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X1 CONTENTS

Minimalist Data Wrangling with Python is envisaged as a student’s first introduction
to data science, providing a high-level overview as well as discussing key concepts in
detail. We explore methods for cleaning data gathered from different sources, trans-
forming, selecting, and extracting features, performing exploratory data analysis and
dimensionality reduction, identifying naturally occurring data clusters, modelling
patterns in data, comparing data between groups, and reporting the results.

For many students around the world, educational resources are hardly affordable.
Therefore, I have decided that this book should remain an independent, non-profit,
open-access project (available both in PDF* and HTML* forms). Whilst, for some
people, the presence of a “designer tag” from a major publisher might still be a proxy
for quality, it is my hope that this publication will prove useful to those who seek know-
ledge for knowledge’s sake.

Any bug/typo reports/fixes are appreciated. Please submit them via this project’s Git-
Hub repository?®. Thank you.

Citation: Gagolewski M. (2023), Minimalist Data Wrangling with Python, Zenodo,
Melbourne, DOI: 10.5281/zenodo.6451068*, ISBN: 978-0-6455719-1-2, URL: https://
datawranglingpy.gagolewski.com/.

Make sure to check out Deep R Programming® [34] too.

! https://datawranglingpy.gagolewski.com/datawranglingpy.pdf
% https://datawranglingpy.gagolewski.com/

3 https://github.com/gagolews/datawranglingpy/issues

4 https://dx.doi.org/10.5281/zenodo. 6451068

5 https://deepr.gagolewski.com/
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Preface

0.1 Theart of data wrangling

Data science® aims at making sense of and generating predictions from data that have’
been collected in copious quantities from various sources, such as physical sensors,
surveys, online forms, access logs, and (pseudo)random number generators, to name
afew. They can take diverse forms, e.g., be given as vectors, matrices, or other tensors,
graphs/networks, audio/video streams, or text.

Researchers in psychology, economics, sociology, agriculture, engineering, cyberse-
curity, biotechnology, pharmacy, sports science, medicine, and genetics, amongst
many others, need statistical methods to make new discoveries and confirm or falsify
existing hypotheses. What is more, with the increased availability of open data, every-
one can do remarkable work for the common good, e.g., by volunteering for non-
profit NGOs or debunking false news and overzealous acts of wishful thinking on any
side of the political spectrum.

Data scientists, machine learning engineers, statisticians, and business analysts are
the most well-paid specialists®. This is because data-driven decision-making, model-
ling, and prediction proved themselves especially effective in many domains, includ-
ing healthcare, food production, pharmaceuticals, transportation, financial services
(banking, insurance, investment funds), real estate, and retail.

Overall, data science (and its assorted flavours, including operational research, ma-
chine learning, business and artificial intelligence) can be applied wherever we have
some relevant data at hand and there is a need to improve or understand the underly-
ing processes.

Exercise 0.1 Miniaturisation, increased computing power, cheaper storage, and the popularity
of various internet services all caused data to become ubiquitous. Think about how much inform-
ation people consume and generate when they interact with news feeds or social media on their
phones.

Data usually do not come in a tidy and tamed form. Data wrangling is the very broad
process of appropriately curating raw information chunks and then exploring the un-
derlying data structure so that they become analysable.

6 Traditionally known as statistics.
7 Yes, data are plural (datum is singular).
8 hteps://survey.stackoverflow.co/2023/#salary- comp-total
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0.2 Aims, scope, and design philosophy

This course is envisaged as a student’s first exposure to data science®, providing a high-
level overview as well as discussing key concepts at a healthy level of detail.

By no means do we have the ambition to be comprehensive with regard to any topic
we cover. Time for that will come later in separate lectures on calculus, matrix algebra,
probability, mathematical statistics, continuous and combinatorial optimisation, in-
formation theory, stochastic processes, statistical/machine learning, algorithms and
data structures, take a deep breath, databases and big data analytics, operational
research, graphs and networks, differential equations and dynamical systems, time
series analysis, signal processing, etc.

Instead, we lay very solid groundwork for the above by introducing all the objects at
an appropriate level of generality and building the most crucial connections between
them. We provide the necessary intuitions behind the more advanced methods and
concepts. This way, further courses do not need to waste our time introducing the most
elementary definitions and answering the metaphysical questions like “but why do we
need that (e.g., matrix multiplication) in the first place”.

For those reasons, in this book, we explore methods for:

- performing exploratory data analysis (e.g., aggregation and visualisation),

working with varied types of data (e.g., numerical, categorical, text, time series),

cleaning data gathered from structured and unstructured sources, e.g., by identi-
fying outliers, normalising strings, extracting numbers from text, imputing miss-
ing data,

transforming, selecting, and extracting features, dimensionality reduction,

« identifying naturally occurring data clusters,

discovering patterns in data via approximation/modelling approaches using the
most popular probability distributions and the easiest to understand statist-
ical/machine learning algorithms,

testing whether two data distributions are significantly different,

reporting the results of data analysis.

We primarily focus on methods and algorithms that have stood the test of time and
that continue to inspire researchers and practitioners. They all meet the reality check
comprised of the three following properties, which we believe are essential in practice:

 We might have entitled it Introduction to Data Science (with Python).
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- simplicity (and thus interpretability, being equipped with no or only a few under-
lying tunable parameters; being based on some sensible intuitions that can be ex-
plained in our own words),

- mathematical analysability (at least to some extent; so that we can understand
their strengths and limitations),

- implementability (not too abstract on the one hand, but also not requiring any
advanced computer-y hocus-pocus on the other).

Note Many more complex algorithms are merely variations on or clever combinations
of the more basic ones. This is why we need to study these fundamentals in great detail.
We might not see it now, but this will become evident as we progress.

0.2.1 We need maths

The maths we introduce is the most elementary possible, in a good sense. Namely, we
do not go beyond:

- simple analytic functions (affine maps, logarithms, cosines),

- the natural linear ordering of points on the real line (and the lack thereof in the
case of multidimensional data),

« the sum of squared differences between things (including the Euclidean distance
between points),

« linear vector/matrix algebra, e.g., to represent the most useful geometric trans-
forms (rotation, scaling, translation),

- the frequentist interpretation (as in: in samples of large sizes, we expect that...) of some
common objects from probability theory and statistics.

This is the kind of toolkit that we believe is a sine qua non requirement for every pro-
spective data scientist. We cannot escape falling in love with it.

0.2.2 We need some computing environment

We no longer practice data analysis solely using a piece of paper and a pencil*®. Over
the years, dedicated computer programs that solve the most common problems arising
in the most straightforward scenarios were developed, e.g., spreadsheet-like click-
here-click-there standalone statistical packages. Still, we need a tool that will enable
us to respond to any challenge in a manner that is scientifically rigorous, i.e., well or-
ganised and reproducible.

10 We acknowledge that some more theoretically inclined readers might ask the question: but why do we
need programming at all? Unfortunately, some mathematicians have forgotten that probability and statistics
are deeply rooted in the so-called real world. Theory beautifully supplements practice and provides us with
very deep insights, but we still need to get our hands dirty from time to time.
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This course uses the Python language which we shall introduce from scratch. Con-
sequently, we do not require any prior programming experience.

The 2023 StackOverflow Developer Survey™ lists Python as the second most popular
programming language (slightly behind JavaScript, whose primary use is in Web de-
velopment). Over the last few years, it has proven to be a very robust choice for learning
and applying data wrangling techniques. This is possible thanks to the devoted com-
munity of open-source programmers who wrote the famous high-quality packages
such as numpy, scipy, matplotlib, pandas, seaborn, and scikit-learn.

Nevertheless, Python and its third-party packages are amongst many software tools
which can help extract knowledge from data. Other** robust open-source choices in-
clude R [34, 62, 92, 98] and Julia'*.

Important We will focus on developing transferable skills: most of what we learn here
can be applied (using different syntax but the same kind of reasoning) in other en-
vironments. Thus, this is a course on data wrangling (with Python), not a course on
Python (with examples in data wrangling).

We want the reader to become an independent user of this computing environment.
Somebody who is not overwhelmed when they are faced with any intermediate-level
data analysis problem. A user whose habitual response to a new challenge is not to
look everything up on the internet even in the simplest possible scenarios. Someone
who will not be replaced by stupid Artificial “Intelligence” in the future.

We believe we have found a healthy trade-off between the minimal set of tools that
need to be mastered and the less frequently used ones that can later be found in the
documentation or online. In other words, the reader will discover the joy of program-
ming and using logical reasoning to tinker with things.

0.2.3 We need data and domain knowledge

There is no data science or machine learning without data, and data’s purpose is to rep-
resent a given problem domain. Mathematics allows us to study different processes at
a healthy level of abstractness/specificity. Still, we need to be familiar with the reality
behind the numbers we have at hand, for example, by working closely with various
experts in the field of our interest or pursuing study/research therein.

Courses such as this one, out of necessity, must use some generic datasets that are
quite familiar to most readers (e.g., life expectancy and GDP by country, time to finish
a marathon, yearly household incomes).

Yet, many textbooks introduce statistical concepts using carefully fabricated datasets

I https://survey.stackoverflow.co/2023

12 There are also some commercial solutions available on the market, but we believe that ultimately all
software should be free. Consequently, we are not going to talk about them here at all.

13 https://www.r-project.org/

4 hteps://julialang.org/
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where everything runs smoothly, and all models work out of the box. This gives a false
sense of security and builds a too cocky a level of confidence. In practice, however,
most datasets are not only unpolished but also uninteresting, even after some care-
ful treatment. Such is life. We will not be avoiding the more difficult and less attractive
problems during our journey.

0.3 Structure
This book is a whole course. We recommend reading it from the beginning to the end.
The material has been divided into five parts.

1. Introducing Python:

- Chapter 1 discusses how to execute the first code chunks in Jupyter Note-
books, which are a flexible tool for the reproducible generation of reports
from data analyses.

« Chapter 2 introduces the basic scalar types in base Python, ways to call exist-
ing and to compose our own functions, and control a code chunk’s execution
flow.

- Chapter 3 mentions sequential and other iterable types in base Python. More
advanced data structures (vectors, matrices, data frames) that we introduce
below will build upon these concepts.

2. Unidimensional data:

« Chapter 4 introduces vectors from numpy, which we use for storing data on
the real line (think: individual columns in a tabular dataset). Then, we look at
the most common types of empirical distributions of data, e.g., bell-shaped,
right-skewed, heavy-tailed ones.

« In Chapter 5, we list the most basic ways for processing sequences of num-
bers, including methods for data aggregation, transformation (e.g., stand-
ardisation), and filtering. We also mention that a computer’s floating-point
arithmetic is imprecise and what we can do about it.

- Chapter 6 reviews the most common probability distributions (normal, log-
normal, Pareto, uniform, and mixtures thereof), methods for assessing how
well they fit empirical data. It also covers pseudorandom number generation
which is crucial in experiments based on simulations.

3. Multidimensional data:

« Chapter 7 introduces matrices from numpy. They are a convenient means of
storing multidimensional quantitative data, i.e., many points described by
possibly many numerical features. We also present some methods for their
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visualisation (and the problems arising from our being three-dimensional
creatures).

Chapter 8 is devoted to basic operations on matrices. We will see that some
of them simply extend upon what we have learnt in Chapter 5, but there
is more: for instance, we discuss how to determine the set of each point’s
nearest neighbours.

Chapter 9 discusses ways to explore the most basic relationships between
the variables in a dataset: the Pearson and Spearman correlation coefficients
(and what it means that correlation is not causation), k-nearest neighbour
and linear regression (including the sad cases where a model matrix is ill-
conditioned), and finding interesting combinations of variables that can
help reduce the dimensionality of a problem (via principal component ana-
lysis).

4. Heterogeneous data:

- Chapter 10 introduces Series and DataFrame objects from pandas, which we

can think of as vectors and matrices on steroids. For instance, they allow
rows and columns to be labelled and columns to be of different types. We
emphasise that most of what we learnt in the previous chapters still applies,
but now we can do even more: run methods for joining (merging) many data-
sets, converting between long and wide formats, etc.

In Chapter 11, we introduce the ways to represent and handle categorical data
as well as how (not) to lie with statistics.

Chapter 12 covers the case of aggregating, transforming, and visualising
data in groups defined by one or more qualitative variables. It introduces
an approach to data classification using the k-nearest neighbours scheme,
which is useful when we are asked to fill the gapsin a categorical variable. We
will also discover naturally occurring partitions using the k-means method,
which is an example of a computationally hard optimisation problem that
needs to be tackled with some imperfect heuristics.

Chapter 13 is an interlude where we solve some pleasant exercises on data
frames and learn the basics of SQL. This will come in handy when our data-
sets do not fit in a computer’s memory.

5. Other data types:

« Chapter 14 discusses ways to handle text data and extract information from

them, e.g., through regular expressions. We also briefly mention the chal-
lenges related to the processing of non-English text, including phrases like
pozdro dla moich ziomkéw z Brodna, Viele GriifSe und viel Spaf3, and yaipete.

- Chapter 15 emphasises that some data may be missing or be questionable

(e.g., censored, incorrect, rare) and what we can do about it.

« In Chapter 16, we cover the most basic methods for the processing of time
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series because, ultimately, everything changes, and we should be able to
track the evolution of things.

Note (*) The parts marked with a single or double asterisk can be skipped the first time
we read this book. They are of increased difficulty and are less essential for beginner
students.

o.

4 'The Rules

Our goal here, in the long run, is for you, dear reader, to become a skilled expert who
is independent, ethical, and capable of critical thinking; one who hopefully will make
some contribution towards making this world a slightly better place. To guide you
through this challenging journey, we have a few tips.

1.

2.

Follow the rules.

Technical textbooks are not belletristic — purely for shallow amusement. Sometimes a
single page will be very meaning-intense. Do not try to consume too much all at
once. Go for awalk, reflect on what you learnt, and build connections between dif-
ferent concepts. In case of any doubt, go back to the previous sections. Learning
is an iterative process, not a linear one.

. Solve all the suggested exercises. We might be introducing ideas or developing crucial

intuitions there as well. Also, try implementing most of the methods you learn
about instead of looking for copy-paste solutions on the internet. How else will
you be able to master the material and develop the necessary programming skills?

. Code is an integral part of the text. Each piece of good code is worth 1234 words (on

average). Do not skip it. On the contrary, you are encouraged to play and experi-
ment with it. Run every major line of code, inspect the results generated, and read
more about the functions you use in the official documentation. What is the type
(class) of the object returned? If it is an array or a data frame, what is its shape?
What would happen if we replaced X with Y? Do not fret; your computer will not
blow up.

. Hardenup®. Your journey towards expertise will take years, there are no shortcuts,

but it will be quite enjoyable every now and then, so dor’t give up. Still, sitting all
day in front of your computer is unhealthy. Exercise and socialise between 28 and
31 times per month for you're not, nor will ever be, a robot.

. Learn maths. Our field has a very long history and stands on the shoulders of many

giants; many methods we use these days are merely minor variations on the clas-
sical, fundamental results that date back to Newton, Leibniz, Gauss, and Laplace.

15 Cyclists know.
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Eventually, you will need some working knowledge of mathematics to understand
them (linear algebra, calculus, probability and statistics). Remember that soft-
ware products/APIs seem to change frequently, but they are just a facade, a flashy
wrapping around the methods we were using for quite a while.

. Use only methods that you can explain. You ought to refrain from working with al-

gorithms/methods/models whose definitions (pseudocode, mathematical formu-
lae, objective functions they are trying to optimise) and properties you do not
know, understand, or cannot rephrase in your own words. That they might be ac-
cessible or easy to use should not make any difference to you. Also, prefer simple
models over black boxes.

. Compromises are inevitable'®. There will never be a single best metric, algorithm, or

way to solve all the problems. Even though some solutions might be better than
others with regard to specific criteria, this will only be true under certain assump-
tions (if they fit a theoretical model). Beware that focusing too much on one aspect
leads to undesirable consequences with respect to other factors, especially those
that cannot be measured easily. Refraining from improving things might some-
times be better than pushing too hard. Always apply common sense.

. Bescientificand ethical. Make your reports reproducible, your toolkit well-organised,

and all the assumptions you make explicit. Develop a dose of scepticism and im-
partiality towards everything, from marketing slogans, through your ideological
biases, to all hotly debated topics. Most data analysis exercises end up with con-
clusions like: “it’s too early to tell”, “data don't show it’s either way”, “there is a dif-
ference, but it is hardly significant”, “yeah, but our sample is not representative
for the entire population” — and there is nothing wrong with this. Communicate
in a precise manner [84]. Remember that it is highly unethical to use statistics to
tell lies [94]; this includes presenting only one side of the overly complex reality
and totally ignoring all others (compare Rule#8). Using statistics for doing dread-
ful things (tracking users to find their vulnerabilities, developing products and
services which are addictive) is a huge no-no!

The best things in life are free. These include the open-source software and open-
access textbooks (such as this one) we use in our journey. Spread the good news
about them and - if you can — dor't only be a taker: contribute something valuable
yourself (even as small as reporting typos in their documentation or helping others
in different forums when they are stuck). After all, it is our shared responsibility.

16 Some people would refer to this rule as There is no free lunch, but in our — overall friendly — world, many

things are actually free (see Rule #10). Therefore, this name is misleading.
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0.5 About the author

I, Marek Gagolewski' (pronounced like Ma'rek Gong-olive-ski), am currently a Senior
Lecturer in Data Science/Applied Al at Deakin University in Melbourne, VIC, Aus-
tralia, and an Associate Professor at the Systems Research Institute of the Polish
Academy of Sciences.

My research interests are related to data science, in particular: modelling complex phe-
nomena, developing usable, general-purpose algorithms, studying their analytical
properties, and finding out how people use, misuse, understand, and misunderstand
methods of data analysis in research, commercial, and decision-making settings. [ am
an author of over 90 publications, including journal papers in outlets such as Proceed-
ings of the National Academy of Sciences (PNAS), Journal of Statistical Software, The R Journal,
Information Fusion, International Journal of Forecasting, Statistical Modelling, Physica A: Stat-
istical Mechanics and its Applications, Information Sciences, Knowledge-Based Systems, IEEE
Transactions on Fuzzy Systems, and Journal of Informetrics.
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gorithm in both Python and R), and many others®'.
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17 hteps://www.gagolewski.com/

18 https://deepr.gagolewski.com/

19 https://stringi.gagolewski.com/

20 https://genieclust.gagolewski.com/
21 hteps://github.com/gagolews
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This book was prepared in a Markdown superset called MyST?*, Sphinx*, and
TeX (XeLaTeX). Python code chunks were processed with the R (sic!) package
knitr [102]. A little help from Makefiles, custom shell scripts, and Sphinx plugins
(sphinxcontrib-bibtex**, sphinxcontrib-proof?®) dotted the j's and crossed the f’s.
The Ubuntu Mono®® font is used for the display of code. Typesetting of the main text
relies upon the Alegreya®” and Lato®® typefaces.

This work received no funding, administrative, technical, or editorial support from
Deakin University, Warsaw University of Technology, Polish Academy of Sciences, or
any other source.

0.7 You can make this book better

When it comes to quality assurance, open, non-profit projects have to resort to the
generosity of the readers’ community.

If you find a typo, a bug, or a passage that could be rewritten or extended for better
readability/clarity, do not hesitate to report it via the Issues tracker available at https:
//github.com/gagolews/datawranglingpy. New feature requests are welcome as well.

22 https://myst-parser.readthedocs.io/en/latest/index.html
23 https://www.sphinx-doc.org/

24 https://pypi.org/project/sphinxcontrib- bibtex

25 https://pypi.org/project/sphinxcontrib- proof

26 https://design.ubuntu.com/font

27 https://www.huertatipografica.com/en

28 https://www.latofonts.com/
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Introducing Python






1

Getting started with Python

1.1 Installing Python

Python' was designed and implemented by the Dutch programmer Guido van Ros-
sumin the late 1980s. Itis an immensely popular? object-orientated programming lan-
guage. Over the years, it proved particularly suitable for rapid prototyping. Its name
is a tribute to the funniest British comedy troupe ever. We will surely be having a jolly
good laugh’® along our journey.

In this course, we will be relying on the reference implementation of the Python lan-
guage (called cPython*), version 3.11 (or any later one).

Users of UNIX-like operating systems (GNU/Linux’, FreeBSD, etc.) may download Py-
thon via their native package manager (e.g., sudo apt install python3in Debian and
Ubuntu). Then, additional Python packages (see Section 1.4) can be installed® by the
said manager or directly from the Python Package Index (PyP17) via the pip tool.

Users of other operating systems can download Python from the project’s website or
some other distribution available on the market, e.g., Anaconda or Miniconda.

Exercise 1.1 Install Python on your computer.

! https://www.python.org/

2 https://survey.stackoverflow.co/2023/#most- popular-technologies-language

3 When we are all in tears because of mathematics and programming, those that we shed are often tears
of joy.

4 (*) CPython was written in the C programming language. Many Python packages are just convenient
wrappers around code written in C, C++, or Fortran.

5 GNU/Linux is the operating system of choice for machine learning engineers and data scientists both
on the desktop and in the cloud. Switching to a free system at some point cannot be recommended highly
enough.

¢ https://packaging.python.org/en/latest/tutorials/installing- packages

7 https://pypi.org/


https://www.python.org/
https://survey.stackoverflow.co/2023/#most-popular-technologies-language
https://packaging.python.org/en/latest/tutorials/installing-packages
https://pypi.org/

4 | INTRODUCING PYTHON

1.2 Working with Jupyter notebooks

Jupyter® brings a web browser-based development environment supporting numer-
ous’ programming languages. Even though, in the long run, it is not the most con-
venient space for exercising data science in Python (writing standalone scripts in some
more advanced editors is the preferred option), we chose it here because of its educat-
ive advantages (interactivity, beginner-friendliness, etc.).

= Jupyter Welcome (autosaved) ﬂ Logout

File Edit View Insert Cell Kernel Widgets Help Trusted ‘ Python 3 (ipykernel) O

Minimalist Data Wrangling with Python

In [1]: import numpy as np

x = np.linspace(0, 2*np.pi, 9)

y = np.sin(x)

np.round(y, 2)
Out[1]: array([ ©. , ©0.71, 1. , ©.71, . , -0.71, -1. , -0.71, -0. 1)
In [2]: import matplotlib.pyplot as plt

plt.plot(x, y, "r-")
plt.show()

Figure 1.1. An example Jupyter notebook.

In Jupyter, we can work with:

« Jupyter notebooks’ — . ipynb documents combining code, text, plots, tables, and
other rich outputs; importantly, code chunks can be created, modified, and run,
which makes it a fine reporting tool for our basic data science needs; see Figure 1.1;

« code consoles — terminals where we evaluate code chunks in an interactive man-
ner (a read-eval-print loop);

8 hteps://jupyterlab.readthedocs.io/en/stable
° https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
10 https://jupyterlab.readthedocs.io/en/stable/user/notebook.html
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« source files in a variety of programming languages — with syntax highlighting
and the ability to send code to the associated consoles;

and many more.

Exercise 1.2 Head tothe official documentation™ of the Jupyter project. Watch the introductory
video linked in the Get Started section.

Note () More advanced students might consider, for example, jupytext' as a means
to create .ipynb files directly from Markdown documents.

1.2.1 Launching JupyterLab

How we launch JupyterLab (or its lightweight version, Jupyter Notebook) will vary
from system to system. We all need to determine the best way to do it by ourselves.

Some users will be able to start JupyterLab via their start menu/application launcher.
Alternatively, we can open the system terminal (bash, zsh, etc.) and type:

cd our/favourite/directory # change directory
jupyter lab # or jupyter-lab, depending on the system

This should launch the JupyterLab server and open the corresponding app in our fa-
vourite web browser.

Note Some commercial cloud-hosted instances or forks of the open-source Jupyter-
Lab project are available on the market, but we endorse none of them; even though
they might be provided gratis, there are always strings attached. It is best to run our
applications locally, where we are free® to be in full control over the software environ-
ment. Contrary to the former solution, we do not have to remain on-line to use it.

1.2.2 First notebook
Follow the steps below to create your first notebook.

1. From JupyterLab, create a new notebook running a Python 3 kernel, for example,
by selecting File — New — Notebook from the application menu.

2. Select File —» Rename Notebook and change the filename to HelloWorld. ipynb.

Important The file is stored relative to the running JupyterLab server instance’s
current working directory. Make sure you can locate HelloWorld.ipynb on your

" https://jupyterlab.readthedocs.io/en/stable/index.html
12 https://jupytext.readthedocs.io/en/latest
B https://www.youtube.com/watch?v=Ag1AKIl_2GM


https://jupyterlab.readthedocs.io/en/stable/index.html
https://jupytext.readthedocs.io/en/latest
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disk using your file explorer. On a side note, .ipynb is just aJSON file that can also
be edited using ordinary text editors.

. Input the following within the first code cell:

print("G'day!")

. Press Ctrl+Enter (or Cmd+Return on m**OS) to execute the code cell and display the

result; see Figure 1.2.

“~ Jupyter Hello World (autosaved) A | Logou

File Edit View Insert Cell Kernel Widgets Help Trusted ‘ Python 3 (ipykernel) O

In [1]: print("G'day!")

G'day!

Figure 1.2. “Hello, World” in a Jupyter notebook.

1.2.3 More cells

We are on fire. We cannot stop now.

1.

By pressing Enter, we enter the Edit mode. Modify the current cell’s contents so that
it becomes:

# My first code cell (this is a comment)
print("G'day!") # prints a message (this is a comment too)
print(2+5) # prints a number

. Press Ctrl+Enter to execute whole code chunk and replace the previous outputs

with the updated ones.

. Enter another command that prints a message that you would like to share with

the world. Note that character strings in Python must be enclosed either in double
quotes or in apostrophes.

. Press shift+Enter to execute the current code cell, create a new one below, and

then enter the edit mode.

. Inthe new cell, input and then execute the following:

import matplotlib.pyplot as plt # the main plotting library
plt.bar(
["Python", "JavaScript", "HTML", "CSS"], # a list of strings
[80, 30, 10, 15] # a list of integers (the respective bar heights)

(continues on next page)
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(continued from previous page)

plt.title("What makes you happy?")
plt.show()
6. Add three more code cells that display some text or create other bar plots.

Exercise 1.3 Changeprint(2+5)toPRINT(2+5). Runthe corresponding code cell and see what
happens.

Note Inthe Edit mode, JupyterLab behaves like an ordinary text editor. Most keyboard
shortcuts known from elsewhere are available, for example:

« Shift+LeftArrow, DownArrow, UpArrow, or RightArrow — select text,
e Ctrl+c - copy,

o Ctrl+x —cut,

» Ctrl+v — paste,

« Ctrl+z — undo,

« Ctrl+] —indent,

« Ctrl+[ — dedent,

o Ctrl+/ - toggle comment.

1.2.4 Editvs command mode

By pressing ESC, we can enter the Command mode.
1. Use the arrow DownArrow and UpArrow keys to move between the code cells.
2. Pressd,d (d followed by another d) to delete the currently selected cell.
3. Press z to undo the last operation.

4. Press aand b to insert a new blank cell, respectively, above and below the current
one.

5. Note a simple drag and drop can relocate cells.

Important ESC and Enter switch between the Command and Edit modes, respectively.

Example 1.4 In Jupyter notebooks, the linear flow of chunks’ execution is not strongly enforced.
By editing cells in a rather frivolous fashion, we may end up with matter that makes little sense
when it is read from the beginning to the end. For instance:
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#H
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##
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##
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In [2]:
x = [1, 2, 3]
In [10]:
sum(x)
Out [10]:
18
In [7]:
sum(y)
Oout [7]:
6
In [6]:
x =[5 6, 7]
In [5]:
y =X

The chunk IDs reveal the true order in which the author has executed them. It is thus best to al-
ways select Restart Kernel and Run All Cells from the Kernel menu to ensure that evaluating con-

tent step by step renders results that meet our expectations.

1.2.5 Markdown cells

So far, we have only been playing with code cells. Notebooks are not just about writing
code, though. They are meant to be read by humans too. Thus, we need some means
to create formatted text.

Markdown is lightweight yet powerful enough markup (pun indented) language
widely used on many popular platforms (e.g., on Stack Overflow and GitHub). We can
convert the current cell to a Markdown block by pressing min the Command mode (note

that by pressing y we can turn it back to a code cell).

1. Enter the following into a new Markdown cell:

# Section

## Subsection

This is the first paragraph. It ~~was~~ *is* **very** nice.

Great success.

This is the second paragraph. Note that a blank line separates
it from the previous one. And now for something completely different:

a bullet list:

* one

(continues on next page)
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(continued from previous page)

* two
1. aaa
2. bbbb

* [three](https://en.wikipedia.org/wiki/3)

" python
# some code to display (but not execute)
242

![Python logo](https://www.python.org/static/img/python-logo.png)

2. Press Ctri+Enter to display the formatted text.

3. Notice that Markdown cells can be modified in the Edit mode as usual (the Enter
key).

Exercise 1.5 Read the official introduction™ to the Markdown syntax.
Exercise1.6 Follow this® interactive Markdown tutorial.

Exercise 1.7 Applywhatyou have learnt by making the current Jupyter notebook more readable.
At the beginning of the report, add a header featuring your name and email address. Before and
after each code cell, explain its purpose and how to interpret the obtained results.

1.3 The best note-taking app

Our learning will not be effective if we do note take good note of the concepts that we
come across during this course, especially if they are new to us. More often than not,
we will find ourselves in a need to write down the definitions and crucial properties of
the methods we discuss, draw simple diagrams and mind maps to build connections
between different topics, verify the validity of some results, or derive simple mathem-
atical formulae ourselves.

Let us not waste our time finding the best app for our computers, phones, or tablets.
The versatile note-taking solution is an ordinary piece of A4 paper and a pen or a pencil.
Loose sheets, 5 mm grid-ruled for graphs and diagrams, work nicely. They can be held
together using a cheap landscape clip folder (the one with a clip on the long side). An

14 https://daringfireball.net/projects/markdown/syntax
5 https://commonmark.org/help/tutorial
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advantage of this solution is that it can be browsed through like an ordinary notebook.
Also, new pages can be added anywhere, and their ordering altered arbitrarily.

1.4 Initialising each session and getting example data

From now on, we assume that the following commands are issued at the beginning of
each Python session:

# import key packages - required:
import numpy as np

import scipy.stats

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

# further settings - optional:
pd.set_option("display.notebook_repr_html", False) # disable "rich" output

import os

os.environ["COLUMNS"] = "74" # output width, in characters
np.set_printoptions(linewidth=74)
pd.set_option("display.width", 74)

import sklearn
sklearn.set_config(display="text")

plt.style.use("seaborn-v0_8") # plot style template

_colours = [ # the "R4" palette
"#000000f0", "#DF536Bf0", "#61DO4Ff0", "#2297E6f0",
"#28E2E5f0", "#CDOBBCfO", "#F5C710f0", "#999999f0"
1

_linestyles = [
"solid", "dashed", "dashdot", "dotted"
1

plt.rcParams["axes.prop_cycle"] = plt.cycler(
# each plotted line will have a different plotting style
color=_colours, linestyle=_linestyles*2

)

plt.rcParams["patch.facecolor"] = _colours[0]

np.random.seed(123) # initialise the pseudorandom number generator

The above imports the most frequently used packages (together with their usual ali-
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ases, we will get to that later). Then, it sets up some further options that yours truly is
particularly fond of. On a side note, for the discussion on the reproducible pseudor-
andom number generation, please see Section 6.4.2.

Open-source software regularly enjoys feature extensions, API changes, and bug fixes.
Itis worthwhile to know which version of the Python environment was used to execute
all the code listed in this book:

import sys
print(sys.version)
## 3.11.4 (main, Jun 9 2023, 07:59:55) [GCC 12.3.0]

Given below are the versions of the packages that we will be relying on. This informa-
tion can usually be accessed by calling, for example, print(np.__version__), etc.

Package Version
numpy 1.25.2
scipy 1.11.2
matplotlib 3.7.2
pandas 2.1.0
seaborn 0.12.2
sklearn (scikit-learn) (*) 1.3.0

icu (PyICu) (%) 2.11
IPython (¥) 8.15.0
mpLlfinance (*) 0.12.10bo

We expect 99% of our code to work in the (near-)future versions of the environment.
If the diligent reader discovers that this is not the case, filing a bug report at https:
//github.com/gagolews/datawranglingpy will be much appreciated (for the benefit of
other students).

Important All example datasets that we use throughout this course are available for
download at https://github.com/gagolews/teaching-data.

Exercise 1.8 Ensure you are comfortable accessing raw data files from the above repository.
Chose any file, e.g., nhanes_adult_female_height_2020. txt in the marek folder, and then
click Raw. It is the URL where you have been redirected to, not the previous one, that includes
the link to be used from within your Python session. Also, note that each dataset starts with sev-
eral comment lines explaining its structure, the meaning of the variables, etc.


https://github.com/gagolews/datawranglingpy
https://github.com/gagolews/datawranglingpy
https://github.com/gagolews/teaching-data
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1.5 Exercises
Exercise 1.9 What is the difference between the Edit and the Command mode in Jupyter?

Exercise1.10 How can we format a table in Markdown? How can we insert an image, a hyper-
link, and an enumerated list?
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Scalar types and control structures in Python

In this part, we introduce the basics of the Python language itself. Being a general-
purpose tool, various packages supporting data wrangling operations are provided as
third-party extensions. In further chapters, extending upon the concepts discussed
here, we will be able to use numpy, scipy, matplotlib, pandas, seaborn, and other pack-
ages with a healthy degree of confidence.

2.1 Scalar types

Scalars are single or atomic values. Their five ubiquitous types are:
« bool —logical,
. int, float, complex — numeric,
« str — character.

Let us discuss them in detail.

2.1.1 Logical values

There are only two possible logical (Boolean) values: True and False. By typing:

True
## True

we instantiate the former. This is a dull exercise unless we have fallen into the following
pitfall.

Important Python is a case-sensitive language. Writing “TRUE” or “true” instead of
“True” is an error.

2.1.2 Numeric values
The three numeric scalar types are:

« int —integers, e.g., 1, -42, 1_000_000;
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. float — floating-point (real) numbers, e.g., -1.0, 3.14159, 1.23e-4;
« (*) complex — complex numbers, e.g., 1+23.

In practice, numbers of the type int and float often interoperate seamlessly. We usu-
ally do not have to think about them as being of distinctive types. On the other hand,
complex numbers are rather infrequently used in basic data science applications (but
see Section 4.1.4).

Exercise 2.1 1.23e-4and 9. 8e5 are examples of numbers in scientific notation, where “e”
stands for “... times 10 to the power of ...”. Additionally, 1_000_000 is a decorated (more human-
readable) version of 1000000. Use the print function to check out their values.

Arithmetic operators

Here is the list of available arithmetic operators:

1+ 2 # addition

## 3

1-7 # subtraction
# -6

4 * 0.5 # multiplication
##t 2.0

7/ 3 # float division (results are always of the type float)
## 2.3333333333333335
7 /] 3 # integer division

## 2

7% 3 # division remainder
## 1

2 ** 4  # exponentiation

## 16

The precedence of these operators is quite predictable?, e.g., exponentiation has
higher priority than multiplication and division, which in turn bind more strongly
than addition and subtraction. Thus,

142 %3 %4
## 163

is the same as 1+(2*(3**4)) and is different from, e.g., ((1+2)*3)**4).

Note Keep in mind that computers’ floating-point arithmetic is precise only up to a
dozen or so significant digits. As a consequence, the result of 7/3 is only approximate;
hence the 2.3333333333333335 above. We will get discuss this topic in Section 5.5.6.

! https://docs.python.org/3/reference/expressions.html#operator-precedence
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Creating named variables

Anamedvariable can be introduced through the assignment operator, *=". It can store an
arbitrary Python object which we can recall at any later time. Names of variables can
include any lower- and uppercase letters, underscores, and (except at the beginning)
digits.

To make our code easier to understand for humans, it is best to use names that are
self-explanatory, like:

X =7 # read: let ‘x° from now on be equal to 7 (or: ‘x' becomes 7)

“x” is great name: it means something of general interest in mathematics. Let us print out
the value it is bound to:

print(x) # or just “x°
## 7

New variables can easily be created based on existing ones:

my_2nd_variable = x/3 - 2 # creates ‘my_2nd_variable"
print(my_2nd_variable)
## 0.3333333333333335

Existing variables may be rebound to any other value freely:

x = x/3 # let the new ‘x° be equal to the old ‘x' (7) divided by 3
print(x)
## 2.3333333333333335

Exercise 2.2 Define two named variables height (in centimetres) and weight (in kilograms).
Determine the corresponding body mass index (BMI?).

Note (*) Augmented assignments are also available. For example:

X *= 3
print(x)
# 7.0

In this context, the above is equivalent to x = x*3. In other words, it creates a new
object. Nevertheless, in some scenarios, augmented assignments may modify the ob-
jects they act upon in place; compare Section 3.5.

2.1.3 Character strings

Character strings (objects of the type str) store text data. They are created using apo-
strophes or double quotes:

2 hteps://en.wikipedia.org/wiki/Body_mass_index
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print("spam, spam, #, bacon, and spam")

## spam, spam, #, bacon, and spam

print('Czes¢! ;Qué tal?')

## Czesc! ;Que tal?

print('"G\'day, how\'s it goin\'," he asked.\\\n"All good," she responded.')
## "G'day, how's 1t goin'," he asked. |

## "All good," she responded.

We see some examples of escape sequences® here:
« “\'”is away to include an apostrophe in an apostrophe-delimited string,

« “\\” enters a backslash,

 “\n” inputs a newline character.

Multiline strings are created using three apostrophes or double quotes:

spam| | spam
tasty\|t"spam”
lovely|\t'spam'

mwin

## '"\nspam||spam|\ntasty\t"spam"\nlovely|t| 'spam|'|n’

Exercise 2.3 Call the print function on the above object to reveal the meaning of the included
escape sequences.

Important Many string operations are available, e.g., for formatting and pattern
searching. They are especially important in the art of data wrangling as information
often arrives in textual form. Chapter 14 covers this topic in detail.

F-strings (formatted string literals)
F-strings are formatted string literals:

X =2
f"x is equal to {x}"
## 'x 1s equal to 2'

Notice the “f” prefix. The “{x}” part was replaced with the value stored in the x variable.

The formatting of items can be fine-tuned. As usual, it is best to study the doc-
umentation* in search of interesting features. Here, let us just mention that we
will frequently be referring to placeholders like “{value:width}” and “{value:width.
precision}”, which specify the field width and the number of fractional digits of a

3 https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals
4 https://docs.python.org/3/reference/lexical_analysis.html#f-strings
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number. This way, we can output a series of values aesthetically aligned one below
another.

n = 3.14159265358979323846
e = 2.71828182845904523536

print(f"""

n = {n:10.8f}

e = {e:10.8f}

ne? = {(n*e**2):10.8f}
B

##

## n = 3.14159265
## e = 2.71828183
## ne? = 23.21340436

“10.8f” means that a value should be formatted as a float, be of width at least ten
characters (text columns), and use eight fractional digits.

2.2 Calling built-in functions

We have a few base functions at our disposal. For instance, to round the Euler constant
e to two decimal digits, we can call:

e = 2.718281828459045
round(e, 2)
#2.72

Exercise 2.4 Call help("round") to access the function’s manual. Note that the second argu-
ment, called ndigits, which we set to 2, defaults to None. Check what happens when we omit it
during the call.

2.2.1 Positional and keyword arguments

The round function has two parameters, number and ndigits. Thus, the following calls
are equivalent:

print(
round(e, 2), # two arguments matched positionally
round(e, ndigits=2), # positional and keyword argument
round(number=e, ndigits=2), # two keyword arguments
round(ndigits=2, number=e) # the order does not matter for keyword args

)
#H 2.72 2.72 2.72 2.72

Verifying that no other call scheme is permitted is left as an exercise, i.e., positionally
matched arguments must be listed before the keyword ones.
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2.2.2 Modules and packages

Python modules and packages (which are collections of modules) define thousands
of additional functions. For example, math features the most common mathematical
routines:

import math  # the math module must be imported before we can use it
print(math.log(2.718281828459045)) # the natural logarithm (base e)
## 1.0

print(math.floor(-7.33)) # the floor function

## -8

print(math.sin(math.pil)) # sin(pi) equals @ (with small numeric error)
## 1.2246467991473532e-16

See the official documentation® for the comprehensive list of objects available. On a
side note, all floating-point computations in any programming language are subject
to round-off errors and other inaccuracies. This is why the result of sin 77 is not exactly
0, but some value very close thereto. We will elaborate on this topic in Section 5.5.6.

Packages can be given aliases, for the sake of code readability or due to our being lazy.
For instance, in Chapter 4 we will get used to importing the numpy package under the
np alias:

import numpy as np

And now, instead of writing, for example, numpy. random. rand(), we can call:

np.random.rand() # a pseudorandom value in [0.0, 1.0)
## 0.6964691855978616

2.2.3 Slots and methods

Python is an object-orientated programming language. Each object is an instance of
some class whose name we can reveal by calling the type function:

X = 1+2j

type(x)
## <class 'complex'>

Important Classes define two kinds of attributes:
« slots — associated data,

« methods — associated functions.

Exercise 2.5 Call help("complex") to reveal that the complex class defines, amongst others,
the conjugate method and the real and imag slots.

5 https://docs.python.org/3/library/math.html
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Here is how we can read the two slots:

print(x.real) # access slot ‘real’ of object ‘x' of the class ‘complex’
## 1.0

print(x.imag)

## 2.0

And here is an example of a method call:

x.conjugate() # equivalently: complex.conjugate(x)
## (1-27)

Notably, the documentation of this function can be accessed by typing help("complex.
conjugate") (class name — dot —method name).

2.3 Controlling program flow
2.3.1 Relational and logical operators

We have several operators which return a single logical value:

1==1.0 # is equal to?

## True

2 !=3 # is not equal to?

## True

"spam" < "egg" # 1s less than? (with respect to the lexicographic order)
## False

Some more examples:

math.sin(math.pi) == 0.0 # well, numeric error..
## False

abs(math.sin(math.pil)) <= 1e-9 # is close to 0?
## True

Logical results can be combined using and (conjunction; for testing if both operands are
true) and or (alternative; for determining whether at least one operand is true). Like-
wise, not stands for negation.

3 <= math.pi and math.pl <= 4 # is it between 3 and 4?
## True

not (1 > 2 and 2 < 3) and not 100 <= 3

## True

Notice that not 100 <= 3is equivalent to 100 > 3. Also, based on the de Morgan laws,
not (1 > 2 and 2 < 3)istrueifandonlyif 1 <= 2 or 2 >= 3holds.
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Exercise 2.6 Assuming that p, q, r are logical and a, b, ¢, d are variables of the type float,
simplify the following expressions:

e« not not p,

e not p and not gq,

e not (not p or not q or not r),

e not a == b,

e not (b >aand b < c),

e not (a>=b and b>=c and a>=c),

e (a>b and a<c) or (a<c and a>d).

2.3.2 'The if statement

The if statement executes a chunk of code conditionally, based on whether the provided
expression is true or not. For instance, given some variable:

x = np.random.rand() # a pseudorandom value in [0.0, 1.0)

we can react enthusiastically to its being less than o.5:

if x < 0.5: print("spam!") # note the colon after the tested condition

Actually, we remained cool as a cucumber (nothing was printed) because x is equal to:

print(x)
## 0.6964691855978616

Multiple elif (else-if) parts can also be added. They may be followed by an optional else
part, which is executed if all of the tested conditions turn out to be false.

if x < 0.25: print("spam!")

elif x < 0.5: print("ham!") # i.e., x in [0.25, 0.5)
elif x < 0.75: print("bacon!") # i.e., x in [0.5, 0.75)
else: print("eggs!") # i.e., x >= 0.75

## bacon!

If more than one statement is to be executed conditionally, an indented code block can
be introduced.

if x >= 0.25 and x <= 0.75:
print("bacon!")
print("I love 1t!")

else:
print("I'd rather eat spam!")

(continues on next page)
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(continued from previous page)
print("more spam!") # executed regardless of the condition's state
## bacon!
## I love it!
## more spam!

Important The indentation must be neat and consistent. We recommend using four
spaces. The reader is encouraged to try to execute the following code chunk and note
the kind of error generated:

if x < 0.5:
print("spam!")
print("ham!") #:(

Exercise 2.7 Foragiven BMI, print out the corresponding category as defined by the WHO (un-
derweight if below 18.5 kg/m?, normal vange up to 25.0 kg/m?, etc.). Bear in mind that the BMI
is a simplistic measure. Both the medical and statistical communities pointed out its inherent
limitations. Read the Wikipedia article thereon for more details (and appreciate the amount of
data wrangling required for its preparation: tables, charts, calculations; something that we will
be able to perform quite soon, given quality reference data, of course).

Exercise 2.8 (*) Checkifitis easy to find on the internet (in reliable sources) some raw datasets
related to the body mass studies, e.g., measuring subjects’ height, weight, body fat and muscle
mass, eftc.

2.3.3 Theuwhileloop

The while loop executes a given statement or a series of statements as long as a given
condition is true. For example, here is a simple simulator determining how long we
have to wait until drawing the first number not greater than 0.01 whilst generating
numbers in the unit interval:

count = 0

while np.random.rand() > 0.01:
count = count + 1

print(count)

#H 117

Exercise 2.9 Using the while loop, determine the arithmetic mean of 100 randomly generated
numbers (i.e., the sum of the numbers divided by 100).
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2.4 Defining functions

As a means for code reuse, we can define our own functions. For instance, below is a
procedure that computes the minimum (with respect to the "< relation) of three given
objects:

def min3(a, b, c):

i

A function to determine the minimum of three given inputs.

By the way, this is a docstring (documentation string);
call help("min3") later to view it
if a < b:
if a < c:
return a
else:
return c
else:
if b < c:
return b
else:
return c

Example calls:

print(min3(10, 20, 30),
min3(10, 30, 20),
min3(20, 10, 30),
min3(20, 30, 10),
min3(30, 10, 20),
min3(30, 20, 10))

## 10 10 10 10 10 10

Note that min3 returns a value. The result it yields can be consumed in further compu-
tations:

x = min3(np.random.rand(), 0.5, np.random.rand()) # minimum of 3 numbers
x = round(x, 3) # transform the result somehow

print(x)

## 0.5

Exercise 2.10 Write a function named bmi which computes and returns a person’s BMI, given
their weight (in kilograms) and height (in centimetres). As documenting functions constitutes a
good development practice, do not forget about including a docstring.

New variables can be introduced inside a function’s body. This can help the function
perform its duties.
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def min3(a, b, c):
A function to determine the minimum of three given inputs
(alternative version).

i

m=a # a local (temporary/auxiliary) variable

if b < m:
m=>b

if c < m: # be careful! no ‘else’ or ‘elif' here — it's a separate ‘if"
m=c

return m

Example call:

m=7

n =10

o=3

min3(m, n, o)
## 3

All localvariables cease to exist after the function is called. Notice that minside the func-
tion is a variable independent of min the global (calling) scope.

print(m) # this is still the global ‘m" from before the call

##H 7

Exercise 2.11 Implement a function max3 which determines the maximum of three given val-
ues.

Exercise 2.12 Write a function med3 which defines the median of three given values (the value
that is in-between two other ones).

Exercise 2.13 (*) Indite a function min4 to compute the minimum of four values.

Note Lambda expressions give us an uncomplicated way to define functions using
a single line of code. The are defined using the syntax lambda argument_name: re-
turn_expression.

square = lambda x: x**2 # i.e., def square(x): return x**2
square(4)
## 16

Objects generated through lambda expressions do not have to be assigned a name:
they can remain anonymous. This is useful when calling a method which takes another
function as its argument. With lambdas, the latter can be generated on the fly.

def print_x_and_fx(x, f):

i

(continues on next page)
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(continued from previous page)

Arguments: x - some object; f - a function to be called on x

i

print(f"x = {x} and f(x) = {f(x)}")

print_x_and_fx(4, lambda x: x**2)

#4 x = 4 and f(x) = 16

print_x_and_fx(math.pi/4, lambda x: round(math.cos(x), 5))
## x = 0.7853981633974483 and f(x) = 0.70711

2.5 Exercises

Exercise 2.14 What does import xxxxxx as xmean?

Exercise 2.15 What is the difference between if and while?

Exercise 2.16 Name the scalar types we introduced in this chapter.
Exercise 2.17 What is a docstring and how can we create and access it?

Exercise 2.18 What are keyword arguments?



3
Sequential and other types in Python

3.1 Sequential types

Sequential objects store data items that can be accessed by index (position). The three
main sequential types are: lists, tuples, and ranges.

As a matter of fact, strings (which we often treat as scalars) can also be considered of
this kind. Therefore, amongst sequential objects are such diverse classes as:

. lists,

. tuples,

. ranges, and
« strings.

Nobody expected that.

3.1.1 Lists

Lists consist of arbitrary Python objects. They can be created using standalone square
brackets:

x = [True, "two", 3, [4j, 5, "six"], None]
print(x)
## [True, 'two', 3, [4], 5, 'six'], None]

Above is an example list featuring objects of the types: bool, str, int, list (yes, it is
possible to have a list inside another list), and None (the None object is the only of this
kind, it represents a placeholder for nothingness), in this order.

Note We will often be relying on lists when creating vectors in numpy or data frame
columns in pandas. Furthermore, lists of lists of equal lengths can be used to create
matrices.

Each list is mutable. Consequently, its state may freely be changed. For instance, we
can append a new object at its end:
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x.append("spam")
print(x)
## [True, 'two', 3, [4j, 5, 'six'], None, 'spam']

The call to the list.append method modified x in place.

3.1.2 Tuples

Next, tuples are like lists, but they are immutable (read-only): once created, they cannot
be altered.

"one", [1, (33, 4))
## ('one', [], (37, 4))

This gave us a triple (a 3-tuple) carrying a string, an empty list, and a pair (a 2-tuple).
Let us stress that we can drop the round brackets and still get a tuple:

1, 2, 3 # the same as (1, 2, 3)°

## (1, 2, 3)

Also:

42, # equivalently: (42, )’

## (42,)

Note the trailing comma; the above notation defines a singleton (a 1-tuple). It is not
the same as the scalar 42 or (42), which is an object of the type int.

Note Having a separate data type representing an immutable sequence makes sense
in certain contexts. For example, a data frame’s shape is its inherent property that
should not be tinkered with. If a tabular dataset has 10 rows and 5 columns, we dis-
allow the user to set the former to 15 (without making further assumptions, providing
extra data, etc.).

When creating collections of items, we usually prefer lists, as they are more flexible a
data type. Yet, Section 3.4.2 will mention that many functions return tuples. We are
expected to be able to handle them with confidence.

3.1.3 Ranges

Objects defined by calling range(from, to) or range(from, to, by) represent arith-
metic progressions of integers.

list(range(0, 5)) # i.e., range(0, 5, 1) - from @ to 5 (exclusive) by 1
## [0, 1, 2, 3, 4]

list(range(10, 0, -1)) # from 10 to 6 (exclusive) by -1

## [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
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We converted the two ranges to ordinary lists as otherwise their display is not partic-
ularly spectacular. Let us point out that the rightmost boundary (to) is exclusive and
that by defaults to 1.

3.1.4 Strings (again)
Recall that we have already discussed character strings in Section 2.1.3.

print("lovely\nspam")
## lovely
## spam

Strings are most often treated as scalars (atomic entities, as in: a string as a whole).
However, we will soon find out that their individual characters can also be accessed
by index. Furthermore, Chapter 14 will discuss a plethora of operations on parts of
strings.

3.2 Working with sequences
3.2.1 Extracting elements

The index operator, “[...1", can be applied on any sequential object to extract an ele-
ment at a position specified by a single integer.

x = ["one", "two", "three", "four", "five"]
x[0] # the first element

## 'one'

x[1] # the second element

#4# 'two'

x[len(x)-1] # the last element
## 'five'

The valid indexes are 0, 1, ...,n — 2,n — 1, where n is the length (size) of the sequence,
which can be fetched by calling 1en.

Important Think of anindex as the distance from the start of a sequence. For example,
x[3] means “three items away from the beginning”, i.e., the fourth element.

Negative indexes count from the end:

x[-1] # the last element (ultimate)

## 'five'

x[-2] # the next to last (the last but one, penultimate)
## ' four'

(continues on next page)
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x[-len(x)] # the first element
## 'one'

The index operator can be applied on any sequential object:

"string"[3]
-

More examples:

(continued from previous page)

range(0, 10)[-1] # the last item in an arithmetic progression

## 9
(1, )[0] # extract from a 1-tuple
## 1

Important The same “thing” can have different meanings in different contexts. There-

fore, we must always remain vigilant.

For instance, raw square brackets are used to create a list (e.g., [1, 2, 3]) whereas
their presence after a sequential object indicates some form of indexing (e.g., x[1] or
even [1, 2, 3][1]). Similarly, (1, 2) creates a 2-tuple and f(1, 2) denotesacalltoa

function f with two arguments.

3.2.2 Slicing

We can also use slices of the form from:to or from: to:by to select a subsequence of a
given sequence. Slices are similar to ranges, but “:" can only be used within square

brackets.

x = ["one", "two", "three", "four", "five"]

x[1:4] # from the second to the fifth (exclusive)

## ['two', 'three', 'four']

x[-1:0:-2] # from the last to first (exclusive) by every second backwards

## ['five', 'three']

In fact, the from and to parts of a slice are optional. When omitted, they default to one

of the sequence boundaries.

x[3:] # from the third element to the end
## ['four', 'five']

x[:2] # the first two

## ['one', 'two']

x[:0] # none (the first zero)

## []

x[::2] # every second element from the start

(continues on next page)
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(continued from previous page)
## ['one', 'three', 'five']
x[::-1] # the elements in reverse order
## ['five', 'four', 'three', 'two', 'one']

Slicing can be applied on other sequential objects as well:

"spam, bacon, spam, and eggs"[13:17] # fetch a substring
## 'spam’

Knowing the difference between element extraction and subsetting a sequence (creat-
ing a subsequence) is crucial. For example:

x[0] # extraction (indexing with a single integer)
## 'one'

It gave the object at that index. Moreover:

x[0:1] # subsetting (indexing with a slice)
##4 ['one']

It returned the object of the same type as x (here, a list), even though, in this case, only
one object was fetched. However, a slice can potentially select any number of elements,
including zero.

pandas data frames and numpy arrays will behave similarly, but there will be many more
indexing options; see Section 5.4, Section 8.2, and Section 10.5.

3.2.3 Modifying elements of mutable sequences

Lists are mutable: their state can be changed. The index operator can replace the ele-
ments at given indexes.

x = ["one", "two", "three", "four", "five"]

x[0] = "spam" # replace the first element

x[-3:] = ["bacon", "eggs"] # replace last three with given two
print(x)

## ['spam', 'two', 'bacon', 'eggs']

Exercise 3.1 There are quite a few methods that modify list elements: not only the aforemen-
tioned append, but also insert, remove, pop, etc. Invoke help("list"), read their descriptions,
and call them on a few example lists.

Exercise 3.2 Verify that similar operations cannot be performed on tuples, ranges, and strings.
In other words, check that these types are immutable.
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3.2.4 Searching for specific elements

The in operator and its negation, not in, determine whether an element exists in a
given sequence:

7 in range(0, 10)

## True

[2, 3] in [ 1, [2, 3], [4, 5, 6] ]
## True

For strings, in tests whether a string includes a specific substring:

"spam" in "lovely spams"
## True

Exercise 3.3 Inthedocumentation of the 1ist and other classes, check out the count and index
methods.

3.2.5 Arithmetic operators

Some arithmetic operators were overloaded for certain sequential types. However, they
carry different meanings from those for integers and floats. In particular, *+" joins
(concatenates) strings, lists, and tuples:

"spam" + + "bacon"
## 'spam bacon'
[1, 2, 3] + [4]
## [1, 2, 3, 4]

Moreover, *** duplicates (recycles) a given sequence:

"spam" * 3

## 'spamspamspam’

(1, 2) * 4

# (1, 2, 1, 2, 1, 2, 1, 2)

In each case, a new object has been returned.

3.3 Dictionaries

Dictionaries are sets of key:value pairs, where the value (any Python object) can be
accessed by key (usually” a string). In other words, they map keys to values.

! Overall, hashable data types can be used as dictionary keys, e.g., integers, floats, strings, tuples, and
ranges; see hash. It is required that hashable objects be immutable.
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x = {
"a": [1, 2, 3],
"b": 7,
"z": "spam!"

}

print(x)

# {'a': [1, 2, 3], 'b': 7, 'z': 'spam!'}

We can also create a dictionary with string keys using the dict function which accepts
any keyword arguments:

dict(a=[1, 2, 3], b=7, z="spam!")
## {'a': [1, 2, 3], 'b': 7, 'z': 'spam!'}

The index operator extracts a specific element from a dictionary, uniquely identified
by a given key:

x["a"]
## [1, 2, 3]

In this context, x[0] is not valid and raises an error: a dictionary is not an object of
sequential type; a key of @ does not exist in x. If we are unsure whether a specific key
is defined, we can use the in operator:

non nom weon

a" in x, 0 not in x, "z" in x, "w" in x # a tuple of four tests' results
## (True, True, True, False)

There is also a method called get, which returns an element associated with a given
key, or something else (by default, None) if we have a mismatch:

x.get("a")

## [1, 2, 3]

x.get("c") # if missing, returns None by default
x.get("c") is None # indeed

## True

x.get("c", "unknown")
## 'unknown'

We can also add new elements to a dictionary using the following syntax:

x["f"] = "more spam!"
print(x)
#4 {'a': [1, 2, 3], 'b': 7, 'z': 'spam!', 'f': 'more spam!'}

Example 3.4 (¥) In practice, we often import JSON files (which is a popular data exchange
format on the internet) exactly in the form of Python dictionaries. Let us demo it quickly:
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import requests
X = requests.get("https://api.github.com/users/gagolews/starred").json()

Now x is a sequence of dictionaries giving the information on the repositories starred by yours
truly on GitHub. As an exercise, the reader is encouraged to inspect its structure.

3.4 [Iterable types

All the objects we discussed here are iterable. In other words, we can iterate through
each element contained therein. In particular, the list and tuple functions take any
iterable object and convert it to a sequence of the corresponding type. For instance:

list("spam")

# ['s', 'p', 'a', 'm']

tuple(range(0, 10, 2))

## (0, 2, 4, 6, 8)

list({ "a": 1, "b": ["spam", "bacon", "spam"] })
## ['a', 'b']

Exercise 3.5 Take a look at the documentation of the extend method for the list class. The
manual page suggests that this operation takes any iterable object. Feed it with a list, tuple, range,
and a string and see what happens.

The notion of iterable objects is essential, as they appear in many contexts. There exist
quite a few other iterable types that are, for example, non-sequential: we cannot access
their elements at random using the index operator.

Exercise 3.6 (*) Check out the enumerate, zip, and reversed functions and what kind of iter-
able objects they return.

3.4.1 The for loop

The for loop allows to perform a specific action on each element in an iterable object.
For instance, we can access consecutive items in a list as follows:

x = [1, "two", ["three", 3j, 3], False] # some iterable object

for el in x: # for each element in “x°, let's call it ‘el ...
print(el) # ... do something on ‘el’

## 1

## two

## ['three', 3j, 3]

## False

Another common pattern is to traverse a sequential object by means of element in-
dexes:
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for 1 in range(len(x)): # for i =0, 1, ..., len(x)-1

print(i, x[1], sep=": ") # sep (label separator) defaults to " "
# 0: 1
## 1: two
## 2: ['three', 3j, 3]
## 3: False

Example 3.7 Let us compute the elementwise multiplication of two vectors of equal lengths,
i.e., the product of their corresponding elements:

x =[1, 2, 3, 4, 5] # for testing
y = [1, 10, 100, 1000, 10000] # just a test
z =[] # result list - start with an empty one
for 1 in range(len(x)):
tmp = x[1] * y[i]
print(f"The product of {x[1]:6} and {y[i]:6} is {tmp:6}")
z.append(tmp)
## The product of
## The product of
## The product of
## The product of
## The product of

and 1 1is 1
and 10 is 20
and 100 1is 300
and 1000 1is 4000
and 10000 i1s 50000

L AN W R

The items were printed with a little help of f-strings; see Section 2.1.3. Here is the resulting list:

print(z)
## [1, 20, 300, 46000, 50000]

Example 3.8 A dictionary may be useful for recoding lists of labels:

map = dict( # from=to
apple="red",
pear="yellow",
kiwi="green",

And now:

x = ["apple"”, "pear", "apple", "kiwi", "apple", "kiwi"]
recoded_x = []
for fruit in x:
recoded_x.append(map[fruit]) # or, e.g., map.get(fruit, "unknown")

print(recoded_x)
#4 ['red', 'yellow', 'red', 'green', 'red', 'green']

Exercise 3.9 Here is a function that determines the minimum of a given iterable object (com-
pare the built-in min function, see help("min")).
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import math

def mymin(x):
Fetches the smallest element in an iterable object x.
We assume that x consists of numbers only.

i

curmin = math.inf # infinity is greater than any other number
for e in x:
if e < curmin:
curmin = e # a better candidate for the minimum
return curmin

mymin([0, 5, -1, 100])
## -1

mymin(range(5, 0, -1))
## 1

mymin((1,))

## 1

Notethat due to theuse of math. inf, the function operates under the assumption that all elements
in x are numeric. Rewrite it so that it will work correctly, e.g., in the case of lists of strings.

Exercise 3.10 Author some basic versions (using the for loop) of the built-in max, sum, any, and
all functions.

Exercise 3.11 (*) The glob function in the glob module lists all files in a given directory whose
names match a specific wildcard, e.g., glob. glob("~/Music/*.mp3") gives the list of MP3 files
inthe current user’s home directory; see Section 13.6.1. Moreover, getsize from the os. path mod-
ule returns the size of a file, in bytes. Compose a function that determines the total size of all the
files in a given directory.

3.4.2 Tuple assignment

We can create many variables in one line of code by using the syntax tuple_of_ids =
iterable_object, which unpackstheiterable object on the right side of the assignment
operator:

a, b, c =[1, "two", [3, 3j, "three"]]
print(a)

# 1

print(b)

## two

print(c)

## [3, 37, 'three']

This is useful, for example, when the swapping of two elements is needed:

a, b=1, 2 # the same as (a, b) = (1, 2) - parentheses are optional
a, b=b, a # swap a and b
(continues on next page)
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(continued from previous page)
print(a)
#H 2
print(b)
## 1

Another use case is where we fetch outputs of functions that return many objects at
once. For instance, later we will learn about numpy . unique which (depending on argu-
ments passed) may return a tuple of arrays:

import numpy as np
result = np.unique([1, 2, 1, 2, 1, 1, 3, 2, 1], return_counts=True)

print(result)
##4 (array([1, 2, 3]), array([5, 3, 1]))

That this is a tuple of length two can be verified* as follows:

type(result), len(result)
## (<class 'tuple's, 2)

Now, instead of:

values = result[0]
counts = result[1]

we can write:

values, counts = np.unique([1, 2, 1, 2, 1, 1, 3, 2, 1], return_counts=True)

This gives two separate variables, each storing a different array:

print(values)
## [1 2 3]
print(counts)
## [5 3 1]

If only the second item is of our interest, we can write:

counts = np.unique([1, 2, 1, 2, 1, 1, 3, 2, 1], return_counts=True)[1]
print(counts)
# [5 3 1]

because a tuple is a sequential object.

Example 3.12 (*) The dict. items method generates an iterable object that can be used to tra-
verse through all the (key, value) pairs:

2 We should have already been able to tell that by merely looking at the result: note the round brackets
and the two objects separated by a comma.
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x ={ "a": 1, "b": ["spam", "bacon", "spam"] }
print(list(x.items())) # just a demo
#4 [('a', 1), ('b', ['spam', 'bacon', 'spam'])]

We can thus utilise tuple assignments in contexts such as:

for k, v in x.items(): # or: for (k, v) in x.items()...
print(k, v, sep=": ")

# a: 1

## b: ['spam', 'bacon', 'spam']

Note (**)If there are more values to unpack than then number of identifiers, we can
use the notation like *name inside the tuple_of_identifiers on the left side of the as-
signment operator. Such a placeholder gathers all the surplus objects in the form of a
list:

for a, b, *c, d in [range(4), range(10), range(3)]:
print(a, b, c, d, sep="; ")

#0; 1; [2]; 3

## 0; 1; [2, 3, 4, 5, 6, 7, 8]; 9

## 0; 1; []; 2

3.4.3 Argument unpacking (*)

Sometimes we will need to call a function with many parameters or call a series of
functions with similar arguments, e.g., when plotting many objects using the same
plotting style like colour, shape, font. In such scenarios, it may be convenient to pre-
prepare the data to be passed as their inputs before making the actual call.

Consider the following function that takes four arguments and dumbly prints them
out:

def test(a, b, c, d):
"It 1s just a test - print the given arguments"
print(*a=",a, ", b=",b,", c=",¢c, ", d=",d, sep="")

Arguments to be matched positionally can be wrapped inside any iterable object and then
unpacked using the asterisk operator:

args = [1, 2, 3, 4] # merely an example
test(*args) # just like test(1, 2, 3, 4)
#a=1, b=2, c=3,d=4

Keyword arguments can be wrapped inside a dictionary and unpacked with a double aster-
isk:
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kwargs = dict(a=1, c=3, d=4, b=2)
test(**kwargs)
#a=1, b=2, c =3, d=4

The unpackings can be intertwined. For this reason, the following calls are equivalent:

test(1, *range(2, 4), 4)

#a=1, b=2, c =3, d=4
test(1, **dict(d=4, c=3, b=2))
## a =1, b=2, c =3, d =4
test(*range(1, 3), **dict(d=4, c=3))
#a=1, b=2, c =3, d=4

3.4.4 Variadic arguments: *args and **kwargs (*)

We can also construct a function that takes any number of positional or keyword argu-
ments by including *args or **kwargs (those are customary names) in their parameter
list:

def test(a, b, *args, **kwargs):
"simply prints the arguments passed"

print(

"a=" a, ", b=",b,

", args = ", args, ", kwargs = ", kwargs, sep=""
)

For example:

test(1, 2, 3, 4, 5, spam=6, eggs=7)
##a =1, b =2, args = (3, 4, 5), kwargs = {'spam': 6, 'eggs': 7}

We see that *args gathers all the positionally matched arguments (except a and b,
which were set explicitly) into a tuple. On the other hand, **kwargs is a dictionary that
stores all keyword arguments that are not mentioned in the function’s parameter list.

Exercise 3.13 From time to time, we will be coming across *args and **kwargs in various con-
texts. Study what matplotlib.pyplot.plot uses them for (by calling help(plt.plot)).

3.5 Object references and copying (*)
3.5.1 Copying references
It is important to always keep in mind that when writing:

X = [1; 2% 3]
y =X
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the assignment operator does not create a copy of x; both x and y refer to the same
object in the computer’s memory.

Important If x is mutable, any change made to it will affect y (as, again, they are two
different means to access the same object). This will also be true for numpy arrays and
pandas data frames.

For example:

x.append(4)

print(y)
## [1, 2, 3, 4]

3.5.2 Passbyassignment

Arguments are passed to functions by assignment too. In other words, they behave as
if *=" was used: what we get is another reference to the existing object.

def myadd(z, 1):
z.append(i)

And now:

myadd(x, 5)

myadd(y, 6)

print(x)

## [1, 2, 3, 4, 5, 6]

3.5.3 Object copies

If we find the above behaviour undesirable, we can always make a copy of a fragile
object. It is customary for the mutable types to be equipped with a relevant method:

x = [1, 2, 3]
y = x.copy()
x.append(4)

print(y)

## [1, 2, 3]

This did not change the object referred to as y because it is now a different entity.

3.5.4 Modify in place or return a modified copy?

We now know that we can have functions or methods that change the state of a given
object. Consequently, for all the functions we apply, it is important to read their docu-
mentation to determine if they modify their inputs in place or if they return an entirely
new object.
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Consider the following examples. The sorted function returns a sorted version of an
iterable object:

x =[5, 3, 2, 4, 1]

print(sorted(x)) # returns a sorted copy of x (does not change x)
## [1, 2, 3, 4, 5]

print(x) # unchanged

# [5, 3, 2, 4, 1]

The list.sorted method modifies the list it is applied on in place:

x = [5, 3, 2, 4, 1]

x.sort() # modifies x in place and returns nothing
print(x)

## [1, 2, 3, 4, 5]

Additionally, random. shuffle is a function (not: a method) that changes the state of the
argument:

x =[5, 3, 2, 4, 1]

import random

random.shuffle(x) # modifies x in place, returns nothing
print(x)

# [3, 4, 2, 1, 5]

Later we will learn about the Series class in pandas, which represents data frame
columns. It has the sort_values method which, by default, returns a sorted copy of
the object it acts upon:

import pandas as pd

x = pd.Series([5, 3, 2, 4, 1])
print(list(x.sort_values())) # inplace=False
## [1, 2, 3, 4, 5]

print(list(x)) # unchanged

## [5, 3, 2, 4, 1]

This behaviour can, however, be altered:

x = pd.Serties([5, 3, 2, 4, 1])
x.sort_values(inplace=True) # note the argument now
print(list(x)) # changed

## [1, 2, 3, 4, 5]

Important We are always advised to study the official® documentation of every func-
tion we call. Although surely some patterns arise (such as: a method is more likely to
modify an object in place whereas a similar standalone function will be returning a

3 And not some random tutorial on the internet displaying numerous ads.
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copy), ultimately, the functions’ developers are free to come up with some exceptions
to them if they deem it more sensible or convenient.

3.6 Further reading

Our overview of the Python language is by no means exhaustive. Still, it touches upon
the most important topics from the perspective of data wrangling.

We will mention a few additional standard library features later in this course: list com-
prehensions in Section 5.5.7, exception handling in Section 13.6.3, file connection in
Section 13.6.4, string formatting in Section 14.3.1, pattern searching with regular ex-
pressions in Section 14.4, etc.

We have deliberately decided not to introduce some language constructs which we can
easily manage without (e.g., else clauses on for and while loops, the match statement)
or are perhaps too technical for an introductory course (yield, iter and next, sets,
name binding scopes, deep copying of objects, defining new classes, overloading op-
erators, function factories and closures).

Also, we skipped the constructs that do not work well with the third-party packages
we will soon be using (e.g., a notation like x < y < zis not valid if the three involved
variables are numpy vectors of lengths greater than one).

The said simplifications were brought in so the student is not overwhelmed. We
strongly advocate for minimalism in software development. Python is the basis for
one of many possible programming environments for exercising data science. In the
long run, it is best to focus on developing the most transferable skills, as other software
solutions might not enjoy all the Python’s syntactic sugar, and vice versa.

The reader is encouraged to skim through at least the following chapters in the official
Python 3 tutorial*:

« 3. An Informal Introduction to Python®,
« 4. More Control Flow Tools®,

« 5. Data Structures’.

4 https://docs.python.org/3/tutorial/index.html

5 https://docs.python.org/3/tutorial/introduction.html

6 hteps://docs.python.org/3/tutorial/controlflow.html

7 htps://docs.python.org/3/tutorial/datastructures.html
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https://docs.python.org/3/tutorial/introduction.html
https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/tutorial/datastructures.html
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3.7 Exercises

Exercise 3.14 Name the sequential objects we introduced.

Exercise 3.15 Is every iterable object sequential?

Exercise 3.16 Is dictaninstance of a sequential type?

Exercise 3.17 What is the meaning of *+" and *** operations on strings and lists?

Exercise 3.18 Given a list x of numeric scalars, how can we create a new list of the same length
giving the squares of all the elements in the former?

Exercise 3.19 (*) How can we make an object copy and when should we do so?

Exercise 3.20 What is the difference between x[0], x[1], x[:0], and x[:1], where x is a se-
quential object?






Part 11

Unidimensional data






4

Unidimensional numeric data and their empirical
distribution

Our data wrangling adventure starts the moment we get access to, or decide to collect,
dozens of data points representing some measurements, such as sensor readings for
some industrial processes, body measures for patients in a clinic, salaries of employ-
ees, sizes of cities, etc.

For instance, consider the heights of adult females (>= 18 years old, in cm) in the lon-
gitudinal study called National Health and Nutrition Examination Survey (NHANES")
conducted by the US Centres for Disease Control and Prevention.

heights = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_height_2020.txt")

Let us preview a few observations:

heights[:6] # first six
## array([160.2, 152.7, 161.2, 157.4, 154.6, 144.7])

This is an example of quantitative (numeric) data. They are in the form of a series of
numbers. It makes sense to apply various mathematical operations on them, includ-
ing subtraction, division, taking logarithms, comparing, and so forth.

Most importantly, here, all the observations are independent of each other. Each value
represents a different person. Our data sample consists of 4 221 points on the real
line (a bag of points whose actual ordering does not matter). In Figure 4.1, we see
that merely looking at the numbers themselves tells us nothing. There are too many
of them.

This is why we are interested in studying a multitude of methods that can bring some
insight into the reality behind the numbers. For example, inspecting their distribu-
tion.

! https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx
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(jitter)

130 140 150 160 170 180 190

Figure 4.1. The heights dataset is comprised of independent points on the real line. We
added some jitter on the y-axis for dramatic effects only: the points are too plentiful.

4.1 Creating vectors in numpy

In this chapter, we introduce basic ways to create numpy vectors, which are an efficient
data structure for storing and operating on numeric data just like the ones above.

numpy?® [45] is an open-source add-on for numerical computing written by Travis Ol-
iphant and other developers in 2005. Still, the project has a much longer history? and
stands on the shoulders of many giants (e.g., concepts from the APL and Fortran lan-
guages).

numpy adds support for multidimensional arrays and numerous operations on them,
similar to those available in R, S, GNU Octave, Scilab, Julia, Perl (via Perl Data Lan-
guage), and some numerical analysis libraries such as LAPACK, GNU GSL, etc.

Many other Python packages are built on top of numpy, including: scipy [93], pandas
[63], and scikit-learn [72]. This is why we are advised to study it in great detail.
Whatever we learn about vectors will be beautifully transferable to the case of pro-
cessing columns in data frames.

It is customary to import the numpy package under the np alias:

2 https://numpy.org/doc/stable/reference/index.html
3 https://scipy.github.io/old-wiki/pages/History_of_SciPy


https://numpy.org/doc/stable/reference/index.html
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import numpy as np

Our code can now refer to the objects defined therein as np. spam, np.bacon, or np. spam.

4.1.1 Enumerating elements

One way to create a vector is by calling the numpy. array function:

X = np.array([10, 20, 30, 40, 50, 60])
X
## array([10, 20, 30, 40, 50, 60])

Here, the vector elements were specified by means of an ordinary list. Ranges and
tuples can also be used as content providers. The earnest readers are encouraged to
check it now themselves.

Avector of length (size) n is often used to represent a point in an n-dimensional space
(for example, GPS coordinates of a place on Earth assume n = 2) or nn readings of some
one-dimensional quantity (e.g., recorded heights of n people).

The said length can either be read using the previously mentioned len function:

len(x)
## 6

or by reading the array’s shape slot:

x.shape
## (6,)

A vector is a one-dimensional array. Accordingly, its shape is stored as a tuple of length
1 (the number of dimensions is given by querying x.ndim). We can therefore fetch its
length by accessing x. shape[0].

On a side note, matrices (two-dimensional arrays which we will study in Chapter 7)
will be of shape like (number_of_rows, number_of_columns).

Recall that Python lists, e.g., [1, 2, 3], represent simple sequences of objects of any
kind. Their use cases are very broad, which is both an advantage and something quite
the opposite. Vectors in numpy are like lists, but on steroids. They are powerful in sci-
entific computing because of the underlying assumption that each object they store
is of the same type*. Although it is possible to save references to arbitrary objects

4 (*) Vectors are directly representable as simple arrays in the C programming language, in which numpy
procedures are written. Operations on vectors will be very fast provided that we are using the functions that
process them as a whole. The readers with some background in other lower-level languages will need to get
out of the habit of acting on individual elements using a for-like loop.
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therein, in most scenarios we will be dealing with vectors of logical values, integers,
and floating-point numbers. Thanks to this, a wide range of methods could have been
defined to enable the performing of the most popular mathematical operations.

And so, above we created a sequence of integers:

x.dtype # data type
## dtype('int64')

But other element types are possible too. For instance, we can convert the above to a
float vector:

x.astype(float) # or np.array(x, dtype=float)
## array([10., 20., 30., 40., 50., 60.])

