5 that Markdown is a very flexible markup11 language that al-
lows us to define itemised and numbered lists, mathematical formulae, tables, im-
ages, etc.

On a side note, data frames can be nicely prepared for display in a report using pandas.
DataFrame.to_markdown.

14.3.5 ManualMarkdownfile output (*)
We can also generateMarkdown code programmatically in the formof standalone .md
files:

import tempfile, os.path
filename = os.path.join(tempfile.mkdtemp(), "test-report.md")
f = open(filename, "w") # open for writing (overwrite if exists)
f.write("**Yummy Foods** include, but are not limited to:\n\n")
x = ["spam", "bacon", "eggs", "spam"]
for e in x:

f.write(f"* {e}\n")
f.write("\nAnd now for something *completely* different:\n\n")
f.write("Rank | Food\n")
f.write("-----|-----\n")
for i in range(len(x)):

f.write(f"{i+1:4} | {x[i][::-1]:10}\n")
f.close()

Here is the resulting rawMarkdown source file:

with open(filename, "r") as f: # will call f.close() automatically
out = f.read()

print(out)
Yummy Foods include, but are not limited to:
##
* spam

(continues on next page)

11 (*) Markdown is amongst many markup languages. Other learn-worthy ones include HTML (for the
Web) andLaTeX (especially for the beautiful typesetting ofmaths, print-ready articles, andbooks, e.g., PDF;
see [69] for a comprehensive introduction).

14 TEXT DATA 359

(continued from previous page)

* bacon
* eggs
* spam
##
And now for something *completely* different:
##
Rank | Food
-----|-----
1 | maps
2 | nocab
3 | sgge
4 | maps

We can convert it to other formats, including HTML, PDF, EPUB, ODT, and even
presentations by running12 the pandoc13 tool. We may also embed it directly inside an
IPython/Jupyter notebook:

IPython.display.Markdown(out)

Yummy Foods include, but are not limited to:

• spam

• bacon

• eggs

• spam

And now for something completely different:

Rank Food

1 maps
2 nocab
3 sgge
4 maps

Note Figures created in matplotlib can be exported to PNG, SVG, or PDF files using
the matplotlib.pyplot.savefig function. We can include them manually in a Mark-
down document using the ![description](filename) syntax.

Note (*) IPython/Jupyter Notebooks can be converted to different formats using the

12 External programs can be executed using subprocess.run.
13 https://pandoc.org/

https://pandoc.org/

360 V OTHER DATA TYPES

jupyter-nbconvert14 command line tool. jupytext15 can create notebooks from ordin-
ary text files. Literate programming with mixed R and Python is possible with the R
packages knitr16 and reticulate17. See [73] for an overview of manymore options.

14.4 Regular expressions (*)
This section contains large excerpts from yours truly’s other work [33].

Regular expressions (regexes) provide concise grammar for defining systematic patterns which
can be sought in character strings. Examples of such patterns include: specific fixed substrings,
emojis of any kind, standalone sequences of lower-case Latin letters (“words”), substrings that
can be interpreted as real numbers (with or without fractional parts, also in scientific notation),
telephone numbers, email addresses, or URLs.

Theoretically, the concept of regular pattern matching dates to the so-called regular languages
and finite state automata [54]; see also [76] and [49]. Regexes, in the form as we know it today,
were already present in one of the pre-UNIX implementations of the command-line text editor
qed [77] (the predecessor of the well-known sed).

14.4.1 Regexmatchingwith re

In Python, the re module implements a regular expression matching engine. It ac-
cepts patterns that follow similar syntax to the one available in the Perl language.

As a matter of fact, most programming languages and text editors (including Kate18,
Eclipse19, and VSCodium20) support finding and replacing patterns with regexes. This
is why they should be amongst the instruments at every data scientist’s disposal.

Before we proceedwith a detailed discussion on how to read andwrite regular expres-
sions, let us first review some of themethods for identifying thematching substrings.
Below we use the r"\bni+\b" regex as an example. It catches "n" followed by at least
one "i" that begins and ends at a word boundary. In other words, we seek "ni", "nii",
"niii", etc. which may be considered standalone words.

In particular, re.findall extracts all non-overlappingmatches to a given regex:

import re
x = "We're the knights who say ni! niiiii! ni! niiiiiiiii!"

(continues on next page)

14 https://pypi.org/project/nbconvert
15 https://jupytext.readthedocs.io/en/latest
16 https://yihui.org/knitr
17 https://rstudio.github.io/reticulate
18 https://kate-editor.org/
19 https://www.eclipse.org/ide
20 https://vscodium.com/

https://pypi.org/project/nbconvert
https://jupytext.readthedocs.io/en/latest
https://yihui.org/knitr
https://rstudio.github.io/reticulate
https://kate-editor.org/
https://www.eclipse.org/ide
https://vscodium.com/

14 TEXT DATA 361

(continued from previous page)

re.findall(r"\bni+\b", x)
['ni', 'niiiii', 'ni', 'niiiiiiiii']

The order of arguments is (look for what, where), not vice versa.

Important Weused the r"..." prefix to input a string so that “\b” is not treated as an
escape sequence which denotes the backspace character. Otherwise, the above would
have to be written as “\\bni+\\b”.

If we had not insisted onmatching at the word boundaries (i.e., if we used the simple
"ni+" regex instead), we would also match the "ni" in "knights".

The re.search function returns an object of the class re.Match that enables us to get
somemore information about the first match:

r = re.search(r"\bni+\b", x)
r.start(), r.end(), r.group()
(26, 28, 'ni')

The above includes the start and end position (index) and thematch itself. If the regex
contains capture groups (see below for more details), we can also pinpoint the matches
thereto.

Moreover, re.finditer returns an iterable object that includes the same details, but
now about all the matches:

rs = re.finditer(r"\bni+\b", x)
for r in rs:

print((r.start(), r.end(), r.group()))
(26, 28, 'ni')
(30, 36, 'niiiii')
(38, 40, 'ni')
(42, 52, 'niiiiiiiii')

re.split divides a string into chunks separated by matches to a given regex:

re.split(r"!\s+", x)
["We're the knights who say ni", 'niiiii', 'ni', 'niiiiiiiii!']

The “!\s*” regex matches the exclamation mark followed by one or more whitespace
characters.

Using re.sub, each match can be replaced with a given string:

362 V OTHER DATA TYPES

re.sub(r"\bni+\b", "nu", x)
"We're the knights who say nu! nu! nu! nu!"

Note (**) More flexible replacement strings can be generated by passing a custom
function as the second argument:

re.sub(r"\bni+\b", lambda m: "n" + "u"*(m.end()-m.start()-1), x)
"We're the knights who say nu! nuuuuu! nu! nuuuuuuuuu!"

14.4.2 Regexmatchingwith pandas

The pandas.Series.str accessor also defines a number of vectorised functions that
utilise the re package’s matcher.

Example Series object:

x = pd.Series(["ni!", "niiii, ni, nii!", None, "spam, bacon", "nii, ni!"])
x
0 ni!
1 niiii, ni, nii!
2 None
3 spam, bacon
4 nii, ni!
dtype: object

Here are the most notable functions:

x.str.contains(r"\bni+\b")
0 True
1 True
2 None
3 False
4 True
dtype: object
x.str.count(r"\bni+\b")
0 1.0
1 3.0
2 NaN
3 0.0
4 2.0
dtype: float64
x.str.replace(r"\bni+\b", "nu", regex=True)
0 nu!
1 nu, nu, nu!
2 None
3 spam, bacon
4 nu, nu!

(continues on next page)

14 TEXT DATA 363

(continued from previous page)

dtype: object
x.str.findall(r"\bni+\b")
0 [ni]
1 [niiii, ni, nii]
2 None
3 []
4 [nii, ni]
dtype: object
x.str.split(r",\s+") # a comma, one or more whitespaces
0 [ni!]
1 [niiii, ni, nii!]
2 None
3 [spam, bacon]
4 [nii, ni!]
dtype: object

In the two last cases, we get lists of strings as results.

Also, laterwewillmentionpandas.Series.str.extractandpandas.Series.str.extractall
which work with regexes that include capture groups.

Note (*) If we intend to seek matches to the same pattern in many different strings
without the use of pandas, it might be faster to precompile a regex first, and then use
the re.Pattern.findallmethod instead or re.findall:

p = re.compile(r"\bni+\b") # returns an object of the class `re.Pattern`
p.findall("We're the Spanish Inquisition ni! ni! niiiii! nininiiiiiiiii!")
['ni', 'ni', 'niiiii']

14.4.3 Matching individual characters
In the followingsubsections,we review themost essential elementsof the regex syntax
as we did in [33]. One general introduction to regexes is [29].The remodule flavour is
summarised in the official manual21, see also [57].

We begin by discussing different ways to define character sets. In this part, determin-
ing the length of all matching substrings will be quite straightforward.

Important Thefollowing characters have specialmeaning to the regex engine: “.”, “\”,
“|”, “(“, “)”, “[“, “]”, “{“, “}”, “^”, “$”, “*”, “+”, and “?”.

Any regular expression that contains none of the above behaves like a fixed pattern:

21 https://docs.python.org/3/library/re.html

https://docs.python.org/3/library/re.html

364 V OTHER DATA TYPES

re.findall("spam", "spam, eggs, spam, bacon, sausage, and spam")
['spam', 'spam', 'spam']

There are three occurrences of a pattern that is comprised of four code points, “s” fol-
lowed by “p”, then by “a”, and ending with “m”.

If we wish to include a special character as part of a regular expression so that it is
treated literally, we will need to escape it with a backslash, “\”.

re.findall(r"\.", "spam...")
['.', '.', '.']

Matching any character

The (unescaped) dot, “.”, matches any code point except the newline.

x = "Spam, ham,\njam, SPAM, eggs, and spam"
re.findall("..am", x, re.IGNORECASE)
['Spam', ' ham', 'SPAM', 'spam']

The above extracts non-overlapping substrings of length four that end with “am”, case-
insensitively.

The dot’s insensitivity to the newline character is motivated by the need to maintain
compatibilitywith tools such as grep (when searchingwithin text files in a line-by-line
manner).This behaviour can be altered by setting the DOTALL flag.

re.findall("..am", x, re.DOTALL|re.IGNORECASE) # `|` is the bitwise OR
['Spam', ' ham', '\njam', 'SPAM', 'spam']

Defining character sets

Sets of characters can be introduced by enumerating their members within a pair of
square brackets. For instance, “[abc]” denotes the set {a, b, c} – such a regular expres-
sion matches one (and only one) symbol from this set. Moreover, in:

re.findall("[hj]am", x)
['ham', 'jam']

the “[hj]am” regex matches: “h” or “j”, followed by “a”, followed by “m”. In other words,
"ham" and "jam" are the only two strings that are matched by this pattern (unless
matching is done case-insensitively).

Important The following characters, if used within square brackets, may be treated
not literally: “\”, “[“, “]”, “^”, “-“, “&”, “~”, and “|”.

14 TEXT DATA 365

To include them as-is in a character set, the backslash-escape must be used. For ex-
ample, “[\[\]\\]” matches a backslash or a square bracket.

Complementing sets

Including “^” (the caret) after the opening square bracket denotes a set’s complement.
Hence, “[^abc]” matches any code point except “a”, “b”, and “c”. Here is an example
where we seek any substring that consists of four non-spaces:

x = "Nobody expects the Spanish Inquisition!"
re.findall("[^][^][^][^]", x)
['Nobo', 'expe', 'Span', 'Inqu', 'isit', 'ion!']

Defining code point ranges

Each Unicode character can be referenced by its unique numeric code22. For in-
stance, “a” is assigned code U+0061 and “z” is mapped to U+007A. In the pre-Unicode
era (mostly with regard to the ASCII codes, ≤ U+007F, representing English letters,
decimal digits, as well as some punctuation and control characters), we were used to
relying on specific code ranges. For example, “[a-z]” denotes the set comprised of all
characters with codes between U+0061 and U+007A, i.e., lowercase letters of the Eng-
lish (Latin) alphabet.

re.findall("[0-9A-Za-z]", "Gągolewski")
['G', 'g', 'o', 'l', 'e', 'w', 's', 'k', 'i']

The above pattern denotes the union of three code ranges: ASCII upper- and lower-
case letters and digits. Nowadays, in the processing of text in natural languages, this
notation should be avoided. Note themissing “ą” (Polish “a” with ogonek) in the result.

Using predefined character sets

Consider the following string:

x = "aąbßÆAĄB�12��,.;'! \t-+=\n[]©��”„"

Someglyphs arenot available in thePDFversionof this bookbecausewedidnot install
the required fonts, e.g., the Arabic digit 4 or left and right arrows. However, they are
well-defined at the program level.

Noteworthy Unicode-aware code point classes include the word characters:

re.findall(r"\w", x)
['a', 'ą', 'b', 'ß', 'Æ', 'A', 'Ą', 'B', '�', '1', '2', '�', '�']

decimal digits:

22 https://www.unicode.org/charts

https://www.unicode.org/charts

366 V OTHER DATA TYPES

re.findall(r"\d", x)
['1', '2', '�', '�']

and whitespaces:

re.findall(r"\s", x)
[' ', '\t', '\n']

Moreover, e.g., “\W” is equivalent to “[^\w]” , i.e., denotes the set’s complement.

14.4.4 Alternating and grouping subexpressions
Alternation operator

Thealternation operator, “|” (the pipe or bar),matches either its left or its right branch.
For instance:

x = "spam, egg, ham, jam, algae, and an amalgam of spam, all al dente"
re.findall("spam|ham", x)
['spam', 'ham', 'spam']

Grouping subexpressions

The“|” operatorhas very lowprecedence (otherwise,wewouldmatch "spamam"or "spa-
ham" above instead). If we wish to introduce an alternative of subexpressions, we need
to group them using the “(?:...)” syntax. For instance, “(?:sp|h)am” matches either
"spam" or "ham".

Notice that the bare use of the round brackets, “(...)” (i.e., without the “?:”) part, has
the side-effect of creating new capturing groups; see below for more details.

Also,matching is alwaysdone left-to-right, on afirst-come,first-served (greedy) basis.
Consequently, if the left branch is a subset of the right one, the latter will never be
matched. In particular, “(?:al|alga|algae)” can only match "al". To fix this, we can
write “(?:algae|alga|al)”.