Let us emphasise that the above is now printed differently (compare the output of
print(x) above).
Furthermore:

np.array([True, False, False, True])
## array([ True, False, False, True])

gave a logical vector. The constructor detected that the common type of all the ele-
ments is bool. Also:

np.array(["spam", "spam", "bacon", "spam"])
## array([ 'spam', 'spam', 'bacon', 'spam'], dtype='<U5')

This yielded an array of strings in Unicode (i.e., capable of storing any character in any
alphabet, emojis, mathematical symbols, etc.), each of no more than five code points
in length. Chapter 14 will point out that replacing any element with new content res-
ults in the too-long strings’ being truncated. We shall see that this can be remedied by
calling x.astype("<U10").

4.1.2 Arithmetic progressions

numpy’s arange is similar to the built-in range function, but outputs a vector:

np.arange(0, 10, 2) # from @ to 10 (exclusive) by 2
## array([0, 2, 4, 6, 8])

numpy . linspace (linear space) creates a sequence of equidistant points in a given inter-
val:

np.linspace(0, 1, 5) # from 0 to 1 (inclusive), 5 equispaced values
## array([0. , 0.25, 0.5, 0.75, 1. ])

Exercise 4.1 Call help(np. linspace) or help("numpy.linspace") to study the meaning of
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the endpoint argument. Find the same documentation page on the numpy project’s website®.
Another way is to use your favourite search engine such as DuckDuckGo and query “linspace
site:numpy.org”®. Always remember to gather information from first-hand sources. You are
expected to become a frequent visitor of this page (and similar ones). In particular, every so often
it is advisable to check out for significant updates at https://numpy.org/news.

4.1.3 Repeating values

numpy . repeat repeats each value a given number of times:

np.repeat(5, 6)

## array([5, 5, 5, 5, 5, 5])
np.repeat([1, 2], 3)

## array([1, 1, 1, 2, 2, 2])
np.repeat([1, 2], [3, 5])

## array([1, 1, 1, 2, 2, 2, 2, 2])

In each case, every element from the list passed as the first argument was repeated
the corresponding number of times, as defined by the second argument.

Moving on. numpy. tile, on the other hand, repeats a whole sequence with recycling:
np.tile([1, 2], 3)

#4 array([1, 2, 1, 2, 1, 2])

Notice the difference between the above and the result of numpy.repeat([1, 2], 3).

See also” numpy . zeros and numpy . ones for some specialised versions of the above.

4.1.4 numpy.r_ (%)

numpy . r_ gives perhaps the most flexible means for creating vectors involving quite a
few of the aforementioned scenarios. Yet, it has a quirky syntax. For example:

np.r_[1, 2, 3, np.nan, 5, np.inf]
## array([ 1., 2., 3., nan, 5., inf])

Here, nan stands for a not-a-number and is used as a placeholder for missing values
(discussed in Section 15.1) or wrong results, such as the square root of -1in the domain
of reals. The inf object, on the other hand, means infinity, co. We can think of it as a
value that is too large to be represented in the set of floating-point numbers.

We see that numpy. r_ uses square brackets instead of the round ones. This is smart for
we mentioned in Section 3.2.2 that slices (" :*) cannot be used outside them. And so:

5 https://numpy.org/doc/stable/reference/index.html

¢ DuckDuckGo also supports search bangs like “! numpy linspace” which redirect to the official docu-
mentation automatically.

7 When we write “see also”, it means that this is an exercise for the reader (Rule #3), in this case: to look
something up in the official documentation.
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np.r_[0:10:2] # like np.arange(0, 10, 2)
## array([0, 2, 4, 6, 8])

What is more, it accepts the following syntactic sugar:

np.r_[0:1:5j] # like np.linspace(@, 1, 5)
## array([6. , 0.25, 0.5, 0.75, 1. ])

Here, 5 does not have a literal meaning (a complex number). By an arbitrary conven-
tion, and only in this context, it denotes the output length of the sequence to be gen-
erated. Could the numpy authors do that? Well, they could, and they did. End of story.

Finally, we can combine many chunks into one:

np.r_[1, 2, [3]*2, 0:3, 0:3:3]]
## array([1. , 2. , 3., 3., 0. , 1., 2. ,0., 1.5 3. ])

4.1.5 Generating pseudorandom variates

The automatically attached numpy. random module defines many functions to generate
pseudorandom numbers. We will be discussing the reason for our using the pseudo
prefix in Section 6.4, so now let us only quickly take note of a way to sample from the
uniform distribution on the unit interval:

np.random.rand(5) # 5 pseudorandom observations in [0, 1]
## array([0.49340194, 0.41614605, 0.69780667, 0.45278338, 0.84061215])

and to pick a few values from a given set with replacement (so that any number can be
generated multiple times):

np.random.choice(np.arange(1, 10), 20) # replace=True
## array([7, 7, 4, 6, 6, 2, 1, 7, 2, 1, 8, 9, 5, 5, 9, 8, 1, 2, 6, 6])

4.1.6 Loading data from files

We will usually be reading whole heterogeneous tabular datasets using pandas.
read_csv, being the topic we shall cover in Chapter 10.

It is worth knowing, though, that arrays with elements of the same type can be read
efficiently from text files (e.g., CSV) using numpy.genfromtxt. See the code chunk at
the beginning of this chapter for an example.

Exercise 4.2 Use numpy.genfromtxt to vead the population largest cities_unnamed®
dataset from GitHub (click Raw to get access to its contents and use the URL you were redirvec-
ted to, not the original one).

8 https://github.com/gagolews/teaching-data/blob/- /marek/population_largest_cities_unnamed.txt
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4.2 Mathematical notation

Mathematically, we will be denoting number sequences with:
X = (Xl,X2, ,.Xn),

where x; is the i-th element therein and # is the length (size) of the tuple. Using the
programming syntax, 1 corresponds to len(x) or, equivalently, x.shape[0]. Further-
more, X; is x[1-1] (because the first element is at index 0).

The bold font (hopefully visible) is to emphasise that x is not an atomic entity (x), but
rather a collection thereof. For brevity, instead of saying “let x be a real-valued se-
quence’ of length n”, we shall write ‘letx € R"”. Here:

« the “€” symbol stands for “is in” or “is a member of ",

« R denotes the set of real numbers (the very one that includes, 0, —358745.2394,
42 and 77, amongst uncountably many others), and

- R"istheset of real-valued sequences of length # (i.e., # such numbers considered
atatime); e.g., R2 includes pairs such as (1,2), (77/3,v2/2), and (1/3,103).

Note Mathematical notation is pleasantly abstract (general) in the sense that x can be
anything, e.g., data on the incomes of households, sizes of the largest cities in some
country, or heights of participants in some longitudinal study. At first glance, such
a representation of objects from the so-called real world might seem overly simplistic,
especially if we wish to store information on very complex entities. Nonetheless, in
most cases, expressing them as vectors (i.e., establishing a set of numeric attributes
that best describe them in a task at hand) is not only natural but also perfectly suffi-
cient for achieving whatever we aim at.

Exercise 4.3 Consider the following problems:

« How would you represent a patient in a clinic (for the purpose of conducting research in car-
diology)?

« Howwould you represent a car in an insurance company’s database (to determine how much
a driver should pay annually for the mandatory policy)?

« How would you represent a student in a university (to grant them scholarships)?

In each case, list a few numeric features that best describe the reality of concern. On a side note,
descriptive (categorical) labels can always be encoded as numbers, e.g., female =1, male =2, but
this will be the topic of Chapter 11.

9 Ifx € R", then we often say that x is a sequence of n numbers, a (numeric) n-tuple, a n-dimensional real
vector, a point in a n-dimensional real space, or an element of a real n-space, etc. In many contexts, they are syn-
onymic.
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By x;y (notice the bracket’®) we will denote the i-th smallest value in x (also called the
i-th order statistic). In particular, x q, is the sample minimum and x , is the maximum.
The same in Python:

x = np.array([5, 4, 2, 1, 3]) # just an example
x_sorted = np.sort(x)

x_sorted[0], x_sorted[-1] # the minimum and the maximum
## (1, 5)

To avoid the clutter of notation, in certain formulae (e.g., in the definition of the type-7
quantiles in Section 5.1.1), we will be assuming that x () is the same as x(1) and x 1,
is equivalent to x;,).

4.3 Inspecting the data distribution with histograms

Histograms are one of the most intuitive tools for depicting the empirical distribution
of a data sample. We will be drawing them using the classic plotting library matplot-
1ib™ [51] (originally developed by John D. Hunter). Let us import it and set its tradi-
tional alias:

import matplotlib.pyplot as plt

4.3.1 heights: A bell-shaped distribution
Let us draw a histogram of the heights dataset; see Figure 4.2.

plt.hist(heights, bins=11, color="1lightgray", edgecolor="black")
plt.ylabel("Count")
plt.show()

The data were split into 11 bins and plotted in such a way that the bar heights are pro-
portional to the number of observations falling into each interval. The bins are non-
overlapping, adjacent to each other, and of equal lengths. We can read their coordin-
ates by looking at the bottom side of each rectangular bar. For example, circa 1200
observations fall into the interval [158, 163] (more or less) and roughly 400 into [168,
173] (approximately).

This distribution is in the shape of a bell; nicely symmetrical around about 160 cm. The
most typical (normal) observations are somewhere in the middle, and the probability
mass decreases quickly on both sides. As a matter of fact, in Chapter 6, we will model
this dataset using a normal distribution and obtain an excellent fit. In particular, we
will mention that observations outside the interval [139, 181] are very rare (probability
less than 1%; via the 30 rule, i.e., expected value + 3 standard deviations).

1° Some textbooks denote the i-th order statistic with x;.,,, but we will not.
" https://matplotlib.org/
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Figure 4.2. A histogram of the heights dataset: the empirical distribution is nicely bell-
shaped.

4.3.2 income: A right-skewed distribution

For some of us, a normal distribution is a prototypical one — we might expect (wish-
fully think) that many phenomena yield similar regularities. And that is approxim-
ately the case'?, e.g., in standardised testing (IQ and other ability scores or personality
traits), physiology (the above heights), or when quantifying physical objects’ attributes
with not-so-precise devices (distribution of measurement errors). We might be temp-
ted to think now that everything is normally distributed, but this is very much untrue.

Let us thus consider another dataset. Figure 4.3 depicts the distribution of a simu-
lated” sample of disposable income of 1 000 randomly chosen UK households, in Brit-
ish Pounds, for the financial year ending 2020.

income = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/uk_income_simulated_2020.txt")

plt.hist(income, bins=20, color="lightgray", edgecolor="black")

plt.ylabel("Count")

plt.show()

We notice that the probability density quickly increases, reaches its peak at around

12 In fact, we have a proposition stating that the sum or average of many observations or otherwise sim-
pler components of some more complex entity, assuming that they are independent and follow the same
(any!) distribution with finite variance, is approximately normally distributed. This is called the Central
Limit Theorem and it is a very strong mathematical result.

B3 For privacy and other reasons, the UK Office for National Statistics does not publish details on indi-
vidual taxpayers. This is why we needed to guesstimate them based on data from a report published at
https://www.ons.gov.uk/peoplepopulationandcommunity.
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Figure 4.3. A histogram of the income dataset: the distribution is right-skewed.

£15 500—£35 000, and then slowly goes down. We say that it has a long tail on the right
or that it is right- or positive-skewed. Accordingly, there are several people earning a de-
cent amount of money. It is quite a non-normal distribution. Most people are rather
unwealthy: their income is way below the per-capita revenue (being the average in-
come for the whole population).

In Section 6.3.1, we will note that such a distribution is frequently encountered in bio-
logy and medicine, social sciences, or technology. For instance, the number of sexual
partners or human weights are believed to be aligned this way.

Note Looking at Figure 4.3, we might have taken note of the relatively higher bars, as
compared to their neighbours, at c. £100 000 and £120 000. We might be tempted to
try to invent a story about why there can be some difference in the relative probability
mass, but we ought to refrain from it. As our data sample is quite small, they might
merely be due to some natural variability (Section 6.4.4). Of course, there might be
some reasons behind it (theoretically), but we cannot read this only by looking at a
single histogram. In other words, itis a tool that we use to identify some rather general
features of the data distribution (like the overall shape), not the specifics.

Exercise 4.4 There is also the nhanes_adult_female weight 2026" dataset in our data re-
pository, giving corresponding weights (in kilograms) of the NHANES study participants. Draw
a histogram. Does its shape resemble the income or heights distribution more?

1 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_weight_2020.
txt
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4.3.3 How many bins?

Unless some stronger assumptions about the data distribution are made, choosing
the right number of bins is more art than science:

« too many will result in a rugged histogram,
« too few might cause us to miss some important details.

Figure 4.4 illustrates this.

plt.subplot(1, 2, 1) # one row, two columns; the first plot
plt.hist(income, bins=5, color="1lightgray", edgecolor="black")
plt.ylabel("Count")

plt.subplot(1, 2, 2) # one row, two columns; the second plot
plt.hist(income, bins=200, color="1lightgray", edgecolor="black")
plt.ylabel(None)

plt.show()
35
700
30
600
25
500
§ 20
3 400
(o]
;
300 5
200 10
100 5
SR i
o o il b d |
) 50000 100000 150000 200000 o 50000 100000 150000 200000

Figure 4.4. Too few and too many histogram bins (the income dataset).

For example, in the histogram with five bins, we miss the information that the
¢. £20 000 income is more popular than the c. £10 000 one. (as given by the first two
bars in Figure 4.3). On the other hand, the histogram with 200 bins seems to be too
fine-grained already.

Important Usually, the “truth” is probably somewhere in-between. When preparing
histograms for publication (e.g., in a report or on a webpage), we might be tempted to
think “one must choose one and only one bin count”. In fact, we do not have to. Even
though some people will insist on it, remember that it is we who are responsible for
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the data being presented in the most unambiguous fashion possible. Providing two or
three histograms can sometimes be a much better idea.

Further, let us be aware that someone might want to trick us by choosing the number
of bins that depict the reality in good light, when the truth is quite the opposite. For
instance, the histogram on the left above hides the poorest households inside the first
bar - the first income bracket is very wide. If we cannot request access to the original
data, the best thing we can do is to simply ignore such a data visualisation instance
and warn others not to trust it. A true data scientist must be sceptical.

The documentation of matplotlib.pyplot.hist states that the bins argument is
passed to numpy.histogram_bin_edges to determine the intervals into which our data
are to be split. numpy.histogram uses the same function and additionally returns the
corresponding counts (how many observations fall into each bin) instead of plotting
them.

counts, bins = np.histogram(income, 20)

counts

## array([131, 238, 238, 147, 95, 55, 29, 23, 10, 12, 5, 7, 4,
## 3, 2, 0, o, o, 0, 1])

bins

#4 array([ 5750. , 15460.95, 25171.9 , 34882.85, 44593.8 , 54304.75,
## 64015.7 , 73726.65, 83437.6 , 93148.55, 102859.5 , 1125760.45,
## 122281.4 , 131992.35, 141703.3 , 151414.25, 161125.2 , 170836.15,
## 180547.1 , 190258.05, 199969. ])

Thus, there are 238 observations both in the [15 461, 25 172) and [25 172, 34 883) intervals.

Note A table of ranges and the corresponding counts can be effective for data report-
ing. Itis more informative and takes less space than a series of raw numbers, especially
if we present them like in the table below.

Table 4.1. Incomes of selected British households; the bin edges are pleasantly round
numbers

income bracket [£1000s] count

0—-20 236
20—40 459
40—-60 191
60-80 64
80-100 26
100—-120 11
120—-140 10
140-160 2
160-180 o

180-200 1
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Reporting data in tabular form can also increase the privacy of the subjects (making
subjects less identifiable, which is good) or hide some uncomfortable facts (which is
not so good; “there are ten people in our company earning more than £200 000 p.a.” -
this can be as much as £10 000 000, but shush).

Exercise 4.5 Find out howwe canprovide thematplotlib.pyplot.histandnumpy.histogram
functions with custom bin breaks. Plot a histogram where the bin edges are 0, 20 000, 40 000,
etc. (just like in the above table). Also let us highlight the fact that bins do not have to be of equal
sizes: set the last bin to [140 000, 200 000].

Example 4.6 Let us also inspect the bin edges and counts that we see in Figure 4.2:

counts, bins = np.histogram(heights, 11)

counts

## array([ 2, 11, 116, 409, 992, 1206, 948, 404, 110, 20, 37)
bins

## array([131.1 , 136.39090909, 141.68181818, 146.97272727,
## 152.26363636, 157.55454545, 162.84545455, 168.13636364,
## 173.42727273, 178.71818182, 184.00909091, 189.3 1)

Exercise 4.7 (%) There are quite a few heuristics to determine the number of bins automagic-
ally, see numpy . histogram_bin_edges for a few formulae. Check out how different values of the
binsargument (e.g., "sturges", "fd") affect the histogram shapes on both income and heights
datasets. Each has its limitations, none is perfect, but some might be a sensible starting point for
further fine-tuning.

We will get back to the topic of manual data binning in Section 11.1.4.

4.3.4 peds: Abimodal distribution (already binned)

Here are the December 2021 hourly average pedestrian counts® near the Southern
Cross Station in Melbourne:

peds = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/southern_cross_station_peds_2019_dec.txt")

peds

## array([ 31.22580645, 18.38709677, 11.77419355, 8.48387097,

## 8.58064516, 58.70967742, 332.93548387, 1121.96774194,
## 2061.87096774, 1253.41935484, 531.64516129, 502.35483871,
#H 899.06451613, 775. , 614.87096774, 825.06451613,
## 1542.74193548, 1870.48387097, 884.38709677, 345.83870968,
## 203.48387097, 150.4516129 , 135.67741935, 94.03225806] )

This time, data have already been binned by somebody else. Consequently, we cannot
use matplotlib.pyplot.hist to depict them. Instead, we can rely on a more low-level
function, matplotlib.pyplot.bar;see Figure 4.5.

15 http://www.pedestrian.melbourne.vic.gov.au/


http://www.pedestrian.melbourne.vic.gov.au/

58 II' UNIDIMENSIONAL DATA

plt.bar(np.arange(0, 24), width=1, height=peds,
color="1lightgray", edgecolor="black")
plt.show()
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Figure 4.5. A histogram of the peds dataset: a bimodal (trimodal?) distribution.

This is an example of a bimodal (or even trimodal) distribution: there is a morning
peak and an evening peak (and some analysts probably would distinguish a lunchtime
one too).

4.3.5 matura: A bell-shaped distribution (almost)

Figure 4.6 depicts a histogram of another interesting dataset which comes in an
already pre-summarised form.

matura = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/matura_2019 polish.txt")
plt.bar(np.arange(0, 71), width=1, height=matura,
color="11ightgray", edgecolor="black")
plt.show()

This gives the distribution'® of the 2019 Matura (end of high school) exam scores in
Poland (in %) — Polish literature'’ at the basic level.

We expected the distribution to be bell-shaped. However, someone tinkered with it.
Still, knowing that:

16 https://cke.gov.pl/images/_EGZAMIN_MATURALNY_OD_2015/Informacje_o_wynikach/2019/
sprawozdanie/Sprawozdanie%202019%20- %2.0] %C4%99zyk%20polski.pdf
7 Gombrowicz, Natkowska, Milosz, Tuwim, etc.; I recommend.
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Figure 4.6. A histogram of the matura dataset: a bell-shaped distribution... almost.

- the examiners are good people: we teachers love our students,
« 20 points were required to pass,
- 50 points were given for an essay and beauty is in the eye of the beholder,

it all starts to make sense. Without graphically depicting this dataset, we would not
know that such (albeit lucky for some students) anomalies occurred.

4.3.6 marathon (truncated - fastest runners): A left-skewed distribution

Next, let us consider the 37th PZU Warsaw Marathon (2015) results.

marathon = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/37_pzu_warsaw_marathon_mins.txt")

Here are the top five gun times (in minutes):

marathon[:5] # preview first 5 (data are already sorted increasingly)
## array([129.32, 130.75, 130.97, 134.17, 134.68])

Plotting the histogram of the data on the participants who finished the 42.2 km run in
less than three hours, i.e., a truncated version of this dataset, reveals that the data are
highly left-skewed; see Figure 4.7.

plt.hist(marathon[marathon < 180], color="lightgray", edgecolor="black")
plt.ylabel("Count")
plt.show()
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Figure 4.7. A histogram of a truncated version of the marathon dataset: the distribution
is left-skewed.

This was expected. There are only a few elite runners in the game. Yours truly wishes
his personal best will be less than 180 minutes someday. We shall see. Running is fun,
and so is walking; why not take a break for an hour and go outside?

Exercise 4.8 Plot the histogram of the untruncated (complete) version of this dataset.

4.3.7 Log-scale and heavy-tailed distributions

Consider the dataset on the populations of cities in the 2000 US Census:

cities = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/other/us_cities_2000.txt")

Let us restrict ourselves only to the cities whose population is not less than 10 0oo (an-
other instance of truncating, this time on the other side of the distribution). It turns
out that, even though they constitute roughly 14% of all the US settlements, as much
as about 84% of all the citizens live there.

large _cities = cities[cities >= 10000]

Here are the populations of the five largest cities (can we guess which ones are they?):

large_cities[-5:] # preview last 5 - data are sorted increasingly
## array([1517550., 1953633., 2896047., 3694742., 8008654.])

The histogram is depicted in Figure 4.8. It is virtually unreadable because the dis-
tribution is not just right-skewed; it is extremely heavy-tailed. Most cities are small,
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and those that are large, such as New York, are really unique. Had we plotted the
whole dataset (cities instead of large_cities), the results’ intelligibility would be
even worse.

plt.hist(large_cities, bins=20, color="lightgray", edgecolor="black")
plt.ylabel("Count")
plt.show()

2500
2000

1500

Count

1000

500

1e6

Figure 4.8. A histogram of the large_cities dataset: the distribution is extremely
heavy-tailed.

This is why we should rather draw such a distribution on the logarithmic scale; see Fig-
ure 4.9.

logbins = np.geomspace(np.min(large_cities), np.max(large_cities), 21)
plt.hist(large_cities, bins=logbins, color="1lightgray", edgecolor="black")
plt.xscale("log")

plt.ylabel("Count")

plt.show()

The log-scale causes the x-axis labels not to increase linearly: it is no longer based on
steps of equal sizes like 0, 1000 000, 2000 000, ..., and so forth. Instead, the increases
are now geometrical: 10 000, 100 000, 1 000 000, etc.

This is a right-skewed distribution even on the logarithmic scale. Many real-world
datasets behave alike; e.g., the frequencies of occurrences of words in books. On a
side note, Chapter 6 will discuss the Pareto distribution family which yields similar
histograms.

Note We relied on numpy.geomspace to generate bin edges manually:
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Figure 4.9. Another histogram of the large_cities dataset: the distribution is right-
skewed even on a logarithmic scale.

np.round(np.geomspace(np.min(large_cities), np.max(large_cities), 21))

## array([ 10001.,
74319.,
552272.,
4104005., 5733024., 8008654.])

##
##
##

13971.,
103818.,
771488.,

19516.,
145027.,
1077717.,

27263.,
202594.,
1505499. ,

38084., 53201.,
283010., 395346.,
2103083., 2937867.,

Due to the fact that the naturallogarithm is the inverse of the exponential function and
vice versa (compare Section 5.2), equidistant points on a logarithmic scale can also be

generated as follows:

np.round(np.exp(
np.linspace(

np.log(np.
np.log(np.
21
)
## array([ 10001.
## 74319.
## 552272.
## 4104005.

min(large_cities)),
max(large_cities)),

B

0

s

5

13971.
103818.
771488.

5733024.

9

B

B

9

19516.,
145027.,

1077717.

8008654.])

27263.,
202594.
1505499.,

38084., 53201.,
283010., 395346.,
2103083., 2937867.,

Exercise 4.9 Draw the histogram of income on the logarithmic scale. Does it resemble a bell-
shaped distribution? We will get back to this topic in Section 6.3.1.
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4.3.8 Cumulative probabilities and the empirical cumulative distribution
function

Letus go back to the heights dataset. The histogram in Figure 4.2 told us that, amongst
others, 28.6% (1 206 of 4 221) of women are approximately 160.2 + 2.65 cm tall.

Still, sometimes we might be more interested in cumulative probabilities; see Fig-
ure 4.10. They have a different interpretation: we can read that, e.g., 80% of all women
are no more than roughly 166 cm tall (or that only 20% are taller than this height).

plt.hist(heights, bins=20, cumulative=True, density=True,
color="11ightgray", edgecolor="black")

plt.ylabel("Cumulative probability")

plt.show()

0.6

0.4

Cumulative probability

0.2

130 140 150 160 170 180 190

Figure 4.10. A cumulative histogram of the heights dataset.

Very similar is the plot of the empirical cumulative distribution function (ECDF), which for
asamplex = (xq,...,x,,) we denote as F,,. And so, at any given point f € R, F,, (¢) is
a step function'® that gives the proportion of observations in our sample that are not greater
thant:

We read |i : x; < f| as the number of indexes like i such that the corresponding x; is
less than or equal to ¢. It can be shown that, given the ordered inputs x(1) < x5, <

18 We cannot see the steps in Figure 4.11 seeing the points are too plentiful.
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Let us underline the fact that drawing the ECDF does not involve binning — we only
need to arrange the observations in an ascending order. Then, assuming that all ob-
servations are unique (there are no ties), the arithmetic progression1/n,2/n, ... ,n/n
is plotted against them; see Figure 4.11%.

n = len(heights)

heights_sorted = np.sort(heights)

plt.plot(heights_sorted, np.arange(1, n+1)/n, drawstyle="steps-post")
plt.xlabel("S$t$") # LaTeX maths

plt.ylabel("$\\hat{F}_n(t)$, i.e., Prob(height $\\leg$ t)")
plt.show()
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Figure 4.11. The empirical cumulative distribution function for the heights dataset.

Thus, for example, the height of 150 cm is not exceeded by 10% of the women.

Note (*) Quantiles (which we introduce in Section 5.1.1) can be considered a general-
ised inverse of the ECDF.

19 (*) We are using (La)TeX maths typesetting within "$...$" to obtain nice plot labels, see [69] for a
comprehensive introduction.
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4.4 Exercises
Exercise 4.10 What is the difference between numpy . arange and numpy . linspace?

Exercise 4.11 (*) What happens when we convert a logical vector to a numeric one? And what
about when we convert a numeric vector to a logical one? We will discuss that later, but you might
want to check it yourself now.

Exercise 4.12 Check what happens when we try to create a vector storing a mix of logical, in-
teger, and floating-point values.

Exercise 4.13 What is a bell-shaped distribution?
Exercise 4.14 What is a right-skewed distribution?
Exercise 4.15 What is a heavy-tailed distribution?
Exercise 4.16 What is a multi-modal distribution?

Exercise 4.17 (*) When does logarithmic binning make sense?






5

Processing unidimensional data

It is extremely rare for our datasets to bring interesting and valid insights out of the
box. The ones we are using for illustrational purposes in the first part of our book have
already been curated. After all, this is an introductory course. We need to build up
the necessary skills and not overwhelm the tireless reader with too much information
all at once. We learn simple things first, learn them well, and then we move to more
complex matters with a healthy level of confidence.

In real life, various data cleansing and feature engineering techniques will need to be per-
formed on data. Most of them are based on the simple operations on vectors that we
cover in this chapter:

- summarising data (for example, computing the median or sum),

o transforming values (applying mathematical operations on each element, such as
subtracting a scalar or taking the natural logarithm),

« filtering (selecting or removing observations that meet specific criteria, e.g., those
that are larger than the arithmetic mean + 3 standard deviations).

Important Chapter 10 will be applying the same operations on individual data frame
columns.

5.1 Aggregating numeric data

Recall thatin the previous chapter we discussed the heights and income datasets whose
histograms we gave in Figure 4.2 and Figure 4.3, respectively. Such graphical summar-
ies are based on binned data. They provide us with snapshots of how much probability
mass is allocated in different parts of the data domain.

Instead of dealing with large datasets, we obtained a few counts. The process of bin-
ning and its textual or visual depictions is valuable in determining whether the dis-
tribution is unimodal or multimodal, skewed or symmetric around some point, what
range of values contains most of the observations, and how small or large extreme
values are.
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Too much information may sometimes be overwhelming. Besides, revealing it might
not be a clever idea for privacy or confidentiality reasons'. Consequently, we might
be interested in even more synthetic descriptions — data aggregates which reduce the
whole dataset into a single number reflecting one of its many characteristics. They can
provide us with a kind of bird’s-eye view of some of its aspects. We refer to such pro-
cesses as data aggregation; see [30, 43].

In this part, we discuss a few noteworthy measures of:
« location; e.g., central tendency measures such as mean and median;
- dispersion; e.g., standard deviation and interquartile range;
. distribution shape; e.g., skewness.

We also introduce box-and-whisker plots.

5.1.1 Measures of location
Arithmetic mean and median
Two main measures of central tendency are:

o the arithmetic mean (sometimes for simplicity called the mean or average), defined
as the sum of all observations divided by the sample size:

X =

(X1 + %y + - +x 1
1+X% n)z_zxi’
n n ¢

« the median, being the middle value in a sorted version of the sample if its length is
odd or the arithmetic mean of the two middle values otherwise:

_ X((n+1)/2) ifnis Odd,
= 2wt ey g even
5 .

They can be computed using the numpy.mean and numpy.median functions.

heights = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_height_2020.txt")

np.mean(heights), np.median(heights)

## (160.13679222932953, 160.1)

income = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/uk_income_simulated 2020.txt")

np.mean(income), np.median(income)

## (35779.994, 30042.0)

Let us underline what follows:

! Nevertheless, we strongly advocate for all information of concern to the public to be openly available,
so that experienced statisticians can put them to good use.
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« for symmetric distributions, the arithmetic mean and the median are expected to
be more or less equal,

. for skewed distributions, the arithmetic mean will be biased towards the heavier
tail.

Exercise 5.1 Get the arithmetic mean and median for the 37_pzu_warsaw_marathon_mins
dataset mentioned in Chapter 4.

Exercise 5.2 () Write a function that computes the median without the use of numpy . median
(based on its mathematical definition and numpy. sort).

Note (*) Technically, the arithmetic mean can also be computed using the mean method
for the numpy.ndarray class. It will sometimes be the case that we have many ways to
perform the same operation. We can even compose it manually using the sum function.
Thus, all the following expressions are equivalent:

print(
np.mean(income),
income.mean(),
np.sum(income)/len(income),
income.sum()/income.shape[0]

)
## 35779.994 35779.994 35779.994 35779.994

On the other hand, there exists the numpy.median function but, unfortunately, the me-
dian method for vectors is not available. This is why we prefer sticking with functions.

Sensitive to outliers vs robust

The arithmetic mean is strongly influenced by very large or very small observations
(which in some contexts we refer to as outliers). For instance, assume that we are invit-
ing a billionaire to the income dataset:

income2 = np.append(income, [1_000_000 _0007])
print(np.mean(income), np.mean(income2))
## 35779.994 1034745.2487512487

Comparing this new result to the previous one, oh we all feel much richer now, right?
In fact, the arithmetic mean reflects the income each of us would get if all the wealth
were gathered inside a single Santa Claus’s (or Robin Hood’s) sack and then distributed
equally amongst all of us. A noble idea provided that everyone contributes equally to
the society, which unfortunately is not the case.

On the other hand, the median is the value such that 50% of the observations are less
than or equal to it and 50% of the remaining ones are not less than it. Hence, it is
completely insensitive to most of the data points on both the left and the right side of
the distribution:
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print(np.median(income), np.median(income2))
## 30042.0 30076.0

We cannot thus say that one measure is better than the other. Certainly, for symmet-
rical distributions with no outliers (e.g., heights), the mean will be better as it uses all
data (and its efficiency can be proven for certain statistical models). For skewed dis-
tributions (e.g., income), the median has a nice interpretation, as it gives the value in
the middle of the ordered sample. Let us still remember that these data summaries
allow us to look at a single data aspect only, and there can be many different, valid
perspectives. The reality is complex.

Sample quantiles

Quantiles generalise the notions of the sample median and of the inverse of the em-
pirical cumulative distribution function (Section 4.3.8). They provide us with the value
that is not exceeded by the elements in a given sample with a predefined probability.

Before proceeding with a formal definition, which is quite technical, let us point out
that for larger sample sizes, we have the following rule of thumb.

Important For any p between 0 and 1, the p-quantile, denoted g,,, is a value dividing
the sample in such a way that approximately 100p% of observations are not greater
than g, and the remaining circa 100(1 — p)% are not less than g,,.

Quantiles appear under many different names, but they all refer to the same concept.
In particular, we can speak about the 100p-th percentiles, e.g., the o0.5-quantile is the
same as the soth percentile.

Furthermore:
« o-quantile (gp) — the minimum (also: numpy.min),

« 0.25-quantile (g »5) — the first quartile (denoted Q),

0.5-quantile (§q 5) — the second quartile a.k.a. median (denoted m or Q,),
« 0.75-quantile (4q 75) — the third quartile (denoted Qs),
« 1.0-quantile (g1) - the maximum (also: numpy . max).

Here are the above five aggregates for our two datasets:

np.quantile(heights, [0, 0.25, 0.5, 0.75, 1])
## array([131.1, 155.3, 160.1, 164.8, 189.3])
np.quantile(income, [0, 0.25, 0.5, 0.75, 1])
## array([ 5750. , 20669.75, 30042. , 44123.75, 199969. ])

Example 5.3 The same as above, but now printed neatly using f-strings; see Section 2.1.3:
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wh = [0, 0.25, 0.5, 0.75, 1]
gheights = np.quantile(heights, wh)
gincome = np.quantile(income, wh)
print("” heights income")
for i in range(len(wh)):
print(f"q {wh[i]:<4g} {qheights[i]:10.2f} {qincome[1]:10.2f}")

## heights income
## q_0 131.10 57560.00
## q_0.25 155.30  20669.75
# q 0.5 160.10  30042.00
## g 0.75 164.80  44123.75
## q_1 189.30 199969.00

Exercise 5.4 What is the income bracket for 95% of the most typical UK taxpayers? In other
words, determine the 2.5- and 97.5-percentiles.

Exercise 5.5 Compute the midrange of income and heights, being the arithmetic mean of the
minimum and the maximum (this measure is extremely sensitive to outliers).

Note (*)As we do not like the approximately part in the “asymptotic definition” given
above, in this course we shall assume that for any p € [0, 1], the p-quantile is given

by
Gy = X(kpy + k= LkD) Ceiegrny = X (k)

where k = (n — 1)p + 1 and |k] is the floor function, i.e., the greatest integer less
than or equal to k (e.g., [2.0] = [2.001] = [2.999] = 2, [3.0] = [3.999] = 3,
|-3.0] = [—2.999] = |—-2.001| = —3,and [-2.0] = [—-1.001] = -2).

qp is a function that linearly interpolates between the points featuring the consecutive
order statistics, ((k —1)/(n — 1),x,) fork = 1,...,n. For instance, forn = 5, we
connect the points (0,%(1y), (0.25,x(3y), (0.5,x(3y), (0.75,x(4y), (1,x(5)). Forn = 6,
we do the same for (0,x(q)), (0.2,x2)), (0.4,x(3), (0.6,x4y), (0.8,x(5)), (1,X6);
see Figure 5.1.

Notice that for p = 0.5 we get the median regardless of whether # is even or not.

Note (**)There are many definitions of quantiles across statistical software; see the
method argument to numpy . quantile. They were nicely summarised in [53] as well as in
the corresponding Wikipedia® article. They are all approximately equivalent for large
sample sizes (i.e., asymptotically), but the best practice is to be explicit about which
variant we are using in the computations when reporting data analysis results. Accord-
ingly, in our case, we say that we are relying on the type-7 quantiles as described in [53];
see also [44].

In fact, simply mentioning that our computations are done with numpy version 1.xx

2 https://en.wikipedia.org/wiki/Quantile
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Figure 5.1. q,, as a function of p for example vectors of length 5 (left subfigure) and 6
(right).

(as specified in Section 1.4) implicitly implies that the default method parameters are
used everywhere, unless otherwise stated. In many contexts, that is good enough.

5.1.2 Measures of dispersion

Measures of central tendency quantify the location of the most typical value (whatever
that means, and we already know it is complicated). That of dispersion (spread), on
the other hand, will tell us how much variability is in our data. After all, when we say
that the height of a group of people is 160 cm (on average) + 14 cm (here, 2 standard
deviations), the latter piece of information is a valuable addition (and is very different
from the imaginary + 4 cm case).

Some degree of variability might be welcome in certain contexts and disastrous in
others. A bolt factory should keep the variance of the fasteners’ diameters as low as
possible: this is how we define quality products (assuming that they all meet, on av-
erage, the required specification). Nevertheless, too much diversity in human beha-
viour, where everyone feels that they are special, is not really sustainable (but lack
thereof would be extremely boring).

Let us explore the different ways in which we can quantify this data aspect.
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Standard deviation (and variance)

The standard deviation?, is the average distance to the arithmetic mean:

_ )2 _ 2 4 ... — x)2 L
. \’ (g =07+ 0 0"+ + (0 =) 12(951' —X)2.
n ni=

Computing the above with numpy:

np.std(heights), np.std(income)
## (7.062021850008261, 22888.771224379608)

The standard deviation quantifies the typical amount of spread around the arithmetic
mean. It is overall adequate for making comparisons across different samples meas-
uring similar things (e.g., heights of males vs of females, incomes in the UK vs in
South Africa). However, without further assumptions, it is quite difficult to express
the meaning of a particular value of s (e.g., the statement that the standard deviation
of income is £22 900 is hard to interpret). This measure makes therefore most sense
for data distributions that are symmetric around the mean.

Note (*) For bell-shaped data such as heights (more precisely: for normally-
distributed samples; see the next chapter), we sometimes report ¥ + 2s. By the so-
called 20 rule, the theoretical expectancy is that roughly 95% of data points fall into
the [¥ — 2s, X + 2s] interval.

Further, the variance is the square of the standard deviation, s2. Mind that if data are
expressed in centimetres, then the variance is in centimetres squared, which is not very
intuitive. The standard deviation does not have this drawback. Mathematicians find
the square root annoying though (for many reasons); that is why we will come across
the s? every now and then too.

Interquartile range

The interquartile range (IQR) is another popular measure of dispersion. It is defined
as the difference between the third and the first quartile:

IQR = gg.75 — qo.25 = Q3 — Q1.

Computing the above is almost effortless:

3 (**) Based on the so-called uncorrected for bias version of the sample variance. We prefer it here for di-
dactical reasons (simplicity, better interpretability). Plus, it is the default one in numpy. Passing ddof=1
(delta degrees of freedom) to numpy . std will apply division by n — 1 instead of by n. When used as an estim-
ator of the distribution’s standard deviation, the latter has slightly better statistical properties (which we
normally explore in a course on mathematical statistics, which this one is not). However, we will see later
that the std methods in the pandas package have ddof=1 by default. Therefore, we might be interested
in setting ddof=0 therein.
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np.quantile(heights, 0.75) - np.quantile(heights, 0.25)
## 9.5

np.quantile(income, 0.75) - np.quantile(income, 0.25)
## 23454.0

The IQR has an appealing interpretation: it is the range comprised of the 50% most
typical values. It is a quite robust measure, as it ignores the 25% smallest and 25%
largest observations. Standard deviation, on the other hand, is extremely sensitive
to outliers.

Furthermore, by range (or support) we will mean a measure based on extremal
quantiles: it is the difference between the maximal and minimal observation.

5.1.3 Measures of shape

From a histogram, we can easily read whether a dataset is symmetric or skewed. It
turns out that we can easily quantify such a characteristic. Namely, the skewness is
given by:

% Z’?:l(xi —x)3

( 3 Y (x; — f)2>3'

g:

For symmetric distributions, skewness is approximately zero. Positive and negative
skewness indicates a heavier right and left tail, respectively.

For example, heights are an instance of an almost-symmetric distribution:

scipy.stats.skew(heights)
## 0.0811184528074054

Income, on the other hand, is right-skewed:

scipy.stats.skew(income)
## 1.9768735693998942

Now we have them expressed as a single number.

Note (*)Itisworth stressingthatg > 0doesnotimply that the sample meanis greater
than the median. As an alternative measure of skewness, sometimes the practitioners
use:

X—m

&=

Yule’s coefficient is an example of a robust skewness measure:

"o_ Q3+Q1_2m
Q—-Q1
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The computation thereof on our example datasets is left as an exercise.

Furthermore, kurtosis (or Fisher’s excess kurtosis, compare scipy.stats.kurtosis) de-
scribes whether an empirical distribution is heavy- or thin-tailed.

5.1.4 Box (and whisker) plots

A box-and-whisker plot (box plot for short) depicts some noteworthy features of a data
sample.

plt.subplot(2, 1, 1) # two rows, one column; the first subplot
plt.boxplot(heights, vert=False)

plt.yticks([1], ["heights"]) # label at y=1

plt.subplot(2, 1, 2) # two rows, one column; the second subplot
plt.boxplot(income, vert=False)

plt.yticks([1], ["income"]) # label at y=1

plt.show()

heights O O @O———— | |——————4EDDOO OO

130 140 150 160 170 180 190
income I CBIXEDED GA@D® O O
0 25000 50000 75000 100000 125000 150000 175000 200000

Figure 5.2. Example box plots.

Each box plot (compare Figure 5.2) consists of:
- the box, which spans between the first and the third quartile:
- the median is clearly marked by a vertical bar inside the box;
- the width of the box corresponds to the IQR;

« the whiskers, which span* between:

4 The 1.5IQR rule is the most popular in the statistical literature, but some plotting software may use
different whisker ranges. See Section 15.4.1 for further discussion.
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- the smallest observation (the minimum) or Q; — 1.5IQR (the left side of the
box minus 3/2 of its width), whichever is larger, and

- thelargest observation (the maximum) or Q3 + 1.5IQR (the right side of the
box plus 3/2 of its width), whichever is smaller.

Additionally, all observations that are less than Q; — 1.5IQR (if any) or greater than
Qs + 1.5IQR (if any) are separately marked.

Note We are used to referring to the individually marked points as outliers. Still, it
does not automatically mean there is anything anomalous about them. They are atypical
in the sense that they are considerably farther away from the box. But this might as
well indicate some problems in data quality (e.g., when someone made a typo entering
the data). Actually, box plots are calibrated (via the nicely round magic constant 1.5) in
such a way that we expect there to be no or only few outliers if the data are normally
distributed. For skewed distributions, there will naturally be many outliers on either
side; see Section 15.4 for more details.

Box plots are based solely on sample quantiles. Most of the statistical packages do not
draw the arithmetic mean. If they do, it is marked with a distinctive symbol.

Exercises.6 Call matplotlib.pyplot.plot(numpy.mean(..data..), 0, "bX")to mark
the arithmetic mean with a blue cross. Alternatively, pass showmeans=True (amongst others) to
matplotlib.pyplot.boxplot.

Box plots are particularly beneficial for comparing data samples with each other (e.g.,
body measures of men and women separately), both in terms of the relative shift (loc-
ation) as well as spread and skewness; see, e.g., Figure 12.1.

Example 5.7 (*) Wemay also be interested in a violin plot (Figure 5.3). Its shape is based on a
kernel density estimator, which is a smoothened version of a histogram; see Section 15.4.2.

plt.subplot(2, 1, 1) # two rows, one column; the first subplot
plt.violinplot(heights, vert=False, showextrema=False)
plt.boxplot(heights, vert=False)

plt.yticks([1], ["heights"])

plt.subplot(2, 1, 2) # two rows, one column; the second subplot
plt.violinplot(income, vert=False, showextrema=False)
plt.boxplot(income, vert=False)

plt.yticks([1], ["income"])

plt.show()

5.1.5 Further methods (*)

We said that the arithmetic mean is overly sensitive to extreme observations. The
sample median is an example of a robust aggregate — it ignores all but 1-2 middle
observations (we would say it has a high breakdown point). Some measures of central
tendency that are in-between the mean-median extreme include:
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Figure 5.3. Example violin plots.

« trimmed means — the arithmetic mean of all the observations except several, say p,
the smallest and the greatest ones,

« winsorised means — the arithmetic mean with p smallest and p greatest observations
replaced with the (p + 1)-th smallest the (p + 1)-th largest one.

The arithmetic mean is not the only mean of interest. The two other famous means
are the geometric and harmonic ones. The former is more meaningful for averaging
growth rates and speedups whilst the latter can be used for computing the average
speed from speed measurements at sections of identical lengths; see also the notion
of the F measure in Section 12.3.2. Also, the quadratic mean is featured in the defini-
tion of the standard deviation (it is the quadratic mean of the distances to the mean).

As far as spread measures are concerned, the interquartile range (IQR) is a robust stat-
istic. If necessary, the standard deviation might be replaced with:

. . n —
« mean absolute deviation from the mean: % D X — X,

. . . n
. mean absolute deviation from the median: % Diq Ixp —ml,

- median absolute deviation from the median: the median of (|x; — m|,|x, —
ml, ..., |x, —ml).

The coefficient of variation, being the standard deviation divided by the arithmetic mean,
is an example of a relative (or normalised) spread measure. It can be appropriate for
comparing data on different scales, as it is unitless (think how standard deviation
changes when you convert between metres and centimetres).

The Gini index, widely used in economics, can also serve as a measure of relative dis-
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persion, but assumes that all data points are nonnegative:

n n
G = Zi:] Z]’:l |xi - x]' _ Z?:l (Tl —2i+ 1)x(}’l—i+1)
2m—1)nx (”_1)2?:1 X;

It is normalised so that it takes values in the unit interval. An index of o reflects the
situation where all values in a sample are the same (0 variance; perfect equality). If
there is a single entity in possession of all the “wealth”, and the remaining ones are o,
then the index is equal to 1.

For a more generic (algebraic) treatment of aggregation functions for unidimensional
data; see, e.g., [11, 30, 31, 43]. Some measures might be better than others under cer-
tain (often strict) assumptions usually explored in a course on mathematical statistics,
e.g., [40].

Overall, numerical aggregates can be used in cases where data are unimodal. For mul-
timodal mixtures or data in groups, they should rather be applied to summarise each
cluster/class separately; compare Chapter 12. Also, Chapter 8 will extend some of the
summaries for the case of multidimensional data.

5.2 Vectorised mathematical functions

numpy, just like any other comprehensive numerical computing package, library, or en-
vironment (e.g., R, GNU Octave, Scilab, and Julia), defines many basic mathematical
functions:

« absolute value: numpy. abs,
. square and square root: numpy.square and numpy.sqrt, respectively,
« (natural) exponential function: numpy.exp,

« logarithms: numpy. log (the natural logarithm, i.e., base €), numpy.log10 (base 10),
etc.,

. trigonometric functions: numpy. cos, numpy.sin, numpy. tan, etc., and their inverses:
numpy . arccos, etc.

. rounding and truncating: numpy . round, numpy . floor, numpy . ceil, numpy.trunc.

Each of these functions is vectorised. Applying, say, f, on a vector likex = (xq,...,x,),
we obtain a sequence of the same size with all elements appropriately transformed:

f(x) = (f(xl)/f(xz)/"'/f(xn))'

In other words, f operates element by element on the whole array.

Vectorised operations are frequently used for making adjustments to data, e.g., as in
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Figure 6.8, where we discover that the logarithm of the UK incomes has a bell-shaped
distribution.

An example call to the vectorised version of the rounding function:

np.round([-3.249, -3.151, 2.49, 2.51, 3.49, 3.51], 1)
## array([-3.2, -3.2, 2.5, 2.5, 3.5, 3.5])

The input list has been automatically converted to a numpy vector.

Important Thanks to the vectorised functions, our code is not only more readable,
but also runs faster: we do not have to employ the generally slow Python-level while or
for loops to traverse through each element in a given sequence.

5.2.1 Logarithms and exponential functions

Here are some significant properties of the natural logarithm and its inverse, the ex-
ponential function. By convention, Euler’s number e ~ 2.718, logx = log, x, and
exp(x) = e*.

« log1l = 0, loge = 1;note that logarithms are only defined for x > 0: in the limit
asx — 0, we have thatlogx - —oo,

« logx¥ = ylogx and henceloge™ = x,

« log(xy) = logx + logy and thus log(x/y) = logx — logy,
ee¥=1,¢l =¢,ande® - 0asx » —oo,

. elogx =y

o Y =e¥eY and soe* Y = e¥/eY,

. &Y = (e¥)Y.

Both functions are strictly increasing. For x > 1, the logarithm grows very slowly
whereas the exponential function increases very rapidly; see Figure 5.4.

plt.subplot(1, 2, 1)

x = np.linspace(np.exp(-2), np.exp(3), 1001)
plt.plot(x, np.log(x), label="$y=\\log x$")
plt.legend()

plt.subplot(1l, 2, 2)

x = np.linspace(-2, 3, 1001)

plt.plot(x, np.exp(x), label="Sy=\\exp(x)$")
plt.legend()

plt.show()
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Figure 5.4. The natural logarithm (left) and the exponential function (right).

Logarithms of different bases and non-natural exponential functions are also avail-

able. In particular, when drawing plots, we used the base-10 logarithmic scales on the

1 .. .
axes. It holdslog,, x = loog% and its inverse is 10* = ¢¥1°¢10_ For example:

10.0**np.array([-1, 0, 1, 2]) # see below
##4 array([ 0.1, 1. , 10. , 100. ])
np.log10([-1, ©0.01, 0.1, 1, 2, 5, 10, 100, 1000, 10000])

## array([ nan, -2. , -1. , 0. , 0.30103, 0.69897,
## 1. , 2. , 3. , 4. 1)
##

## <string>:1: RuntimeWarning: invalid value encountered in log10

Take note of the warning and the not-a-number (NaN) generated.

Exercise 5.8 Check that when using the log-scale on the x-axis (plt.xscale("log")), the
plot of the logarithm (of any base) is a straight line. Similarly, the log-scale on the y-axis (plt.
yscale("log")) makes the exponential function linear.

5.2.2 Trigonometric functions

Moving on, the trigonometric functions in numpy accept angles in radians. If x is the
degree in angles, then to compute its cosine, we should instead write cos(x7t/180);
see Figure 5.5.

x = np.linspace(-2*np.pi, 4*np.pi, 1001)
plt.plot(x, np.cos(x))
plt.xticks(
(continues on next page)
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(continued from previous page)

[-2*np.pi, -np.pil, O, np.pi/2, np.pil, 3*np.pi/2, 2*np.pi, 4*np.pi],
["$-2\\pis", "$-\\pis", "$0%", "$\\pi/2%", "S\\pis",
"$3\\pi/28", "$2\\pis", "$4\\pis"]

)

plt.show()

1.00
0.75
0.50
0.25
0.00
-0.25
—-0.50
-0.75

-1.00

-2n - 0 nj/2 mn 3m/2 2n 4n

Figure 5.5. The cosine.

Some identities worth memorising:
e sinx = cos(7r/2 — x),
e cos(—x) = cosx,

2x = (cosx)?,

. 2
« cos?x + sin” x = 1, where cos
+ cos(x +y) = cosxcosy —sinxsiny,
+ cos(x —y) = cosxcosy + sinxsiny.

We will refer to them later.

Important The classical handbook of mathematical functions and the (in)equalities
related to them is [1], see [70] for its updated version.
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5.3 Arithmetic operators

[NEEENIEEN

We can apply the standard binary (two-argument) arithmetic operators “+°, *-", **°,
Y/, * %, and T/ /" on vectors too. Below we discuss the possible cases of the oper-
ands’ lengths.

5.3.1 Vector-scalar case

Often, we will be referring to the binary operators in contexts where one operand is a
vector and the other is a single value (scalar). For example:

np.array([-2, -1, 0, 1, 2, 3])**2

## array([4, 1, 0, 1, 4, 9])
(np.array([-2, -1, 0, 1, 2, 3])+2)/5

## array([6. , 0.2, 0.4, 0.6, 0.8, 1. ])

In such a case, each element in the vector is being operated upon (e.g., squared, di-
vided by 5) and we get a vector of the same length in return. Hence, in this case, the
operators behave just like the vectorised mathematical functions discussed above.

Mathematically, it is common to assume that the scalar multiplication and, less com-
monly, the addition are performed in this way.

cx+t=(cxq +tcxo +1,...,0x, +1).

We will also become used to writing (x — t) /¢, which is equivalent to (1/¢)x + (—t/c).

5.3.2 Application: Feature scaling

Vector-scalar operations and aggregation functions are the basis for the most com-
monly applied feature scalers:

. standardisation,
. normalisation,
« min-max scaling and clipping.

They can increase the interpretability of data points by bringing them onto a com-
mon, unitless scale. They might also be essential when computing pairwise distances
between multidimensional points; see Section 8.4.

The transformations listed above are linear, i.e., of the formy = cx + t. We can inter-
pret them geometrically as scaling (stretching or shrinking) and shifting (translating);
see Figure 5.6 for an illustration.

Note Lety = cx + fandlet X, 7, Sxs Sy denote the vectors’ arithmetic means and
standard deviations. The following properties hold.
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Figure 5.6. Scaled and shifted versions of an example vector.

« The arithmetic mean and all the quantiles (including, of course, the median), are
equivariant with respect to translation and scaling; it holds, for instance, i = cX +
t.

« The standard deviation, the interquartile range, and the range are invariant to
translations and equivariant to scaling; e.g., s, = cs,.

As a byproduct, for the variance, we get...s; = c*s3.

Standardisation and z-scores

A standardised version of a vector x = (xq, ..., X,,;) consists in subtracting, from each
element, the sample arithmetic mean (which we call centring) and then dividing it by
the standard deviation, i.e.,z = (x — X)/s.

Thus, we transform each x; to obtain:

Consider again the female heights dataset:

heights[-5:] # preview
## array([157. , 167.4, 159.6, 168.5, 147.8])

whose mean ¥ and standard deviation s are equal to:
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np.mean(heights), np.std(heights)
## (160.13679222932953, 7.062021850008261)

With numpy, standardisation is as simple as applying two aggregation functions and
two arithmetic operations:

heights_std = (heights-np.mean(heights))/np.std(heights)
helghts_std[-5:] # preview
## array([-0.44417764, 1.02848843, -0.07601113, 1.18425119, -1.74692071])

What we obtained is sometimes referred to as the z-scores. They are nicely inter-
pretable:

« z-score of 0 corresponds to an observation equal to the sample mean (perfectly
average);

« z-score of 1is obtained for a datum 1 standard deviation above the mean;
« z-score of -2 means that it is a value 2 standard deviations below the mean;
and so forth.

Because of the way they emerge, the mean of the z-scores is always 0 and standard
deviation is 1 (up to a tiny numerical error, as usual; see Section 5.5.6):

np.mean(heights_std), np.std(heights_std)
##4# (1.8920872660373198e-15, 1.0)

Even though the original heights were measured in centimetres, the z-scores are unit-
less (centimetres divided by centimetres).

Important Standardisation enables the comparison of measurements on differ-
ent scales (think: height in centimetres vs weight in kilograms or apples vs or-
anges). It makes the most sense for bell-shaped distributions, in particular normally-
distributed ones. Section 6.1.2 will introduce the 2¢ rule for the normal family (but
not necessarily other models!). We will learn that we can expect that 95% of observa-
tions have z-scores between -2 and 2. Further, z-scores less than -3 and greater than
3 are highly unlikely.

Exercise 5.9 We have a patient whose height z-score is 1 and weight z-score is -1. How can we
interpret this information?

Exercise 5.10 What about a patient whose weight z-score is 0 but BMI z-score is 2?2

On a side note, sometimes we might be interested in performing some form of robust
standardisation (e.g., for data with outliers or skewed). In such a case, we can replace
the mean with the median and the standard deviation with the IQR.
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Min-max scaling and clipping

A less frequently but still noteworthy transformation is called min-max scaling and in-
volves subtracting the minimum and then dividing by the range, (x — x1,)/(x(,y —

X(l)).

x = np.array([-1.5, 0.5, 3.5, -1.33, 0.25, 0.8])

(x - np.min(x))/(np.max(x)-np.min(x))
## array([0. , 0.4 , 1. , 0.034, 0.35, 0.46 ])

Here, the smallest value is mapped to 0 and the largest becomes equal to 1. Let us stress
that, inthis context, 0.5 does not represent the value which is equal to the mean (unless
we are incredibly lucky).

Also, clipping can be used to replace all values less than o with 0 and those greater than
1with1.

np.clip(x, 0, 1)
## array([6. , 0.5, 1. , 0. , 0.25, 0.8 ])

The function is, of course, flexible. Another popular choice is clipping to [—1,1]. It
can also be composed by means of the vectorised pairwise minimum and maximum
functions.

np.minimum(1, np.maximum(0, X))
## array([6. , 0.5, 1. , 0. , 0.25, 0.8 ])

Normalisation (/,; dividing by magnitude)

Normalisation is the scaling of a given vector so that it is of unit length. Usually, by length
we mean the square root of the sum of squares, i.e., the Euclidean (/) norm also known
as the magnitude:

1y, oo )l = A3+ 23+ + 22 =

Its special case for n = 2 we know well from high school: the length of a vector (g, b)

is Va2 + b2, e.g., (1,2)|| = \/3 =~ 2.236. Also, we are advised to program our brains
so that when we see ||x||? next time, we immediately think of the sum of squares.

Consequently, a normalised vector:
x /x X X,
i = (i o )
can be determined via:

x = np.array([1, 5, -4, 2, 2.5]) # example vector
x/np.sqrt(np.sum(x**2)) # x divided by the Euclidean norm of x
#4 array([ 0.13834289, 0.69171446, -0.55337157, 0.27668579, 0.34585723])
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Exercise 5.11 Normalisation is similar to standardisation if data are already centred (when the
mean was subtracted). Show that we can obtain one from the other via the scaling by vn.

Important A common confusion is that normalisation is supposed to make data more
normally distributed. This is not the case’®, as we only scale (stretch or shrink) the ob-
servations here.

Normalisation (/;; dividing by sum)
At other times, we might be interested in considering the Manhattan (/;) norm:

n

1021, e, Xl = ]+ ol + -+ Pl = ) I,
i=1

being the sum of absolute values.

x / np.sum(np.abs(x))
## array([ 0.06896552, 0.34482759, -0.27586207, 0.13793103, 0.17241379])

I; normalisation is frequently applied on vectors of nonnegative values, whose norm-
alised versions can be interpreted as probabilities or proportions: values between o0 and 1
which sum to 1 (or, equivalently, 100%).

Example 5.12 Given some binned data:

¢, b = np.histogram(heights, [-np.inf, 150, 160, 170, np.inf])
print(c) # counts
#4 [ 306 1776 1773 366]

We can convert the counts to empirical probabilities:

p = c/np.sum(c) # np.abs is not needed here

print(p)
## [0.07249467 0.42075338 0.42004264 0.08670931]

We did not apply numpy . abs because the values were already nonnegative.

5.3.3 Vector-vector case

So far we have been applying “**, *+', etc., on vectors and scalars only. All arithmetic
operators can also be applied on two vectors of equal lengths. In such a case, they will
act elementwisely: taking each element from the first operand and combining it with
the corresponding element from the second argument:

5 (*) A Box—Cox transformation can help achieve this in some datasets; see [10]. Chapter 6 will apply
its particular case: it will turn out that the logarithm of incomes follow a normal distribution (hence, in-
comes follow a log-normal distribution). Generally, there is nothing “wrong” or “bad” about data’s not being
normally-distributed. It is just a nice feature to have in certain contexts.
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np.array([2, 3, 4, 5]) * np.array([10, 160, 1000, 16000])
## array([ 20, 300, 4000, 50000])

We see that the first element in the left operand (2) was multiplied by the first element
in the right operand (10). Then, we multiplied 3 by 100 (the second corresponding ele-
ments), and so forth.

Such a behaviour of the binary operators is inspired by the usual convention in vector
algebra where applying + (or =) onx = (xq,...,x,) andy = (yy,...,Y,) means
exactly:

X+y= (X1 +Y1, X+ Yo, e, Xy +Yp).

Using other operators this way (elementwisely) is less standard in mathematics (for
instance multiplication might denote the dot product), but in numpy it is really con-
venient.

Example 5.13 Letus compute thevalue of the expressionh = —(py logpy +---+p,, logp,,),
. n
ie,h=—7._,p;logp; (theentropy):

p = np.array([0.1, 0.3, 0.25, 0.15, 0.12, 0.08]) # example vector

-np.sum(p*np. log(p))
## 1.6790818544987114

The above involves the use of a unary vectorised minus (change sign), an aggregation function
(sum), a vectorised mathematical function (log), and an elementwise multiplication of two vec-
tors of the same lengths.

Example5.14 Let us assume that — for whatever reason — we would like to plot two mathem-
atical functions, the sine, f (x) = sinx, and a polynomial of degree 7, g(x) = x — x3/6 +
x° /120 — x7 /5040 for x in the interval [ —7t, 371/2].

To do this, we can probe the values of f and g at sufficiently many points using the vectorised
operations discussed so far and then use the matplotlib.pyplot.plot function to draw what
we see in Figure 5.7.

x = np.linspace(-np.pi, 1.5*np.pi, 1001) # many points in the said interval
yf = np.sin(x)

Vg = X - X**3/6 + x**5/120 - x**7/5040

plt.plot(x, yf, 'k-', label="f(x)") # black solid line

plt.plot(x, yg, 'r:', label="g(x)") # red dotted line

plt.legend()

plt.show()

Decreasing the number of points in x will reveal that the plotting function merely draws a series
of straight-line segments. Computer graphics is essentially discrete.

Exercise 5.15 Using a single line of code, compute the vector of BMIs of all persons based on the
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=1
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-3

Figure 5.7. With vectorised functions, it is easy to generate plots like this one. We used
different line styles so that the plot is readable also when printed in black and white.

nhanes_adult_female_height 2026° and nhanes_adult_female weight 2026 datasets. It
is assumed that the i-th elements therein both refer to the same person.

5.4 Indexing vectors

Recall from Section 3.2.1 and Section 3.2.2 that sequential objects in Python (lists,
tuples, strings, ranges) support indexing using scalars and slices:

x = [10, 20, 30, 40, 50]

x[1] # scalar index - extract
## 20

x[1:2] # slice index - subset
## [20]

numpy vectors support two additional indexing schemes: using integer and boolean se-
quences.

6 hteps://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_height_2020.
txt

7 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_weight_2020.
txt


https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_height_2020.txt
https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_weight_2020.txt
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5.4.1 Integerindexing

Indexing with a single integer extracts a particular element:

X = np.array([10, 20, 30, 40, 50])
x[0] # first

## 10

x[1]  # second

## 20

x[-1] # last

## 50

We can also use lists of vectors of integer indexes, which return a subvector with ele-
ments at the specified indexes:

x[ [0] 1]

## array([10])

x[ [0, 1, -1, 0, 1, 0, 0] ]

## array([10, 20, 50, 10, 20, 10, 10])

x[ [11]
## array([], dtype=inté4)

We added some spaces between the square brackets for readability only: e.g., x[[0]]
could seem slightly more obscure. (What are these double square brackets? Nah, it is
alist inside the index operator.)

5.4.2 Logical indexing

Subsetting using a logical vector of the same length as the indexed vector is possible
too:

x[ [True, False, True, True, False] ]
## array([10, 30, 40])

This returned the first, third, and fourth element (select first, omit second, select third,
select fourth, omit fifth).

This is particularly useful as a data filtering technique. Knowing that the relational vec-
tor operators ‘<, “<=", "==","1=", ">=",and "> are performed elementwisely, just like

[N

+,°*" etc. For instance:

x >= 30
## array([False, False, True, True, True])

Thus, we can write:

x[ x >= 30 ]
## array([30, 40, 50])

to mean “select the elements in x which are not less than 30”.
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Of course, the indexed vector and the vector specifying the filter do not® have to be the
same:

y = (x/10) % 2 # whatever

y # equal to 0 if a number is a multiply of 10 times an even number
## array([1., 0., 1., 0., 1.])

x[y==0]

## array([20, 40])

Important Sadly, if we wish to combine many logical vectors, we cannot use the and,
or, and not operators. They are not vectorised (this is a limitation at the language level).

Instead, in numpy, we use the &, *|, and "~ operators. Unfortunately, they have a
lower order of precedence than ‘<, “<=", “==", etc. Therefore, the bracketing of the
comparisons is obligatory.

For example:

X[ (20 <= x) & (x <= 40) ] # check what happens i1f we skip the brackets
## array([20, 30, 40])

means “elements in x between 20 and 40” (greater than or equal to 20 and less than or
equal to 40).

Also:

len(x[ (x < 15) | (x > 35) 1)
## 3

Computes the number of elements in x less than 15 or greater than 35 (not between 15
and 35).

Exercise 5.16 Compute the BMIs only of the women whose height is between 150 and 170 cm.

5.4.3 Slicing

Just as with ordinary lists, slicing with ":" fetches the elements at indexes in a given
range like from: to or from:to:by.

x[:3] # first three elements

## array([10, 20, 30])

x[::2] # every second element

## array([10, 30, 50])

x[1:4] # from the second (inclusive) to the fifth (exclusive)
## array([20, 30, 40])

8 (*) The indexer is computed first, and its value is passed as an argument to the index operator. Python
neither is a symbolic programming language, nor does it feature any nonstandard evaluation techniques.
In other words, [ . . . ] does not care how the indexer was obtained.
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Important For efficiency reasons, slicing returns a view of existing data. It does not
have to make an independent copy of the subsetted elements: by definition, sliced
ranges are regular.

In other words, both x and its sliced version share the same memory. This is import-
ant when we apply operations which modify a given vector in place, such as the sort
method.

y = np.array([6, 4, 8, 5, 1, 3, 2, 9, 7])
y[::2] *= 10 # modifies parts of y in place
y # has changed

## array([60, 4, 80, 5, 10, 3, 20, 9, 70])

This multiplied every second element iny by 10 (i.e., [6, 8, 1, 2, 7]). On the other
hand, indexing with an integer or logical vector always returns a copy.

v[ [1, 3, 5, 7] ] *= 10 # modifies a new object and then forgets about it
y # has not changed since the last modification
## array([60, 40, 80, 50, 10, 30, 20, 90, 70])

This did not modify the original vector, because we applied “*=" on a different object,
which has not even been memorised after that operation took place.

5.5 Other operations
5.5.1 Cumulative sums and iterated differences

Recall that the *+ operator acts on two vectors elementwisely and that the numpy.sum
function aggregates all values into a single one. We have a similar function, but vec-
torised in a slightly different fashion. Namely, numpy. cumsum returns the vector of cu-
mulative sums:

np.cumsum([5, 3, -4, 1, 1, 3])
## array([5, 8, 4, 5, 6, 9])

This gave, in this order: the first element, the sum of first two elements, the sum of
first three elements, ..., the sum of all elements.

Iterated differences are a somewhat inverse operation:

np.diff([5, 8, 4, 5, 6, 9])
## array([ 3, -4, 1, 1, 3])
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It returned the difference between the second and the first element, then the differ-
ence between the third and the second, and so forth. The resulting vector is one ele-
ment shorter than the input one.

We often make use of cumulative sums and iterated differences when processing
time series, e.g., stock exchange data (e.g., by how much the price changed since the
previous day?; Section 16.3.1) or determining cumulative distribution functions (Sec-
tion 4.3.8).

5.5.2 Sorting

The numpy.sort function returns a sorted copy of a given vector, i.e., determines the
order statistics.

X = np.array([50, 30, 10, 40, 20, 30, 50])
np.sort(x)
## array([10, 20, 30, 30, 40, 50, 50])

The sort method (as in: x.sort()), on the other hand, sorts the vector in place (and
returns nothing).

Exercise 5.17 Readers interested move in chaos than in bringing ovder should give numpy.
random. permutation a try. This function shuffles the elements in a given vector.

5.5.3 Dealing with tied observations

Some statistical methods, especially for continuous data’, assume that all observa-
tions in a vector are unique, i.e., there are no ties. In real life, however, some values
might be recorded multiple times. For instance, two marathoners might finish their
runs in exactly the same time, data can be rounded up to a certain number of frac-
tional digits, or it just happens that observations are inherently integer. Therefore,
we should be able to detect duplicated entries.

numpy . unique is a workhorse for dealing with tied observations.

x = np.array([40, 10, 20, 40, 40, 30, 20, 40, 50, 10, 10, 70, 30, 40, 30])
np.unique(x)
## array([10, 260, 30, 40, 50, 70])

Returns a sorted™ version of a given vector with duplicates removed.

We can also get the corresponding counts:

np.unique(x, return_counts=True) # returns a tuple of length 2
##4 (array([10, 20, 30, 40, 50, 70]), array([3, 2, 3, 5, 1, 1]))

® Where, theoretically, the probability of obtaining a tie is equal to 0.
10 Later we will mention pandas . unique which lists the values in the order of appearance.
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It can help determine if all the values in a vector are unique:
np.all(np.unique(x, return_counts=True)[1] == 1)

## False

Exercise 5.18 Playwiththe return_indexargumenttonumpy.unique. It permits pinpointing
the indexes of the first occurrences of each unique value.

5.5.4 Determining the ordering permutation and ranking

numpy .argsort returns a sequence of indexes that lead to an ordered version of a given
vector (i.e., an ordering permutation).

x = np.array([50, 30, 10, 40, 20, 30, 50])
np.argsort(x)
## array([2, 4, 1, 5, 3, 0, 6])

Which means that the smallest element is at index 2, then the second smallest is at
index 4, the third smallest at index 1, etc. Therefore:

x[np.argsort(x)]
## array([10, 20, 30, 30, 40, 50, 50])

is equivalent to numpy.sort(x).

Note (**)Ifthere are tied observationsinavector x, numpy.argsort(x, kind="stable")
will use a stable sorting algorithm (timsort™, a variant of mergesort), which guarantees
that the ordering permutation is unique: tied elements are placed in the order of ap-
pearance.

Next, scipy.stats.rankdata returns a vector of ranks.

X = np.array([50, 30, 10, 40, 20, 30, 50])
scipy.stats.rankdata(x)
## array([6.5, 3.5, 1. , 5., 2. , 3.5, 6.5])

Element 10 is the smallest (“the winner”, say, the quickest racer). Hence, it ranks first.
The two tied elements equal to 30 are the third/fourth on the podium (ex aequo). Thus,
they receive the average rank of 3.5. And so on.

On a side note, there are many methods in nonparametric statistics (those that do
not make any too particular assumptions about the underlying data distribution) that
are based on ranks. In particular, Section 9.1.4 will cover the Spearman correlation
coeflicient.

" https://github.com/python/cpython/blob/3.7/Objects/listsort.txt


https://github.com/python/cpython/blob/3.7/Objects/listsort.txt
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Exercise 5.19 Consult the manual page of scipy. stats. rankdata and test various methods
for dealing with ties.

Exercise 5.20 What is the interpretation of a rank divided by the length of the sample?

Note (**)Readerswith some background in discrete mathematics will be interested in
the fact that calling numpy . argsort on a vector representing a permutation of elements
generates its inverse. In particular, np.argsort(np.argsort(x, kind="stable"))+1is
equivalent to scipy.stats.rankdata(x, method="ordinal").

5.5.5 Searching for certain indexes (argmin, argmax)

numpy .argmin and numpy.argmax return the index at which we can find the smallest and
the largest observation in a given vector.

X = np.array([50, 30, 10, 40, 20, 30, 50])
np.argmin(x), np.argmax(x)
## (2, 0)

If there are tied observations, the smallest index is returned.

Using mathematical notation, the former is denoted by:

[ = argminy;,
]

and read it as: let i be the index of the smallest element in the sequence. Alternatively,
it is the argument of the minimum, whenever:

X; = mjn x]',
]

i.e., the i-th element is the smallest.

We can use numpy . flatnonzero to fetch the indexes where a logical vector has elements
equal to True (Section 11.1.2 mentions that a value equal to zero is treated as the logical
False, and as True in all other cases). For example:

np.flatnonzero(x == np.max(x))
## array([0, 6])

It is a version of numpy.argmax that lets us decide what we would like to do with the
tied maxima (there are two).

Exercise 5.21 Let x be a vector with possible ties. Create an expression that returns a randomly
chosen index pinpointing one of the sample maxima.
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5.5.6 Dealing with round-off and measurement errors

Mathematics tells us (the easy proofis left as an exercise for the reader) that a centred
version of a given vector x,y = x — ¥, has the arithmetic meanof o, i.e., ¥ = 0.

Of course, it is also true on a computer. Or is it?

heights_centred = (heights - np.mean(heights))
np.mean(heights_centred) == 0
## False

The average is actually equal to:

np.mean(heights_centred)
## 1.3359078775153175e-14

which is almost zero (0.0000000000000134), but not exactly zero (it is zero for an engin-
eer, not a mathematician). We saw a similar result in Section 5.3.2, when performing
standardisation (which involves centring).

Important All floating-point operations on a computer' (not only in Python) are per-
formed with finite precision of 15-17 decimal digits.

We know it from school - for example, some fractions cannot be represented as decim-
als. When asked to add or multiply them, we will always have to apply some rounding
that ultimately leads to precision loss. We know that1/3 + 1/3 + 1/3 = 1, but using
a decimal representation with one fractional digit, we get 0.3 + 0.3 + 0.3 = 0.9. With
two digits, we obtain 0.33 + 0.33 + 0.33 = 0.99. And so on. This sum will never be
equal exactly to 1 when using a finite precision.

Moreover, errors induced in one operation will propagate onto further ones. Most of-
ten they cancel out, but in extreme cases, they can lead to undesirable consequences
(like for some model matrices in linear regression; see Section 9.2.9).

There is no reason to panic, though. The rule to remember is:

Important As the floating-pointvalues are precise up to a few decimal digits, we must
refrain from comparing them using the *==" operator, which tests for exact equality.

When a comparison is needed, we need to take some error margin into account.
Ideally, instead of testing x ==y, we either inspect the absolute error:

lx—yl<e

2 Double precision float64 format as defined by the IEEE Standard for Floating-Point Arithmetic
(IEEE 754).
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or, assuming y # 0, the relative error:

lx — vyl

<e
[yl

= ¢

where ¢ is some small error margin.

For instance, numpy.allclose(x, y) checks (by default) if for all corresponding ele-
ments in both vectors it holds numpy.abs(x-y) <= 1le-8 + le-5*numpy.abs(y), which
is a combination of both tests.

np.allclose(np.mean(heights_centred), 0)
## True

To avoid sorrow surprises, even the testing of inequalities like x >= @ should rather be
performed as, say, x >= le-8.

Note Our data are often imprecise by nature. When asked about people’s heights,
rarely will they provide a non-integer answer (assuming they know how tall they are
and are not lying about it, but it is a different story). We will most likely get data roun-
ded to o decimal digits. In our dataset the precision is a bit higher:

heights[:6] # preview
## array([1660.2, 152.7, 161.2, 157.4, 154.6, 144.7])

But still, there is an inherent observational error. Even if, for example, the mean thereof
was computed exactly, the fact that the inputs themselves are not necessarily ideal
makes the estimate approximate as well. We can only hope that these errors will more
or less cancel out in the computations.

Exercise 5.22. Compute the BMIs of all females in the NHANES study. Determine their arith-
metic mean. Compare it to the arithmetic mean computed for BMIs rounded to 1, 2, 3, 4, etc.,
decimal digits.

Note (*) Another problem is related to the fact that floats on a computer use the binary
base, not the decimal one. Therefore, some fractional numbers that we believe to be
representable exactly, require an infinite number of bits. As a consequence, they are
subject to rounding.

0.1 + 0.1 + 0.1 == 0.3 # obviously
## False

This is because 0.1, 0.1+0.1+0.1, and 0.3 are literally represented as, respectively:

print(f"{0.1:.19f}, {0.1+0.1+0.1:.19f}, and {0.3:.19f}.")
## 0.1000000000000000056, 0.3000000000000000444, and O.2999999999999999889.
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A suggested introductory reference to the topic of numerical inaccuracies is [41]; see
also [48, 56] for a more comprehensive treatment of numerical analysis.

5.5.7 Vectorising scalar operations with list comprehensions

List comprehensions of the form [ expression for name in iterable ] are partof base
Python. They create lists based on transformed versions of individual elements in a
given iterable object. Hence, they might work in cases where a task at hand cannot be
solved by means of vectorised numpy functions.

For example, here is a way to generate the squares of a few positive natural numbers:

[ i**2 for 1 in range(1, 11) ]
## [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

The result can be passed to numpy . array to convert it to a vector.

Further, given an example vector:

x = np.round(np.random.rand(9)*2-1, 2)
X
## array([ 0.86, -0.37, -0.63, -0.59, 0.14, 0.19, 0.93, 0.31, 0.5 ])

If we wish to filter out all elements that are not positive, we can write:

[ e for e in x if e > 0 ]
#4 [0.86, 0.14, 0.19, 0.93, 0.31, 0.5]

We can also use the ternary operator of the form x_true if cond else x_false to
return either x_true or x_false depending on the truth value of cond.

e = -2
e**Q.5 1f e >= 0 else (-e)**0.5
## 1.4142135623730951

Combined with a list comprehension, we can write, for instance:

[ round(e**0.5 if e >= 0 else (-e)**0.5, 2) for e in x ]
#4 [0.93, 0.61, 0.79, 0.77, 0.37, 0.44, 0.96, 0.56, 0.71]

This gave the square root of absolute values.

There is also a tool which vectorises a scalar function so that it can be used on numpy
vectors:
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def clip01(x):
"""clip to the unit interval"""

if x < 0: return 0
elif x > 1: return 1
else: return x

clip01s = np.vectorize(clip®l) # returns a function object
clipois([0.3, -1.2, 0.7, 4, 9])
## array([6.3, 0. , 0.7, 1. , 1. ])

In the above cases, it is much better (faster, more readable code) to rely on vectorised
numpy functions. Still, if the corresponding operations are unavailable (e.g., string pro-
cessing, reading many files), list comprehensions provide a reasonable replacement
therefor.

Exercise 5.23 Write equivalent versions of the above expressions using vectorised numpy func-
tions.

Exercise 5.24 Implement the above expressions using base Python lists, the for loop and the
list.append method (start from an empty list that will store the result).

5.6 Exercises

Exercise 5.25 What are some benefits of using a numpy vector over an ordinary Python list?
What are the drawbacks?

Exercise 5.26 How can we interpret the possibly different values of the arithmetic mean, me-
dian, standard deviation, interquartile range, and skewness, when comparing between heights
of men and women?

Exercise 5.27 There is something scientific and magical about numbers that make us ap-
proach them with some kind of respect. However, taking into account that there ave many pos-
sible data aggregates, there is a visk that a party may be cherry-picking — reporting the one that
portrays the analysed entity in a good ov bad light. For instance, reporting the mean instead of
the median or vice versa. Is there anything that can be done about it?

Exercise 5.28 Even though, mathematically speaking, all measures can be computed on all
data, it does not mean that it always makes sense to do so. For instance, some distributions will
have skewness of 0. However, let us not automatically assume that they are delightfully symmet-
ric and bell-shaped (e.g., this can be a bimodal distribution). We always ought to visualise our
data. Give some examples of datasets and measures where we should be critical of the obtained
aggregates.

Exercise 5.29 Give some examples where simple data preprocessing can drastically change the
values of chosen sample aggregates.
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Exercise 5.30 Givethe mathematical definitions, use cases, and interpretations of standardisa-
tion, normalisation, and min-max scaling.

Exercise 5.31 How are numpy. log and numpy. exp related to each other? What about numpy.
log vs numpy. log10, numpy . cumsum Vs numpy . diff, numpy.minvs numpy.argmin, numpy. sort
Vs numpy . argsort, and scipy.stats.rankdata vs numpy.argsort?

Exercise 5.32 What is the difference between numpy. trunc, numpy. floor, numpy.ceil, and
numpy . round?

Exercise 5.33 What happens when we apply “+* on two vectors of different lengths?
Exercise 5.34 List the four ways to index a vector.

Exercise 5.35 What is wrong with the expression x| x >= 0 and x <= 1 ], wherexisa
numeric vector? What about x[ x >= 0 & x <= 1 J?

Exercise 5.36 What does it mean that slicing returns a view of existing data?

Exercise 5.37 (**) Reflect on the famous® saying: not everything that can be counted
counts, and not everything that counts can be counted.

Exercise 5.38 (**) Being a data scientist can be a frustrating job, especially when you care for
some causes. Reflect on: some things that count can be counted, but we will not count
them because there’s no budget for them.

Exercise 5.39 (**) Being a data scientist can be a frustrating job, especially when you care for
the truth. Reflect on: some things that count can be counted, but we will not count them
because some people might be offended or find it unpleasant.

Exercise 5.40 (**) Assume you were to become the benevolent dictator of a nation on some re-
mote island. How would you measure if your people are happy or not? Let us say that you need to
come up with three quantitative measures (key performance indicators). What would happen if
your policy-making was solely focused on optimising those KPIs? What about the same problem
but with regard to your company and employees? Think about what can go wrong in other areas

of life.

B https://quoteinvestigator.com/2010/05/26/everything- counts- einstein
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Continuous probability distributions

Each successful data analyst will deal with hundreds or thousands of datasets in their
lifetime. In the long run, at some level, most of them will be deemed boring. This is
because only a few common patterns will be occurring over and over again.

In particular, the previously mentioned bell-shapedness and right-skewness are quite
prevalent in the so-called real world. Surprisingly, however, this is exactly when things
become scientific and interesting, allowing us to study various phenomena at an ap-
propriate level of generality.

Mathematically, such idealised patterns in the histogram shapes can be formalised
using the notion of a probability density function (PDF) of a continuous, real-valued random
variable.

Intuitively', a PDF is a smooth curve that would arise if we drew a histogram for the
entire population (e.g., all women living currently on Earth and beyond or otherwise an
extremely large data sample obtained by independently querying the same underlying
data generating process) in such a way that the total area of all the bars is equal to1and
the bin sizes are very small.

As stated at the beginning, we do not intend this to be a course in probability theory
and mathematical statistics. Rather, it precedes and motivates them (e.g., [21, 38, 40,
79]). Therefore, our definitions are out of necessity simplified so that they are digest-
ible. For the purpose of our illustrations, we will consider the following characterisa-
tion.

Important (*) We call an integrable functionf : R — R a probability density function if
f(x) = 0forall x and f_oooof(x) dx = 1, i.e., it is nonnegative and normalised in such
a way that the total area under the whole curve is 1.

For anya < b, we treat the area under the fragment of the f (x) curve for x between

aandb,i.e., fabf(x) dx, as the probability of the underlying real-valued random vari-
able’s (theoretical data generating process’) falling into the [4, b] interval.

Some distributions appear more frequently than others and appear to fit empirical
data or parts thereof particularly well; compare [27]. In this chapter, we review a few

! (*) This intuition is, of course, theoretically grounded and is based on the asymptotic behaviour of the
histograms as the estimators of the underlying probability density function, see, e.g., [28] and the many
references therein.



102 II' UNIDIMENSIONAL DATA

noteworthy probability distributions: the normal, log-normal, Pareto, and uniform
families (we will also mention the chi-squared, Kolmogorov, and exponential ones in
this course).

6.1 Normal distribution

A normal (Gaussian) distribution has a prototypical, nicely symmetric, bell-shaped dens-
ity. It is described by two parameters: y € R (the expected value, at which the PDF
is centred) and ¢ > 0 (the standard deviation, saying how much the distribution is
dispersed around p); compare Figure 6.1.

The probability density function of N(y, ) is given by:

2
2
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27t0 202

0.8 7\ —F N(O,l)
0.7 ! \ —==- N(0,0.5)

! \ N(1,0.5)
0.6

0.5

0.4

Density

0.3

0.2

0.1

0.0

Figure 6.1. The probability density functions of some normal distributions N(y, o).
Note that y is responsible for shifting and o affects scaling/stretching of the probab-
ility mass.

6.1.1 Estimating parameters

A course in statistics (which, again, this one is not, we are merely making an illustra-
tion here), may tell us that the sample arithmetic mean ¥ and standard deviation s
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are natural, statistically well-behaving estimators of the said parameters: if all observa-
tions would really be drawn independently from N(y, o) each, then we expect X and s
to be equal to, more or less, p and o (the larger the sample size, the smaller the error).

Recall the heights (females from the NHANES study) dataset and its bell-shaped his-
togram in Figure 4.2..

heights = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_height_2020.txt")

n = len(heights)

n

## 4221

Let us estimate the said parameters for this sample:

mu = np.mean(heights)

sigma = np.std(heights, ddof=1)

mu, sigma

## (160.13679222932953, 7.062858532891359)

Mathematically, we will denote these two by ji and & (mu and sigma with a hat) to
emphasise that they are merely guesstimates® of the unknown respective parameters
u and 0. On a side note, in this context, the requested ddof=1 estimator has slightly
better statistical properties.

Let us draw the fitted density function (i.e., the PDF of N(160.1,7.06) which we can
compute using scipy.stats.norm.pdf), on top of the histogram; see Figure 6.2. We
pass density=True to matplotlib.pyplot.hist to normalise the bars’ heights so that
their total area sums to 1.

plt.hist(heights, density=True, color="lightgray", edgecolor="black")

x = np.linspace(np.min(heights), np.max(heights), 1000)

plt.plot(x, scipy.stats.norm.pdf(x, mu, sigma), "r--",
label=f"PDF of N({mu:.1f}, {sigma:.2f})")

plt.ylabel("Density")

plt.legend()

plt.show()

At first glance, this is a genuinely nice match. Before proceeding with an overview of
the ways to assess the goodness-of-fit more rigorously, we should praise the potential
benefits of having an idealised model of our dataset at our disposal.

% (*) It might be the case that we will have to obtain the estimates of the probability distributiorn’s para-
)2

meters by numerical optimisation, for example, by minimising L(y, o) = Z?:l (% + log 02>
with respect to y¢ and o (corresponding to the objective function in the maximum likelihood estimation
problem for the normal distribution family). In our case, however, we are lucky; there exist open-form for-
mulae expressing the solution to the above, exactly in the form of the sample mean and standard deviation.
For other distributions, things can get a little trickier, though. Furthermore, sometimes we will have many
options for point estimators to choose from, which might be more suitable if data are not of top quality (e.g.,
contain outliers). For instance, in the normal model, it can be shown that we can also estimate y and o via
the sample median and IQR/1.349 (but for different distributions we will need a different calibrator).
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Figure 6.2. A histogram and the probability density function of the fitted normal dis-
tribution for the heights dataset.

6.1.2 Data models are useful

If (provided that, assuming that, on condition that) our sample is a realisation of in-
dependent random variables following a given distribution, or a data analyst judges
that such an approximation might be justified or beneficial, then we have a set of many
numbers reduced to merely a few parameters.

In the above case, we might want to risk the statement that data follow the normal
distribution (assumption 1) with parameters 4 = 160.1 and o = 7.06 (assumption 2).
Still, the choice of the distribution family is one thing, and the way we estimate the
underlying parameters (in our case, we use i and ) is another.

This not only saves storage space and computational time, but also — based on what
we can learn from a course in probability and statistics (by appropriately integrating
the PDF) — we can imply facts such as for normally distributed data:

« c. 68% of (i.e., a majority) women are y + o tall (the 1o rule),
« ¢. 95%of (i.e., most typical) women are y + 20 tall (the 20 rule),
« ¢.99.7% of (i.e., almost all) women are y + 30 tall (the 3¢ rule).

Also, if we knew that the distribution of heights of men is also normal with some other
parameters, we could be able to make some comparisons between the two samples. For
example, we could compute the probability that a woman randomly selected from the
crowd is taller than a male passerby.

Furthermore, there is a range of parametric (assuming some distribution family) stat-
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istical methods that could additionally be used if we assumed the data normality, e.g.,
the t-test to compare the expected values.

Exercise 6.1 How different manufacturing industries (e.g., clothing) can make use of such mod-
els? Are simplifications necessary when dealing with complexity? What ave the alternatives?

Important We are always expected to verify the assumptions of a model that we wish
to apply in practice. In particular, we will soon note that incomes are not normally
distributed. Therefore, we must not refer to the above 2¢ or 3¢ rule in their case. A
cow neither barks nor can it serve as a screwdriver. Period.

6.2 Assessing goodness-of-fit
6.2.1 Comparing cumulative distribution functions

Bell-shaped histograms are encountered quite frequently in real-world data: e.g.,
measurement errors in physical experiments and standardised tests’ results (like IQ
and other ability scores) tend to be distributed this way, at least approximately.

If we yearn for more precision, there is a better way of assessing the extent to which
a sample deviates from a hypothesised distribution. Namely, we can measure the dis-
crepancy between some theoretical cumulative distribution function (CDF) and the em-
pirical one (l:"n; see Section 4.3.8).

Important Iff isa PDF, then the corresponding theoretical CDF is defined as F(x) =

1) foo f(t)dt,i.e., the probability of the underlying random variable’s taking a value less
than or equal to x.

By definition®, each CDF takes values in the unit interval ([0, 1]) and is nondecreasing.

For the normal distribution family, the values of the theoretical CDF can be computed
by calling scipy.stats.norm.cdf; see Figure 6.3.

x = np.linspace(np.min(heights), np.max(heights), 1001)
probs = scipy.stats.norm.cdf(x, mu, sigma) # sample the CDF at many points
plt.plot(x, probs, "r--", label=f"CDF of N({mu:.1f}, {sigma:.2f})")
heights_sorted = np.sort(heights)
plt.plot(heights_sorted, np.arange(1, n+1)/n,
drawstyle="steps-post", label="Empirical CDF")
(continues on next page)

3 The probability distribution of any real-valued random variable X can be uniquely defined by means
of a nondecreasing, right (upward) continuous function F : R — [0, 1] such that lim,_,_ F(x) = 0
and lim,_, ., F(x) = 1, in which case Pr(X < x) = F(x). The probability density function only exists for
continuous random variables and is defined as the derivative of F.
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(continued from previous page)

plt.xlabel("$x$")
plt.ylabel("Prob(height $\\leg$s x)")
plt.legend()

plt.show()

1.0 ——=. CDFofN(@60.1,7.06)
= Empirical CDF
0.8
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Figure 6.3. The empirical CDF and the fitted normal CDF for the heights dataset: the
fitis superb.
This looks like a superb match.

Example 6.2 F(b)—F(a) = fabf(t) dt isthe probability of generating a value in the interval
[a,b].

Let us empirically verify the 30 rule:
F = lambda x: scipy.stats.norm.cdf(x, mu, sigma)

F(mu+3*sigma) - F(mu-3*sigma)
## 0.9973002039367398

Indeed, almost all observations are within [y — 30, p + 307], if data ave normally distributed.

Note Acommon way to summarise the discrepancy between the empirical and a given
theoretical CDF is by computing the greatest absolute deviation:

D, = sup|F,(t) = F(t),
teR

where the supremum is a continuous version of the maximum.
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It holds:

D, = max{ max {"%1 - F(x<k)>‘}'k311,a..x.,n {|% —F(x(k))‘}},

i.e., F needs to be probed only at the n points from the sorted input sample.

def compute Dn(x, F): # equivalent to scipy.stats.kstest(x, F)[O]
Fx = F(np.sort(x))
n = len(x)
k = np.arange(1, n+1) # 1, 2, ..., n
Dn1 = np.max(np.abs((k-1)/n - Fx))
Dn2 = np.max(np.abs(k/n - Fx))
return max(Dn1, Dn2)

Dn = compute_Dn(heights, F)
Dn
## 0.010470976524201148

If the difference is sufficiently* small, then we can assume that a normal model de-
scribes data quite well. This is indeed the case here: we may estimate the probability
of someone being as tall as any given height with an error less than about 1.05%.

6.2.2 Comparing quantiles

A Q-Qplot (quantile-quantile or probability plot) is another graphical method for com-
paring two distributions. This time, instead of working with a cumulative distribution
function F, we will be dealing with its (generalised) inverse, i.e., the quantile function

Q.
Given a CDF F, the corresponding quantile function is defined for any p € (0, 1) as:
Q(p) = inf{x : F(x) 2 p},

i.e., the smallest x such that the probability of drawing a value not greater than x is at
least p.

Important Ifa CDF F is continuous, and this is the assumption in the current chapter,
then Q is exactly its inverse, i.e., it holds Q(p) = F-1 (p) forallp € (0,1); compare
Figure 6.4.

The theoretical quantiles can be generated by the scipy.stats.norm.ppf function.
Here, ppf stands for the percent point function which is another (yet quite esoteric)
name for the above Q.

For instance, in our N(160.1,7.06)-distributed heights dataset, Q(0.9) is the height
not exceeded by 90% of the female population. In other words, only 10% of American
women are taller than:

4 The larger the sample size, the less tolerant regarding the size of this disparity we are; see Section 6.2..3.
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Figure 6.4. The cumulative distribution functions (left) and the quantile functions (be-
ing the inverse of the CDF; right) of some normal distributions.

scipy.stats.norm.ppf (0.9, mu, sigma)
## 169.18820963937648

A Q-Q plot draws a version of sample quantiles as a function of the corresponding the-
oretical quantiles. The sample quantiles, introduced in Section 5.1.1, are natural estim-
ators of the theoretical quantile function. However, we also mentioned that there are
quite a few possible definitions thereof in the literature; compare [53].

For simplicity, instead of using numpy . quantile, we will assume that the n—jrl -quantile®
is equal to x;), i.e., the i-th smallest value in a given sample (x4, x5, ..., X,,) and con-
sideronlyi =1,2,...,n.

Our simplified setting avoids the problem which arises when the o- or 1-quantiles of
the theoretical distribution, i.e., Q(0) or Q(1), are infinite (and this is the case for the
normal distribution family).

def qq_plot(x, Q):
Draws a Q-Q plot, given:
* x - a data sample (vector)
* Q - a theoretical quantile function

i

(continues on next page)

5 (*)scipy.stats.probplot uses a slightly different definition (there are many other ones in com-
mon use).
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(continued from previous page)

n = len(x)

q = np.arange(1, n+1)/(n+1) # 1/(n+1), 2/(n+2), ..., n/(n+1)
x_sorted = np.sort(x) # sample quantiles

quantiles = Q(q) # theoretical quantiles

plt.plot(quantiles, x_sorted, "o")
plt.axline((x_sorted[n//2], x_sorted[n//2]), slope=1,

wen

linestyle=":", color="gray") # identity line

Figure 6.5 depicts the Q-Q plot for our example dataset.

qq_plot(heights, lambda q: scipy.stats.norm.ppf(g, mu, sigma))
plt.xlabel(f"Quantiles of N({mu:.1f}, {sigma:.2f})")
plt.ylabel("Sample quantiles")

plt.show()

190
o® .

180

Sample quantiles
N v > N]
o [e] (o] o

Y
w
o

140 150 160 170 180
Quantiles of N(160.1,7.06)

Figure 6.5. The Q-Q plot for the heights dataset. It is a nice fit.

Ideally, the points are expected to be arranged on the y = x line (which was added
for readability). This would happen if the sample quantiles matched the theoretical
ones perfectly. In our case, there are small discrepancies® in the tails (e.g., the smal-
lest observation was slightly smaller than expected, and the largest one waslarger than
expected), although it is quite normal a behaviour for small samples and certain distri-
bution families. Still, we can say that we observe a fine fit.

6 (*) We can quantify (informally) the goodness of fit by using the Pearson linear correlation coefficient;
see Section 9.1.1.



110 II' UNIDIMENSIONAL DATA

6.2.3 Kolmogorov-Smirnov test (*)

To be scientific, we must yearn for some more formal method that will enable us to
test the null hypothesis stating that a given empirical distribution F,, does not differ
significantly from the theoretical continuous CDF F:

Hy: E,=F (nullhypothesis)

Hy: F, #F (two-sided alternative)
The popular goodness-of-fit test by Kolmogorov and Smirnov can give us a conservat-
ive interval of the acceptable values of D,, (again: the largest deviation between the
empirical and theoretical CDF) as a function of n (within the framework of frequent-
ist hypothesis testing).
Namely, if the test statistic D,, is smaller than some critical value K, , then we shall deem
the difference insignificant. This is to take into account the fact that reality might devi-
ate from the ideal. Section 6.4.4 mentions that even for samples that truly come from
a hypothesised distribution, there is some inherent variability. We need to be some-
what tolerant.
Any authoritative textbook in statistics will tell us (and prove) that, under the assump-
tion that F,, is the ECDF of a sample of n independent variables really generated from

a continuous CDF F, the random variable Dn = sup,cp Iﬁn(t) — F(t)| follows the
Kolmogorov distribution with parameter # (available via scipy.stats.kstwo).

In other words, if we generate many samples of length 1 from F, and compute D,,s for
each of them, we expect it to be distributed like in Figure 6.6.

—_— nN=10 1.0

100 -=: n=100 ,'
n=4221 1

0.8 1

80 1

|

- |

> £ 0.6 1
£ 60 a3 I
S I I
o o I
a 04 1
40 i
|
I
20 0.2 I
1\ ]
Iy I
J .V\—.r J

< = 0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 6.6. Densities (left) and cumulative distribution functions (right) of some
Kolmogorov distributions. The greater the sample size, the smaller the acceptable de-
viations between the theoretical and empirical CDFs.



6 CONTINUOUS PROBABILITY DISTRIBUTIONS m

The choice K,, involves a trade-off between our desire to:
« accept the null hypothesis when it is true (data really come from F), and

« rejectit when it is false (data follow some other distribution, i.e., the difference is
significant enough).

These two needs are, unfortunately, mutually exclusive.

In practice, we assume some fixed upper bound (significance level) for making the
former kind of mistake, which we call the type-I error. A nicely conservative (in a good
way’) value that we suggest employing is« = 0.001 = 0.1%, i.e., only 1 out of 1000
samples that really come from F will be rejected as not coming from F.

Such a K,, may be determined by considering the inverse of the CDF of the Kolmogorov
distribution, Z,,. Namely, K,, = E;;1 (1 — a):

alpha = 0.001 # significance level
scipy.stats.kstwo.ppf(1-alpha, n)
## 0.029964456376393188

In our case D,, < K,, because 0.01047 < 0.02996. We conclude that our empirical
(heights) distribution does not differ significantly (at significance level 0.1%) from
the assumed one, i.e., N(160.1,7.06). In other words, we do not have enough evid-
ence against the statement that data are normally distributed. It is the presumption
of innocence: they are normal enough.

We will go back to this discussion in Section 6.4.4 and Section 12.2.6.

6.3 Other noteworthy distributions
6.3.1 Log-normal distribution

We say that a sample is log-normally distributed, if its logarithm is normally distributed.
Such a behaviour is frequently observed in biology and medicine (size of living tissue),
social sciences (number of sexual partners), or technology (file sizes). Also, recall that
Figure 6.7 reveals that this is the case for the most® of the UK taxpayers’ incomes.

income = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/uk_income_simulated_2020.txt")

plt.hist(np.log(income), bins=30, color="1lightgray", edgecolor="black")

plt.ylabel("Count")

plt.show()

Let us thus proceed with the fitting of a log-normal model, LN(y, o). The fitting pro-

7 See Section 12.2.6 for more details.
8 Except for the few richest, who are interesting on their own; see Section 6.3.2 where we discuss the
Pareto distribution.
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Figure 6.7. A histogram of the logarithm of incomes.

cess is similar to the normal case, but this time we determine the mean and standard
deviation based on the logarithms of data:

1mu = np.mean(np.log(income))

1sigma = np.std(np.log(income), ddof=1)
Imu, lsigma

## (10.314409794364623, 0.5816585197803816)

We need to take note of the fact that scipy.stats.lognorm encodes the distribution
via the parameter s equal to ¢ and scale equal to /. Computing the PDF at different
points must done as follows:

x = np.linspace(np.min(income), np.max(income), 101)
fx = scipy.stats.lognorm.pdf(x, s=1sigma, scale=np.exp(lmu))

Figure 6.8 depicts the fitted probability density function together with the histograms
on the log- and original scale.

plt.subplot(1l, 2, 1)

logbins = np.geomspace(np.min(income), np.max(income), 31)

plt.hist(income, bins=logbins, density=True,
color="11ightgray", edgecolor="black")

plt.plot(x, fx, "r--")

plt.xscale("log") # log-scale on the x-axis

plt.ylabel("Density")

plt.subplot(1, 2, 2)
plt.hist(income, bins=30, density=True, color="lightgray", edgecolor="black")
(continues on next page)
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(continued from previous page)
plt.plot(x, fx, "r--", label=f"PDF of LN({lmu:.1f}, {lsigma:.2f})")
plt.ylabel("Density")
plt.legend()

plt.show()
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Figure 6.8. A histogram and the probability density function of the fitted log-normal
distribution for the income dataset, on log- (left) and original (right) scale.

Overall, this fit is not too bad. Nonetheless, we are only dealing with a sample of 1000
households; the original UK Office of National Statistics data® could tell us more about
the quality of this model in general, but it is beyond the scope of our simple exercise.

Furthermore, Figure 6.9 gives the quantile-quantile plot on a double logarithmic scale
for the above log-normal model. Additionally, we (empirically) verify the hypothesis of
normality (using a “normal” normal distribution, not its “log” version).

plt.subplot(1, 2, 1)
qq_plot( # see above for the definition

income,

lambda q: scipy.stats.lognorm.ppf(q, s=lsigma, scale=np.exp(lmu))
)
plt.xlabel(f"Quantiles of LN({lmu:.1f}, {lsigma:.2f})")
plt.ylabel("Sample quantiles")
plt.xscale("log")
plt.yscale("log")

(continues on next page)

° https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/
incomeandwealth/bulletins/householddisposableincomeandinequality/financialyear2020
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(continued from previous page)

plt.subplot(1, 2, 2)

mu = np.mean(income)

sigma = np.std(income, ddof=1)

qq_plot(income, lambda q: scipy.stats.norm.ppf(q, mu, sigma))
plt.xlabel(f"Quantiles of N({mu:.1f}, {sigma:.2f})")

plt.show()
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Figure 6.9. The Q-Q plots for the income dataset vs a fitted log-normal (good fit; left)
and normal (bad fit; right) distribution.

Exercise 6.3 Graphically compare the empirical CDF for income and the theoretical CDF of
LN(10.3,0.58).

Exercise 6.4 () Perform the Kolmogorov—Smirnov goodness-of-fit test as in Section 6.2.3, to
verify that the hypothesis of log-normality is not rejected at the & = 0.001 significance level. At
the same time, the income distribution significantly differs from a normal one.

The hypothesis that our data follow a normal distribution is most likely false. On the
other hand, the log-normal model, might be quite adequate. It again reduced the
whole dataset to merely two numbers, i and , based on which (and probability the-
ory), we may deduce that:

. . 2
. the expected average (mean) income is e# 7"/ 2
. medianise¥,
. _,2
« most probable one (mode) ine# ™7,

etc.
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Note Recall again that for skewed distributions such as this one, reporting the mean
might be misleading. This is why most people get angry when they read the news about
the prospering economy (“yeah, we'd like to see that kind of money in our pockets”).
Hence, itis not only s that matters, itis also ¢ that quantifies the discrepancy between
the rich and the poor (too much inequality is bad, but also too much uniformity is to
be avoided).

For a normal distribution, the situation is vastly different. The mean, the median, and
the most probable outcomes tend to be the same: the distribution is symmetric around

u.
Exercise 6.5 Whatisthefraction of people with earnings below the meanin our LN (10.3, 0.58)
model? Hint: use scipy. stats. lognornm. cdf to get the answer.

6.3.2 Pareto distribution

Consider again the dataset on the populations of the US cities in the 2000 US Census:

cities = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/other/us_cities_2000.txt")

len(cities), sum(cities) # number of cities, total population

## (19447, 175062893.0)

Figure 6.10 gives the histogram of the city sizes with the populations on the log-scale.
It kind of looks like a log-normal distribution again, which the readers can inspect
themselves when they are feeling playful.

logbins = np.geomspace(np.min(cities), np.max(cities), 21)
plt.hist(cities, bins=logbins, color="lightgray", edgecolor="black")
plt.xscale("log")

plt.ylabel("Count")

plt.show()

This time, however, we will be interested in not what is typical, but what is in some
sense anomalous or extreme. Let us look again at the truncated version of the city size
distribution by considering the cities with 10 000 or more inhabitants (i.e., we will
only study the right tail of the original data, just like in Section 4.3.7).

s = 10_000
large_cities = citiles[cities >= s]

len(large_cities), sum(large_cities) # number of cities, total population
## (2696, 146199374.0)

Plotting the above on a double logarithmic scale can be performed by calling pit.
yscale("log"), which is left as an exercise. Anyway, doing so will lead to a picture
similar to Figure 6.11 below. This reveals something remarkable. The bar tops on the
double log-scale are arranged more or less in a straight line.
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Figure 6.10. A histogram of the unabridged cities dataset. Note the log-scale on the
X-axis.

There are many datasets that exhibit this behaviour. We say that they follow a power
law (power in the arithmetic sense, not social one); see [14, 68] for discussion.

Let us introduce the Pareto distribution family which has a prototypical power law-like
density. It is identified by two parameters:

o the (what scipy calls it) scale parameter s > 0 is equal to the shift from 0,

- the shape parameter, « > 0, controls the slope of the said line on the double log-
scale.

The probability density function of P(«, s) is given for x > s by:
as®
f (x) = W/
and f (x) = 0 otherwise.

s is usually taken as the sample minimum (i.e., 10 000 in our case). « can be estimated
through the reciprocal of the mean of the scaled logarithms of our observations:

alpha = 1/np.mean(np.log(large_cities/s))
alpha
## 0.9496171695997675

Figure 6.11 allows us to compare the theoretical density and an empirical histogram
on the log-scale.



6 CONTINUOUS PROBABILITY DISTRIBUTIONS 17

logbins = np.geomspace(s, np.max(large_cities), 21) # bin boundaries

plt.
plt.

plt.
plt.
plt.
plt.
plt.

Density

hist(large_cities, bins=logbins, density=True,
color="11ightgray", edgecolor="black")

plot(logbins, scipy.stats.pareto.pdf(logbins, alpha, scale=s),
"r--", label=f"PDF of P({alpha:.3f}, {s})")

xscale("log")

yscale("log")

ylabel("Density")

legend()

show()
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Figure 6.11. A histogram of the large_cities dataset and the fitted density on a double
log-scale.

Figure 6.12 gives the corresponding Q-Q plot on a double logarithmic scale.

qq_plot( # defined above

)

plt.
plt.
plt.
plt.
plt.

large_cities,
lambda q: scipy.stats.pareto.ppf(q, alpha, scale=s)

xlabel(f"Quantiles of P({alpha:.3f}, {s})")
ylabel("Sample quantiles")

xscale("log")

yscale("log")

show()

We see that the populations of the largest cities are overestimated. The model could
be better, but the cities are still growing, right?

Example 6.6 (*) It might also be interesting to see how well we can predict the probability of a
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Figure 6.12. The Q-Q plot for the large_cites dataset vs the fitted Paretian model.

randomly selected city being at least a given size. Let us denote by S(x) = 1 — F(x) the com-
plementary cumulative distribution function (CCDEF; sometimes referred to as the survival
function), and by .§n x)=1- Pn (x) its empirical version. Figure 6.13 compares the empirical
and the fitted CCDFs with probabilities on the linear- and log-scale.

x = np.geomspace(np.min(large_cities), np.max(large_cities), 1001)
probs = scipy.stats.pareto.cdf(x, alpha, scale=s)
n = len(large_cities)
for 1 in [1, 2]:
plt.subplot(1, 2, 1)
plt.plot(x, 1-probs, "r--", label=f"CCDF of P({alpha:.3f}, {s})")
plt.plot(np.sort(large_cities), 1-np.arange(1, n+1)/n,
drawstyle="steps-post", label="Empirical CCDF")
plt.xlabel("5xS")
plt.xscale("log")
plt.yscale(["linear", "log"]J[1-1])
if i == 1:
plt.ylabel("Prob(city size > x)")
plt.legend()
plt.show()

In terms of the maximal absolute distance between the two functions, D,,, from the left plot we
see that the fit seems acceptable. Still, let us stress that the log-scale overemphasises the relatively
minor differences in the right tail and should not be used for judging the value of D,,.

However, that the Kolmogorov-Smirnov goodness-of-fit test rejects the hypothesis of Paretianity
(at a significance level 0.1%) is left as an exercise for the reader.
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Figure 6.13. The empirical and theoretical complementary cumulative distribution
functions for the large_cities dataset with probabilities on the linear- (left) and log-
scale (right) and city sizes on the log-scale.

6.3.3 Uniform distribution

Consider the Polish Lotto lottery, where six numbered balls {1,2, ...,49} are drawn
without replacement from an urn. We have a dataset that summarises the number of
times each ball has been drawn in all the games in the period 1957-2016.

lotto = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/lotto_table.txt")

lotto

## array([7260., 720., 714., 752., 719., 753., 701., 692., 716., 694., 716.,
## 668., 749., 713., 723., 693., 777., 747., 728., 734., 762., 729.,
## 695., 761., 735., 719., 754., 741., 750., 701., 744., 729., 716.,
## 768., 715., 735., 725., 741., 697., 713., 711., 744., 652., 683.,
## 744., 714., 674., 654., 681.])

Each event seems to occur more or less with the same probability. Of course, the num-
bers on the balls are integer, but in our idealised scenario, we may try modelling this
dataset using a continuous uniform distribution, which yields arbitrary real numbers
onagiven interval (a,b), i.e., between some a and b. We denote such a distribution by
U(a, b). It has the probability density function given for x € (a, b) by:

1
f(x) = m/

and f (x) = 0 otherwise.

Notice that scipy.stats.uniform uses parameters a and scale equal to b — a instead.
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In our case, it makes sense to seta = 1and b = 50 and interpret an outcome like
49.1253 as representing the 49th ball (compare the notion of the floor function, | x]).

x = np.linspace(1, 50, 1001)

plt.bar(np.arange(1, 50), width=1, height=1lotto/np.sum(lotto),
color="11ightgray", edgecolor="black", alpha=0.8, align="edge")

plt.plot(x, scipy.stats.uniform.pdf(x, 1, scale=49), "r--",
label="PDF of U(1, 50)")

plt.ylim(0, 0.025)

plt.legend()

plt.show()
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Figure 6.14. A histogram of the lotto dataset.

Visually, see Figure 6.14, this model makes much sense, but again, some more rigorous
statistical testing would be required to determine if someone has not been tampering
with the lottery results, i.e., if data does not deviate from the uniform distribution
significantly.

Unfortunately, we cannot use the Kolmogorov—Smirnov test in the version defined
above as data are not continuous. See, however, Section 11.4.3 for the Pearson chi-
squared test that is applicable here.

Exercise 6.7 Does playing lotteries and engaging in gambling make rational sense at all, from
the perspective of an individual player? Well, we see that 16 is the most frequently occurring out-
come in Lotto, maybe there’s some magic in it? Also, some people sometimes became millionaires,
right?

Note Indata modelling (e.g., Bayesian statistics), sometimes a uniform distribution
is chosen as a placeholder for “we know nothing about a phenomenon, so let us just
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assume that every event is equally likely”. Nonetheless, it is quite fascinating that the
real world tends to be structured after all. Emerging patterns are plentiful, most often
they are far from being uniformly distributed. Even more strikingly, they are subject
to quantitative analysis.

6.3.4 Distribution mixtures (*)

Some datasets may fail to fit through simple models such as the ones described above.
It may sometimes be due to their non-random behaviour: statistics gives just one
means to create data idealisations, we also have partial differential equations, approx-
imation theory, graphs and complex networks, agent-based modelling, and so forth,
which might be worth giving a study (and then try).

Another reason may be that what we observe is, in fact, a mixture (creative combina-
tion) of simpler processes.

The dataset representing the December 2021 hourly averages pedestrian counts near
the Southern Cross Station in Melbourne is a representative instance of such a scen-
ario; compare Figure 4.5.

peds = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/southern_cross_station_peds_2019 dec.txt")

It might not be a bad idea to try to fit a probabilistic (convex) combination of three
normal distributions fy, f», f3, corresponding to the morning, lunchtime, and evening
pedestrian count peaks. This yields the PDF:

f(x) = wafy (x) + Wofp () + wafz(x),

for some coefficients wy, w,, w3 = 0 such thatw; + w, + w3 = 1.

Figure 6.15 depicts a mixture of N(8,1), N(12,1), and N(17,2) with the correspond-
ing weights 0f0.35, 0.1, and 0.55. This dataset is quite coarse-grained (we only have 24
bar heights at our disposal). Consequently, the estimated coefficients should be taken
with a pinch of chilli pepper.

plt.bar(np.arange(24), width=1, height=peds/np.sum(peds),
color="11ightgray", edgecolor="black", alpha=0.8)

X = np.arange(0, 25, 0.1)

pl = scipy.stats.norm.pdf(x, 8, 1)

p2 = scipy.stats.norm.pdf(x, 12, 1)

p3 = scipy.stats.norm.pdf(x, 17, 2)

p = 0.35%p1 + 0.1*p2 + 0.55*p3 # weighted combination of 3 densities

plt.plot(x, p, "r--", label="PDF of a normal mixture")

plt.legend()

plt.show()

Important It will frequently be the case in data wrangling that more complex entities
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Figure 6.15. A histogram of the peds dataset and a guesstimated mixture of three nor-
mal distributions.

(models, methods) will be arising as combinations of simpler (primitive) components.
This is why we ought to spend a great deal of time studying the fundamentals.

Note Some data clustering techniques (in particular, the k-means algorithm that we
briefly discuss later in this course) could be used to split a data sample into disjoint
chunks corresponding to different mixture components.

Also, it might be the case that the mixture components can be explained by another
categorical variable that divides the dataset into natural groups; compare Chapter 12.

6.4 Generating pseudorandom numbers

A probability distribution is useful not only for describing a dataset. It also enables
us to perform many experiments on data that we do not currently have, but we might
obtain in the future, to test various scenarios and hypotheses.

To do this, we can generate arandom sample of independent (not related to each other)
observations.
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6.4.1 Uniform distribution

When most people say random, they implicitly mean uniformly distributed. For example:

np.random.rand(5)
## array([0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897])

gives five observations sampled independently from the uniform distribution on the
unit interval, i.e., U(0,1).

The same with scipy, but this time the support will be (—10, 15).

scipy.stats.uniform.rvs(-10, scale=25, size=5) # from -10 to -10+25
## array([ 0.5776615 , 14.51910496, 7.12074346, 2.02329754, -0.19706205])

Alternatively, we could do that ourselves by shifting and scaling the output of the
random number generator on the unit interval using the formula numpy.random.
rand(5)*25-10.

6.4.2 Not exactly random

We generate numbers using a computer, which is purely deterministic. Hence, we
shall refer to them as pseudorandom or random-like ones (albeit they are indistinguish-
able from truly random, when subject to rigorous tests for randomness).

To prove it, we can set the initial state of the generator (the seed) via some number and
see what values are produced:

np.random.seed(123) # set seed
np.random.rand(5)
## array([0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897])

Then, we set the seed once again via the same number and see how “random” the next
values are:

np.random.seed(123) # set seed
np.random.rand(5)
## array([0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897])

This enables us to perform completely reproducible numerical experiments. This feature
is very welcome. Truly scientific inquiries tend to nourish identical results under the
same conditions.

Note Ifwe do not set the seed manually, it will be initialised based on the current wall
time, which is different every... time. As a result, the numbers will seem random to us.

Many Python packages that we will be using in the future, including pandas and
scikit-learn, rely on numpy’s random number generator. We will become used to call-
ing numpy . random. seed to make them predictable.
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Additionally, some of them (e.g., sklearn.model_selection.train_test_split or
pandas.DataFrame.sample) are equipped with the random_state argument, which be-
haves as if we temporarily changed the seed (for just one call to that function). For in-
stance:

scipy.stats.uniform.rvs(size=5, random_state=123)
## array([0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897])

This gives the same sequence as above.

6.4.3 Sampling from other distributions

Generating data from other distributions is possible too; there are many rvs methods
implemented in scipy.stats. For example, here is a sample from N (100, 16):

scipy.stats.norm.rvs(100, 16, size=3, random_state=50489)
## array([113.41134015, 46.99328545, 157.1304154 ])

Pseudorandom deviates from the standard normal distribution, i.e., N(0,1), can also
be generated using numpy. random. randn. As N(100, 16) is a scaled and shifted version
thereof, the above is equivalent to:

np.random.seed(50489)
np.random.randn(3)*16 + 100
## array([113.41134015, 46.99328545, 157.1304154 ])

Important Conclusions based on simulated data are trustworthy for they cannot be
manipulated. Or can they?

The pseudorandom number generator’s seed used above, 50489, is quite suspicious. It
might suggest that someone wanted to prove some point (in this case, the violation of
the 30 rule).

This is why we recommend sticking to only one seed most of the time, e.g., 123, or —
when performing simulations — setting consecutive seeds for each iteration: 1, 2, ....

Exercise 6.8 Generate 1000 pseudorandom numbers from the log-normal distribution and
draw a histogram thereof.

Note (*) Having a reliable pseudorandom number generator from the uniform dis-
tribution on the unit interval is crucial as sampling from other distributions usually
involves transforming independent U(0, 1) variates.

For instance, realisations of random variables following any continuous cumulative
distribution function F can be constructed through the inverse transform sampling (see
(37, 78)):

1. Generate a sample x4, ..., x,, independently from U(0, 1).
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2. Transform each x; by applying the quantile function, y; = F~1 (x;).

Now y1, ..., Y, follows the CDF F.

Exercise 6.9 () Generate 1000 pseudorandom numbers from the log-normal distribution us-
ing inverse transform sampling.

Exercise 6.10 (**) Generate 1000 pseudorandom numbers from the distribution mixture dis-
cussed in Section 6.3.4.

6.4.4 Natural variability

Even a sample truly generated from a specific distribution will deviate from it, some-
times considerably. Such effects will be especially visible for small sample sizes, but
they usually disappear’® when the availability of data increases.

For example, Figure 6.16 depicts the histograms of nine different samples of size 100,
all drawn independently from the standard normal distribution.

plt.figure(figsize=(plt.rcParams["figure.figsize"][0], )*2) # width=height
for 1 in range(9):
plt.subplot(3, 3, 1+1)
sample = scipy.stats.norm.rvs(size=100, random_state=i+1)
plt.hist(sample, density=True, bins=10,
color="11ightgray", edgecolor="black")
plt.ylabel(None)
plt.xlim(-4, 4)
plt.ylim(0, 0.6)
plt.legend()
plt.show()

There is some ruggedness in the bar sizes that a naive observer might try to interpret
as something meaningful. A competent data scientist must train their eye to ignore
such impurities. In this case, they are only due to random effects. Nevertheless, we
must always be ready to detect cases which are worth attention.

Exercise 6.11 Repeat the above experiment for samples of sizes 10, 1 000, and 10 000.

Example 6.12 (*) Using a simple Monte Carlo simulation, we can verify (approximately) that
the Kolmogorov-Smirnov goodness-of-fit test introduced in Section 6.2.3 has been calibrated
properly, i.e., that for samples that really follow the assumed distribution, the null hypothesis
is rejected only in roughly 0.1% of the cases.

Let us say we are interested in the null hypothesis referencing the standard normal distribution,
N(O, 1), and sample sizen = 100. We need to generate many (we assume 10 000 below) such
samples for each of which we compute and store the maximal absolute deviation from the theor-
etical CDE, i.e., Dn.

19 Compare the Fundamental Theorem of Statistics (the Glivenko—Cantelli theorem).
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Figure 6.16. All nine samples are normally distributed.

n = 100

distrib = scipy.stats.norm(0, 1) # assumed distribution: N(O, 1)

Dns =[]

for i in range(10000): # increase this for better precision
x = distrib.rvs(size=n, random_state=1+1) # really follows distrib
Dns.append(compute _Dn(x, distrib.cdf))

Dns = np.array(Dns)

Now let us compute the proportion of cases which lead to D,, greater than the critical value K,,:

len(Dns[Dns >= scipy.stats.kstwo.ppf(1-0.001, n)]) / len(Dns)
## 0.0016

In theory, this should be equal to 0.001. But our values are necessarily approximate because we
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rely on randomness. Increasing the number of trials from 10 000 to, say, 1000 000 will make the
above estimate more precise.

It is also worth checking out that the density histogram of Dns resembles the Kolmogorov distri-
bution that we can compute via scipy. stats. kstwo. pdf.

Exercise 6.13 (*) It might also be interesting to check out the test’s power, i.e., the probabil-
ity that when the null hypothesis is false, it will actually be rejected. Modify the above code in
such a way that x in the for loop is not generated from N(0, 1), but N(0.1,1), N(0.2, 1), etc.,
and check the proportion of cases where we deem the sample distribution different from N (0O, 1).
Small differences in the location parameter y are usually ignored, and this improves with sample
sizen.

6.4.5 Adding jitter (white noise)

We mentioned that measurements might be subject to observational error. Rounding
can also occur as early as the data collection phase. In particular, our heights dataset
is precise up to 1 fractional digit. However, in statistics, when we say that data follow
a continuous distribution, the probability of having two identical values in a sample is
0. Therefore, some data analysis methods might assume that there are no ties in the
input vector, i.e., all values are unique.

The easiest way to deal with such numerical inconveniences is to add some white noise
with the expected value of 0, either uniformly or normally distributed.

For example, for heights it makes sense to add some jitter from U[—0.05,0.05]:

heights_jitter = heights + (np.random.rand(len(heights))*0.1-0.05)
helghts_jitter[:6] # preview

## array([160.21704623, 152.68870195, 161.24482407, 157.3675293 ,
## 154.61663465, 144.68964596])

Adding noise also might be performed for aesthetic reasons, e.g., when drawing scat-
ter plots.

6.4.6 Independence assumption

Let us generate nine binary digits in a random fashion:

np.random.seed(251) # HIDDEN
np.random.choice([0, 1], 9)
## array([1, 1, 1, 1, 1, 1, 1, 1, 1])

We can consider ourselves very lucky; all numbers are the same. So, the next number
must be a “zero”, finally, right?

np.random.choice([0, 1], 1)
## array([1])

Wrong. The numbers we generate are independent of each other. There is no history. In
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the above model of randomness (Bernoulli trials; two possible outcomes with the same
probability), there is a 50% chance of obtaining a “one” regardless of how many “ones”
were observed previously.

We should not seek patterns where there are none. Our brain forms expectations about
the world, which are difficult to overcome. But the reality could not care less about
what we consider it to be.

6.5 Further reading

For an excellent general introductory course on probability and statistics, see [38, 40]
and also [79]. More advanced students are likely to enjoy other classics such as [4, 7, 17,
26]. To go beyond the fundamentals, check out [24]. Topics in random number gener-
ation are covered in [37, 56, 78].

For a more detailed introduction to exploratory data analysis, see the classical books
by Tukey [88, 89] and Tufte [87].

We took the logarithm of the log-normally distributed incomes and obtained a nor-
mally distributed sample. In statistical practice, it is not rare to apply different non-
linear transforms of the input vectors at the data preprocessing stage (see, e.g., Sec-
A
tion 9.2.6). In particular, the Box—Cox (power) transform [10] is of the form x — "A—_l
for some A. Interestingly, in the limit as A — 0, this formula yields x — log x which

is exactly what we were applying in this chapter.

[14, 68] give a nice overview of the power-law-like behaviour of some “rich” or oth-
erwise extreme datasets. It is worth noting that the logarithm of a Paretian sample
divided by the minimum follows an exponential distribution (which we discuss in
Chapter 16). For a comprehensive catalogue of statistical distributions, their proper-
ties, and relationships between them, see [27].

6.6 Exercises
Exercise 6.14 Why is the notion of the mean income confusing the general public?
Exercise 6.15 When manually setting the seed of a random number generator makes sense?

Exercise 6.16 Given alog-normally distributed sample x, how can we turn it to a normally dis-
tributed one, i.e., y=f (x), with f being... what?

Exercise 6.17 What is the 30 rule for normally distributed data?

Exercise 6.18 (*) How can we verify graphically if a sample follows a hypothesised theoretical
distribution?
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Exercise 6.19 (*) Explain the meaning of the type I error, significance level, and a test’s power.






Part II1

Multidimensional data






7

Multidimensional numeric data at a glance

From the perspective of structured datasets, a vector often represents n independent
measurements of the same quantitative property, e.g., heights of n different patients,
incomes in n randomly chosen households, or ages of n runners. More generally, these
are all instances of a bag of n points on the real line. By far’, we should have become
quite fluent with the methods for processing such one-dimensional arrays.

Let us increase the level of complexity by permitting each of the # entities to be de-
scribed by m features, for any m > 1. In other words, we will be dealing with n points
in an m-dimensional space, R™.

We can arrange all the observations in a table with n rows and m columns (just like
in spreadsheets). Such an object can be expressed with numpy as a two-dimensional
array which we will refer to as matrices. Thanks to matrices, we can keep the # tuples of
length m together in a single object and process them all at once (or m tuples of length
n, depending on how we want to look at them). Very convenient.

Important Just like vectors, matrices were designed to store data of the same type.
Chapter 10 will cover data frames, which further increase the degree of complexity (and
freedom). They tolerate mixed data types, e.g., numerical and categorical (this will
enable us to perform data analysis in subgroups more easily). Moreover, they let rows
and columns be named.

Many data analysis algorithms convert data frames to matrices automatically and deal
with them as such. From the computational side, it is numpy that does most of the
“mathematical” work. pandas implements many recipes for basic data wrangling tasks,
but we want to go way beyond that. After all, we would like to be able to tackle any prob-
lem.

! Assuming we solved all the suggested exercises, which we did, didn't we? See Rule #3.
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7.1 Creating matrices
7.1.1 Reading CSV files

Tabular data are often stored and distributed in a very portable plain-text format
called CSV (comma-separated values) or variants thereof. We can read them quite eas-
ily with numpy . genfromtxt (or later with pandas. read_csv).

body = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_bmx_2020.csv",
delimiter=",")[1:, :] # skip first row (column names)

Note that the file specifies column names (the first non-comment line; we suggest in-
specting the above CSV file in a web browser). Therefore, we had to skip it manually
(more on matrix indexing later). Here is a preview of the first few rows:

body[:6, :] # six first rows, all columns
## array([[ 97.1, 160.2, 34.7, 40.8, 35.8, 126.1, 117.9],

## [ 91.1, 152.7, 33.5, 33., 38.5, 125.5, 103.1],
## [ 73., 161.2, 37.4, 38. , 31.8, 106.2, 92. ],
## [ 61.7, 157.4, 38. , 34.7, 29. , 101. , 90.5],
## [ 55.4, 154.6, 34.6, 34. , 28.3, 92.5, 73.2],
## [ 62. , 144.7, 32.5, 34.2, 29.8, 106.7, 84.8]])

This is an extended version of the National Health and Nutrition Examination Survey
(NHANES?), where the consecutive columns give the following body measurements
of adult females:

body_columns = np.array([
"weight (kg)",
"standing height (cm)", # we know ‘heights' from the previous chapters
"upper arm len. (cm)",
"upper leg len. (cm)",
"arm circ. (cm)",
"hip circ. (cm)",
"waist circ. (cm)"

D)

numpy matrices do not support column naming. This is why we noted them down sep-
arately. It is only a minor inconvenience. pandas data frames will have this capability,
but from the algebraic side, they are not as convenient as matrices for the purpose of
scientific computing.

What we are dealing with is still a numpy array:

2 https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx
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type(body) # class of this object
## <class 'numpy.ndarray'>

But this time it is a two-dimensional one:

body.ndim # number of dimensions
# 2

which means that the shape slot is now a tuple of length 2.

body.shape
#H (4221, 7)

The above gave the total number of rows and columns, respectively.

7.1.2 Enumerating elements

numpy.array can create a two-dimensional array based on a list of lists or vector-like
objects, all of the same lengths. Each of them will constitute a separate row of the res-
ulting matrix. For example:

np.array([ # list of lists
[ 1, 2, 3, 4], # the first row
[ 5, 6, 7, 8], # the second row
[ 9, 10, 11, 12 ] # the third row

D

## array([[ 1, 2, 3, 4],
## [5 6 7, 8],
## [9, 10, 11, 12]])

It gave a 3 x 4 (3-by-4) matrix.

np.array([ [1], [2], [31 D)
## array([[1],
#H [2],
##t [3]])

Ityielded a3 x 1 one;we call a column vector, but it is a special matrix (we will soon learn
that shapes can make a significant difference). Moreover:

np.array([ [1, 2, 3, 4] 1)
## array([[1, 2, 3, 4]])

It produced a 1 x 4 array (a row vector).

Note An ordinary vector (a unidimensional array) only uses a single pair of square
brackets:
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np.array([1, 2, 3, 4])
## array([1, 2, 3, 4])

7.1.3 Repeating arrays

The previously mentioned numpy.tile and numpy.repeat can also generate some nice
matrices. For instance:

np.repeat([[1, 2, 3, 4]], 3, axis=0)
## array([[1, 2, 3, 4],
## [1, 2, 3, 4],
## [1, 2, 3, 4]])

repeats a row vector rowwisely (i.e., over axis 0 — the first one).

Replicating a column vector columnwisely (i.e., over axis 1 — the second one) is possible
as well:

np.repeat([[1], [2], [31], 4, axis=1)
## array([[1, 1, 1, 1],
## [2, 2, 2, 2],
## [3, 3, 3, 3]])

Exercise 7.1 How can we generate matrices of the following kinds?

2
2 1
2| 3

W WWWE ==
[ N S \S I O
~
_ =
NN
—_ =
NN
_ =
W -
= N
=N
=N

7.1.4 Stacking arrays

numpy . column_stack and numpy.row_stack take a tuple of array-like objects and bind
them column- or rowwisely to form a new matrix:

np.column_stack(([10, 20], [30, 40], [50, 60])) # a tuple of lists
## array([[10, 30, 50],
## [20, 40, 60]])
np.row_stack(([10, 20], [30, 40], [50, 60]))
## array([[10, 20],
## [30, 40],
## [50, 60]])
np.column_stack((
np.row_stack(([10, 20], [30, 40], [50, 60])),

(continues on next page)
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(continued from previous page)
[70, 80, 90]

))

## array([[10, 20, 70],
## [30, 40, 80],
## [50, 60, 90]])

Exercise 7.2 Perform similar operations using numpy . append, numpy . vstack, numpy . hstack,
numpy. concatenate, and (*) numpy. c_. Are they worth taking note of; or are they redundant?

Exercise 7.3 Using numpy. insert, add a new vow/column at the beginning, end, and in the
middle of an array. Let us stress that this function returns a new array.

7.1.5 Other functions

Many built-in functions generate arrays of arbitrary shapes (not only vectors). For ex-
ample:

np.random.seed(123)

np.random.rand(2, 5) # not: rand((2, 5))

## array([[0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897],
## [0.42310646, 0.9807642 , 0.68482974, 0.4809319 , 0.39211752]])

The same with scipy:

scipy.stats.uniform.rvs(0, 1, size=(2, 5), random_state=123)
##4 array([[0.69646919, 0.28613933, 0.22685145, 0.55131477, 0.71946897],
## [0.42310646, 0.9807642 , 0.68482974, 0.4809319 , 0.39211752]])

The way we specify the output shapes might differ across functions and packages. Con-
sequently, as usual, it is always best to refer to their documentation.

Exercise 7.4 Check out the documentation of the following functions: numpy . eye, numpy . diag,
numpy. zeros, numpy.ones, and numpy . empty.

7.2 Reshaping matrices

Let us take an example 3 x 4 matrix:

A = np.array([
[1, 2, 3, 4]
[5 6, 7, 81,
[ 9, 10, 11, 12 ]

D
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Internally, a matrix is represented using a long flat vector where elements are stored
in the row-major® order:

A.size # total number of elements

## 12

A.ravel() # the underlying array

## array([ 1, 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12])

Itis the shape slot that is causing the 12 elements to be treated as if they were arranged
ona3x4grid, forexample in different algebraic computations and during the printing
thereof. This arrangement can be altered anytime without modifying the underlying
array:

A.shape = (4, 3)

A

## array([[ 1, 2, 3],
## [ 4, 5, 6],
## [ 7, 8 9],
## [10, 11, 12]])

This way, we obtained a different view of the same data.

For convenience, there is also the reshape method that returns a modified version of
the object it is applied on:

A.reshape(-1, 6) # A.reshape(don't make me compute this for you mate!, 6)
## array([[ 1, 2, 3, 4, 5, 6],
#H [ 7, 8 9, 10, 11, 12]])

Here, “-1” means that numpy must deduce by itself how many rows we want in the result.
Twelve elements are supposed to be arranged in six columns, so the maths behind it
is not rocket science.

Thanks to this, generating row or column vectors is straightforward:

np.linspace(0, 1, 5).reshape(1, -1) # one row, guess the number of columns
## array([[0. , 0.25, 0.5, 0.75, 1. ]])

np.array([9099, 2537, 1832]).reshape(-1, 1) # one column, guess row count
#4 array([[9099],

## [2537],

## [1832]])

Reshaping is not the same as matrix transpose, which also changes the order of ele-
ments in the underlying array:

3 (*) Sometimes referred to as a C-style array, as opposed to Fortran-style which is used in, e.g., R.
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A # before

## array([[ 1, 2, 3],
## [ 4, 5, 6],
## [ 7, 8 9],
## [16, 11, 12]])

A.T # transpose of A

#4 array([[ 1, 4, 7, 10],
## [2, 5 8, 11],
## [ 3, 6, 9, 12]])

Rows became columns and vice versa.

Note (¥) Higher-dimensional arrays are also possible. For example:

np.arange(24).reshape(2, 4, 3)
## array([[[ 0, 1, 2],

## [ 3, 4, 5],
## [6, 7, 8],
## [ 9, 10, 11]],
##

## [[12, 13, 14],
## [15, 16, 17],
## [18, 19, 20],
## [21, 22, 23]]])

Is an array of “depth” 2, “height” 4, and “width” 3; we can see it as two 4 x 3 matrices
stacked together. Theoretically, they can be used for representing contingency tables
for products of many factors. Still, in our application areas, we prefer to stick with long
data frames instead; see Section 10.6.2. This is due to their more aesthetic display and
better handling of sparse data.

7.3 Mathematical notation

Here is some standalone mathematical notation that we shall be employing in this
course. A matrix with n rows and m columns (an 7 x m matrix) X can be written as:

X11 X1,2 t Xim
X=| 21 %22 " Xom
xn,l xn,2 xn,m

Mathematically, we denote this as X € R™ . Spreadsheets use a similar display of
data.

We see that x;; € R denotes the element in the i-th row (e.g., the i-th observation

J



140 11l MULTIDIMENSIONAL DATA
or case) and the j-th column (e.g., the j-th feature or variable), for every i = 1,...,n,
j=1,...,m

In particular, if X denoted the body dataset, then x; , would be the height of the first
person.

Important Matrices are a convenient means of representing many different kinds of
data:

« 1 points in an m-dimensional space (like n observations for which there are m
measurements/features recorded, where each row describes a different object; ex-
actly the case of the body dataset above) — this is the most common scenario;

- mtime series sampled at 7 points in time (e.g., prices of m different currencies on
n consecutive days; see Chapter 16);

a single kind of measurement for data in m groups, each consisting of n subjects
(e.g., heights of n males and  females); here, the order of elements in each column
does not usually matter as observations are not paired; there is no relationship
between x; ; and x; ; for j # k; a matrix is used merely as a convenient container
for storing a few unrelated vectors of identical sizes; we will be dealing with a more
generic case of possibly nonhomogeneous groups in Chapter 12;

« two-way contingency tables (see Section 11.2.2), where an element x; ; gives the
number of occurrences of items at the i-th level of the first categorical variable and,
at the same time, being at the j-th level of the second variable (e.g., blue-eyed and
blonde-haired);

- graphs and other relationships between objects, e.g., x; ; = 0 might denote that
the i-th object is not connected* with the j-th one and xk ; = 0.2 that there is a
weak connection between k and I (e.g., who is a friend of whom, whether a user
recommends a particular item);

images, where x; ; represents the intensity of a colour component (e.g., red, green,
blue or shades of] grey or hue, saturation, brightness; compare Section 16.4) of a
pixelin the (n — i + 1)-th row and the j-th column.

Note In practice, more complex and less-structured data can quite often be mapped
to a tabular form. For instance, a set of audio recordings can be described by meas-
uring the overall loudness, timbre, and danceability of each song. Also, a collection
of documents can be described by means of the degrees of belongingness to some
automatically discovered topics (e.g., someone said that Joyce’s Ulysses is 80% travel
literature, 70% comedy, and 50% heroic fantasy, but let us not take it for granted).

4 Such matrices are usually sparse, i.e., have many elements equal to 0. We have special, memory-
efficient data structures for handling these data; see scipy.sparse for more details as this goes beyond
the scope of our introductory course.
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7.3.1 Row and column vectors

Additionally, will sometimes use the following notation to emphasise that X consists
of n rows:

X
Here, X; . is a row vector of length m, i.e., a (1 x m)-matrix:

X;,. =[ Xi1 Xz vt Xim ]

Alternatively, we can specify the m columns:

X = [ X.,l X.,z X./m ]/

where X, is a column vector of length n, i.e., an (1 x 1)-matrix:

Xl,/-

T Xp i

o . o . _ Jj
Xj= [ X1 X2 Xn,j I = S

Xy j

where -T denotes the transpose of a given matrix (thanks to which we can save some
vertical space, we do not want this book to be 1000 pages long, do we?).

Also, recall that we are used to denoting vectors of length m withx = (xq,...,%,,). A
vector is a one-dimensional array (not a two-dimensional one), hence a slightly differ-
ent font in the case where ambiguity can be troublesome.

Note To avoid notation clutter, we will often be implicitly promoting vectors like x =
(X1, -+, X,;) to rOw vectors X = [xq -+ X,,,;]. This is the behaviour that numpy® uses; see
Chapter 8.

7.3.2 Transpose

The transpose of a matrix X € R™ isan (m x n)-matrix Y given by:

X1,1 X211 t Xm

_wT | X12 X22 = Xpp2
Y=X' = : : . m 4

xl,n x2,n xm,n

Le., itenjoysy;; = x; ;.

5 Some textbooks assume that all vectors are column vectors.
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Exercise 7.5 Compare the display of an example matrix A and its transpose A. T above.

7.3.3 Identity and other diagonal matrices

I denotes the identity matrix, being a square n x n matrix (with n most often clear from
the context) with os everywhere except on the main diagonal, where 1s lie.

np.eye(5) # I

## array([[1., 6., 0., 0., 0.],
## [o., 1., 0., 0., 0.],
## [o., 0., 1., 0., 0.],
#t [o., 0., 6., 1., 0.],
## [6., 0., 0., 0., 1.]])

The identity matrix is a neutral element of the matrix multiplication (Section 8.3).

More generally, any diagonal matrix, diag(ay, ..., 4,,), can be constructed from a given
sequence of elements by calling:

np.diag([1, 2, 3, 4])
## array([[1, 0, 0, 0],

## [o, 2, o, @],
# [o, o, 3, 0],
#t [0, 0, 0, 4]])
.|

7.4 Visualising multidimensional data

Let us go back to our body dataset:

body[:6, :] # preview
## array([[ 97.1, 160.2, 34.7, 40.8, 35.8, 126.1, 117.9],

## [ 91.1, 152.7, 33.5, 33. , 38.5, 125.5, 103.1],
## [ 73. , 161.2, 37.4, 38. , 31.8, 106.2, 92. ],
## [ 61.7, 157.4, 38. , 34.7, 29. , 101. , 90.5],
## [ 55.4, 154.6, 34.6, 34. , 28.3, 92.5, 73.2],
## [ 62. , 144.7, 32.5, 34.2, 29.8, 106.7, 84.8]])
body.shape

## (4221, 7)

This is an example of tabular (“structured”) data. The important property is that the ele-
ments in each row describe the same person. We can freely reorder all the columns at
the same time (change the order of participants), and this dataset will make the same
sense (but sorting a single column and leaving others unchanged will be semantically
invalid).

Mathematically, we consider the above as a set of 4221 points in a seven-dimensional
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space, R”. Let us discuss how we can try visualising different natural projections
thereof.

7.4.1 2D Data

A scatter plot visualises one variable against another one.

plt.plot(body[:, 1], body[:, 3], "o", c="#00000022")
plt.xlabel(body columns[1])

plt.ylabel(body columns[3])

plt.show()

50
45
40

35

upper leglen. (cm)

30

25

130 140 150 160 170 180 190
standing height (cm)

Figure 7.1. An example scatter plot.

Figure 7.1 depicts upper leg length (the y-axis) vs (versus; against; as a function of)
standing height (the x-axis) in the form of a point cloud with (x, y) coordinates like
(body[i, 1], body[i, 31).

Example 7.6 Here are the exact coordinates of the point corresponding to the person of the smal-
lest height:

body[np.argmin(body[:, 1]), [1, 3]]
## array([131.1, 360.8])

and here is the one with the greatest upper leg length:

body[np.argmax(body[:, 3]), [1, 3]]
## array([168.9, 49.1])

Locate them in Figure 7.1.
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As the points are abundant, normally we cannot easily see where most of them are loc-
ated. As a remedy, we applied the simple trick of plotting the points using a semi-
transparent colour. This gave a kind of a density estimate. Here, the colour specifier
was of the form #rrggbbaa, giving the intensity of the red, green, blue, and alpha
(opaqueness) channel in four series of two hexadecimal digits (between 00 = 0 and ff
=255).

Overall, the plot reveals that there is a general tendency for small heights and small upper
leg lengths to occur frequently together. The same with larger pairs. As there is some
natural variability, this of course does not mean that always the taller the person, the
longer her legs. They just seem to be longer on average. For example, looking at people
of height roughly equal to 160 cm, their upper leg length can be anywhere between 25
ad 50 cm (range). But we expect the majority to lie somewhere between 35 and 40 cm.

Chapter 9 will explore two measures of correlation that will enable us to quantify the
degree of association between variable pairs.

7.4.2 3D Dataand beyond

If we have more than two variables to visualise, we might be tempted to use, e.g., a
three-dimensional scatter plot like the one in Figure 7.2.

fig = plt.figure()

ax = fig.add_subplot(projection="3d", facecolor="#ffffffeo")
ax.scatter(body[:, 1], body[:, 3], body[:, 0], color="#00000011")
ax.view_init(elev=30, azim=60, vertical_axis="y")
ax.set_xlabel(body columns[1])

ax.set_ylabel(body columns[3])

ax.set_zlabel(body_columns[0])

plt.show()

Infrequently will such a 3D plot provide us with readable results, though. We are pro-
jecting a three-dimensional reality onto a two-dimensional screen or page. Some in-
formation must inherently be lost. Also, what we see is relative to the position of the
virtual camera.

Exercise 7.7 (*) Try finding an interesting elevation and azimuth angle by playing with the
arguments passed to the mpl_toolkits.mplot3d.axes3d.Axes3D.view_init function. Also,
depict arm circumference, hip circumference, and weight on a 3D plot.

Note (*) Sometimes there might be facilities available to create an interactive scat-
ter plot (running the above from the Python’s console enables this), where the virtual
camera can be freely repositioned with a mouse/touch pad. This can give some more
insight into our data. Also, there are means of creating animated sequences, where
we can fly over the data scene. Some people find it cool, others find it annoying, but
the biggest problem therewith is that they cannot be included in printed material. Yet,
if we are only targeting the display for the Web (this includes mobile devices), we can
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Figure 7.2. A three-dimensional scatter plot reveals almost nothing.

try some Python libraries® that output HTML+CSS+]JavaScript code to be rendered by
a browser engine.

Example 7.8 Instead of drawing a 3D plot, it might be better to play with different marker
colours (or sometimes sizes: think of them as bubbles). Suitable colour maps’ can distinguish
between low and high values of an additional variable, as in Figure 7.3.

plt.scatter(
body[:, 4], # x
body[:, 5], #y
c=body[:, 0], # "z" - colours
cmap=plt.colormaps.get_cmap("copper"), # colour map
alpha=0.5 # opaqueness level between 0 and 1
)
plt.xlabel(body columns[4])
plt.ylabel(body columns[5])
plt.axis("equal")
plt.rcParams["axes.grid"] = False
cbar = plt.colorbar()
plt.rcParams["axes.grid"] = True
cbar.set_label(body_columns[@])
plt.show()

We can see some tendency for the weight to be greater as both the arm and the hip circumferences
increase.

6 https://wiki.python.org/moin/NumericAndScientific/Plotting
7 https://matplotlib.org/stable/tutorials/colors/colormaps.html
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Figure 7.3. A two-dimensional scatter plot displaying three variables.

Exercise 7.9 Play around with different colour palettes. However, be wary that every 1 in 12
men (8%) and 1in 200 women (0.5%) have colour vision deficiencies, especially in the red-green
or blue-yellow spectrum. For this reason, some diverging colour maps might be worse than others.

A piece of paper is two-dimensional. We only have height and width. Looking around
us, we also understand the notion of depth. So far so good. But when the case of more-
dimensional data is concerned, well, suffice it to say that we are three-dimensional
creatures and any attempts towards visualising them will simply not work, don’t even
trip.

Luckily, this is where mathematics comes to our rescue. With some more knowledge
and intuitions, and this book helps us develop them, it will be as easy® as imagining a
generic m-dimensional space, and then assuming that, say, m = 7 or 42.

This is exactly why data science relies on automated methods for knowledge/pattern
discovery. Thanks to them, we can identify, describe, and analyse the structures that
might be present in the data, but cannot be perceived with our imperfect senses.

Note Linear and nonlinear dimensionality reduction techniques can be applied to
visualise some aspects of high-dimensional data in the form of 2D (or 3D) plots. In par-
ticular, the principal component analysis (PCA) finds an interesting angle from which
looking at the data might be worth considering; see Section 9.3.

8 This is an old funny joke that most funny mathematicians find funny. Ha.
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7.4.3 Scatter plot matrix (pairs plot)

We may also try depicting all pairs of selected variables in the form of a scatter plot
matrix; see Figure 7.4.

def pairplot(X, labels, bins=21, alpha=0.1):
Draws a scatter plot matrix, given:
* X - data matrix,
* labels - list of column names

i

assert X.shape[1] == len(labels)

k = X.shape[1]
fig, axes = plt.subplots(nrows=k, ncols=k, sharex="col", sharey="row",
figsize=(plt.rcParams["figure.figsize"][0], )*2)
for 1 in range(k):
for j in range(k):
ax = axes[i, j]
if 1 == j: # diagonal
ax.text(0.5, 0.5, labels[1], transform=ax.transAxes,
ha="center", va="center", size="x-small")
else:
ax.plot(X[:, j], X[:, 1], ".", color="black", alpha=alpha)

And now:

which = [0, 1, 4, 5]
pairplot(body[:, which], body_columns[which])
plt.show()

Plotting variables against themselves is uninteresting (exercise: what would that be?).
Therefore, on the main diagonal, we printed out the variable names.

A scatter plot matrix can be a valuable tool for identifying noteworthy combinations
of columns in our datasets. We see that some pairs of variables are more “structured”
than others, e.g., hip circumference and weight are more or less aligned on a straight
line. This is why Chapter 9 will be interested in describing the possible relationships
between the variables.

Exercise 7.10 Create a pairs plot where weight, arm civcumference, and hip circumference are
on the log-scale.

Exercise 7.11 (*) Call seaborn.pairplot to create a scatter plot matrix with histograms on
the main diagonal, thanks to which you will be able to see how the marginal distributions are
distributed. Note that the matrix must, unfortunately, be converted to a pandas data frame first.

Exercise 7.12 (**) Modify our pairplot function so that it displays the histograms of the mar-
ginal distributions on the main diagonal.
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Figure 7.4. The scatter plot matrix for selected columns in the body dataset.

7.5 Exercises

Exercise 7.13 What is the difference between [1, 2, 3], [[1, 2, 3]],and [[1], [2], [3]]
in the context of array creation?

Exercise 7.14 If A is a matrix with 5 rows and 6 columns, what is the difference between A.
reshape(6, 5)andA.T1?

Exercise7.15 If A is a matrix with 5 rows and 6 columns, what is the meaning of: A.
reshape(-1), A.reshape(3, -1),A.reshape(-1, 3),A.reshape(-1, -1),A.shape = (3,
10), and A. shape = (-1, 3)?

Exercise 7.16 List some methods to add a new vow and add a new column to an existing matrix.
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Exercise 7.17 Give some ways to visualise three-dimensional data.

Exercise 7.18 How can we set point opaqueness/transparency when drawing a scatter plot?
Why would we be interested in this?
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Processing multidimensional data

8.1 From vectors to matrices

Let us study how the vector operations that we discussed in, amongst others, Chapter
5 can be extended to matrices. In many cases, we will end up applying the same trans-
form either on every matrix element separately, or on each row or column. They are
all brilliant examples of the write less, do more principle in practice.

8.1.1 Vectorised mathematical functions

Applying vectorised functions such as numpy.round, numpy.log, and numpy.exp returns
an array of the same shape, with all elements transformed accordingly.

A = np.array([
[0.2, 0.6, 0.4, 0.4],
[0.0, 0.2, 0.4, 0.7],
[0.8, 0.8, 0.2, 0.1]
1) # example matrix that we will be using below

For example:

np.square(A)

## array([[0.04, 0.36, 0.16, 0.16],

## [6. , 0.04, 0.16, 0.49],

i [0.64, 0.64, 0.04, 0.01]])

takes the square of every element.

More generally, we will be denoting such operations with:

fx11) flxi) = f(xym)
f(X) — f(x.2,1) f(x?,Z) f(x2,m)

FGun) fGnp) = [

8.1.2 Componentwise aggregation

Unidimensional aggregation functions (e.g., numpy.mean, numpy.quantile) can be ap-
plied to summarise:
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. all data into a single number (axis=None, being the default),
« data in each column (axis=0), as well as
« datain each row (axis=1).

Here are the examples corresponding to the above cases:

np.mean(A)

## 0.39999999999999997

np.mean(A, axis=0)

## array([6.33333333, 0.53333333, (0.33333333, 0.4 1)
np.mean(A, axis=1)

#4 array([0.4 , 0.325, 0.475])

Important Let us repeat, axis=1 does not mean that we get the column means (even
though columns constitute the second axis, and we count starting at 0). It denotes the
axis along which the matrix is sliced. Sadly, even yours truly sometimes does not get it
right on the first attempt.

Exercise 8.1 Given the nhanes_adult_female_bmx_2020" dataset, compute the mean, stand-
ard deviation, minimum, and maximum of each body measurement.

We will get back to the topic of the aggregation of multidimensional data in Sec-
tion 8.4.

8.1.3 Arithmetic, logical, and relational operations

NUPENRN

Recall that for vectors, binary operators such as "+, *#°, "==", "<=", and "&" as well as
similar elementwise functions (e.g., numpy.minimum) can be applied if both inputs are
of the same length. For example:

np.array([1, 10, 100, 1000]) * np.array([7, -6, 2, 8]) # elementwisely
## array([ 7, -60, 200, 8000])

Alternatively, one input can be a scalar:

np.array([1, 10, 100, 1000]) * -3
## array([ -3, -30, -300, -3000])

More generally, a set of rules referred to in the numpy manual as broadcasting® describes
how this package handles arrays of different shapes.

Important Generally, for two matrices, their column/row numbers must match or be

! https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_bmx_2020.
csv
2 https://numpy.org/devdocs/user/basics.broadcasting.html
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equal to1. Also, if one operand is a one-dimensional array, it will be promoted to a row
vector.

Let us explore all the possible scenarios.

Matrix vs scalar

If one operand is a scalar, then it is going to be propagated over all matrix elements.
For example:

(-1)*A

## array([[-0.2, -0.6, -0.4, -0.4],
#t [-0. , -0.2, -0.4, -0.7],
## [-6.8, -0.8, -0.2, -0.1]])

It changed the sign of every element, which is, mathematically, an instance of mul-
tiplying a matrix X by a scalar c:

X1 X1 v Xy
cx cx eoox
X =| 21 P22 S

CXn1 CXpo 0 Xy

Furthermore:

A

## array([[0.04, 0.36, 0.16, 0.16],

## [6. , 0.04, 0.16, 0.49],

## [0.64, 0.64, 0.04, 0.01]])

It took the square® of each element. Also:

A >= 0.25

## array([[False, True, True, True],
## [False, False, True, True],
## [ True, True, False, False]])

It compared each element to 0.25.

Matrix vs matrix

For two matrices of identical sizes, we act on the corresponding elements:

B = np.tri(A.shape[0], A.shape[1]) # just an example
B # a lower triangular 0-1 matrix

## array([[1., 0., 0., 0.],

## [1., 1., 0., 0.],

## [1., 1., 1., 0.]])

3 This is not the same as matrix-multiply by itself which we cover in Section 8.3.
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And now:

A *B

## array([[0.2, 0. , 0. , 0. ],
## [o. , 0.2, 0. , 0. ],
## [0.8, 0.8, 0.2, 0. ]])

multiplies each g; ; by the corresponding b; ;.