Non-grouping parentheses

Some parenthesised subexpressions – those in which the opening bracket is followed
by the question mark – have a distinct meaning. In particular, “(?#...)” denotes a
free-format comment that is ignored by the regex parser:

re.findall(
"(?# match 'sp' or 'h')(?:sp|h)(?# and 'am')am|(?# or match 'egg')egg",
x

)
['spam', 'egg', 'ham', 'spam']

This is just horrible. Luckily, constructing more sophisticated regexes by concatenat-
ing subfragments thereof is more readable:

14 TEXT DATA 367

re.findall(
"(?:sp|h)" + # match either 'sp' or 'h'
"am" + # followed by 'am'

"|" + # ... or ...
"egg", # just match 'egg'

x
)
['spam', 'egg', 'ham', 'spam']

What is more, e.g., “(?i)” enables the case-insensitive mode.

re.findall("(?i)spam", "Spam spam SPAMITY spAm")
['Spam', 'spam', 'SPAM', 'spAm']

14.4.5 Quantifiers
More often than not, a variable number of instances of the same subexpression needs
to be captured. Sometimes we want to make its presence optional. These can be
achieved by means of the following quantifiers:

• “?” matches 0 or 1 time;

• “*” matches 0 or more times;

• “+” matches 1 or more times;

• “{n,m}” matches between n and m times;

• “{n,}” matches at least n times;

• “{n}” matches exactly n times.

These operators are applied onto the directly preceding atoms. For example, “ni+” cap-
tures "ni", "nii", "niii", etc., but neither "n" alone nor "ninini" altogether.

By default, the quantifiers are greedy – they match the repeated subexpression as
many times as possible.The “?” suffix (forming quantifiers such as “??”, “*?”, “+?”, and
so forth) tries with as few occurrences as possible (to obtain a match still).

Greedy:

x = "sp(AM)(maps)(SP)am"
re.findall(r"\(.+\)", x)
['(AM)(maps)(SP)']

Lazy:

re.findall(r"\(.+?\)", x)
['(AM)', '(maps)', '(SP)']

Greedy (but clever):

368 V OTHER DATA TYPES

re.findall(r"\([^)]+\)", x)
['(AM)', '(maps)', '(SP)']

The first regex is greedy: it matches an opening bracket, then as many characters as
possible (including “)”) that are followed by a closing bracket. The two other patterns
terminate as soon as the first closing bracket is found.

More examples:

x = "spamamamnomnomnomammmmmmmmm"
re.findall("sp(?:am|nom)+", x)
['spamamamnomnomnomam']
re.findall("sp(?:am|nom)+?", x)
['spam']

And:

re.findall("sp(?:am|nom)+?m*", x)
['spam']
re.findall("sp(?:am|nom)+?m+", x)
['spamamamnomnomnomammmmmmmmm']

Let us stress that the quantifier is applied to the subexpression that stands directly
before it. Grouping parentheses can be used in case they are needed.

x = "12, 34.5, 678.901234, 37...629, ..."
re.findall(r"\d+\.\d+", x)
['34.5', '678.901234']

matches digits, a dot, and another series of digits.

re.findall(r"\d+(?:\.\d+)?", x)
['12', '34.5', '678.901234', '37', '629']

finds digits which are possibly (but not necessarily) followed by a dot and a digit se-
quence.

Exercise 14.5 Write a regex that extracts all #hashtags from a string #omg #SoEasy.

14.4.6 Capture groups and references thereto (**)
Round-bracketed subexpressions (without the “?:” prefix) form the so-called capture
groups that can be extracted separately or be referred to in other parts of the same
regex.

Extracting capture groupmatches

The above is evident when we use re.findall:

14 TEXT DATA 369

x = "name='Sir Launcelot', quest='Seek Grail', favcolour='blue'"
re.findall(r"(\w+)='(.+?)'", x)
[('name', 'Sir Launcelot'), ('quest', 'Seek Grail'), ('favcolour', 'blue')]

This returned the matches to the individual capture groups, not the whole matching
substrings.

re.find and re.finditer can pinpoint each component:

r = re.search(r"(\w+)='(.+?)'", x)
print("whole (0):", (r.start(), r.end(), r.group()))
print(" 1 :", (r.start(1), r.end(1), r.group(1)))
print(" 2 :", (r.start(2), r.end(2), r.group(2)))
whole (0): (0, 20, "name='Sir Launcelot'")
1 : (0, 4, 'name')
2 : (6, 19, 'Sir Launcelot')

Here is a vectorised version of the above from pandas, returning the first match:

y = pd.Series([
"name='Sir Launcelot'",
"quest='Seek Grail'",
"favcolour='blue', favcolour='yel.. Aaargh!'"

])
y.str.extract(r"(\w+)='(.+?)'")
0 1
0 name Sir Launcelot
1 quest Seek Grail
2 favcolour blue

We see that the findings are conveniently presented in the data frame form.The first
column gives thematches to the first capture group. All matches can be extracted too:

y.str.extractall(r"(\w+)='(.+?)'")
0 1
match
0 0 name Sir Launcelot
1 0 quest Seek Grail
2 0 favcolour blue
1 favcolour yel.. Aaargh!

Recall that if we just need the grouping part of “(...)”, i.e., without the capturing
feature, “(?:...)” can be applied.

Also, named capture groups defined like “(?P<name>...)” are supported.

y.str.extract("(?:\\w+)='(?P<value>.+?)'")
value

(continues on next page)

370 V OTHER DATA TYPES

(continued from previous page)

0 Sir Launcelot
1 Seek Grail
2 blue

Replacingwith capture groupmatches

When using re.sub and pandas.Series.str.replace, matches to particular capture
groups can be recalled in replacement strings. The match in its entirety is denoted
by “\g<0>”, then “\g<1>” stores whatever was caught by the first capture group, and
“\g<2>” is the match to the second capture group, etc.

re.sub(r"(\w+)='(.+?)'", r"\g<2> is a \g<1>", x)
'Sir Launcelot is a name, Seek Grail is a quest, blue is a favcolour'

Named capture groups can be referred to too:

re.sub(r"(?P<key>\w+)='(?P<value>.+?)'",
r"\g<value> is a \g<key>", x)

'Sir Launcelot is a name, Seek Grail is a quest, blue is a favcolour'

Back-referencing

Matches to capturegroupscanalsobepart of the regexes themselves. In suchacontext,
e.g., “\1” denotes whatever has been consumed by the first capture group.

In general, parsing HTML code with regexes is not recommended, unless it is well-
structured (which might be the case if it is generated programmatically; but we can
always use the lxml package). Despite this, let us consider the following examples:

x = "<p>spam</p><code>eggs</code>"
re.findall(r"<[a-z]+>.*?</[a-z]+>", x)
['<p>spam', '<code>eggs</code>']

This did not match the correct closing HTML tag. But we can make this happen by
writing:

re.findall(r"(<([a-z]+)>.*?</\2>)", x)
[('<p>spam</p>', 'p'), ('<code>eggs</code>', 'code')]

This regex guarantees that the match will include all characters between the opening
"<tag>" and the corresponding (not: any) closing "</tag>".

Named capture groups can be referenced using the “(?P=name)” syntax:

re.findall(r"(<(?P<tagname>[a-z]+)>.*?</(?P=tagname)>)", x)
[('<p>spam</p>', 'p'), ('<code>eggs</code>', 'code')]

The angle brackets are part of the token.

14 TEXT DATA 371

14.4.7 Anchoring
Lastly, let us mention the ways to match a pattern at a given abstract position within
a string.

Matching at the beginning or end of a string

“^” and “$” match, respectively, start and end of the string (or each line within a string,
if the re.MULTILINE flag is set).

x = pd.Series(["spam egg", "bacon spam", "spam", "egg spam bacon", "milk"])
rs = ["spam", "^spam", "spam$", "spam$|^spam", "^spam$"] # regexes to test

The five regular expressions match "spam", respectively, anywhere within the string,
at the beginning, at the end, at the beginning or end, and in strings that are equal to
the pattern itself. We can check this by calling:

pd.concat([x.str.contains(r) for r in rs], axis=1, keys=rs)
spam ^spam spam$ spam$|^spam ^spam$
0 True True False True False
1 True False True True False
2 True True True True True
3 True False False False False
4 False False False False False

Exercise 14.6 Compose a regex that does the same job as str.strip.

Matching at word boundaries

What is more, “\b” matches at a “word boundary”, e.g., near spaces, punctuation
marks, or at the start/end of a string (i.e., wherever there is a transition between a
word, “\w”, and a non-word character, “\W”, or vice versa).

In the following example, we match all stand-alone numbers (this regular expression
is imperfect, though):

re.findall(r"[-+]?\b\d+(?:\.\d+)?\b", "+12, 34.5, -5.3243")
['+12', '34.5', '-5.3243']

Looking behind and ahead (**)

There is a way to guarantee that a pattern occurrence begins or ends with a match to
a subexpression: “(?<=...)...” denotes the look-behind, whereas “...(?=...)” desig-
nates a look-ahead.

x = "I like spam, spam, eggs, and spam."
re.findall(r"\b\w+\b(?=[,.])", x)
['spam', 'spam', 'eggs', 'spam']

This regex captured words that end with a comma or a dot

372 V OTHER DATA TYPES

Moreover, “(?<!...)...” and “...(?!...)” are their negated versions (negative look-
behind/ahead).

re.findall(r"\b\w+\b(?![,.])", x)
['I', 'like', 'and']

This time, wematched the words that end with neither a comma nor a dot.

14.5 Exercises
Exercise 14.7 List some ways to normalise character strings.

Exercise 14.8 (**)What are the challenges of processing non-English text?

Exercise 14.9 What are the problems with the "[A-Za-z]" and "[A-z]" character sets?

Exercise 14.10 Name the two ways to turn on case-insensitive regexmatching.

Exercise 14.11 What is a word boundary?

Exercise 14.12 What is the difference between the "^" and "$" anchors?

Exercise 14.13 Whenwould we prefer using "[0-9]" instead of "\d"?

Exercise 14.14 What is the difference between the "?", "??", "*", "*?", "+", and "+?" quanti-
fiers?

Exercise 14.15 Does "."match all the characters?

Exercise 14.16 What are named capture groups and how canwe refer to thematches thereto in
re.sub?

Exercise 14.17 Write a regex that extracts all standalone numbers accepted by Python, includ-
ing 12.123, -53, +1e-9, -1.2423e10, 4. and .2.

Exercise 14.18 Author a regex that matches all email addresses.

Exercise 14.19 Indite a regex that matches all URLs starting with http:// or https://.

Exercise 14.20 Cleanse the warsaw_weather23 dataset so that it contains analysable numeric
data.

23 https://github.com/gagolews/teaching-data/raw/master/marek/warsaw_weather.csv

https://github.com/gagolews/teaching-data/raw/master/marek/warsaw_weather.csv

15
Missing, censored, and questionable data

Up to now, we have beenmostly assuming that observations are of decent quality, i.e.,
trustworthy. It would be nice if that was always the case, but it is not.

In this chapter, we briefly address the most basic methods for dealing with suspicious
observations: outliers, missing, censored, imprecise, and incorrect data.

15.1 Missing data
Let us consider an excerpt from National Health and Nutrition Examination Survey
that we played with in Chapter 12:

nhanes = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_p_demo_bmx_2020.csv",
comment="#")

nhanes.loc[:, ["BMXWT", "BMXHT", "RIDAGEYR", "BMIHEAD", "BMXHEAD"]].head()
BMXWT BMXHT RIDAGEYR BMIHEAD BMXHEAD
0 NaN NaN 2 NaN NaN
1 42.2 154.7 13 NaN NaN
2 12.0 89.3 2 NaN NaN
3 97.1 160.2 29 NaN NaN
4 13.6 NaN 2 NaN NaN

Some of the columns bear NaN (not-a-number) values. They are used here to encode
missing (not available) data. Previously, we decided not to be bothered by them: a shy
call to dropna resulted in their removal. But we are curious now.

The reasons behind why some items are missing might be numerous, in particular:

• a participant did not know the answer to a given question;

• someone refused to answer a given question;

• a person did not take part in the study anymore (attrition, death, etc.);

• an item was not applicable (e.g., number of minutes spent cycling weekly when
someone answered they did not learn to ride a bike yet);

• a piece of informationwasnot collected, e.g., due to the lackof fundingor a failure
of a piece of equipment.

374 V OTHER DATA TYPES

15.1.1 Representing and detectingmissing values
Sometimesmissing values are specially encoded, especially in CSV files, e.g., with -1,
0, 9999, numpy.inf, -numpy.inf, or None, strings such as "NA", "N/A", "Not Applicable",
"---". This is why we must always inspect our datasets carefully. To assure consist-
ent representation, we can convert them to NaN (as in: numpy.nan) in numeric (floating-
point) columns or to Python’s None otherwise.

Vectorised functions such as numpy.isnan (or, more generally, numpy.isfinite) and
pandas.isnull as well as isna methods for the DataFrame and Series classes verify
whether an item is missing or not.

For instance, here are the counts and proportions of missing values in selected
columns of nhanes:

nhanes.isna().apply([np.sum, np.mean]).T.nlargest(5, "sum") # top 5 only
sum mean
BMIHEAD 14300.0 1.000000
BMIRECUM 14257.0 0.996993
BMIHT 14129.0 0.988042
BMXHEAD 13990.0 0.978322
BMIHIP 13924.0 0.973706

Looking at the column descriptions on the data provider’s website1, for example,
BMIHEAD stands for “Head Circumference Comment”, whereas BMXHEAD is “Head Cir-
cumference (cm)”, but these were only collected for infants.

Exercise 15.1 Read the column descriptions (refer to the comments in the CSV file for the relev-
ant URLs) to identify the possible reasons for some of the records in nhanes beingmissing.

Exercise 15.2 Learn about the difference between the pandas.DataFrameGroupBy.size and
pandas.DataFrameGroupBy.countmethods.

15.1.2 Computingwithmissing values
Our using NaN to denote a missing piece of information is merely an ugly (but func-
tional) hack2. The original use case for not-a-number is to represent the results of in-
correct operations, e.g., logarithms of negative numbers or subtracting two infinite
entities. We thus need extra care when handling them.

Generally, arithmetic operations on missing values yield a result that is undefined as
well:

np.nan + 2 # "don't know" + 2 == "don't know"
nan
np.mean([1, np.nan, 2, 3])
nan

1 https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm
2 (*) The R environment, on the other hand, supports missing values out-of-the-box.

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm

15 MISSING, CENSORED, AND QUESTIONABLE DATA 375

There are versions of certain aggregation functions that ignoremissing valueswhatso-
ever: numpy.nanmean, numpy.nanmin, numpy.nanmax, numpy.nanpercentile, numpy.nanstd,
etc.

np.nanmean([1, np.nan, 2, 3])
2.0

Regrettably, running these aggregation functions directly on Series objects ignores
missing entities by default. Compare an application of numpy.mean on a Series in-
stance vs on a vector:

x = nhanes.head().loc[:, "BMXHT"] # some example Series, whatever
np.mean(x), np.mean(np.array(x))
(134.73333333333332, nan)

This is quite unfortunate behaviour as this way we might miss (sic!) the presence of
missing values. Therefore, it is crucial to have the dataset carefully inspected in ad-
vance.