This extends on the idea from algebra that given A, B with n rows and m columns each,
the result of + (or —) would be for instance:

a1 +biy ap+bip o Ay, + by,

a,1+Db ar»+Db e Gy, + Db
A+B= 21t 021 M2+ 022 - 2m + U2m

an,l + bn,l an,Z + bn,Z an,m + bn,m

Thanks to the matrix-matrix and matrix-scalar operations we can perform various
tests on a per-element basis, e.g.,

(A >= 0.25) & (A <= 0.75) # logical matrix & logical matrix
## array([[False, True, True, True],
#H [False, False, True, True],
## [False, False, False, False]])

Example 8.2 (*) Figure 8.1 depicts a (filled) contour plot of Himmelblaw's function, f (x,y) =
2 +y—11)2 + (x+y> = 7)% forx € [-5,5]andy € [—4,4]. To draw it, we
probed 250 points from the two said ranges and called numpy . meshgrid to generate two matrices,
both of shape 250 by 250, giving the x- and y-coordinates of all the points on the corresponding
two-dimensional grid. Thanks to this, we were able to use vectorised mathematical operations to
compute the values of f thereon.

x = np.linspace(-5, 5, 250)

y = np.linspace(-4, 4, 250)

Xg, yg = np.meshgrid(x, y)

z = (xg**2 + yg - 11)**2 + (xg + yg**2 - 7)**2

plt.contourf(x, y, z, levels=20)

CS = plt.contour(x, y, z, levels=[1, 5, 10, 20, 50, 100, 150, 200, 250])
plt.clabel(CS, colors="black")

plt.show()

To understand the result generated by numpy . meshgrid, here is its output for a smaller number
of probe points:

x = np.linspace(-5, 5, 3)
y = np.linspace(-4, 4, 5)
Xg, yg = np.meshgrid(x, y)

Xg
## array([[-5., 0., 5.],
it [-5., 0., 5],

(continues on next page)
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Figure 8.1. An example filled contour plot with additional labelled contour lines.

(continued from previous page)

## [-5., 6., 5.7,
# [-5., 0., 5.],
## [-5., 0., 5.7])

yg

## array([[-4., -4., -4.],
# [-2., -2., -2.],
## [6o6., 0., 0.],
## [2., 2., 2.],
## [ 4., 4., 4.]])

In this case, each row is identical. Thanks to this, calling:

(xg**2 + yg - 11)**2 + (xg + yg**2 - 7)**2
## array([[116., 306., 296.],

## [208., 178., 148.],
## [346., 170., 260.],
## [320., 90., 260.],
## [346., 130., 520.]])

gives amatrix Z such that z; ; is generated by considering the i-th element in y and the j-th item
in x, which is exactly what we desired.
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Matrix vs any vector
An nxm matrix can also be combined with an nx1 column vector:

A * np.array([1, 10, 100]).reshape(-1, 1)
## array([[ 0.2, 0.6, 0.4, 0.4],
## [o., 2., 4., 7. ],
## [860. , 80. , 20. , 10. ]])

The above propagated the column vector over all columns (left to right).
Similarly, combining with a 1xm row vector:

A + np.array([1, 2, 3, 4]).reshape(1, -1)
## array([[1.2, 2.6, 3.4, 4.4],
## [1. , 2.2, 3.4, 4.7],
## [1.8, 2.8, 3.2, 4.1]])

recycles the row vector over all rows (top to bottom).

If one operand is a one-dimensional array or a list of length m, it will be treated as a
row vector. For example:

np.round(A - np.mean(A, axis=0), 3) # matrix - vector
## array([[-0.133, 0.067, 0.067, -0. 71,
## [-60.333, -0.333, 0.067, 0.3 ],
## [ 0.467, 0.267, -0.133, -0.3 ]])

On a side note, this is an instance of centring of each column. An explicit . reshape(1,
-1) was not necessary.

Mathematically, although it is not necessarily a standard notation, we will allow
adding and subtracting row vectors from matrices of compatible sizes:

xlll + tl xlrz + tz xl,m + tm

X 1 x ty ... X t
X+t=X+[tty - t,] = 2,1:+ 1 2,2:+ 2 : 2,m:+ m

xnll + tl xnlz + tz xn/m + tm

This corresponds to shifting (translating) every row in the matrix.

Exercise 8.3 In the nhanes_adult_female_bmx_2020* dataset, standardise, normalise, and
min-max scale every column (compare Section 5.3.2). A single line of code will suffice in each
case.

Row vector vs column vector (¥)

A row vector combined with a column vector results in an operation’s being performed
on each combination of all pairs of elements in the two arrays (i.e., the cross-product;
not just the corresponding pairs).

4 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_bmx_2020.
csv
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np.arange(1, 8).reshape(1, -1) * np.array([1, 10, 100]).reshape(-1, 1)
## array([[ 1, 2, 3, 4, 5, 6, 71,
## [ 10, 20, 30, 46, 50, 60, 70],
## [160, 200, 300, 400, 500, 600, 700]])

Exercise 8.4 Check out that numpy. nonzero relies on similar shape broadcasting rules as the
binary operators we discussed here, but not with vespect to all three arguments.

Example 8.5 (*) Himmelblaw’s function in Figure 8.1 is only defined by means of arithmetic
operators, which all accept the kind of shape broadcasting that we discuss in this section. Con-
sequently, calling numpy . meshgridin thatexample to evaluatef on a grid of points was not really
necessary:

x = np.linspace(-5, 5, 3)

y = np.linspace(-4, 4, 5)

xg = x.reshape(1, -1)

yg = y.reshape(-1, 1)

(xg**2 + yg - 11)**2 + (xg + yg**2 - 7)**2
## array([[116., 306., 296.],

## [208., 178., 148.],
## [346., 170., 260.],
## [320., 90., 260.],
## [346., 130., 520.]])

See also the sparse parameter in numpy . meshgrid and Figure 12.9 where this function turns out

useful after all.

8.1.4 Other row and column transforms (¥)

Some functions that we discussed in the previous part of this course are equipped with
the axis argument, which supports processing each row or column independently. For
example:

np.sort(A, axis=1)

## array([[0.2, 0.4, 0.4, 0.6],
## [0. , 0.2, 0.4, 0.7],
## [0.1, 0.2, 6.8, 0.8]])

sorts every row (separately). Moreover:

scipy.stats.rankdata(A, axis=0)
## array([[2. , 2. , 2.5, 2. ],
## [1. , 1. , 2.5, 3. ],
## [3., 3., 1., 1. 1]

computes the ranks of elements in each column.

Some functions have the default argument axis=-1, which means that they are applied
along the last (i.e., columns in the matrix case) axis:
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np.diff(A) # axis=1 here

## array([[ 0.4, -0.2, 0. ],
## [ 6.2, 0.2, 0.3],
## [ 0., -0.6, -0.1]])

Still, the aforementioned numpy . mean is amongst the many exceptions to this rule.

Compare the above with:

np.diff(A, axis=0)
## array([[-0.2, -0.4, 0. , 0.3],
## [ 6.8, 0.6, -0.2, -0.6]])

which gives the iterated differences for each column separately (along the rows).

If a function in not equipped with the axis argument and - instead — was designed
to work with individual vectors, we can propagate it over all the rows or columns by
calling numpy . apply_along_axis.

For instance, here is another (did you solve the suggested exercise?) way to compute
the column z-scores:

def standardise(x):
return (x-np.mean(x))/np.std(x)

np.round(np.apply_along_axis(standardise, 0, A), 2)
## array([[-60.39, 0.27, 0.71, -0. ],
## [-60.98, -1.34, 0.71, 1.22],
## [ 1.37, 1.07, -1.41, -1.22]])

But, of course, we prefer (x-np.mean(x, axis=0))/np.std(x, axis=0).

Note (*) Matrices are iterable (in the sense of Section 3.4), but in an interesting way.
Namely, an iterator traverses through each row in a matrix. Writing:

ri, r2, r3=A #A has 3 rows

creates three variables, each representing a separate row in A, the second of which is:

r2
## array([6. , 0.2, 0.4, 0.7])
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8.2 Indexing matrices

Recall that for unidimensional arrays, we have four possible choices of indexers (i.e.,
where performing filtering like x[1]):

« scalar (extracts a single element),

- slice (selects a regular subsequence, e.g., every second element or the first six
items; returns a view of existing data: it does not make an independent copy of
the subsetted elements),

- integer vector (selects elements at given indexes),
« logical vector (selects elements that correspond to True in the indexer).

Matrices are two-dimensional arrays. Subsetting thereof will require two indexes. We
write A[1, j] to select rows given by 1 and columns given by j. Both 1 and j can be one
of the four above types, so we have at least ten different cases to consider (skipping the
symmetric ones).

Important Generally:
- each scalar index reduces the dimensionality of the subsetted object by 1;

« slice-slice and slice-scalar indexing returns a view of the existing array, so we need
to be careful when modifying the resulting object;

- usually, indexing returns a submatrix (subblock), which is a combination of ele-
ments at given rows and columns;

- indexing with two integer or logical vectors at the same time should be avoided.

Let us look at all the possible scenarios in greater detail.

8.2.1 Slice-based indexing

Our favourite example matrix again:

A = np.array([
[0.2, 0.6, 0.4, 0.4],
[0.0, 0.2, 0.4, 0.7],
[0.8, 0.8, 0.2, 0.1]
D

Indexing based on two slices selects a submatrix:

A[::2, 3:] # every second row, skip the first three columns
## array([[0.4],
## [0.1]])
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An empty slice selects all elements on the corresponding axis:

Al:, ::-1] # all rows, reversed columns
## array([[0.4, 0.4, 0.6, 0.2],
## [0.7, 0.4, 0.2, 0. ],
## [0.1, 0.2, 0.8, 0.8]])

Let us stress that the result is always a matrix.

8.2.2 Scalar-based indexing

Indexing by a scalar selects a given row or column, reducing the dimensionality of the
output object:

Al:, 3]
## array([0.4, 0.7, 0.1])

It selected the fourth column and gives a flat vector (we can always use the reshape
method to convert the resulting object back to a matrix).

Furthermore:
A [ 0 s 7 1 ]
# 0.4

Ityielded the element (scalar) in the first row and the last column.

8.2.3 Mixed logical/integer vector and scalar/slice indexers

A logical and integer vector-like object can also be used for element selection. If the
other indexer is a slice or a scalar, the result is quite predictable. For instance:

Al [0, -1, 0], ::-1]

## array([[0.4, 0.4, 0.6, 0.2],
## [0.1, 0.2, 0.8, 0.8],
## [0.4, 0.4, 0.6, 0.2]])

It selected the first, the last, and the first row again and reverses the order of columns.

Al A[:, 0] > 0.1, : ]
## array([[0.2, 0.6, 0.4, 0.4],
## [0.8, 0.8, 0.2, 0.1]])

It chose the rows from A where the values in the first column of A are greater than o.1.

A[np.mean(A, axis=1) > 0.35, : ]
## array([[0.2, 0.6, 0.4, 0.4],
## [0.8, 0.8, 0.2, 0.1]])

It fetched the rows whose mean is greater than 0.35.
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A[np.argsort(A[:, 0]), : ]

## array([[0. , 0.2, 0.4, 0.7],
## [0.2, 0.6, 0.4, 0.4],
## [0.8, 0.8, 0.2, 0.1]])

It ordered the matrix with respect to the values in the first column (all rows permuted
in the same way, together).

Exercise 8.6 In the nhanes_adult_female_bmx_2020° dataset, select all the participants
whose heights are within their mean + 2 standard deviations.

8.2.4 Two vectors as indexers (¥)

With two vectors (logical or integer) things are a tad more horrible, as in this case
not only some form of shape broadcasting comes into play but also all the headache-
inducing exceptions listed in the perhaps not the most clearly written Advanced In-
dexing® section of the numpy manual. Cheer up, though: things in pandas are much
worse; see Section 10.5.

For the sake of our maintaining sanity, in practice, it is best to be extra careful when
using two vector indexers and stick only to the scenarios discussed below.

For two flat integer indexers, we pick elementwisely:

A[ [0: '1: OJ 2: O]: [1: 2; @: 2: 1] ]
## array([6.6, 0.2, 0.2, 0.2, 0.6])

Ityielded A0, 1],A[-1, 2],A[0, 0],A[2, 2],and A[0, 1].

To select a submatrix using integer indexes, it is best to make sure that the first indexer
is a column vector, and the second one is a row vector (or some objects like these, e.g.,
compatible lists of lists).

Al [[0], [-11]1, [[1, 311 1 # column vector-like list, row vector-like list
## array([[0.6, 0.4],
## [6.8, 0.1]])

Further, if indexing involves logical vectors, it is best to convert them to integer ones
first (e.g., by calling numpy . flatnonzero).

A[ np.flatnonzero(np.mean(A, axis=1) > 0.35).reshape(-1, 1), [[0, 2, 3, 0]] ]
## array([[0.2, 0.4, 0.4, 0.2],
## [0.8, 0.2, 0.1, 0.8]])

The necessary reshaping can be done automatically with the numpy.ix_ function:

5 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_adult_female_bmx_2020.
csv
6 https://numpy.org/doc/stable/user/basics.indexing.html
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A[ np.ix_( np.mean(A, axis=1) > 0.35, [0, 2, 3, 0] ) ] # np.ix_(rows, cols)
## array([[0.2, 0.4, 0.4, 0.2],
## [0.8, 0.2, 0.1, 0.8]])

Alternatively, we can always apply indexing twice instead:

A[np.mean(A, axis=1) > 0.45, :][:, [0, 2, 3, 0]]
## array([[0.8, 0.2, 0.1, 0.8]])

This is only a mild inconvenience. We will be forced to apply such double indexing
anyway in pandas whenever selecting rows by position and columns by name is required;
see Section 10.5.

8.2.5 Views of existing arrays (*)

Only the indexing involving two slices or a slice and a scalar returns a view” on an
existing array. For example:

B = A[:, ::2]

B

## array([[0.2, 0.4],
## [6. , 0.4],
## [60.8, 0.2]])

Now B and A share memory. By modifying B in place, e.g.:

B *= -1

the changes will be visible in A as well:

A

#4# array([[-0.2, 0.6, -0.4, 0.4],
## [-6. , 0.2, -0.4, 0.7],
## [-0.8, 0.8, -0.2, 0.1]])

This is time and memory efficient, but might lead to some unexpected results if we are
being rather absent-minded. We have been warned.

8.2.6 Adding and modifying rows and columns

With slice/scalar-based indexers, rows/columns/individual elements can be replaced
by new content in a natural way:

Al:, 0] = A[:, 0]**2

With numpy arrays, however, brand new rows or columns cannot be added via the index

7 https://numpy.org/devdocs/user/basics.copies.html
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operator. Instead, the whole array needs to be created from scratch using, e.g., one of
the functions discussed in Section 7.1.4. For example:

A = np.column_stack((A, np.sqrt(A[:, 0])))

A

## array([[ 0.04, 0.6, -0.4, 0.4, 0.2 ],
## [oe. , 0.2, -0.4, 0.7, 0. ],
## [ 0.64, 0.8, -0.2, 0.1, 0.8]]
|

8.3 Matrix multiplication, dot products, and the Euclidean norm

Matrix algebra is at the core of all the methods used in data analysis with the matrix
multiply being the most fundamental operation therein (e.g., [20, 39]).

Given A € R and B € RP*™, their multiply is a matrix C = AB € R"™" such
that ¢; ; is the sum of the i-th row in A and the j-th column in B multiplied element-
wisely:

4
Cij =ai1byj+a; b0+ - +a;pby, ;= Z a; kb j,
k=1

fori=1,...,nandj =1,...,m. For example:

A = np.array([
[1, o, 17,
[2, 2, 11,
(3, 2, 0],
[1, 2, 31,
[e, o, 11,

B = np.array([
[1, 0, 0, 0],
[o, 4, 1, 3],
[2, 0, 3, 1],
D

And now:

C=AQ@B # or: A.dot(B)

C

## array([[ 3, 0, 3, 1],
## [ 4, 8, 5, 7],
## [ 3, 8, 2, 6],
## [ 7, 8, 11, 9],
## [ 2, 0, 3, 1]])
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Mathematically, we can denote the above by:

1 01 30 3 1
2 21 10 00 4 8 5 7
320 {0413]: 38 2 6
1 2 3 2 031 7 8 11 9
0 01 2 0 3 1

For example, the element in the fourth row and the third column, ¢, 5 takes the fourth
row in the left matrix ay . = [12 3] and the third column in the right matrix b. 5 =
[013]7 (they are marked in bold), multiplies the corresponding elements and com-
putes their sum, ie.,cs3 =1-0+2-14+3-3 =11.

Important Matrix multiplication can only be performed on two matrices of compatible
sizes: the number of columns in the left matrix must match the number of rows in the
right operand.

Another example:

A = np.array([

[1, 2],
(3, 4]
D
I = np.array([ # np.eye(2)
[1, o],
[0, 1]
D

AQI # or A.dot(I)
## array([[1, 2],
## [3, 471)

We matrix-multiplied A by the identity matrix I, which is the neutral element of the
said operation. This is why the result is identical to A.

Important Inmost textbooks, just like in this one, AB always denotes the matrix mul-
tiplication. This is a very different operation from the elementwise multiplication.

Compare the above to:

A * 1 # elementwise multiplication (the Hadamard product)
## array([[1, 0],
## (o, 4]])

Exercise 8.7 (*) Show that (AB)T = BT AT . Also notice that, typically, matrix multiplica-
tion is not commutative.

Note By definition, matrix multiplication gives a convenient means for denoting
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sums of products of corresponding elements in many pairs of vectors, which we refer
to as dot products.

Given two vectorsx,y € R”, their dot (or scalar) product is given by:
14
X-y= Z XiYi-
i=1

In matrix multiplication terms, if x is a row vector and y” is a column vector, then the
above can be written as xy” . The result is a single number.

In particular, a dot product of a vector and itself:

is the square of the Euclidean norm of x, which is used to measure the magnitude of a
vector (Section 5.3.2):

llell =

14
inZ = Jx-x = VxxI.
i-1

It is worth pointing out that the Euclidean norm fulfils (amongst others) the condition
that x| = Oifand onlyifx = 0 = (0,0, ..., 0). The same naturally holds for its square.

Exercise 8.8 Show that AT A gives the matrix that consists of the dot products of all the pairs
of columns in A and AAT stores the dot products of all the pairs of rows.

Section 9.3.2 will note that matrix multiplication can be used as a way to express cer-
tain geometrical transformations of points in a dataset, e.g., scaling and rotating.

Also, Section 9.3.3 briefly discusses the concept of the inverse of a matrix. Further-
more, Section 9.3.4 introduces its singular value decomposition.

8.4 Pairwise distances and related methods

Many data analysis methods rely on the notion of distances between points, which
quantify the extent to which two points (e.g., two rows in a matrix) are different from
each other; compare, e.g., [2]. Here, we will be dealing with the most natural® dis-
tance called the Euclidean metric. We know it from school, where we measured how
two points are far away from each other using a ruler.

8 There are many possible distances, allowing to measure the similarity of points not only in R", but
also character strings (e.g., the Levenshtein metric), ratings (e.g., cosine dissimilarity), etc. There is even
an encyclopedia of distances, [23].



166 11l MULTIDIMENSIONAL DATA

8.4.1 The Euclidean metric

Given two points in R, u = (uy,...,u,,) andv = (vq,...,v,,), the Euclidean metric
is defined in terms of the corresponding Euclidean norm:

llu —vil = \/(ul —01)2 + (U = 02)2 4+ + (U, = V)2 = Z(ui - ;)2
i=1

thatis, it is the square root of the sum of squared differences between the correspond-
ing coordinates.

Important Given two vectors of equal lengths x,y € R™, the dot product of their
difference:

=y - @x-»=x-Nx-NT=) (x;—y)?
i=1

is nothing else than the square of the Euclidean distance between them.

In particular, for unidimensional data (m = 1), we have |lu — v|| = [u; — v4], i.e., the
absolute value of the difference.

Exercise 8.9 Consider the following matrix X € R**?:

—_ = OO

Calculate (by hand): |1Xy . — Xp I, IX1. — X3 [, [X1. — Xg [, X3, — Xg ., IXp. — X3_[|
Xy, — xq,.I, and X3, — xq .|I.

The distances between all the possible pairs of rows in two matrices X € R and
Y € R¥™ canbe computed by calling scipy.spatial.distance.cdist. We need to be
careful, though. They bring about a distance matrix of size n x k, which can become
quite large. For instance, forn = k = 100 000, we need roughly 80 GB of RAM to store
it.

Here are the distances between all the pairs of points in the same dataset.

X = np.array([
(o, o],
[1, o],
[-1.5, 1],
[1, 1]
D
import scipy.spatial.distance
D = scipy.spatial.distance.cdist(X, X)
(continues on next page)
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(continued from previous page)

D

## array([[0. , 1. , 1.80277564, 1.41421356],

#t [1. , 0. , 2.6925824 , 1. 7,

## [1.80277564, 2.6925824 , 0. , 2.5 71,

# [1.41421356, 1. , 2.5 , 0. 7]

Hence, di,j = Ix;,. — ;.. That we have zeros on the diagonal is due to the fact that
lu — vl = Oif and only ifu = v. Furthermore, |lu — v|| = |v — ul|, which implies the

symmetry of D, i.e., it holds DT = D.

Figure 8.2 illustrates all six non-trivial pairwise distances. Let us emphasise that our
perception of distance is disturbed. The aspect ratio (the ratio between the range of
the x-axis to the range of the y-axis) is not 1:1. It is thus very important, when judging
spatial relationships between the points, to call matplotlib.pyplot.axis("equal™) or
set the axis limits manually (which is left as an exercise).

plt.plot(X[:, 0], X[:, 1], "ko")
for 1 in range(X.shape[0]-1):

for j in range(i+1, X.shape[0]):
plt.plot(X[[1,3], 0], X[[1,3], 1], "k-", alpha=0.2)

plt.text(

np.mean(X[[1,3], 01),
np.mean(X[[1,3], 11),

np.round(D[1, j], 2)

)
plt.show()
1.0 [
0.8
0.6
1.8

0.4
0.2
0.0

-15 -1.0

-0.5

2.5

2.69 1.41

0.0 0.5

1.0

Figure 8.2. Distances between four example points. Their perception is disturbed be-

cause the aspect ratio is not 1:1.
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Important Some popular techniques in data science rely on computing pairwise dis-
tances, including:

- multidimensional data aggregation (see below),

« k-means clustering (Section 12.4),

« k-nearest neighbour regression (Section 9.2.1) and classification (Section 12.3.1),
- missing value imputation (Section 15.1),

- density estimation (which we can use outlier detection, see Section 15.4).

In the sequel, whenever we apply them, we assume that data have been appropriately
preprocessed. In particular, expect that columns are on the same scale (e.g., are stand-
ardised). Otherwise, computing sums of their squared differences might not make
sense at all.

8.4.2 Centroids

So far we have been only discussing ways to aggregate unidimensional data, e.g., each
matrix column separately. It turns out that some of the introduced summaries can be
generalised to the multidimensional case.

For instance, it can be shown that the arithmetic mean of avector (x4, ..., x,,) isa point

¢ that minimises the sum of the squared unidimensional distances between itself and
. n 2 _ n 2

allthe x;s,ie., D, llx; —cll® =Y, (x; —0)~.

We can define the centroid of a dataset X € R™ ™ as the pointc¢ € R™ to which the
overall squared distance is the smallest:
n
minimise Ix;. — c|? w.r.t.c.
i=1

It can be shown that the solution to the above is:

1 1¢
c=- (X1, +%p. - +X,.) = - l;xi,_,

which is the componentwise arithmetic mean. In other words, its j-th component is
given by:

1 n
C]' = E Z xi,]'.
i=1
For example, the centroid of the dataset depicted in Figure 8.2 is:
c = np.mean(X, axis=0)

C
## array([0.125, 0.5 ])
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Centroids are the basis for the k-means clustering method that we discuss in Sec-
tion 12.4.

8.4.3 Multidimensional dispersion and other aggregates

Furthermore, as a measure of multidimensional dispersion, we can consider the nat-
ural generalisation of the standard deviation:

being the square root of the average squared distance to the centroid. Notice that s is
a single number.

np.sqrt(np.mean(scipy.spatial.distance.cdist(X, c.reshape(l, -1))**2))
## 1.1388041973930374

Note (**) Generalising other aggregation functions is not a trivial task because,
amongst others, there is no natural linear ordering relation in the multidimensional
space (see, e.g., [75]). For instance, any point on the convex hull of a dataset could serve
as an analogue of the minimal and maximal observation.

Furthermore, the componentwise median does not behave nicely (it may, for example,
fall outside the convex hull). Instead, we usually consider a different generalisation
of the median: the point m which minimises the sum of distances (not squared),
Z?:l lIx; . — m|. Sadly, it does not have an analytic solution, but it can be determined
algorithmically.

Note (**) Abag plot [80]is one of the possible multidimensional generalisations of the
box-and-whisker plot. Unfortunately, its use is quite limited due to its low popularity
amongst practitioners.

8.4.4 Fixed-radius and k-nearest neighbour search

Several data analysis techniques rely upon aggregating information about what is
happening in the local neighbourhoods of the points. Let X € R™™ be a dataset and
x'" € R™ be some point, not necessarily from X. We have two options:

o fixed-radius search: for some radius r > 0, we seek the indexes of all the points in X
whose distance to x’ is not greater than r:

B,(x)={i:lx;. —x'I| <r};

« few nearest neighbour search: for some (usually small) integer k > 1, we seek the
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indexes of the k points in X which are the closest tox':
Ni(x") = {iy,ip, .., g},
such that forallj & {iy, ..., i }:

! ! ! !
%, =2l < X, =Xl < o S X =X < X — X0

Important In R', B, (x') isan interval of length 27 centred atx’, i.e., [x]—71,x] +7].
In R2, B, (x') is a circle of radius r centred at (x],x5). More generally, we call B, (x)
an m-dimensional (Euclidean) ball or a solid hypersphere.

Here is an example dataset, consisting of some randomly generated points (see Fig-
ure 8.3).

np.random.seed(777)
X = np.random.randn(25, 2)
x_test = np.array([0, 0])

Local neighbourhoods can be determined by computing the distances between each
pointin X and x'.

import scipy.spatial.distance
D = scipy.spatial.distance.cdist(X, x_test.reshape(1l, -1))

For instance, here are the indexes of the points in By 75(x'):

r=20.75
B = np.flatnonzero(D <= r)
B

## array([ 1, 11, 14, 16, 24])

And here are the 11 nearest neighbours, N1 (x):

k =11
N = np.argsort(D.reshape(-1))[:k]
N

## array([14, 24, 16, 11, 1, 22, 7, 19, 0, 9, 15])

See Figure 8.3 for an illustration (observe that the aspect ratio is set to 1:1 as otherwise
the circle would look like an ellipse).

fig, ax = plt.subplots()
ax.add_patch(plt.Circle(x_test, r, color="red", alpha=0.1))
for 1 in range(k):
plt.plot(
[x_test[0], X[N[i], 0]1,
(continues on next page)
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(continued from previous page)
[x_test[1], X[N[1], 111,
"r:", alpha=0.4
)
plt.plot(X[:, 0], X[:, 1], "bo", alpha=0.1)
for 1 in range(X.shape[0]):
plt.text(X[1, 0], X[1, 1], str(i), va="center", ha="center")
plt.plot(x_test[0], x_test[1], "rX")
plt.text(x_test[0], x_test[1], "$\\mathbf{x}'$S", va="center", ha="center")
plt.axis("equal")
plt.show()

20
2.0 5

18

05 13

21

-3 -2 =1 (0] 1 2 3

Figure 8.3. Fixed-radius vs few nearest neighbour search.

8.4.5 Spatial search with K-d trees

For efficiency reasons, it is better to rely on dedicated spatial search data structures,
especially if we have a large number of neighbourhood-related queries. scipy im-
plements such a search algorithm based on the so-called K-dimensional trees (K-d
trees?).

Note (*)InK-dtrees, the data spaceis partitioned into hyperrectangles along the axes
of the Cartesian coordinate system (standard basis). Thanks to such a representation,
all subareas which are too far from the point of interest can be pruned to speed up the
search.

9 In our context, we like referring to them as m-d trees more, but let us stick with the traditional name.
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Let us create the data structure for searching within the above X matrix.

import scipy.spatial
T = scipy.spatial.KDTree(X)

Assume we would like to make queries with regard to the three following pivot points.

X_test = np.array([
(o, o],
[2, 21,
[21 '2]

D

Here are the results for the fixed radius searches (r = 0.75):

T.query_ball_point(X_test, 0.75)
## array([list([1, 11, 14, 16, 24]), list([20]), list([])], dtype=object)

We see that the search was nicely vectorised. We made a query about three points at
the same time. As a result, we received a list-like object storing three lists representing
the indexes of interest. Note that in the case of the third point, there are no elements
in X within the range (ball) of interest, hence the empty index list.

And here are the five nearest neighbours:

distances, indexes = T.query(X_test, 5) # returns a tuple of length 2

We obtained both the distances to the nearest neighbours:

distances

## array([[0.31457701, 0.44600012, 0.54848109, 0.64875661, 0.71635172],
## [0.20356263, 1.45896222, 1.61587605, 1.64870864, 2.04640408],
## [1.2494805 , 1.35482619, 1.93984334, 1.95938464, 2.08926502]])

as well as the indexes:

indexes

## array([[14, 24, 16, 11, 1],
## [26, 5, 13, 2, 9],
## [17, 3, 21, 12, 22]])

Each of them is a matrix with three rows (corresponding to the number of pivot points)
and five columns (the number of neighbours sought).

Note (*) We expect the K-d trees to be much faster than the brute-force approach
(where we compute all pairwise distances) in low-dimensional spaces. Nonetheless,
due to the phenomenon called the curse of dimensionality, sometimes already form > 5
the speed gains might be very small; see, e.g., [9].
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8.5 Exercises
Exercise 8.10 Does numpy.mean(A, axis=0) compute rowwise ov columnwise means?

Exercise 8.11 How does shape broadcasting work? List the most common pairs of shape cases
when performing arithmetic operations like addition or multiplication.

Exercise 8.12 What are the possible matrix indexing schemes and how do they behave?
Exercise 8.13 Which kinds of matrix indexers return a view of an existing array?

Exercise 8.14 (*) How can we select a submatrix comprised of the first and the last vow and the
first and the last column?

Exercise 8.15 Why appropriate data preprocessing is required when computing the Euclidean
distance between points?

Exercise 8.16 What is the relationship between the dot product, the Euclidean norm, and the
Euclidean distance?

Exercise 8.17 Whatis a centroid? How is it defined by means of the Euclidean distance between
the points in a dataset?

Exercise 8.18 What is the difference between the fixed-radius and few nearest-neighbours
search?

Exercise 8.19 (*) When K-d trees or other spatial search data structures might be better than
a brute-force search with scipy. spatial.distance.cdist?
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Exploring relationships between variables

Let us go back to National Health and Nutrition Examination Survey (NHANES study)
excerpt that we were playing with in Section 7.4:

body = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_bmx_2020.csv",
delimiter=",")[1:, :] # skip first row (column names)

body[:6, :] # preview: 6 first rows, all columns

## array([[ 97.1, 160.2, 34.7, 460.8, 35.8, 126.1, 117.9],

## [ 91.1, 152.7, 33.5, 33. , 38.5, 125.5, 103.1],
## [ 73. , 161.2, 37.4, 38. , 31.8, 106.2, 92. ],
## [ 61.7, 157.4, 38. , 34.7, 29. , 101. , 90.5],
## [ 55.4, 154.6, 34.6, 34. , 28.3, 92.5, 73.2],
## [ 62. , 144.7, 32.5, 34.2, 29.8, 106.7, 84.8]])
body.shape

## (4221, 7)

We thus have n = 4221 participants and seven different features describing them, in
this order:

body_columns = np.array([

"weight",

"height",

"arm len.",

"leg len.",

"arm circ.",

"hip circ.",

"waist circ.”

D)

We expect the data in different columns to be related to each other (e.g., a taller per-
son usually tends to weight more). This is why we will now be interested in quantifying
the degree of association between the variables, modelling the possible functional re-
lationships, and finding new interesting combinations of columns.
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9.1 Measuring correlation

Scatter plots let us identify some simple patterns or structure in data. Figure 7.4 in-
dicates that higher hip circumferences tend to occur more often together with higher
arm circumferences and that the latter does not really tell us much about height.

Let us explore some basic means for measuring (expressing as a single number) the
degree of association between a set of pairs of points.

9.1.1 Pearson’s linear correlation coefficient
The Pearson linear correlation coefficient is given by:
1& x,—Xy;—7
T(x/_)’) = EZ ls— ls—/
i=1 x Yy

with s,,s, denoting the standard deviations and ¥, being the means of x =
(X1, .., xp)andy = Yy, ..., Yy), respectively.

Note Look carefully: we are computing the mean of the pairwise products of standard-
ised versions of the two vectors. It is a normalised measure of how they vary together
(co-variance).

(*) Furthermore, Section 9.3.1 mentions that r is the cosine of the angle between
centred and normalised versions of the vectors.

Here is how we can compute it manually:

body[:, 4] # arm circumference

body[:, 5] # hip circumference

_std = (x-np.mean(x))/np.std(x) # z-scores for x
y_std = (y-np.mean(y))/np.std(y) # z-scores for y
np.mean(x_std*y std)

## 0.8680627457873239

X < X
1}

And here is the built-in function that implements the same formula:

scipy.stats.pearsonr(x, y)[0]
## 0.868062745787324

Note the [0] part: the function returns more than we actually need.

Important Basic properties of Pearson’s 7 include:

1. r(x,y) = r(y,x) (Symmetric);
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2. |r(x,y)| <1 (bounded from below by -1 and from above by 1);

3. r(x,y) = lifand onlyify = ax + b for somea > 0 and any b, (reaches the
maximum when one variable is an increasing linear function of the other one);

4. r(x,—y) = —r(x,y) (negative scaling (reflection) of one variable changes the sign
of the coefficient);

5. r(x,ay + b) = r(x,y) foranya > 0 and b (invariant to translation and scaling of
inputs that does not change the sign of elements).

To get more insight, below we shall illustrate some interesting correlations using the fol-
lowing helper function that draws a scatter plot and prints out Pearson’s 7 (and Spear-
man's o discussed in Section 9.1.4; let us ignore it by then):

def plot_corr(x, y, axes_eg=False):
r = scipy.stats.pearsonr(x, y)[0]
rho = scipy.stats.spearmanr(x, y)[0]
plt.plot(x, y, "o")
plt.title(f"Sr = {r:.3}$, S\\rho = {rho:.3}$",
fontdict=dict(fontsize=10))
if axes_eq: plt.axis("equal")

Perfect linear correlation

The aforementioned properties imply that #(x,y) = —1lifand only ify = ax + b for
some a < 0 and any b (reaches the minimum when variables are decreasing linear
functions of each other) Furthermore, a variable is trivially perfectly correlated with
itself, r(x,x) = 1.

Consequently, we get perfect linear correlation (-1 or 1) when one variable is a scaled and
shifted version (linear function) of the other variable; see Figure 9.1.

X = np.random.rand(100)

plt.subplot(1, 2, 1); plot_corr(x, -0.5*x+3, axes_eq=True) # negative slope
plt.subplot(1, 2, 2); plot_corr(x, 3*x+10, axes_eq=True) # positive slope
plt.show()

A negative correlation means that when one variable increases, the other one de-
creases (like: a car’s braking distance vs velocity).

Strong linear correlation

Next, if two variables are more or less linear functions of themselves, the correlations
will be close to -1 or 1, with the degree of association diminishing as the linear relation-
ship becomes less and less evident; see Figure 9.2.

plt.figure(figsize=(plt.rcParams["figure.figsize"][0], )*2) # width=height
X = np.random.rand(100) # random x (whatever)
y = 0.5%x #y 1s a linear function of x

(continues on next page)
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r=-1.0p=-1.0 r=1.0,p=1.0
13.0
3.2
12.5
3.0
12.0
2.8

\ 1.5
2.6
\ 11.0

2.
4 10.5
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Figure 9.1. Perfect linear correlation (negative and positive).

(continued from previous page)
e = np.random.randn(len(x)) # random Gaussian noise (expected value 0)
plt.subplot(2, 2, 1); plot_corr(x, y) # original y
plt.subplot(2, 2, 2); plot_corr(x, y+0.05%e) # some noise added to y
plt.subplot(2, 2, 3); plot_corr(x, y+0.1*e)  # more noise
plt.subplot(2, 2, 4); plot_corr(x, y+0.25%e) # even more noise
plt.show()

Notice again that the arm and hip circumferences enjoy quite high positive degree of
linear correlation. Their scatter plot (Figure 7.4) looks somewhat similar to one of the
cases presented here.

Exercise 9.1 Draw a series of similar plots but for the case of negatively correlated point pairs,
eg.,y =-2x+5.

Important As a rule of thumb, linear correlation degree of 0.9 or greater (or -0.9 or
smaller) is quite decent. Between -0.8 and 0.8 we probably should not be talking about
two variables being linearly correlated at all. Some textbooks are more lenient, but we
have higher standards. In particular, it is not uncommon in social sciences to consider
0.6 adecent degree of correlation, but this is like building on sand. If a dataset athand
does not provide us with strong evidence, it is our ethical duty to refrain ourselves
from making unjustified statements. It is better to remain silent than to talk gibberish
and misled the recipients of our exercises on data analysis.
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Figure 9.2. Linear correlation coefficients for data with different amounts of noise.

No linear correlation does not imply independence

For two independent variables, we expect the correlation coefficient be approximately
equal to o. Nevertheless, correlation close to o does not necessarily mean that two vari-
ables are unrelated to each other. Pearson’s r is a linear correlation coefficient, so we
are quantifying only’ these types of relationships. See Figure 9.3 for an illustration of
this fact.

plt.figure(figsize=(plt.rcParams["figure.figsize"][0], )*2) # width=height
plt.subplot(2, 2, 1)
plot_corr(x, np.random.rand(100)) # independent (not correlated)

(continues on next page)

! Note that in Section 6.2.3, we were also testing one concrete hypothesis: whether a distribution was
normal or whether it was anything else. We only know that if the data really follow that distribution, the
null hypothesis will not be rejected in 0.1% of the cases. The rest is silence.
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plt.subplot(2, 2, 2)
plot_corr(x, (2*x-1)**2-1)
plt.subplot(2, 2, 3)
plot_corr(x, np.abs(2*x-1))
plt.subplot(2, 2, 4)

(continued from previous page)
# quadratic dependence

# absolute value

plot_corr(x, np.sin(10*np.pi*x)) # sine
plt.show()
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Figure 9.3. Are these variable pairs really uncorrelated?

False linear correlations

What is more, sometimes we can detect false correlations — when data are function-
ally dependent, the relationship is not linear, but it kind of looks like linear. Refer to

Figure 9.4 for some examples.
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plt.figure(figsize=(plt.rcParams["figure.figsize"][0], )*2) # width=height

plt.subplot(2, 2, 1)

plot_corr(x, np.sin(0.6*np.pi*x)) # sine

plt.subplot(2, 2, 2)

plot_corr(x, np.log(x+1))
plt.subplot(2, 2, 3);
plot_corr(x, np.exp(x**2))

plt.subplot(2, 2, 4)

plot_corr(x, 1/(x/2+0.2))

plt.show()
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Figure 9.4. Example nonlinear relationships thatlook like linear, at least to Pearson’s r.

No single measure is perfect — we are trying to compress 21 data points into a single
number — it is obvious that there will be many different datasets, sometimes remark-
ably diverse, that will yield the same correlation degree.
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Correlation is not causation

Ahigh correlation degree (either positive or negative) does not mean that there is any
causal relationship between the two variables. We cannot say that having large arm
circumference affects hip size or vice versa. There might be some latent variable that
influences these two (e.g., maybe also related to weight?).

Exercise 9.2 Quite often, medical advice is formulated based on correlations and similar
association-measuring tools. We are expected to know how to interpret them, as it is never a true
cause-effect relationship; rather, it is all about detecting common patterns in larger populations.
For instance, in “obesity increases the likelihood of lower back pain and diabetes” we do not say
that one necessarily implies another or that if you are not overweight, there is no risk of getting
the two said conditions. It might also work the other way around, as lower back pain may lead
to less exercise and then weight gain. Reality is complex. Find similar patterns in sets of health
conditions.

Note Correlation analysis can aid in constructing regression models, where we would
like to identify a transformation that expresses a variable as a function of one or more
other features. For instance, when we say that y can be modelled approximately by
ax + b, regression analysis can identify the best matching a and b coefficients; see
Section 9.2.3 for more details.

9.1.2 Correlation heat map

Calling numpy. corrcoef(body, rowvar=False) determines the linear correlation coef-
ficients between all pairs of variables in our dataset. We can depict them nicely on a
heat map based on a fancified call to matplotlib.pyplot.imshow.

def corrheatmap(R, labels):
Draws a correlation heat map, given:
* R - matrix of correlation coefficients for all variable pairs,
* labels - list of column names
assert R.shape[0] == R.shape[1] and R.shape[0] == len(labels)
k = R.shape[0]

# plot the heat map using a custom colour palette
# (correlations are in [-1, 1])
plt.imshow(R, cmap=plt.colormaps.get_cmap("RdBu"), vmin=-1, vmax=1)

# add text labels
for 1 in range(k):
for j in range(k):
plt.text(i, j, f"{R[1, j]:.2f}", ha="center", va="center",
color="black" if np.abs(R[1, j])<0.5 else "white")

(continues on next page)



9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 183

(continued from previous page)
plt.xticks(np.arange(k), labels=1labels, rotation=30)
plt.tick_params(axis="x", which="both",

labelbottom=True, labeltop=True, bottom=False, top=False)

plt.yticks(np.arange(k), labels=labels)

plt.tick_params(axis="y", which="both",
labelleft=True, labelright=True, left=False, right=False)

plt.grid(False)

See Figure 9.5 for the plot.

plt.figure(figsize=(plt.rcParams["figure.figsize"][0], )*2) # width=height
R = np.corrcoef(body, rowvar=False)

order = [4, 5, 6, 0, 2, 1, 3] # chiefly for aesthetics
corrheatmap(R[np.ix_(order, order)], body_columns[order])

plt.show()

Notice that we ordered* the columns to reveal some naturally occurring variable
clusters: for instance, arm, hip, waist circumference and weight are all quite strongly
correlated.

Of course, we have 1.0s on the main diagonal because a variable is trivially correlated
with itself. Interestingly, this heat map is symmetric which is due to the property
r(x,y) =rQy,x).

Example 9.3 (%) To fetch the row and column index of the most correlated pair of variables
(either positively or negatively), we should first take the upper (or lower) triangle of the correl-
ation matrix (see numpy . triu or numpy. tril) to ignore the irrelevant and repeating items:

Ru = np.triu(np.abs(R), 1)
np.round(Ru, 2)

## array([[0. , 0.35, 0.55, 0.19, 0.91, 0.95, 0.9 ],
## [o6. , 0. , 0.67, 0.66, 0.15, 0.2 , 0.13],
## [6. , 6. , 0. , 0.48, 0.45, 0.46, 0.43],
#H (6. , 6. ,06. ,0. ,0.08 0.1, 0.03],
## (6. , 6. ,0. ,0. ,0. , 0.87, 0.85],
## (6. , 6. ,060. ,0. ,0. ,0. ,0.09],
## [e. , 0. ,0. ,0. ,0. ,0. ,06. ]

and then find the location of the maximum:

pos = np.unravel_index(np.argmax(Ru), Ru.shape)
pos # (row, column)
## (0, 5)

(continues on next page)

2 (**) This can be done automatically by some hierarchical clustering algorithm applied onto the correl-

ation matrix converted to a distance one, e.g., 1 — |Rjor 1 — RZ.
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Figure 9.5. A correlation heat map.

(continued from previous page)
body_columns[ list(pos) ] # indexing by a tuple has a different meaning

## array([ 'weight', 'hip circ.'], dtype='<U11")
Weight and hip circumference is the most strongly correlated pair.

Note that numpy . argmax returns an index in the flattened (unidimensional) array. We had to use
numpy . unravel_1index to convert it to a two-dimensional one.

Example 9.4 (*) Use seaborn. heatmap to draw the correlation heat map.

9.1.3 Linear correlation coefficients on transformed data

Pearson’s coefficient can also be applied on nonlinearly transformed versions of vari-
ables, e.g., logarithms (remember incomes?), squares, square roots, etc.
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Let us consider an excerpt from the 2020 CIA World Factbook?, where we have data
on gross domestic product per capita (based on purchasing power parity) and life ex-
pectancy at birth in many countries.

world = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/world_factbook 2020 subsetil.csv",
delimiter=",")[1:, :] # skip first row (column names)

world[:6, :] # preview

## array([[ 2000. , 52.8],

## [12500. , 79. ],
## [15200. , 77.5],
## [11200. , 74.8],
## [49900. , 83. ],
## [ 6800. , 61.3]])

Figure 9.6 depicts these data on a scatter plot.

plt.subplot(1, 2, 1)

plot_corr(world[:, 0], world[:, 1])
plt.xlabel("per capita GDP PPP")
plt.ylabel("life expectancy (years)")
plt.subplot(1l, 2, 2)
plot_corr(np.log(world[:, 0]), world[:, 1])
plt.xlabel("log(per capita GDP PPP)")
plt.yticks()

plt.show()
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Figure 9.6. Scatter plots for life expectancy vs gross domestic product (purchasing
power parity) on linear (left) and log-scale (right).

3 https://www.cia.gov/the-world-factbook
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If we compute Pearsor’s ¥ between these two, we will note a quite weak linear correla-
tion:

scipy.stats.pearsonr(world[:, 0], world[:, 1])[0]
## 0.6564719454863747

Anyhow, already the logarithm of GDP is quite strongly linearly correlated with life
expectancy:

scipy.stats.pearsonr(np.log(world[:, 0]), world[:, 1])[0]
## 0.8066505089380016

which means that modelling our data viay = alogx + b could be an idea worth con-
sidering.

9.1.4 Spearman’s rank correlation coefficient

Sometimes we might be interested in measuring the degree of any kind of monotonic
correlation — to what extent one variable is an increasing or decreasing function of
another one (linear, logarithmic, quadratic over the positive domain, etc.). In such a
scenario, the Spearman rank correlation coefficient is frequently used:

ox,y) =r(R(x),R(y)),

which is* the Pearson linear coefficient computed over vectors of the corresponding
ranks of all the elements in x and y (denoted by R(x) and R(y), respectively). Hence,
the two following calls are equivalent:

scipy.stats.spearmanr(world[:, 0], world[:, 1])[0]

## 0.8275220380818622

scipy.stats.pearsonr(
scipy.stats.rankdata(world[:, 0]),
scipy.stats.rankdata(world[:, 1])

)[o]
## 0.8275220380818622

Let us point out that this measure is invariant with respect to monotone transform-
ations of the input variables (up to the sign). This is because they do not change the
observations’ ranks (or only reverse them).

scipy.stats.spearmanr(np.log(world[:, 0]), -np.sqrt(world[:, 1]))[0]
## -0.8275220380818622

Exercise 9.5 We included the ps in all the outputs generated by our plot_corr function. Re-
view all the above figures.

Exercise 9.6 Apply numpy.corrcoefand scipy.stats.rankdata (withthe appropriate axis

4 If a method Y is nothing else than X on transformed data, we do not consider it a totally new method.
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argument) to compute the Spearman correlation matrix for all the variable pairs in body. Draw
it on a heat map.

Exercise 9.7 (*) Draw the scatter plots of the ranks of each column in the wor 1d and body data-
sets.

9.2 Regression tasks

Let us assume that we are given a training/reference set of n points in an m-dimensional
space represented as a matrix X € R™ and a set of n corresponding numeric
outcomes y & R™. Regression aims to find a function between the m independ-
ent/explanatory/predictor variables and a chosen dependent/response/predicted variable
that can be applied on any test pointx’ € R™:

¥ =f(x1,x5, ., X)),

and which approximates the reference outcomes in a usable way.

9.2.1 K-nearest neighbour regression

A quite straightforward approach to regression relies on aggregating the reference
outputs that are associated with a few nearest neighbours of the point x’ tested; com-
pare Section 8.4.4.

Ink-nearest neighbour regression, forafixedk > 1andanygivenx’ € R™,§j = f(x")
is computed as follows.

1. Find theindices Ny (x") = {iy, ..., i; } of the k points from X closest tox’, i.e., ones
that fulfil for all j & {iy, ..., i }:

I, =X < e < g, — ] < DXy, — L

i1,

2. Return the arithmetic mean of Wiyr - Yi) 38 the result.

Here is a straightforward implementation that generates the predictions for each
point in X_test:

def knn_regress(X_test, X_train, y_train, k):
t = scipy.spatial.KDTree(X_train.reshape(-1, 1))
i = t.query(X_test.reshape(-1, 1), k)[1] # indices of NNs
y_nn_pred = y_train[i] # corresponding reference outputs
return np.mean(y_nn_pred, axis=1)

For example, let us try expressing weight (the first column) as a function of hip cir-
cumference (the sixth column) in the body dataset:

weight = f; (hip circumference) (+some error).
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We can also model the life expectancy at birth in different countries (wor1d dataset) as
a function of their GDP per capita (PPP):

life expectancy = f, (GDP per capita) (+some error).

Both are instances of the simple regression problem, i.e., where there is only one inde-
pendent variable (m = 1). We can easily create an appealing visualisation thereof by
means of the following function:

def knn_regress_plot(x, y, K, num_test_points=1001):

i

x - 1D vector - reference inputs

y - 1D vector - corresponding outputs

K - numbers of near neighbours to test
num_test_points - number of points to test at

plt.plot(x, y, "o", alpha=0.1)
_x = np.linspace(x.min(), x.max(), num_test_points)
for k in K:
_y = knn_regress(_x, x, y, k) # see above
plt.plot(_x, _y, label=f"$k={k}$")
plt.legend()

Figure 9.7 depicts the fitted functions for a few different ks.

plt.subplot(1, 2, 1)

knn_regress_plot(body[:, 5], body[:, 0], [5, 25, 100])
plt.xlabel("hip circumference")

plt.ylabel("weight")

plt.subplot(1, 2, 2)

knn_regress_plot(world[:, 0], world[:, 1], [5, 25, 100])
plt.xlabel("per capita GDP PPP")

plt.ylabel("life expectancy (years)")

plt.show()

We obtained a smoothened version of the original dataset. The fact that we do not re-
produce the reference data points in an exact manner is reflected by the (figurative)
error term in the above equations. Its role is to emphasise the existence of some nat-
ural data variability; after all, one’s weight is not purely determined by their hip size
and life is not all about money.

For small k we adapt to the data points better. This can be worthwhile unless data are
very noisy. The greater the k, the smoother the approximation at the cost of losing fine
detail and restricted usability at the domain boundaries (here: in the left and right part
of the plots).

Usually, the number of neighbours is chosen by trial and error (just like the number of
bins in a histogram; compare Section 4.3.3).
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Figure 9.7. k-nearest neighbour regression curves for example datasets. The greater
the k, the more coarse-grained the approximation.

Note (**) Some methods use weighted arithmetic means for aggregating the k refer-
ence outputs, with weights inversely proportional to the distances to the neighbours
(closer inputs are considered more important).

Also, instead of few nearest neighbours, we can easily compose some form of fixed-
radius search regression, by simply replacing N, (x") with B,(x"); compare Sec-
tion 8.4.4. Yet, note that this way we might make the function undefined in sparsely
populated regions of the domain.

9.2.2 From data to (linear) models

Unfortunately, to generate predictions for new data points, k-nearest neighbours re-
gression requires that the training sample is available at all times. It does not synthesise
or simplify the inputs; instead, it works as a kind of a black box. If we were to provide
a mathematical equation for the generated prediction, it would be disgustingly long
and obscure.

In such cases, to emphasise that f is dependent on the training sample, we sometimes
use the more explicit notation f (x'[X, y) or fx , (x").

In many contexts we might prefer creating a data model instead, in the form of an eas-
ily interpretable mathematical function. A simple yet still quite flexible choice tackles
regression problems via affine maps of the form:

Y =f (X1, X0, 000, X)) = C1X1 + CoXo + o+ + Xy + Crug1s
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or, in matrix multiplication terms:
y=cx! + ¢y,
wherec = [c1 ¢y - ¢, ] and x = [x1 x5 -+ X, ].
For m = 1, the above simply defines a straight line, which we traditionally denote by:
y=ax+Db,
i.e., where we mapped x; — x, c; — a(slope), and ¢, — b (intercept).

For m > 1, we obtain different hyperplanes (high-dimensional generalisations of the
notion of a plane).

Important A separate intercept term “+c,,,,” in the defining equation can be quite
inconvenient to handle. We will thus restrict ourselves to linear maps like:

— oxT
y=cx',

but where we can possibly have an explicit constant-1 component somewhere inside x.
For instance:

X = [x1 xp - x,,, 1]

Together with ¢ = [c1 ¢y -+ ¢, Cup1], as trivially ¢, - 1 = ¢,,,41, this new setting
is equivalent to the original one.

Without loss of generality, from now on we assume that x is m-dimensional, regard-
less of its having a constant-1 inside or not.

9.2.3 Leastsquares method

A linear model is uniquely® encoded using only the coefficients ¢4, ..., c,,. To find
them, for each point x; . from the input (training) set, we typically desire the predicted
value:

N T
Ui =f(X1, X0, 0 X ) = f(X;.0€) = €X; ,

to be as close to the corresponding reference y; as possible.

There are many measures of closeness, but the most popular one® uses the notion of the
sum of squared residuals (true minus predicted outputs):

n n

o \2 2

SSR(cIX,y) = Z Vi—)" = Z (yi — (crxiq + CoXip + o+ CuXim))
i=1 i=1

5 To memorise the model for further reference, we only need to serialise its m coefficients, e.g., in a
JSON or CSV file.

¢ Due to computability and mathematical analysability, which we usually explore in more advanced
courses on statistical data analysis such as [8, 22, 47].
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which is a function of ¢ = (¢4, ..., ¢,,) (for fixed X, y).

The least squares solution to the stated linear regression problem will be defined by the
coefficient vector ¢ that minimises the SSR. Based on what we said about matrix mul-
tiplication, this is equivalent to solving the optimisation task:

minimise (y — ¢X7) (y — cXT)T W.L.t. (C1,...,Cpy) € R™,

because § = X' gives the predicted values as a row vector (the diligent readers are
encouraged to check that on a piece of paper now), r = y — § computes all the n
residuals, and rr” gives their sum of squares.

The method of least squares is one of the simplest and most natural approaches to
regression analysis (curve fitting). Its theoretical foundations (calculus...) were de-
veloped more than 200 years ago by Gauss and then were polished by Legendre.

Note (*) Had the points lain on a hyperplane exactly (the interpolation problem),
y = cX” would have an exact solution, equivalent to solving the linear system of equa-
tionsy —cX! = 0. However, in our setting we assume that there might be some meas-
urement errors or other discrepancies between the reality and the theoretical model.
To account for this, we are trying to solve a more general problem of finding a hyper-
plane for which |ly — ¢XT|? is as small as possible.

This optimisation task can be solved analytically (compute the partial derivatives of
SSR with respecttoeachcy, ..., ¢,,, equate them to 0, and solve a simple system of lin-
ear equations). This spawns ¢ = yX (X X)~!, where A~ is the inverse of a matrix A,
i.e., the matrix such that AA~! = A=1A = I;compare numpy.linalg.inv. As inverting
larger matrices directly is not too robust numerically, we would rather rely on a more
specialised algorithm.

The scipy.linalg. lstsqfunction that we use below provides a quite numerically stable
(yet, see Section 9.2.9) procedure that is based on the singular value decomposition of
the model matrix.

Let us go back to the NHANES study excerpt and express weight (the first column) as
function of hip circumference (the sixth column) again, but this time using an affine
map of the form’:

weight = a - hip circumference + b (+some error).

The design (model) matrix X and the reference ys are:

7 We sometimes explicitly list the error term that corresponds to the residuals. This is to assure the
reader that we are not naive and that we know what we are doing. We see from the scatter plot of the
involved variables that the data do not lie on a straight line perfectly. Each model is merely an idealisa-
tion/simplification of the described reality. It is wise to remind ourselves about that every so often.
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x_original = body[:, [5]] # a column vector
X_train = x_original**[1, 0] # hip circumference, 1s
y_train = body[:, 0] # weight

We used the vectorised exponentiation operator to convert each x; (the i-th hip circum-
ference) toa pairx; . = (x}, x?) = (x;,1), which is a nice trick to append a column of
1s to a matrix. This way, we included the intercept term in the model (as discussed in
Section 9.2.2). Here is a preview:

preview_indices = [4, 5, 6, 8, 12, 13]
X_train[preview_indices, :]
## array([[ 92.5, 1. ],

## [106.7, 1. ],
## [ 9.3, 1.7,
## [162. , 1. ],
## [ 94.8, 1.7,
## [97.5, 1. ]])

y_train[preview_indices]
## array([55.4, 62. , 66.2, 77.2, 64.2, 56.8])

Let us determine the least squares solution to our regression problem:

import scipy.linalg
res = scipy.linalg.lstsq(X_train, y_train)

That's it. The optimal coefficients vector (the one that minimises the SSR) is:

c = res[0]
C
## array([ 1.3052463 , -65.10087248])

The estimated model is:
weight = 1.305 - hip circumference — 65.1 (+some error).

Let us contemplate the fact that the model is nicely interpretable. For instance, as hip
circumference increases, we expect the weights to be greater and greater. As we said
before, it does not mean that there is some causal relationship between the two (for
instance, there can be some latent variables that affect both of them). Instead, there is
some general tendency regarding how the data align in the sample space. For instance,
that the “best guess” (according to the current model - there can be many; see below)
weight for a person with hip circumference of 100 cm is 65.4 kg. Thanks to such mod-
els, we might understand certain phenomena better or find some proxies for different
variables (especially if measuring them directly is tedious, costly, dangerous, etc.).

Let us determine the predicted weights for all of the participants:

y pred = ¢ @ X_train.T
np.round(y_pred[preview_indices], 2) # preview
##4 array([55.63, 74.17, 60.59, 68.03, 58.64, 62.16])
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The scatter plot and the fitted regression line in Figure 9.8 indicates a fair fit but, of
course, there is some natural variability.

plt.plot(x_original, y_train, "o", alpha=0.1) # scatter plot

_x = np.array([x_original.min(), x_original.max()]).reshape(-1, 1)

_y =c@ (x**[1, 0]).T

plt.plot( x, _y, "r-") # a line that goes through the two extreme points
plt.xlabel("hip circumference")

plt.ylabel("weight")

plt.show()

80 100 120 140 160 180
hip circumference

Figure 9.8. The least squares line for weight vs hip circumference.

Exercise 9.8 The Anscombe quartet® is a famous example dataset, where we have four pairs of
variables that have almost identical means, variances, and linear correlation coefficients. Even
though they can be approximated by the same straight line, their scatter plots are vastly different.
Reflect upon this toy example.

9.2.4 Analysis of residuals

The residuals (i.e., the estimation errors — what we expected vs what we got), for the
chosen 6 observations are visualised in Figure 9.9.

r =y train - y pred # residuals

np.round(r[preview_indices], 2) # preview
## array([ -0.23, -12.17, 5.61, 9.17, 5.56, -5.36])

We wanted the squared residuals (on average — across all the points) to be as small

8 https://github.com/gagolews/teaching-data/raw/master/r/anscombe.csv
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Figure 9.9. Example residuals in a simple linear regression task.

as possible. The least squares method assures that this is the case relative to the chosen
model, i.e., alinear one. Nonetheless, it still does not mean that what we obtained con-
stitutes a good fit to the training data. Thus, we need to perform the analysis of residuals.

Interestingly, the average of residuals is always zero:

(yi—9y) =0.

S|
.M:

1l
_

Therefore, if we want to summarise the residuals into a single number, we can use, for
example, the root mean squared error instead:

RMSE(y,y) =

np.sqrt(np.mean(r**2))
## 6.948470091176111

Hopefully we can see that RMSE is a function of SSR that we sought to minimise above.

Alternatively, we can compute the mean absolute error:

1 n
MAE(y,y) = — > lyi =il
i=1
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np.mean(np.abs(r))
## 5.207073583769202

MAE is nicely interpretable: it measures by how many kilograms we err on average. Not
bad.

Exercise 9.9 Fit a regression line explaining weight as a function of the waist circumference
and compute the corresponding RMSE and MAE. Are they better than when hip circumference
is used as an explanatory variable?

Note Generally, fitting simple (involving one independent variable) linear models can
only make sense for highly linearly correlated variables. Interestingly, if y and x are
both standardised, and r is their Pearson’s coefficient, then the least squares solution
is givenbyy = rx.

To verify whether a fitted model is not extremely wrong (e.g., when we fit a linear
model to data that clearly follows a different functional relationship), a plot of resid-
uals against the fitted values can be of help; see Figure 9.10. Ideally, the points are
expected to be aligned totally at random therein, without any dependence structure
(homoscedasticity).

plt.plot(y_pred, r, "o", alpha=0.1)

plt.axhline(0, ls="--", color="red") # horizontal line at y=0
plt.xlabel("fitted values")

plt.ylabel("residuals")

plt.show()

Exercise 9.10 Compare’® the RMSE and MAE for the k-nearest neighbour regression curves de-
picted in the left side of Figure 9.7. Also, draw the residuals vs fitted plot.

For linear models fitted using the least squares method, it can be shown that it holds:

1 & 2 1&E, 2 1¢ o2
EZ(%—]/) = EZ(%—V) +EZ(]/1'—%) :

i=1 i=1 i=1
In other words, the variance of the dependent variable (left) can be decomposed into
the sum of the variance of the predictions and the averaged squared residuals. Mul-
tiplying the above by #, we have that the total sum of squares is equal to the explained

sum of squares plus the residual sum of squares:

TSS = ESS + RSS.

° In k-nearest neighbour regression, we are not aiming to minimise anything in particular. If the model
is performing well with respect to some metrics such as RMSE or MAE, we can consider ourselves lucky.
Nevertheless, some asymptotic results guarantee the optimality of the outcomes generated for large sample
sizes (e.g., consistency); see, e.g., [22].
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Figure 9.10. Residuals vs fitted values for the linear model explaining weight as a func-
tion of hip circumference. The variance of residuals slightly increases as fj; increases.
This is not ideal, but it could be much worse than this.

We yearn for ESS to be as close to TSS as possible. Equivalently, it would be jolly nice
to have RSS equal to o.

The coefficient of determination (unadjusted R-Squared, sometimes referred to as simply
the score) is a popular normalised, unitless measure that is easier to interpret than raw
ESS or RSS when we have no domain-specific knowledge of the modelled problem. It
is given by:

R2v.5 < S _ _
YY) = Tss T T Tss T 52

1 - np.var(y_train-y_pred)/np.var(y_train)
## 0.8959634726270759

The coefficient of determination in the current context™ is thus the proportion of vari-
ance of the dependent variable explained by the independent variables in the model.
The closer it is to 1, the better. Adummy model that always returns the mean ofy gives
R-squared of 0.

In our case, R? ~ 0.9 is quite high, which indicates a rather good fit.

Note (*) There are certain statistical results that can be relied upon provided that

19 Foramodel thatis not generated via least squares, the coefficient of determination can also be negative,
particularly when the fit is extremely bad. Also, note that this measure is dataset-dependent. Therefore, it
ought not to be used for comparing models explaining different dependent variables.
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the residuals are independent random variables with expectation zero and the same
variance (e.g., the Gauss—Markov theorem). Further, if they are normally distributed,
then we have several hypothesis tests available (e.g., for the significance of coeffi-
cients). This is why in various textbooks such assumptions are additionally verified.
But we do not go that far in this introductory course.

9.2.5 Multiple regression

As another example, let us fit a model involving two independent variables, arm and
hip circumference:

X_train = np.insert(body[:, [4, 5]], 2, 1, axis=1) # append a column of 1s
res = scipy.linalg.lstsq(X_train, y_train)

c = res[0]

np.round(c, 2)

## array([ 1.3, 0.9, -63.38])

We fitted the plane:
weight = 1.3 arm circumference + 0.9 hip circumference — 63.38.

We skip the visualisation part for we do not expect it to result in a readable plot: these
are multidimensional data. The coefficient of determination is:

y_pred = ¢ @ X_train.T

r =y train - y _pred
1-np.var(r)/np.var(y_train)
## 0.9243996585518783

Root mean squared error:

np.sqrt(np.mean(r**2))
## 5.923223870044695

Mean absolute error:

np.mean(np.abs(r))
## 4.431548244333898

It is a slightly better model than the previous one. We can predict the participants’
weights with better precision, at the cost of an increased model’s complexity.

9.2.6 Variable transformation and linearisable models (*)

We are not restricted merely to linear functions of the input variables. By applying
arbitrary transformations upon the columns of the design matrix, we can cover many
diverse scenarios.
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For instance, a polynomial model involving two variables:

§(v1,09) = Bo + P10 + Pavi + B3v10a + Pavy + P5V3,

can be obtained by substituting x; = 1,x, = vy, X3 = V3, X4 = 010y, X5 = Uy,
X¢ = v3, and then fitting a linear model involving six variables:

f(xl,xz,... ,x6) =C1X1 + CoXp + -+ + XgXg-

The design matrix is made of rubber, it can handle almost anything. If we have alinear
model, but with respect to transformed data, the algorithm does not care. This is the
beauty of the underlying mathematics; see also [10].

A creative modeller can also turn models such as u = ce®? intoy = ax + b by repla-
cingy = logu, x = v,and b = logc. There are numerous possibilities based on the
properties of the log and exp functions listed in Section 5.2. We call them linearisable
models.

Asan example, let us model the life expectancy at birth in different countries as a func-
tion of their GDP per capita (PPP).

We will consider four different models:
1. ¥ = ¢q + cox (linear),

2. Y = 1 + CpX + c3x? (quadratic),

3. Y = 01 + CpX + 53X + ¢4x3 (cubic),

4. y = c1 + cp log x (logarithmic).
Here are the helper functions that create the model matrices:

def make_model_matrix1(x):
return x.reshape(-1, 1)**[0, 1]

def make_model_matrix2(x):
return x.reshape(-1, 1)**[0, 1, 2]

def make_model_matrix3(x):
return x.reshape(-1, 1)**[0, 1, 2, 3]

def make_model_matrix4(x):
return (np.log(x)).reshape(-1, 1)**[0, 1]

make_model_matrixl.__name__ = "linear model"
make_model_matrix2.__name__ = "quadratic model"
make_model_matrix3.__name__ = "cubic model"
make_model_matrix4.__name__ = "logarithmic model"

model_matrix_makers = [
(continues on next page)
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(continued from previous page)
make_model_matrixi,
make_model_matrix2,
make_model_matrix3,
make_model_matrix4
1
x_original = world[:, 0]
Xs_train = [ make_model_matrix(x_original)
for make_model_matrix in model_matrix_makers ]

Fitting the models:

y_train = world[:, 1]
cs = [ scipy.linalg.lstsq(X_train, y_train)[0]
for X_train in Xs_train ]

Their coefficients of determination are equal to:

for 1 in range(len(Xs_train)):
R2 = 1 - np.var(y_train - cs[i] @ Xs_train[i].T)/np.var(y_train)
print(f"{model_matrix_makers[i].__name__:20} R2={R2:.3f}")

## linear model R2=0.431
## quadratic model R2=0.567
## cubic model R2=0.607

## logarithmic model R2=0.651

The logarithmic model is thus the best (out of the models we considered). The four
models are depicted in Figure 9.11.

plt.plot(x_original, y train, "o", alpha=0.1)
_x = np.linspace(x_original.min(), x_original.max(), 101).reshape(-1, 1)
for 1 in range(len(model_matrix_makers)):
_y = cs[i] @ model_matrix_makers[i1](_x).T
plt.plot(_x, _y, label=model_matrix_makers[i].__name__)
plt.legend()
plt.xlabel("per capita GDP PPP")
plt.ylabel("life expectancy (years)")
plt.show()

Exercise 9.11 Draw box plots and histograms of vesiduals for each model as well as the scatter
plots of residuals vs fitted values.

9.2.7 Descriptive vs predictive power (*)

We approximated the life vs GDP relationship using a few different functions. Never-
theless, we see that the above quadratic and cubic models possibly do not make much
sense, semantically speaking. Sure, as far as individual points in the training set are con-
cerned, they do fit the data better than the linear model. After all, they have smaller
mean squared errors (again: at these given points). Looking at the way they behave,
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Figure 9.11. Different models for life expectancy vs GDP.

one does not need a university degree in economics/social policy to conclude that they
are not the best description of how the reality behaves (on average).

Important Naturally, a model’s goodness of fit to observed data tends to improve as
the model’s complexity increases. The Razor principle (by William of Ockham et al.) ad-
vises that if some phenomenon can be explained in many different ways, the simplest
explanation should be chosen (do not multiply entities [here: introduce independent vari-
ables] without necessity).

In particular, the more independent variables we have in the model, the greater the

R? coefficient will be. We can try correcting for this phenomenon by considering the
adjusted R?:

R(y,9) =1 (1- R2(y,§) ———

Y. ¥) = Y9 ——

which, to some extent, penalises more complex models.

Note (**) Model quality measures adjusted for the number of model parameters, m,
can also be useful in automated variable selection. For example, the Akaike Informa-
tion Criterion is a popular measure given by:

AIC = 2m + nlog(SSR) — nlogn.
Furthermore, the Bayes Information Criterion is defined via:

BIC = mlogn + nlog(SSR) — nlogn.
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Unfortunately, they are both dependent on the scale of y.

We should also be interested in a model’s predictive power, i.e., how well does it gen-
eralise to data points that we do not have now (or pretend we do not have) but might
face in the future. As we observe the modelled reality only at a few different points,
the question is how the model performs when filling the gaps between the dots it con-
nects.

In particular, we must be careful when extrapolating the data, i.e., making predictions
outside of its usual domain. For example, the linear model predicts the following life
expectancy for an imaginary country with $500 000 per capita GDP:

cs[0] @ model_matrix_makers[0](np.array([500000])).T
## array([164.3593753])

and the quadratic one gives:

cs[1] @ model_matrix_makers[1](np.array([500000])).T
## array([-364.10630779])

Nonsense.

Example 9.12 Let us consider the following theoretical illustration. Assume that a true model
of some realityisy = 5 + 3x3.

def true_model(x):
return 5 + 3*(x**3)

Still, for some reason we are only able to gather a small (n = 25) sample from this model. What
is even worse, it is subject to some measurement error:

np.random. seed(42)
X = np.random.rand(25) # random xs on [0, 1]
y = true_model(x) + 0.2*np.random.randn(len(x)) # true _model(x) + noise

The least-squares fitting of y = c1 + cox3 to the above gives:

X03 = x.reshape(-1, 1)**[0, 3]

cO3 = scipy.linalg.lstsq(X03, y)[0]
ssr@3 = np.sum((y-cO3 @ XO03.T)**2)
np.round(c03, 2)

## array([5.01, 3.13])

which is not too far, but still somewhat™ distant from the true coefficients, 5 and 3.

We can also fit a more flexible cubic polynomial, y = c1 + coX + c3x% + c4x5:

1 For large 11, we expect to pinpoint the true coefficients exactly. In our scenario (independent, normally
distributed errors with the expectation of 0), the least squares method is the maximum likelihood estimator
of the model parameters. As a consequence, it is consistent.
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X0123 = x.reshape(-1, 1)**[0, 1, 2, 3]

c0123 = scipy.linalg. lstsq(X0123, y)[0]
ssr@123 = np.sum((y-cO123 @ X0123.T)**2)
np.round(c0123, 2)

## array([4.89, 0.32, 0.57, 2.23])

In terms of the SSR, this more complex model of course explains the training data better:

ssr@3, ssr@123
## (1.061211115402956, 0.9619488226837543)

Yet, it is farther away from the truth (which, whilst performing the fitting task based only on
given x and y, is unknown). We may thus say that the first model generalises better on yet-to-
be-observed data; see Figure 9.12 for an illustration.

_x = np.linspace(0, 1, 101)

plt.plot(x, y, "0")

plt.plot(_x, true_model(_x), "--", label="true model")

plt.plot(_x, c0123 @ (_x.reshape(-1, 1)**[0, 1, 2, 3]).T,
label="fitted model y=x**[0, 1, 2, 3]")

plt.plot(_x, cO3 @ (_x.reshape(-1, 1)**[0, 3]).T,
label="fitted model y=x**[0, 3]")

plt. legend()

plt.show()
g0 T true model 7
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Figure 9.12. The true (theoretical) model vs some guesstimates (fitted based on noisy
data). More degrees of freedom is not always better.

Example 9.13 (**) We defined the sum of squared residuals (and its function, the root mean
squared error) by means of the averaged deviation from the reference values. They are subject to
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error themselves, though. Even though they are our best-shot approximation of the truth, they
should be taken with a degree of scepticism.

In the above example, given the true (veference) model f defined over the domain D (in our case,
f(x) =543x3and D = [0,1]) and an empirically fitted model f, we can compute the square
root of the integrated squared error over the whole D:

RMSE(f,f) = \UD(f(x) — f(x))2 dx.

For polynomials and other simple functions, RMSE can be computed analytically. More gener-
ally, we can approximate it numerically by sampling the above at sufficiently many points and
applying the trapezoidal rule (e.g., [74]). As this can be an educative programming exercise, be-
low we consider a range of polynomial models of different degrees.

cs, rmse_train, rmse_test = [], [], [] # result containers

ps = np.arange(1, 10) # polynomial degrees

for p in ps: # for each polynomial degree:
¢ = scipy.linalg. lstsq(x.reshape(-1, 1)**np.arange(p+1), y)[0] # fit
cs.append(c)

y pred = ¢ @ (x.reshape(-1, 1)**np.arange(p+1)).T # predictions
rmse_train.append(np.sqrt(np.mean((y-y_pred)**2))) # RMSE

_x = np.linspace(0, 1, 101) # many _xs
y =c @ (_x.reshape(-1, 1)**np.arange(p+1)).T # f(_x)
_r = (true_model(_x) - _y)**2 # residuals

rmse_test.append(np.sqrt(0.5*np. sum(
np.diff(_ x)*(_r[1:]+_r[:-1]) # trapezoidal rule for integration
)))

plt.plot(ps, rmse_train, label="RMSE (training set)")
plt.plot(ps, rmse_test, label="RMSE (theoretical)")
plt.legend()

plt.yscale("log")

plt.xlabel("model complexity (polynomial degree)")
plt.show()

Figure 9.13 shows that a model’s ability to make correct generalisations onto unseen data im-
proves as the complexity increases, at least initially. However, then it becomes worse. It is quite a
typical behaviour. In fact, the model with the smallest RMSE on the training set, overfits to the
input sample, see Figure 9.14.

plt.plot(x, y, "0")
plt.plot(_x, true_model(_x),
for i in [0, 1, 8]:
plt.plot(_x, cs[i] @ (_x.reshape(-1, 1)**np.arange(ps[i]+1)).T,
label=f"fitted degree-{ps[i]} polynomial")
plt.legend()
plt.show()

" "

-", label="true model")
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Figure 9.13. Small RMSE on training data does not necessarily imply good generalisa-
tion abilities.

8.0 ——. truemodel 4
fitted degree-1 polynomial /4‘
[P fitted degree-2 polynomial 7‘7’
70 fitted degree-9 polynomial ’/
6.5
6.0
55
5.0
4.5
0.0 0.2 0.4 0.6 0.8 1.0

Figure 9.14. Under- and overfitting to training data.
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Important When evaluating a model’s quality in terms of predictive power on un-
seen data, we should go beyond inspecting its behaviour merely on the points from
the training sample. As the truth is usually not known (if it were, we would not need
any guessing), a common approach in case where we have a dataset of a considerable
size is to divide it (randomly; see Section 10.5.4) into two parts:

- training sample (say, 60%) — used to fit a model,

- test sample (the remaining 40%) — used to assess its quality (e.g., by means of
RMSE).

This might emulate an environment where some new data arrives later, see Sec-
tion 12.3.3 for more details.

Furthermore, if model selection is required, we may apply a training/validation/test
split (say, 60/20/20%; see Section 12.3.4). Here, many models are constructed on the
training set, the validation set is used to compute the metrics and choose the best
model, and then the test set gives the final model's valuation to assure its useful-
ness/uselessness (because we do not want it to overfit to the test set).