Also, NaN is of the floating-point type. As a consequence, it cannot be present in,
amongst others, logical vectors.

x # preview
0 NaN
1 154.7
2 89.3
3 160.2
4 NaN
Name: BMXHT, dtype: float64
y = (x > 100)
y
0 False
1 True
2 False
3 True
4 False
Name: BMXHT, dtype: bool

Unfortunately, comparisons against missing values yield False, instead of the more
semantically valid missing value. Hence, if we want to retain themissingness inform-
ation (wedonot know if amissing value is greater than 100),weneed to do itmanually:

y = y.astype("object") # required for numpy vectors, not for pandas Series
y[np.isnan(x)] = None
y
0 None
1 True
2 False
3 True

(continues on next page)

376 V OTHER DATA TYPES

(continued from previous page)

4 None
Name: BMXHT, dtype: object

Exercise 15.3 Read the pandas documentation3 about missing value handling.

15.1.3 Missing at randomor not?
At a general level (from themathematical modelling perspective), wemay distinguish
between a fewmissingness patterns; see [81]:

• missing completely at random: reasons are unrelated to data and probabilities of
cases’ being missing are all the same;

• missingat random: there are different probabilities of beingmissingwithin distinct
groups (e.g., ethical data scientists might tend to refuse to answer specific ques-
tions);

• missing not at random: due to reasons unknown to us (e.g., data was collected at
different times, there might be significant differences within the groups that we
cannot easily identify, e.g., amongst participants with a background in mathem-
atics where we did not ask about education or occupation).

It is important to try to determine the reason for missingness.This will usually imply
the kinds of techniques that are suitable in specific cases.

15.1.4 Discardingmissing values
Wemay try removing (discarding) rowsor columns that carry at least one, some, or too
many missing values. Nonetheless, such a scheme will obviously not work for small
datasets, where each observation is precious4.

Also, we ought not to exercise data removal in situations where missingness is condi-
tional (e.g., data only available for infants) or otherwise group-dependent (not com-
pletely at random). Otherwise, for example, it might result in an imbalanced dataset.

Exercise 15.4 With the nhanes_p_demo_bmx_20205 dataset, performwhat follows.

1. Remove all columns that are comprised of missing values only.

2. Remove all columns that are made of more than 20%missing values.

3. Remove all rows that only consist of missing values.

4. Remove all rows that bear at least onemissing value.

5. Remove all columns that carry at least onemissing value.

3 https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
4 On the other hand, if we want to infer from small datasets, we should ask ourselves whether this is a

good idea at all… It might be better to refrain from any data analysis than to come upwith conclusions that
are likely to be unjustified.

5 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_p_demo_bmx_2020.csv

https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_p_demo_bmx_2020.csv

15 MISSING, CENSORED, AND QUESTIONABLE DATA 377

Hint: pandas.DataFrame.dropnamight be useful in the simplest cases, and numpy.isnan
or pandas.DataFrame.isnawith loc[...] or iloc[...] can be applied otherwise.

15.1.5 Mean imputation
When we cannot afford or it is inappropriate/inconvenient to proceed with the re-
moval of missing observations or columns, we may try applying some missing value
imputation techniques. Let us be clear, though: this is merely a replacement thereof by
some hopefully adequate guesstimates.

Important In all kinds of reports from data analysis, we need to be explicit about the
way we handle the missing values. Sometimes they might strongly affect the results.

Let us consider an example vector with missing values, comprised of heights of the
adult participants of the NHANES study.

x = nhanes.loc[nhanes.loc[:, "RIDAGEYR"] >= 18, "BMXHT"]

The simplest approach is to replace each missing value with the corresponding
column’s mean.This does not change the overall average but decreases the variance.

xi = x.copy()
xi[np.isnan(xi)] = np.nanmean(xi)

Similarly,we could consider replacingmissing valueswith themedian, or– in the case
of categorical data – the mode.

Furthermore, we expect heights to differ, on average, between sexes. Consequently,
another basic imputation option is to replace themissing values with the correspond-
ing within-group averages:

xg = x.copy()
g = nhanes.loc[nhanes.loc[:, "RIDAGEYR"] >= 18, "RIAGENDR"]
xg[np.isnan(xg) & (g == 1)] = np.nanmean(xg[g == 1]) # male
xg[np.isnan(xg) & (g == 2)] = np.nanmean(xg[g == 2]) # female

Unfortunately, whichever imputation method we choose, will artificially distort the
data distribution and introduce some kind of bias; see Figure 15.1 for the histograms
of x,xi, andxg.Theseeffects canbeobscured ifwe increase thehistogrambins’widths,
but theywill still bepresent in thedata.Nosurprisehere:weadded to the samplemany
identical values.

Exercise 15.5 With the nhanes_p_demo_bmx_20206 dataset, performwhat follows.

1. For each numerical column, replace all missing values with the column averages.

6 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_p_demo_bmx_2020.csv

https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_p_demo_bmx_2020.csv

378 V OTHER DATA TYPES

150 200
0

100

200

300

400

500

Co
un

t

Original (x)

150 200
0

100

200

300

400

500
Replace by mean (xi)

150 200
0

100

200

300

400

500
Replace by group mean (xg)

Figure 15.1. Themean imputation distorts the data distribution.

2. For each categorical column, replace all missing values with the columnmodes.

3. For each numerical column, replace all missing values with the averages corresponding to a
patient’s sex (as given by the RIAGENDR column).

15.1.6 Imputation by classification and regression (*)
We can easily compose a missing value imputer based on averaging data from an ob-
servation’s non-missing nearest neighbours; compare Section 9.2.1 and Section 12.3.1.
This is an extension of the simple idea of finding the most similar observation (with
respect to chosen criteria) to a given one and then borrowing non-missing measure-
ments from it.

More generally, different regression or classification models can be built on non-
missing data (training sample) and then the missing observations can be replaced by
the values predicted by those models.

Note (**) Rubin (e.g., in [60]) suggests theuse of a procedure calledmultiple imputation
(see also [90]), where copies of the original datasets are created, missing values are
imputed by sampling from some estimated distributions, the inference is made, and
then the results are aggregated. An example implementation of such an algorithm is
available in sklearn.impute.IterativeImputer.

15 MISSING, CENSORED, AND QUESTIONABLE DATA 379

15.2 Censored and interval data (*)
Censored data frequently appear in the context of reliability, risk analysis, and bios-
tatistics, where the observed objects might fail (e.g., break down, die, withdraw; com-
pare, e.g., [64]). Our introductory course cannot obviously cover everything.However,
a beginner analyst needs to be at least aware of the existence of:

• right-censored data: we only know that the actual value is above the recorded one
(e.g., we stopped the experiment on the reliability of light bulbs after 1000 hours,
so those which still work will not have their time-of-failure precisely known);

• left-censored data: the true observation is below the recorded one, e.g., we observe
a component’s failure, but we do not know for how long it has been in operation
before the study has started.

In such cases, the recorded datum of, say, 1000, can essentially mean [1000, ∞),
[0, 1000], or (−∞, 1000].
There might also be instances where we know that a value is in some interval [𝑎, 𝑏].
There are numerical libraries that deal with interval computations, and some data ana-
lysis methods exist for dealing with such a scenario.

15.3 Incorrect data
Missing data can already be marked in a given sample. But we also might be willing to
mark some existing values as missing, e.g., when they are incorrect. For example:

• for text data, misspelled words;

• for spatial data,GPS coordinates of places out of thisworld, nonexistent zip codes,
or invalid addresses;

• for date-time data, misformatted date-time strings, incorrect dates such as “29
February 2011”, an event’s start date being after the end date;

• for physical measurements, observations that do not meet specific constraints,
e.g., negative ages, or heights of people over 300 centimetres;

• IDs of entities that simply do not exist (e.g., unregistered or deleted clients’ ac-
counts);

and so forth.

To be able to identify and handle incorrect data, we need specific knowledge of a par-
ticular domain. Optimally, basic data validation techniques are already employed on
the data collection stage. For instance, when a user submits an online form.

380 V OTHER DATA TYPES

There can be many tools that can assist us with identifying erroneous observations,
e.g., spell checkers such as hunspell7.

For smaller datasets, observations can also be inspected manually. In other cases, we
might have to develop custom algorithms for detecting such bugs in data.

Exercise 15.6 Given some data frame with numeric columns only, performwhat follows.

1. Check if all numeric values in each column are between 0 and 1000.

2. Check if all values in each column are unique.

3. Verify that all the rowwise sums add up to 1.0 (up to a small numeric error).

4. Check if the data frame consists of 0s and 1s only. Provided that this is the case, verify that
for each row, if there is a 1 in some column, then all the columns to the right are filled with 1s
too.

Many data validation methods can be reduced to operations on strings; see Chapter
14. They may be as simple as writing a single regular expression or checking if a label
is in a dictionary of possible values but also as difficult as writing your own parser for
a custom context-sensitive grammar.

Exercise 15.7 Once we import the data fetched from dirty sources, relevant information will
have tobe extracted fromrawtext, e.g., strings like"1" shouldbe converted to floating-pointnum-
bers. Below we suggest several tasks that can aid in developing data validation skills involving
some operations on text.

Givenan example data framewith text columns (manually invented, please be creative), perform
what follows.

1. Remove trailing and leading whitespaces from each string.

2. Check if all strings can be interpreted as numbers, e.g., "23.43".

3. Verify if a date string in the YYYY-MM-DD format is correct.

4. Determine if a date-time string in the YYYY-MM-DD hh:mm:ss format is correct.

5. Check if all strings are of the form (+NN) NNN-NNN-NNN or (+NN) NNNN-NNN-NNN, where N
denotes any digit (valid telephone numbers).

6. Inspect whether all strings are valid country names.

7. (*) Given a person’s date of birth, sex, and Polish ID number PESEL8, check if that ID is
correct.

8. (*) Determine if a string represents a correct International Bank Account Number (IBAN9)
(note that IBANs have two check digits).

9. (*) Transliterate text to ASCII, e.g., "żółty ©" to "zolty (C)".

10. (**) Using an external spell checker, determine if every string is a valid English word.

7 https://hunspell.github.io/
8 https://en.wikipedia.org/wiki/PESEL
9 https://en.wikipedia.org/wiki/International_Bank_Account_Number

https://hunspell.github.io/
https://en.wikipedia.org/wiki/PESEL
https://en.wikipedia.org/wiki/International_Bank_Account_Number

15 MISSING, CENSORED, AND QUESTIONABLE DATA 381

11. (**)Using an external spell checker, ascertain that every string is a validEnglishnoun in the
singular form.

12. (**) Resolve all abbreviations bymeans of a customdictionary, e.g., "Kat."→ "Katherine",
"Gr." → "Grzegorz".

15.4 Outliers
Another group of inspectionworthy observations consists of outliers. We can define
them as the samples that reside in the areas of substantially lower density than their
neighbours.

Outliers might be present due to an error, or their being otherwise anomalous, but
they may also simply be interesting, original, or novel. After all, statistics does not
give any meaning to data items; humans do.

What we do with outliers is a separate decision.We can get rid of them, correct them,
replace themwith a missing value (and then possibly impute), or analyse them separ-
ately. In particular, there is a separate subfield in statistics called extreme value the-
ory that is interested in predicting the distribution of very large observations (e.g., for
modelling floods, extreme rainfall, or temperatures); see, e.g., [5]. But this is a topic
for a more advanced course; see, e.g., [50]. By then, let us stick with some simpler
settings.

15.4.1 The 3/2 IQR rule for normally-distributed data
Forunidimensional data (or individual columns inmatrices anddata frames), thefirst
few smallest and largest observations should usually be inspected manually. For in-
stance, itmight happen that someone accidentally entered apatient’s height inmetres
instead of centimetres: such cases are easily detectable. A data scientist is like a detect-
ive.

Let us recall the rule of thumb discussed in the section on box-and-whisker plots (Sec-
tion 5.1.4). For data that are expected to come from a normal distribution, everything
that does not fall into the interval [𝑄1 − 1.5IQR, 𝑄3 + 1.5IQR] can be considered
suspicious. This definition is based on quartiles only, so it is not affected by poten-
tial outliers (they are robust aggregates; compare [50]). Plus, themagic constant 1.5 is
nicely round and thus easy to memorise (an attractive feature). It is not too small and
not too large; for the normal distribution N(𝜇, 𝜎), the above interval corresponds to
roughly [𝜇 − 2.698𝜎, 𝜇 + 2.698𝜎], and the probability of obtaining a value outside
of it is c. 0.7%. In other words, for a sample of size 1000 that is truly normally distrib-
uted (not contaminated by anything), only seven observationswill be flagged. It is not
a problem to inspect them by hand.

Note (*) We can choose a different threshold. For instance, for the normal distribu-

382 V OTHER DATA TYPES

tion N(10, 1), even though the probability of observing a value greater than 15 is the-
oretically non-zero, it is smaller 0.000029%, so it is sensible to treat this observation
as suspicious. On the other hand, we do not want to mark too many observations as
outliers: inspecting themmanually might be too labour-intense.

Exercise 15.8 For each column in nhanes_p_demo_bmx_202010, inspect a few smallest and
largest observations and see if theymake sense.

Exercise 15.9 Perform the above separately for data in each group as defined by the RIAGENDR
column.

15.4.2 Unidimensional density estimation (*)
For skewed distributions such as the ones representing incomes, theremight be noth-
ing wrong, at least statistically speaking, with very large isolated observations.

For well-separatedmultimodal distributions on the real line, outliers may sometimes
also fall in between the areas of high density.

Example 15.10 That neither box plots themselves, nor the 1.5IQR rule might not be ideal tools
for multimodal data is exemplified in Figure 15.2. Here, we have a mixture of N(10, 1) and
N(25, 1) samples and four potential outliers at 0, 15, 45, and 50.

x = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/blobs2.txt")

plt.subplot(1, 2, 1)
plt.boxplot(x, vert=False)
plt.yticks([])
plt.subplot(1, 2, 2)
plt.hist(x, bins=50, color="lightgray", edgecolor="black")
plt.ylabel("Count")

plt.show()

Fixed-radius search techniques discussed in Section 8.4 can be used for estimating
the underlying probability density function. Given a data sample 𝒙 = (𝑥1, … , 𝑥𝑛), let
us consider11:

̂𝑓𝑟(𝑧) = 1
2𝑟𝑛

𝑛
∑
𝑖=1

|𝐵𝑟(𝑧)|,

where |𝐵𝑟(𝑧)| denotes the number of observations from 𝒙 whose distance to 𝑧 is not
greater than 𝑟, i.e., fall into the interval [𝑧 − 𝑟, 𝑧 + 𝑟].

n = len(x)
r = 1 # radius – feel free to play with different values

(continues on next page)

10 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_p_demo_bmx_2020.csv
11This is an instance of a kernel density estimator, with the simplest kernel: a rectangular one.

https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_p_demo_bmx_2020.csv

15 MISSING, CENSORED, AND QUESTIONABLE DATA 383

0 20 40 0 20 40
0

50

100

150

200

250

300

350

Co
un

t

Figure 15.2. With box plots, wemay fail to detect some outliers.

(continued from previous page)

import scipy.spatial
t = scipy.spatial.KDTree(x.reshape(-1, 1))
dx = pd.Series(t.query_ball_point(x.reshape(-1, 1), r)).str.len() / (2*r*n)
dx[:6] # preview
0 0.000250
1 0.116267
2 0.116766
3 0.166667
4 0.076098
5 0.156188
dtype: float64

Then, points in the sample lying in low-density regions (i.e., all 𝑥𝑖 such that ̂𝑓𝑟(𝑥𝑖) is
small) can be flagged for further inspection:

x[dx < 0.001]
array([0. , 13.57157922, 15. , 45. , 50.])

See Figure 15.3 for an illustration of ̂𝑓𝑟. Of course, 𝑟must be chosen with care, just like
the number of bins in a histogram.

z = np.linspace(np.min(x)-5, np.max(x)+5, 1001)
dz = pd.Series(t.query_ball_point(z.reshape(-1, 1), r)).str.len() / (2*r*n)
plt.plot(z, dz, label=f"density estimator ($r={r}$)")
plt.hist(x, bins=50, color="lightgray", edgecolor="black", density=True)
plt.ylabel("Density")
plt.show()

384 V OTHER DATA TYPES

0 10 20 30 40 50
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
en

sit
y

Figure 15.3. Density estimation based on fixed-radius search.

15.4.3 Multidimensional density estimation (*)
By far we should have become used to the fact that unidimensional data projections
might lead to our losing too much information. Some values can seem perfectly fine
when they are considered in isolation, but already plotting them in 2D reveals that the
reality is more complex than that.

Consider the following example dataset and the depiction of the distributions of its
two natural projections in Figure 15.4.

X = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/blobs1.txt", delimiter=",")

plt.figure(figsize=(plt.rcParams["figure.figsize"][0],)*2) # width=height
plt.subplot(2, 2, 1)
plt.boxplot(X[:, 0], vert=False)
plt.yticks([1], ["X[:, 0]"])
plt.subplot(2, 2, 2)
plt.hist(X[:, 0], bins=20, color="lightgray", edgecolor="black")
plt.title("X[:, 0]")
plt.subplot(2, 2, 3)
plt.boxplot(X[:, 1], vert=False)
plt.yticks([1], ["X[:, 1]"])
plt.subplot(2, 2, 4)
plt.hist(X[:, 1], bins=20, color="lightgray", edgecolor="black")
plt.title("X[:, 1]")
plt.show()

There is nothing suspicious here. Or is there?

15 MISSING, CENSORED, AND QUESTIONABLE DATA 385

4 2 0 2

X[:, 0]

4 2 0 2
0

50

100

150

200

X[:, 0]

2 0 2 4

X[:, 1]

2 0 2 4
0

50

100

150

200

X[:, 1]

Figure 15.4. One-dimensional projections of the blobs1 dataset.

The scatter plot in Figure 15.5 reveals that the data consist of two quite well-separable
blobs:

plt.plot(X[:, 0], X[:, 1], "o")
plt.axis("equal")
plt.show()

There are a few observations that we might mark as outliers. The truth is that yours
truly injected eight junk points at the very end of the dataset. Ha.

X[-8:, :]
array([[-3. , 3.],
[3. , 3.],
[3. , -3.],
[-3. , -3.],

(continues on next page)

386 V OTHER DATA TYPES

6 4 2 0 2 4 6

3

2

1

0

1

2

3

4

Figure 15.5. Scatter plot of the blobs1 dataset.

(continued from previous page)

[-3.5, 3.5],
[-2.5, 2.5],
[-2. , 2.],
[-1.5, 1.5]])

Handling multidimensional data requires slightly more sophisticated methods; see,
e.g., [2]. A quite straightforward approach is to check if there are any points within an
observation’s radius of some assumed size 𝑟 > 0. If that is not the case, we may con-
sider it an outlier. This is a variation on the aforementioned unidimensional density
estimation approach12.

Example 15.11 Consider the following code chunk:

t = scipy.spatial.KDTree(X)
n = t.query_ball_point(X, 0.2) # r=0.2 (radius) – play with it yourself
c = np.array(pd.Series(n).str.len())
c[[0, 1, -2, -1]] # preview
array([42, 30, 1, 1])

c[i] gives the number of points within X[i, :]’s 𝑟-radius (with respect to the Euclidean dis-
tance), including the point itself. Consequently, c[i]==1 denotes a potential outlier; see Fig-
ure 15.6 for an illustration.

12 (**) We can easily normalise the outputs to get a true 2D kernel density estimator, but multivariate
statistics is beyond the scope of this course. In particular, that datamight have fixedmarginal distributions
(projections onto 1D) but their multidimensional imagesmight be very different is beautifully described by
the copula theory; see [67].

15 MISSING, CENSORED, AND QUESTIONABLE DATA 387

plt.plot(X[c > 1, 0], X[c > 1, 1], "o", label="normal point")
plt.plot(X[c == 1, 0], X[c == 1, 1], "v", label="outlier")
plt.axis("equal")
plt.legend()
plt.show()

6 4 2 0 2 4 6

3

2

1

0

1

2

3

4 normal point
outlier

Figure 15.6. Outlier detection based on a fixed-radius search for the blobs1 dataset.

15.5 Exercises
Exercise 15.12 How canmissing values be represented in numpy and pandas?

Exercise 15.13 Explain some basic strategies for dealing with missing values in numeric vec-
tors.

Exercise 15.14 Why we ought to be very explicit about the way we handle missing and other
suspicious data? Is it advisable to mark as missing (or remove completely) the observations that
wedislike or otherwise deem inappropriate, controversial,dangerous, incompatible with
our political views, etc.?

Exercise 15.15 Is replacing missing values with the sample arithmetic mean for income data
(as in, e.g., the uk_income_simulated_202013 dataset) a sensible strategy?

Exercise 15.16 What are the differences between data missing completely at random, missing
at random, andmissing not at random?

13 https://github.com/gagolews/teaching-data/raw/master/marek/uk_income_simulated_2020.txt

https://github.com/gagolews/teaching-data/raw/master/marek/uk_income_simulated_2020.txt

388 V OTHER DATA TYPES

Exercise 15.17 List some basic strategies for dealing with data that might contain outliers.

16
Time series

So far, we have been using numpy and pandasmostly for storing:

• independentmeasurements, where each row gives, e.g., weight, height, … records
of a different subject; we often consider these a sample of a representative subset
of one or more populations, each recorded at a particular point in time;

• data summaries to be reported in the form of tables or figures, e.g., frequency
distributions giving counts for the corresponding categories or labels.

In this chapter, we will explore the most basic concepts related to the wrangling of
time series, i.e., signals indexed by discrete time. Usually, a time series is a sequence of
measurements sampled at equally spacedmoments, e.g., a patient’s heart rate probed
every second, daily average currency exchange rates, or highest yearly temperatures
recorded in some location.

16.1 Temporal ordering and line charts
Consider the midrange1 daily temperatures in degrees Celsius at the Spokane Inter-
national Airport (Spokane, WA, US) between 1889-08-01 (first observation) and 2021-
12-31 (last observation).

temps = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/spokane_temperature.txt")

Let us preview the December 2021 data:

temps[-31:] # last 31 days
array([11.9, 5.8, 0.6, 0.8, -1.9, -4.4, -1.9, 1.4, -1.9,
-1.4, 3.9, 1.9, 1.9, -0.8, -2.5, -3.6, -10. , -1.1,
-1.7, -5.3, -5.3, -0.3, 1.9, -0.6, -1.4, -5. , -9.4,
-12.8, -12.2, -11.4, -11.4])

Here are some data aggregates for the whole sample. First, the popular quantiles:

1 Note thatmidrange, being themeanof the lowest and thehighest observed temperature on agivenday,
is not a particularly good estimate of the average daily reading.This dataset is considered for illustrational
purposes only.

390 V OTHER DATA TYPES

np.quantile(temps, [0, 0.25, 0.5, 0.75, 1])
array([-26.9, 2.2, 8.6, 16.4, 33.9])

Then, the arithmetic mean and standard deviation:

np.mean(temps), np.std(temps)
(8.990273958441023, 9.16204388619955)

A graphical summary of the data distribution is depicted in Figure 16.1.

plt.violinplot(temps, vert=False, showextrema=False)
plt.boxplot(temps, vert=False)
plt.show()

20 10 0 10 20 30

1

Figure 16.1. Distribution of themidrange daily temperatures in Spokane in the period
1889–2021. Observations are treated as a bag of unrelated items (temperature on a
“randomly chosen day” in a version of planet Earth where there is no climate change).

When computing data aggregates or plotting histograms, the order of elements does
not matter. Contrary to the case of the independentmeasurements, vectors represent-
ing time series do not have to be treated simply as mixed bags of unrelated items.

Important In time series, for any given item 𝑥𝑖, its neighbouring elements 𝑥𝑖−1 and
𝑥𝑖+1 denote the recordings occurring directly before and after it. We can use this tem-
poral ordering to model how consecutivemeasurements depend on each other, describe
how they change over time, forecast future values, detect seasonal and long-time
trends, and so forth.

16 TIME SERIES 391

Figure 16.2 depicts the data for 2021, plotted as a function of time. What we see is of-
ten referred to as a line chart (line graph): data points are connected by straight line
segments. There are some visible seasonal variations, such as, well, obviously, that
winter is colder than summer.There is also some natural variability on top of seasonal
patterns typical for the Northern Hemisphere.

plt.plot(temps[-365:])
plt.xticks([0, 181, 364], ["2021-01-01", "2021-07-01", "2021-12-31"])
plt.show()

2021-01-01 2021-07-01 2021-12-31

10

0

10

20

30

Figure 16.2. Line chart of midrange daily temperatures in Spokane for 2021.

16.2 Workingwith date-times and time-deltas
16.2.1 Representation:TheUNIX epoch
numpy.datetime642 is a type to represent date-times. Usually, wewill be creating dates
from strings. For instance:

d = np.array([
"1889-08-01", "1970-01-01", "1970-01-02", "2021-12-31", "today"

], dtype="datetime64[D]")
d
array(['1889-08-01', '1970-01-01', '1970-01-02', '2021-12-31',
'2023-09-04'], dtype='datetime64[D]')

2 https://numpy.org/doc/stable/reference/arrays.datetime.html

https://numpy.org/doc/stable/reference/arrays.datetime.html

392 V OTHER DATA TYPES

Similarly with date-times:

dt = np.array(["1970-01-01T02:01:05", "now"], dtype="datetime64[s]")
dt
array(['1970-01-01T02:01:05', '2023-09-04T05:11:44'],
dtype='datetime64[s]')

Important Internally, theaboveare representedas thenumberofdays (datetime64[D])
or seconds (datetime64[s]) since the UNIX Epoch, 1970-01-01T00:00:00 in the UTC
time zone.

Let us verify the above statement:

d.astype(int)
array([-29372, 0, 1, 18992, 19604])
dt.astype(int)
array([7265, 1693804304])

When we think about it for a while, this is exactly what we expected.

Exercise 16.1 (*) Compose a regular expression that extracts all dates in the YYYY-MM-DD
format from a (possibly long) string and converts them to datetime64.

16.2.2 Time differences
Computing date-time differences (time-deltas) is possible thanks to the numpy.

timedelta64 objects:

d - np.timedelta64(1, "D") # minus 1 Day
array(['1889-07-31', '1969-12-31', '1970-01-01', '2021-12-30',
'2023-09-03'], dtype='datetime64[D]')
dt + np.timedelta64(12, "h") # plus 12 hours
array(['1970-01-01T14:01:05', '2023-09-04T17:11:44'],
dtype='datetime64[s]')

Also, numpy.arange (see also pandas.date_range) generates a sequence of equidistant
date-times:

dates = np.arange("1889-08-01", "2022-01-01", dtype="datetime64[D]")
dates[:3] # preview
array(['1889-08-01', '1889-08-02', '1889-08-03'], dtype='datetime64[D]')
dates[-3:] # preview
array(['2021-12-29', '2021-12-30', '2021-12-31'], dtype='datetime64[D]')

16.2.3 Date-times in data frames
Dates and date-times can be emplaced in pandas data frames:

16 TIME SERIES 393

spokane = pd.DataFrame(dict(
date=np.arange("1889-08-01", "2022-01-01", dtype="datetime64[D]"),
temp=temps

))
spokane.head()
date temp
0 1889-08-01 21.1
1 1889-08-02 20.8
2 1889-08-03 22.2
3 1889-08-04 21.7
4 1889-08-05 18.3

When we ask the date column to become the data frame’s index (i.e., row labels), we
will be able select date ranges quite easily with loc[...] and string slices (refer to the
manual of pandas.DateTimeIndex for more details).

spokane.set_index("date").loc["2021-12-25":, :].reset_index()
date temp
0 2021-12-25 -1.4
1 2021-12-26 -5.0
2 2021-12-27 -9.4
3 2021-12-28 -12.8
4 2021-12-29 -12.2
5 2021-12-30 -11.4
6 2021-12-31 -11.4

Example 16.2 Based on the above, we can plot the data for the last five years quite easily; see
Figure 16.3.

x = spokane.set_index("date").loc["2017-01-01":, "temp"].reset_index()
plt.plot(x.date, x.temp)
plt.show()

The pandas.to_datetime function can also convert arbitrarily formatted date strings,
e.g., "MM/DD/YYYY" or "DD.MM.YYYY" to Series of datetime64s.

dates = ["05.04.1991", "14.07.2022", "21.12.2042"]
dates = pd.Series(pd.to_datetime(dates, format="%d.%m.%Y"))
dates
0 1991-04-05
1 2022-07-14
2 2042-12-21
dtype: datetime64[ns]

Exercise 16.3 From the birth_dates3 dataset, select all people less than 18 years old (as of the
current day).