Overall, models must never be blindly trusted. Common sense must always be applied.
The fact that we fitted something using a sophisticated procedure on a dataset that
was hard to obtain does not justify its use. Mediocre models must be discarded, and
we should move on, regardless of how much time/resources we have invested whilst
developing them. Too many bad models go into production and make our daily lives
harder. We need to end this madness.

9.2.8 Fitting regression models with scikit-learn (*)

scikit-learn'* (sklearn; [72]) is a huge Python package built on top of numpy, scipy,
and matplotlib. It has a consistent API and implements or provides wrappers for
many regression, classification, clustering, and dimensionality reduction algorithms
(amongst others).

Important scikit-learn isvery convenient. Nevertheless, it permits us to fit models
even when we do not understand the mathematics behind them. This is dangerous: it
is like driving a sports car without the necessary skills and, at the same time, wearing
a blindfold. Advanced students and practitioners will appreciate it, but if used by be-
ginners, it needs to be handled with care. We should not mistake something’s being
easily accessible with its being safe to use. Remember that if we are given a procedure
for which we are not able to provide its definition/mathematical properties/explain
its idealised version using pseudocode, we are expected to refrain from using it (see
Rule#7).

12 https://scikit-learn.org/stable/index.html
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Because of the above, we shall only present a quick demo of scikit-learn’s API. Let us
do that by fitting a multiple linear regression model for, again, weight as a function of
the arm and the hip circumference:

X_train = body[:, [4, 5]]
y_train = body[:, 0]

In scikit-learn, once we construct an object representing the model to be fitted, the
fit method determines the optimal parameters.

import sklearn.linear_model

Im = sklearn.linear_model.LinearRegression(fit_intercept=True)
Im. fit(X_train, y_train)

Im.intercept_, lm.coef_

## (-63.38342541094772, array([1.30457807, 0.8986582 ]))

We, of course, obtained the same solution as with scipy.linalg.lstsq.

Computing the predicted values can be done via the predict method. For example, we
can calculate the coefficient of determination:

y_pred = lm.predict(X_train)

import sklearn.metrics
sklearn.metrics.r2_score(y_train, y_pred)
## 0.9243996585518783

The above function is convenient, but can we really recall the formula for the score and
what it measures? We should always be able to do that.

9.2.9 Ill-conditioned model matrices (*)

Our approach to regression analysis relies on solving an optimisation problem (the
method least squares). Nevertheless, sometimes the “optimal” solution that the al-
gorithm returns might have nothing to do with the true minimum. And this is despite
the fact that we have the theoretical results stating that the solution is unique® (the ob-
jective is convex). The problem stems from our using the computer’s finite-precision
floating point arithmetic; compare Section 5.5.6.

Let us fit a degree-4 polynomial to the life expectancy vs per capita GDP dataset.

x_original = world[:, 0]

X_train = (x_original.reshape(-1, 1))**[0, 1, 2, 3, 4]
y_train = world[:, 1]

cs = dict()

We store the estimated model coefficients in a dictionary because many methods will
follow next. First, scipy:

B3 There are methods in statistical learning where there might be multiple local minima - this is even
more difficult; see Section 12.4.4.
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res = scipy.linalg.lstsq(X_train, y_train)

cs["scipy X"] = res[0]

cs["scipy X"]

## array([ 2.33103950e-16, 6.42872371e-12, 1.34162021e-07,
## -2.33980973e-12, 1.03490968e-17])

If we drew the fitted polynomial now (see Figure 9.15), we would see that the fit is
unbelievably bad. The result returned by scipy.linalg.lstsq is now not at all optimal.
All coefficients are approximately equal to 0.

It turns out that the fitting problem is extremely ill-conditioned (and it is not the al-
gorithm’s fault): GDPs range from very small to very large ones. Furthermore, tak-
ing them to the fourth power breeds numbers of ever greater range. Finding the least
squares solution involves some form of matrix inverse (not necessarily directly) and
our model matrix may be close to singular (one that is not invertible).

As a measure of the model matrix’s ill-conditioning, we often use the condition num-
ber, denoted x(XT). It is the ratio of the largest to the smallest singular values' of X7,
which are returned by the scipy.linalg. lstsq method itself:

s = res[3] # singular values of X train.T

s

## array([5.63097211e+20, 7.90771769e+14, 4.48366565e+09, 6.77575417e+04,
## 5.76116462e+00])

Note that they are already sorted nonincreasingly. The condition number x(XT) is
equal to:

s[0] / s[-1] # condition number (largest/smallest singular value)
## 9.774017021683106e+19

As a rule of thumb, if the condition number is 10X, we are losing k digits of numerical
precision when performing the underlying computations. As the above number is ex-
ceptionally large, we are thus currently faced with a very ill-conditioned problem. If
the values in X or y are perturbed even slightly, we might expect significant changes
in the computed regression coefficients.

Note (“*)Theleast squares regression problem can be solved by means of the singular
value decomposition of the model matrix, see Section 9.3.4. Let USQ be the SVD of
XT. Thenc = US~!Qy, with S™ = diag(1/51 1, ..., 1/Sym)- ASS1 1 = oo = Sy
gives the singular values of X', the aforementioned condition number can simply be
computed as $1 1 /8y -

14 (**) Being themselves the square roots of eigenvalues of X7 X. Equivalently, x(XT) = [(XT) =1 1XT||
with respect to the spectral norm. Seriously, we really need linear algebra when we even remotely think
about practising data science. Let us add it to our life skills bucket list.
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Let us verify the method used by scikit-learn. As it fits the intercept separately, we
expect it to be slightly better-behaving. Nevertheless, let us keep in mind that it is
merely a wrapper around scipy.linalg.lstsq with a different API.

import sklearn.linear_model

1m = sklearn.linear_model.LinearRegression(fit_intercept=True)
Im. fit(X_train[:, 1:], y_train)

cs["sklearn"] = np.r_[lm.intercept_, lm.coef_]

cs["sklearn"]

## array([ 6.92257708e+01, 5.05752755e-13, 1.38835643e-08,
## -2.18869346e-13, 9.09347772e-19])

Here is the condition number of the underlying model matrix:

Im.singular_[0] / lm.singular_[-1]
## 1.402603229842854e+16

The condition number is also enormous. Still, scikit-learndid not warn us about this
being the case (insert frowning face emoji here). Had we trusted the solution returned
by it, we would end up with conclusions from our data analysis built on sand. As we
said in Section 9.2.8, the package designers assumed that the users know what they
are doing. This is okay, we are all adults here, although some of us are still learning.

Overall, if the model matrix is close to singular, the computation of its inverse is prone
to enormous numerical errors. One way of dealing with this is to remove highly cor-
related variables (the multicollinearity problem). Interestingly, standardisation can
sometimes make the fitting more numerically stable.

Let Z be a standardised version of the model matrix X with the intercept part (the
column of 1s) not included, i.e., with z. ; = (X.; — X))/ where X¥; and s; denotes
the arithmetic mean and standard deviation of the j-th column in X. If (d4, ..., d,,,_1)
is the least squares solution for Z, then the least squares solution to the underlying
original regression problem is:

with the first term corresponding to the intercept.

Let us test this approach with scipy.linalg.lstsq:

means = np.mean(X_train[:, 1:], axis=0)
stds = np.std(X_train[:, 1:], axis=0)
Z_train = (X_train[:, 1:]-means)/stds
resZ = scipy.linalg.lstsq(Z_train, y_train)
c_scipyZ = resZ[0]/stds
cs["scipy Z"] = np.r_[np.mean(y_train) - (c_scipyZ @ means.T), c_scipyZ]
cs["scipy_Z"]
(continues on next page)
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(continued from previous page)

## array([ 6.35946784e+01, 1.04541932e-03, -2.41992445e-08,
## 2.39133533e-13, -8.13307828e-19])

The condition number is:

s = resZ[3]

s[0] / s[-1]
## 139.42792257372344

This is still far from perfect (we would prefer a value close to 1) but nevertheless way
better.

Figure 9.15 depicts the three fitted models, each claiming to be the solution to the ori-
ginal regression problem. Note that, luckily, we know that in our case the logarithmic
model is better than the polynomial one.

plt.plot(x_original, y_train, "o", alpha=0.1)
_x = np.linspace(x_original.min(), x_original.max(), 101).reshape(-1, 1)
X = _x**[0, 1, 2, 3, 4]
for lab, c in cs.items():
ssr = np.sum((y_train - ¢ @ X_train.T)**2)
plt.plot(_x, c @ _X.T, label=f"{lab:10} SSR={ssr:.2f}")
plt.legend()
plt.ylim(20, 120)
plt.xlabel("per capita GDP PPP")
plt.ylabel("life expectancy (years)")
plt.show()

Important Always check the model matrix’s condition number.

Exercise 9.14 Check the condition numbers of all the models fitted so far in this chapter via the
least squares method.

To be strict, if we read a paper in, say, social or medical sciences (amongst others)
where the researchers fit a regression model but do not provide the model matrix’s
condition number, it is worthwhile to doubt the conclusions they make.

On a final note, we might wonder why the standardisation is not done automatically
by the least squares solver. As usual with most numerical methods, there is no one-
fits-all solution: e.g., when there are columns of extremely small variance or there are
outliers in data. This is why we need to study all the topics deeply: to be able to respond
flexibly to many different scenarios ourselves.
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Figure 9.15. Ill-conditioned model matrix can give a very wrong model.

9.3 Finding interesting combinations of variables (*)
9.3.1 Dot products, angles, collinearity, and orthogonality

Let us note that the dot product (Section 8.3) has a nice geometrical interpretation:
x -y = |xllyll cosa,

where « is the angle between two given vectors x,y € R". In plain English, it is the
product of the magnitudes of the two vectors and the cosine of the angle between

them.
We can retrieve the cosine part by computing the dot product of the normalised vectors,
i.e., such that their magnitudes are equal to 1:

_x 7
o= FTE

For example, consider two vectors in R?, u = (1/2,0) andv = (\/5/2, \/5/2), which
are depicted in Figure 9.16.

u = np.array([0.5, 0])
v = np.array([np.sqrt(2)/2, np.sqrt(2)/2])

Their dot product is equal to:



9 EXPLORING RELATIONSHIPS BETWEEN VARIABLES 21

np.sum(u*v)
## 0.3535533905932738

The dot product of their normalised versions, i.e., the cosine of the angle between
them is:

u_norm = u/np.sqrt(np.sum(u*u))
v_norm = v/np.sqrt(np.sum(v*v)) # BTW: this vector is already normalised

np.sum(u_norm*v_norm)
## 0.7071067811865476

The angle itself can be determined by referring to the inverse of the cosine function,
i.e., arccosine.

np.arccos(np.sum(u_norm*v_norm)) * 180/np.pi
## 45.0

Notice that we converted the angle from radians to degrees.
0.7 [0.707,0.707]
0.6
0.5
0.4
0.3
0.2

0.1

00 [0.500, 0.000]

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 9.16. Example vectors and the angle between them.

Important If two vectors are collinear (codirectional, one is a scaled version of another,
angle0), thencos 0 = 1. Ifthey pointin opposite directions (+ 77 = +180° angle), then
cos +71 = —1. For vectors that are orthogonal (perpendicular, i% = +90° angle), we
getcos +75 = 0.

Note (**) The standard deviation s of a vector x € R" that has already been centred
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(whose components’ mean is 0) is a scaled version of its magnitude, i.e., s = ||jx||/ V7.
Looking at the definition of the Pearson linear correlation coefficient (Section 9.1.1),
we see that it is the dot product of the standardised versions of two vectors x and y
divided by the number of elements therein. If the vectors are centred, we can rewrite

the formula equivalently as r(x,y) = ”ﬁ—” . IL:_II and thus 7(x,y) = cosa. Itis noteasy to

imagine vectors in high-dimensional spaces, but from this observation we can at least
imply the fact that r is bounded between -1 and 1. In this context, being not linearly
correlated corresponds to the vectors’ orthogonality.

9.3.2 Geometric transformations of points

For certain square matrices of size m x m, matrix multiplication can be thought of as
an application of the corresponding geometrical transformation of points in R™

Let X be a matrix of shape n x m, which we treat as representing the coordinates of n
points in an m-dimensional space. For instance, if we are given a diagonal matrix:

Sl 0 0
S = diag(sq,8y, e+, S,) = 0 5:2 0 ,
0 0 .. s,

then XS represents scaling (stretching) with respect to the individual axes of the co-
ordinate system because:

slxlll 52x1,2 smxllm
Slell SzXz/z Sme,m
XS = : S :
51X%n-1,1 S2Xp—-1,2 -+ SmXn—1,m
slxn,l 52xn,2 Smxn,m

The above can be expressed in numpy without referring to the matrix multiplication. A
notation like X * np.array([s1, s2, ..., sm]).reshape(1, -1) will suffice (element-
wise multiplication and proper shape broadcasting).

Furthermore, let Q is an orthonormal® matrix, i.e., a square matrix whose columns
and rows are unit vectors (normalised), all orthogonal to each other:

* llq; Il = 1foralli,
« q;.-qi. =0foralli,k,
+ llg.jll = 1forallj,
*q,; qQi= 0 forallj, k.

15 Orthonormal matrices are sometimes simply referred to as orthogonal ones.
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In such a case, XQ represents a combination of rotations and reflections.

Important By definition, a matrix Q is orthonormal ifand only if QT Q = QQT = L. It
is due to the cos +5 = 0 interpretation of the dot products of normalised orthogonal
vectors.

In particular, the matrix representing the rotation in R? about the origin (0, 0) by the
counterclockwise angle a:
cosx  sina
R(lx) = . 7
—sina  cosw

is orthonormal (which can be easily verified using the basic trigonometric equalities).

Furthermore:
1 0 -1 0
o A e [T0)

represent the two reflections, one against the x- and the other against the y-axis, re-
spectively. Both are orthonormal matrices too.

Consider a dataset X’ in R2:

np.random.seed(12345)
Xp = np.random.randn(10000, 2) * 0.25

and its scaled, rotated, and translated (shifted) version:
7T . 7T
X:X’[z 0 ][ cosg  sing

0 05 —sinZ cos% +[3 2]

6 6

t = np.array([3, 2])

S = np.diag([2, 0.5])

S

## array([[2. , 0. ],

## [o. , 0.5]])

alpha = np.pi/6

Q = np.array([
[ np.cos(alpha), np.sin(alpha)],
[-np.sin(alpha), np.cos(alpha)]

D)

Q
## array([[ 0.8660254, 0.5 7,
## [-0.5 , 0.8660254]])

X=Xp@S@Q+t

We can consider X = X'SQ + t aversion of X' in a new coordinate system (basis), see
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Figure 9.17. A dataset and its scaled, rotated, and shifted version.

Figure 9.17. Each column in the transformed matrix is a shifted linear combination of
the columns in the original matrix:

m
/
X,/]- = t] + Z(sk,qu,j)x.,k.
k=1

The computing of such linear combinations of columns is not rare during a dataset’s
preprocessing step, especially if they are on the same scale or are unitless. As a matter
of fact, the standardisation itself is a form of scaling and translation.

Exercise 9.15 Assume that we have a dataset with two columns representing the number of
apples and the number of oranges in clients’ baskets. What orthonormal and scaling transforms
should be applied to obtain a matrix that gives the total number of fruits and surplus apples
(e.g., to convertarow (4,7) to (11, -3))?

9.3.3 Matrix inverse
The inverse of a square matrix A (if it exists) is denoted by A~ It is the matrix fulfilling
the identity:

ATA=AAT =1L

Noting that the identity matrix I is the neutral element of the matrix multiplication,
the above is thus the analogue of the inverse of a scalar: something like 3-37! = 3. % =

1
53:1
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Important For any invertible matrices of admissible shapes, it might be shown that
the following noteworthy properties hold:

- (AHT = AH T,
« (AB)"1 =B 1A 1

- amatrix equality A = BC holds if and only if AC~! = BCC~! = B; this is also
equivalenttoB~'A = B"'BC = C.

Matrix inverse to identify the inverses of geometrical transformations. Knowing that
X = X'SQ + t, we can recreate the original matrix by applying:

X =X-t)SQ!=X-t)QIsL

It is worth knowing that if § = diag(sy,ss, ..., s,,) is a diagonal matrix, then its in-
verseis S~! = diag(1/sy,1/sy,...,1/s,,), which we can denote as (1/S). In addition,
the inverse of an orthonormal matrix Q is always equal to its transpose, Q™' = Q.
Luckily, we will not be inverting other matrices in this introductory course.

Asa consequence:
X' = (X-t)QT(1/8).

Let us verify this numerically (testing equality up to some inherent round-off error):

np.allclose(Xp, (X-t) @ Q.T @ np.diag(1/np.diag(S)))
## True

9.3.4 Singular value decomposition

It turns out that given any real n x m matrix X with n > m, we can find an interesting
scaling and orthonormal transform that, when applied on a dataset whose columns
are already normalised, yields exactly X.

Namely, the singular value decomposition (SVD in the so-called compact form) is a
factorisation:

X = USQ,

where:

« Uisann x m semi-orthonormal matrix (its columns are orthonormal vectors; it
holds UTU = 1),

+ Sisanm x m diagonal matrix such thats; 1 >s,, > ... >5,, , >0,

« Qisanm x m orthonormal matrix.
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Important In data analysis, we usually apply the SVD on matrices that have already
been centred (so that their column means are all 0).

For example:

import scipy.linalg

n = X.shape[0]

X_centred = X - np.mean(X, axis=0)

U, s, Q = scipy.linalg.svd(X_centred, full_matrices=False)

And now:

Ul:6, :] # preview first few rows
#4 array([[-0.00195072, 0.00474569],

## [-0.00510625, -0.00563582],
## [ 0.01986719, 0.01419324],
## [ 0.00104386, 0.00281853],
## [ 0.00783406, 0.01255288],
## [ 0.01025205, -0.0128136 ]])

The norms of all the columns in U are all equal to 1 (and hence standard deviations are
1//n). Consequently, they are on the same scale:

np.std(U, axis=0), 1/np.sqrt(n) # compare
## (array([0.01, 60.601]), 0.01)

What is more, they are orthogonal: their dot products are all equal to 0. Regarding
what we said about Pearson’s linear correlation coefficient and its relation to dot
products of normalised vectors, we imply that the columns in U are not linearly cor-
related. In some sense, they form independent dimensions.

Now, it holds S = diag(sy, ..., S,,,), with the elements on the diagonal being:

S
## array([49.72180455, 12.5126241 ])

The elements on the main diagonal of S are used to scale the corresponding columns
in U. The fact that they are ordered decreasingly means that the first column in US has
the greatest standard deviation, the second column has the second greatest variability,
and so forth.

S = np.diag(s)

USs =ua@s

np.std(US, axis=0) # equal to s/np.sqrt(n)
## array([0.49721805, 0.12512624])

Multiplying US by Q simply rotates and/or reflects the dataset. This brings US to a new
coordinate system where, by construction, the dataset projected onto the direction
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etermine e first row in Q, i.e., qq . has the largest variance, projection onto
det d by the first Q 1, has the | t project t
qy,. has the second largest variance, and so on.

Q
## array([[ 0.86781968, 0.49687926],
## [-0.49687926, 0.86781968]])

This is why we refer to the rows in Q as principal directions (or components). Their scaled
versions (proportional to the standard deviations along them) are depicted in Fig-
ure 9.18. Note that we have more or less recreated the steps needed to construct X
from X' above (by the way we generated X', we expect it to have linearly uncorrelated
columns; yet, X’ and U have different column variances).

plt.plot(X_centred[:, 0], X_centred[:, 1], "o", alpha=0.1)
plt.arrow(
0, 0, Q[O, 0]1*s[0]/np.sgrt(n), Q[O, 1]*s[0]/np.sqrt(n), width=0.02,
facecolor="red", edgecolor="white", length_includes_head=True, zorder=2)
plt.arrow(
0, 0, Q[1, 0]1*s[1]/np.sgrt(n), Q[1, 1]*s[1]/np.sqrt(n), width=0.02,
facecolor="red", edgecolor="white", length_includes_head=True, zorder=2)
plt.show()
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Figure 9.18. Principal directions of an example dataset (scaled so that they are propor-
tional to the standard deviations along them).

9.3.5 Dimensionality reduction with SVD

Let us consider the following example three-dimensional dataset.
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chainlink = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/clustering/fcps_chainlink.csv")

Section 7.4 said that the plotting is always done on a two-dimensional surface (be it
the computer screen or book page). We can look at the dataset only from one angle at
a time.

In particular, a scatter plot matrix only depicts the dataset from the perspective of the
axes of the Cartesian coordinate system (standard basis); see Figure 9.19 (we used a
function we defined in Section 7.4.3).

pairplot(chainlink, ["axis1", "axis2", "axis3"]) # our function
plt.show()
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Figure 9.19. Views from the perspective of the main axes.

These viewpoints by no means must reveal the true geometric structure of the dataset.
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However, we know that we can rotate the virtual camera and find some more interesting
angle. It turns out that our dataset represents two nonintersecting rings, hopefully
visible Figure 9.20.

fig = plt.figure()

ax = fig.add_subplot(1, 3, 1, projection="3d", facecolor="#ffffffoo")
ax.scatter(chainlink[:, 0], chainlink[:, 1], chainlink[:, 2])
ax.view_init(elev=45, azim=45, vertical_axis="z")

ax = fig.add_subplot(1, 3, 2, projection="3d", facecolor="#ffffffoo")
ax.scatter(chainlink[:, 0], chainlink[:, 1], chainlink[:, 2])
ax.view_init(elev=37, azim=0, vertical_axis="z")

ax = fig.add_subplot(1, 3, 3, projection="3d", facecolor="#ffffffoo")
ax.scatter(chainlink[:, 0], chainlink[:, 1], chainlink[:, 2])
ax.view_init(elev=10, azim=150, vertical_axis="z")

plt.show()
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Figure 9.20. Different views of the same dataset.

It turns out that we may find a noteworthy viewpoint using the SVD. Namely, we can
perform the decomposition of a centred dataset which we denote by X:

X = USQ.

import scipy.linalg
X_centered = chainlink-np.mean(chainlink, axis=0)
U, s, Q = scipy.linalg.svd(X_centered, full_matrices=False)

Then, considering its rotated/reflected version:

P=XQ1=uUs,
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we know that its first column has the highest variance, the second column has the
second highest variability, and so on. It might indeed be worth looking at that dataset
from that most informative perspective.

Figure 9.21 gives the scatter plot for p. ; and p. ;. Maybe this does not reveal the true
geometric structure of the dataset (no single two-dimensional projection can do that),
but at least it is better than the initial ones (from the pairs plot).

P2 = U[:, :2] @ np.diag(s[:2]) # the same as (U@np.diag(s))[:, :2]
plt.plot(P2[:, 0], P2[:, 1], "o")

plt.axis("equal")

plt.show()
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Figure 9.21. The view from the two principal axes.

What we just did is a kind of dimensionality reduction. We found a viewpoint (in the form
of an orthonormal matrix, being a mixture of rotations and reflections) on X such that
its orthonormal projection onto the first two axes of the Cartesian coordinate system
is the most informative'® (in terms of having the highest variance along these axes).

9.3.6 Principal component analysis

Principal component analysis (PCA) is a fancy name for the entire process involving our
brainstorming upon what happens along the projections onto the most variable di-
mensions. It can be used not only for data visualisation and deduplication, but also
for feature engineering (as it creates new columns that are linear combinations of ex-
isting ones).

16 (**) The Eckart-Young-Mirsky theorem states that U. ., S.x .x Q.. (where “: k” denotes “first k rows
or columns”) is the best rank-k approximation of X with respect to both the Frobenius and spectral norms.
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Let us consider a few chosen countrywise 2016 Sustainable Society Indices".

ssi = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/ssi_2016_1indicators.csv",
comment="#")
X = np.array(ssi.iloc[:, [3, 5, 13, 15, 19] ]) # select columns, make matrix
n = X.shape[0]
X[:6, :]1 # preview

## array([[ 9.32 , 8.13333333, 8.386 , 8.5757 , 5.46249573],
## [ 8.74 , 7.71666667, 7.346 , 6.8426 , 6.2929302 ],
## [ 5.11 , 4.31666667, 8.788 , 9.2035 , 3.91062849],
## [ 9.61 , 7.93333333, 5.97 , 5.5232 , 7.75361284],
## [ 8.95 , 7.81666667, 8.032 , 8.2639 , 4.42350654],
## [10. , 8.65 , 1. , 1. , 9.66401848]])

Each index is on the scale from o to 10. These are, in this order:
1. Safe Sanitation,

2. Healthy Life,

3. Energy Use,

4. Greenhouse Gases,

5. Gross Domestic Product.

Above we displayed the data corresponding to the 6 following countries:

countries = list(ssi.iloc[:, 0]) # select the 1st column from the data frame
countries[:6] # preview
## ['Albania’, 'Algeria’, 'Angola'’, 'Argentina', 'Armenia’, 'Australia’]

This is a five-dimensional dataset. We cannot easily visualise it. Observing that the
pairs plot does not reveal too much is left as an exercise. Let us thus perform the SVD
decomposition of a standardised version of this dataset, Z (recall that the centring is
necessary, at the very least).

Z = (X - np.mean(X, axis=0))/np.std(X, axis=0)
U, s, Q = scipy.linalg.svd(Z, full_matrices=False)

The standard deviations of the data projected onto the consecutive principal compon-
ents (columns in US) are:

s/np.sqrt(n)
## array([2.02953531, 0.7529221 , 0.3943008 , 0.31897889, 0.23848286])

It is customary to check the ratios of the cumulative variances explained by the con-
secutive principal components, which is a normalised measure of their importances.
We can compute them by calling:

17 https://ssi.wi.th-koeln.de/
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np.cumsum(s**2)/np.sum(s**2)
## array([0.82380272, 0.93718105, 0.96827568, 0.98862519, 1. 1)

As in some sense the variability within the first two components covers c. 94% of the
variability of the whole dataset, we can restrict ourselves only to a two-dimensional
projection of this dataset (actually, we are quite lucky here — or someone has selected
these countrywise indices for us in a very clever fashion).

The rows in Q define the loadings, which give the coefficients defining the linear com-
binations of the rows in Z that correspond to the principal components.

Let us try to interpret them.

np.round(Q[0, :], 2) # loadings - the first principal axis
## array([-0.43, -0.43, 0.44, 0.45, -0.47])

The first row in Q consists of similar values, but with different signs. We can consider
them a scaled version of the average Energy Use (column 3), Greenhouse Gases (4), and
MINUS Safe Sanitation (1), MINUS Healthy Life (2), MINUS Gross Domestic Product
(5). We could call this a measure of a country’s overall eco-unfriendliness(?) because
countries with low Healthy Life and high Greenhouse Gasses will score highly on this
scale.

np.round(Q[1, :], 2) # loadings - the second principal axis
##4 array([ 0.52, 0.5, 0.52, 0.45, -0.02])

The second row in Q defines a scaled version of the average of Safe Sanitation (1),
Healthy Life (2), Energy Use (3), and Greenhouse Gases (4), almost completely ignor-
ing the GDP (5). Can we call it a measure of industrialisation? Something like this. But
this naming is just for fun’®.

Figure 9.22 is a scatter plot of the countries projected onto the said two principal dir-
ections. For readability, we only display a few chosen labels. This is merely a projec-
tion/approximation, but it might be an interesting one for some practitioners.

P2 = U[:, :2] @ np.diag(s[:2]) # ==V @ Q[:2, :].T
plt.plot(P2[:, 0], P2[:, 1], "o", alpha=0.1)
which = [ # hand-crafted/artisan
141, 117, 69, 123, 35, 80, 93, 45, 15, 2, 60, 56, 14,
104, 122, 8, 134, 128, 0, 94, 114, 50, 34, 41, 33, 77,
64, 67, 152, 135, 148, 99, 149, 126, 111, 57, 20, 63
1
for 1 in which:
plt.text(P2[1, 0], P2[1, 1], countries[i], ha="center")
plt.axis("equal")

(continues on next page)

18 Nonetheless, someone might take these results seriously and scribble a research thesis about it. Math-
ematics, unlike the brains of ordinary mortals, does not need our imperfect interpretations/fairy tales to
function properly. We need more maths in our lives.
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(continued from previous page)
plt.xlabel("1st principal component (eco-unfriendliness?)")
plt.ylabel("2nd principal component (industrialisation?)")
plt.show()
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Figure 9.22. An example principal component analysis of countries.

9.4 Furtherreading

Other approaches to regression via linear models include ridge and lasso, the latter
having the nice property of automatically getting rid of noninformative variables from
the model. Furthermore, instead of minimising squared residuals, we can also con-
sider, e.g., least absolute deviation.

There are many other approaches to dimensionality reduction, also nonlinear ones, in-
cluding kernel PCA, feature agglomeration via hierarchical clustering, autoencoders,
t-SNE, etc.

A popular introductory text in statistical learning is [47]. We recommend [2, 8, 9, 22,
24] for more advanced students. Computing-orientated students could benefit from
checking out [65].
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9.5 Exercises
Exercise 9.16 Why correlation is not causation?

Exercise 9.17 What does the linear correlation of 0.9 mean? What? about the rank correlation
of 0.9? And the linear correlation of 0.0?

Exercise 9.18 How is Spearman’s coefficient related to Pearson’s one?

Exercise 9.19 State the optimisation problem behind the least squares fitting of linear models.
Exercise 9.20 What are the different ways of the numerical summarising of residuals?
Exercise 9.21 Why is it important for the residuals to be homoscedastic?

Exercise 9.22 Isa more complex model always better?

Exercise 9.23 Why must extrapolation be handled with care?

Exercise 9.24 Why did we say that novice users should refrain from using scikit-learn?

Exercise 9.25 What is the condition number of a model matrix and why is it worthwhile to
always check it?

Exercise 9.26 What is the geometrical interpretation of the dot product of two normalised vec-
tors?

Exercise 9.27 How can we verify if two vectors are orthonormal? What is an orthonormal pro-
jection? What is the inverse of an orthonormal matrix?

Exercise 9.28 What is the inverse of a diagonal matrix?

Exercise 9.29 Characterise the general properties of the three matrices obtained by performing
the singular value decomposition of a given matrix of shape n x m.

Exercise 9.30 How can we obtain the first principal component of a given centred matrix?

Exercise 9.31 How canwe compute the ratios of the variances explained by the consecutive prin-
cipal components?
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Introducing data frames

numpy arrays are an extremely versatile tool for performing data analysis activities and
other numerical computations of various kinds. Even though it is theoretically pos-
sible otherwise, in practice, we only store elements of the same type there: most often
numbers.

pandas’ [63] is amongst over one hundred thousand?* open-source packages and repos-
itories that use numpy to provide additional data wrangling functionality. It was origin-
ally written by Wes McKinney but was heavily inspired by the data. frame? objects in S
and R as well as tables in relational (think: SQL) databases and spreadsheets.

pandas defines a few classes, of which the most important are:

DataFrame — for representing tabular data (matrix-like) with columns of possibly
different types, in particular a mix of numerical and categorical variables,

Series — vector-like objects for storing individual columns,

Index and its derivatives — vector-like (usually) objects for labelling individual rows
and columns in DataFrames and items in Series objects,

SeriesGroupBy and DataFrameGroupBy — which model observations grouped by a
categorical variable or a combination of factors (Chapter 12),

together with many methods for:

all

transforming/aggregating/processing data, also in groups determined by categor-
ical variables or products thereof,

reshaping (e.g., from wide to long format) and joining datasets,

importing/exporting data from/to various sources and formats, e.g., CSV and
HDFs files or relational databases,

handling missing data,

of which we introduce in this part.

Before we delve into the world of pandas, let us point out that it is customary to load
this package under the following alias:

! https://pandas.pydata.org/
% https://libraries.io/pypi/numpy
3 Data frames were first introduced in the 1991 version of the S language [13].
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import pandas as pd

Important Let us repeat: pandas is built on top of numpy and most objects therein can
be processed by numpy functions as well. Many other functions, e.g., in scikit-learn,
accept both DataFrame and ndarray objects, but often convert the former to the latter
internally to enable data processing using fast C/C++/Fortran routines.

What we have learnt so far* still applies. But there is more, hence this part.

10.1 Creating data frames

Data frames can be created, amongst others, using the DataFrame class constructor,
which can be fed, for example, with a numpy matrix:

np.random.seed(123)
pd.DataFrame(
np.random.rand(4, 3),
columns=["a", "b", "c"]
)
## a b c
## 0 0.696469 0.286139 0.226851
## 1 0.551315 0.719469 0.423106
## 2 0.980764 0.684830 0.480932
## 3 0.392118 0.343178 0.729050

Notice that rows and columns are labelled (and how readable that is).

A dictionary of vector-like objects of equal lengths is another common option:

np.random.seed(123)
df = pd.DataFrame(dict(
np.round(np.random.rand(5), 2),
[1, 2.5, np.nan, 4, np.nan],
[True, True, False, False, True],
= ["A", "B", "C", None, "E"],
["spam", "spam", "bacon", "spam", "eggs"],
np.array([
"2021-01-01", "2022-02-02", "2023-03-03", "2024-04-04", "2025-05-05"
], dtype="datetime64[D]"),
g =
["spam"], ["bacon", "spam"], None, ["eggs", "bacon", "spam"], ["ham"]

-+ D QA N T w

(continues on next page)

41f by any chance some overenthusiastic readers decided to start this superb book at this chapter, it is
now the time to go back to the Prefuce and learn everything in the right order. See you later.
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(continued from previous page)

1,

))

df

# a b c d e f g
#0 0.70 1.0 True A spam 2021-01-01 [spam]
#4 1 0.29 2.5 True B spam 2022-02-02 [bacon, spam]
#4 2 0.23 NaN False C bacon 2023-03-03 None
## 3 0.55 4.0 False None spam 2024-04-04 [eggs, bacon, spam]
## 4 0.72 NaN  True E eggs 2025-05-05 [ham]

This illustrates the possibility of having columns of different types.

Exercise 10.1 Check out pandas.DataFrame. from_dict and from_records in the document-
ation®. Use them to create some example data frames.

Further, data frames can be read from files in different formats, for instance, CSV:

body = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_bmx_2020.csv",
comment="#")

body.head() # display first few rows (5 by default)

## BMXWT  BMXHT BMXARML BMXLEG BMXARMC BMXHIP BMXWAIST

# 0 97.1 160.2 34.7 40.8 35.8 126.1 117.9
## 1 91.1 152.7 33.5 33.0 38.5 125.5 103.1
## 2 73.0 161.2 37.4 38.0 31.8 106.2 92.0
## 3 61.7 157.4 38.0 34.7 29.0 101.0 90.5
## 4 55.4 154.6 34.6 34.0 28.3 92.5 73.2

Reading from URLs and local files is also supported; compare Section 13.6.1.

Exercise10.2 Check out other pandas.read_* functions in the pandas documentation. We
will be discussing some of them later.

10.1.1 Data frames are matrix-like

Data frames are modelled through numpy matrices. We can thus already feel quite at
home with them.

For example, a data frame, it is easy to fetch its number of rows and columns:

df.shape
# (5, 7)

or the type of each column:

df.dtypes # returns a Series object; see below
## a floaté4

(continues on next page)

5 https://pandas.pydata.org/docs
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(continued from previous page)

## b floaté4
## c bool
# d object
# e object
## f datetime64[s]
## g object

## dtype: object

Recall that numpy arrays are equipped with the dtype slot.

10.1.2 Series
There is a separate class for storing individual data frame columns: it is called Ser{es.

s = df.loc[:, "a"] # extract the ‘a’ column; alternatively: df.a
s

## 0 0.70
## 1 0.29
#H 2 0.23
## 3 0.55
## 4 0.72

## Name: a, dtype: float64

Data frames with one column are printed out slightly differently. We get the column
name at the top, but do not have the dtype information at the bottom.

s.to_frame() # or: pd.DataFrame(s)
## a
# 0 0.70
## 1 0.29
## 2 0.23
# 3 0.55
# 4 0.72

Indexing will be discussed later.

Important It is crucial to know when we are dealing with a Series and when with a
DataFrame object as each of them defines a slightly different set of methods.

We will now be relying on object-orientated syntax (compare Section 2.2.3) much more
frequently than before.

Example10.3 By calling:

s.mean()
## 0.49800000000000005

we refer to pandas . Series.mean (Which returns a scalar), whereas:
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df.mean(numeric_only=True)
## a 0.498

## b 2.500

## C 0.600

## dtype: floaté64

uses pandas . DataFrame. mean (Which yields a Series).

Look up these two methods in the pandas manual. Note that their argument list is slightly differ-
ent.

Objects of the class Series are vector-like:

s.shape
## (5,)
s.dtype
## dtype('float64')

They are wrappers around numpy arrays.

s.values
## array([0.7 , 0.29, 0.23, 0.55, 0.72])

Most importantly, numpy functions can be called directly on them:

np.mean(s)
## 0.49800000000000005

As a consequence, what we covered in the part of this book that dealt with vector pro-
cessing still holds for data frame columns (but there will be more).

Series can also be named.

S.name
## 'a’

This is convenient, especially when we convert them to a data frame as the name sets
the label of the newly created column:

s.rename("spam").to_frame()
## spam
## 0 0.70
# 1 0.29
## 2 0.23
## 3 0.55
# 4 0.72
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10.1.3 Index
Another important class is called Index®. We use it for storing element or axes labels.

The index (lowercase) slot of a data frame stores an object of the class Index (or one of
its derivatives) that gives the row names:

df.index # row labels
## RangeIndex(start=0, stop=5, step=1)

The above represents a sequence (0, 1, 2, 3, 4).

Furthermore, the column slot gives:

df.columns # column labels

## Index(['a', 'b', 'c', 'd', 'e', 'f', 'g'], dtype='object')
Also, we can label the individual elements in Series objects:

s.index
## RangelIndex(start=0, stop=5, step=1)

The set_index method can be applied to make a data frame column act as a sequence
of row labels:

df2 = df.set_index("e")

df2

## a b c d f g
## e

## spam  0.70 1.0 True A 2021-01-01 [spam]
## spam  0.29 2.5 True B 2022-02-62 [bacon, spam]
## bacon 0.23 NaN False C 2023-03-03 None
## spam  0.55 4.0 False None 2024-04-04 [eggs, bacon, spam]
## eggs  0.72 NaN  True E 2025-05-05 [ham]

This Index object is named:
df2.index.name

#t 'e!

We can also rename the axes on the fly:

df2.rename_axis(index="ROWS", columns="COLS")

## COLS a b c d f g
## ROWS
## spam  0.70 1.0 True A 2021-01-01 [spam]
## spam  0.29 2.5 True B 2022-02-02 [bacon, spam]
## bacon 0.23 NaN False C 2023-03-03 None
(continues on next page)

6 The name Index is confusing not only because it clashes with the index operator (square brackets), but
also the concept of an index in relational databases. In pandas, we can have nonunique row names.
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## spam  0.55 4.0 False None 2024-04-04 [eggs, bacon, spam]
## eggs 0.72 NaN  True E 2025-05-05 [ham]

Having a named index slot is handy when we decide that we want to convert the vector
of row labels back to a standalone column:

df2.rename_axis(index="NEW_COLUMN").reset_index()

## NEW_COLUMN a b Cc d f g
# o spam 0.70 1.0 True A 2021-01-01 [spam]
# 1 spam 0.29 2.5 True B 2022-02-02 [bacon, spam]
#h 2 bacon 0.23 NaN False C 2023-03-03 None
## 3 spam 0.55 4.0 False None 2024-04-04 [eggs, bacon, spam]
#4 4 eggs 0.72 NaN  True E 2025-05-05 [ham]

There is also an option to get rid of the current index and to replace it with the default
label sequence, i.e., 0,1, 2, ...:

df2.reset_index(drop=True)

## a b c d f g
# 0 0.70 1.0 True A 2021-01-01 [spam]
## 1 0.29 2.5 True B 2022-02-62 [bacon, spam]
## 2 0.23 NaN False C 2023-03-03 None
#4 3 0.55 4.0 False None 2024-04-04 [eggs, bacon, spam]
## 4 0.72 NaN True E 2025-05-05 [ham]

Take note of the fact that reset_index, and many other methods that we have used so
far, do not modify the data frame in place.

Important We will soon get used to calling reset_index(drop=True) quite frequently,
sometimes more than once in a single series of commands.

Exercise 10.4 Use the pandas.DataFrame. rename method to change the name of the a column
in df to spam.

Also, a hierarchical index — one that is comprised of more than one level — is possible.
For example, here is a sorted (see Section 10.6.1) version of df with a new index based
on two columns at the same time:

no_n

df.sort_values("e", ascending=False).set_index(["e", "c"])

## a b d f g
## e Cc

## spam True 0.70 1.0 A 2021-01-01 [spam]
## True 0.29 2.5 B 2022-02-02 [bacon, spam]
#H False 0.55 4.0 None 2024-04-04 [eggs, bacon, spam]
## eggs True 0.72 NaN E 2025-05-05 [ham]
## bacon False 0.23 NaN C 2023-03-03 None

For the sake of readability, the consecutive repeated spams were not printed.



234 IV HETEROGENEOUS DATA

Example10.5 Hierarchical indexes might avise after aggregating data in groups. For example:

nhanes = pd.read csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_p_demo_bmx_2020.csv",
comment="#").rename({

"BMXBMI": "bmival",

"RIAGENDR": "gender",

"DMDBORN4": "usborn"
}, axis=1)

In Chapter 12, we will get used to writing:

res = nhanes.groupby(["gender", "usborn"])["bmival"].mean()
res # BMI by gender and US born-ness
## gender usborn

## 1 1 25.734110
## 2 27.405251
#H 2 1 27.120261
## 2 27.579448
## 77 28.725000
## 99 32.600000

## Name: bmival, dtype: floaté4

This returned a Series object with a hievarchical index. Let us fret not, though: reset_index
always comes to our rescue:

res.reset_index()

## gender usborn bmival
## 0 1 1 25.734110
## 1 1 2 27.405251
## 2 2 1 27.120261
## 3 2 2 27.579448
## 4 2 77 28.725000
## 5 2 99 32.600000
I

10.2 Aggregating data frames

Here is another toy data frame:

np.random.seed(123)
df = pd.DataFrame(dict(
u = np.round(np.random.rand(5), 2),
v = np.round(np.random.randn(5), 2),
w = ["spam", "bacon", "spam", "eggs", "sausage"]
), index=["a", "b", "c", "d", "e"])
df

(continues on next page)
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## u v w
# a 0.70 0.32 spam
#4 b 0.29 -0.05 bacon
## c 0.23 -0.20 spam
## d 0.55 1.98 eggs

## e 0.72 -1.62 sausage

All numpy functions can be applied directly on individual columns, i.e., objects of the
type Series, because they are vector-like.

u = df.loc[:, "u"] # extract the ‘u' column (gives a Series; see below)
np.quantile(u, [0, 0.5, 1])
## array([0.23, 0.55, 0.72])

Most numpy functions also work if they are fed with data frames, but we will need to
extract the numeric columns manually.

uv = df.loc[:, ["u", "v"]] # select two columns (a DataFrame; see below)
np.quantile(uv, [0, 0.5, 1], axis=0)

## array([[ 0.23, -1.62],

## [ 6.55, -0.05],

## [ 0.72, 1.98]])

Sometimes the results will automatically be coerced to a Series object with the index
slot set appropriately:

np.mean(uv, axis=0)
## U 0.498

## v 0.086

## dtype: float64

For convenience, many operations are also available as methods for the Series and
DataFrame classes, e.g., mean, median, min, max, quantile, var, std, and skew.

df.mean(numeric_only=True)

## U 0.498

## v 0.086

## dtype: floaté64

df.quantile([0, 0.5, 1], numeric_only=True)
## u v

# 0.0 0.23 -1.62

## 0.5 0.55 -0.05

# 1.0 0.72 1.98

Also note the describe method, which returns a few statistics at the same time.
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df.describe()

## u v
## count 5.000000 5.000000
## mean 0.498000 0.086000
## std 0.227969 1.289643
## min 0.230000 -1.620000
## 25% 0.290000 -0.200000
## 50% 0.550000 -0.050000
## 75% 0.700000 0.320000
## max 0.720000 1.980000

Exercise 10.6 Check out the pandas.DataFrame.agg method that can apply all aggregates
given by a list of functions. Compose a call equivalent to df . describe().

Note (*) Let us stress that above we see the corrected for bias (but still only asymptotic-

ally unbiased) version of standard deviation, given by \/ anl Z?:l (x; — X)2; compare

Section 5.1. In pandas, std methods assume ddof=1 by default, whereas we recall that
numpy uses ddof=0.

np.round([u.std(), np.std(u), np.std(np.array(u)), u.std(ddof=0)], 3)
## array([0.228, 0.204, 0.204, 0.204])

This is an unfortunate inconsistency between the two packages, but please do not
blame the messenger.

10.3 Transforming data frames

By applying the already well-known vectorised mathematical functions from numpy,
we can transform each data cell and return an object of the same type as the input
one.

np.exp(df.loc[:, "u"])

## a 2.013753
## b 1.336427
## C 1.258600
## d 1.733253
## e 2.054433

## Name: u, dtype: floaté64
np.exp(df.loc[:, ["u", "v"]])
frend u v
## a 2.013753 1.377128
## b 1.336427 0.951229
## c 1.258600 0.818731
(continues on next page)
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## d 1.733253 7.242743
## e 2.054433 0.197899

When applying the binary arithmetic, relational, and logical operators on an object of
the class Series and a scalar or a numpy vector, the operations are performed element-
wisely — a style with which we are already familiar.

For instance, here is a standardised version of the u column:

u = df.loc[:, "u"
(u - np.mean(u)) / np.std(u)

## a 0.990672
## b -1.020098
## C -1.314357
# d 0.255025
## e 1.088759

## Name: u, dtype: floaté4

Binary operators act on the elements with corresponding labels. For two objects hav-
ing identical index slots (this is the most common scenario), this is the same as ele-
mentwise vectorisation. For instance:

df.loc[:, "u"] > df.loc[:, "v"] # here: elementwise comparison

## a True
## b True
## C True
## d False
## e True

## dtype: bool

For transforming many numerical columns at once, it is worthwhile either to convert
them to a numeric matrix explicitly and then use the basic numpy functions:

uv = np.array(df.loc[:, ["u", "v"]])
uv2 = (uv-np.mean(uv, axis=0))/np.std(uv, axis=0)

uv2

## array([[ 0.99067229, 0.20286225],
## [-1.0200982 , -0.11790285],
## [-1.3143573 , -0.24794275],
## [ 0.25502455, 1.64197052],
## [ 1.08875866, -1.47898717]])

or to use the pandas.DataFrame.apply method which invokes a given function on each
column separately:

uv2 = df.loc[:, ["u", "v"]].apply(lambda x: (x-np.mean(x))/np.std(x))
uv2
## u v

(continues on next page)
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#4 a 0.990672 0.202862
## b -1.020098 -0.117903
## c -1.314357 -0.247943
## d 0.255025 1.641971
## e 1.088759 -1.478987

Anticipating what we cover in the next section, in both cases, we can write df.loc[:,
["u", "v"]] = uv2to replace the old content. Also, new columns can be added based
on the transformed versions of the existing ones. For instance:

df.loc[:, "uv_squared"] = (df.loc[:, "u"] * df.loc[:, "v"])**2
df

#H u v w uv_squared

#t a 0.70 0.32 spam 0.050176

## b 0.29 -0.05 bacon 0.000210

## c 0.23 -0.20 spam 0.002116

## d 0.55 1.98 eggs 1.185921

## e 0.72 -1.62 sausage 1.360489

Example 10.7 (*) Binary operations on objects with different index slots are vectorised la-
belwisely:

x = pd.Series([1, 10, 1000, 10000, 100000], index=["a", "b", "a", "a", "c"])
X

## a 1
## b 10
## a 1000
## a 10000

## C 100000

## dtype: 1nt64

y = pd.Series([1, 2, 3, 4, 5], index=["b", "b", "a", "d", "c"])
y
## b
## b
## a
## d
## C
## dtype: int64

KL AN W N R

And now:

X *y

## a 3.0
## a 3000.0
## a 30000.0
## b 10.0
## b 20.0

(continues on next page)
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# C 500000.0
## d NaN
## dtype: float64

Here, each element in the first Series named a was multiplied by each (there was only one)
element labelled a in the second Series. For d, there were no matches, hence the result’s being
marked as missing; compare Chapter 15. Thus, this behaves like a full outer join-type operation;
see Section 10.6.3.

The above is different from elementwise vectorisation in numpy:

np.array(x) * np.array(y)
## array([ 1, 20, 3000, 40000, 500000])

Labelwise vectorisation can be useful in certain contexts. However, we need to be aware of this
(yet another) incompatibility between the two packages.

10.4 Indexing series objects

Recall that each DataFrame and Series objectis equipped with a slot called index, which
is an object of the class Index (or subclass thereof), giving the row and element labels,
respectively. It turns out that we may apply the index operator, [...], to subset these
objects not only through the indexers known from the numpy part (e.g., numerical ones,
i.e., by position) but also ones that pinpoint the items via their labels. That is quite a
lot of index-ing.

Let us study different forms thereof in very detail. For illustration, we will be playing
with the two following objects of class Series:

np.random.seed(123)
b = pd.Series(np.round(np.random.rand(10), 2))
b.index = np.random.permutation(np.arange(10))

b

#H 2 0.70
## 1 0.29
#H 8 0.23
## 7 0.55
## 9 0.72
## 4 0.42
## 5 0.98
## 6 0.68
## 3 0.48
## 0 0.39

## dtype: float64
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and:

c = b.copy()
c.index = list("abcdefghij")
d

## a 0.70

## b 0.29

## C 0.23

## d 0.55

## e 0.72
##f 0.42

## g 0.98

## h 0.68

## 1 0.48

# 0.39

## dtype: float64

They consist of the same values, in the same order, but have different labels (index
slots). In particular, b’s labels are integers that do not match the physical element pos-
itions (where o would denote the first element, etc.).

Important For numpy vectors, we had four different indexing schemes: via a scalar
(extracts an element at a given position), a slice, an integer vector, and a logical vector.
Series objects are additionally labelled. Therefore, they can also be accessed through
the contents of the index slot.

10.4.1 Donotuse[...]directly
Applying the index operator, [ .. .], directly on Series is generally a bad idea:

b[0] # do not use it

## 0.39
b[ [0] ] # do not use it
## 0 0.39

## dtype: float64

both do not select the first item, but the item labelled 0.
However:

b[:1] # do not use it
# 2 0.7
## dtype: float64

and
c[0] # there is no label "0'... (do not use it)
#t 0.7

(continues on next page)
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##

## <string>:1: FutureWarning: Series.__getitem _ treating keys as positions is deprec

both? fall back to position-based indexing.

Confusing? Well, with some self-discipline, the solution is easy:

Important We should never apply [...] directly on Series nor DataFrame objects.

To avoid ambiguity, we refer to the loc[ . ..] and iloc[ ... ] accessors for the label- and
position-based filtering, respectively.

10.4.2 loc[...]

Series.loc[...] implements label-based indexing.

b.loc[0]
## 0.39

This returned the element labelled 6. On the other hand, c.loc[0] will raise a KeyError
because c consists of string labels only. But in this case, we can write:

c.loc["j"]
## 0.39

Next, we can use lists of labels to select a subset.

b.loc[ [0, 1, 0] ]

## 0 0.39
## 1 0.29
## 0 0.39

(continues on next page)

7In pandas 1.5.2, b[ : 1] still used position-based indexing, i.e., it was equivalent to b.i1loc[:1].
This behaviour is going to change in a backward-incompatible manner. This means that in future versions
of the package, the same code will generate the result corresponding to b. loc[ : 1]. Hence, we will get a
different number of items. Compare:

b.1loc[:1]

##H 2 0.7
## dtype: float64

b.loc[:1]
#H 2 0.70
## 1 0.29

## dtype: float64

Just never apply [ . . . ] directly on Series nor DataFrame objects and you will not have to worry about
remembering all the exceptions.
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## dtype: floaté4

c.loc[ ['3", "b", "3"1 ]
## 7 0.39
# b 0.29
## 3 0.39

## dtype: float64

The result is always of the type Series.

(continued from previous page)

Slicing behaves differently as the range is inclusive (sic!®) at both sides:

b.loc[1:7]
## 1 0.29
## 8 0.23
## 7 0.55
## dtype: float64
b.loc[0:4:-1]
## 0 0.39
## 3 0.48
## 6 0.68
## 5 0.98
## 4 0.42

## dtype: floaté4
C,.l_OC["d”:”g”]

##d  0.55
#e  0.72
## f 0.42
# g  0.98

## dtype: float64

The above calls return all elements between the two indicated labels.

Note Be careful that if there are repeated labels, then we will be returning all (sic!®)

the matching items:

d = pd.Sertes([1, 2, 3, 4], index=["a",
d.loc["a"]

## a 1

## a 3

## dtype: inté64

”b”, uau’ ucu])

The result is not a scalar but a Series object.

8 Inconsistency; but makes sense when selecting column ranges.
9 Inconsistency; but makes sense for hierarchical indexes with repeated.
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10.4.3 1iloc[...]

Here are some examples of position-based indexing with the iloc[...] accessor. It
is worth stressing that, fortunately, its behaviour is consistent with its numpy coun-
terpart, i.e., the ordinary square brackets applied on objects of the class ndarray. For
example:

b.iloc[0] # the same: c.iloc[0]
##t 0.7

returns the first element.

b.1loc[1:7] # the same: b.iloc[1:7]

## 1 0.29
## 8 0.23
## 7 0.55
## 9 0.72
## 4 0.42
## 5 0.98

## dtype: float64

returns the second, third, ..., seventh element (not including b.1loc[7], i.e., the eight
one).

10.4.4 Logical indexing

Indexing using a logical vector-like object is also available. For this purpose, we will
usually be using loc[ .. .] with either a logical Series object of identical index slot as
the subsetted object, or a Boolean numpy vector.

b.loc[(b > 0.4) & (b < 0.6)]

#H 7 0.55
## 4 0.42
## 3 0.48

## dtype: floaté64

For iloc[...], the indexer must be unlabelled, e.g., be an ordinary numpy vector.

N

10.5 Indexing data frames
10.5.1 loc[...]Jandiloc[...]

For data frames, 1loc and loc can be applied too. Now, however, they require two ar-
guments: a row and a column selector. For example:
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np.random.seed(123)
df = pd.DataFrame(dict(

u = np.round(np.random.rand(5), 2),
v = np.round(np.random.randn(5), 2),
w = ["spam", "bacon", "spam", "eggs", "sausage"],
x = [True, False, True, False, True]
))
And now:

df.loc[ df.loc[:, "u"] > 0.5, "u":"w" ]

## u 1% %
## 0 0.70 0.32 spam
# 3 0.55 1.98 eggs

# 4 0.72 -1.62 sausage

It selected the rows where the values in the u column are greater than 0.5 and then
returns all columns between u and w (inclusive!).

Furthermore:

df.iloc[:3, :].loc[:, ["u", "w"]]
## u w
# 0 0.70  spam
#4 1 0.29 bacon
## 2 0.23  spam

It fetched the first three rows (by position; iloc is necessary) and then selects two in-
dicated columns.

Compare this to:

df.loc[:3, ["u", "w"]] # df[:3, ["u", "w"]] does not even work; please don't
## u w
# 0 0.70  spam
## 1 0.29 bacon
# 2 0.23 spam
# 3 0.55 eggs

which has four (!) rows.

Important Getting a scrambled numeric index that does not match the physical pos-
itions is quite easy, for instance, in the context of data frame sorting (Section 10.6.1):

df2 = df.sort_values("v")

df2

frend u v w X
# 4 0.72 -1.62 sausage True
# 2 0.23 -0.20 spam True

(continues on next page)



10 INTRODUCING DATA FRAMES 245

(continued from previous page)

#4 1 0.29 -0.05 bacon False
# 0 0.70 0.32 spam True
## 3 0.55 1.98 eggs False

Note how different are the following results

df2.loc[:3, :] # up to label 3, inclusive

## u v % X
## 4 0.72 -1.62 sausage True
# 2 0.23 -0.20 spam True
# 1 0.29 -0.05 bacon False
## 0 0.70 0.32 spam True
## 3 0.55 1.98 eggs False
df2.1loc[:3, :] # always: first three
## u v w X
## 4 0.72 -1.62 sausage True
# 2 0.23 -0.20 spam True

#H 1 0.29 -0.05 bacon False

Important We can frequently write df .u as a shorter version of df.loc[:, "u"]. This
improves the readability in contexts such as:

df.loc[(df.u >= 0.5) & (df.u <= 0.7), ["u", "w"]]
## u w
# 0 0.70 spam
## 3 0.55 eggs

This accessor is, sadly, not universal. We can verify this by considering a data frame
with a column named, e.g., mean: it clashes with the built-in method. As a workaround,
we should either use loc[ . ..] or rename the column, for instance, like Mean or MEAN.

Exercise 10.8 Use pandas.DataFrame.drop to select all columns except vin df.

Exercise 10.9 Use pandas. Series. isin (amongst others) to select all rows with spamand ba-
conon the df's menu.

Exercise10.10 Inthe tips'® dataset, select data on male customers where the total bills were in
the [10, 20] interval. Also, select Saturday and Sunday records where the tips were greater than
$5.

10.5.2 Adding rows and columns

loc[...] can also be used to add new columns to an existing data frame:

19 https://github.com/gagolews/teaching-data/raw/master/other/tips.csv
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df.loc[:, "y"] = df.loc[:, "u"]**2 # or df.loc[:, "y"] = df.u**2
df

## u 1% % X y
# O 0.70 0.32 spam True 0.4900
#4 1 0.29 -0.05 bacon False 0.0841
# 2 0.23 -0.20 spam True 0.0529
#4 3 0.55 1.98 eggs False 0.3025
# 4 0.72 -1.62 sausage True 0.5184
Important Notation like “df .new_column = ...” does not work. As we said, only loc

and iloc are universal. For other accessors, this is not necessarily the case.

Exercise 10.11 Use pandas.DataFrame. insert toadd a new column not necessarily at the end

of df.

Exercise 10.12 Use pandas.DataFrame.append to add a few more rows to df.

10.5.3 Modifying items
In the current version of pandas, modifying particular elements gives a warning:

df.loc[:, "u"].iloc[0] = 7 # the same as df.u.iloc[0] = 7

## SettingWithCopyWarning:

## A value is trying to be set on a copy of a slice from a DataFrame
df.loc[:, "u"].iloc[0] # testing

## 7.0

In order to remedy this, it is best to create a copy of a column, modify it, and then to
replace the old contents with the new ones.

u = df.loc[:, "u"].copy()

u.iloc[0] = 42 # or a whole for loop to process them all, or whatever
df.loc[:, "u"] =u

df.loc[:, "u"].iloc[0] # testing

## 42.0

10.5.4 Pseudorandom sampling and splitting

As a simple application of what we have covered so far, let us consider the ways to
sample several rows from an existing data frame.

We can use the pandas.DataFrame.sample method in the most basic scenarios, such as:
« select five rows, without replacement,
- select 20% rows, with replacement,

. rearrange all the rows.
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body = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_adult_female_bmx_2020.csv",
comment="#")

body.sample(5, random_state=123)

##

BMXWT

## 4214
## 3361
## 3759
## 3733
## 1121

58.4
73.7
61.4
120.4
123.5

156.2
161.0
164.6
158.8
157.5

35.2
36.5
37.5
33.5
55

# 5 rows without replacement

34.7
34.5
40.4
34.6
29.0

27.2
29.0
26.9
40.5
50.5

99.5
107.6
93.5
147.2
143.0

BMXHT BMXARML BMXLEG BMXARMC BMXHIP BMXWAIST

77.5
98.2
84.4
129.3
136.4

Notice the random_state argument which controls the seed of the pseudorandom num-
ber generator so that we get reproducible results. Alternatively, we could call numpy.

random. seed.

Exercise 10.13 Show how the three aforementioned scenarios can be implemented manually
using iloc[...] and numpy. random. permutation or numpy. random. choice.

In machinelearning practice, we are used to training and evaluating machine learning
models on different (mutually disjoint) subsets of the whole data frame.

For instance, Section 12.3.3 mentions that we may be interested in performing the so-
called training/test split (partitioning), where 80% (or 60% or 70%) of the randomly se-
lected rows would constitute the first new data frame and the remaining 20% (or 40%
or 30%, respectively) would go to the second one.

Given a data frame like:

df = body.head(10) # this is just an example

df
##
##
##
##
##
##
##
##
##
##
##

OV O N AN WNR

BMXWT

078
91.
73.
61.
55.
62.
66.
75.
0 c
91.

AN OV NDAND R R

BMXHT  BMXARML

160.
152.
161.
157.
154.
144.
166.
154.
159.
174.

2

L b bhh vy R NN

34.
33.
37.
38.
34.
32.
37.
35.
38.
36.

I N PN N~ I NIV

BMXLEG BMXARMC

40.
33.
38.
34.
34.
34.
37.
37.
40.
45.

8

VLN NS

B
38.
31.
2%);
28.
29.
32.
32.
35.
35.

N NND WD UL ©

BMXHIP  BMXWAIST

126.
125.
106.
101.

92.
106.

96.
107.
102.
121.

1

WO NWwNL N UL

117.
103.
92.
90.
73.

Ne)
X

100.

W h NN ON UKL ORLO

one way to perform the aforementioned split is to generate a random permutation of
the set of row indexes:

np.random.seed(123)

idx =
idx

## array([4, 0, 7, 5, 8 3, 1, 6, 9, 2])

# reproducibility matters
np.random.permutation(df.shape[0])
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And then to pick the first 80% of them to construct the data frame number one:

k = int(df.shape[0]%0.8)
df.iloc[idx[:k], :]
## BMXWT  BMXHT BMXARML BMXLEG BMXARMC BMXHIP BMXWAIST

## 4  55.4 154.6 34.6 34.0 28.3 92.5 73.2
## 0 97.1 160.2 34.7 40.8 35.8 126.1 117.9
## 7 75.9 154.5 35.4 37.6 32.7 107.7 98.7
#H 5  62.0 144.7 32.5 34.2 29.8 106.7 84.8
## 8 77.2 159.2 38.5 40.5 35.7 102.0 97.5
## 3 61.7 157.4 38.0 34.7 29.0 101.0 90.5
## 1 91.1 152.7 33.5 33.0 38.5 125.5 103.1
## 6 66.2 166.5 S 37.6 32.0 96.3 95.7

and the remaining ones to generate the second dataset:

df.iloc[idx[k:], :]

## BMXWT BMXHT BMXARML BMXLEG BMXARMC BMXHIP BMXWAIST
## 9 91.6 174.5 36.1 45.9 35.2 121.3 100. 3
## 2 73.0 161.2 37.4 38.0 31.8 106.2 92.0

Exercise10.14 In the wine_quality all™ dataset, leave out all but the white wines. Parti-
tion the resulting data frame randomly into three data frames: wines_train (60% of the rows),
wines_validate (another 20% of the rows), and wines_test (the remaining 20%).

Exercise10.15 Compose a function kfold which takes a data frame df and an integer k > 1
as arguments. Return a list of data frames resulting in stemming from randomly partitioning df
into k disjoint chunks of equal (or almost equal if that is not possible) sizes.

10.5.5 Hierarchical indexes (*)

Consider the following DataFrame object with a hierarchical index:

np.random.seed(123)

df = pd.DataFrame(dict(
year = np.repeat([2023, 2024, 2025], 4),
quarter = np.tile(["Q1", "Q2", "Q3", "Q4"], 3),
data = np.round(np.random.rand(12), 2)

)).set_index(["year", "quarter"])

df

## data
## year quarter

## 2023 Q1 0.70
## Q2 0.29
## 03 0.23
## 04 0.55
## 2024 Q1 0.72
## Q2 0.42

(continues on next page)

" https://github.com/gagolews/teaching- data/raw/master/other/wine_quality_all.csv
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(continued from previous page)

## 03 0.98
## 04 0.68
## 2025 01 0.48
## 02 0.39
## 03 0.34
## 04 0.73

The index has both levels named, but this is purely for aesthetic reasons.

Indexing using loc[ . ..] by default relates to the first level of the hierarchy:

df.loc[2023, :]

## data
## quarter

## Q1 0.70
## Q2 0.29
## Q3 0.23
## Q4 0.55

Note that we selected all rows corresponding to a given label and dropped (!) this level
of the hierarchy.

Another example:

df.loc[ [2023, 2025], : ]

## data
## year quarter

## 2023 Q1 0.70
## Q2 0.29
## 03 0.23
## 04 0.55
## 2025 Q1 0.48
## Q2 0.39
## 03 0.34
## 04 0.73

To access deeper levels, we can use tuples as indexers:

df.loc[ (2023, "Q1"), : ]

## data 0.7

## Name: (2023, Q1), dtype: float64
df.loc[ [(2023, "Q1"), (2024, "Q3")], : ]

## data
## year quarter

## 2023 Q1 0.70
## 2024 Q3 0.98

In certain scenarios, though, it will probably be much easier to subset a hierarchical in-
dex by using reset_index and set_index creatively (together with loc[ . ..] and pandas.
Series.isin, etc.).
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Let us stress again that the “:* operator can only be used directly within the square
brackets. Nonetheless, we can always use the slice constructor to create a slice in any
context:

df.loc[ (slice(None), ["Q1", "Q3"1), : 1 # :, ["01", "Q3"]
## data
## year quarter

## 2023 Q1 0.70
## 03 0.23
## 2024 Q1 0.72
## Q3 0.98
## 2025 Q1 0.48
#H Q3 0.34

df.loc[ (slice(None, None, -1), slice("Q2", "Q3")), : ] # ::-1, "Q2":"Q3"
## data
## year quarter

## 2025 03 0.34
## 02 0.39
## 2024 03 0.98
## 02 0.42
## 2023 (03 0.23
## 02 0.29

10.6 Further operations on data frames

One of the many roles of data frames is to represent tables of values for their nice
presentation, e.g., in reports from data analysis or research papers. Here are some
functions that can aid in their formatting.

10.6.1 Sorting

Let us consider another example dataset. Here are the yearly (for 2018) average air
quality data™ in the Australian state of Victoria.

alr = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/air_quality 2018 means.csv",
comment="#")

atr = (
air.
loc[atir.param_id.isin(["BPM2.5", "NO2"]), :].
reset_index(drop=True)

We chose two air quality parameters using pandas.Series.isin, which determines

12 https://discover.data.vic.gov.au/dataset/epa-air-watch-all- sites-air-quality- hourly- averages-yearly


https://discover.data.vic.gov.au/dataset/epa-air-watch-all-sites-air-quality-hourly-averages-yearly
https://discover.data.vic.gov.au/dataset/epa-air-watch-all-sites-air-quality-hourly-averages-yearly
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whether each element in a Series is enlisted in a given sequence. We could also have
used set_index and loc[...] for that.

Notice that the above code spans many lines. We needed to enclose it in round brackets
to avoid a syntax error. Alternatively, we could have used backslashes at the end of each
line.

Anyway, here is the data frame:

air

#H sp_name param_id value
## 0 Alphington BPM2.5 7.848758
#4 1 Alphington NO2  9.558120
#H 2 Altona North NO2 9.467912
## 3 Churchill BPM2.5 6.391230
#4 4 Dandenong NO2  9.800705
## 5 Footscray  BPM2.5 7.640948
## 6 Footscray NO2 10.274531
## 7  Geelong South  BPM2.5 6.502762
## 8 Geelong South NO2  5.681722
## 9 Melbourne CBD BPM2.5 8.072998
## 10 Moe BPM2.5 6.427079
## 11 Morwell East BPM2.5 6.784596
## 12 Morwell South BPM2.5 6.512849
## 13 Morwell South NO2  5.124430
## 14 Traralgon BPM2.5 8.024735
#H 15 Traralgon NO2 5.776333

sort_values is a convenient means to order the rows with respect to one criterion, be
it numeric or categorical.

air.sort_values("value", ascending=False)

## sp_name param_id value
## 6 Footscray NO2 10.274531
## 4 Dandenong NO2  9.800705
## 1 Alphington NO2 9.558120
## 2 Altona North NO2  9.467912
## 9  Melbourne CBD BPM2.5 8.072998
## 14 Traralgon BPM2.5  8.024735
## 0 Alphington  BPM2.5  7.848758
## 5 Footscray  BPM2.5 7.640948
## 11 Morwell East BPM2.5  6.784596
## 12 Morwell South BPM2.5  6.512849
## 7  Geelong South  BPM2.5 6.502762
## 10 Moe BPM2.5  6.427079
## 3 Churchill BPM2.5 6.391230
## 15 Traralgon NO2  5.776333
## 8 Geelong South NO2  5.681722
## 13 Morwell South NO2  5.124430

It is also possible to take into account more sorting criteria:
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air.sort_values(["param_id", "value"], ascending=[True, False])

## sp_name param_id value
## 9  Melbourne CBD BPM2.5 8.072998
## 14 Traralgon  BPM2.5  8.024735
## 0 Alphington BPM2.5 7.848758
## 5 Footscray BPM2.5 7.640948
## 11  Morwell East BPM2.5  6.784596
## 12 Morwell South BPM2.5 6.512849
## 7  Geelong South  BPM2.5 6.502762
## 10 Moe BPM2.5 6.427079
## 3 Churchill BPM2.5 6.391230
## 6 Footscray NO2 10.274531
## 4 Dandenong NO2  9.800705
#H 1 Alphington NO2  9.558120
#t 2 Altona North NO2  9.467912
## 15 Traralgon NO2  5.776333
## 8  Geelong South NO2  5.681722
## 13 Morwell South NO2  5.124430

Here, in each group of identical parameters, we get a decreasing order with respect to
the value.

Exercise 10.16 Compare the ordering with respect to param_id and value vs value and then
param_id.

Note (*) Lamentably, DataFrame.sort_values by default does not use a stable al-
gorithm. If a data frame is sorted with respect to one criterion, and then we reorder
it with respect to another one, tied observations are not guaranteed to be listed in the
original order:

(pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/air_quality_2018_means.csv",
comment="#")

.sort_values("sp_name")
.sort_values("param_1id")
.set_index("param_1id")
.loc[["BPM2.5", "NO2"], :]
.reset_1index())

## param_id sp_name value
## 0 BPM2.5 Melbourne CBD  8.072998
# 1 BPM2.5 Moe 6.427079
## 2 BPM2.5 Footscray 7.640948
## 3 BPM2.5  Morwell East 6.784596
#4 4 BPM2.5 Churchill 6.391230
## 5 BPM2.5 Morwell South 6.512849
#4 6 BPM2.5 Traralgon  8.024735
#t 7 BPM2.5 Alphington 7.848758
# 8 BPM2.5 Geelong South  6.502762

(continues on next page)
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(continued from previous page)

#4 9 NO2 Morwell South  5.1244360
## 10 NO2 Traralgon 5.776333
## 11 NO2 Geelong South  5.681722
##H 12 NO2  Altona North 9.467912
## 13 NO2 Alphington 9.558120
## 14 NO2 Dandenong  9.800705
## 15 NO2 Footscray 10.274531

We lost the ordering based on station names in the two subgroups. To switch to a
mergesort-like method (timsort), we should pass kind="stable".

(pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/air_quality_2018_means.csv",
comment="#")

.sort_values("sp_name")
.sort_values("param_id", kind="stable") # !/
.set_index("param_id")

.loc[["BPM2.5", "NO2"], :]

.reset_1index())

## param_id sp_name value
## 0 BPM2.5 Alphington  7.848758
#4 1 BPM2.5 Churchill 6.391230
## 2 BPM2.5 Footscray 7.640948
## 3 BPM2.5 Geelong South  6.502762
## 4 BPM2.5 Melbourne CBD  8.072998
## 5 BPM2.5 Moe 6.427079
## 6 BPM2.5  Morwell East 6.784596
#ht 7 BPM2.5 Morwell South  6.512849
## 8 BPM2.5 Traralgon 8.024735
## 9 NO2 Alphington  9.558126
## 10 NO2  Altona North  9.467912
## 11 NO2 Dandenong  9.800705
## 12 NO2 Footscray 10.274531
## 13 NO2 Geelong South  5.681722
## 14 NO2 Morwell South 5.124430
## 15 NO2 Traralgon 5.776333

Exercise10.17 (*) Perform identical reorderings but using only loc[...], iloc[...], and
numpy.argsort

10.6.2 Stacking and unstacking (long/tall and wide forms)

Let us discuss some further ways to transform data frames that benefit from, make
sense thanks to, or are possible because they can have columns of various types.

The above air dataset is in the long (tall) format. All measurements are stacked one
after/below another. Such a form is quite convenient for data storage, especially where
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there are only a few recorded values but many possible combinations of levels (sparse
data).

The long format might not be optimal in all data processing activities, though; com-
pare [97]. In the part of this book on matrix processing, it was much more natural for
us to have a single observation in each row (e.g., data for each measurement station).

We can unstack the air data frame quite easily:

alr_wide = air.set_index(["sp_name", "param_1d"]).unstack().loc[:, "value"]
air_wide

##4 param_id BPM2.5 NO2
## sp_name

## Alphington 7.848758  9.558120
## Altona North NaN  9.467912
## Churchill 6.391230 NaN
## Dandenong NaN  9.800705

## Morwell South
## Traralgon

.512849  5.124430
.024735  5.776333

## Footscray 7.640948 10.274531
## Geelong South 6.502762 5.681722
## Melbourne CBD 8.072998 NaN
## Moe 6.427079 NaN
## Morwell East  6.784596 NaN
6
8

This is the so-called wide format.

A missing value is denoted by NaN (not-a-number); see Section 15.1 for more details.
Interestingly, we obtained a hierarchical index in the columns (sic!) slot. Hence, to drop
the last level of the hierarchy, we had to add the loc[...] part. Also notice that the
index and columns slots are named.

The other way around, we can use the stack method:

alr_wide.T.rename_axis(index="location", columns="param").\
stack().rename("value").reset_index()

#H location param value
## 0 BPM2.5 Alphington 7.848758
#4 1 BPM2.5 Churchill 6.391230
##H 2 BPM2.5 Footscray 7.640948
## 3 BPM2.5 Geelong South 6.502762
#4 4 BPM2.5 Melbourne CBD  8.072998
## 5 BPM2.5 Moe 6.427079
## 6 BPM2.5  Morwell East 6.784596
## 7 BPM2.5 Morwell South 6.512849
## 8 BPM2.5 Traralgon 8.024735
## 9 NO2 Alphington 9.558120
## 10 NO2  Altona North  9.467912
#H 11 NO2 Dandenong  9.800705
## 12 NO2 Footscray 10.274531
##4 13 NO2 Geelong South  5.681722

(continues on next page)
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(continued from previous page)

#4 14 NO2 Morwell South  5.1244360
## 15 NO2 Traralgon 5.776333

We used the data frame transpose (T) to get a location-major order (less boring an out-
come in this context). Missing values are gone now. We do not need them anymore.
Nevertheless, passing dropna=False would help us identify the combinations of loca-
tion and param for which the readings are not provided.

10.6.3 Joining (merging)

In database design, it is common to normalise the datasets. We do this to avoid the
duplication of information and pathologies stemming from them (e.g., [19]).

Example 10.18 The above air quality parameters are separately described in another data

frame:

param = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/air_quality 2018 param.csv",
comment="#")

param = param.rename(dict(param_std_unit_of measure="unit"), axis=1)

param

##  param_id param_name  unit param_short_name
## 0 API Airborne particle index none Visibility Reduction
## 1 BPM2.5 BAM Particles < 2.5 micron ug/m3 PM2.5
#w 2 co Carbon Monoxide ppm co
## 3 HPM10 Hivol PM10 ug/m3 NaN
## 4 NO2 Nitrogen Dioxide ppb NO2
# 5 03 Ozone ppb 03
#4 6 PM16 TEOM Particles <10micron ug/m3 PM16
#H 7 PPM2.5 Partisol PM2.5 wug/m3 NaN
# 8 502 Sulfur Dioxide ppb 502

We could have stoved them alongside the air data frame, but that would be a waste of space. Also,
if we wanted to modify some datum (note, e.g., the annoying double space in param_name for
BPM2. 5), we would have to update all the relevant records.

Instead, we can always match the records in both data frames that have the same param_1ids, and
join (merge) these datasets only when we really need this.