3 https://github.com/gagolews/teaching-data/raw/master/marek/birth_dates.csv

https://github.com/gagolews/teaching-data/raw/master/marek/birth_dates.csv

394 V OTHER DATA TYPES

2017 2018 2019 2020 2021 2022

10

0

10

20

30

Figure 16.3. Line chart of midrange daily temperatures in Spokane for 2017–2021.

Several date-time functions and related properties can be referred to via the pandas.
Series.dt accessor, which is similar to pandas.Series.str discussed in Chapter 14.

For instance, converting date-time objects to strings following custom format spe-
cifiers can be performed with:

dates.dt.strftime("%d.%m.%Y")
0 05.04.1991
1 14.07.2022
2 21.12.2042
dtype: object

We can also extract different date or time fields, such as date, time, year, month, day,
dayofyear, hour, minute, second, etc. For example:

dates_ymd = pd.DataFrame(dict(
year = dates.dt.year,
month = dates.dt.month,
day = dates.dt.day

))
dates_ymd
year month day
0 1991 4 5
1 2022 7 14
2 2042 12 21

The other way around, we should note that pandas.to_datetime can convert data
frames with columns named year, month, day, etc., to date-time objects:

16 TIME SERIES 395

pd.to_datetime(dates_ymd)
0 1991-04-05
1 2022-07-14
2 2042-12-21
dtype: datetime64[ns]

Example 16.4 Let us extract themonth and year parts of dates to compute the averagemonthly
temperatures it the last 50-ish years:

x = spokane.set_index("date").loc["1970":,].reset_index()
mean_monthly_temps = x.groupby([

x.date.dt.year.rename("year"),
x.date.dt.month.rename("month")

]).temp.mean().unstack()
mean_monthly_temps.head().round(1) # preview
month 1 2 3 4 5 6 7 8 9 10 11 12
year
1970 -3.4 2.3 2.8 5.3 12.7 19.0 22.5 21.2 12.3 7.2 2.2 -2.4
1971 -0.1 0.8 1.7 7.4 13.5 14.6 21.0 23.4 12.9 6.8 1.9 -3.5
1972 -5.2 -0.7 5.2 5.6 13.8 16.6 20.0 21.7 13.0 8.4 3.5 -3.7
1973 -2.8 1.6 5.0 7.8 13.6 16.7 21.8 20.6 15.4 8.4 0.9 0.7
1974 -4.4 1.8 3.6 8.0 10.1 18.9 19.9 20.1 15.8 8.9 2.4 -0.8

Figure 16.4 depicts these data on a heat map. We rediscover the ultimate truth that winters are
cold, whereas in the summertime the living is easy, what a wonderful world.

sns.heatmap(mean_monthly_temps)
plt.show()

� � � � � � � � � �	 �� ��

�����

���	

����

����

����

����

����

����

����

����

����

�			

�		�

�		�

�		�

�	��

�	��

�	��

�	��

�
�
�
�

�	

�

	

�

�	

��

�	

��

Figure 16.4. Average monthly temperatures.

396 V OTHER DATA TYPES

16.3 Basic operations
16.3.1 Iterated differences and cumulative sums revisited
Recall fromSection 5.5.1 the numpy.diff functionand its almost-inverse, numpy.cumsum.
The former can turn a time series into a vector of relative changes (deltas),Δ𝑖 = 𝑥𝑖+1 −𝑥𝑖.

x = temps[-7:] # last 7 days
x
array([-1.4, -5. , -9.4, -12.8, -12.2, -11.4, -11.4])

The iterated differences (deltas) are:

d = np.diff(x)
d
array([-3.6, -4.4, -3.4, 0.6, 0.8, 0.])

For instance, between the second and the first day of the last week, themidrange tem-
perature dropped by -3.6°C.

The other way around, here the cumulative sums of the deltas:

np.cumsum(d)
array([-3.6, -8. , -11.4, -10.8, -10. , -10.])

This turned deltas back to a shifted version of the original series. But we will need the
first (root) observation therefrom to restore the dataset in full:

x[0] + np.append(0, np.cumsum(d))
array([-1.4, -5. , -9.4, -12.8, -12.2, -11.4, -11.4])

Exercise 16.5 Consider the euraud-20200101-20200630-no-na4 dataset which lists daily
EUR/AUD exchange rates in the first half of 2020 (remember COVID-19?), with missing obser-
vations removed. Using numpy.diff, compute the minimum, median, average, and maximum
daily price changes. Also, draw a box and whisker plot for these deltas.

Example 16.6 (*) The exponential distribution family is sometimes used for the modelling of
times between different events (deltas). It might be a sensible choice under the assumption that
a system generates a constant number of events on average and that they occur independently of
each other, e.g., for the times between requests to a cloud service during peak hours, wait times
for the next pedestrian to appear at a crossing near the Southern Cross Station inMelbourne, or
the amount of time it takes a bank teller to interact with a customer (there is a whole branch of
appliedmathematics called queuing theory that deals with this type of modelling).

4 https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630-no-na.
txt

https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630-no-na.txt

16 TIME SERIES 397

An exponential family is identified by the scale parameter 𝑠 > 0, being at the same time its
expected value.The probability density function ofExp(𝑠) is given for 𝑥 ≥ 0 by:

𝑓 (𝑥) = 1
𝑠 𝑒−𝑥/𝑠,

and 𝑓 (𝑥) = 0 otherwise. We need to be careful: some textbooks choose the parametrisation by
𝜆 = 1/𝑠 instead of 𝑠.The scipy package also uses this convention.

Here is a pseudorandom sample where there are five events per minute on average:

np.random.seed(123)
l = 60/5 # 5 events per 60 seconds on average
d = scipy.stats.expon.rvs(size=1200, scale=l)
np.round(d[:8], 3) # preview
array([14.307, 4.045, 3.087, 9.617, 15.253, 6.601, 47.412, 13.856])

This gave us the wait times between the events, in seconds.

A natural sample estimator of the scale parameter is:

np.mean(d)
11.839894504211724

The result is close to what we expected, i.e., 𝑠 = 12 seconds between the events.
We can convert the above to date-time (starting at a fixed calendar date) as follows. Note that we
will measure the deltas inmilliseconds so that we do not loose precision; datetime64 is based on
integers, not floating-point numbers.

t0 = np.array("2022-01-01T00:00:00", dtype="datetime64[ms]")
d_ms = np.round(d*1000).astype(int) # in milliseconds
t = t0 + np.array(np.cumsum(d_ms), dtype="timedelta64[ms]")
t[:8] # preview
array(['2022-01-01T00:00:14.307', '2022-01-01T00:00:18.352',
'2022-01-01T00:00:21.439', '2022-01-01T00:00:31.056',
'2022-01-01T00:00:46.309', '2022-01-01T00:00:52.910',
'2022-01-01T00:01:40.322', '2022-01-01T00:01:54.178'],
dtype='datetime64[ms]')
t[-2:] # preview
array(['2022-01-01T03:56:45.312', '2022-01-01T03:56:47.890'],
dtype='datetime64[ms]')

As an exercise, let us apply binning and count howmany events occur in each hour:

b = np.arange(# four 1-hour interval (five time points)
"2022-01-01T00:00:00", "2022-01-01T05:00:00",
1000*60*60, # number of milliseconds in 1 hour
dtype="datetime64[ms]"

)
np.histogram(t, bins=b)[0]
array([305, 300, 274, 321])

398 V OTHER DATA TYPES

Weexpect 5 events per second, i.e., 300 of themper hour.Ona side note, froma course in statistics
we know that for exponential inter-event times, the number of events per unit of time follows a
Poisson distribution.

Exercise 16.7 (*) Consider the wait_times5 dataset that gives the times between some consec-
utive events, in seconds. Estimate the event rate per hour. Draw a histogram representing the
number of events per hour.

Exercise 16.8 (*) Consider the btcusd_ohlcv_2021_dates6 dataset which gives the daily
BTC/USD exchange rates in 2021:

btc = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/btcusd_ohlcv_2021_dates.csv",
comment="#").loc[:, ["Date", "Close"]]

btc["Date"] = btc["Date"].astype("datetime64[s]")
btc.head(12)
Date Close
0 2021-01-01 29374.152
1 2021-01-02 32127.268
2 2021-01-03 32782.023
3 2021-01-04 31971.914
4 2021-01-05 33992.430
5 2021-01-06 36824.363
6 2021-01-07 39371.043
7 2021-01-08 40797.609
8 2021-01-09 40254.547
9 2021-01-10 38356.441
10 2021-01-11 35566.656
11 2021-01-12 33922.961

Author a function that converts it to a lagged representation, being a convenient form for some
machine learning algorithms.

1. Add the Change column that gives by howmuch the price changed since the previous day.

2. Add the Dir column indicating if the change was positive or negative.

3. Add the Lag1, …, Lag5 columns which give the Changes in the five preceding days.

The first few rows of the resulting data frame should look like this (assuming we do not want any
missing values):

Date Close Change Dir Lag1 Lag2 Lag3 Lag4 Lag5
2021-01-07 39371 2546.68 inc 2831.93 2020.52 -810.11 654.76 2753.12
2021-01-08 40798 1426.57 inc 2546.68 2831.93 2020.52 -810.11 654.76
2021-01-09 40255 -543.06 dec 1426.57 2546.68 2831.93 2020.52 -810.11
2021-01-10 38356 -1898.11 dec -543.06 1426.57 2546.68 2831.93 2020.52
2021-01-11 35567 -2789.78 dec -1898.11 -543.06 1426.57 2546.68 2831.93
2021-01-12 33923 -1643.69 dec -2789.78 -1898.11 -543.06 1426.57 2546.68

5 https://github.com/gagolews/teaching-data/raw/master/marek/wait_times.txt
6 https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlcv_2021_dates.csv

https://github.com/gagolews/teaching-data/raw/master/marek/wait_times.txt
https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlcv_2021_dates.csv

16 TIME SERIES 399

In the sixth row (representing2021-01-12),Lag1 corresponds toChange on2021-01-11,Lag2gives
the Change on 2021-01-10, and so forth.

To spice things up, make sure your code can generate any number (as defined by another para-
meter to the function) of lagged variables.

16.3.2 Smoothingwithmoving averages
With time series it makes sense to consider processing whole batches of consecutive
points as there is a time dependence between them. In particular, we can consider
computingdifferent aggregates inside rollingwindowsof aparticular size. For instance,
the 𝑘-moving average of a given sequence (𝑥1, 𝑥2, … , 𝑥𝑛) is a vector (𝑦1, 𝑦2, … , 𝑦𝑛−𝑘+1)
such that:

𝑦𝑖 = 1
𝑘 (𝑥𝑖 + 𝑥𝑖+1 + ⋯ + 𝑥𝑖+𝑘−1) = 1

𝑘
𝑘

∑
𝑗=1

𝑥𝑖+𝑗−1,

i.e., the arithmetic mean of 𝑘 ≤ 𝑛 consecutive observations starting at 𝑥𝑖.

For example, here are the temperatures in the last seven days of December 2011:

x = spokane.set_index("date").iloc[-7:, :]
x
temp
date
2021-12-25 -1.4
2021-12-26 -5.0
2021-12-27 -9.4
2021-12-28 -12.8
2021-12-29 -12.2
2021-12-30 -11.4
2021-12-31 -11.4

The 3-moving (rolling) average:

x.rolling(3, center=True).mean().round(2)
temp
date
2021-12-25 NaN
2021-12-26 -5.27
2021-12-27 -9.07
2021-12-28 -11.47
2021-12-29 -12.13
2021-12-30 -11.67
2021-12-31 NaN

We get, in this order: themean of the first three observations; themean of the second,
third, and fourth items; then themean of the third, fourth, and fifth; and so forth. No-
tice that the observationswere centred in such away thatwe have the same number of

400 V OTHER DATA TYPES

missing values at the start and end of the series.This way, we treat the first three-day
moving average (the average of the temperatures on the first three days) as represent-
ative of the second day.

And now for something completely different; the 5-moving average:

x.rolling(5, center=True).mean().round(2)
temp
date
2021-12-25 NaN
2021-12-26 NaN
2021-12-27 -8.16
2021-12-28 -10.16
2021-12-29 -11.44
2021-12-30 NaN
2021-12-31 NaN

Applying the moving average has the nice effect of smoothing out all kinds of broadly-
conceived noise. To illustrate this, compare the temperature data for the last five years
in Figure 16.3 to their averaged versions in Figure 16.5.

x = spokane.set_index("date").loc["2017-01-01":, "temp"]
x30 = x.rolling(30, center=True).mean()
x100 = x.rolling(100, center=True).mean()
plt.plot(x30, label="30-day moving average")
plt.plot(x100, "r--", label="100-day moving average")
plt.legend()
plt.show()

Exercise 16.9 (*)Other aggregation functions canbe applied in rollingwindowsaswell.Draw,
in the same figure, the plots of the one-year movingminimums, medians, andmaximums.

16.3.3 Detecting trends and seasonal patterns
Thanks to windowed aggregation, we can also detect general trends (when using
longish windows). For instance, below we compute the ten-year moving averages for
the last 50-odd years’ worth of data:

x = spokane.set_index("date").loc["1970-01-01":, "temp"]
x10y = x.rolling(3653, center=True).mean()

Based on this, we can compute the detrended series:

xd = x - x10y

Seasonal patterns can be revealed by smoothening out the detrended version of the
data, e.g., using a one-year moving average:

16 TIME SERIES 401

2017 2018 2019 2020 2021 2022

5

0

5

10

15

20

25

30-day moving average
100-day moving average

Figure 16.5. Line chart of 30- and 100-moving averages of the midrange daily temper-
atures in Spokane for 2017–2021.

xd1y = xd.rolling(365, center=True).mean()

Figure 16.6 illustrates this.

plt.plot(x10y, label="trend")
plt.plot(xd1y, "r--", label="seasonal pattern")
plt.legend()
plt.show()

Also, if we know the length of the seasonal pattern (in our case, 365-ish days), we can
draw a seasonal plot, where we have a separate curve for each season (here: year) and
where all the series share the same x-axis (here: the day of the year); see Figure 16.7.

cmap = plt.colormaps.get_cmap("coolwarm")
x = spokane.set_index("date").loc["1970-01-01":, :].reset_index()
for year in range(1970, 2022, 5): # selected years only

y = x.loc[x.date.dt.year == year, :]
plt.plot(y.date.dt.dayofyear, y.temp,

c=cmap((year-1970)/(2021-1970)), alpha=0.3,
label=year if year % 10 == 0 else None)

avex = x.temp.groupby(x.date.dt.dayofyear).mean()
plt.plot(avex.index, avex, "g-", label="Average") # all years
plt.legend()
plt.xlabel("Day of year")
plt.ylabel("Temperature")
plt.show()

402 V OTHER DATA TYPES

���� ���� ���� ���� ���� ���� ���� ���� ����

�

�

�

�

�

�

��

	
��

�����������		�
�

Figure 16.6. Trend and seasonal pattern for the Spokane temperatures in recent years.

0 50 100 150 200 250 300 350
Day of year

20

10

0

10

20

30

Te
m

pe
ra

tu
re

1970
1980
1990
2000
2010
2020
Average

Figure 16.7. Seasonal plot: temperatures in Spokane vs the day of the year for 1970–
2021.

16 TIME SERIES 403

Exercise 16.10 Draw a similar plot for the whole data range, i.e., 1889–2021.

Exercise 16.11 Try using pd.Series.dt.strftime with a custom formatter instead of pd.
Series.dt.dayofyear.

16.3.4 Imputingmissing values
Missing values in time series canbe imputedbasedon the information fromtheneigh-
bouring non-missing observations. After all, it is usually the case that, e.g., today’s
weather is “similar” to yesterday’s and tomorrow’s.

Themost straightforward ways for dealing with missing values in time series are:

• forward-fill – propagate the last non-missing observation,

• backward-fill – get the next non-missing value,

• linearly interpolate between two adjacent non-missing values – in particular, a single
missing value will be replaced by the average of its neighbours.

Example 16.12 The classic air_quality_19737 dataset gives some daily air quality measure-
ments in New York, between May and September 1973. Let us impute the first few observations
in the solar radiation column:

air = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/r/air_quality_1973.csv",
comment="#")

x = air.loc[:, "Solar.R"].iloc[:12]
pd.DataFrame(dict(

original=x,
ffilled=x.ffill(),
bfilled=x.bfill(),
interpolated=x.interpolate(method="linear")

))
original ffilled bfilled interpolated
0 190.0 190.0 190.0 190.000000
1 118.0 118.0 118.0 118.000000
2 149.0 149.0 149.0 149.000000
3 313.0 313.0 313.0 313.000000
4 NaN 313.0 299.0 308.333333
5 NaN 313.0 299.0 303.666667
6 299.0 299.0 299.0 299.000000
7 99.0 99.0 99.0 99.000000
8 19.0 19.0 19.0 19.000000
9 194.0 194.0 194.0 194.000000
10 NaN 194.0 256.0 225.000000
11 256.0 256.0 256.0 256.000000

Exercise 16.13 (*)With the air_quality_20188 dataset:

7 https://github.com/gagolews/teaching-data/raw/master/r/air_quality_1973.csv
8 https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018.csv.gz

https://github.com/gagolews/teaching-data/raw/master/r/air_quality_1973.csv
https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018.csv.gz

404 V OTHER DATA TYPES

1. Based on the hourly observations, compute the daily mean PM2.5 measurements for Mel-
bourne CBD andMorwell South.

For Melbourne CBD, if some hourly measurement is missing, linearly interpolate between
the preceding and following non-missing data, e.g., a PM2.5 sequence of [..., 10, NaN,

NaN, 40, ...] (youneed tomanuallyadd theNaN rows to thedataset) shouldbe transformed
to [..., 10, 20, 30, 40, ...].

For Morwell South, impute the readings with the averages of the records in the nearest air
quality stations, which are located inMorwell East, Moe, Churchill, and Traralgon.

2. Present the daily mean PM2.5 measurements for Melbourne CBD andMorwell South on a
single plot.The x-axis labels should be human-readable and intuitive.

3. For theMelbourne data, determine the number of dayswhere the averagePM2.5was greater
than in the preceding day.

4. Find fivemost air-polluted days forMelbourne.

16.3.5 Plottingmultidimensional time series
Multidimensional time series stored in the form of an 𝑛 × 𝑚matrix are best viewed as
𝑚 time series – possibly but not necessarily related to each other – all sampled at the
same 𝑛 points in time (e.g.,𝑚 different stocks on 𝑛 consecutive days).
Consider the currency exchange rates for the first half of 2020:

eurxxx = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/eurxxx-20200101-20200630-no-na.csv",
delimiter=",")

eurxxx[:6, :] # preview
array([[1.6006 , 7.7946 , 0.84828, 4.2544],
[1.6031 , 7.7712 , 0.85115, 4.2493],
[1.6119 , 7.8049 , 0.85215, 4.2415],
[1.6251 , 7.7562 , 0.85183, 4.2457],
[1.6195 , 7.7184 , 0.84868, 4.2429],
[1.6193 , 7.7011 , 0.85285, 4.2422]])

This gives EUR/AUD (how many Australian Dollars we pay for 1 Euro), EUR/CNY
(Chinese Yuans), EUR/GBP (British Pounds), and EUR/PLN (Polish Złotys), in this or-
der. Let us draw the four time series; see Figure 16.8.

dates = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/euraud-20200101-20200630-dates.txt",
dtype="datetime64[s]")

labels = ["AUD", "CNY", "GBP", "PLN"]
styles = ["solid", "dotted", "dashed", "dashdot"]
for i in range(eurxxx.shape[1]):

plt.plot(dates, eurxxx[:, i], ls=styles[i], label=labels[i])
plt.legend(loc="upper right", bbox_to_anchor=(1, 0.9)) # a bit lower
plt.show()

16 TIME SERIES 405

2020-01 2020-02 2020-03 2020-04 2020-05 2020-06 2020-07

1

2

3

4

5

6

7

8

AUD
CNY
GBP
PLN

Figure 16.8. EUR/AUD,EUR/CNY,EUR/GBP, andEUR/PLNexchange rates in thefirst
half of 2020.

Unfortunately, they are all on different scales. This is why the plot is not necessarily
readable. It would be better to draw these time series on four separate plots (compare
the trellis plots in Section 12.2.5).

Another idea is to depict the currency exchange rates relative to the prices on some day,
say, the first one; see Figure 16.9.

for i in range(eurxxx.shape[1]):
plt.plot(dates, eurxxx[:, i]/eurxxx[0, i],

ls=styles[i], label=labels[i])
plt.legend()
plt.show()

Thisway, e.g., a relative EUR/AUD rate of c. 1.15 inmid-Marchmeans that if an Aussie
bought some Euros on the first day, and then sold them three-ish months later, they
would have 15%more wealth (the Euro become 15% stronger relative to AUD).

Exercise 16.14 Basedon theEUR/AUDandEUR/PLNrecords, computeandplot theAUD/PLN
as well as PLN/AUD rates.

Exercise 16.15 (*) Draw the EUR/AUD and EUR/GBP rates on a single plot, but where each
series has its own9 y-axis.

Exercise 16.16 (*) Draw the EUR/xxx rates for your favourite currencies over a larger period.

9 https://matplotlib.org/stable/gallery/subplots_axes_and_figures/secondary_axis.html

https://matplotlib.org/stable/gallery/subplots_axes_and_figures/secondary_axis.html

406 V OTHER DATA TYPES

2020-01 2020-02 2020-03 2020-04 2020-05 2020-06 2020-07

0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150
AUD
CNY
GBP
PLN

Figure 16.9. EUR/AUD, EUR/CNY, EUR/GBP, and EUR/PLN exchange rates relative to
the prices on the first day.

Use data10 downloaded from the European Central Bank. Add a fewmoving averages. For each
year, identify the lowest and the highest rate.

16.3.6 Candlestick plots (*)
Consider the BTC/USD data for 2021:

btcusd = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/btcusd_ohlcv_2021.csv",
delimiter=",")

btcusd[:6, :4] # preview (we skip the Volume column for readability)
array([[28994.01 , 29600.627, 28803.586, 29374.152],
[29376.455, 33155.117, 29091.182, 32127.268],
[32129.408, 34608.559, 32052.316, 32782.023],
[32810.949, 33440.219, 28722.756, 31971.914],
[31977.041, 34437.59 , 30221.188, 33992.43],
[34013.613, 36879.699, 33514.035, 36824.363]])

This gives the open, high, low, and close (OHLC) prices on the 365 consecutive days,
which is a common way to summarise daily rates.

The mplfinance11 (matplotlib-finance) package defines a few functions related to the
plotting of financial data. Let us briefly describe the well-known candlestick plot.

10 https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/
html/index.en.html

11 https://github.com/matplotlib/mplfinance

https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.html
https://github.com/matplotlib/mplfinance

16 TIME SERIES 407

import mplfinance as mpf
dates = np.arange("2021-01-01", "2022-01-01", dtype="datetime64[D]")
mpf.plot(

pd.DataFrame(
btcusd,
columns=["Open", "High", "Low", "Close", "Volume"]

).set_index(dates).iloc[:31, :],
type="candle",
returnfig=True

)
plt.show()

Ja
n 0

1

Ja
n 0

6

Ja
n 1

1

Ja
n 1

6

Ja
n 2

1

Ja
n 2

6

Ja
n 3

1

30000

32000

34000

36000

38000

40000

42000

Pr
ic

e

Figure 16.10. A candlestick plot for the BTC/USD exchange rates in January 2021.

Figure 16.10 depicts the January 2021 data. Let us stress that this is not a box and
whisker plot. The candlestick body denotes the difference in the market opening and
the closing price. The wicks (shadows) give the range (high to low). White candle-
sticks represent bullish days – where the closing rate is greater than the opening one
(uptrend). Black candles are bearish (decline).

Exercise 16.17 Draw the BTC/USD rates for the entire year and add the 10-day moving aver-
ages.

Exercise 16.18 (*) Draw a candlestick plot manually, without using the mplfinance package.
Hint: matplotlib.pyplot.fillmight be helpful.

408 V OTHER DATA TYPES

Exercise 16.19 (*) Using matplotlib.pyplot.fill_between add a semi-transparent poly-
gon that fills the area bounded between the Low andHigh prices on all the days.

16.4 Further reading
Data science classically deals with information that is or can be represented in tabular
form and where particular observations (which can be multidimensional) are usually
independent from but still to some extent similar to each other. We often treat them
as samples from different larger populations which we would like to describe or com-
pare at some level of generality (think: health data on patients being subject to two
treatment plans that we wish to evaluate).

From this perspective, time series are already quite distinct: there is some depend-
ence observed in the time domain. For instance, a price of a stock that we observe
today is influenced by what was happening yesterday. There might also be some sea-
sonal patternsor trendsunder thehood.Fora comprehensive introduction to forecast-
ing; see [52, 71]. Also, for data of this kind, employing statisticalmodelling techniques
(stochastic processes) can make a lot of sense; see, e.g., [86].

Signals such as audio, images, and video are different because structured randomness
does not play a dominant role there (unless it is a noise that wewould like to filter out).
Instead, what is happening in the frequency (think: perceiving pitches when listen-
ing to music) or spatial (seeing green grass and sky in a photo) domain should be of
interest.

Signal processing thus requires a distinct set of tools, e.g., Fourier analysis and finite
impulse response (discrete convolution) filters.This course obviously cannot be about
everything (also because it requires some more advanced calculus skills that we did
not assume the reader to have at this time); but see, e.g., [83, 85].

Nevertheless, keep in mind that these are not completely independent domains. For
example, we can extract various features of audio signals (e.g., overall loudness,
timbre, and danceability of each recording in a large song database) and then treat
them as tabular data to be analysed using the techniques described in this course.
Moreover, machine learning (e.g., convolutional neural networks) algorithms may
also be used for tasks such as object detection on images or optical character recog-
nition; see, e.g., [42].

16.5 Exercises
Exercise 16.20 Assume we have a time series with 𝑛 observations. What is a 1- and an 𝑛-
moving average?Which one is smoother, a (0.01𝑛)- or a (0.1𝑛)- one?

16 TIME SERIES 409

Exercise 16.21 What is the UNIX Epoch?

Exercise 16.22 How can we recreate the original series when we are given its numpy.diff-
transformed version?

Exercise 16.23 (*) In your ownwords, describe the key elements of a candlestick plot.

Changelog

Important Anybug/typo reports/fixes12 are appreciated.Themostup-to-date version
of this book can be found at https://datawranglingpy.gagolewski.com/.

Below is the list of the most noteworthy changes.

• under development (v1.0.3.9xxx):

– NewHTML theme (includes light and dark mode).

– Not using seaborn where it can easily be replaced by 1–3 calls to the lower-
level matplotlib, especially in the numpy chapters.Thisway, we can learn how
to create some popular charts from scratch. In particular, we are now using
own functions to display a heat map and a pairs plot.

– Use numpy.genfromtxtmore eagerly.

– A fewmore examples of using f-strings for results’ pretty-printing.

– Bug fixes and a lot of other minor extensions.

– (…) to do (…) work in progress (…) more to come (…)

• 2023-02-06 (v1.0.3):

– Numeric reference style; updated bibliography.

– Reduce the file size of the screen-optimised PDF at the cost of a slight de-
crease of the quality of some figures.

– Theprint-optimised PDF now uses selective rasterisation of parts of figures,
not whole pages containing them. This should increase the quality of the
printed version of this book.

– Bug fixes.

– Minor extensions, including: pandas.Series.dt.strftime, more details how
to avoid pitfalls in data frame indexing, etc.

• 2022-08-24 (v1.0.2):

– First printed (paperback) version can be ordered from Amazon13.

12 https://github.com/gagolews/datawranglingpy
13 https://www.amazon.com/dp/0645571911

https://github.com/gagolews/datawranglingpy
https://datawranglingpy.gagolewski.com/
https://www.amazon.com/dp/0645571911

412 CHANGELOG

– Fixed page margin and header sizes.

– Minor typesetting and other fixes.

• 2022-08-12 (v1.0.1):

– Cover.

– ISBN 978-0-6455719-1-2 assigned.

• 2022-07-16 (v1.0.0):

– Preface complete.

– Handling tied observations.

– Plots now look better when printed in black and white.

– Exception handling.

– File connections.

– Other minor extensions and material reordering: more aggregation func-
tions, pandas.unique, pandas.factorize, probability vectors representing
binary categorical variables, etc.

– Final proofreading and copyediting.

• 2022-06-13 (v0.5.1):

– TheKolmogorov–Smirnov Test (one and two sample).

– The Pearson Chi-Squared Test (one and two sample and for independence).

– Dealing with round-off andmeasurement errors.

– Adding white noise (jitter).

– Lambda expressions.

– Matrices are iterable.

• 2022-05-31 (v0.4.1):

– TheRules.

– Matrix multiplication, dot products.