Let us discuss the possible join operations by studying the two following toy datasets:

A = pd.DataFrame({
"x": ["a@", "al", "a2", "a3"],
"y": ["bO", "b1", "b2", "b3"]
i)
A
## X y
(continues on next page)
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(continued from previous page)
## 0 a0 bo
## 1 a1l b1
# 2 a2 b2
## 3 a3 b3

and:

B = pd.DataFrame({
"x": ["a@", "a2", "a2", "a4"],
"z": ["cO", "c1", "c2", "c3"]

b

B

## X z

# 0 a0 cO

## 1 a2 cl1

# 2 a2 c2

# 3 a4 c3

They both have one column somewhat in common, x.

The inner (natural) join returns the records that have a match in both datasets:

pd.merge(A, B, on="x")
## X y z
#4 0 ad bO cO
# 1 a2 b2 ci1
##t 2 a2 b2 c2

The left join of A with B guarantees to return all the records from A, even those which
are not matched by anything in B.

pd.merge(A, B, how="left", on="x")
## X y z
## 0 a® bo co
## 1 al b1 NaN
##t 2 a2 b2 cl
## 3 a2 b2 c2
## 4 a3 b3 NaN

The right join of A with B is the same as the left join of B with A:

pd.merge(A, B, how="right", on="x")
## X y  z
#4 0 ad bO coO
# 1 a2 b2 c1
## 2 a2 b2 c2
## 3 a4 NaN c3

Finally, the full outer join is the set-theoretic union of the left and the right join:
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pd.merge(A, B, how="outer", on="x")
## X y z
# 0 a0 bo cO
# 1 al b1  NaN
# 2 a2 b2 c1
# 3 a2 b2 c2
## 4 a3 b3  NaN
# 5 a4 NaN c3

Exercise10.19 Join air_quality 2018 value® with air_quality 2018 point, and then
with air_quality 2018 param®.

Exercise10.20 Normalise air_quality_2018' so that you get the three separate data frames
mentioned in the previous exercise (value, point, and param).

Exercise 10.21 (*) In the National Health and Nutrition Examination Survey, each parti-
cipant is uniquely identified by their sequence number (SEQN). This token is mentioned in numer-
ous datasets, including:

o demographic variables",
« body measures®,

o audiometry",

o and many more*°.

Join a few chosen datasets that you find interesting.

10.6.4 Set-theoretic operations and removing duplicates

Here are two not at all disjoint sets of imaginary persons:

A = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/some_birth_datesl.csv",
comment="#")

A

#H Name  BirthDate
## 0 Paitoon Ornwimol 26.06.1958
## 1 Antdnia Lata 260.05.1935
# 2 Bertoldo Mallozzi 17.08.1972
## 3 Nedeljko Bukv 19.12.1921
## 4 Micha Kitchen 17.09.1930

(continues on next page)

B https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_value.csv.gz
1 https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_point.csv

'S https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_param.csv
16 https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018.csv.gz

17 hteps://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_DEMO.htm

18 https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm

9 https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/AUX_J.htm

20 https://wwwn.cdc.gov/Nchs/Nhanes/continuousnhanes/default.aspx?BeginYear=2017


https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_value.csv.gz
https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_point.csv
https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_param.csv
https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018.csv.gz
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_DEMO.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/AUX_J.htm
https://wwwn.cdc.gov/Nchs/Nhanes/continuousnhanes/default.aspx?BeginYear=2017
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(continued from previous page)

# 5 Mefodiy Shachar 01.10.1914
# 6 Paul Meckler 29.09.1968
# 7 Katarzyna Lasko 20.10.1971
## 8 Age Trelstad 07.03.1935

## 9 Duchanee Panomyaong 19.06.1952

and:

B = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/some_birth_dates2.csv",
comment="#")

B

## Name  BirthDate
# o Hushang Naigamwala 25.08.1991
## 1 Zhen Wei 16.11.1975
##t 2 Micha Kitchen 17.09.1930
## 3 Jodoc Alwin 16.11.1969
#4 4 Igor Mazat 14.05.2004
## 5 Katarzyna Lasko 26.10.1971
## 6  Duchanee Panomyaong 19.06.1952
#7 Mefodiy Shachar 01.10.1914
## 8 Paul Meckler 29.09.1968
## 9 Noe Tae-Woong 11.07.1970
## 10 Age Trelstad 07.03.1935

Inboth datasets, there is a single categorical column whose elements uniquely identify
each record (i.e., Name). In the language of relational databases, we would call it the
primary key. In such a case, implementing the set-theoretic operations is relatively
easy, as we can refer to the pandas.Series.isin method.

First, A N B (intersection), includes only the rows that are both in A and in B:

A.loc[A.Name.isin(B.Name), :]

## Name  BirthDate
##t 4 Micha Kitchen 17.09.1930
#4 5 Mefodiy Shachar 01.10.1914
# 6 Paul Meckler 29.09.1968
#7 Katarzyna Lasko 20.10.1971
## 8 Age Trelstad 07.03.1935
## 9 Duchanee Panomyaong 19.06.1952

Second, A \ B (difference), gives all the rows that are in A but not in B:

A.loc[~A.Name.isin(B.Name), :]

## Name  BirthDate
## 0  Paitoon Ornwimol 26.06.1958
## 1 Anténia Lata 20.05.1935

## 2 Bertoldo Mallozzi 17.08.1972
## 3 Nedeljko Bukv 19.12.1921
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Third, A U B (union), returns the rows that exist in A or are in B:

pd.concat((A, B.loc[~B.Name.isin(A.Name), :]))
## Name  BirthDate

## 0 Paitoon Ornwimol 26.06.1958
## 1 Anténia Lata 20.05.1935
#H 2 Bertoldo Mallozzi 17.608.1972
## 3 Nedeljko Bukv 19.12.1921
## 4 Micha Kitchen 17.09.19360
# 5 Mefodiy Shachar 01.10.1914
# 6 Paul Meckler 29.09.1968
## 7 Katarzyna Lasko 20.10.1971
## 8 Age Trelstad 07.03.1935
## 9 Duchanee Panomyaong 19.06.1952
## 0  Hushang Naigamwala 25.08.1991
# 1 Zhen Wei 16.11.1975
## 3 Jodoc Alwin 16.11.1969
#4 4 Igor Mazat 14.05.2004
## 9 Noe Tae-Woong 11.07.1970

There are no duplicate rows in any of the above outputs.
Exercise10.22 Determine (AUB) \ (ANB) = (A\ B) U (B\ A) (symmetricdifference).

Exercise 10.23 (*) Determine the union, intersection, and difference of the wine_sample1*
and wine_sample2** datasets, where there is no column uniquely identifying the observa-
tions. Hint: consider using pandas.concat and pandas.DataFrame.duplicated or pandas.
DataFrame.drop_duplicates.

10.6.5 ..and (too) many more

Looking at the list of methods for the DataFrame and Series classes in the pan-
das package’s documentation®, we can see that they are abundant. Together with
the object-orientated syntax, we will often find ourselves appreciating the high
readability of even quite complex operation chains such as data.drop_duplicates().
groupby(["year", "month"]).mean().reset_index();see Chapter 12.

Nevertheless, the methods are probably too plentiful to our taste. Their developers
were overgenerous. They wanted to include a list of all the possible verbs related to
data analysis, even if they can be trivially expressed by a composition of 2-3 simpler
operations from numpy or scipy instead.

As strong advocates of minimalism, we would rather save ourselves from being over-
loaded with too much new information. This is why our focus in this book is on devel-
oping the most transferable** skills. Our approach is also slightly more hygienic. We do

2L https://github.com/gagolews/teaching-data/raw/master/other/wine_samplel.csv

22 https://github.com/gagolews/teaching-data/raw/master/other/wine_sample2.csv

23 https://pandas.pydata.org/pandas-docs/stable/reference/index.html

24 This is also in line with the observation that Python with pandas is not the only environment where
we can work with data frames;e.g., base R and Julia with DataFrame. j1 support that too.


https://github.com/gagolews/teaching-data/raw/master/other/wine_sample1.csv
https://github.com/gagolews/teaching-data/raw/master/other/wine_sample2.csv
https://pandas.pydata.org/pandas-docs/stable/reference/index.html
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not want the reader to develop a hopeless mindset, the habit of looking everything up
on the internet when faced with even the simplest kinds of problems. We have brains
for a reason.

10.7 Exercises

Exercise 10.24 How are data frames different from matrices?

Exercise10.25 What are the use cases of the name slot in Series and Index objects?
Exercise 10.26 What is the purpose of set_index and reset_index?

Exercise 10.27 Why learning numpy is crucial when someone wants to become a proficient user
of pandas?

Exercise 10.28 What is the difference between iloc/. .. ] and loc[...]?

Exercise 10.29 Why applying the index operator [ . . . ] directly on a Series or DataFrame ob-
ject is discouraged?

Exercise 10.30 What is the difference between index, Index, and columns?

Exercise 10.31 How can we compute the arithmetic mean and median of all the numeric
columns in a data frame, using a single line of code?

Exercise 10.32 What is a training/test split and how to perform it using numpy and pandas?

Exercise 10.33 What is the difference between stacking and unstacking? Which one yields a
wide (as opposed to long) format?

Exercise 10.34 Name different data frame join (merge) operations and explain how they work.
Exercise 10.35 How does sorting with respect to more than one criterion work?

Exercise 10.36 Name the basic set-theoretic operations on data frames.



11

Handling categorical data

So far, we have been mostly dealing with quantitative (numeric) data, on which we
were able to apply various mathematical operations, such as computing the arithmetic
mean or taking the square thereof. Naturally, not every transformation must always
make sense in every context (e.g., multiplying temperatures — what does it mean when
we say thatitis twice as hot today as compared to yesterday?), but still, the possibilities
were plenty.

Qualitative data (also known as categorical data, factors, or enumerated types) such
as eye colour, blood type, or a flag whether a patient is ill, on the other hand, take a
small number of unique values. They support an extremely limited set of admissible
operations. Namely, we can only determine whether two entities are equal or not.

In datasets involving many features (Chapter 12), categorical variables are often used
for observation grouping (e.g., so that we can compute the best and average time for
marathoners in each age category or draw box plots for finish times of men and wo-
men separately). Also, they may serve as target variables in statistical classification
tasks (e.g., so that we can determine if an email is “spam” or “not spam”).

11.1 Representing and generating categorical data

Common ways to represent a categorical variable with [ distinct levels {L{, L,, ..., L;}
is by storing it as:

- avector of strings,
. avector of integers between o (inclusive) and / (exclusive’).
These two are easily interchangeable.

For | = 2 (binary data), another convenient representation is by means of logical vec-
tors. This can be extended to a so-called one-hot encoded representation using a lo-
gical vector of length I.

! This coincides with the possible indexes into an array of length I. In some other languages, e.g., R, we
would use integers between 1 and ! (inclusive). Nevertheless, a dataset creator is free to encode the labels
however they want. For example, DADBORN4 in NHANES has: 1 (born in 50 US states or Washington, DC),
2 (others), 77 (refused to answer), and 99 (do not know).
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Let us consider the data on the original whereabouts of the top 16 marathoners (the
37th PZU native Marathon dataset):

marathon = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/37_pzu_warsaw_marathon_simplified.csv",
comment="#")

cntrs = np.array(marathon.country, dtype="str")

cntrs16 = cntrs[:16]

cntrsi6e
## array(['KE', 'KE', 'KE', 'ET', 'KE', 'KE', 'ET', 'MA', 'PL', 'PL', 'IL',
## 'PL', 'KE', 'KE', 'PL', 'PL'], dtype='<U2')

These are two-letter ISO 3166 country codes encoded as strings (notice the dtype="str"
argument).

Calling pandas.unique determines the set of distinct categories:

cat_cntrs16 = pd.unique(cntrsi6)
cat_cntrsi6
## array(['KE', 'ET', 'MA', 'PL', 'IL'], dtype='<U2')

Hence, cntrsi16 is a categorical vector of length n = 16 (len(cntrs16)) with data as-
suming one of I = 5 different levels (len(cat_cntrs16)).

Note We could have also used numpy.unique (Section 5.5.3) but it would sort the dis-
tinct values lexicographically. In other words, they would not be listed in the order of
appearance.

11.1.1  Encoding and decoding factors

To encode a label vector using a set of consecutive nonnegative integers, we can call
pandas.factorize:

codes_cntrs16, cat_cntrs16 = pd.factorize(cntrsi6) # sort=False
cat_cntrsi6

## array(['KE', 'ET', 'MA', 'PL', 'IL'], dtype='<U2')
codes_cntrsi16

## array([0, 0, 0, 1, 0, 0, 1, 2, 3, 3, 4, 3, 0, 0, 3, 3])

The code sequence 0, 0, 0, 1, ... corresponds to the first, first, first, second, ... level in
cat_cntrsi6, i.e., Kenya, Kenya, Kenya, Ethiopia, ....

Important When we represent categorical data using numeric codes, it is possible to
introduce non-occurring levels. Such information can be useful, e.g., we could expli-
citly indicate that there were no runners from Australia in the top 16.

Even though we can represent categorical variables using a set of integers, it does
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not mean that they become instances of a quantitative type. Arithmetic operations
thereon do not really make sense.

The values between 0 (inclusive) and 5 (exclusive) can be used to index a given array of
length I = 5. As a consequence, to decode our factor, we can call:

cat_cntrsi6[codes_cntrs16]
## array(['KE', 'KE', 'KE', 'ET', 'KE', 'KE', 'ET', 'MA', 'PL', 'PL', 'IL',
## 'PL', 'KE', 'KE', 'PL', 'PL'], dtype='<U2"')

We can use any other set of labels now:

np.array(["Kenya", "Ethiopia", "Morocco", "Poland", "Israel"])[codes_cntrsi6]
## array([ 'Kenya', 'Kenya', 'Kenya', 'Ethiopia', 'Kenya', 'Kenya',

## '"Ethiopia’, 'Morocco', 'Poland', 'Poland', 'Israel', 'Poland’,

## 'Kenya', 'Kenya', 'Poland', 'Poland'], dtype='<U8')

It is an instance of the relabelling of a categorical variable.

Exercise11.1 (**) Here is a way of recoding a variable, i.e., changing the order of labels and
permuting the numeric codes:

new_codes = np.array([3, 0, 2, 4, 1]) # an example permutation of labels
new_cat_cntrsi6 = cat_cntrsié6[new_codes]

new_cat_cntrsié

## array(['PL', 'KE', 'MA', 'IL', 'ET'], dtype='<U2')

Then we make use of the fact that numpy . argsort applied on a vector representing a permutation,
determines its very inverse:

new_codes_cntrs16 = np.argsort(new_codes)[codes cntrsi16]
new_codes_cntrsi16
## array([1, 1, 1, 4, 1, 1, 4, 2, 0, 0, 3, 0, 1, 1, 0, 0])

Verification:

np.all(cntrs16 == new_cat_cntrsi6[new_codes_cntrsi16])
## True

Exercise11.2 (**) Determine the set of unique values in cntrs16 in the order of appearance
(and not sorted lexicographically), but without using pandas . unique nor pandas. factorize.
Then, encode cntrs16using this level set.

Hint: check out the return_index argument to numpy.unique and numpy.searchsorted.

Furthermore, pandas includes® a special dtype for storing categorical data. Namely, we
can write:

% https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html


https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html
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cntrsi16_series = pd.Series(cntrsi6, dtype="category")

or, equivalently:

cntrs16_series = pd.Series(cntrs16).astype("category")

These two yield a Series object displayed as if it was represented using string labels:

cntrsi16_series.head() # preview

## 0 KE
## 1 KE
#H 2 KE
## 3 ET
## 4 KE

## dtype: category
## Categories (5, object): ['ET', 'IL', 'KE', 'MA', 'PL']

Instead, it is encoded using the aforementioned numeric representation:

np.array(cntrs16_series.cat.codes)

## array([2, 2, 2, 0, 2, 2, 0, 3, 4, 4, 1, 4, 2, 2, 4, 4], dtype=int8)
cntrs16_series.cat.categories

## Index(['ET', 'IL', 'KE', 'MA', 'PL'], dtype='object')

This time the labels are sorted lexicographically.

Most often we will be storing categorical data in data frames as ordinary strings, un-
less a relabelling on the fly is required:

(marathon.iloc[:16, :].country.astype("category")
.cat.reorder_categories(
["KE", "TL", "MA", "ET", "PL"]
)
.cat.rename_categories(
["Kenya", "Israel", "Morocco", "Ethiopia", "Poland"]
).astype("str")

).head()

## 0 Kenya
## 1 Kenya
## 2 Kenya
## 3 Ethiopia
## 4 Kenya

## Name: country, dtype: object

11.1.2 Binary data aslogical and probability vectors

Binary data is a special case of the qualitative setting, where we only have [ = 2 cat-
egories. For example:

. 0, e.g., healthy/fail/off/non-spam/absent/..),
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. 1, e.g., ill/success/on/spam/present/...).

Usually, the interesting or noteworthy category is denoted by 1.

Important When converting logical to numeric, False becomes 0 and True becomes
1. Conversely, 0 is converted to False and anything else (including -0.326) to True.

Hence, instead of working with vectors of 0s and 1s, we might equivalently be playing
with logical arrays. For example:

np.array([True, False, True, True, False]).astype(int)
## array([1, 0, 1, 1, 0])

The other way around:

np.array([-2, -0.326, -0.000001, 0.0, 0.1, 1, 7643]).astype(bool)
## array([ True, True, True, False, True, True, True])

or, equivalently:

np.array([-2, -0.326, -0.000001, 0.0, 0.1, 1, 7643]) != @
## array([ True, True, True, False, True, True, Truej)

Important It is not rare to work with vectors of probabilities, where the i-th element
therein, say p[1], denotes the likelihood of an observation’s belonging to the class 1.
Consequently, the probability of being a member of the class 0 is 1-p[1]. In the case
where we would rather work with crisp classes, we can simply apply the conversion
(p>=0.5) to get a logical vector.

Exercise 11.3 Given a numeric vector x, create a vector of the same length as x whose i-th ele-
ment is equal to "yes" if x[1] is in the unit interval and to "no" otherwise. Use numpy . where,
which can act as a vectorised version of the 1 f statement.

11.1.3 One-hot encoding (¥)

Letx be a vector of n integer labels in {0, ..., I — 1}. Its one-hot-encoded version is a 0/1
(or, equivalently, logical) matrix R of shape nn x I such thatr; ; = 1ifand only if x; = .

For example, ifx = (0,1,2,1) and [ = 4, then:

SO O
= O = O
O = OO
o oo

One can easily verify that each row consists of one and only one 1 (the number of 1s
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per one row is 1). Such a representation is adequate when solving a multiclass classi-
fication problem by means of ] binary classifiers. For example, if spam, bacon, and hot
dogs are on the menu, then spam is encoded as (1,0, 0), i.e., yeah-spam, nah-bacon,
and nah-hot dog. We can build three binary classifiers, each narrowly specialising in
sniffing one particular type of food.

Example 11.4 Write a function to one-hot encode a given categorical vector represented using
character strings.

Example11.5 Compose a function to decode a one-hot-encoded matrix.

Example11.6 (*) We can also work with matrices like P € [0, 171! where Pij denotes the
probability of the i-th object’s belonging to the j-th class. Given an example matrix of this kind,
verify that in each row the probabilities sum to 1 (up to a small numeric error). Then, decode such
a matrix by choosing the greatest element in each row.

11.1.4 Binning numeric data (revisited)

Numerical data can be converted to categorical via binning (quantisation). Even
though this causes information loss, it may open some new possibilities. In fact, we
needed binning to draw all the histograms in Chapter 4. Also, reporting observation
counts in each bin instead of raw data enables us to include them in printed reports
(in the form of tables).

Note We are strong proponents of openness and transparency. Thus, we always
encourage all entities (governments, universities, non-profits, corporations, etc.) to
share raw, unabridged versions of their datasets under the terms of some open data
license. This is to enable public scrutiny and to get the most out of the possibilities
they can bring for benefit of the community.

Of course, sometimes the sharing of unprocessed information can violate the privacy
of the subjects. In such a case, it might be worthwhile to communicate them in a
binned form.

Note Rounding is a kind of binning. In particular, numpy.round rounds to the nearest
tenths, hundredths, ..., as well as tens, hundreds, .... It is useful if data are naturally
imprecise, and we do not want to give the impression that it is otherwise. Nonetheless,
rounding can easily introduce tied observations, which are problematic on their own;
see Section 5.5.3.

Consider the 16 best marathon finish times (in minutes):

mins = np.array(marathon.mins)
mins16 = mins[:16]
mins16
(continues on next page)
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(continued from previous page)

## array([129.32, 130.75, 130.97, 134.17, 134.68, 135.97, 139.88, 143.2 ,
## 145.22, 145.92, 146.83, 147.8 , 149.65, 149.88, 152.65, 152.88])

numpy . searchsorted can determine the interval where each value in mins falls.

bins = [130, 140, 150]

codes_mins16 = np.searchsorted(bins, mins16)

codes_mins16

## array([0O, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3])

By default, the intervals are of the form (g, b] (notincludinga, including b). The code o
corresponds to values less than the first bin edge, whereas the code 3 represent items
greater than or equal to the last boundary.

pandas. cut gives us another interface to the same binning method. It returns a vector-
like object with dtype="category", with very readable labels generated automatically
(and ordered; see Section 11.4.7):

cut_mins16 = pd.Series(pd.cut(mins16, [-np.inf, 130, 140, 150, np.inf]))
cut_mins16.iloc[ [0, 1, 6, 7, 13, 14, 15] ].astype('str") # preview

## 0 (-inf, 130.0]
## 1 (130.0, 140.0]
## 6 (130.0, 140.0]
## 7 (146.0, 1560.0]

## 13 (146.0, 150.0]

## 14 (150.0, inf]

## 15 (1560.0, inf]

## dtype: object

cut_mins16.cat.categories.astype("str")

## Index(['(-inf, 130.0]', '(130.0, 140.0]', '(140.0, 150.0]',
## '(150.0, inf]'],

## dtype="object')

Example11.7 (*) We can create a set of the corresponding categories manually, for example, as
follows:

bins2 = np.r_[-np.inf, bins, np.inf]
np.array(
[f"({bins2[1]}, {bins2[i+1]}]" for 1 in range(len(bins2)-1)]

)
## array(['(-inf, 130.0]', '(130.0, 1460.0]', '(146.0, 150.0]',
## "(150.0, inf]'], dtype='<U14")

Exercise 11.8 (*) Check out the numpy. histogram_bin_edges function which tries to determ-
ine some informative interval boundaries based on a few simple heuristics. Recall that numpy.
linspace and numpy. geomspace can be used for generating equidistant bin edges on linear and
logarithmic scales, respectively.
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11.1.5 Generating pseudorandom labels

numpy . random.choice creates a pseudorandom sample with categories picked with
given probabilities:

np.random.seed(123)
np.random.choice(
a=["spam", "bacon", "eggs", "tempeh"],

p=[ 0.7, 0.1, 0.15, 0.05],

replace=True,

size=16
)
## array([ 'spam', 'spam', 'spam', 'spam', 'bacon', 'spam', 'tempeh', 'spam',
## 'spam', 'spam', 'spam', 'bacon', 'spam', 'spam', 'spam', 'bacon'],
## dtype="<U6")

If we generate a sufficiently long vector, we will expect "spam" to occur approximately
70% of the time, and "tempeh" to be drawn in 5% of the cases, etc.

11.2 Frequency distributions
11.2.1 Counting

pandas.Series.value_counts creates a frequency table in the form of a Series object
equipped with a readable index (element labels):

pd.Series(cntrsi16).value_counts() # sort=True, ascending=False
## KE 7

## PL 5

## ET 2

## MA 1

## IL 1

## Name: count, dtype: int64

By default, data are ordered with respect to the counts, decreasingly.

If we already have an array of integer codes between 0 and I — 1, numpy.bincount will
return the number of times each code appears therein.

counts_cntrs16 = np.bincount(codes_cntrsi6)
counts_cntrsi16
## array([7, 2, 1, 5, 1])

A vector of counts can easily be turned into a vector of proportions (fractions) or per-
centages (if we multiply them by 100):
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counts_cntrs16 / np.sum(counts_cntrsi6) * 100
## array([43.75, 12.5 , 6.25, 31.25, 6.25])

Almost 31.25% of the top runners were from Poland (this marathon is held in Warsaw
afterall..).

Exercise11.9 Using numpy.argsort, sort counts_cntrsi6increasingly together with the cor-
responding items in cat_cntrs16.

11.2.2 'Two-way contingency tables: Factor combinations

Some datasets may bear many categorical columns, each having possibly different
levels. Let us now consider all the runners in the marathon dataset:

marathon.loc[:, "age"] = marathon.category.str.slice(1) # first two chars
marathon.loc[marathon.age >= "60", "age"] = "60+" # too few runners aged 70+
marathon = marathon.loc[:, ["sex", "age", "country"]]

marathon.head()

##  sex age country

#HO M 20 KE
## 1 M 20 KE
# 2 M 20 KE
# 3 M 20 ET
## 4 M 30 KE

The three columns are: sex, age (in 10-year brackets), and country. We can, of course,
analyse the data distribution in each column individually, but this we leave as an exer-
cise. Instead, we note that some interesting patterns might also arise when we study
the combinations of levels of different variables.

Here are the levels of the sex and age variables:

pd.unique(marathon.sex)

## array(['M', 'F'], dtype=object)
pd.unique(marathon.age)

#4 array(['20', '30', '50', '40', '60+'], dtype=object)

We have 2 -5 = 10 combinations thereof. We can use pandas.DataFrame.value_counts
to determine the number of observations at each two-dimensional level:

counts2 = marathon.loc[:, ["sex", "age"]].value_counts()
counts2

## sex age

#t M 30 2200

## 40 1708
## 20 879
## 50 541
## F 30 449
## 40 262

(continues on next page)
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(continued from previous page)

## 20 240
## M 60+ 170
## F 50 43
## 60+ 19

## Name: count, dtype: int64

These can be converted to a two-way contingency table, which is a matrix that gives the
number of occurrences of each pair of values from the two factors:

V = counts2.unstack(fill_value=0)
Vv

## age 20 30 40 50 60+
## sex

## F 240 449 262 43 19
##* M 879 2200 1708 541 170

For example, there were 19 women aged at least 60 amongst the marathoners. Jolly
good.

The marginal (one-dimensional) frequency distributions can be recreated by comput-
ing the rowwise and columnwise sums of Vv:

np.sum(V, axis=1)

## sex
## F 1013
#H M 5498

## dtype: 1nt64
np.sum(V, axis=0)

## age

## 20 1119
## 30 2649
## 40 19760
## 50 584
## 60+ 189

## dtype: inté64

11.2.3 Combinations of even more factors

pandas.DataFrame.value_counts can also be used with a combination of more than two
categorical variables:

counts3 = (marathon
.loc[
marathon.country.isin(["PL", "UA", "SK"1),
["country", "sex", "age"]
1
.value_counts()
.rename("count")
(continues on next page)



.reset_1index()

)

counts3

## country sex age
## 0 PL M 30
## 1 PL M 40
##t 2 PL M 20
## 3 PL M 50
## 4 PL F 30
# 5 PL F 40
## 6 PL F 20
## 7 PL M 60+
## 8 PL F 50
## 9 PL F 60+
## 10 VA M 20
## 11 VA M 30
## 12 VA M 50
## 13 UA F 30
## 14 VA M 40
## 15 SK F 50
## 16 SK M 40
## 17 SK M 60+

count
2081
1593
824
475
422
248
222
134

N
(e}

M kR R NN W o
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(continued from previous page)

The display is in the long format (compare Section 10.6.2) because we cannot nicely
print a three-dimensional array. Yet, we can always partially unstack the dataset, for
aesthetic reasons:

counts3.set_index(["country",

##
##
##
##
#H
##
##
#H
##

age

country sex

PL [5
M

SK F
M

UA F
M

count
20

222.0
824.0
NaN
NaN
NaN
8.0

30

422.0
2081.0
NaN
NaN
2.0
8.0

40 50
248.0  26.0
1593.0 475.0
NaN 1.0
1.0 NaN
NaN NaN
2.0 3.0

'sex", "age"]).unstack()

60+

8.0
134.0
NaN
1.0
NaN
NaN

Let us again appreciate how versatile is the concept of data frames. Not only can we
represent data to be investigated (one row per observation, variables possibly of mixed
types) but also we can store the results of such analyses (neatly formatted tables).
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11.3 Visualising factors

Methods for visualising categorical data are by no means fascinating (unless we use
them as grouping variables in more complex datasets, but this is a topic that we cover
in Chapter 12).

11.3.1 Barplots

Example data:

x = (marathon.age.astype('"category")
.cat.reorder_categories(["20", "30", "40", "50", "60+"])
.value_counts(sort=False)

)

X

## age

## 20 1119
## 30 2649
## 40 1970
## 50 584
## 60+ 189

## Name: count, dtype: int64

Bar plots are self-explanatory and hence will do the trick most of the time; see Fig-
ure 11.1.

ind = np.arange(len(x)) # 0, 1, 2, 3, 4

plt.bar(ind, height=x, color="1lightgray", edgecolor="black", alpha=0.8)
plt.xticks(ind, x.index)

plt.show()

The ind vector gives the x-coordinates of the bars; here: consecutive integers. By calling
matplotlib.pyplot.xticks we assign them readable labels.

Exercise 11.10 Draw a bar plot for the five most prevalent foreign (i.e., excluding Polish) mara-
thoners’ original whereabouts. Add a bar that represents “all other” countries. Depict percentages
instead of counts, so that the total bar height is 100%. Assign a different colour to each bar.

Abar plot is a versatile tool for visualising the counts also in the two-variable case; see
Figure 11.2. Let us now use a pleasant wrapper around matplotlib.pyplot.bar offered
by the statistical data visualisation package called seaborn® [95] (written by Michael
Waskom).

3 https://seaborn.pydata.org/


https://seaborn.pydata.org/
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Figure 11.1. Runners’ age categories.

v = (marathon.loc[:, ["sex", "age"]].value_counts(sort=False)
.rename("count").reset_1index()

)

sns.barplot(x="age", hue="sex", y="count", data=v)

plt.show()

sex
2000 N
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1500
o
c
3
8
1000
) l
. I
20 30 40 50 60+
age

Figure 11.2. Number of runners by age category and sex.
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Note Itiscustomary tocallasingle function from seaborn and then perform a series of
additional calls to matplotlib to tweak the display details. We should remember that
the former uses the latter to achieve its goals, not vice versa. seaborn is particularly
convenient for plotting grouped data.

Exercise11.11 (*) Draw a similar chart using matplotlib.pyplot.bar.

Exercise11.12 (**) Create a stacked bar plot similar to the one in Figure 11.3, where we have
horizontal bars for data that have been normalised so that, for each sex, their sum is 100%.

I 20 B 30 [ 40 B 5o [ 6o+

0% 20% 40% 60% 80% 100%

Figure 11.3. An example stacked bar plot: age distribution for different sexes amongst
all the runners.

11.3.2 Political marketing and statistics

Even such a simple chart as bar plot can be manipulated. In the second round of the
presidential elections that were held in Poland in 2020, Andrzej Duda won against
Rafal Trzaskowski. Figure 11.4 gives the official results that might have been presented
by the pro-government media outlets:

plt.bar([1, 2], height=[51.03, 48.97], width=0.25,
color="11ightgray", edgecolor="black", alpha=0.8)

plt.xticks([1, 2], ["Duda", "Trzaskowski"])

plt.ylabel("%")

plt.xlim(0, 3)

plt.ylim(48.9, 51.1)

plt.show()
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51.00
50.75
50.50
50.25

X 50.00
49.75
49.50

49.25

49.00 —
Duda Trzaskowski

Figure 11.4. Such a great victory! Wait... Just look at the y-axis tick marks...

Another media conglomerate could have reported it like in Figure 11.5:

plt.bar([1, 2], height=[51.03, 48.97], width=0.25,
color="11ghtgray", edgecolor="black", alpha=0.8)

plt.xticks([1, 2], ["Duda", "Trzaskowski"])

plt.ylabel("%")

plt.xlim(0, 3)

plt.ylim(0, 250)

plt.yticks([0, 100])

plt.show()

Important We must always read the axis tick marks. Also, when drawing bar plots,
we must never trick the reader for this is unethical; compare Rule#9. More issues in
statistical deception are explored, e.g., in [94].

11.3.3 Pie...don’t even trip

We are definitely not going to discuss the infamous pie charts because their use in data
analysis has been widely criticised for a long time (it is difficult to judge the ratios of
areas of their slices). Do not draw them. Ever. Good morning.
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%

100

Duda Trzaskowski

Figure 11.5. It was a draw! So close!

11.3.4 Pareto charts (%)

As a general (empirical) rule, it is usually the case that most instances of something’s
happening (usually 70-90%) are due to only a few causes (10-30%). This is known as
the Pareto principle (with 80% vs 20% being an often cited rule of thumb).

Example11.13 Chapter 6 modelled the US cities’ population dataset using the Pareto distribu-
tion (the very same Pareto, but a different, yet related mathematical object). We discovered that
only c. 14% of the settlements (those with 10 000 or more inhabitants) are home to as much as
84% of the population. Hence, we may say that this data domain follows the Pareto rule.

Here is a dataset* fabricated by the Clinical Excellence Commission in New South
Wales, Australia, listing the most frequent causes of medication errors:

cat_med = np.array([
"Unauthorised drug", "Wrong IV rate", "Wrong patient", "Dose missed",
"Underdose", "Wrong calculation","Wrong route", "Wrong drug",
"Wrong time", "Technique error", "Duplicated drugs", "Overdose"
D
counts_med = np.array([1, 4, 53, 92, 7, 16, 27, 76, 83, 3, 9, 59])
np.sum(counts_med) # total number of medication errors
## 430

Let us display the dataset ordered with respect to the counts, decreasingly:

med = pd.Series(counts_med, index=cat_med).sort_values(ascending=False)
med
(continues on next page)

4 https://www.cec.health.nsw.gov.au/CEC-Academy/quality- improvement- tools/pareto-charts
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(continued from previous page)

## Dose missed 92
## Wrong time 83
## Wrong drug 76
## Overdose 59
## Wrong patient 53
## Wrong route 27

## Wrong calculation 16
## Duplicated drugs
## Underdose

## Wrong IV rate

## Technique error
## Unauthorised drug
## dtype: int64

~ W A N Lo

Pareto charts may aid in visualising the datasets where the Pareto principle is likely to
hold, at least approximately. They include bar plots with some extras:

« bars are listed in decreasing order,
« the cumulative percentage curve is added.

The plotting of the Pareto chart is a little tricky because it involves using two different
Y axes (as usual, fine-tuning the figure and studying the manual of the matplotlib
package is left as an exercise.)

X = np.arange(len(med)) # 0, 1, 2,
p = 100.0*med/np.sum(med) # percentages

fig, ax1 = plt.subplots()

ax1.set_xticks(x-0.5, med.index, rotation=60)
ax1.set_ylabel("%")

ax1l.bar(x, height=p, color="1lightgray", edgecolor="black")

ax2 = axl.twinx() # creates a new coordinate system with a shared x-axis
ax2.plot(x, np.cumsum(p), "ro-")

ax2.grid(visible=False)

ax2.set_ylabel("cumulative %")

fig.tight_layout()
plt.show()

Figure 11.6 shows that the first five causes (less than 40%) correspond to c. 85% of the
medication errors. More precisely, the cumulative probabilities are:

med.cumsum()/np.sum(med)

## Dose missed 0.213953
## Wrong time 0.406977
## Wrong drug 0.583721
## Overdose 0.720930

(continues on next page)
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Figure 11.6. An example Pareto chart: the most frequent causes for medication errors.

(continued from previous page)
## Wrong patient 0.844186
## Wrong route 0.906977
## Wrong calculation 0.944186
## Duplicated drugs 0.965116
## Underdose 0.981395
## Wrong IV rate 0.990698
## Technique error 0.997674
## Unauthorised drug 1.000000
## dtype: float64

Note that there is an explicit assumption here that a single error is only due to a single
cause. Also, we presume that each medication error has a similar degree of severity.

Policymakers and quality controllers often rely on similar simplifications. They most
probably are going to be addressing only the top causes. If we ever wondered why some
processes (mal)function the way they do, there is a hint above. Inventing something
more effective yet so simple at the same time requires much more effort.

It would be also nice to report the number of cases where no mistakes are made and
the cases where errors are insignificant. Healthcare workers are doing a wonderful job
for our communities, especially in the public system. Why add to their stress?

11.3.5 Heatmaps

Two-way contingency tables can be depicted by means of a heat map, where each count
influences the corresponding cell’s colour intensity; see Figure 11.7.
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V = marathon.loc[:, ["sex", "age"]].value_counts().unstack(fill_value=0)
sns.heatmap(V, annot=True, fmt="d", cmap=plt.colormaps.get_cmap("copper"))
plt.show()
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Figure 11.7. A heat map for the marathoners’ sex and age category.

As an exercise, draw a similar heat map using matplotlib.pyplot.imshow.

11.4 Aggregating and comparing factors
11.4.1 Mode
The only operation on categorical data on which we can rely is counting.

counts = marathon.country.value_counts()
counts.head()

## country

## PL 6033
## GB 71
## DE 38
## FR 33
## SE 30

## Name: count, dtype: int64

Therefore, as far as qualitative data aggregation is concerned, what we are left with is
the mode, i.e., the most frequently occurring value.
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counts.index[0] # counts are sorted
#o'PL'!

Important A mode might be ambiguous.

It turns out that amongst the fastest 22 runners (a nicely round number), there is a tie
between Kenya and Poland — both meet our definition of a mode:

counts = marathon.country.iloc[:22].value_counts()
counts

## country

## KE
## PL
## ET
## IL
## MA
## MD
## Name: count, dtype: int64

N R W W NN

To avoid any bias, it is always best to report all the potential mode candidates:

counts.loc[counts == counts.max()].index
## Index(['KE', 'PL'], dtype='object', name='country')

If one value is required, though, we can pick one at random (calling numpy.random.
choice).

11.4.2 Binary data aslogical vectors

Recall that we are used to representing binary data as logical vectors or, equivalently,
vectors of os and 1s.

Perhaps the most useful arithmetic operation on logical vectors is the sum. For ex-
ample:

np.sum(marathon.country == "PL")
## 6033

This gave the number of elements that are equal to "PL" because the sum of os and 1s
is equal to the number of 15 in the sequence. Note that (country == "PL") is a logical
vector that represents a binary categorical variable with levels: not-Poland (False) and
Poland (True).

If we divide the above result by the length of the vector, we will get the proportion:

np.mean(marathon.country == "PL")
## 0.9265857779142989
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Roughly 93% of the runners were from Poland. As this is greater than 0.5, "PL” is def-
initely the mode.

Exercise 11.14 Whatis the meaning of numpy . all, numpy. any, numpy . min, numpy . max, numpy.
cumsum, and numpy . cumprod applied on logical vectors?

Note (**) Having the 0/1 (or zero/non-zero) vs False/True correspondence permits
us to perform some logical operations using integer arithmetic. In mathematics, o
is the annihilator of multiplication and the neutral element of addition, whereas 1 is
the neutral element of multiplication. In particular, assuming that p and q are logical
values and a and b are numeric ones, we have, what follows:

. p+q != 0 means that at least one value is True and p+q == 0 if and only if both are
False;

« more generally, p+q == 2 if both elements are True, p+q == 1if only one is True (we
call it exclusive-or, XOR), and p+q == 0 if both are False;

« p*q != @ means that both values are True and p*q == 0 holds whenever atleast one
is False;

« 1-p corresponds to the negation of p (changes1to o and oto 1);

. p*a + (1-p)*bisequaltoaif pis True and equal to b otherwise.

11.4.3 Pearson chi-squared test (*)

The Kolmogorov—Smirnov test described in Section 6.2.3 verifies whether a given
sample differs significantly from a hypothesised continuous® distribution, i.e., it works
for numeric data.

For binned/categorical data, we can use a classical and easy-to-understand test de-
veloped by Karl Pearson in 1900. It is supposed to judge whether the differences
between the observed proportions fiy, ..., p; and the theoretical ones py, ..., p; are sig-
nificantly large or not:

Hy: p;=p; foralli=1,..,1  (nullhypothesis)
Hy: p;#p; forsomei=1,...,1 (alternative hypothesis)

Having such a test is beneficial, e.g., when the data we have at hand are based on small
surveys that are supposed to serve as estimates of what might be happeningin alarger
population.

Going back to our political example from Section 11.3.2, it turns out that one of the
pre-election polls indicated that ¢ = 516 out of n = 1017 people would vote for the
first candidate. We have p; = 50.74% (Duda) and p, = 49.26% (Trzaskowski). If we
would like to test whether the observed proportions are significantly different from

5 (*) There exists a discrete version of the Kolmogorov—-Smirnov test, but it is defined in a different way
than in Section 6.2.3; compare [3, 16].
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each other, we could test them against the theoretical distribution p; = 50% and
p> = 50%, which states that there is a tie between the competitors (up to a sampling
error).

A natural test statistic is based on the relative squared differences:

1 ﬁ 2
=n) e

i=1

c, n = 516, 1017

p_observed = np.array([c, n-c]) / n

p_expected = np.array([0.5, 0.5])

T =n * np.sum( (p_observed-p_expected)**2 / p_expected )
T

## 0.2212389380530986

Similarly to the continuous case in Section 6.2.3, we reject the null hypothesis, if:
T>K.

The critical value K is computed based on the fact that, if the null hypothesis is true, T
follows the x? (chi-squared, hence the name of the test) distribution with [ — 1 degrees
of freedom, see scipy.stats.chi2.

We thus need to query the theoretical quantile function to determine the test statistic
that is not exceeded in 99.9% of the trials (under the null hypothesis):

alpha = 0.001 # significance level
scipy.stats.chi2.ppf(1-alpha, len(p_observed)-1)
## 10.827566170662733

As T < K (because 0.22 < 10.83), we cannot deem the two proportions significantly
different. In other words, this poll did not indicate (at the significance level 0.1%) any
of the candidates as a clear winner.

Exercise 11.15 Assumingn = 1017, determine the smallest c, i.e., the number of respondents
claiming they would vote for Duda, that leads to the rejection of the null hypothesis.

11.4.4 Two-sample Pearson chi-squared test (*)

Let us consider the data depicted in Figure 11.3 and test whether the runners’ age dis-
tributions differ significantly between men and women.

V = marathon.loc[:, ["sex", "age"]].value_counts().unstack(fill_value=0)
cl, c2 = np.array(V) # first row, second row

cl # women

## array([240, 449, 262, 43, 19])

c2 # men

## array([ 879, 2200, 1708, 541, 170])
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There are | = 5 age categories. First, denote the total number of observations in both
U

groups with n’ and n”.
nl = cl.sum()

n2 = c2.sum()

nl, n2

#4# (1013, 5498)

The observed proportions in the first group (females), denoted as pj, ..., p, are, re-
spectively:

pl = c1/n1
pl
## array([0.23692004, 0.44323791, 0.25863771, 0.04244817, 0.01875617])

N/

Here are the proportions in the second group (males), p7, ..., p; :

p2 = c2/n2
p2
## array([0.15987632, 0.40014551, 0.31065842, 0.09839942, 0.03092033])

We would like to verify whether the corresponding proportions are equal (up to some
sampling error):

Hy: p;=p] foralli=1,...,1 (null hypothesis)
Hy: p;#p] forsomei=1,...,] (alternative hypothesis)

In other words, we are interested whether the categorical data in the two groups come
from the same discrete probability distribution.

Taking the estimated expected proportions:

"1

s/
_ mp;+np;
T +n”

i ’

foralli = 1,...,1, the test statistic this time is equal to:
2

L (7 —5,) L (" —p,
T:nlz(pl pl) +n//Z(pl pl),

i=1 bi i=1 bi
which is a variation on the one-sample theme presented in the previous subsection.

pp = (n1*p1+n2*p2)/(n1+n2)

T =n1* np.sum( (pl-pp)**2 / pp ) + n2 * np.sum( (p2-pp)**2 / pp )
-

## 75.31373854741857

It can be shown that, if the null hypothesis is true, the test statistic approximately fol-
lows the x? distribution with [ — 1 degrees of freedom®. The critical value K is equal
to:

6 Notice that [74] in Section 14.3 recommends [ degrees of freedom, but we do not agree with this rather
informal reasoning. Also, simple Monte Carlo simulations suggest that / — 1 is a better candidate.



284 IV HETEROGENEOUS DATA

alpha = 0.001 # significance level
scipy.stats.chi2.ppf(1-alpha, len(p1l)-1)
## 18.46682695290317

As T > K (because 75.31 > 18.47), we reject the null hypothesis. And so, the runners’
age distribution differs across sexes (at significance level 0.1%).

11.4.5 Measuring association (*)

Let us consider the Australian Bureau of Statistics National Health Survey 20187 data
on the prevalence of certain medical conditions as a function of age. Here is the ex-
tracted contingency table:

=1
["Arthritis", "Asthma", "Back problems", "Cancer (malignant neoplasms)",
"Chronic obstructive pulmonary disease", "Diabetes mellitus",
"Heart, stroke and vascular disease", "Kidney disease",
"Mental and behavioural conditions", "Osteoporosis"],
["15-44", "45-64", "65+"]

1

C = 1000*np.array([
[ 360.2, 1489.0, 1772.21,
[1069.7, 741.9, 433.7],
[1469.6, 1513.3, 955.3],
[ 28.1, 162.7, 237.5],
[ 103.8, 207.0, 251.9],
[ 135.4, 427.3, 607.71,
[ 94.0, 344.4, 716.0],
[ 29.6, 67.7, 123.31,
[2218.9, 1390.6, 725.0],
[ 36.1, 312.3, 564.71,

1) .astype(int)
pd.DataFrame(C, index=1[0], columns=1[1])

## 15-44 45-64 65+
## Arthritis 360000 1489000 1772000
## Asthma 1069000 741000 433000
## Back problems 1469000 1513000 955000
## Cancer (malignant neoplasms) 28000 162000 237000
## Chronic obstructive pulmonary disease 103000 207000 251000
## Diabetes mellitus 135000 427000 607000
## Heart, stroke and vascular disease 94000 344000 716000
## Kidney disease 29000 67000 123000
## Mental and behavioural conditions 2218000 1390000 725000
## Osteoporosis 36000 312000 564000

Cramér’s V is one of a few ways to measure the degree of association between two

7 https://www.abs.gov.au/statistics/health/health- conditions-and-risks/
national- health- survey-first-results/2017-18
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categorical variables. It is equal to o (the lowest possible value) if the two variables are
independent (there is no association between them) and 1 (the highest possible value)
if they are tied.

Given a two-way contingency table C with n rows and m columns and assuming that:

where:

(S (T
& 2:';1 Z]nll Cij

the Cramér coeflicient is given by:

7

T
V= .
\I min{n —1,m — 1} Z?zl Z]."il Cijj

Here, ¢; ; gives the actually observed counts and ¢; ; denotes the number that we would
expect to see if the two variables were really independent.

scipy.stats.contingency.association(C)
## 0.316237999724298

The above means that there might be a small association between age and the preval-
ence of certain conditions. In other words, it might be the case that some conditions
are more prevalent in some age groups than others.

Exercise 11.16 Compute the Cramér V using only numpy functions.

Example11.17 (**) We can easily verify the hypothesis whether V does not differ significantly
from 0, i.e., whether the variables are independent. Looking at T, we see that this is essentially
the test statistic in Pearson’s chi-squared goodness-of-fit test.

E = C.sum(axis=1).reshape(-1, 1) * C.sum(axis=0).reshape(1, -1) / C.sum()
= np.sum((C-E)**2 / E)

T

## 3715440.465191512

Ifthe data are really independent, T follows the chi-squared distributionn + m — 1. As a con-
sequence, the critical value K is equal to:

alpha = 0.001 # significance level
scipy.stats.chi2.ppf(1-alpha, C.shape[@] + C.shape[1] - 1)
## 32.90949040736021

As T is much greater than K, we conclude (at significance level 0.1%) that the health conditions
are not independent of age.
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Exercise 11.18 (*) Take a look at Table 19: Comorbidity of selected chronic conditions in
the National Health Survey 2018%, where we clearly see that many disorders co-occur. Visualise
them on some heat maps and bar plots (including data grouped by sex and age).

11.4.6 Binned numeric data

Generally, modes are meaningless for continuous data, where repeated values are — at
least theoretically — highly unlikely. It might make sense to compute them on binned
data, though.

Looking at a histogram, e.g., in Figure 4.2, the mode is the interval corresponding to
the highest bar (hopefully assuming there is only one). If we would like to obtain a
single number, we can choose for example the middle of this interval as the mode.

For numeric data, the mode will heavily depend on the coarseness and type of bin-
ning; compare Figure 4.4 and Figure 6.8. Thus, the question “what is the most popular
income” is overall a quite difficult one to answer.

Exercise 11.19 Compute some informative modes for the uk_income_simulated_202¢° data-
set. Play avound with different numbers of bins on linear and logarithmic scales and see how
they affect the mode.

11.4.7 Ordinal data (¥)

The case where the categories can be linearly ordered, is called ordinal data. For in-
stance, Australian university grades are: F (fail) < P (pass) < C (credit) < D (distinction)
< HD (high distinction), some questionnaires use Likert-type scales such as “strongly
disagree” < “disagree” < “neutral” < “agree” < “strongly agree”, etc.

With a linear ordering we can go beyond the mode. Due to the existence of order stat-
istics and observation ranks, we can also easily define sample quantiles. Nevertheless,
the standard methods for resolving ties will not work: we need to be careful.

For example, the median of a sample of student grades (P, P, C, D, HD) is C, but (P, P,
C, D, HD, HD) is either C or D - we can choose one at random or just report that the
solution is ambiguous (C+? D-? C/D?).

Another option, of course, is to treat ordinal data as numbers (e.g., F=0,P=1, .., HD
=4). In the latter example, the median would be equal to 2.5.

There are some cases, though, where the conversion of labels to consecutive integers
is far from optimal. For instance, where it gives the impression that the “distance”
between different levels is always equal (linear).

Exercise11.20 (**)The grades_results'™ dataset represents the grades (F, B, C, D, HD) of 100

8 https://www.abs.gov.au/statistics/health/health-conditions-and- risks/
national- health- survey-first-results/2017-18
9 https://github.com/gagolews/teaching-data/raw/master/marek/uk_income_simulated_2020.txt
10 https://github.com/gagolews/teaching- data/raw/master/marek/grades_results.txt
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students attending an imaginary course in an Australian university. You can load it in the form
of an ordered categorical Series by calling:

grades = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/grades_results. txt", dtype="str")
grades = pd.Series(pd.Categorical(grades,
categories=["F", "P", "C", "D", "HD"], ordered=True))
grades.value_counts() # note the order of labels

## F 30
## P 29
## C 23
## HD 22
## D 19

## Name: count, dtype: int64

Howwould you determine the average grade represented as a number between 0 and 100, taking
into account that for a P you need at least 50%, C is given for > 60%, D for > 70%, and HD for only
(1) 80% of the points. Come up with a pessimistic, optimistic, and best-shot estimate, and then
compare your result to the true corresponding scores listed in the grades_scores™ dataset.

11.5 Exercises

Exercise 11.21 Does it make sense to compute the arithmetic mean of a categovical variable?
Exercise 11.22. Name the basic use cases for categorical data.

Exercise 11.23 (*) What is a Pareto chart?

Exercise 11.24 How can we deal with the case of the mode being nonunique?

Exercise 11.25 What is the meaning of the sum and mean for binary data (logical vectors)?

Exercise 11.26 Whatisthe meaning of numpy.mean((x > 0) & (x < 1)), where xis a numeric
vector?

Exercise 11.27 List some ways tovisualise multidimensional categorical data (combinations of
two or more factors).

Exercise 11.28 (*) State the null hypotheses verified by the one- and two-sample chi-squared
goodness-of-fit tests.

Exercise 11.29 () How is Cramér’s V defined and what values does it take?

" hteps://github.com/gagolews/teaching-data/raw/master/marek/grades_scores.txt
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Processing data in groups

Let us consider another subset of the US Centres for Disease Control and Prevention
National Health and Nutrition Examination Survey, this time carrying some body
measures (P_BMX") together with demographics (P_DEMO?).

nhanes = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_p_demo_bmx_2020.csv",
comment="#")

nhanes = (
nhanes
.loc[

(nhanes.DMDBORN4 <= 2) & (nhanes.RIDAGEYR >= 18),
["RIDAGEYR", "BMXWT", "BMXHT", "BMXBMI", "RIAGENDR", "DMDBORN4"]
1 # age >= 18 and only US and non-US born
.rename({
"RIDAGEYR": "age",
"BMXWT": "weight",
"BMXHT": "height",
"BMXBMI": "bmival",
"RIAGENDR": "gender",
"DMDBORN4": "usborn"
}, axis=1) # rename columns
.dropna() # remove missing values
.reset_index(drop=True)

We consider only the adult (at least 18 years old) participants, whose country of birth
(the US or not) is well-defined. Let us recode the usborn and gender variables (for read-
ability) and introduce the BMI categories:

nhanes.loc[:, "usborn"] = ( # NOT: nhanes.usborn = ..., it will not work
nhanes.usborn.astype("category")
.cat.rename_categories(["yes", "no"]).astype("str") # recode usborn
)

nhanes.loc[:, "gender"] = (
nhanes.gender.astype("category")
.cat.rename_categories(["male", "female"]).astype("str") # recode gender

(continues on next page)

! https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm
2 https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_DEMO.htm
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(continued from previous page)

nhanes.loc[:, "bmicat"] = pd.cut( # new column
nhanes.bmival,
bins= [ 0, 18.5, 25, 30, np.inf ],
labels=[ "underweight", "normal", ‘"overweight", "obese" ]
)

Here is a preview of this data frame:

nhanes.head()

## age weight height bmival gender usborn bmicat
#wW o 29 97.1 160.2 37.8 female no obese
# 1 49 98.8 182.3 29.7 male yes overweight
#H 2 36 74.3  184.2 21.9 male yes normal
## 3 68 103.7 185.3 30.2 male yes obese

# 4 76 83.3 177.1 26.6 male yes overweight

We have a mix of categorical (gender, US born-ness, BMI category) and numerical
(age, weight, height, BMI) variables. Unless we had encoded qualitative variables as
integers, this would not be possible with plain matrices, at least not with a single one.

In this section, we will treat the categorical columns as grouping variables. This way,
we will be able to e.g., summarise or visualise the data in each group separately. Suffice
it to say that it is likely that data distributions vary across different factor levels. It is
much like having many data frames stored in one object, e.g., the heights of women
and men separately.

nhanes is thus an example of heterogeneous data at their best.

12.1 Basic methods

DataFrame and Series objects are equipped with the groupby methods, which assist in
performing a wide range of operations in data groups defined by one or more data
frame columns (compare [96]).

They return objects of the classes DataFrameGroupBy and SeriesGroupby:

type(nhanes.groupby("gender"))

## <class 'pandas.core.groupby.generic.DataFrameGroupBy '>
type(nhanes.groupby("gender").height) # or (...)["height"]
## <class 'pandas.core.groupby.generic.SeriesGroupBy'>

Important When we wish to browse the list of available attributes in the pandas
manual, it is worth knowing that DataFrameGroupBy and SeriesGroupBy are separate
types. Still, they have many methods and slots in common.
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Exercise12.1 Skim through the documentation® of the said classes.

For example, the pandas.DataFrameGroupBy.size method determines the number of
observations in each group:

nhanes.groupby("gender").size()

## gender
## female 4514
## male 4271

## dtype: int64

It returns an object of the type Series. We can also perform the grouping with respect
to a combination of levels in two qualitative columns:

nhanes.groupby(["gender", "bmicat"], observed=True).size()
## gender bmicat

## female underweight 93
## normal 1161
## overweight 1245
## obese 2015
## male underweight 65
## normal 1074
## overweight 1513
## obese 1619

## dtype: 1nt64

This yields a Series with a hierarchical index (Section 10.1.3). Nevertheless, we can
always call reset_index to convert it to standalone columns:

nhanes.groupby(
["gender", "bmicat"], observed=True
).size().rename("counts").reset_index()

## gender bmicat counts
## 0 female underweight 93
## 1 female normal 1161
## 2 female overweight 1245
## 3 female obese 2015
## 4 male underweight 65
#4 5 male normal 1074
# 6 male  overweight 1513
## 7 male obese 1619

Take note of the rename part. It gave us some readable column names.

Furthermore, it is possible to group rows in a data frame using a list of any Series
objects, i.e., not just column names in a given data frame; see Section 16.2.3 for an
example.

Exercise12.2 () Note the difference between pandas. GroupBy. count and pandas. GroupBy.
size methods (by reading their documentation).

3 https://pandas.pydata.org/pandas-docs/stable/reference/groupby.html
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12.1.1 Aggregating data in groups

The DataFrameGroupBy and SeriesGroupBy classes are equipped with several well-
known aggregation functions. For example:

nhanes.groupby("gender").mean(numeric_only=True).reset_index()
## gender age weight height bmival
#4# 0 female 48.956580 78.351839 160.089189 30.489189
## 1 male 49.653477 88.589932 173.759541 29.243620

The arithmetic mean was computed only on numeric columns*.

Alternatively, we can apply the aggregate only on specific columns:

nhanes.groupby("gender")[["weight", "height"]].mean().reset_index()
## gender weight height
## 0 female 78.351839 160.089189
## 1 male 88.589932 173.759541

By the way, we said we should never apply [. .. ] divectly on Series nor DataFrame objects.
However, what we have above is a DataFrameGroupBy object, i.e., it is a different story.
Column selection works well on it.

Another example:

nhanes.groupby(["gender", "bmicat"]).height.mean().reset_index()

## gender bmicat height
## 0 female underweight 161.976344
## 1 female normal 160.149182
#4# 2 female overweight 159.573012
## 3 female obese 160.286452
#4 4 male underweight 174.073846
## 5 male normal 173.443855
# 6 male overweight 173.051685
## 7 male obese 174.617851
##

## <string>:1: FutureWarning: The default of observed=False is deprecated and will be cha

Further, the most common aggregates that we described in Section 5.1 can be gener-
ated by calling the describe method:

nhanes.groupby("gender").height.describe().T

## gender female male
## count  4514.000000 4271.000000
## mean 160.089189 173.759541

(continues on next page)

4 (*) In this example, we called pandas . GroupBy .mean. Note that it has slightly different functional-
ity from pandas.DataFrame.mean and pandas.Series.mean, which all needed to be implemented
separately so that we can use them in complex operation chains. Still, they all call the underlying numpy .
mean function. Object-orientated programming has its pros (more expressive syntax) and cons (sometimes
more redundancy in the API design).
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(continued from previous page)

## std 7.035483 7.702224
## min 131.100000  144.600000
## 25% 155.300000  168.500000
## 50% 160.000000  173.800000
## 75% 164.800000  178.900000
## max 189.300000  199.600000

We have applied the transpose (T) to get a more readable (“tall”) result.

If different aggregates are needed, we can call aggregate to apply a custom list of func-
tions:

(nhanes.
groupby("gender")[["height", "weight"]].
aggregate(["mean", len, lambda x: (np.max(x)+np.min(x))/2]).
reset_index()

)

#H gender height weight

## mean  len <lambda 0> mean  len <lambda 0>
## 0 female 160.089189 4514 160.2 78.351839 4514 143.45
## 1 male 173.759541 4271 172.1 88.589932 4271 139.70

Interestingly, the result’s columns slot uses a hierarchical index.

Note The column names in the output object are generated by reading the applied
functions’ __name__ slots; see, e.g., print(np.mean.__name__).

mr = lambda x: (np.max(x)+np.min(x))/2
mr.__name__ = "midrange"
(nhanes.
loc[:, ["gender", "height", "weight"]].
groupby("gender").
aggregate(["mean", mr]).
reset_index()

)
## gender height weight
#H mean midrange mean midrange

## 0 female 160.089189 160.2 78.351839  143.45
## 1 male 173.759541 172.1 88.589932  139.70

12.1.2 Transforming data in groups

We can easily transform individual columns relative to different data groups by means
of the transform method for GroupBy objects.
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def stdO(x, axis=None):
return np.std(x, axis=axis, ddof=0)
std0.__name__ = "std0"

def standardise(x):
return (x-np.mean(x, axis=0))/std0(x, axis=0)

nhanes.loc[:, "height_std"] = (
nhanes.
loc[:, ["height", "gender"]].
groupby("gender").
transform(standardise)

)

nhanes.head()

## age weight height bmival gender usborn bmicat height_std
#wW o 29 97.1 160.2 37.8 female no obese 0.015752
#4149 98.8 182.3 29.7 male yes overweight 1.1089660
#H 2 36 74.3 184.2 21.9 male yes normal 1.355671
#4 3 68 103.7 185.3 30.2 male yes obese 1.4985604

#t 4 76 83.3 177.1 26.6 male yes overweight 0.433751

The new column gives the relative z-scores: a woman with a relative z-score of o has
height of 160.1 cm, whereas a man with the same z-score has height 0of 173.8 cm.

We can check that the means and standard deviations in both groups are equal to o
and 1:

(nhanes.
loc[:, ["gender", "height", "height_std"]].
groupby("gender").
aggregate(["mean", std0])

)

## height height_std

## mean stdo mean stdO
## gender

## female 160.089189 7.034703 -1.351747e-15 1.0
## male 173.759541 7.701323 3.14532%-16 1.0

Note that we needed to use a custom function for computing the standard de-
viation with ddof=0. This is likely a bug in pandas that nhanes.groupby("gender").
aggregate([np.std])sorne“ﬂiatpassesddoletonumpy.std,

Exercise12.3 Create a data frame comprised of the five tallest men and the five tallest women.

12.1.3 Manual splitting into subgroups (*)

It turns out that GroupBy objects and their derivatives are iterable; compare Section 3.4.
As a consequence, the grouped data frames and series can be easily processed manu-
ally in case where the built-in methods are insufficient (i.e., not so rarely).
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Let us consider a small sample of our data frame.

grouped = (nhanes.head()
.loc[:, ["gender", "weight", "height"]].groupby("gender")
)
list(grouped)
## [('female’, gender weight height
## 0 female 97.1 160.2), ('male', gender weight height
## 1  male 98.8 182.3
#Ht 2 male 74.3 184.2
## 3 male 103.7 185.3
## 4 male 83.3 177.1)]

The way Python formatted the above output is imperfect, so we need to contemplate it
for a tick. We see that when iterating through a GroupBy object, we get access to pairs
giving all the levels of the grouping variable and the subsets of the input data frame
corresponding to these categories.

Here is a simple example where we make use of the above fact:

for level, df in grouped:

# level 1s a string label

# df 1s a data frame - we can do whatever we want

print(f"There are {df.shape[0]} subject(s) with gender="{level} .")
## There are 1 subject(s) with gender="female".
## There are 4 subject(s) with gender='male".

We see that splitting followed by manual processing of the chunks in a loop is quite te-
dious in the case where we would merely like to compute some basic aggregates. These
scenarios are extremely common. No wonder why the pandas developers introduced a
convenient interface in the form of the pandas.DataFrame.groupby and pandas.Series.
groupby methods and the DataFrameGroupBy and SeriesGroupby classes. Still, for more
ambitious tasks, the low-level way to perform the splitting will come in handy.

Exercise12.4 (**) Using the manual splitting andmatplotlib.pyplot.boxplot, draw a box-
and-whisker plot of heights grouped by BMI category (four boxes side by side).

Exercise12.5 (**) Using the manual splitting, compute the relative z-scores of the height
column separately for each BMI category.

Example12.6 Let us also demonstrate that the splitting can be done manually without the use
of pandas. Namely, calling numpy. split(a, ind) returns a listwith a (being an array-like ob-
ject, e.g., a vector, a matrix, or a data frame) partitioned rowwisely into len(ind)+1 chunks at
indexes given by ind. For example:

a = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine"
for e in np.split(a, [2, 6]):
print(repr(e))
## array(['one', 'two'], dtype='<U5")
## array([ 'three', 'four', 'five', 'six'], dtype='<U5")
## array(['seven', 'eight', 'nine'], dtype='<U5')



296 IV HETEROGENEOUS DATA

To split a data frame into groups defined by a categorical column, we can first sort it with respect
to the criterion of interest, for instance, the gender data:

nhanes_srt = nhanes.sort_values("gender", kind="stable")

Then, we can use numpy . unique to fetch the indexes of first occurrences of each series of identical
labels:

levels, where = np.unique(nhanes_srt.gender, return_index=True)
levels, where
##4 (array(['female', 'male'], dtype=object), array([ 0, 4514]))

This can now be used for dividing the sorted data frame into chunks:

nhanes_grp = np.split(nhanes_srt, where[1:]) # where[0] 1s not interesting
## /home/gagolews/.virtualenvs/python3-default/lib/python3.11/site-packages/numpy/core/fr
##  return bound(*args, **kwds)

We obtained a list of data frames split at rows specified by where[1:]. Here is a preview of the
first and the last row in each chunk:

for i in range(len(levels)):
# process (levels[1], nhanes_grp[i])
print(f"level="{levels[1]}'; preview:")
print(nhanes_grp[i].1loc[ [0, -1], : ], end="\n|n")
## level="'female'; preview:

## age weight height bmival gender usborn bmicat height_std

## 0 29 97.1 160.2 37.8 female no obese 0.015752

## 8781 67 82.8 147.8 37.9 female no obese -1.746938

##

## level="male'; preview:

## age weight height bmival gender usborn bmicat height_std
## 1 49 98.8 182.3 29.7 male yes overweight 1.108960
## 8784 74 59.7 167.5 21.3 male no normal -0.812788

Within each subgroup, we can apply any operation we have learnt so far: our imagination is the
only major limiting factor. For instance, we can aggregate some columns:

nhanes_agg = [
dict(
level=t.gender.iloc[0], # they are all the same here - take first
height_mean=np.round(np.mean(t.height), 2),
weight_mean=np.round(np.mean(t.weight), 2)
)
for t in nhanes_grp
]
print(nhanes_agg[0])
## {'level’': 'female', 'height_mean': 160.09, 'weight_mean': 78.35}
print(nhanes_agg[1])
## {'level': 'male', 'height_mean': 173.76, 'weight_mean': 88.59}
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The resulting list of dictionaries can be combined to form a data frame:

pd.DataFrame(nhanes_agg)

## level height_mean weight_mean
## 0 female 160.09 78.35
## 1 male 173.76 88.59

Furthermore, there is a simple trick that allows grouping with respect to more than one column.
We can apply numpy . unique on a string vector that combines the levels of the grouping variables,
e.g., by concatenating them like nhanes_srt.gender + "___" + nhanes_srt.bmicat (assum-
ing that nhanes_srt is ordered with respect to these two criteria).

12.2 Plotting data in groups

The seaborn package is particularly convenient for plotting grouped data — it is highly
interoperable with pandas.

12.2.1 Series of box plots

Figure 12.1 depicts a box plot with four boxes side by side:

sns.boxplot(x="bmival", y="gender", hue="usborn",
data=nhanes, palette="Paired")

plt.show()
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Figure 12.1. The distribution of BMIs for different genders and countries of birth.
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Let us contemplate for a while how easy it is now to compare the BMI distribution in
different groups. Here, we have two grouping variables, as specified by the y and hue
arguments.

Exercise12.7 Create a similar series of violin plots.

Exercise12.8 (*) Add the average BMIs in each group to the above box plot using matplotlib.
pyplot.plot. Check ylimto determine the range on the y-axis.

12.2.2 Series of bar plots

On the other hand, Figure 12.2 shows a bar plot representing a contingency table. It
was obtained in a different way from that used in Chapter 11:

sns.barplot(
y="counts", x="gender", hue="bmicat", palette="Paired",
data=(
nhanes.
groupby(["gender", "bmicat"], observed=True).
size().
rename("counts").
reset_index()

)
)
plt.show()
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Figure 12.2. Number of persons for each gender and BMI category.

Exercise12.9 Draw a similar bar plot where the bar heights sum to 100% for each gender.
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Exercise12.10 Using the two-sample chi-squared test, verify whether the BMI category distri-
butions for men and women differ significantly from each other.

12.2.3 Semitransparent histograms

Figure 12.3 illustrates that playing with semitransparent objects can make comparis-
ons more intuitive (the alpha argument).

sns.histplot(data=nhanes, x="weight", hue="usborn", alpha=0.33,
element="step", stat="density", common_norm=False)

plt.show()
usborn
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Figure 12.3. The weight distribution of the US-born participants has a higher mean
and variance.

By passing common_norm=False, we scaled each histogram separately, so that it repres-
ents a density function (are under each curve is 1). It is the behaviour we desire when
the samples are of different lengths.

12.2.4 Scatter plots with group information

Scatter plots for grouped data can display category information using points of differ-
ent colours and/or styles, compare Figure 12.4.

sns.scatterplot(x="height", y="weight", hue="gender", style="gender",
data=nhanes, alpha=0.2, markers=["o0", "v"])
plt.show()
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Figure 12.4. Weight vs height grouped by gender.

12.2.5 Grid (trellis) plots

Grid plot (also known as trellis, panel, conditioning, or lattice plots) are a way to visual-
ise data separately for each factor level. All the plots share the same coordinate ranges
which makes them easily comparable. For instance, Figure 12.5 depicts a series of his-
tograms of weights grouped by a combination of two categorical variables.

grid = sns.FacetGrid(nhanes, col="gender", row="usborn")

grid = grid.map(sns.histplot, "weight", stat="density", color="lightgray")
plt.show()

Exercise 12.11 Pass hue="bmicat " additionally to seaborn. FacetGrid.

Important Grid plots can feature any kind of data visualisation we have discussed so
far (e.g., histograms, bar plots, scatter plots).

Exercise 12.12 Draw a trellis plot with scatter plots of weight vs height grouped by BMI cat-
egory and gender.

12.2.6 Kolmogorov-Smirnov test for comparing ECDFs (*)

Figure 12.6 compares the empirical cumulative distribution functions of the weight
distributions for US and non-US born participants.

for usborn, weight in nhanes.groupby("usborn").weight:
sns.ecdfplot(data=weight, legend=False, label=usborn)
(continues on next page)
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Figure 12.5. Distribution of weights for different genders and countries of birth.

(continued from previous page)

plt.legend(title="usborn")
plt.show()

We have used manual splitting of the weight column into subgroups and then
plotted the two ECDFs separately because a call to seaborn.ecdfplot(data=nhanes,
x="weight", hue="usborn") does not honour our wish to use alternating lines styles
(most likely due to a bug).

A two-sample Kolmogorov—-Smirnov test can be used to check whether two ECDFs F,
(e.g., the weight of the US-born participants) and F}, (e.g., the weight of non-US-born
persons) are significantly different from each other:

Hy: E, =F, (nullhypothesis)
Hy: E,#F, (two-sided alternative)
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Figure 12.6. Empirical cumulative distribution functions of weight distributions for
different birthplaces.

The test statistic will be a variation of the one-sample setting discussed in Section 6.2..3.
Namely, let:

D, = supF;, (1) = Fj, (bl
teR
Computing the above is slightly trickier than in the previous case®. Luckily, an appro-

priate procedure is available in scipy.stats:

x12 = nhanes.set_index("usborn").weight
x1 = x12.loc["yes"] # first sample

x2 = x12.loc["no" # second sample
Dnm = scipy.stats.ks_2samp(x1, x2)[0]
Dnm

## 0.22068075889911914

Assuming significance level « = 0.001, the critical value is approximately (for larger
n and m) equal to:

Kn,m =

\l log(a/2)(n + m)
- 2nm ’

5 Remember that this is an introductory course, and we are still being very generous here. We encourage
the readers to upskill themselves (later, of course) not only in mathematics, but also in programming (e.g.,
algorithms and data structures).
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alpha = 0.001
np.sqrt(-np.log(alpha/2) * (len(x1)+len(x2)) / (2*len(x1)*1len(x2)))
## 0.04607410479813944

here (at significance level 0.1%). In other words, weights of US- and non-US-born
participants differ significantly.

As usual, we reject the null hypothesis when D,, ,,, > K,, ,,,, which is exactly the case

Important Frequentist hypothesis testing only takes into account the deviation
between distributions that is explainable due to sampling effects (the assumed ran-
domness of the data generation process). For large sample sizes, even very small de-
viations® will be deemed statistically significant, but it does not mean that we consider
them as practically significant.

For instance, we might discover that a very costly, environmentally unfriendly, and
generally inconvenient for everyone upgrade leads to a process’ improvement: we re-
ject the null hypothesis stating that two distributions are equal. Nevertheless, a careful
inspection told us that the gains are roughly 0.5%. In such a case, it is worthwhile to
apply good old common sense and refrain from implementing it.

Exercise 12.13 Compare between the ECDFs of weights of men and women who are between 18
and 25 years old. Determine whether they are significantly different.

Important Some statistical textbooks and many research papers in the social sciences
(amongst many others) employ the significance level of &« = 5%, which is often criti-
cised as too high’. Many stakeholders aggressively push towards constant improve-
ments in terms of inventing bigger, better, faster, more efficient things. In this con-
text, larger & generates more sensational discoveries: it considers smaller differences
as already significant. This all adds to what we call the reproducibility crisis in the em-
pirical sciences.

We, on the other hand, claim that it is better to err on the side of being cautious. This,
in the long run, is more sustainable.

12.2.7 Comparing quantiles

Plotting quantiles in two samples against each other can also give us some further
(informal) insight with regard to the possible distributional differences. Figure 12.7
depicts an example Q-Q plot (see also the one-sample version in Section 6.2.2), where
we see that the distributions have similar shapes (points more or less lie on a straight

¢ Including those that are merely due to round-off errors.
7 For similar reasons, we do not introduce the notion of p-values. Most practitioners tend to misunder-
stand them anyway.
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line), but they are shifted and/or scaled (if they were, they would be on the identity
line).

x = nhanes.weight.loc[nhanes.usborn == "yes"]
y = nhanes.weight.loc[nhanes.usborn == "no"
xd = np.sort(x)
yd = np.sort(y)
if len(xd) > len(yd): # interpolate between quantiles in a longer sample
xd = np.quantile(xd, np.arange(1l, len(yd)+1)/(len(yd)+1))
else:
yd = np.quantile(yd, np.arange(1l, len(xd)+1)/(len(xd)+1))
plt.plot(xd, yd, "o")
plt.axline((xd[len(xd)//2], xd[len(xd)//2]), slope=1,
linestyle=":", color="gray") # identity line
plt.xlabel(f"Sample quantiles (weight; usborn=yes)")
plt.ylabel(f"Sample quantiles (weight; usborn=no)")
plt.show()
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Figure 12.7. A two-sample Q-Q plot.

Notice that we interpolated between the quantiles in a larger sample to match the
length of the shorter vector.
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12.3 Classification tasks

Let us consider a small sample of white, rather sweet wines from a much larger wine
quality® dataset.

wine_train = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/other/sweetwhitewine_train2.csv",
comment="#")

wine_train.head()

#H alcohol sugar bad

# 0 10.625271 10.340159

## 1 9.066111 18.593274

## 2 10.806395 6.206685

## 3 13.432876 2.739529

## 4 9.578162 3.053025

DO O RO

We are given each wine’s alcohol and residual sugar content, as well as a binary cat-
egorical variable stating whether a group of sommeliers deem a given beverage quite
bad (1) or not (0). Figure 12.8 reveals that subpar wines are rather low in... alcohol and,
to some extent, sugar.

sns.scatterplot(x="alcohol", y="sugar", data=wine_train,
hue="bad", style="bad", markers=["o", "v"], alpha=0.5)

plt.xlabel("alcohol")

plt.ylabel("sugar")

plt.legend(title="bad")

plt.show()

Someone answer the door! We have a delivery of a few new wine bottles. Interestingly,
their alcohol and sugar contents have been given on their respective labels.

wine_test = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/other/sweetwhitewine_test2.csv",
comment="#").1loc[:, :-1]

wine_test.head()

#H alcohol sugar

## 0 9.315523 10.041971

## 1 12.909232 6.814249

##H 2 9.051020 12.818683

## 3 9.567601 11.091827

## 4 9.494031 12.053790

We would like to determine which of the wines from the test set might be not-bad
without asking an expert for their opinion. In other words, we would like to exercise
a classification task (see, e.g., [8, 471). More formally:

8 http://archive.ics.uci.edu/ml/datasets/Wine+Quality
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Figure 12.8. Scatter plot for sugar vs alcohol content for white, rather sweet wines, and
whether they are considered bad (1) or drinkable (0) by some experts.

Important Assume we are given a set of training points X € R™ and the cor-
responding reference outputsy € {Lq,Ly,, ..., L;}" in the form of a categorical vari-
able with [ distinct levels. The aim of a classification algorithm is to predict what the
outputs for each point from a possibly different dataset X' € R"*" ie. §' €
(Ly,Ly,...,L;}", might be.

In other words, we are asked to fill the gaps in a categorical variable. Recall thatin a
regression problem (Section 9.2), the reference outputs were numerical.

Exercise 12.14 Which of the following are instances of classification problems and which are
regression tasks?

o Detect email spam.

« Predict a market stock price (good luck with that).

o Assess credit risk.

« Detect tumour tissues in medical images.

« Predict the time-to-recovery of cancer patients.

« Recognise smiling faces on photographs (kind of creepy).

« Detect unattended luggage in airport security camera footage.

What kind of data should you gather to tackle them?
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12.3.1 K-nearest neighbour classification

One of the simplest approaches to classification is based on the information about a
test point’s nearest neighbours living in the training sample; compare Section 8.4.4.

Fix k > 1. Namely, to classify somex’ € R™:

1. Find the indexes Ny (x") = {iy, ..., i} of the k points from X closest to x', i.e.,
ones that fulfil for all j & {iy, ..., i }:

X, —x'I < ... < Ix;,, — X' < x;. — X7l

2. Classifyx’ as ' = mode(y;,, ..., y;, ), i-e., assign it the label that most frequently
occurs amongst its k nearest neighbours. If a mode is nonunique, resolve the ties
at random.

It is thus a similar algorithm to k-nearest neighbour regression (Section 9.2.1). We
only replaced the quantitative mean with the qualitative mode.

This is a variation on the theme: if you don't know what to do in a given situation, try
to mimic what the majority of people around you are doing or saying. For instance, if
you don’t know what to think about a particular wine, discover that amongst the five
most similar ones (in terms of alcohol and sugar content) three are said to be awful.
Now you can claim that you don't like it because it’s not sweet enough. Thanks to this,
others will take you for a very refined wine taster.

Letus apply a 5-nearest neighbour classifier on the standardised version of the dataset.
As we are about to use a technique based on pairwise distances, it would be best if the
variables were on the same scale. Thus, we first compute the z-scores for the training
set:

X_train = np.array(wine_train.loc[:, ["alcohol", "sugar"]])
means = np.mean(X_train, axis=0)

sds = np.std(X_train, axis=0)

Z_train = (X_train-means)/sds

Then, we determine the z-scores for the test set:

Z_test = (np.array(wine_test.loc[:, ["alcohol", "sugar"]])-means)/sds

Let us stress that we referred to the aggregates computed for the training set. This is
arepresentative example of a situation where we cannot simply use a built-in method
from pandas. Instead, we apply what we have learnt about numpy.

To make the predictions, we will use the following function:

def knn_class(X_test, X_train, y_train, k):
nnis = scipy.spatial.KDTree(X_train).query(X_test, k)[1]
nnls = y_train[nnis] # same as: y train[nnis.reshape(-1)].reshape(-1, k)
return scipy.stats.mode(nnls.reshape(-1, k), axis=1, keepdims=False)[0]
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First, we fetched the indexes of each test point’s nearest neighbours (amongst the
points in the training set). Then, we read their corresponding labels; they are stored
in a matrix with k columns. Finally, we computed the modes in each row. As a con-
sequence, we have each point in the test set classified.

And now:

k=5

y_train = np.array(wine_train.bad)

y_pred = knn_class(Z_test, Z_train, y_train, k)
y_pred[:10] # preview

## array([1, 0, 0, 1, 1, 0, 1, 0, 0, 1])

Note Unfortunately, scipy.stats.mode does not resolve possible ties at random: e.g.,
themodeof (1,1,1,2,2,2) isalways 1. Nevertheless, in our case, k is odd and the num-
ber of possible classes is | = 2, so the mode is always unique.

Figure 12.9 shows how nearest neighbour classification categorises different regions
of a section of the two-dimensional plane. The greater the k, the smoother the decision
boundaries. Naturally, in regions corresponding to few training points, we do not ex-
pect the classification accuracy to be acceptable’.

x1 = np.linspace(Z_train[:, 0].min(), Z_train[:, 0].max(), 100)
x2 = np.linspace(Z_train[:, 1].min(), Z_train[:, 1].max(), 100)
xgl, xg2 = np.meshgrid(x1, x2)
Xg12 = np.column_stack((xgl.reshape(-1), xg2.reshape(-1)))
ks = [5, 25]
for 1 in range(len(ks)):

plt.subplot(1, len(ks), i+1)

ygl2 = knn_class(Xg12, Z_train, y_train, ks[i])

plt.scatter(Z_train[y_train == 0, 0], Z_train[y_train == 0, 1],
c="black", marker="0", alpha=0.5)
plt.scatter(Z_train[y_train == 1, 0], Z_train[y_train == 1, 1],

c="#DF536B", marker="v", alpha=0.5)
plt.contourf(x1l, x2, ygl2.reshape(len(x2), len(x1)),
cmap="gist_heat", alpha=0.5)
plt.title(f"sk={ks[1]}s$", fontdict=dict(fontsize=10))
plt.xlabel("alcohol")
if 1 == 0: plt.ylabel("sugar")
plt.show()

Example 12.15 (*) The same with the scikit-learn package:

import sklearn.neighbors
knn = sklearn.neighbors.KNeighborsClassifier(k)

(continues on next page)

9 (*) As an exercise, we could author a fixed-radius classifier; compare Section 8.4.4. In sparsely popu-
lated regions, the decision might be “unknown’.
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sugar

alcohol alcohol

Figure 12.9. k-nearest neighbour classification of a whole, dense, two-dimensional
grid of points for different k.

(continued from previous page)

knn. fit(Z_train, y_train)
y_pred2 = knn.predict(Z_test)

We can verify that the results are identical to the ones above by calling:

np.all(y_pred? ==y pred)
## True

12.3.2 Assessing the quality of predictions

It is time to reveal the truth: our test wines, it turns out, have already been assessed
by some experts.

y_test = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/other/sweetwhitewine_test2.csv",
comment="#")

y_test = np.array(y_test.bad)

y_test[:10] # preview

## array([1, 0, 0, 1, 0, 0, 1, 0, 1, 1])

The accuracy score is the most straightforward measure of the similarity between these
true labels (denoted y’ = (yj,...,¥,,)) and the ones predicted by the classifier (de-
noted y' = (¥},..., 7). It is defined as a ratio between the correctly classified in-
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stances and all the instances:

Z?:l 1(y; = 7;)

Accuracy(y’,y’) = .

7

where the indicator function 1(y; = §j;) = 1ifand onlyify; = #; and 0 otherwise.
Computing the above for our test sample gives:

np.mean(y_test == y_pred)
## 0.706

Thus, 71% of the wines were correctly classified with regard to their true quality. Before
we get too enthusiastic, let us note that our dataset is slightly imbalanced in terms of
the distribution of label counts:

pd.Series(y_test).value_counts() # contingency table
## 0 330

## 1 170

## Name: count, dtype: int64

It turns out that the majority of the wines (330 out of 500) in our sample are truly de-
licious. Notice that a dummy classifier which labels all the wines as great would have
accuracy of 66%. Our k-nearest neighbour approach to wine quality assessment is not
that usable after all.

It is therefore always beneficial to analyse the corresponding confusion matrix, which is
a two-way contingency table summarising the correct decisions and errors we make.

C = pd.DataFrame(
dict(y_pred=y_pred, y_test=y_test)
).value_counts().unstack(fill_value=0)

C

## y_ test %] 1
## y _pred

## 0 272 89
## 1 58 81

In the binary classification case (I = 2) such as this one, its entries are usually referred
to as (see also the table below):

« TN - the number of cases where the true y; = 0 and the predicted §; = 0 (true
negative),

« TP — the number of instances such that the true y; = 1 and the predicted j; = 1
(true positive),

« FN — how many times the true y; = 1 but the predicted §j; = 0 (false negative),

« FN — how many times the true y; = 0 but the predicted §j; = 1 (false positive).
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The terms positive and negative refer to the output predicted by a classifier, i.e., they
indicate whether some 7; is equal to 1and o, respectively.

Table 12.1. The different cases of true vs predicted labels in a binary classification task
(I=2)

i =0 yi=1

7; =0 True Negative False Negative (Type II error)
7; =1 False Positive (Type I error) True Positive

Ideally, the number of false positives and false negatives should be as low as possible.
The accuracy score only takes the raw number of true negatives (TN) and true positives
(TP) into account:

TN + TP
TN + TP + FN + FP’
Consequently, it might not be a valid metric in imbalanced classification problems.

Accuracy(y’,y") =

There are, fortunately, some more meaningful measures in the case where class 1 is
less prevalent and where mispredicting it is considered more hazardous than making
an inaccurate prediction with respect to class 0. After all, most will agree that it is bet-
ter to be surprised by a vino mislabelled as bad, than be disappointed with a highly
recommended product where we have already built some expectations around it. Fur-
ther, getting a virus infection not recognised where we are genuinely sick can be more

dangerous for the people around us than being asked to stay at home with nothing but
a headache.

Precision answers the question: If the classifier outputs 1, what is the probability that
this is indeed true?

n A
TP Yia Vil
TP + FP Zn’ o

i=1Yi

Precision(y’,y’) =

C = np.array(C) # convert to matrix
C[1,1]1/(C[1,1]+C[1,0]) # precision

## 0.5827338129496403

np.sum(y_test*y pred)/np.sum(y_pred) # equivalently
## 0.5827338129496403

When a classifier labels a vino as bad, in 58% of cases it is veritably undrinkable.

Recall (sensitivity, hit rate, or true positive rate) addresses the question: If the true class
is 1, what is the probability that the classifier will detect it?

n' 10
TP 1Yl

Recall(y’,y") = = ; .
TP+ F n ’
+EN 21 Yi
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C[1,1]/(C[1,1]+C[0,1]) # recall

## 0.4764705882352941

np.sum(y_test*y pred)/np.sum(y_test) # equivalently
## 0.4764705882352941

Only 48% of the really bad wines will be filtered out by the classifier.

The F measure (or F{ measure), is the harmonic’ mean of precision and recall in the
case where we would rather have them aggregated into a single number:

-1
1 1 -1 -1 TP
FO', ) = —7 = (— Precision = + Recall ) S
rectson * eatl 2 < ) TP 4 I
2

C[1,1]1/(C[1,1]+0.5*C[0,1]+0.5*C[1,0]) # F
## 0.5242718446601942
Overall, we can conclude that our classifier is rather weak.
Exercise 12.16 Would you use precision or recall in each of the following settings?
« Medical diagnosis,
- medical screening,
- suggestions of potential matches in a dating app,
« plagiarism detection,

« Wine recommendation.

12.3.3 Splitting into training and test sets

The training set was used as a source of knowledge about our problem domain. The
k-nearest neighbour classifier is technically model-free. As a consequence, to generate
anew prediction, we need to be able to query all the points in the database every time.

Nonetheless, most statistical/machine learning algorithms, by construction, general-
ise the patterns discovered in the dataset in the form of mathematical functions (often-
times, very complicated ones), that are fitted by minimising some error metric. Linear
regression analysis by means of the least squares approximation uses exactly this kind
of approach. Logistic regression for a binary response variable would be a conceptually
similar classifier, but it is beyond our introductory course.

Either way, we used a separate test set to verify the quality of our classifier on so-far
unobserved data, i.e., its predictive capabilities. We do not want our model to fit to the
training data too closely. This could lead to its being completely useless when filling
the gaps between the points it was exposed to. This is like being a student who can

10 (*) For any vector of nonnegative values, its minimum < its harmonic mean < its arithmetic mean.
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only repeat what the teacher says, and when faced with a slightly different real-world
problem, they panic and say complete gibberish.

In the above example, the training and test sets were created by yours truly. Normally,
however, the data scientists split a single data frame into two parts themselves; see
Section 10.5.4. This way, they can mimic the situation where some test observations
become available after the learning phase is complete.

12.3.4 Validating many models (parameter selection) (*)

In statistical modelling, there often are many hyperparameters that need to be tweaked.
For example:

« which independent variables should be used for model building,

- what is the best way to preprocess them; e.g., which of them should be standard-
ised,

- if an algorithm has some tunable parameters, what is their best combination; for
instance, which k should we use in the k-nearest neighbours search.

Atinitial stages of data analysis, we usually tune them up by trial and error. Later, but
this is already beyond the scope of this introductory course, we are used to exploring
all the possible combinations thereof (exhaustive grid search) or making use of some
local search-based heuristics (e.g., greedy optimisers such as hill climbing).

These always involve verifying the performance of many different classifiers, for ex-
ample, 1-, 3-, 9, and 15-nearest neighbours-based ones. For each of them, we need to
compute separate quality metrics, e.g., the F measures. Then, we promote the classi-
fier which enjoys the highest score. Unfortunately, if we do it recklessly, this can lead
to overfitting, this time with respect to the test set. The obtained metrics might be too
optimistic and can poorly reflect the real performance of the solution on future data.

Assuming that our dataset carries a decent number of observations, to overcome this
problem, we can perform a random training/validation/test split:

- training sample (e.g., 60% of randomly chosen rows) — for model construction,

« validationsample (e.g., 20%) — used to tune the hyperparameters of many classifiers
and to choose the best one,

« test (hold-out) sample (e.g., the remaining 20%) — used to assess the goodness of fit
of the best classifier.

This common sense-based approach is not limited to classification. We can validate
different regression models in the same way.

Important We would like to obtain a valid estimate of a classifier’s performance on
previously unobserved data. For this reason, the test (hold-out) sample must neither
be used in the training nor the validation phase.
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Exercise12.17 Determine the best parameter setting for the k-nearest neighbour classification
of the color variable based on standardised versions of some physicochemical features (chosen
columns) of wines in the wine_quality_all™ dataset. Create a 60/20/20% dataset split. For
eachk =1,3,5,7,9, compute the corresponding F measure on the validation test. Evaluate the
quality of the best classifier on the test set.

Note (*) Instead of a training/validation/test split, we can use various cross-validation
techniques, especially on smaller datasets. For instance, in a 5-fold cross-validation, we
split the original training set randomly into five disjoint parts: A, B, C, D, E (more or
less of the same size). We use each combination of four chunks as training sets and the
remaining part as the validation set, for which we generate the predictions and then
compute, say, the F measure:

training set validationset Fmeasure
BUCUDUE A Fu
AUCUDUE B Fg
AUBUDUE C Fc
AUBUCUE D Fp
AUBUCUD E Fg

In the end, we can determine the average F measure, (F4 + Fg + F- + Fp + Fg)/5,
as a basis for assessing different classifiers’ quality.

Once the best classifier is chosen, we can use the whole training sample to fit the final
model and then consider the separate test sample to assess its quality.

Furthermore, for highly imbalanced labels, some form of stratified sampling might
be necessary. Such problems are typically explored in more advanced courses in stat-
istical learning.

Exercise 12.18 (**) Redo the above exercise (assessing the wine colour classifiers), but this time
maximise the F measure obtained by a 5-fold cross-validation.

12.4 Clustering tasks

So far, we have been implicitly assuming that either each dataset comes from a single
homogeneous distribution, or we have a categorical variable that naturally defines the
groups that we can split the dataset into. Nevertheless, it might be the case that we
are given a sample coming from a distribution mixture, where some subsets behave

" hteps://github.com/gagolews/teaching-data/raw/master/other/wine_quality_all.csv
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differently, but a grouping variable has not been provided at all (e.g., we have height
and weight data but no information about the subjects’ sexes).

Clustering methods (also known as segmentation or quantisation; see, e.g., [2, 99]) par-
tition a dataset into groups based only on the spatial structure of the points’ relative
densities. In the k-means method, which we discuss below, the cluster structure is de-
termined based on the points’ proximity to k carefully chosen group centroids; com-
pare Section 8.4.2.

12.4.1 K-means method

Fixk > 2. Inthe k-means method', we seek k pivot points, ¢, ¢, ..., ¢, € R™, such
that the sum of squared distances between the input points in X € R™ and their
closest pivots is minimised:

n
minimise Z min {[x;. — ¢111%, Ix;. — €112, ..., Ix;. — ¢l } W.L.L. €1,C2, ... , -
i=1

Let us introduce the label vector I such that:

_ : 2
l; = arg mjmllxi,. —¢il%,

i.e., itis the index of the pivot closest to x; ..

We will consider all the points x; . with i such that [; = j as belonging to the same,
j-th, cluster (point group). This way I defines a partition of the original dataset into k
nonempty, mutually disjoint subsets.

Now, the above optimisation task can be equivalently rewritten as:
n
.. . _ 2
minimise lIx; . Cli|| W.I.t.€1,€p, ..., Ck.
i=1

And this is why we refer to the above objective function as the (total) within-cluster sum

of squares (WCSS). This problem looks easier, but let us not be tricked; I;s depend on
¢;s. They vary together. We have just made it less explicit.

- must be

It can be shown that given a fixed label vector / representing a partition, ¢;

the centroid (Section 8.4.2) of the points assigned thereto:

where np={i: I; = j}| gives the number of is such that [; = j, i.e., the size of the j-th
cluster.

Here is an example dataset (see below for a scatter plot):

2 We do not have to denote the number of clusters with k. We could be speaking about the 2-means, 3-
means, [-means, or ii-means method too. Nevertheless, some mainstream practitioners consider k-means
as akind of a brand name, let us thus refrain from adding to their confusion. Interestingly, another widely
known algorithm is called fuzzy (weighted) c-means [6].
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X = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +

non

"teaching-data/master/marek/blobs1.txt", delimiter=",

We can call scipy.cluster.vq.kmeans2 to find k = 2 clusters:

import scipy.cluster.vq
C, 1 = scipy.cluster.vqg.kmeans2(X, 2)

The discovered cluster centres are stored in a matrix with k rows and m columns, i.e.,

the j-th row gives ¢;.

C
## array([[ 0.99622971, 1.052801 ],
## [-0.90041365, -1.08411794]])

The label vector is:

1
## array([1, 1, 1, ..., 0, 0, 0], dtype=int32)

As usual in Python, indexing starts at 0. So for k = 2 we only obtain the labels 0 and 1.

Figure 12.10 depicts the two clusters together with the cluster centroids. We use 1 as
a colour selector in my_colours[1] (this is a clever instance of the integer vector-based
indexing). It seems that we correctly discovered the very natural partitioning of this
dataset into two clusters.

plt.scatter(X[:, 0], X[:, 1], c=np.array(["black", "#DF536B"]1)[1])
plt.plot(C[:, 0], C[:, 1], "yX")

plt.axis("equal")

plt.show()

Here are the cluster sizes:

np.bincount(l) # or, e.g., pd.Series(l).value counts()
## array([1017, 16039])

The label vector 1 can be added as a new column in the dataset. Here is a preview:

X1 = pd.DataFrame(dict(X1=X[:, 0], X2=X[:, 1], 1=1))

X1.sample(5, random_state=42) # some randomly chosen rows
## X1 X2
## 184 -0.973736 -0.417269
## 1724 1.432034 1.392533
## 251 -2.407422 -0.302862
## 1121 2.158669 -0.000564
## 1486 2.060772 2.672565

DO D o~

We can now enjoy all the techniques for processing data in groups that we have dis-
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-1

-2

-3

Figure 12.10. Two clusters discovered by the k-means method. Cluster centroids are
marked separately.

cussed so far. In particular, computing the columnwise means gives nothing else than
the above cluster centroids:

X1.groupby("1").mean()
## X1 X2
# 1l

# 0 0.996230 1.052801
## 1 -0.900414 -1.084118

The label vector 1 can be recreated by computing the distances between all the points
and the centroids and then picking the indexes of the closest pivots:

1 _test = np.argmin(scipy.spatial.distance.cdist(X, C), axis=1)
np.all(l_test == 1) # verify they are identical
## True

Important By construction, the k-means method can only detect clusters of convex
shapes (such as Gaussian blobs).

Exercise12.19 Perform the clustering of the wut_isolation' dataset and notice how non-
sensical, geometrically speaking, the returned clusters are.

B (*) And its relation to Voronoi diagrams.
4 https://github.com/gagolews/teaching-data/raw/master/clustering/wut_isolation.csv
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Exercise12.20 Determine a clustering of the wut_twosplashes™ dataset and display the res-
ults on a scatter plot. Compare them with those obtained on the standardised version of the data-
set. Recall what we said about the Euclidean distance and its perception being disturbed when a
plot’s aspect ratio is not 1:1.

Note (*) An even simpler classifier than the k-nearest neighbours one described
above builds upon the concept of the nearest centroids. Namely, it first determines the
centroids (componentwise arithmetic means) of the points in each class. Then, a new
point (from the test set) is assigned to the class whose centroid is the closest thereto.
The implementation of such a classifier is left as a rather straightforward exercise for
the reader. As an application, we recommend using it to extrapolate the results gener-
ated by the k-means method (for different ks) to previously unobserved data, e.g., all
points on a dense equidistant grid.

12.4.2 Solving k-means is hard

Unfortunately, the k-means method - the identification of label vectors/cluster
centres that minimise the total within-cluster sum of squares — relies on solving a
computationally hard combinatorial optimisation problem (e.g., [58]). In other words,
the search for the truly (i.e., globally) optimal solution takes, for larger # and k, an im-
practically long time.

As a consequence, we must rely on some approximate algorithms which all have one
drawback in common. Namely, whatever they return can be suboptimal. Hence, they
can constitute a possibly meaningless solution.

The documentation of scipy.cluster.vq.kmeans2 is, of course, honest about it. It
states that the method attempts to minimise the Euclidean distance between observations and
centroids. Further, sklearn.cluster.KMeans, which implements a similar algorithm,
mentions that the procedure is very fast [...], but it falls in local minima. That is why it can
be useful to restart it several times.

To understand what it all means, it will be very educational to study this issue in more
detail. This is because the discussed approach to clustering is not the only hard prob-
lem in data science (selecting an optimal set of independent variables with respect to
AIC or BIC in linear regression is another example).

12.4.3 Lloyd algorithm

Technically, there is no such thing as the k-means algorithm. There are many proced-
ures, based on numerous different heuristics, that attempt to solve the k-means prob-
lem. Unfortunately, neither of them is perfect. This is not possible.

Perhaps the most widely known and easiest to understand method is traditionally at-

5 https://github.com/gagolews/teaching- data/raw/master/clustering/wut_twosplashes.csv
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tributed to Lloyd [61]. It is based on the fixed-point iteration and. For a given X &€
R™ M and k > 2:

1. Pickinitial cluster centres ¢, ..., ¢; randomly.

2. For each point in the dataset, x; ., determine the index of its closest centre ;:

_ : 2
l; = arg m]_m lIx;,. —¢;l*

3. Compute the centroids of the clusters defined by the label vector /, i.e., for every
i=12,..k

1
Cj = 1’1_] Z Xj .,
1

:li:j

where n; = |{i: I; = j}| gives the size of the j-th cluster.

4. Ifthe objective function (total within-cluster sum of squares) has not changed sig-
nificantly since the last iteration (say, the absolute value of the difference between
the last and the current loss is less than 1077), then stop and return the current
¢q, ..., €y as the result. Otherwise, go to Step 2.

Exercise 12.21 (*) Implement the Lloyd algorithm in the form of a function kmeans (X, C),
where X is the data matrix (n x m) and where the rows in C, being a k x m matrix, give the
initial cluster centres.

12.4.4 Local minima

The way the above algorithm is constructed implies what follows.

Important Lloyd’s method guarantees that the centres ¢y, ..., ¢ it returns cannot be
significantly improved any further by repeating Steps 2 and 3 of the algorithm. Still, it
does not necessarily mean that they yield the globally optimal (the best possible) WCSS.
We might as well get stuck in a local minimum, where there is no better positioning
thereof in the neighbourhoods of the current cluster centres; compare Figure 12.11. Yet,
had we looked beyond them, we could have found a superior solution.

A variant of the Lloyd method is given in scipy.cluster.vq.kmeans2, where the ini-
tial cluster centres are picked at random. Let us test its behaviour by analysing three
chosen categories from the 2016 Sustainable Society Indices' dataset.

ssi = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/ssi_2016_categories.csv",
comment="#")
X = ssi.set_index("Country").loc[:,
(continues on next page)

16 https://ssi.wi.th-koeln.de/
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Figure 12.11. An example function (of only one variable; our problem is much higher-
dimensional) with many local minima. How can we be sure there is no better min-
imum outside of the depicted interval?

(continued from previous page)
["PersonalDevelopmentAndHealth", "WellBalancedSociety", "Economy"]
1.rename({
"PersonalDevelopmentAndHealth": "Health",
"WellBalancedSociety": "Balance",
"Economy": "Economy"
}, axis=1) # rename columns
n = X.shape[0]
X.loc[["Australia", "Germany", "Poland", "United States"], :] # preview

## Health  Balance  Economy
## Country

## Australia 8.590927 6.105539 7.593052
## Germany 8.629024 8.036620 5.575906
## Poland 8.265950 7.331700 5.989513

## United States 8.357395 5.069076 3.756943

It is a three-dimensional dataset, where each point (row) corresponds to a different
country. Let us find a partition into k = 3 clusters.

k=3
np.random.seed(123) # reproducibility matters
C1, 11 = scipy.cluster.vq.kmeans2(X, k)
C1
#4 array([[7.99945084, 6.50033648, 4.36537659],
(continues on next page)
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(continued from previous page)

## [7.6370645 , 4.54396676, 6.89893746],
## [6.24317074, 3.17968018, 3.60779268]])

The objective function (total within-cluster sum of squares) at the returned cluster
centres is equal to:

import scipy.spatial.distance

def get_wcss(X, C):
D = scipy.spatial.distance.cdist(X, C)**2
return np.sum(np.min(D, axis=1))

get_wecss(X, C1)
## 446.5221283436733

Is it acceptable or not necessarily? We are unable to tell. What we can do, however, is
to run the algorithm again, this time from a different starting point:

np.random.seed(1234) # different seed - different initial centres
C2, 12 = scipy.cluster.vg.kmeans2(X, k)

2

## array([[7.80779013, 5.19409177, 6.97790733],
## [6.31794579, 3.12048584, 3.84519706],
## [7.92606993, 6.35691349, 3.91202972]])

get_wecss(X, C2)
## 437.51120966832775

It is a better solution (we are lucky; it might as well have been worse). But is it the best
possible? Again, we cannot tell, alone in the dark.

Does a potential suboptimality affect the way the data points are grouped? It is indeed
the case here. Let us look at the contingency table for the two label vectors:

pd.DataFrame(dict(11=11, 12=12)).value_counts().unstack(fill_value=0)
#t 12 o 1 2

7t 11

## 0 8 0 43

#H 1 39 6 o

## 2 0 57 1

Important Clusters are essentially unordered. The label vector (1,1,2,2,1, 3) repres-
ents the same clustering as the label vectors (3,3,2,2,3,1) and (2,2,3,3,2,1).

By looking at the contingency table, we see that clusters o, 1, and 2 in 11 correspond,
respectively, to clusters 2, 0, and 1in 12 (via a kind of majority voting). We can relabel
the elements in 11 to get a more readable result:



322 IV HETEROGENEOUS DATA

11p = np.array([2, 0, 1])[11]
pd.DataFrame(dict(l1p=11p, 12=12)).value_counts().unstack(fill_value=0)
#t 12 o 1 2

## lip
## 0 39 6 0
## 1 0 57 1

#H 2 8 0 43

Much better. It turns out that 8+6+1 countries are categorised differently. We would
definitely not want to initiate any diplomatic crisis because of our not knowing that
the above algorithm might return suboptimal solutions.

Exercise 12.22 () Determine which countries are affected.

12.4.5 Random restarts

There will never be any guarantees, but we can increase the probability of generating a
satisfactory solution by simply restarting the method multiple times from many ran-
domly chosen points and picking the best" solution (the one with the smallest WCSS)
identified as the result.

Let us make 1000 such restarts:

wess, Cs = [1, []

for 1 in range(1000):
C, 1 = scipy.cluster.vqg.kmeans2(X, k, seed=1)
Cs.append(C)
wcss. append(get_wecss(X, C))

The best of the local minima (no guarantee that it is the global one, again) is:

np.min(wcss)
## 437.51120966832775

It corresponds to the cluster centres:

Cs[np.argmin(wcss)]

## array([[7.80779013, 5.19409177, 6.97790733],
## [7.92606993, 6.35691349, 3.91202972],
## [6.31794579, 3.12048584, 3.84519706]])

They are the same as €2 above (up to a permutation of labels). We were lucky®, after
all.

17 1f we have many different heuristics, each aiming to approximate a solution to the k-means problem,
from the practical point of view it does not really matter which one returns the best solution — they are
merely our tools to achieve a higher goal. Ideally, we could run all of them many times and get the result
that corresponds to the smallest WCSS. It is crucial to do our best to find the optimal set of cluster centres —
the more approaches we test, the better the chance of success.

18 Mind who is the benevolent dictator of the pseudorandom number generator’s seed.
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It is very educational to look at the distribution of the objective function at the identi-
fied local minima to see that, proportionally, in the case of this dataset it is not rare to
end up in a quite bad solution; see Figure 12.12.

plt.hist(wcss, bins=100)
plt.show()
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Figure 12.12. Within-cluster sum of squares at the results returned by different runs
of the k-means algorithm. Sometimes we might be very unlucky.

Also, Figure 12.13 depicts all the cluster centres to which the algorithm converged. We
see that we should not be trusting the results generated by a single run of a heuristic
solver to the k-means problem.

Example 12.23 (%) The scikit-learn package has an algorithm that is similar to the Lloyd’s
one. The method is equipped with the n_1in1t parameter (Which defaults to 10) which automatic-
ally applies the aforementioned restarting.

import sklearn.cluster

np.random. seed(123)

km = sklearn.cluster.KMeans(k, n_init=10)
km. fit(X)

## KMeans(n_clusters=3, n_init=10)
km.inertia_ # WCSS - not optimal!

## 437.5467188958928

Still, there are no guarantees: the solution is suboptimal too. As an exercise, pass n_init=100,
n_init=1000, and n_1init=10000 and determine the returned WCSS.

Note It is theoretically possible that a developer from the scikit-learn team, when
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Figure 12.13. Traces of different cluster centres our k-means algorithm converged to.
Some are definitely not optimal, and therefore the method must be restarted a few
times to increase the likelihood of pinpointing the true solution.

they see the above result, will make a tweak in the algorithm so that after an update
to the package, the returned minimum will be better. This cannot be deemed a bug
fix, though, as there are no bugs here. Improving the behaviour of the method in this
example will lead to its degradation in others. There is no free lunch in optimisation.

Note Some datasets are more well-behaving than others. The k-means method is over-
all quite usable, but we must always be cautious.

We recommend performing at least 100 random restarts. Also, if a report from data
analysis does not say anything about the number of tries performed, we are advised
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to assume that the results are gibberish'. People will complain about our being a pain,
but we know better; compare Rule#9.

Exercise 12.24 Runthek-meansmethod, k = 8, onthe sipu_unbalance* dataset from many
random sets of cluster centres. Note the value of the total within-cluster sum of squares. Also, plot
the cluster centres discovered. Do they make sense? Compare these to the case where you start the
method from the following cluster centres which are close to the global minimum.

F—15 5 1
~12 10
~10 5
15 0
C=1 15 10
20 5
250
25 10 )

12.5 Further reading

An overall noteworthy introduction to classification is [47] and [8]. Nevertheless, as
we said earlier, we recommend going through a solid course in matrix algebra and
mathematical statistics first, e.g., [20, 39] and [21, 38, 40]. For advanced theoretical
(probabilistic, information-theoretic) results, see, e.g., [9, 22].

Hierarchical clustering algorithms (see, e.g., [32, 66]) are also worthwhile as they
do not require asking for a fixed number of clusters. Furthermore, density-based
algorithms (DBSCAN and its variants) [12, 25, 59] utilise the notion of fixed-radius
search that we introduced in Section 8.4.4.

There are quite a few ways that aim to assess the quality of clustering results, but their
meaningfulness is somewhat limited; see [36] for discussion.

12.6 Exercises
Exercise12.25 Name the data type of the objects that the DataFrame. groupby method returns.

Exercise 12.26 What is the relationship between the GroupBy, DataFrameGroupBy, and
SeriesGroupBy classes?

Exercise 12.27 What are relative z-scores and how can we compute them?

19 For instance, R's stats: :kmeans automatically uses nstart=1. It is not rare, unfortunately, that
data analysts only stick with the default arguments.
20 hteps://github.com/gagolews/teaching-data/raw/master/clustering/sipu_unbalance.csv
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Exercise 12.28 Why and when the accuracy score might not be the best way to quantify a clas-
sifier’s performance?

Exercise 12.29 What is the difference between recall and precision, both in terms of how they
are defined and where they are the most useful?

Exercise 12.30 Explain how the k-nearest neighbour classification and regression algovithms
work. Why do we say that they are model-free?

Exercise 12.31 In the context of k-nearest neighbour classification, why it might be important
to resolve the potential ties at random when computing the mode of the neighbours’ labels?

Exercise 12.32 What is the purpose of a training/test and a training/validation/test set split?
Exercise 12.33 Give the formula for the total within-cluster sum of squares.

Exercise 12.34 Are there any cluster shapes that cannot be detected by the k-means method?
Exercise 12.35 Why do we say that solving the k-means problem is hard?

Exercise 12.36 Why restarting Lloyd’s algorithm many times is necessary? Why are reports
from data analysis that do not mention the number of restarts not trustworthy?
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Accessing databases

pandas is convenient for working with data that fit into memory and which can be
stored in individual CSV files. Still, larger information banks in a shared environment
will often be made available to us via relational (structured) databases such as Postgr-
eSQL or MariaDB, or a wide range of commercial products.

Most commonly, we use SQL (Structured Query Language) to define the data chunks®
we wish to analyse. Then, we fetch them from the database driver in the form of a
pandas data frame. This enables us to perform the operations we are already familiar
with, e.g., various transformations or visualisations.

Below we make a quick introduction to the basics of SQL using SQLite?, which is
a lightweight, flat-file, and server-less open-source database management system.
Overall, SQLite is a sensible choice for data of even hundreds or thousands of giga-
bytes in size that fit on a single computer’s disk. This is more than enough for playing
with our data science projects or prototyping more complex solutions.

Important In this chapter, we will learn that the syntax of SQL is very readable: it
is modelled after the natural (English) language. The purpose of this introduction is
not to compose own queries nor to design new databanks. The latter is covered by a
separate course on database systems; see, e.g., [15, 19].

13.1 Example database

In this chapter, we will be working with a simplified data dump of the Q&A site Travel
Stack Exchange?, which we downloaded* on 2017-10-31. It consists of five separate
data frames.

! Technically, there are ways to use pandas with data that do not fit into memory. However, SQL is
usually a more versatile choice. If we have too much data, we can always fetch their random samples (this is
what statistics is for) or pre-aggregate the information on the server side. This should be sufficient for most
intermediate-level users.

2 https://sqlite.org/

3 https://travel.stackexchange.com/

4 https://archive.org/details/stackexchange
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First, Tags gives, amongst others, topic categories (TagName) and how many questions

mention them (Count):

Tags = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/travel_stackexchange com_2017/Tags.csv.gz",

comment="#")
Tags.head(3)

#H Count ExcerptPostId Id TagName WikiPostId

## 0 104 2138.0 1 cruising
## 1 43 357.0 2 caribbean
##t 2 43 319.0 4 vacations

2137.0
356.0
318.0

Second, Users provides information on the registered users.

Users = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +

"teaching-data/master/travel_stackexchange_com_2017/Users.csv.gz",

comment="#")
Users.head(3)

## AccountId Age CreationDate
## 0 -1.0  NaN 2011-06-21T15:16:44.253
## 1 2.0 40.0 2011-06-21T20:10:03.720
## 2 7598.0 32.0 2011-06-21T720:11:02.490
##

## [3 rows x 11 columns]

. Reputation UpVotes Views

1.0 2472.0 0.0
101.0 1.0 31.0
101.0 1.0 14.0

Third, Badges recalls all rewards handed to the users (User1d) for their engaging in vari-

ous praiseworthy activities:

Badges = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +

"teaching-data/master/travel_stackexchange_com 2017/Badges.csv.gz",

comment="#")
Badges.head(3)

## Class Date Id Name
#4 0 3 2011-06-21T20:16:48.916 1 Autobiographer
#H 1 3 2011-06-21T20:16:48.910 2 Autobiographer
##H 2 3 2011-06-21T20:16:48.910 3 Autobiographer

TagBased
False
False
False

UserId
2
3
4

Fourth, Posts lists all the questions and answers (the latter do not have ParentId set to

NaN).

Posts = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +

"teaching-data/master/travel_stackexchange_com_2017/Posts.csv.gz",

comment="#")
Posts.head(3)

## AcceptedAnswerId ... ViewCount
## 0 393.0 ... 419.0
## 1 NaN ... 1399.0
## 2 NaN ... NaN
##

#4 [3 rows x 17 columns]
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Fifth, votes list all the up-votes (VoteTypeId equal to 2) and down-votes (VoteTypeld of
3) to all the posts.

Votes = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/travel_stackexchange com 2017/Votes.csv.gz",
comment="#")

Votes.head(3)

## BountyAmount CreationDate Id PostId UserId VoteTypeld
## 0 NaN 2011-06-21T00:00:00.000 1 1 NaN 2
#4 1 NaN 2011-06-21T00:00:00.000 2 1 NaN 2
#H 2 NaN 2011-06-21T00:00:00.000 3 2 NaN 2

Exercise 13.1 See the README file for a detailed description of each column. Note that rows
are uniquely defined by their respective Ids. They are relations between the data frames, e.g.,
Users.Id Vs Badges.UserId, Posts.Id Vs Votes.PostId, etc. Moreover, for privacy reasons,
some UserIds might be missing. In such a case, they are encoded with a not-a-number; compare
Chapter1s.

13.2 Exporting data to a database

Let us establish a connection with the to-be SQLite database. In our case, this will be
an ordinary file stored on the computer’s disk:

import tempfile, os.path

dbfile = os.path.join(tempfile.mkdtemp(), "travel.db")
print(dbfile)

## /tmp/tmph14m35f0/travel.db

The above defines the file path (compare Section 13.6.1) where the database is going to
be stored. We use a randomly generated filename inside the local file systent’s (we are
on Linux) temporary directory, /tmp. This is just a pleasant exercise, and we will not be
using this database afterwards. The reader might prefer setting a filename relative to
the current working directory (as given by os.getcwd), e.g., dbfile = "travel.db".

We can now connect to the database:

import sqlite3
conn = sqlite3.connect(dbfile)

The database might now be queried: we can add new tables, insert new rows, and re-
trieve records.

5 https://github.com/gagolews/teaching- data/raw/master/travel_stackexchange_com_2017/README.
md
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Important In the end, we must not forget about the call to conn.close().

Our data are already in the form of pandas data frames. Therefore, exporting them to
the database is straightforward. We only need to make a series of calls to the pandas.
DataFrame.to_sql method.

Tags.to_sql("Tags", conn, index=False)
Users.to_sql("Users", conn, index=False)
Badges.to_sql("Badges", conn, index=False)
Posts.to_sql("Posts", conn, index=False)
Votes.to_sql("Votes", conn, index=False)

Note (*)Itis possible to export data that do not fit into memory by reading them in
chunks of considerable, but not too large, sizes. In particular pandas. read_csv has the
nrows argument that lets us read several rows from a file connection; see Section 13.6.4.
Then, pandas.DataFrame.to_sql(..., if_exists="append") canbeused to append new
rows to an existing table.

Exporting data can be done without pandas as well, e.g., when they are to be fetched
from XML or JSON files (compare Section 13.5) and processed manually, row by row.
Intermediate-level SQL users can call conn.execute("CREATE TABLE t..."), followed by
conn.executemany("INSERT INTO t VALUES(?, ?, ?)", 1),andthenconn.commit(). This
will create a new table (here: named t) populated by a list of records (e.g., in the form
of tuples or numpy vectors). For more details, see the manual® of the sqlite3 package.

13.3 Exercises on SQL vs pandas

We can use pandas to fetch the results of any SQL query in the form of a data frame.
For example:

pd.read_sql_query(
SELECT * FROM Tags LIMIT 3

""", conn)

#H Count ExcerptPostId Id TagName WikiPostId
## 0 104 2138.0 1 cruising 2137.0
##4 1 43 357.0 2 caribbean 356.0
##H 2 43 319.0 4 vacations 318.0

The above query selected all columns (SELECT *) and the first three rows (LIMIT 3) from
the Tags table.

6 https://docs.python.org/3/library/sqlite3.html
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Exercise 13.2 Forthe above and all the following SQL queries, write the equivalent Python code
that generates the same result using pandas functions and methods. In each case, there might be
more than one equally fine solution. In case of any doubt about the meaning of the queries, please
refer to the SQLite documentation’. Example solutions are provided at the end of this section.

Example 13.3 Fora reference query:

o

resla = pd.read_sql_query(
SELECT * FROM Tags LIMIT 3
, conn)

i

The equivalent pandas implementation might look like:

resib = Tags.head(3)

To verify that the results are equal, we can call:

pd. testing.assert_frame_equal(resla, reslb) # no error == OK

No error message means that the test is passed. The cordial thing about the assert_frame_equal
function is that it ignores small round-off errors introduced by avithmetic operations.

Nonetheless, the results generated by pandas might be the same up to the reordering of rows.
Insuch a case, before calling pandas . testing. assert_frame_equal, we can invoke DataFrame.
sort_values on both data frames to sort them with respect to 1 or 2 chosen columns.

13.3.1 Filtering

Exercise 13.4 From Tags, select two columns Taghame and Count and rows for which TagName
is equal to one of the three choices provided.

i

res2a = pd.read_sql_query(
SELECT TagName, Count

FROM Tags
WHERE TagName IN ('poland', 'australia', 'china')
"t conn)
res2a
## TagName Count
# 0 china 443
## 1 australia 411
#h 2 poland 139

Hint: use pandas. Series.isin.

Exercise 13.5 Select a set of columns from Posts whose rows fulfil a given set of conditions.

o

res3a = pd.read_sql_query(
SELECT Title, Score, ViewCount, FavoriteCount

(continues on next page)

7 https://sqlite.org/lang.html
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(continued from previous page)
FROM Posts
WHERE PostTypeId=1 AND
ViewCount>=10000 AND
FavoriteCount BETWEEN 35 AND 100

""", conn)

res3a

#H Title ... FavoriteCount
## 0 When traveling to a country with a different c... ... 35.0
#4 1 How can I do a "broad" search for flights? ... 49.0
## 2 Tactics to avoid getting harassed by corrupt p... ... 42.0
## 3 Flight tickets: buy two weeks before even duri... ... 36.0
## 4 OK we're all adults here, so really, how on ea... ... 79.0
## 5 How to intentionally get denied entry to the U... ... 53.0
## 6 How do you know if Americans genuinely/literal... ... 79.0
## 7 OK, we are all adults here, so what is a bidet.. R 38.0
# 8 How to cope with too slow Wi-Fi at hotel’ S 41.0
##

## [9 rows x 4 columns]

13.3.2 Ordering

Exercise13.6 Selectthe Titleand Score columnsfrom Postswhere ParentIdis missing (i.e.,
the post is, in fact, a question) and Title is well-defined. Then, sort the vesults by the Score
column, decreasingly (descending order). Finally, return only the first five rows (e.g., top five
scoring questions).

i

res4a = pd.read_sql_query(
SELECT Title, Score
FROM Posts
WHERE ParentId IS NULL AND Title IS NOT NULL
ORDER BY Score DESC

LIMIT 5

"t conn)

res4a

## Title Score
## 0 OK we're all adults here, so really, how on ea... 306
## 1 How do you know if Americans genuinely/literal... 254
## 2 How to intentionally get denied entry to the U... 219
## 3 Why are airline passengers asked to lift up wi... 210
## 4 why prohibit engine braking? 178

Hint: use pandas. DataFrame. sort_values and numpy.isnan or pandas. isnull.

13.3.3 Removing duplicates

Exercise 13.7 Get all unique badge names for the user with Id=23.
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i

res5a = pd.read_sql_query(
SELECT DISTINCT Name
FROM Badges
WHERE UserId=23

"o conn)

ressa

## Name
## 0 Supporter
#4 1 Student
w2 Teacher
## 3 Scholar
## 4 Beta
#t 5 Nice Question
#t 6 Editor
##t 7 Nice Answer
## 8 Yearling
## 9  Popular Question
## 10 Taxonomist

## 11 Notable Question

Hint: use pandas .DataFrame.drop_duplicates.

Exercise 13.8 Foreach badge handed to the user with Id=23, extract the award year store it in
a new column named Year. Then, select only the unique pairs (Name, Year).

i

reséa = pd.read_sql_query(
SELECT DISTINCT
Name,
CAST(strftime('%Y', Date) AS FLOAT) AS Year
FROM Badges
WHERE UserId=23

"t conn)

reséa

## Name Year
## 0 Supporter 2011.0
#H 1 Student 2011.0
# 2 Teacher 2011.0
## 3 Scholar 26011.0
## 4 Beta 2011.0
# 5 Nice Question 2011.0
#H 6 Editor 2012.0
w7 Nice Answer 2012.0
## 8 Yearling 2012.0
## 9 Nice Question 2012.0
## 10 Nice Question 2013.0
## 11 Yearling 2013.0
## 12 Popular Question 2014.0
## 13 Yearling 2014.0
## 14 Taxonomist 2014.0

(continues on next page)
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(continued from previous page)

## 15 Notable Question 2015.0
## 16 Nice Question 2017.0

Hint: use Badges.Date.astype("datetime64[s]").dt.strftime("%Y").astype( float");
see Chapter 16.

13.3.4 Grouping and aggregating

Exercise13.9 Count how many badges of each type the user with 1d=23 won. Also, for each
badge type, compute the minimal, average, and maximal receiving year. Return only the top four
badges (with respect to the counts).

i

res7a = pd.read_sql_query(

SELECT
Name,
COUNT(*) AS Count,
MIN(CAST(strftime('%Y', Date) AS FLOAT)) AS MinYear,
AVG(CAST(strftime('%Y', Date) AS FLOAT)) AS MeanYear,
MAX(CAST(strftime('%Y', Date) AS FLOAT)) AS MaxYear

FROM Badges

WHERE UserId=23

GROUP BY Name

ORDER BY Count DESC

LIMIT 4
"t conn)
resrza
## Name Count MinYear MeanYear MaxYear
## 0 Nice Question 4 2011.0 2013.25 2017.0
## 1 Yearling 2012.0 2013.00 2014.0

2014.0 2014.00 2014.0
2015.0  2015.00 2015.0

## 2 Popular Question
## 3 Notable Question

N W W

Exercise 13.10 Count how many unique combinations of pairs (Name, Year) for the badges
won by the user with Id=23 are there. Then, return only the rows having Count greater than 1
and order the results by Count decreasingly. In other words, list the badges received more than
once in any given year.

i

res8a = pd.read_sql_query(
SELECT
Name,
CAST(strftime('%Y', Date) AS FLOAT) AS Year,
COUNT(*) AS Count
FROM Badges
WHERE UserId=23
GROUP BY Name, Year
HAVING Count > 1
ORDER BY Count DESC
(continues on next page)
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(continued from previous page)

"t conn)

res8a

## Name Year Count
## 0 Popular Question 2014.0 3
## 1 Notable Question 2015.0 2

Note that WHERE is performed before GROUP BY, and HAVING is applied thereafter.

13.3.5 Joining

Exercise 13.11 Join (merge) Tags, Posts, and Users for all posts with OwnerUserIdnot equal
to -1 (i.e., the tags which were created by “alive” users). Return the top six records with respect to
Tags. Count.

wn

res9a = pd.read_sql_query(
SELECT Tags.TagName, Tags.Count, Posts.OwnerUserlId,
Users.Age, Users.Location, Users.DisplayName
FROM Tags
JOIN Posts ON Posts.Id=Tags.WikiPostId
JOIN Users ON Users.AccountId=Posts.OwnerUserId

WHERE OwnerUserId != -1

ORDER BY Tags.Count DESC, Tags.TagName ASC

LIMIT 6
"t conn)
res9a
## TagName Count ... Location DisplayName
## 0 canada 802 ... Mumbai, India hitec
## 1 europe 681 ... Philadelphia, PA Adam Tuttle
## 2 visa-refusals 554 ... New York, NY Benjamin Pollack
#4 3 australia 411 ... Mumbai, India hitec
#4 4 eu 204 ... Philadelphia, PA Adam Tuttle
## 5 new-york-city 204 ... Mumbai, India hitec
##

## [6 rows x 6 columns]

Exercise 13.12 First, create an auxiliary (temporary) table named UpVotesTab, where we store
the information about the number of up-votes (VoteTypeId=2) that each post has received. Then,
join (merge) this table with Posts and fetch some details about the five questions (Post TypeId=1)
with the most up-votes.

i

resl@a = pd.read_sql_query(
SELECT UpVotesTab.*, Posts.Title FROM
(
SELECT PostId, COUNT(*) AS UplVotes
FROM Votes
WHERE VoteTypeId=2
GROUP BY PostId

) AS UpVotesTab
(continues on next page)
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(continued from previous page)
JOIN Posts ON UpVotesTab.PostId=Posts.Id
WHERE Posts.PostTypeld=1
ORDER BY UpVotesTab.UpVotes DESC LIMIT 5

", conn)

res10a

## PostId UpVotes Title
## 0 3080 307 OK we're all adults here, so really, how on ea..
#4 1 38177 254 How do you know i1f Americans genuinely/literal...
#4 2 24540 221 How to intentionally get denied entry to the U..
# 3 20207 211 Why are airline passengers asked to lift up wi..
#4 4 96447 178 why prohibit engine braking?

13.3.6 Solutions to exercises
In this section we provide examples of solutions to the above exercises.
Example 13.13 To obtain a result equivalent to res2a, we need basic filtering only:

res2b = (
Tags.
loc[
Tags. TagName. isin(["poland", "australia", "china"]),
[ "TagName", "Count"]
7.

reset_index(drop=True)

Let us verify whether the two data frames are identical:

pd. testing.assert_frame_equal(res2a, res2b) # no error == OK

Example 13.14 To generate res3awith pandas only, we need some more complex filtering with

loc/...]:

res3b = (

Posts.

locl
(Posts.PostTypeld == 1) & (Posts.ViewCount >= 10000) &
(Posts. FavoriteCount >= 35) & (Posts.FavoriteCount <= 100),
["Title", "Score", "ViewCount", "FavoriteCount"]

7.

reset_index(drop=True)

)

pd. testing.assert_frame _equal(res3a, res3b) # no error == OK

Example 13.15 For res4a, some filtering and sorting is all we need:

res4b = (

(continues on next page)
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(continued from previous page)
Posts.
loc[
Posts.ParentId.isna() & (~Posts.Title.isna()),
["Title", "Score"]

7.
sort_values("Score", ascending=False).
head(5).
reset_index(drop=True)
)
pd. testing.assert_frame_equal(res4a, res4b) # no error == OK

Example 13.16 The key to res5ais the pandas.DataFrame.drop_duplicates method:

ressb = (
Badges.
loc[Badges.UserId == 23, ["Name"]].
drop_duplicates().
reset_index(drop=True)

)

pd. testing.assert_frame_equal(res5a, res5b) # no error == OK

Example13.17 For resé6a, we first need to add a new column to the copy of Badges:

Badges? = Badges.copy() # otherwise we would destroy the original object
Badges2.loc[:, "Year"] = (

Badges2.Date.astype("datetime64[s]").dt.strftime("%Y").astype("float")
)

Then, we apply some basic filtering and the removal of duplicated rows:

reséb = (
Badges?2.
loc[Badges2.UserId == 23, ["Name", "Year"]].
drop_duplicates().
reset_index(drop=True)

)

pd.testing.assert_frame_equal(reséa, res6b) # no error == 0K

Example 13.18 For res7a, we can use pandas . DataFrameGroupBy . aggregate:

Badges2 = Badges.copy()
Badges2.loc[:, "Year"] = (
Badges2.Date.astype("datetime64[s]").dt.strftime("%Y").astype("float")
)
res7b = (
Badges?2.
loc[Badges2.UserId == 23, ["Name", "Year"]].
groupby("Name")["Year"].
aggregate([len, "min", "mean", "max"]).
(continues on next page)
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(continued from previous page)
sort_values("len", ascending=False).
head(4).
reset_index()

)

res7b.columns = ["Name", "Count", "MinYear", "MeanYear", "MaxYear"]

Had we not converted Year to float, we would obtain a meaningless average year, without any
warning.

Unfortunately, the vows in res7aand res7bare ordered differently. For testing, we need to reorder
them in the same way:

pd. testing.assert_frame_equal(
res7a.sort_values(["Name", "Count"]).reset_index(drop=True),
res7b.sort_values(["Name", "Count"]).reset_index(drop=True)
) # no error == 0K

Example 13.19 For res8a, we first count the number of values in each group:

Badges2 = Badges.copy()
Badges2.loc[:, "Year"] = (
Badges2.Date.astype("datetime64[s]").dt.strftime("%Y").astype("float")
)
res8b = (
Badges?2.
loc[ Badges2.UserId == 23, ["Name", "Year"] ].
groupby(["Name", "Year"]).
size().
rename("Count").
reset_index()

The HAVING part is performed after WHERE and GROUP BY.

res8b = (
res8b.
loc[ res8b.Count > 1, : ].
sort_values("Count", ascending=False).
reset_index(drop=True)

)

pd. testing.assert_frame_equal(res8a, res8b) # no error == OK

Example 13.20 To obtain a result equivalent to res9a, we need to merge Posts with Tags, and
then merge the result with Users:

res9b = pd.merge(Posts, Tags, left_on="Id", right_on="WikiPostId")
res9b = pd.merge(Users, res9b, left _on="AccountId", right_on="OwnerUserId")

Then, some filtering and sorting will do the trick:
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res9b = (
res9b.
loc[
(res9b.0OwnerUserId != -1) & (~res9b.0OwnerUserId.isna()),
["TagName", "Count", "OwnerUserId", "Age", "Location", "DisplayName"]
].
sort_values(["Count", "TagName"], ascending=[False, True]).
head(6).

reset_index(drop=True)

In SQL, “not equals to -1” implies IS NOT NULL.

pd. testing.assert_frame_equal(res9a, res9b) # no error == 0K

Example 13.21 To obtain a result equivalent to res19a, we first need to create an auxiliary data
frame that corresponds to the subquery.

UpVotesTab = (
Votes.
loc[Votes.VoteTypeld==2, :].
groupby("PostId").
size().
rename("UpVotes").
reset_index()

And now:

res10b = pd.merge(UpVotesTab, Posts, left on="PostId", right_on="Id")
resi0b = (
res1eb.
loc[res10b.PostTypeld==1, ["PostId", "UpVotes", "Title"]].
sort_values("UpVotes", ascending=False).
head(5).
reset_index(drop=True)

)

pd. testing.assert_frame_equal(res1@a, resi@b) # no error == OK

13.4 Closing the database connection

We said we should not forget about:

conn.close()

This gives some sense of closure. Such a relief.
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13.5 Common data serialisation formats for the Web

CSV files are an all-round way to exchange tabular data between different program-
ming and data analysis environments.

For unstructured or non-tabularly-structured data, XML and JSON (and its superset,
YAML) are the common formats of choice, especially for communicating with different
Web APIs.

We recommend solving the following exercises to make sure we can fetch data in these
formats. Sadly, often this will require some quite tedious labour, neither art nor sci-
ence; see also [91] and [18].

Exercise 13.22 Consider the Web API for accessing® the on-street parking bay sensor data in
Melbourne, VIC, Australia. Using the json package, convert the data® in the JSON format to a
data frame.

Exercise 13.23 Australian Radiation Protection and Nuclear Safety Agency publishes'™® UV
data for different Aussie cities. Using the xm1 package, convert this XML dataset™ to a data frame.

Exercise 13.24 (%) Check out the English Wikipedia article with a list of 20th-century classical
composers*. Using pandas. read_html, convert the Climate Data table included therein to a
data frame.

Exercise13.25 (*) Using the Ixml package, author a function that converts each bullet list fea-
tured in a given Wikipedia article (e.g., this one®®), to a list of strings.

Exercise 13.26 (**) Import an archived version of a Stack Exchange™ site that you find inter-
esting and stove it in an SQLite database. You can find the relevant data dumps here®.

Exercise 13.27 (**) Download'® and then import an archived version of one of the wikis hosted
by the Wikimedia Foundation' (e.g., the whole English Wikipedia) so that it can be stored in an
SQLite database.

8 https://data.melbourne.vic.gov.au/explore/dataset/on-street- parking-bay- sensors/api

9 https://data.melbourne.vic.gov.au/api/explore/v2.1/catalog/datasets/
on-street-parking- bay- sensors/exports/json

10 https://www.arpansa.gov.au/our-services/monitoring/ultraviolet- radiation- monitoring/
ultraviolet-radation-data-information

" https://uvdata.arpansa.gov.au/xml/uvvalues.xml

2 https://en.wikipedia.org/wiki/List_of_20th-century_classical_composers

B https://en.wikipedia.org/wiki/Category:Fr%C3%A9d%C3%A9ric_Chopin

4 https://stackexchange.com/

15 https://archive.org/details/stackexchange

16 https://meta.wikimedia.org/wiki/Data_dumps

17 https://wikimediafoundation.org/


https://data.melbourne.vic.gov.au/explore/dataset/on-street-parking-bay-sensors/api
https://data.melbourne.vic.gov.au/api/explore/v2.1/catalog/datasets/on-street-parking-bay-sensors/exports/json
https://www.arpansa.gov.au/our-services/monitoring/ultraviolet-radiation-monitoring/ultraviolet-radation-data-information
https://uvdata.arpansa.gov.au/xml/uvvalues.xml
https://en.wikipedia.org/wiki/List_of_20th-century_classical_composers
https://en.wikipedia.org/wiki/List_of_20th-century_classical_composers
https://en.wikipedia.org/wiki/Category:Fr%C3%A9d%C3%A9ric_Chopin
https://stackexchange.com/
https://archive.org/details/stackexchange
https://meta.wikimedia.org/wiki/Data_dumps
https://wikimediafoundation.org/
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13.6 Working with many files

For the mass-processing of many files, it is worth knowing of the most basic functions
for dealing with file paths, searching for files, etc. Usually, we will be looking up ways
to complete specific tasks at hand, e.g., how to read data from a ZIP-like archive, on
the internet. After all, contrary to the basic operations of vectors, matrices, and data
frames, they are not amongst the actions that we perform frequently.

Good development practices related to data storage are described in [46].

13.6.1 File paths

UNIX-like operating systems, including GNU/Linux and mOS, use slashes, “/”, as
path separators, e.g., " /home/marek/file.csv". Win*s, however, uses backslashes, “\”,
which have a special meaning in character strings (escape sequences; see Section 2.1.3).
Therefore, they should be input as, e.g., "c:\\users\\marek\\file.csv". Alternatively,
we can use raw strings, where the backslash is treated literally, e.g., r"c: \users\marek\
file.csv".

When constructing file paths programmatically, it is thus best to rely on os. path. join,
which takes care of the system-specific nuances.

import os.path
os.path.join("~", "Desktop", "file.csv") # we are on GNU/Linux
## '~/Desktop/file.csv’

The tilde, “~”, denotes the current user’s home directory.

For storing auxiliary data, we can use the system’s temporary directory. See the tem-
pfile module for functions that generate appropriate file paths therein. For instance,
a subdirectory inside the temporary directory can be created via a call to tempfile.
mkdtemp.

Important We will frequently be referring to file paths relative to the working direct-
ory of the currently executed Python session (e.g., from which IPython/Jupyter note-
book server was started); see os.getcwd.

All non-absolute file names (ones that do not start with “~”, “/”, “c:\\”, and the like),
for example, "filename.csv" or os.path.join("subdir", "filename.csv") are always
relative to the current working directory.

For instance, if the working directory is "/home/marek/projects/python", then
"filename.csv" refers to "/home/marek/projects/python/filename.csv".

Also, “..” denotes the current working directory’s parent directory. Thus, "../
filename2.csv" resolves to "/home/marek/projects/filename2.csv".



342 IV HETEROGENEOUS DATA

Exercise 13.28 Print the current working directory by calling os. getcwd. Next, download the
file air_quality_2618 param® and save it in the current Python session’s working directory
(e.g., inyourweb browser, right-click on the web page’s canvas and select Save Page As...). Load
with pandas . read_csv by passing "air_quality_2018 param.csv" asthe input path.

Exercise 13.29 (*) Download the aforementioned file programmatically (if you have not done
so yet) using the requests module.

13.6.2 File search

glob.glob and os.listdir generate a list of files in a given directory (and possibly all
its subdirectories).

os.path.isdir and os.path.isfile determine the type of a given object in the file sys-
tem.

Exercise 13.30 Write a function that computes the total size of all the files in a given directory
and all its subdirectories.

13.6.3 Exception handling

Accessing resources on the disk or the internet can lead to errors, for example, when
the file is not found. The try. .except statement can be used if we want to be able to
react to any of the envisaged errors

try:

# statements to execute

x = pd.read_csv("file_not_found.csv")

print(x.head()) # this will not be executed i1f the above raises an error
except OSError:

# 1f an exception occurs, we can handle it here

print("File has not been found")
## File has not been found

For more details, refer to the documentation®.

13.6.4 File connections (¥)

Basic ways of opening and reading from/writing to file connections are described in
the documentation®. Section 14.3.5 shows an example where we create a Markdown
file manually.

They may be useful if we wish to process large files chunk by chunk. In particular,
pandas.read_csv accepts a file handler (see open). Then, passing the nrows argument
we can indicate the number of rows to fetch.

18 https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_param.csv
19 https://docs.python.org/3/tutorial/errors.html
20 https://docs.python.org/3/tutorial/inputoutput.html


https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018_param.csv
https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/tutorial/inputoutput.html
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13.7 Exercises

Exercise13.31 Find an example of an XML and JSON file. Which one is more human-
readable? Do they differ in terms of capabilities?

Exercise 13.32 What is wrong with constructing file paths like "~" + "||" + "filename.
csv"?

Exercise 13.33 What are the benefits of using a SQL database management system in data sci-
ence activities?

Exercise 13.34 (%) How canwe populate a database with gigabytes of data read from many CSV

files?
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Text data

In [33], it is noted that effective processing of character strings is needed at various
stages of data analysis pipelines: from data cleansing and preparation, through in-
formation extraction, to report generation; compare, e.g., [91] and [18]. Pattern search-
ing, string collation and sorting, normalisation, transliteration, and formatting are ubiquitous
in text mining, natural language processing, and bioinformatics. Means for the handling of
string data should be included in each statistician’s or data scientist’s vepertoire to complement
their numerical computing and data wrangling skills.

In this chapter, we discuss the handiest string operations in base Python, together
with their vectorised versions in numpy and pandas. We also mention some more ad-
vanced features of the Unicode IcU library.

14.1 Basic string operations
Recall from Section 2.1.3 that the str class represents individual character strings:

X = ”spam”

type(x)
## <class 'str's

There are a few binary operators overloaded for strings, e.g., *+" stands for string con-
catenation:

x + " and eggs"
## 'spam and eggs'

*#* duplicates a given string:

X * 3

## 'spamspamspam’

Chapter 3 noted that str is a sequential type. As a consequence, we can extract indi-

vidual code points and create substrings using the index operator:

x[-1] # last letter
# o 'm'
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Strings are immutable, but parts thereof can always be reused in conjunction with the
concatenation operator:

x[:2] + "ecial"
## 'special’

14.1.1 Unicode as the universal encoding

It is worth knowing that all strings in Python (from version 3.0) use Unicode’, which
is a universal encoding capable of representing c. 150 000 characters covering letters
and numbers in contemporary and historic alphabets/scripts, mathematical, political,
phonetic, and other symbols, emojis, etc.

Note Despite the wide support for Unicode, sometimes our own or other readers’ dis-
play (e.g., web browsers when viewing an HTML version of the output report) might
not be able to render all code points properly, e.g., due to missing fonts. Still, we can
rest assured that they are processed correctly if string functions are applied thereon.

14.1.2 Normalising strings

Dirty text data are a pain, especially if similar (semantically) tokens are encoded in
many different ways. For the sake of string matching, we might want, e.g., the German
"groB", "GROSS", and " gross " to compare all equal.

str.strip removes whitespaces (spaces, tabs, newline characters) at both ends of
strings (see also str.lstrip and str.rstrip for their nonsymmetric versions).

str.lower and str.upper change letter case. For caseless comparison/matching, str.
casefold might be a slightly better option as it unfolds many more code point se-
quences:

"GroR".lower(), "GroR".upper(), "GroR".casefold()
## ('grof', 'GROSS', 'gross')

Note (*) More advanced string transliteration® can be performed by means of the 1cU?
(International Components for Unicode) library. Its Python bindings are provided by
the PyIcu package. Unfortunately, the package is not easily available on W****ws.

For instance, converting all code points to ASCII (English) might be necessary when

! (*) More precisely, Python strings are UTF-8-encoded. Most web pages and APIs are nowadays served
in UTF-8. But we can still occasionally encounter files encoded in ISO-8859-1 (Western Europe), Windows-
1250 (Eastern Europe), Windows-1251 (Cyrillic), GB18030 and Bigs (Chinese), EUC-KR (Korean), Shift-JIS
and EUC-JP (Japanese), amongst others. They can be converted using the str.decode method.

2 https://unicode-org.github.io/icu/userguide/transforms/general

3 hteps://icu.unicode.org/


https://unicode-org.github.io/icu/userguide/transforms/general
https://icu.unicode.org/
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identifiers are expected to miss some diacritics that would normally be included (as
in "Gagolewski" vs "Gagolewski"):

import icu # PyICU package
(icu.Transliterator
.createlnstance("Lower; Any-Latin; Latin-ASCII")
.transliterate(
"Xaipete! GroR gzegzdotka — e La Nina - koszoném - Gagolewski"

)

## 'chairete! gross gzegzolka - (C) la nina - koszonom - gagolewski'

Converting between different Unicode Normalisation Forms* (also available in the
unicodedata package and via pandas.Series.str.normalize) might be used for the re-
moval of some formatting nuances:

icu.Transliterator.createInstance("NFKD; NFC").transliterate("%ar?")
#H 'gr2'

14.1.3 Substring searching and replacing
Determining if a string has a particular fixed substring can be done in several ways.

For instance, the in operator verifies whether a particular substring occurs at least
once:

food = "bacon, spam, spam, srapatapam, eggs, and spam"
"spam" in food
## True

The str.count method determines the number of occurrences of a substring:

food.count("spam")
## 3

To locate the first pattern appearance, we call str.index:

food.index("spam")
## 7

str.replace substitutes matching substrings with new content:

food.replace("spam", "veggies")
## 'bacon, veggies, veggies, srapatapam, eggs, and veggies'

Exercise 14.1 Read the manual of the following methods: str.startswith, str.endswith,
str.find, str.rfind, str.rindex, str.removeprefix, and str.removesuffix.

4 https://www.unicode.org/faq/normalization.html
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The splitting of long strings at specific fixed delimiters can be done via:

food.split(", ")
## ['bacon', 'spam', 'spam', 'srapatapam', 'eggs', 'and spam']

See also str.partition. The str.join method implements the inverse operation:

, ".join(["span", "bacon", "eggs", "spam"])
## 'spam, bacon, eggs, spam'

Moreover, Section 14.4 will discuss pattern matching with regular expressions. They
can be useful in, amongst others, extracting more abstract data chunks (numbers,
URLs, email addresses, IDs) from strings.

14.1.4 Locale-aware services in 1cu (%)

Recall that relational operators such as “<' and “>=" perform the lexicographic com-
paring of strings (like in a dictionary or an encyclopedia):

"spam" > "egg"
## True

We have: "a" < "aa" < "aaaaaaaaaaaaa" < "ab" < "aba" < "abb" < "b" < "ba" < "baaaaaaa"
< "bb" < "Spanish Inquisition".

The lexicographic ordering (character-by-character, from left to right) is not necessar-
ily appropriate for strings with numerals:

"a9" < "a123" # 1 is smaller than 9
## False

Additionally, it only takes into account the numeric codes (see Section 14.4.3) corres-
ponding to each Unicode character. Consequently, it does not work well with non-
English alphabets:

"MIELONECZKA" < "MIELONECZKI"
## False

In Polish, A with ogonek (A) is expected to sort after A and before B, let alone I. However,
their corresponding numeric codes in the Unicode table are: 260 (A), 65 (A), 66 (B), and
73 (). The resulting ordering is thus incorrect, as far as natural language processing is
concerned.

It is best to perform string collation using the services provided by Icu. Here is an
example of German phone book-like collation where "¢" is treated the same as "oe":

c = icu.Collator.createInstance(icu.Locale("de DE@collation=phonebook"))
c.setStrength(0) # ignore case and some diacritics

c.compare("Léwe", "loewe")

## 0
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Aresult of @ means that the strings are deemed equal.

In some languages, contractions occur, e.g., in Slovak and Czech, two code points "ch"
are treated as a single entity and are sorted after "h":

icu.Collator.createInstance(icu.Locale("sk_SK")).compare("chladny", "hladny")
## 1

This means that we have "chladny" > "hladny" (the first argument is greater than the
second one). Compare the above to something similar in Polish:

icu.Collator.createInstance(icu.Locale("pl_PL")).compare("chtodny", "hardy")
#H -1

Thatis, "chtodny" < "hardy" (the first argument is less than the second one).

Also, with Icu, numeric collation is possible:

c = icu.Collator.createlnstance()

c.setAttribute(
icu.UCollAttribute.NUMERIC_COLLATION,
icu.UCollAttributeValue.ON

)
c.compare("a9", "a123")
#H -1

Which is the correct result: "a9" is less than "a123" (compare the above to the example
where we used the ordinary "<").

14.1.5 String operations in pandas

String sequences in pandas.Series are by default® using the broadest possible object
data type:

pd.Series(["spam", "bacon", "spam"])

## 0 spam
#H 1 bacon
## 2 spam

## dtype: object

This allows for missing values encoding by means of the None object (which is of the
type None, not str); compare Section 15.1.

Vectorised versions of base string operations are available via the pandas.Series.str
accessor. We thus have pandas.Series.str.strip, pandas.Series.str.split, pandas.
Series.str.find, and so forth. For instance:

5 https://pandas.pydata.org/pandas-docs/stable/user_guide/text.html
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x = pd.Series(["spam", "bacon", None, "buckwheat", "spam"])
x.str.upper()

## 0 SPAM
## 1 BACON
##H 2 None
## 3 BUCKWHEAT
## 4 SPAM

## dtype: object

But there is more. For example, a function to compute the length of each string:

x.str.len()
## 0 4.0
## 1 5.0
#H 2 NaN
## 3 9.0
## 4 4.0

## dtype: float64

Vectorised concatenation of strings can be performed using the overloaded "+ oper-
ator:

x + " and spam"

# 0 spam and spam
#4 1 bacon and spam
##H 2 NaN
## 3 buckwheat and spam
#4 4 spam and spam

## dtype: object

To concatenate all items into a single string, we call:

x.str.cat(sep="; ")
## 'spam; bacon; buckwheat; spam'

Conversion to numeric:

pd.Series(["1.3", "-7", None, "3523"]).astype(float)

## 0 1.3
## 1 -7.0
#H 2 NaN

## 3 3523.0
## dtype: float64

Select substrings:

x.str.slice(2, -1) # like x.iloc[1][2:-1] for all 1
## 0 a
## 1 co

(continues on next page)
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(continued from previous page)

##H 2 None
## 3 ckwhea
## 4 a

## dtype: object

Replace substrings:

x.str.slice_replace(0, 2, "tofu") # like x.iloc[1][2:-1] = "tofu"

## 0 tofuam
#H 1 tofucon
## 2 None
## 3 tofuckwheat
#H 4 tofuam

## dtype: object

Exercise 14.2 Consider the nasaweather_glaciers® data frame. All glaciers are assigned
11/12-character unique identifiers as defined by the WGMS convention that forms the glacier ID
number by combining the following five elements.

1. 2-character political unit (first two letters of the ID),
2. 1-digit continent code (the third letter),

3. 4-character drainage code (next four),

4. 2-digit free position code (next two),

5. 2-or3-digit local glacier code (the remaining ones).

Extract the five chunks and store them as independent columns in the data frame.

14.1.6 String operations in numpy (*)

There is a huge overlap between the numpy and pandas capabilities for string handling,
with the latter being more powerful. After all, numpy is a workhorse for numerical com-
puting. Still, some readers might find the following useful.

Asmentioned in our introduction to numpy vectors, objects of the type ndarray can store
not only numeric and logical data, but also character strings. For example:

x = np.array(["spam", "bacon", "egg"l])
X
## array(['spam', 'bacon', 'egg'], dtype='<U5")

Here, the data type “<U5” means that we deal with Unicode strings of length no greater
than five. Unfortunately, replacing elements with too long a content will spawn trun-
cated strings:

6 https://github.com/gagolews/teaching-data/raw/master/other/nasaweather_glaciers.csv
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x[2] = "buckwheat"
X
## array([ 'spam', 'bacon', 'buckw'], dtype='<U5')

To remedy this, we first need to recast the vector manually:

X = x.astype("<U10")

x[2] = "buckwheat"

X

## array([ 'spam', 'bacon', 'buckwheat'], dtype='<U10")

Conversion from/to numeric is also possible:

np.array(["1.3", "-7", "3523"]).astype(float)

## array([ 1.300e+00, -7.000e+00, 3.523e+03])
np.array([1, 3.14, -5153]).astype(str)

## array(['1.0', '3.14', '-5153.0'], dtype='<U32")

The numpy . char’” module includes several vectorised versions of string routines, most
of which we discussed above. For example:

x = np.array([
"spam", "spam, bacon, and spam",
"spam, eggs, bacon, spam, spam, and spam"
D
np.char.split(x, ", ")
## array([list(['spam']), list(['spam', 'bacon', 'and spam']),
## list(['spam', 'eggs', 'bacon', 'spam', 'spam', 'and spam'])],
#H dtype=object)
np.char.count(x, "spam")
##4 array([1, 2, 4])

Vectorised operations that we would normally perform through the binary operators

(i.e., "+, *", "<, etc.) are available through standalone functions:

np.char.add(["spam", "bacon"], " and spam")

## array([ 'spam and spam', 'bacon and spam'], dtype='<U14")
np.char.equal(["spam", "bacon", "spam"], "spam")

## array([ True, False, True])

The function that returns the length of each string is also noteworthy:

np.char.str_len(x)
## array([ 4, 21, 39])

7 https://numpy.org/doc/stable/reference/routines.char.html
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14.2 Working with string lists
pandas nicely supports lists of strings of varying lengths. For instance:

x = pd.Series([

"spam",

"spam, bacon, spam",

"potatoes",

None,

"spam, eggs, bacon, spam, spam"
D
xs = x.str.split(", ", regex=False)
XS
#H o [spam]
## 1 [spam, bacon, spam]
#Ht 2 [potatoes]
## 3 None
## 4 [spam, eggs, bacon, spam, spam]

## dtype: object

And now, e.g., looking at the last element:
xs.iloc[-1]

## ['spam', 'eggs', 'bacon', 'spam', 'spam']

reveals that it is indeed a list of strings.

There are a few vectorised operations that enable us to work with such variable length
lists, such as concatenating all strings:

xs.str.join("; ")

## 0 spam
#H 1 spam; bacon; spam
#H 2 potatoes
## 3 None
## 4 spam; eggs; bacon; spam; spam

## dtype: object

selecting, say, the first string in each list:

xs.str.get(0)

## 0 spam
## 1 spam
## 2 potatoes
## 3 None
## 4 spam

## dtype: object

or slicing:
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xs.str.slice(0, -1) # like xs.iloc[1][0:-1] for all 1

# 0 []
#4 1 [spam, bacon]
#t 2 []
## 3 None
## 4 [spam, eggs, bacon, spam]

## dtype: object

Exercise14.3 (*) Using pandas.merge, join the countries®, world_factbook_2026°, and
ssi_2016_dimensions'™ datasets based on the country names. Note that some manual data
cleansing will be necessary beforehand.

Exercise 14.4 (**) Givena Series object xs that includes lists of strings, convert it to a o/1 rep-
resentation.

1. Determine the list of all unique strings; let us call it xu.

2. Create a data frame x with xs. shape[0] rows and len(xu) columns such that x.iloc[1,
71 is equal to 1 if xu[7] is amongst xs. loc[1] and equal to o otherwise. Set the column
names to xs.