– Euclidean distance, few-nearest-neighbour and fixed-radius search.

– Aggregation of multidimensional data.

– Regression with k-nearest neighbours.

– Least squares fitting of linear regressionmodels.

– Geometric transforms; orthonormal matrices.

– SVD and dimensionality reduction/PCA.

– Classification with k-nearest neighbours.

CHANGELOG 413

– Clustering with k-means.

– Text Processing and Regular Expression chapters merged.

– Unidimensional Data Aggregation and Transformation chapters merged.

– pandas.GroupBy objects are iterable.

– Semitransparent histograms.

– Contour plots.

– Argument unpacking and variadic arguments (*args, **kwargs).

• 2022-05-23 (v0.3.1):

– More lightweight mathematical notation.

– Someequalities related to themathematical functionswe rely on (thenatural
logarithm, cosine, etc.).

– A way to compute the most correlated pair of variables.

– A note on modifying elements in an array and on adding new rows and
columns.

– An example seasonal plot in the time series chapter.

– Solutions to the SQL exercises added; to ignore small round-off errors, use
pandas.testing.assert_frame_equal instead of pandas.DataFrame.equals.

– More details on file paths.

• 2022-04-12 (v0.2.1):

– Many chapters merged or relocated.

– Added captions to all figures.

– Improved formatting of elements (information boxes such as note, important,
exercise, example).

• 2022-03-27 (v0.1.1):

– First public release –most chapters are drafted, more or less.

– Using Sphinx for building.

• 2022-01-05 (v0.0.0):

– Project started.

References

[1] Abramowitz, M. and Stegun, I.A., editors. (1972). Handbook of Mathematical Func-
tionswith Formulas,Graphs, andMathematical Tables. Dover Publications. URL: https:
//personal.math.ubc.ca/~cbm/aands/intro.htm.

[2] Aggarwal, C.C. (2015).DataMining:The Textbook. Springer.

[3] Arnold, T.B. and Emerson, J.W. (2011). Nonparametric goodness-of-fit tests for
discrete null distributions.TheR Journal, 3(2):34–39. DOI: 10.32614/RJ-2011-016.

[4] Bartoszyński, R. andNiewiadomska-Bugaj,M. (2007). Probability andStatistical In-
ference. Wiley.

[5] Beirlant, J., Goegebeur, Y., Teugels, J., and Segers, J. (2004). Statistics of Extremes:
Theory and Applications. Wiley. DOI: 10.1002/0470012382.

[6] Bezdek, J.C., Ehrlich, R., and Full, W. (1984). FCM: The fuzzy c-means clus-
tering algorithm. Computer and Geosciences, 10(2–3):191–203. DOI: 10.1016/0098-
3004(84)90020-7.

[7] Billingsley, P. (1995). Probability andMeasure. JohnWiley & Sons.

[8] Bishop, C. (2006). Pattern Recognition andMachine Learning. Springer-Verlag. URL:
https://www.microsoft.com/en-us/research/people/cmbishop.

[9] Blum, A., Hopcroft, J., and Kannan, R. (2020). Foundations of Data Science. Cam-
bridge University Press. URL: https://www.cs.cornell.edu/jeh/book.pdf.

[10] Box, G.E.P. and Cox, D.R. (1964). An analysis of transformations. Journal of the
Royal Statistical Society. Series B (Methodological), 26(2):211–252.

[11] Bullen, P.S. (2003). Handbook of Means and Their Inequalities. Springer Sci-
ence+Business Media.

[12] Campello, R.J.G.B., Moulavi, D., Zimek, A., and Sander, J. (2015). Hierarchical
density estimates for data clustering, visualization, and outlier detection. ACM
Transactions on Knowledge Discovery fromData, 10(1):5:1–5:51. DOI: 10.1145/2733381.

[13] Chambers, J.M. and Hastie, T. (1991). Statistical Models in S. Wadsworth &
Brooks/Cole.

[14] Clauset, A., Shalizi, C.R., and Newman, M.E.J. (2009). Power-law distributions
in empirical data. SIAMReview, 51(4):661–703. DOI: 10.1137/070710111.

[15] Connolly, T. and Begg, C. (2015). Database Systems: A Practical Approach to Design,
Implementation, andManagement. Pearson.

https://personal.math.ubc.ca/~cbm/aands/intro.htm
https://personal.math.ubc.ca/~cbm/aands/intro.htm
https://www.microsoft.com/en-us/research/people/cmbishop
https://www.cs.cornell.edu/jeh/book.pdf

416 REFERENCES

[16] Conover, W.J. (1972). A Kolmogorov goodness-of-fit test for discontinuous
distributions. Journal of the American Statistical Association, 67(339):591–596. DOI:
10.1080/01621459.1972.10481254.

[17] Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press.
URL: https://archive.org/details/in.ernet.dli.2015.223699.

[18] Dasu, T. and Johnson, T. (2003). Exploratory Data Mining and Data Cleaning. John
Wiley & Sons.

[19] Date, C.J. (2003). An Introduction to Database Systems. Pearson.

[20] Deisenroth, M.P., Faisal, A.A., and Ong, C.S. (2020). Mathematics for Machine
Learning. Cambridge University Press. URL: https://mml-book.github.io/.

[21] Dekking, F.M.,Kraaikamp,C., Lopuhaä,H.P., andMeester, L.E. (2005).AModern
Introduction to Probability and Statistics: UnderstandingWhy andHow. Springer.

[22] Devroye, L., Györfi, L., and Lugosi, G. (1996). AProbabilisticTheory of Pattern Recog-
nition. Springer. DOI: 10.1007/978-1-4612-0711-5.

[23] Deza, M.M. and Deza, E. (2014). Encyclopedia of Distances. Springer.

[24] Efron, B. and Hastie, T. (2016). Computer Age Statistical Inference: Algorithms, Evid-
ence, and Data Science. Cambridge University Press.

[25] Ester, M., Kriegel, H.P., Sander, J., and Xu, X. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In: Proc. KDD'96, pp.
226–231.

[26] Feller, W. (1950). An Introduction to Probability Theory and Its Applications: Volume I.
Wiley.

[27] Forbes, C., Evans, M., Hastings, N., and Peacock, B. (2010). Statistical Distribu-
tions. Wiley.

[28] Freedman,D. andDiaconis, P. (1981). On the histogramas a density estimator: L₂
theory. Zeitschrift fürWahrscheinlichkeitstheorie und Verwandte Gebiete, 57:453–476.

[29] Friedl, J.E.F. (2006).Mastering Regular Expressions. O'Reilly.

[30] Gagolewski, M. (2015). Data Fusion: Theory, Methods, and Applications. Institute of
Computer Science, Polish Academy of Sciences. DOI: 10.5281/zenodo.6960306.

[31] Gagolewski, M. (2015). Spread measures and their relation to aggrega-
tion functions. European Journal of Operational Research, 241(2):469–477. DOI:
10.1016/j.ejor.2014.08.034.

[32] Gagolewski, M. (2021). genieclust: Fast and robust hierarchical cluster-
ing. SoftwareX, 15:100722. URL: https://genieclust.gagolewski.com/, DOI:
10.1016/j.softx.2021.100722.

[33] Gagolewski, M. (2022). stringi: Fast and portable character string processing in
R. Journal of Statistical Software, 103(2):1–59. URL: https://stringi.gagolewski.com/,
DOI: 10.18637/jss.v103.i02.

https://archive.org/details/in.ernet.dli.2015.223699
https://mml-book.github.io/
https://genieclust.gagolewski.com/
https://stringi.gagolewski.com/

REFERENCES 417

[34] Gagolewski, M. (2023). Deep R Programming. Zenodo. URL: https://deepr.
gagolewski.com/, DOI: 10.5281/zenodo.7490464.

[35] Gagolewski,M.,Bartoszuk,M., andCena,A. (2016).Przetwarzanie i analizadanych
w języku Python (Data Processing and Analysis in Python). PWN. in Polish.

[36] Gagolewski, M., Bartoszuk, M., and Cena, A. (2021). Are cluster validity meas-
ures (in)valid? Information Sciences, 581:620–636. DOI: 10.1016/j.ins.2021.10.004.

[37] Gentle, J.E. (2003). RandomNumber Generation andMonte CarloMethods. Springer.

[38] Gentle, J.E. (2009). Computational Statistics. Springer-Verlag.

[39] Gentle, J.E. (2017).Matrix Algebra:Theory, Computations and Applications in Statistics.
Springer.

[40] Gentle, J.E. (2020).Theory of Statistics. book draft. URL: https://mason.gmu.edu/
~jgentle/books/MathStat.pdf.

[41] Goldberg, D. (1991). What every computer scientist should know about floating-
point arithmetic. ACMComputing Surveys, 21(1):5–48. URL: https://perso.ens-lyon.
fr/jean-michel.muller/goldberg.pdf.

[42] Goodfellow, I., Bengio, Y., andCourville, A. (2016).DeepLearning.MITPress.URL:
https://www.deeplearningbook.org/.

[43] Grabisch,M.,Marichal, J.-L.,Mesiar,R., andPap,E. (2009).AggregationFunctions.
Cambridge University Press.

[44] Gumbel, E.J. (1939). La probabilité des hypothèses. Comptes Rendus de l'Académie
des Sciences Paris, 209:645–647.

[45] Harris, C.R. and others. (2020). Array programming with NumPy. Nature,
585(7825):357–362. DOI: 10.1038/s41586-020-2649-2.

[46] Hart, E.M. and others. (2016). Ten simple rules for digital data storage. PLOS
Computational Biology, 12(10):1–12. DOI: 10.1371/journal.pcbi.1005097.

[47] Hastie, T., Tibshirani, R., and Friedman, J. (2017).TheElements of Statistical Learn-
ing. Springer-Verlag. URL: https://hastie.su.domains/ElemStatLearn.

[48] Higham, N.J. (2002). Accuracy and Stability of Numerical Algorithms. SIAM. DOI:
10.1137/1.9780898718027.

[49] Hopcroft, J.E. and Ullman, J.D. (1979). Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley.

[50] Huber, P.J. and Ronchetti, E.M. (2009). Robust Statistics. Wiley.

[51] Hunter, J.D. (2007). Matplotlib: A 2D graphics environment. Computing in Science
& Engineering, 9(3):90–95.

[52] Hyndman, R.J. and Athanasopoulos, G. (2021). Forecasting: Principles and Practice.
OTexts. URL: https://otexts.com/fpp3.

https://deepr.gagolewski.com/
https://deepr.gagolewski.com/
https://mason.gmu.edu/~jgentle/books/MathStat.pdf
https://mason.gmu.edu/~jgentle/books/MathStat.pdf
https://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
https://perso.ens-lyon.fr/jean-michel.muller/goldberg.pdf
https://www.deeplearningbook.org/
https://hastie.su.domains/ElemStatLearn
https://otexts.com/fpp3

418 REFERENCES

[53] Hyndman, R.J. and Fan, Y. (1996). Sample quantiles in statistical packages. Amer-
ican Statistician, 50(4):361–365. DOI: 10.2307/2684934.

[54] Kleene, S.C. (1951). Representation of events in nerve nets and finite automata.
Technical Report RM-704, The RAND Corporation, Santa Monica, CA. URL:
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/
RM704.pdf.

[55] Knuth, D.E. (1992). Literate Programming. CSLI.

[56] Knuth, D.E. (1997). The Art of Computer Programming II: Seminumerical Algorithms.
Addison-Wesley.

[57] Kuchling, A.M. (2023). Regular Expression HOWTO. URL: https://docs.python.
org/3/howto/regex.html.

[58] Lee, J. (2011). A First Course in Combinatorial Optimisation. Cambridge University
Press.

[59] Ling, R.F. (1973). A probability theory of cluster analysis. Journal of the American
Statistical Association, 68(341):159–164. DOI: 10.1080/01621459.1973.10481356.

[60] Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data. John
Wiley & Sons.

[61] Lloyd, S.P. (1957 (1982)). Least squares quantization in PCM. IEEE Transactions
on InformationTheory, 28:128–137. Originally a 1957 Bell Telephone Laboratories Re-
search Report; republished in 1982. DOI: 10.1109/TIT.1982.1056489.

[62] Matloff, N.S. (2011).The Art of R Programming: A Tour of Statistical Software Design.
No Starch Press.

[63] McKinney, W. (2022). Python for Data Analysis. O'Reilly. URL: https:
//wesmckinney.com/book.

[64] Modarres,M.,Kaminskiy,M.P., andKrivtsov, V. (2016).ReliabilityEngineeringand
Risk Analysis: A Practical Guide. CRC Press.

[65] Monahan, J.F. (2011).NumericalMethods of Statistics. Cambridge University Press.

[66] Müllner, D. (2011). Modern hierarchical, agglomerative clustering algorithms.
arXiv:1109.2378 [stat.ML]. URL: https://arxiv.org/abs/1109.2378v1.

[67] Nelsen, R.B. (1999). An Introduction to Copulas. Springer-Verlag.

[68] Newman,M.E.J. (2005). Power laws, Pareto distributions and Zipf 's law.Contem-
porary Physics, pages 323–351. DOI: 10.1080/00107510500052444.

[69] Oetiker, T. and others. (2021).TheNot So Short Introduction to LaTeX 2ε. URL: https:
//tobi.oetiker.ch/lshort/lshort.pdf.

[70] Olver, F.W.J. and others. (2023). NIST Digital Library of Mathematical Functions.
URL: https://dlmf.nist.gov/.

https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/howto/regex.html
https://wesmckinney.com/book
https://wesmckinney.com/book
https://arxiv.org/abs/1109.2378v1
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://dlmf.nist.gov/

REFERENCES 419

[71] Ord, J.K., Fildes, R., and Kourentzes, N. (2017). Principles of Business Forecasting.
Wessex Press.

[72] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal ofMachine Learning Research, 12:2825–2830.

[73] Poore, G.M. (2019). Codebraid: Live code in pandoc Markdown. In: Proc. 18th
Python in Science Conf., pp. 54–61. URL: https://conference.scipy.org/proceedings/
scipy2019/pdfs/geoffrey_poore.pdf.

[74] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (2007). Numer-
ical Recipes.The Art of Scientific Computing. Cambridge University Press.

[75] Pérez-Fernández, R., Baets, B. De, and Gagolewski, M. (2019). A taxonomy of
monotonicity properties for the aggregation of multidimensional data. Informa-
tion Fusion, 52:322–334. DOI: 10.1016/j.inffus.2019.05.006.

[76] Rabin,M. and Scott, D. (1959). Finite automata and their decision problems. IBM
Journal of Research andDevelopment, 3:114–125.

[77] Ritchie, D.M. and Thompson, K.L. (1970). QED text editor. Technical Report
70107-002, Bell Telephone Laboratories, Inc. URL: https://wayback.archive-it.
org/all/20150203071645/http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf.

[78] Robert, C.P. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer-
Verlag.

[79] Ross, S.M. (2020). Introduction toProbability andStatistics forEngineers andScientists.
Academic Press.

[80] Rousseeuw, P.J., Ruts, I., and Tukey, J.W. (1999).The bagplot: A bivariate boxplot.
TheAmerican Statistician, 53(4):382–387. DOI: 10.2307/2686061.

[81] Rubin, D.B. (1976). Inference andmissing data. Biometrika, 63(3):581–590.

[82] Sandve,G.K.,Nekrutenko,A.,Taylor, J., andHovig,E. (2013). Tensimple rules for
reproducible computational research. PLOS Computational Biology, 9(10):1–4. DOI:
10.1371/journal.pcbi.1003285.

[83] Smith, S.W. (2002). The Scientist and Engineer's Guide to Digital Signal Processing.
Newnes. URL: https://www.dspguide.com/.

[84] Spicer, A. (2018). Business Bullshit. Routledge.

[85] Steiglitz, K. (1996). ADigital Signal Processing Primer:With Applications toDigital Au-
dio and ComputerMusic. Pearson.

[86] Tijms, H.C. (2003). A First Course in StochasticModels. Wiley.

[87] Tufte, E.R. (2001).TheVisual Display of Quantitative Information. Graphics Press.

https://conference.scipy.org/proceedings/scipy2019/pdfs/geoffrey_poore.pdf
https://conference.scipy.org/proceedings/scipy2019/pdfs/geoffrey_poore.pdf
https://wayback.archive-it.org/all/20150203071645/http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf
https://wayback.archive-it.org/all/20150203071645/http://cm.bell-labs.com/cm/cs/who/dmr/qedman.pdf
https://www.dspguide.com/

420 REFERENCES

[88] Tukey, J.W. (1962). The future of data analysis. Annals of Mathematical Statist-
ics, 33(1):1–67. URL: https://projecteuclid.org/journalArticle/Download?urlId=10.
1214%2Faoms%2F1177704711, DOI: 10.1214/aoms/1177704711.

[89] Tukey, J.W. (1977). Exploratory Data Analysis. Addison-Wesley.

[90] van Buuren, S. (2018). Flexible Imputation of Missing Data. CRC Press. URL: https:
//stefvanbuuren.name/fimd.

[91] van der Loo, M. and de Jonge, E. (2018). Statistical Data Cleaning with Applications
in R. JohnWiley & Sons.

[92] Venables,W.N., Smith, D.M., and R Core Team. (2023). An Introduction to R. URL:
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf.

[93] Virtanen, P. and others. (2020). SciPy 1.0: Fundamental algorithms for scientific
computing in Python. Nature Methods, 17:261–272. DOI: 10.1038/s41592-019-0686-
2.

[94] Wainer, H. (1997). Visual Revelations: Graphical Tales of Fate andDeception fromNapo-
leon Bonaparte to Ross Perot. Copernicus.

[95] Waskom, M.L. (2021). seaborn: Statistical data visualization. Journal of Open
Source Software, 6(60):3021. DOI: 10.21105/joss.03021.

[96] Wickham,H. (2011).The split-apply-combine strategy for data analysis. Journal of
Statistical Software, 40(1):1–29. DOI: 10.18637/jss.v040.i01.

[97] Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59(10):1–23. DOI:
10.18637/jss.v059.i10.

[98] Wickham, H., Çetinkaya-Rundel, M., and Grolemund, G. (2023). R for Data Sci-
ence. O'Reilly. URL: https://r4ds.hadley.nz/.

[99] Wierzchoń, S.T. and Kłopotek, M.A. (2018).Modern Algorithms for Cluster Analysis.
Springer. DOI: 10.1007/978-3-319-69308-8.

[100] Wilson, G. and others. (2014). Best practices for scientific computing. PLOSBio-
logy, 12(1):1–7. DOI: 10.1371/journal.pbio.1001745.

[101] Wilson, G. and others. (2017). Good enough practices in scientific computing.
PLOSComputational Biology, 13(6):1–20. DOI: 10.1371/journal.pcbi.1005510.

[102] Xie, Y. (2015).Dynamic Documents with R and knitr. Chapman and Hall/CRC.

https://projecteuclid.org/journalArticle/Download?urlId=10.1214%2Faoms%2F1177704711
https://projecteuclid.org/journalArticle/Download?urlId=10.1214%2Faoms%2F1177704711
https://stefvanbuuren.name/fimd
https://stefvanbuuren.name/fimd
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://r4ds.hadley.nz/

	Preface
	The art of data wrangling
	Aims, scope, and design philosophy
	We need maths
	We need some computing environment
	We need data and domain knowledge

	Structure
	The Rules
	About the author
	Acknowledgements
	You can make this book better

	I Introducing Python
	Getting started with Python
	Installing Python
	Working with Jupyter notebooks
	Launching JupyterLab
	First notebook
	More cells
	Edit vs command mode
	Markdown cells

	The best note-taking app
	Initialising each session and getting example data
	Exercises

	Scalar types and control structures in Python
	Scalar types
	Logical values
	Numeric values
	Arithmetic operators
	Creating named variables

	Character strings
	F-strings (formatted string literals)

	Calling built-in functions
	Positional and keyword arguments
	Modules and packages
	Slots and methods

	Controlling program flow
	Relational and logical operators
	The if statement
	The while loop

	Defining functions
	Exercises

	Sequential and other types in Python
	Sequential types
	Lists
	Tuples
	Ranges
	Strings (again)

	Working with sequences
	Extracting elements
	Slicing
	Modifying elements of mutable sequences
	Searching for specific elements
	Arithmetic operators

	Dictionaries
	Iterable types
	The for loop
	Tuple assignment
	Argument unpacking (*)
	Variadic arguments: *args and **kwargs (*)

	Object references and copying (*)
	Copying references
	Pass by assignment
	Object copies
	Modify in place or return a modified copy?

	Further reading
	Exercises

	II Unidimensional data
	Unidimensional numeric data and their empirical distribution
	Creating vectors in numpy
	Enumerating elements
	Arithmetic progressions
	Repeating values
	numpy.r_ (*)
	Generating pseudorandom variates
	Loading data from files

	Mathematical notation
	Inspecting the data distribution with histograms
	heights: A bell-shaped distribution
	income: A right-skewed distribution
	How many bins?
	peds: A bimodal distribution (already binned)
	matura: A bell-shaped distribution (almost)
	marathon (truncated – fastest runners): A left-skewed distribution
	Log-scale and heavy-tailed distributions
	Cumulative probabilities and the empirical cumulative distribution function

	Exercises

	Processing unidimensional data
	Aggregating numeric data
	Measures of location
	Arithmetic mean and median
	Sensitive to outliers vs robust
	Sample quantiles

	Measures of dispersion
	Standard deviation (and variance)
	Interquartile range

	Measures of shape
	Box (and whisker) plots
	Further methods (*)

	Vectorised mathematical functions
	Logarithms and exponential functions
	Trigonometric functions

	Arithmetic operators
	Vector-scalar case
	Application: Feature scaling
	Standardisation and z-scores
	Min-max scaling and clipping
	Normalisation (l2; dividing by magnitude)
	Normalisation (l1; dividing by sum)

	Vector-vector case

	Indexing vectors
	Integer indexing
	Logical indexing
	Slicing

	Other operations
	Cumulative sums and iterated differences
	Sorting
	Dealing with tied observations
	Determining the ordering permutation and ranking
	Searching for certain indexes (argmin, argmax)
	Dealing with round-off and measurement errors
	Vectorising scalar operations with list comprehensions

	Exercises

	Continuous probability distributions
	Normal distribution
	Estimating parameters
	Data models are useful

	Assessing goodness-of-fit
	Comparing cumulative distribution functions
	Comparing quantiles
	Kolmogorov–Smirnov test (*)

	Other noteworthy distributions
	Log-normal distribution
	Pareto distribution
	Uniform distribution
	Distribution mixtures (*)

	Generating pseudorandom numbers
	Uniform distribution
	Not exactly random
	Sampling from other distributions
	Natural variability
	Adding jitter (white noise)
	Independence assumption

	Further reading
	Exercises

	III Multidimensional data
	Multidimensional numeric data at a glance
	Creating matrices
	Reading CSV files
	Enumerating elements
	Repeating arrays
	Stacking arrays
	Other functions

	Reshaping matrices
	Mathematical notation
	Row and column vectors
	Transpose
	Identity and other diagonal matrices

	Visualising multidimensional data
	2D Data
	3D Data and beyond
	Scatter plot matrix (pairs plot)

	Exercises

	Processing multidimensional data
	From vectors to matrices
	Vectorised mathematical functions
	Componentwise aggregation
	Arithmetic, logical, and relational operations
	Matrix vs scalar
	Matrix vs matrix
	Matrix vs any vector
	Row vector vs column vector (*)

	Other row and column transforms (*)

	Indexing matrices
	Slice-based indexing
	Scalar-based indexing
	Mixed logical/integer vector and scalar/slice indexers
	Two vectors as indexers (*)
	Views of existing arrays (*)
	Adding and modifying rows and columns

	Matrix multiplication, dot products, and the Euclidean norm
	Pairwise distances and related methods
	The Euclidean metric
	Centroids
	Multidimensional dispersion and other aggregates
	Fixed-radius and k-nearest neighbour search
	Spatial search with K-d trees

	Exercises

	Exploring relationships between variables
	Measuring correlation
	Pearson’s linear correlation coefficient
	Perfect linear correlation
	Strong linear correlation
	No linear correlation does not imply independence
	False linear correlations
	Correlation is not causation

	Correlation heat map
	Linear correlation coefficients on transformed data
	Spearman’s rank correlation coefficient

	Regression tasks
	K-nearest neighbour regression
	From data to (linear) models
	Least squares method
	Analysis of residuals
	Multiple regression
	Variable transformation and linearisable models (*)
	Descriptive vs predictive power (*)
	Fitting regression models with scikit-learn (*)
	Ill-conditioned model matrices (*)

	Finding interesting combinations of variables (*)
	Dot products, angles, collinearity, and orthogonality
	Geometric transformations of points
	Matrix inverse
	Singular value decomposition
	Dimensionality reduction with SVD
	Principal component analysis

	Further reading
	Exercises

	IV Heterogeneous data
	Introducing data frames
	Creating data frames
	Data frames are matrix-like
	Series
	Index

	Aggregating data frames
	Transforming data frames
	Indexing Series objects
	Do not use [...] directly
	loc[...]
	iloc[...]
	Logical indexing

	Indexing data frames
	loc[...] and iloc[...]
	Adding rows and columns
	Modifying items
	Pseudorandom sampling and splitting
	Hierarchical indexes (*)

	Further operations on data frames
	Sorting
	Stacking and unstacking (long/tall and wide forms)
	Joining (merging)
	Set-theoretic operations and removing duplicates
	…and (too) many more

	Exercises

	Handling categorical data
	Representing and generating categorical data
	Encoding and decoding factors
	Binary data as logical and probability vectors
	One-hot encoding (*)
	Binning numeric data (revisited)
	Generating pseudorandom labels

	Frequency distributions
	Counting
	Two-way contingency tables: Factor combinations
	Combinations of even more factors

	Visualising factors
	Bar plots
	Political marketing and statistics
	Pie… don’t even trip
	Pareto charts (*)
	Heat maps

	Aggregating and comparing factors
	Mode
	Binary data as logical vectors
	Pearson chi-squared test (*)
	Two-sample Pearson chi-squared test (*)
	Measuring association (*)
	Binned numeric data
	Ordinal data (*)

	Exercises

	Processing data in groups
	Basic methods
	Aggregating data in groups
	Transforming data in groups
	Manual splitting into subgroups (*)

	Plotting data in groups
	Series of box plots
	Series of bar plots
	Semitransparent histograms
	Scatter plots with group information
	Grid (trellis) plots
	Kolmogorov–Smirnov test for comparing ECDFs (*)
	Comparing quantiles

	Classification tasks
	K-nearest neighbour classification
	Assessing the quality of predictions
	Splitting into training and test sets
	Validating many models (parameter selection) (*)

	Clustering tasks
	K-means method
	Solving k-means is hard
	Lloyd algorithm
	Local minima
	Random restarts

	Further reading
	Exercises

	Accessing databases
	Example database
	Exporting data to a database
	Exercises on SQL vs pandas
	Filtering
	Ordering
	Removing duplicates
	Grouping and aggregating
	Joining
	Solutions to exercises

	Closing the database connection
	Common data serialisation formats for the Web
	Working with many files
	File paths
	File search
	Exception handling
	File connections (*)

	Exercises

	V Other data types
	Text data
	Basic string operations
	Unicode as the universal encoding
	Normalising strings
	Substring searching and replacing
	Locale-aware services in ICU (*)
	String operations in pandas
	String operations in numpy (*)

	Working with string lists
	Formatted outputs for reproducible report generation
	Formatting strings
	str and repr
	Aligning strings
	Direct Markdown output in Jupyter
	Manual Markdown file output (*)

	Regular expressions (*)
	Regex matching with re
	Regex matching with pandas
	Matching individual characters
	Matching any character
	Defining character sets
	Complementing sets
	Defining code point ranges
	Using predefined character sets

	Alternating and grouping subexpressions
	Alternation operator
	Grouping subexpressions
	Non-grouping parentheses

	Quantifiers
	Capture groups and references thereto (**)
	Extracting capture group matches
	Replacing with capture group matches
	Back-referencing

	Anchoring
	Matching at the beginning or end of a string
	Matching at word boundaries
	Looking behind and ahead (**)

	Exercises

	Missing, censored, and questionable data
	Missing data
	Representing and detecting missing values
	Computing with missing values
	Missing at random or not?
	Discarding missing values
	Mean imputation
	Imputation by classification and regression (*)

	Censored and interval data (*)
	Incorrect data
	Outliers
	The 3/2 IQR rule for normally-distributed data
	Unidimensional density estimation (*)
	Multidimensional density estimation (*)

	Exercises

	Time series
	Temporal ordering and line charts
	Working with date-times and time-deltas
	Representation: The UNIX epoch
	Time differences
	Date-times in data frames

	Basic operations
	Iterated differences and cumulative sums revisited
	Smoothing with moving averages
	Detecting trends and seasonal patterns
	Imputing missing values
	Plotting multidimensional time series
	Candlestick plots (*)

	Further reading
	Exercises

	Changelog
	References