3. Given x (and only x: neither xs nor xu), perform the inverse operation.

For example, for the above xs object, x should look like:

## bacon eggs potatoes spam

## 0 0 0 0 1
## 1 1 0 0 1
#H 2 0 0 1 )
## 3 0 0 0 0
## 4 1 1 0 1

14.3 Formatted outputs for reproducible report generation

Some good development practices related to reproducible report generation are dis-
cussed in [82, 100, 101]. Note that the paradigm of literate programming was intro-
duced by D. Knuth in [55].

Reports from data analysis can be prepared, e.g., in Jupyter Notebooks or by writing
directly to Markdown files which we can later compile to PDF or HTML. Below we
briefly discuss how to output nicely formatted objects programmatically.

8 https://github.com/gagolews/teaching-data/raw/master/other/countries.csv
° https://github.com/gagolews/teaching-data/raw/master/marek/world_factbook_2020.csv
1° https://github.com/gagolews/teaching-data/raw/master/marek/ssi_2016_dimensions.csv
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14.3.1 Formatting strings

Inclusion of textual representation of data stored in existing objects can easily be
done using f-strings (formatted string literals; see Section 2.1.3) of the type f"...
{expression}...". For instance:

pl = 3.14159265358979323846
f'n = {pi:.2f}"
## 'n = 3.14'

creates a string showing the value of the variable pi formatted as a float rounded to
two places after the decimal separator.

Note (**) Similar functionality can be achieved using the str.format method:

"'n = {:.2f}" . format(pi)
## 'n = 3.14'

aswell as the *%" operator overloaded for strings, which uses sprintf-like value place-
holders known to some readers from other programming languages (such as C):

"n = %.2f" % pi
## 'n = 3.14'

14.3.2 str and repr

The str and repr functions can create string representations of many objects:

x = np.array([1, 2, 3])
str(x)

## '[12 3]

repr(x)

## 'array([1, 2, 3])'

The former is more human-readable, and the latter is slightly more technical. Note
that repr often returns an output that can be interpreted as executable Python code
with no or few adjustments. Nonetheless, pandas objects are amongst the many ex-
ceptions to this rule.

14.3.3 Aligning strings

str.center, str.ljust, str.rjust can be used to centre-, left-, or right-align a string
so thatitis of at least given width. This might make the display thereof more aesthetic.
Very long strings, possibly containing whole text paragraphs can be dealt with using
the wrap and shorten functions from the textwrap package.



358 V' OTHER DATA TYPES

14.3.4 Direct Markdown output in Jupyter

Further, with IPython/Jupyter, we can output strings that will be directly interpreted
as Markdown-formatted:

import IPython.display

X = 242

out = f"*Result*: $272=2\\cdot 2={x}$." # LaTeX math
IPython.display.Markdown(out)

Result:22 =2.2 =4,

Recall from Section 1.2.5 that Markdown is a very flexible markup" language that al-
lows us to define itemised and numbered lists, mathematical formulae, tables, im-
ages, etc.

On a side note, data frames can be nicely prepared for display in a report using pandas.
DataFrame.to_markdown.

14.3.5 Manual Markdown file output ()

We can also generate Markdown code programmatically in the form of standalone .md

files:

import tempfile, os.path
filename = os.path.join(tempfile.mkdtemp(), "test-report.md")
f = open(filename, "w") # open for writing (overwrite if exists)
f.write("**Yummy Foods** include, but are not limited to:\n\n")
x = ["spam", "bacon", "eggs", "spam"]
for e in x:
f.write(f"* {e}\n")
f.write("\nAnd now for something *completely* different:\n\n")
f.write("Rank | Food\n")
f.write("----- [----- \n")
for 1 in range(len(x)):
fowrite(f"{i+1:4} | {x[1][::-1]:10}\n")
f.close()

Here is the resulting raw Markdown source file:

with open(filename, "r") as f: # will call f.close() automatically
out = f.read()

print(out)

## **Yummy Foods** include, but are not limited to:

##

## * spam

(continues on next page)

1 (*) Markdown is amongst many markup languages. Other learn-worthy ones include HTML (for the
Web) and LaTeX (especially for the beautiful typesetting of maths, print-ready articles, and books, e.g., PDF;
see [69] for a comprehensive introduction).
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(continued from previous page)

## * bacon

## * eggs

## * spam

##

## And now for something *completely* different:
##

## Rank | Food
(23 coooc flacaac
#H 1 | maps
#H 2 | nocab
#H 3 | sgge
#H 4 | maps

We can convert it to other formats, including HTML, PDF, EPUB, ODT, and even
presentations by running™ the pandoc’® tool. We may also embed it directly inside an
IPython/Jupyter notebook:

IPython.display.Markdown(out)

Yummy Foods include, but are not limited to:
« spam
« bacon
. eggs
. spam

And now for something completely different:

Rank Food
1 maps
2 nocab
3 sgge
4 maps

Note Figures created in matplotlib can be exported to PNG, SVG, or PDF files using
the matplotlib.pyplot.savefig function. We can include them manually in a Mark-
down document using the ! [description](filename) syntax.

Note (*) IPython/Jupyter Notebooks can be converted to different formats using the

12 External programs can be executed using subprocess.run.
B https://pandoc.org/
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jupyter-nbconvert' command line tool. jupytext® can create notebooks from ordin-
ary text files. Literate programming with mixed R and Python is possible with the R
packages knitr'® and reticulate!. See [73] for an overview of many more options.

14.4 Regular expressions (*)
This section contains large excerpts from yours truly’s other work [33].

Regular expressions (regexes) provide concise grammar for defining systematic patterns which
can be sought in character strings. Examples of such patterns include: specific fixed substrings,
emojis of any kind, standalone sequences of lower-case Latin letters (“words”), substrings that
can be interpreted as real numbers (with or without fractional parts, also in scientific notation),
telephone numbers, email addresses, or URLs.

Theoretically, the concept of regular pattern matching dates to the so-called regular languages
and finite state automata [54]; see also [76] and [49]. Regexes, in the form as we know it today,
were already present in one of the pre-UNIX implementations of the command-line text editor
ged [77] (the predecessor of the well-known sed).

14.4.1 Regex matching with re

In Python, the re module implements a regular expression matching engine. It ac-
cepts patterns that follow similar syntax to the one available in the Perl language.

As a matter of fact, most programming languages and text editors (including Kate'®,
Eclipse’, and VSCodium?°) support finding and replacing patterns with regexes. This
is why they should be amongst the instruments at every data scientist’s disposal.

Before we proceed with a detailed discussion on how to read and write regular expres-
sions, let us first review some of the methods for identifying the matching substrings.
Below we use the r"\bni+\b" regex as an example. It catches "n" followed by at least

one "{" that begins and ends at a word boundary. In other words, we seek "ni", "nii",
"niii", etc. which may be considered standalone words.

In particular, re.findall extracts all non-overlapping matches to a given regex:

import re

(continues on next page)

4 https://pypi.org/project/nbconvert

'S https://jupytext.readthedocs.io/en/latest
16 https://yihui.org/knitr

17 hteps://rstudio.github.io/reticulate

18 https://kate-editor.org/

19 https://www.eclipse.org/ide

20 https://vscodium.com/
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(continued from previous page)
re.findall(r"\bni+\b", x)

..... ) s s s s s s s es

# ['nt', 'niitii’, 'ni’', 'nlitititiii’

The order of arguments is (look for what, where), not vice versa.

Important We used the r"..." prefix to input a string so that “\b” is not treated as an
escape sequence which denotes the backspace character. Otherwise, the above would
have to be written as “\\bni+\\b”.

If we had not insisted on matching at the word boundaries (i.e., if we used the simple
"ni+" regex instead), we would also match the "ni" in "knights".

The re.search function returns an object of the class re.Match that enables us to get
some more information about the first match:

r = re.search(r"\bni+\b", x)
r.start(), r.end(), r.group()
## (26, 28, 'ni')

The above includes the start and end position (index) and the match itself. If the regex
contains capture groups (see below for more details), we can also pinpoint the matches
thereto.

Moreover, re.finditer returns an iterable object that includes the same details, but
now about all the matches:

rs = re.finditer(r"\bni+\b", x)
for r in rs:
print((r.start(), r.end(), r.group()))
## (26, 28, 'ni')
## (30, 36, 'niiiit’
## (38, 40, 'ni')
## (42, 52, 'niititiiii’)

re.split divides a string into chunks separated by matches to a given regex:

re.split(r"!\s+", x)
## ["We're the knights who say ni", 'nitiii’', 'nil', 'niiitiitiii!']

The “!\s*” regex matches the exclamation mark followed by one or more whitespace
characters.

Using re.sub, each match can be replaced with a given string:
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"

re.sub(r"\bni+\b", "nu", x)
## "We're the knights who say nu! nu! nu! nu!"

Note (**) More flexible replacement strings can be generated by passing a custom
function as the second argument:

re.sub(r"\bni+\b", lambda m: "n" + "u"*(m.end()-m.start()-1), x)
## "We're the knights who say nu! nuuuuu! nu! nuuuuuuuuu!”

14.4.2 Regex matching with pandas

The pandas.Series.str accessor also defines a number of vectorised functions that
utilise the re package’s matcher.

Example Series object:

x = pd.Series(["ni!", "niiii, ni, niil!", None, "spam, bacon", "nii, ni!"])
X

## 0 ni!
#t 1 niiii, ni, niti!
#H 2 None
##4 3 spam, bacon
#t 4 nii, ni!

## dtype: object

Here are the most notable functions:

x.str.contains(r"\bni+\b")

## 0 True
## 1 True
##H 2 None
## 3 False
## 4 True

## dtype: object
x.str.count(r"\bni+\b")

## 0 1.0
## 1 3.0
## 2 NaN
## 3 0.0
## 4 2.0

## dtype: float64
x.str.replace(r"\bni+\b", "nu", regex=True)

## 0 nu!
## 1 nu, nu, nu!
##H 2 None
## 3 spam, bacon
## 4 nu, nu!

(continues on next page)
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(continued from previous page)

## dtype: object
x.str.findall(r"\bni+\b")

## 0 [ni]
#H 1 [niiii, ni, nii]
## 2 None
## 3 []
#H 4 [nii, ni]

## dtype: object
x.str.split(r",\s+") # a comma, one or more whitespaces

## 0 [ni!]
#i 1 [niitii, ni, nii!]
## 2 None
## 3 [spam, bacon]
#i 4 [nii, ni!]

## dtype: object

In the two last cases, we get lists of strings as results.

Also, later we will mention pandas.Series.str.extract and pandas.Series.str.extractall
which work with regexes that include capture groups.

Note (*) If we intend to seek matches to the same pattern in many different strings
without the use of pandas, it might be faster to precompile a regex first, and then use
the re.Pattern.findall method instead or re.findall:

p = re.compile(r"\bni+\b") # returns an object of the class ‘re.Pattern’

# ['ni', 'nl', 'nititi’

14.4.3 Matching individual characters

In the following subsections, we review the most essential elements of the regex syntax
as we did in [33]. One general introduction to regexes is [29]. The re module flavour is
summarised in the official manual?}, see also [57].

We begin by discussing different ways to define character sets. In this part, determin-
ing the length of all matching substrings will be quite straightforward.

Important The following characters have special meaning to the regex engine: “.”, “\”,

uln W W\D UL €D Ul @D «pD usw “gn o«

” d«-)v
) ’ ’ ] ’ ) ’ > ) , t,an L

Any regular expression that contains none of the above behaves like a fixed pattern:

2L https://docs.python.org/3/library/re.html
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re.findall("spam", "spam, eggs, spam, bacon, sausage, and spam")
## ['spam', 'spam', 'spam']

There are three occurrences of a pattern that is Comprised of four code points, “s” fol-
lowed by “p”, then by “a”, and ending with “w”

If we wish to include a special character as part of a regular expression so that it is
treated literally, we will need to escape it with a backslash, “\”.

re.findall(r"\.", "spam...")
##[V.V’ I.I] V'V]

Matching any character

« »

The (unescaped) dot, “.”, matches any code point except the newline.

x = "Spam, ham,\njam, SPAM, eggs, and spam"
re.findall("..am", x, re.IGNORECASE)
## ['Spam', ' ham', 'SPAM', 'spam']

The above extracts non-overlapping substrings of length four that end with “am”, case-
insensitively.

The dot’s insensitivity to the newline character is motivated by the need to maintain
compatibility with tools such as grep (when searching within text files in a line-by-line
manner). This behaviour can be altered by setting the DOTALL flag.

re.findall("..am", x, re.DOTALL|re.IGNORECASE) # /' is the bitwise OR
## ['Spam', ' ham', '\njam', 'SPAM', 'spam']

Defining character sets

Sets of characters can be introduced by enumerating their members within a pair of
square brackets. For instance, “[abc]” denotes the set {a, b, ¢} — such a regular expres-
sion matches one (and only one) symbol from this set. Moreover, in:

re.findall("[hj]am", x)

## ['ham', 'jam']

the “[hj]am” regex matches: “h” or “j”, followed by “a”, followed by “m”. In other words,
"ham" and "jam" are the only two strings that are matched by this pattern (unless
matching is done case-insensitively).

Important The following characters, if used within square brackets, may be treated

not literally: w\ » u[u «wy» u,\» « «, u&n « » and |
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To include them as-is in a character set, the backslash-escape must be used. For ex-
ample, “[\[\]\\]” matches a backslash or a square bracket.

Complementing sets

Including “” (the caret) after the opening square bracket denotes a set’s complement.
Hence, “[~abc]” matches any code point except “a”, “b”, and “c”. Here is an example
where we seek any substring that consists of four non-spaces:

x = "Nobody expects the Spanish Inquisition!"
re.findall("[~ [~ I[~ 1[~ 1", %)
## ['Nobo', 'expe', 'Span', 'Inqu', 'isit', 'ion!']

Defining code point ranges

Each Unicode character can be referenced by its unique numeric code?*?. For in-
stance, “a” is assigned code U+0061 and “z” is mapped to U+007A. In the pre-Unicode
era (mostly with regard to the ASCII codes, < U+007F, representing English letters,
decimal digits, as well as some punctuation and control characters), we were used to
relying on specific code ranges. For example, “[a-z]” denotes the set comprised of all
characters with codes between U+0061 and U+007A, i.e., lowercase letters of the Eng-
lish (Latin) alphabet.

re.findall("[0-9A-Za-z]", "Gagolewski")
##[VGV’ IgI’ 707) IZI} Ve/) VWV’ IS’, Vkl’ Iil]

The above pattern denotes the union of three code ranges: ASCII upper- and lower-
case letters and digits. Nowadays, in the processing of text in natural languages, this
notation should be avoided. Note the missing “3” (Polish “a” with ogonek) in the result.

Using predefined character sets

Consider the following string:

x = "aabRaAABO1200,.;'! \t-+=\n[]eOO”,"

Some glyphs are not available in the PDF version of this book because we did not install

the required fonts, e.g., the Arabic digit 4 or left and right arrows. However, they are
well-defined at the program level.

Noteworthy Unicode-aware code point classes include the word characters:

re.findall(r"\w", x)
##[rar’ Iq’, rbr} Iﬁ’, //4—/) VAV’ IAI, VBV’ Il:ll, 717) 127’ IDI, rDr]

decimal digits:

22 https://www.unicode.org/charts
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re.findall(r"\d", x)
##[717’ I2I, VDVJ IDV]

and whitespaces:

re.findall(r"\s", x)
w0, Nt ]

Moreover, e.g., “\W’ is equivalent to “[*\w]”, i.e., denotes the set’s complement.

14.4.4 Alternating and grouping subexpressions

Alternation operator

nln

The alternation operator, “|” (the pipe or bar), matches either its left or its right branch.

For instance:

x = "spam, egg, ham, jam, algae, and an amalgam of spam, all al dente"
re.findall("spam|ham", x)
## ['spam', 'ham', 'spam']

Grouping subexpressions

The “|” operator has very low precedence (otherwise, we would match "spamam" or "spa-
ham" above instead). If we wish to introduce an alternative of subexpressions, we need
to group them using the “(?:...)” syntax. For instance, “(?:sp|h)am” matches either
"spam" or "ham".

Notice that the bare use of the round brackets, “(...)” (i.e., without the “?:”) part, has
the side-effect of creating new capturing groups; see below for more details.

Also, matching is always done left-to-right, on a first-come, first-served (greedy) basis.
Consequently, if the left branch is a subset of the right one, the latter will never be
matched. In particular, “(?:al|algalalgae)” can only match "al". To fix this, we can
write “(?:algaelalgalal)”.

Non-grouping parentheses

Some parenthesised subexpressions — those in which the opening bracket is followed
by the question mark — have a distinct meaning. In particular, “(?#...)” denotes a
free-format comment that is ignored by the regex parser:

re.findall(
"(?# match 'sp' or 'h')(?:sp|h)(?# and 'am')am|(?# or match 'egg')egqg",
X

)
## ['spam', 'egg', 'ham', 'spam']

This is just horrible. Luckily, constructing more sophisticated regexes by concatenat-
ing subfragments thereof is more readable:
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re.findall(
"(?:sp|h)" +  # match either 'sp' or 'h'

"am" + # followed by 'am'
o+ # ... 0r ...
"egg", # just match 'egg'

)
## ['spam', 'egg', 'ham', 'spam']

What is more, e.g., “(?1)” enables the case-insensitive mode.

re.findall("(?1)spam", "Spam spam SPAMITY spAm")
## ['Spam', 'spam', 'SPAM', 'spAm']

14.4.5 Quantifiers

More often than not, a variable number of instances of the same subexpression needs
to be captured. Sometimes we want to make its presence optional. These can be
achieved by means of the following quantifiers:

« “?2”matches o or1time;
“*” matches o or more times;

« “4” matches 1 or more times;

« “{n,m}” matches between n and m times;
« “{n,} matches at least n times;

« “{n}” matches exactly n times.

These operators are applied onto the directly preceding atoms. For example, “ni+” cap-
tures "ni", "nii", "niii", etc., but neither "n" alone nor "ninini" altogether.

By default, the quantifiers are greedy — they match the repeated subexpression as
many times as possible. The “?” suffix (forming quantifiers such as “2?”, “*?”, “+?”, and
so forth) tries with as few occurrences as possible (to obtain a match still).

Greedy:

x = "sp(AM)(maps)(SP)am"
re.findall(r"\(.+\)", x)
## ['(AM)(maps)(SP) ']

Lazy:

re.findall(r"\(.+?\)", x)
## ['(AM)', '(maps)', '(SP)']

Greedy (but clever):
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re.findall(r"\([*)]+\)", x)
## ['(AM)', '(maps)', '(SP)']

The first regex is greedy: it matches an opening bracket, then as many characters as
possible (including “)”) that are followed by a closing bracket. The two other patterns
terminate as soon as the first closing bracket is found.

More examples:

X = "spamamamnomnomnomammmmmmmmm "
re.findall("sp(?:am|nom)+", Xx)
## [ 'spamamamnomnomnomam ']
re.findall("sp(?:am|nom)+?", X)
## [ 'spam']

And:

re.findall("sp(?:am|nom)+?m*", x)
## ['spam']

re.findall("sp(?:am|nom)+?m+", X)
## [ ' spamamamnomnomnomammmmmmmmm ' |

Let us stress that the quantifier is applied to the subexpression that stands directly
before it. Grouping parentheses can be used in case they are needed.

x = "12, 34.5, 678.901234, 37...629, ..."
re.findall(r"\d+\.\d+", x)
#4# ['34.5', '678.901234']

matches digits, a dot, and another series of digits.

re.findall(r"\d+(?2:\.\d+)?", x)
## ['12', '34.5', '678.901234', '37', '629']

finds digits which are possibly (but not necessarily) followed by a dot and a digit se-
quence.

Exercise 14.5 Write a regex that extracts all #hashtags from a string #omg #SoEasy.

14.4.6 Capture groups and references thereto (**)

Round-bracketed subexpressions (without the “?:” prefix) form the so-called capture
groups that can be extracted separately or be referred to in other parts of the same
regex.

Extracting capture group matches

The above is evident when we use re.findall:
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X = "name='Sir Launcelot', quest='Seek Grail', favcolour='blue'"
re.findall(r"(\w+)="(.+2)"'", x)
## [('name', 'Sir Launcelot'), ('quest', 'Seek Grail'), ('favcolour', 'blue')]

This returned the matches to the individual capture groups, not the whole matching
substrings.

re.find and re.finditer can pinpoint each component:

r = re.search(r"(\w+)="(.+2)"'", x)
print("whole (0):", (r.start(), r.end(), r.group()))

print(" 1 :", (r.start(1), r.end(1), r.group(1)))
print(" 2 ", (r.start(2), r.end(2), r.group(2)))
## whole (0): (0, 20, "name='Sir Launcelot'")

## 1: (0, 4, 'name')

#H 2 : (6, 19, 'Sir Launcelot')

Here is a vectorised version of the above from pandas, returning the first match:

y = pd.Series([
"name="'Sir Launcelot'",
"quest='Seek Grail'",
"favcolour="'blue', favcolour='yel.. Aaargh!""

D

y.str.extract(r"(\w+)="(.+2)"'")
## (0] 1
## 0 name Sir Launcelot
## 1 quest Seek Grail
## 2 favcolour blue

We see that the findings are conveniently presented in the data frame form. The first
column gives the matches to the first capture group. All matches can be extracted too:

y.str.extractall(r"(\w+)="(.+2)"'")

## 0] 1
##  match

#4 0 0 name Sir Launcelot
## 10 quest Seek Grail
#it 2 0 favcolour blue
# 1 favcolour yel.. Aaargh!

Recall that if we just need the grouping part of “(...)”, i.e., without the capturing
feature, “(?:...)” can be applied.

Also, named capture groups defined like “(?P<name>. ..)” are supported.

y.str.extract("(?:\\w+)="(?P<value>.+2?)"'")
## value
(continues on next page)
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(continued from previous page)
## 0 Sir Launcelot
# 1 Seek Gratl
# 2 blue

Replacing with capture group matches

When using re.sub and pandas.Series.str.replace, matches to particular capture
groups can be recalled in replacement strings. The match in its entirety is denoted
by “\g<0>”, then “\g<1>” stores whatever was caught by the first capture group, and
“\g<2>" is the match to the second capture group, etc.

re.sub(r"(\w+)="(.+2)"'", r"\g<2> is a \g<1>", x)
## 'Sir Launcelot i1s a name, Seek Grail is a quest, blue is a favcolour'

Named capture groups can be referred to too:

re.sub(r"(?P<key>\w+)="'(?P<value>.+?)"'",
r"\g<value> is a \g<key>", x)
## 'Sir Launcelot i1s a name, Seek Grail is a quest, blue is a favcolour'

Back-referencing

Matches to capture groups can also be part of the regexes themselves. In such a context,
e.g., “\1” denotes whatever has been consumed by the first capture group.

In general, parsing HTML code with regexes is not recommended, unless it is well-
structured (which might be the case if it is generated programmatically; but we can
always use the 1xml package). Despite this, let us consider the following examples:

X = "<p><em>spam</em></p><code>eggs</code>"
re.findall(r"<[a-z]+>.*2</[a-z]+>", X)
## [ '<p><em>spam</em>', '<code>eggs</code>']

This did not match the correct closing HTML tag. But we can make this happen by
writing:

re.findall(r"(<([a-z]+)>.*?2</\2>)", x)

## [('<p><em>spam</em></p>', 'p'), ('<code>eggs</code>', 'code')]

This regex guarantees that the match will include all characters between the opening
"<tag>" and the corresponding (not: any) closing "</tag>".

Named capture groups can be referenced using the “(?P=name)” syntax:
re.findall(r"(<(?P<tagname>[a-z]+)>.*?</(?P=tagname)>)", x)

## [('<p><em>spam</em></p>', 'p'), ('<code>eggs</code>', 'code')]

The angle brackets are part of the token.
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14.4.7 Anchoring

Lastly, let us mention the ways to match a pattern at a given abstract position within
a string.

Matching at the beginning or end of a string

N

and “¢” match, respectively, start and end of the string (or each line within a string,
if the re.MULTILINE flag is set).

x = pd.Series(["spam egg", "bacon spam", "spam", "egg spam bacon", "milk"])
rs = ["spam", "Aspam", "spam$", "spam$|/Aspam", "Aspam$"] # regexes to test

The five regular expressions match "spam", respectively, anywhere within the string,
at the beginning, at the end, at the beginning or end, and in strings that are equal to
the pattern itself. We can check this by calling:

pd.concat([x.str.contains(r) for r in rs], axis=1, keys=rs)

## spam “spam spam$s spamS[~spam “spam$
## 0 True True False True False
#H 1 True False True True  False
## 2 True True True True True
## 3 True False False False False
## 4 False False False False  False

Exercise 14.6 Compose a regex that does the same job as str.strip.

Matching at word boundaries

What is more, “\b” matches at a “word boundary”, e.g., near spaces, punctuation
marks, or at the start/end of a string (i.e., wherever there is a transition between a
word, “\w”, and a non-word character, “\W’, or vice versa).

In the following example, we match all stand-alone numbers (this regular expression
is imperfect, though):

re.findall(r"[-+]2\b\d+(?:\.\d+)?\b", "+12, 34.5, -5.3243")
## ['+12', '34.5', '-5.3243']

Looking behind and ahead (**)

There is a way to guarantee that a pattern occurrence begins or ends with a match to
a subexpression: “(?<=...)...” denotes the look-behind, whereas “...(?=...)” desig-
nates a look-ahead.

x = "I like spam, spam, eggs, and spam."
re.findall(r"\b\w+\b(2=[,.1)", x)
## ['spam', 'spam', 'eggs', 'spam']

This regex captured words that end with a comma or a dot
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Moreover, “(?<!...)...” and “...(?!...)” are their negated versions (negative look-
behind/ahead).

re.findall(r"\b\w+\b(?2![,.])", x)
## ['T', 'like', 'and']

This time, we matched the words that end with neither a comma nor a dot.

14.5 Exercises

Exercise 14.7 List some ways to normalise character strings.

Exercise 14.8 (**) What are the challenges of processing non-English text?

Exercise 14.9 What are the problems with the "[A-Za-z] " and "[A-z] " character sets?
Exercise14.10 Name the two ways to turn on case-insensitive regex matching.
Exercise 14.11 What is a word boundary?

Exercise 14.12 What is the difference between the "+" and "s" anchors?

Exercise 14.13 When would we prefer using "[0-9] " instead of "|d"?

Exercise 14.14 What is the difference between the "2", 22", "*", "*2" "+" and "+2" quanti-
frers?

"o

Exercise 14.15 Does ". "match all the characters?

Exercise 14.16 What are named capture groups and how can we refer to the matches thereto in
re.sub?

Exercise 14.17 Write a regex that extracts all standalone numbers accepted by Python, includ-
ing 12.123, -53, +1e-9, -1.2423e10, 4. and . 2.

Exercise 14.18 Author a regex that matches all email addresses.
Exercise 14.19 Indite a regex that matches all URLs starting with http:// or https://.

Exercise 14.20 Cleanse the warsaw_weather® dataset so that it contains analysable numeric
data.

23 hteps://github.com/gagolews/teaching-data/raw/master/marek/warsaw_weather.csv


https://github.com/gagolews/teaching-data/raw/master/marek/warsaw_weather.csv

15

Missing, censored, and questionable data

Up to now, we have been mostly assuming that observations are of decent quality, i.e.,
trustworthy. It would be nice if that was always the case, but it is not.

In this chapter, we briefly address the most basic methods for dealing with suspicious
observations: outliers, missing, censored, imprecise, and incorrect data.

15.1 Missing data

Let us consider an excerpt from National Health and Nutrition Examination Survey
that we played with in Chapter 12:

nhanes = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/nhanes_p_demo_bmx_2020.csv",
comment="#")
nhanes.loc[:, ["BMXWT", "BMXHT", "RIDAGEYR", "BMIHEAD", "BMXHEAD"]].head()
## BMXWT BMXHT RIDAGEYR BMIHEAD BMXHEAD

## 0 NaN NaN 2 NaN NaN
## 1 42.2 154.7 13 NaN NaN
## 2 12.0 89.3 2 NaN NaN
# 3  97.1 160.2 29 NaN NaN
## 4 13.6 NaN 2 NaN NaN

Some of the columns bear NaN (not-a-number) values. They are used here to encode
missing (not available) data. Previously, we decided not to be bothered by them: a shy
call to dropna resulted in their removal. But we are curious now.

The reasons behind why some items are missing might be numerous, in particular:
« aparticipant did not know the answer to a given question;
. someone refused to answer a given question;
« aperson did not take part in the study anymore (attrition, death, etc.);

. an item was not applicable (e.g., number of minutes spent cycling weekly when
someone answered they did not learn to ride a bike yet);

- apiece of information was not collected, e.g., due to the lack of funding or a failure
of a piece of equipment.
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15.1.1 Representing and detecting missing values

Sometimes missing values are specially encoded, especially in CSV files, e.g., with -1,
0, 9999, numpy . inf, -numpy.inf, or None, strings such as "NA", "N/A", "Not Applicable",
"---". This is why we must always inspect our datasets carefully. To assure consist-
ent representation, we can convert them to NaN (as in: numpy .nan) in numeric (floating-
point) columns or to Python’s None otherwise.

Vectorised functions such as numpy.isnan (or, more generally, numpy.isfinite) and
pandas.isnull as well as isna methods for the DataFrame and Series classes verify
whether an item is missing or not.

For instance, here are the counts and proportions of missing values in selected
columns of nhanes:

nhanes.isna().apply([np.sum, np.mean]).T.nlargest(5, "sum") # top 5 only
## sum mean

## BMIHEAD 14300.0 1.000000
## BMIRECUM 14257.0 0.996993
## BMIHT 14129.0 0.988042
## BMXHEAD 13990.0 0.978322
## BMIHIP 13924.0 0.973706

Looking at the column descriptions on the data provider’'s website!, for example,
BMIHEAD stands for “Head Circumference Comment”, whereas BMXHEAD is “Head Cir-
cumference (cm)”, but these were only collected for infants.

Exercise15.1 Read the column descriptions (refer to the comments in the CSV file for the relev-
ant URLS) to identify the possible reasons for some of the records in nhanes being missing.

Exercise 15.2 Learn about the difference between the pandas.DataFrameGroupBy. size and
pandas . DataFrameGroupBy . count methods.

15.1.2 Computing with missing values

Our using NaN to denote a missing piece of information is merely an ugly (but func-
tional) hack?. The original use case for not-a-number is to represent the results of in-
correct operations, e.g., logarithms of negative numbers or subtracting two infinite
entities. We thus need extra care when handling them.

Generally, arithmetic operations on missing values yield a result that is undefined as
well:

np.nan + 2 # "don't know" + 2 == "don't know"
## nan

np.mean([1, np.nan, 2, 3])

## nan

! https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/P_BMX.htm
% (*) The R environment, on the other hand, supports missing values out-of-the-box.
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There are versions of certain aggregation functions that ignore missing values whatso-
€Ver:numpy.nanmean, nUmpy .nanmin, numpy.nanmax, numpy.nanpercentile, numpy.nanstd,
etc.

np.nanmean([1, np.nan, 2, 3])
## 2.0

Regrettably, running these aggregation functions directly on Series objects ignores
missing entities by default. Compare an application of numpy.mean on a Series in-
stance vs on a vector:

x = nhanes.head().loc[:, "BMXHT"] # some example Series, whatever
np.mean(x), np.mean(np.array(x))
## (134.73333333333332, nan)

This is quite unfortunate behaviour as this way we might miss (sic!) the presence of
missing values. Therefore, it is crucial to have the dataset carefully inspected in ad-
vance.

Also, NaN is of the floating-point type. As a consequence, it cannot be present in,
amongst others, logical vectors.

X # preview

## 0 NaN
## 1 154.7
##H 2 89.3
## 3 160.2
## 4 NaN
## Name: BMXHT, dtype: float64
y = (x > 100)
y

## 0 False
## 1 True
#t 2 False
## 3 True

## 4 False
## Name: BMXHT, dtype: bool

Unfortunately, comparisons against missing values yield False, instead of the more
semantically valid missing value. Hence, if we want to retain the missingness inform-
ation (we do not know if a missing value is greater than 100), we need to do it manually:

y = y.astype('"object") # required for numpy vectors, not for pandas Series
y[np.isnan(x)] = None

y

## 0 None
## 1 True
#H 2 False
## 3 True

(continues on next page)
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(continued from previous page)

## 4 None
## Name: BMXHT, dtype: object

Exercise15.3 Read the pandas documentation® about missing value handling.

15.1.3 Missing at random or not?

At a general level (from the mathematical modelling perspective), we may distinguish
between a few missingness patterns; see [81]:

« missing completely at random: reasons are unrelated to data and probabilities of
cases’ being missing are all the same;

« missing at vandom: there are different probabilities of being missing within distinct
groups (e.g., ethical data scientists might tend to refuse to answer specific ques-
tions);

« missing not at random: due to reasons unknown to us (e.g., data was collected at
different times, there might be significant differences within the groups that we
cannot easily identify, e.g., amongst participants with a background in mathem-
atics where we did not ask about education or occupation).

It is important to try to determine the reason for missingness. This will usually imply
the kinds of techniques that are suitable in specific cases.

15.1.4 Discarding missing values

We may try removing (discarding) rows or columns that carry atleast one, some, or too
many missing values. Nonetheless, such a scheme will obviously not work for small
datasets, where each observation is precious*.

Also, we ought not to exercise data removal in situations where missingness is condi-
tional (e.g., data only available for infants) or otherwise group-dependent (not com-
pletely at random). Otherwise, for example, it might result in an imbalanced dataset.

Exercise 15.4 With the nhanes_p_demo_bmx_2026° dataset, perform what follows.
1. Remove all columns that are comprised of missing values only.
2. Remove all columns that are made of more than 20% missing values.
3. Remove all rows that only consist of missing values.
4. Remove all rows that bear at least one missing value.

5. Remove all columns that carry at least one missing value.

3 https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html

4 On the other hand, if we want to infer from small datasets, we should ask ourselves whether this is a
good idea at all... It might be better to refrain from any data analysis than to come up with conclusions that
are likely to be unjustified.

5 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_p_demo_bmx_2020.csv
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Hint: pandas.DataFrame.dropna might be useful in the simplest cases, and numpy . isnan
or pandas.DataFrame.isna with loc[...] oriloc[...] can be applied otherwise.

15.1.5 Mean imputation

When we cannot afford or it is inappropriate/inconvenient to proceed with the re-
moval of missing observations or columns, we may try applying some missing value
imputation techniques. Let us be clear, though: this is merely a replacement thereof by
some hopefully adequate guesstimates.

Important In all kinds of reports from data analysis, we need to be explicit about the
way we handle the missing values. Sometimes they might strongly affect the results.

Let us consider an example vector with missing values, comprised of heights of the
adult participants of the NHANES study.

x = nhanes.loc[nhanes.loc[:, "RIDAGEYR"] >= 18, "BMXHT"]

The simplest approach is to replace each missing value with the corresponding
column’s mean. This does not change the overall average but decreases the variance.

x1 = x.copy()
xi[np.isnan(xi)] = np.nanmean(xi)

Similarly, we could consider replacing missing values with the median, or - in the case
of categorical data — the mode.

Furthermore, we expect heights to differ, on average, between sexes. Consequently,
another basic imputation option is to replace the missing values with the correspond-
ing within-group averages:

xg = x.copy()

g = nhanes.loc[nhanes.loc[:, "RIDAGEYR"] >= 18, "RIAGENDR"]
xg[np.isnan(xg) & (g == 1)] = np.nanmean(xg[g == 1]) # male
xg[np.isnan(xg) & (g == 2)] = np.nanmean(xg[g == 2]) # female

Unfortunately, whichever imputation method we choose, will artificially distort the
data distribution and introduce some kind of bias; see Figure 15.1 for the histograms
of x, xi, and xg. These effects can be obscured if we increase the histogram bins’ widths,
but they will still be present in the data. No surprise here: we added to the sample many
identical values.

Exercise15.5 With the nhanes_p_demo_bmx_2026° dataset, perform what follows.

1. Foreach numerical column, replace all missing values with the column averages.

6 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_p_demo_bmx_2020.csv
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Original (x) Replace by mean (xi) Replace by group mean (xg)
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Figure 15.1. The mean imputation distorts the data distribution.

2. Foreach categorical column, replace all missing values with the column modes.

3. Foreach numerical column, veplace all missing values with the averages corresponding to a
patient’s sex (as given by the RIAGENDR column).

15.1.6 Imputation by classification and regression (*)

We can easily compose a missing value imputer based on averaging data from an ob-
servation’s non-missing nearest neighbours; compare Section 9.2.1 and Section 12.3.1.
This is an extension of the simple idea of finding the most similar observation (with
respect to chosen criteria) to a given one and then borrowing non-missing measure-
ments from it.

More generally, different regression or classification models can be built on non-
missing data (training sample) and then the missing observations can be replaced by
the values predicted by those models.

Note (**)Rubin (e.g., in [60]) suggests the use of a procedure called multiple imputation
(see also [90]), where copies of the original datasets are created, missing values are
imputed by sampling from some estimated distributions, the inference is made, and
then the results are aggregated. An example implementation of such an algorithm is
available in sklearn.impute.IterativeImputer.
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15.2 Censored and interval data (*)

Censored data frequently appear in the context of reliability, risk analysis, and bios-
tatistics, where the observed objects might fail (e.g., break down, die, withdraw; com-
pare, e.g., [64]). Our introductory course cannot obviously cover everything. However,
a beginner analyst needs to be at least aware of the existence of:

o right-censored data: we only know that the actual value is above the recorded one
(e.g., we stopped the experiment on the reliability of light bulbs after 1000 hours,
so those which still work will not have their time-of-failure precisely known);

o lefi-censored data: the true observation is below the recorded one, e.g., we observe
a component’s failure, but we do not know for how long it has been in operation
before the study has started.

In such cases, the recorded datum of, say, 1000, can essentially mean [1000, ),
[0,1000], or (—o0,1000].

There might also be instances where we know that a value is in some interval [a, b].
There are numerical libraries that deal with interval computations, and some data ana-
lysis methods exist for dealing with such a scenario.

15.3 Incorrect data

Missing data can already be marked in a given sample. But we also might be willing to
mark some existing values as missing, e.g., when they are incorrect. For example:

. for text data, misspelled words;

. for spatial data, GPS coordinates of places out of this world, nonexistent zip codes,
or invalid addresses;

- for date-time data, misformatted date-time strings, incorrect dates such as “29
February 20117, an event’s start date being after the end date;

. for physical measurements, observations that do not meet specific constraints,
e.g., negative ages, or heights of people over 300 centimetres;

- IDs of entities that simply do not exist (e.g., unregistered or deleted clients’ ac-
counts);

and so forth.

To be able to identify and handle incorrect data, we need specific knowledge of a par-
ticular domain. Optimally, basic data validation techniques are already employed on
the data collection stage. For instance, when a user submits an online form.
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There can be many tools that can assist us with identifying erroneous observations,
e.g., spell checkers such as hunspell’.

For smaller datasets, observations can also be inspected manually. In other cases, we
might have to develop custom algorithms for detecting such bugs in data.

Exercise15.6 Given some data frame with numeric columns only, perform what follows.
1. Check if all numeric values in each column are between 0 and 1000.
2. Check if all values in each column are unique.
3. Verify that all the rowwise sums add up to 1.0 (up to a small numeric error).

4. Check ifthe data frame consists of os and 1s only. Provided that this is the case, verify that
for each row, if there is a 1in some column, then all the columns to the right ave filled with 1s
too.

Many data validation methods can be reduced to operations on strings; see Chapter
14. They may be as simple as writing a single regular expression or checking if a label
is in a dictionary of possible values but also as difficult as writing your own parser for
a custom context-sensitive grammar.

Exercise 15.7 Once we import the data fetched from dirty sources, relevant information will
have to be extracted from raw text, e.g., strings like " 1" should be converted to floating-point num-
bers. Below we suggest several tasks that can aid in developing data validation skills involving
some operations on text.

Given an example data frame with text columns (manually invented, please be creative), perform
what follows.

1. Remove trailing and leading whitespaces from each string.

2. Check ifall strings can be interpreted as numbers, e.g., "23.43".

3. Verifyifa date string in the yYyY-MM-DD format is correct.

4. Determine if a date-time string in the YYYy-MM-DD hh:mm: ss format is correct.

5. Check ifall strings ave of the form (+NN) NNN-NNN-NNN or (+NN) NNNN-NNN-NNN, where N
denotes any digit (valid telephone numbers).

6. Inspect whether all strings ave valid country names.

7. (%) Given a persow’s date of birth, sex, and Polish ID number PESELS, check if that ID is
correct.

8. (%) Determine if a string represents a correct International Bank Account Number (IBAN°)
(note that IBANs have two check digits).

9. (%) Transliterate text to ASCIL, e.g., "26tty e"to "zolty (C)".

10. (**) Using an external spell checker, determine if every string is a valid English word.

7 https://hunspell.github.io/
8 https://en.wikipedia.org/wiki/PESEL
° https://en.wikipedia.org/wiki/International_Bank_Account_Number
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11. (**) Using an external spell checker, ascertain that every string is a valid English noun in the
singular form.

12. (**) Resolve all abbreviations by means of a custom dictionary, e.g., "Kat. "> "Katherine",
"Gr."> "Grzegorz".

15.4 Outliers

Another group of inspectionworthy observations consists of outliers. We can define
them as the samples that reside in the areas of substantially lower density than their
neighbours.

Outliers might be present due to an error, or their being otherwise anomalous, but
they may also simply be interesting, original, or novel. After all, statistics does not
give any meaning to data items; humans do.

What we do with outliers is a separate decision. We can get rid of them, correct them,
replace them with a missing value (and then possibly impute), or analyse them separ-
ately. In particular, there is a separate subfield in statistics called extreme value the-
ory thatis interested in predicting the distribution of very large observations (e.g., for
modelling floods, extreme rainfall, or temperatures); see, e.g., [5]. But this is a topic
for a more advanced course; see, e.g., [50]. By then, let us stick with some simpler
settings.

15.4.1 The 3/2 IQR rule for normally-distributed data

For unidimensional data (or individual columns in matrices and data frames), the first
few smallest and largest observations should usually be inspected manually. For in-
stance, it might happen that someone accidentally entered a patient’s height in metres
instead of centimetres: such cases are easily detectable. A data scientist is like a detect-
ive.

Let us recall the rule of thumb discussed in the section on box-and-whisker plots (Sec-
tion 5.1.4). For data that are expected to come from a normal distribution, everything
that does not fall into the interval [Q; — 1.5IQR, Q3 + 1.5IQR] can be considered
suspicious. This definition is based on quartiles only, so it is not affected by poten-
tial outliers (they are robust aggregates; compare [50]). Plus, the magic constant 1.5 is
nicely round and thus easy to memorise (an attractive feature). It is not too small and
not too large; for the normal distribution N(y, o), the above interval corresponds to
roughly [p — 2.6980, u + 2.6980°], and the probability of obtaining a value outside
of it is c. 0.7%. In other words, for a sample of size 1000 that is truly normally distrib-
uted (not contaminated by anything), only seven observations will be flagged. Itis not
a problem to inspect them by hand.

Note (¥) We can choose a different threshold. For instance, for the normal distribu-
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tion N (10, 1), even though the probability of observing a value greater than 15 is the-
oretically non-zero, it is smaller 0.000029%, so it is sensible to treat this observation
as suspicious. On the other hand, we do not want to mark too many observations as
outliers: inspecting them manually might be too labour-intense.

Exercise 15.8 For each column in nhanes_p_demo_bmx_2020", inspect a few smallest and
largest observations and see if they make sense.

Exercise 15.9 Perform the above separately for data in each group as defined by the RIAGENDR
column.

15.4.2 Unidimensional density estimation (*)

For skewed distributions such as the ones representing incomes, there might be noth-
ing wrong, at least statistically speaking, with very large isolated observations.

For well-separated multimodal distributions on the real line, outliers may sometimes
also fall in between the areas of high density.

Example 15.10 That neither box plots themselves, nor the 1.5I1QR rule might not be ideal tools
for multimodal data is exemplified in Figure 15.2. Here, we have a mixture of N(10,1) and
N(25, 1) samples and four potential outliers at 0, 15, 45, and 50.

x = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/blobs2. txt")

plt.subplot(1, 2, 1)

plt.boxplot(x, vert=False)

plt.yticks([])

plt.subplot(1, 2, 2)

plt.hist(x, bins=50, color="lightgray", edgecolor="black")
plt.ylabel("Count")

plt.show()

Fixed-radius search techniques discussed in Section 8.4 can be used for estimating
the underlying probability density function. Given a data samplex = (x4, ..., x,,), let
us consider™:

~ 1 &
fr@) =53 1B,(2),
i=1
where |B,.(z)| denotes the number of observations from x whose distance to z is not

greater than 7, i.e., fall into the interval [z — 7,z + 7].

n = len(x)
r =1 # radius - feel free to play with different values
(continues on next page)

19 https://github.com/gagolews/teaching-data/raw/master/marek/nhanes_p_demo_bmx_2020.csv
1 This is an instance of a kernel density estimator, with the simplest kernel: a rectangular one.
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Figure 15.2. With box plots, we may fail to detect some outliers.

(continued from previous page)
import scipy.spatial
t = scipy.spatial.KDTree(x.reshape(-1, 1))
dx = pd.Series(t.query_ball _point(x.reshape(-1, 1), r)).str.len() / (2*r#*n)
dx[:6] # preview
## 0 0.000250

## 1 0.116267
#H 2 0.116766
## 3 0.166667
## 4 0.076098
#H 5 0.156188

## dtype: float64

Then, points in the sample lying in low-density regions (i.e., all x; such that f, (x;) is
small) can be flagged for further inspection:

x[dx < 0.001]
## array([ 0. , 13.57157922, 15. , 45. , 50. 1)

See Figure 15.3 for an illustration of f,. Of course, r must be chosen with care, just like
the number of bins in a histogram.

z = np.linspace(np.min(x)-5, np.max(x)+5, 1001)

dz = pd.Series(t.query_ball_point(z.reshape(-1, 1), r)).str.len() / (2*r#*n)
plt.plot(z, dz, label=f"density estimator ($r={r}s$)")

plt.hist(x, bins=50, color="lightgray", edgecolor="black", density=True)
plt.ylabel("Density")

plt.show()



384 V' OTHER DATA TYPES

0.175 r\

0.150
0.125

0.100

Density

0.075

0.050

0.025 &L

0.000

Figure 15.3. Density estimation based on fixed-radius search.

15.4.3 Multidimensional density estimation (*)

By far we should have become used to the fact that unidimensional data projections
might lead to our losing too much information. Some values can seem perfectly fine
when they are considered in isolation, but already plotting them in 2D reveals that the
reality is more complex than that.

Consider the following example dataset and the depiction of the distributions of its
two natural projections in Figure 15.4.

X = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/blobs1.txt", delimiter=",")

plt.figure(figsize=(plt.rcParams["figure.figsize"][0], )*2) # width=height

plt.subplot(2, 2, 1)

plt.boxplot(X[:, 0], vert=False)

plt.yticks([1], ["X[:, 0]"])

plt.subplot(2, 2, 2)

plt.hist(X[:, 0], bins=20, color="1lightgray", edgecolor="black")

plt.title("X[:, 0]")

plt.subplot(2, 2, 3)

plt.boxplot(X[:, 1], vert=False)

plt.yticks([1], ["X[:, 1]1"])

plt.subplot(2, 2, 4)

plt.hist(X[:, 1], bins=20, color="1lightgray", edgecolor="black")

plt.title("X[:, 1]")

plt.show()

There is nothing suspicious here. Or is there?
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Figure 15.4. One-dimensional projections of the blobs1 dataset.

The scatter plot in Figure 15.5 reveals that the data consist of two quite well-separable

blobs:

plt.plot(X[:, 0], X[:, 1], "o")
plt.axis("equal")
plt.show()

There are a few observations that we might mark as outliers. The truth is that yours
truly injected eight junk points at the very end of the dataset. Ha.

X[-8:, :]

## array([[-3. , 3. ],
## [ 3., 3.7,
i [3., -3. ],
## [-3., -3. ],

(continues on next page)
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Figure 15.5. Scatter plot of the blobs1 dataset.
(continued from previous page)
## [-3.5, 3.5],
## [-2.5, 2.5],
## [-2., 2. 1],
## [-1.5, 1.5]])

Handling multidimensional data requires slightly more sophisticated methods; see,
e.g., [2]. A quite straightforward approach is to check if there are any points within an
observation’s radius of some assumed size r > 0. If that is not the case, we may con-
sider it an outlier. This is a variation on the aforementioned unidimensional density
estimation approach'.

Example15.11 Consider the following code chunk:

t = scipy.spatial.KDTree(X)

n = t.query_ball_point(X, 0.2) # r=0.2 (radius) - play with it yourself
¢ = np.array(pd.Series(n).str.len())

c[l[o, 1, -2, -1]] # preview

##4 array([42, 30, 1, 1])

c[1] gives the number of points within X[1, :]'s r-radius (with respect to the Euclidean dis-
tance), including the point itself. Consequently, c[i]==1 denotes a potential outlier; see Fig-
ure 15.6 for an illustration.

12 (**) We can easily normalise the outputs to get a true 2D kernel density estimator, but multivariate
statistics is beyond the scope of this course. In particular, that data might have fixed marginal distributions
(projections onto 1D) but their multidimensional images might be very different is beautifully described by
the copula theory; see [67].
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plt.plot(X[c > 1, 0], X[c > 1, 1], "o", label="normal point")
plt.plot(X[c == 1, 0], X[c == 1, 1], "v", label="outlier")
plt.axis("equal")

plt.legend()

plt.show()
4 v A/ ® normal point
V  outlier
3
2
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o)
-1
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-3
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Figure 15.6. Outlier detection based on a fixed-radius search for the blobs1 dataset.

15.5 Exercises
Exercise 15.12 How can missing values be represented in numpy and pandas?

Exercise 15.13 Explain some basic strategies for dealing with missing values in numeric vec-
tors.

Exercise 15.14 Why we ought to be very explicit about the way we handle missing and other
suspicious data? Is it advisable to mark as missing (or remove completely) the observations that
we dislike or otherwise deem inappropriate, controversial, dangerous, incompatible with
our political views, etc.?

Exercise 15.15 Is replacing missing values with the sample arithmetic mean for income data
(asin, e.g., the uk_income_simulated_2020" dataset) a sensible strategy?

Exercise 15.16 What are the differences between data missing completely at vandom, missing
at random, and missing not at random?

3 https://github.com/gagolews/teaching-data/raw/master/marek/uk_income_simulated_2020.txt


https://github.com/gagolews/teaching-data/raw/master/marek/uk_income_simulated_2020.txt
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Exercise 15.17 List some basic strategies for dealing with data that might contain outliers.
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Time series

So far, we have been using numpy and pandas mostly for storing:

« independent measurements, where each row gives, e.g., weight, height, ... records
of a different subject; we often consider these a sample of a representative subset
of one or more populations, each recorded at a particular point in time;

. data summaries to be reported in the form of tables or figures, e.g., frequency
distributions giving counts for the corresponding categories or labels.

In this chapter, we will explore the most basic concepts related to the wrangling of
time series, 1.e., signals indexed by discrete time. Usually, a time series is a sequence of
measurements sampled at equally spaced moments, e.g., a patient’s heart rate probed
every second, daily average currency exchange rates, or highest yearly temperatures
recorded in some location.

16.1 Temporal ordering and line charts

Consider the midrange' daily temperatures in degrees Celsius at the Spokane Inter-
national Airport (Spokane, WA, US) between 1889-08-01 (first observation) and 2021-
12-31 (last observation).

temps = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/spokane_temperature.txt")

Let us preview the December 2021 data:

temps[-31:] # last 31 days
## array([ 11.9, 5.8, 0.6, 0.8, -1.9, -4.4, -1.9, 1.4, -1.9,

## -1.4, BHIA 408, A8y 0oly =205y =30@y =2dls o =dodly
## 2folly =508y 5oy Chd 408 =By <=dobly =50 o =8ué;
## -12.8, -12.2, -11.4, -11.4])

Here are some data aggregates for the whole sample. First, the popular quantiles:

! Note that midrange, being the mean of the lowest and the highest observed temperature on a given day,
is not a particularly good estimate of the average daily reading. This dataset is considered for illustrational
purposes only.
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np.quantile(temps, [0, 0.25, 0.5, 0.75, 1])
## array([-26.9, 2.2, 8.6, 16.4, 33.9])

Then, the arithmetic mean and standard deviation:

np.mean(temps), np.std(temps)
## (8.990273958441023, 9.16204388619955)

A graphical summary of the data distribution is depicted in Figure 16.1.

plt.violinplot(temps, vert=False, showextrema=False)
plt.boxplot(temps, vert=False)
plt.show()

-20 =10 (0] 10 20

Figure 16.1. Distribution of the midrange daily temperatures in Spokane in the period
1889-2021. Observations are treated as a bag of unrelated items (temperature on a
“randomly chosen day” in a version of planet Earth where there is no climate change).

When computing data aggregates or plotting histograms, the order of elements does
not matter. Contrary to the case of the independent measurements, vectors represent-
ing time series do not have to be treated simply as mixed bags of unrelated items.

Important In time series, for any given item x;, its neighbouring elements x;_; and
X;41 denote the recordings occurring directly before and after it. We can use this tem-
poral ordering to model how consecutive measurements depend on each other, describe
how they change over time, forecast future values, detect seasonal and long-time

trends, and so forth.
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Figure 16.2 depicts the data for 2021, plotted as a function of time. What we see is of-
ten referred to as a line chart (line graph): data points are connected by straight line
segments. There are some visible seasonal variations, such as, well, obviously, that
winter is colder than summer. There is also some natural variability on top of seasonal
patterns typical for the Northern Hemisphere.

plt.plot(temps[-365:])
plt.xticks([0, 181, 364], ["2021-01-01", "2021-07-01", "2021-12-31"])
plt.show()

30

20

2021-01-01 2021-07-01 2021-12-31

Figure 16.2. Line chart of midrange daily temperatures in Spokane for 2021.

16.2 Working with date-times and time-deltas
16.2.1 Representation: The UNIX epoch

numpy . datetime64* is a type to represent date-times. Usually, we will be creating dates
from strings. For instance:

d = np.array([
"1889-08-01", "1970-01-01", "1970-01-02", "2021-12-31", "today"
1, dtype="datetime64[D]")

d
## array(['1889-08-01', '1970-01-01', '1970-01-02', '2021-12-31',
## '2023-09-04"'], dtype='datetime64[D]")

2 https://numpy.org/doc/stable/reference/arrays.datetime.html


https://numpy.org/doc/stable/reference/arrays.datetime.html
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Similarly with date-times:

dt = np.array(["1970-01-01T702:01:05", "now"], dtype="datetime64[s]")
dt

## array(['1970-01-01T02:01:05', '2023-09-04T05:11:44'],

## dtype='datetime64[s]")

Important Internally, the above are represented as the number of days (datetime64[D])
or seconds (datetime64[s]) since the UNIX Epoch, 1970-01-01T00:00:00 in the UTC
time zone.

Let us verify the above statement:

d.astype(int)

## array([-29372, 0, 1, 18992, 19664])
dt.astype(int)
## array([ 7265, 1693804304])

When we think about it for a while, this is exactly what we expected.

Exercise16.1 (*) Compose a reqular expression that extracts all dates in the YYYY-MM-DD
format from a (possibly long) string and converts them to datetime64.

16.2.2 Time differences

Computing date-time differences (time-deltas) is possible thanks to the numpy.
timedelta64 objects:

d - np.timedelta64(1, "D") # minus 1 Day

## array(['1889-07-31"', '1969-12-31', '1970-01-01', '2021-12-30',
## '2023-09-03'], dtype='datetime64[D]")

dt + np.timedelta64(12, "h") # plus 12 hours

## array(['1970-01-01T14:01:05', '2023-09-04T17:11:44'],

## dtype="datetime64[s]")

Also, numpy.arange (see also pandas.date_range) generates a sequence of equidistant
date-times:

dates = np.arange("1889-08-01", "2022-01-01", dtype="datetime64[D]")
dates[:3] # preview

## array(['1889-08-01', '1889-08-02', '1889-08-03'], dtype='datetime64[D]")
dates[-3:] # preview

#4 array(['2021-12-29', '2021-12-30', '2021-12-31'], dtype='datetime64[D]")

16.2.3 Date-times in data frames

Dates and date-times can be emplaced in pandas data frames:
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spokane = pd.DataFrame(dict(
date=np.arange("1889-08-01", "2022-01-01", dtype="datetime64[D]"),
temp=temps

))

spokane.head()

## date temp

## 0 1889-08-01 21.1

## 1 1889-08-02 20.8

## 2 1889-08-03 22.2

## 3 1889-08-04 21.7

## 4 1889-08-05 18.3

When we ask the date column to become the data frame’s index (i.e., row labels), we
will be able select date ranges quite easily with loc[ . ..] and string slices (refer to the
manual of pandas.DateTimeIndex for more details).

spokane.set_index("date").loc["2021-12-25":, :].reset_index()
## date temp

## 0 2021-12-25 -1.4
## 1 2021-12-26 -5.0
## 2 2021-12-27 -9.4
## 3 2021-12-28 -12.8
## 4 2021-12-29 -12.2
## 5 2021-12-30 -11.4
## 6 2021-12-31 -11.4

Example16.2 Based on the above, we can plot the data for the last five years quite easily; see
Figure 16.3.

x = spokane.set_index("date").loc["2017-01-01":, "temp"].reset_index()
plt.plot(x.date, x.temp)
plt.show()

The pandas.to_datetime function can also convert arbitrarily formatted date strings,
e.g””MM/DD/YYYY"or"DD.MM.YYYY”toSeriesofdatetimes4&

dates = ["05.04.1991", "14.07.2022", "21.12.2042"]

dates = pd.Series(pd.to_datetime(dates, format="%d.%m.%Y"))
dates

## 0 1991-04-05

## 1 2022-07-14

#Ht 2 2042-12-21

## dtype: datetime64[ns]

Exercise16.3 From the birth_dates® dataset, select all people less than 18 years old (as of the
current day).

3 https://github.com/gagolews/teaching-data/raw/master/marek/birth_dates.csv


https://github.com/gagolews/teaching-data/raw/master/marek/birth_dates.csv
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Figure 16.3. Line chart of midrange daily temperatures in Spokane for 2017-2021.

Several date-time functions and related properties can be referred to via the pandas.
Series.dt accessor, which is similar to pandas.Series.str discussed in Chapter 14.

For instance, converting date-time objects to strings following custom format spe-
cifiers can be performed with:

dates.dt.strftime("%d.%m.%Y")
## 0 05.04.1991

## 1 14.07.2022

## 2 21.12.2042

## dtype: object

We can also extract different date or time fields, such as date, time, year, month, day,
dayofyear, hour, minute, second, etc. For example:

dates_ymd = pd.DataFrame(dict(
year = dates.dt.year,
month = dates.dt.month,

day = dates.dt.day
))
dates_ymd
## year month day
## 0 1991 4 5
#H 1 2022 7 14
#H 2 2042 12 21

The other way around, we should note that pandas.to_datetime can convert data
frames with columns named year, month, day, etc., to date-time objects:



16 TIME SERIES 395

pd.to_datetime(dates_ymd)
## 0 1991-04-05
## 1 2022-07-14
# 2 2042-12-21
## dtype: datetime64[ns]

Example16.4 Let us extract the month and year parts of dates to compute the average monthly
temperatures it the last 50-ish years:

x = spokane.set_index("date").loc["1970":, ].reset_index()
mean_monthly_temps = x.groupby([

X.date.dt.year.rename("year"),

Xx.date.dt.month.rename("month")
]).temp.mean().unstack()
mean_monthly_temps.head().round(1) # preview
## month 1 2 3 4 5 6 7 8 9 10 11 12
## year
## 1970 -3.4 2.3 2.8 5.3 12.7 19.0 22.5 21.2 12.3 7.2 2.2 -2.4
## 1971 -0.1 0.8 1.7 7.4 13.5 14.6 21.0 23.4 12.9 6.8 1.9 -3.5
## 1972 -5.2 -0.7 5.2 5.6 13.8 16.6 20.0 21.7 13.0 8.4 3.5 -3.7
## 1973 -2.8 1.6 5.0 7.8 13.6 16.7 21.8 20.6 15.4 8.4 0.9 0.7
## 1974 -4.4 1.8 3.6 8.0 10.1 18.9 19.9 20.1 15.8 8.9 2.4 -0.8

Figure 16.4 depicts these data on a heat map. We rediscover the ultimate truth that winters are
cold, whereas in the summertime the living is easy, what a wonderful world.

sns.heatmap(mean_monthly_temps)
plt.show()
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Figure 16.4. Average monthly temperatures.
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16.3 Basic operations
16.3.1 Iterated differences and cumulative sums revisited

Recall from Section 5.5.1 the numpy . diff function and its almost-inverse, numpy . cumsum.
The former can turn a time series into a vector of relative changes (deltas), A; = x; .1 —X;.

X = temps[-7:] # last 7 days
X
## array([ -1.4, -5. , -9.4, -12.8, -12.2, -11.4, -11.4])

The iterated differences (deltas) are:

d = np.diff(x)
d
## array([-3.6, -4.4, -3.4, 0.6, 0.8, 0. ])

For instance, between the second and the first day of the last week, the midrange tem-
perature dropped by -3.6°C.

The other way around, here the cumulative sums of the deltas:

np.cumsum(d)
## array([ -3.6, -8. , -11.4, -10.8, -10. , -10. ])

This turned deltas back to a shifted version of the original series. But we will need the
first (root) observation therefrom to restore the dataset in full:

x[0] + np.append(0, np.cumsum(d))
## array([ -1.4, -5. , -9.4, -12.8, -12.2, -11.4, -11.4])

Exercise 16.5 Consider the euraud-20200101-20200630-no-na* dataset which lists daily
EUR/AUD exchange rates in the first half of 2020 (remember COVID-19?), with missing obser-
vations removed. Using numpy. diff, compute the minimum, median, average, and maximum
daily price changes. Also, draw a box and whisker plot for these deltas.

Example16.6 (*) The exponential distribution family is sometimes used for the modelling of
times between different events (deltas). It might be a sensible choice under the assumption that
a system generates a constant number of events on average and that they occur independently of
each other, e.g., for the times between requests to a cloud service during peak hours, wait times
for the next pedestrian to appear at a crossing near the Southern Cross Station in Melbourne, or
the amount of time it takes a bank teller to interact with a customer (there is a whole branch of
applied mathematics called queuing theory that deals with this type of modelling).

4 https://github.com/gagolews/teaching-data/raw/master/marek/euraud- 20200101- 20200630-no-na.
txt


https://github.com/gagolews/teaching-data/raw/master/marek/euraud-20200101-20200630-no-na.txt
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An exponential family is identified by the scale parameter s > 0, being at the same time its
expected value. The probability density function of Exp(s) is given for x > 0 by:

flo) = ge705,

and f (x) = 0 otherwise. We need to be careful: some textbooks choose the parametrisation by
A = 1/s instead of s. The scipy package also uses this convention.

Here is a pseudorandom sample where there are five events per minute on average:

np.random. seed(123)

L = 60/5 # 5 events per 60 seconds on average

d = scipy.stats.expon.rvs(size=1200, scale=1)

np.round(d[:8], 3) # preview

## array([14.307, 4.045, 3.087, 9.617, 15.253, 6.601, 47.412, 13.856])

This gave us the wait times between the events, in seconds.
A natural sample estimator of the scale parameter is:

np.mean(d)
## 11.839894504211724

The result is close to what we expected, i.e., s = 12 seconds between the events.

We can convert the above to date-time (starting at a fixed calendar date) as follows. Note that we
will measure the deltas in milliseconds so that we do not loose precision; datetime64 is based on
integers, not floating-point numbers.

tO = np.array("2022-01-01T00:00:00", dtype="datetime64[ms]")
d_ms = np.round(d*1000).astype(int) # in milliseconds

t = tO + np.array(np.cumsum(d_ms), dtype="timedelta64[ms]")
t[:8] # preview

## array(['2022-01-01T00:00:14.307"', '2022-01-01T00:00:18.352"',

## '2022-01-01T00:00:21.439"', '2022-01-01T00:00:31.056",
## '2022-01-01T00:00:46.309"', '2022-01-01T00:00:52.910",
## '2022-01-01T00:01:46.322"', '2022-01-01T00:01:54.178'],
#H dtype="datetime64[ms] ")

t[-2:] # preview
##4 array(['2022-01-01T03:56:45.312"', '2022-01-01T03:56:47.890'],
#H dtype="datetime64[ms] ")

As an exercise, let us apply binning and count how many events occur in each hour:

b = np.arange( # four 1-hour interval (five time points)
"2022-01-01T00:00:00", "2022-01-01T05:00:00",
1000*60*60, # number of milliseconds in 1 hour
dtype="datetime64[ms]"

)

np.histogram(t, bins=b)[0]

## array([305, 300, 274, 321])
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We expect 5 events per second, i.e., 300 of them per hour. On a side note, from a course in statistics
we know that for exponential inter-event times, the number of events per unit of time follows a
Poisson distribution.

Exercise16.7 (*) Consider the wait_times® dataset that gives the times between some consec-
utive events, in seconds. Estimate the event rate per hour. Draw a histogram representing the
number of events per hour.

Exercise16.8 (*) Consider the btcusd_ohlcv_2021_dates® dataset which gives the daily
BTC/USD exchange rates in 2021:

btc = pd.read _csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/btcusd_ohlcv_2021 dates.csv”,
comment="#").loc[:, ["Date", "Close"]]

btc["Date"] = btc["Date"].astype("datetime64[s]")

btc.head(12)

## Date Close

## 0 2021-01-01 29374.152
## 1 2021-01-02 32127.268
## 2 2021-01-03 32782.023
## 3 2021-01-04 31971.914
## 4 2021-01-05 33992.430
## 5 2021-01-06 36824.363
## 6 2021-01-07 39371.043
## 7 2021-01-08 40797.609
## 8 2021-01-09 40254.547
## 9 2021-01-10 38356.441

## 10 2021-01-11 35566.656
## 11 2021-01-12 33922.961

Author a function that converts it to a lagged representation, being a convenient form for some
machine learning algorithms.

1. Add the Change column that gives by how much the price changed since the previous day.
2. Add the Dir column indicating if the change was positive or negative.
3. Addthe Lag1, ..., Lag5 columns which give the Changes in the five preceding days.

The first few rows of the resulting data frame should look like this (assuming we do not want any
missing values):

## Date Close  Change Dir Lag1 Lag2 Lag3 Lag4 Lag5
## 2021-01-07 39371 2546.68 inc 2831.93 2020.52 -810.11 654.76 2753.12
## 2021-01-08 40798 1426.57 inc 2546.68 2831.93 2020.52 -810.11 654.76
## 2021-01-09 40255 -543.06 dec 1426.57 2546.68 2831.93 2026.52 -810.11
#4 2021-01-10 38356 -1898.11 dec -543.06 1426.57 2546.68 2831.93 2020.52
## 2021-01-11 35567 -2789.78 dec -1898.11 -543.06 1426.57 2546.68 2831.93
## 2021-01-12 33923 -1643.69 dec -2789.78 -1898.11 -543.06 1426.57 2546.68

5 https://github.com/gagolews/teaching-data/raw/master/marek/wait_times.txt
6 https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlcv_2021_dates.csv


https://github.com/gagolews/teaching-data/raw/master/marek/wait_times.txt
https://github.com/gagolews/teaching-data/raw/master/marek/btcusd_ohlcv_2021_dates.csv
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Inthe sixth row (representing 2021-01-12), Lag1 corresponds to Change on 2021-01-11, Lag2 gives
the Change on 2021-01-10, and so forth.

To spice things up, make sure your code can generate any number (as defined by another para-
meter to the function) of lagged variables.

16.3.2 Smoothing with moving averages

With time series it makes sense to consider processing whole batches of consecutive
points as there is a time dependence between them. In particular, we can consider
computing different aggregates inside rolling windows of a particular size. For instance,
the k-moving average of a given sequence (xq, X5, ..., X,,) isavector (Y1, Yo, ..., Ys—k+1)
such that:

1 1¢
Vi=% (X + X1+ + Xippo1) = % in+]'—1/
j=1
i.e., the arithmetic mean of k < n consecutive observations starting at x;.

For example, here are the temperatures in the last seven days of December 2011:

x = spokane.set_index("date").iloc[-7:, :]
X

## temp
## date

## 2021-12-25 -1.4
## 2021-12-26 -5.0
## 2021-12-27 -9.4
## 2021-12-28 -12.8
## 2021-12-29 -12.2
## 2021-12-30 -11.4
## 2021-12-31 -11.4

The 3-moving (rolling) average:

x.rolling(3, center=True).mean().round(2)
## temp

## date

## 2021-12-25 NaN

## 2021-12-26 -5.27

## 2021-12-27 -9.07

## 2021-12-28 -11.47

## 2021-12-29 -12.13

## 2021-12-30 -11.67

## 2021-12-31 NaN

We get, in this order: the mean of the first three observations; the mean of the second,
third, and fourth items; then the mean of the third, fourth, and fifth; and so forth. No-
tice that the observations were centred in such a way that we have the same number of
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missing values at the start and end of the series. This way, we treat the first three-day
moving average (the average of the temperatures on the first three days) as represent-
ative of the second day.

And now for something completely different; the 5-moving average:

x.rolling(5, center=True).mean().round(2)
## temp

## date

## 2021-12-25 NaN

## 2021-12-26 NaN

## 2021-12-27 -8.16

## 2021-12-28 -10.16

## 2021-12-29 -11.44

## 2021-12-30 NaN

## 2021-12-31 NaN

Applying the moving average has the nice effect of smoothing out all kinds of broadly-
conceived noise. To illustrate this, compare the temperature data for the last five years
in Figure 16.3 to their averaged versions in Figure 16.5.

x = spokane.set_index("date").loc["2017-01-01":, "temp"]
x30 = x.rolling(30, center=True).mean()

x100 = x.rolling(100, center=True).mean()

plt.plot(x30, label="30-day moving average")
plt.plot(x100, "r--", label="100-day moving average")
plt.legend()

plt.show()

Exercise16.9 (*) Otheraggregation functions can be applied in rolling windows as well. Draw,
in the same figure, the plots of the one-year moving minimums, medians, and maximums.

16.3.3 Detecting trends and seasonal patterns

Thanks to windowed aggregation, we can also detect general trends (when using
longish windows). For instance, below we compute the ten-year moving averages for
the last 50-odd years’ worth of data:

X = spokane.set_index("date").loc["1970-01-01":, "temp"]
x10y = x.rolling(3653, center=True).mean()

Based on this, we can compute the detrended series:

xd = x - x10y

Seasonal patterns can be revealed by smoothening out the detrended version of the
data, e.g., using a one-year moving average:
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Figure 16.5. Line chart of 30- and 100-moving averages of the midrange daily temper-
atures in Spokane for 2017-2021.

xdly = xd.rolling(365, center=True).mean()

Figure 16.6 illustrates this.

plt.plot(x10y, label="trend")

plt.plot(xdly, "r--", label="seasonal pattern")
plt.legend()

plt.show()

Also, if we know the length of the seasonal pattern (in our case, 365-ish days), we can
draw a seasonal plot, where we have a separate curve for each season (here: year) and
where all the series share the same x-axis (here: the day of the year); see Figure 16.7.

cmap = plt.colormaps.get_cmap("coolwarm")
x = spokane.set_index("date").loc["1970-01-01":, :].reset_index()
for year in range(1970, 2022, 5): # selected years only
y = x.loc[x.date.dt.year == year, :]
plt.plot(y.date.dt.dayofyear, y.temp,
c=cmap((year-1970)/(2021-1970)), alpha=0.3,
label=year if year % 10 == 0 else None)
avex = X.temp.groupby(x.date.dt.dayofyear).mean()
plt.plot(avex.index, avex, "g-", label="Average") # all years
plt.legend()
plt.xlabel("Day of year")
plt.ylabel("Temperature")
plt.show()
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Figure 16.6. Trend and seasonal pattern for the Spokane temperatures in recent years.
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Figure 16.7. Seasonal plot: temperatures in Spokane vs the day of the year for 1970-
2021.
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Exercise16.10 Draw a similar plot for the whole data range, i.e., 1889-2021.

Exercise16.11 Try using pd.Series.dt.strftime with a custom formatter instead of pd.
Series.dt.dayofyear.

16.3.4 Imputing missing values

Missing values in time series can be imputed based on the information from the neigh-
bouring non-missing observations. After all, it is usually the case that, e.g., today’s
weather is “similar” to yesterday’s and tomorrow’s.

The most straightforward ways for dealing with missing values in time series are:
« forward-fill - propagate the last non-missing observation,
« backward-fill - get the next non-missing value,

« linearly interpolate between two adjacent non-missing values — in particular, a single
missing value will be replaced by the average of its neighbours.

Example16.12 The classic air_quality_1973 dataset gives some daily air quality measure-
ments in New York, between May and September 1973. Let us impute the first few observations
in the solar radiation column:

air = pd.read_csv("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/r/air_quality 1973.csv",
comment="#")
x = air.loc[:, "Solar.R"].iloc[:12]
pd.DataFrame(dict(
original=x,
ffilled=x. ffill(),
bfilled=x.bfill(),
interpolated=x. interpolate(method="1inear")

))

## original ffilled bfilled 1interpolated
## 0 190.0 190.0 190.0 190.000000
#4 1 118.0 118.0 118.0 118.000000
## 2 149.0 149.0 149.0 149. 000000
## 3 313.0 313.0 313.0 313.000000
#4 4 NaN 313.0 299.0 308.333333
## 5 NaN 313.0 299.0 303. 666667
## 6 299.0 299.0 299.0 299. 000000
#Ht 7 99.0 99.0 99.0 99. 000000
## 8 19.0 19.0 19.0 19.000000
## 9 194.0 194.0 194.0 194.000000
## 10 NaN 194.0 256.0 225.000000
## 11 256.0 256.0 256.0 256.000000

Exercise 16.13 (¥) With the air_quality_2018% dataset:

7 https://github.com/gagolews/teaching-data/raw/master/r/air_quality_1973.csv
8 hteps://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018.csv.gz


https://github.com/gagolews/teaching-data/raw/master/r/air_quality_1973.csv
https://github.com/gagolews/teaching-data/raw/master/marek/air_quality_2018.csv.gz
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1. Based on the hourly observations, compute the daily mean PM2.5 measurements for Mel-
bourne CBD and Morwell South.

For Melbourne CBD, if some hourly measurement is missing, linearly interpolate between
the preceding and following non-missing data, e.g., a PM2.5 sequence of [ ..., 160, NaN,
NaN, 40, ...] (youneedto manually add the NaNrows to the dataset) should be transformed
tof..., 10, 20, 30, 40, ...].

For Morwell South, impute the readings with the averages of the records in the nearest air
quality stations, which are located in Morwell East, Moe, Churchill, and Traralgon.

2. Present the daily mean PMz2.5 measurements for Melbourne CBD and Morwell South on a
single plot. The x-axis labels should be human-readable and intuitive.

3. Forthe Melbourne data, determine the number of days where the average PM2.5 was greater
than in the preceding day.

4. Find five most air-polluted days for Melbourne.

16.3.5 Plotting multidimensional time series

Multidimensional time series stored in the form of an n1 x m matrix are best viewed as
m time series — possibly but not necessarily related to each other — all sampled at the
same 1 points in time (e.g., m different stocks on 7 consecutive days).

Consider the currency exchange rates for the first half of 2020:

eurxxx = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/eurxxx-20200101-20200630-no-na.csv",

delimiter=",
eurxxx[:6, :] # preview

## array([[1.6006 , 7.7946 , 0.84828, 4.2544 ],
## [1.6031 , 7.7712 , 0.85115, 4.2493 ],
#H [1.6119 , 7.8049 , 0.85215, 4.2415 ],
## [1.6251 , 7.7562 , 0.85183, 4.2457 ],
## [1.6195 , 7.7184 , 0.84868, 4.2429 ],
#H [1.6193 , 7.7011 , 0.85285, 4.2422 ]])

This gives EUR/AUD (how many Australian Dollars we pay for 1 Euro), EUR/CNY
(Chinese Yuans), EUR/GBP (British Pounds), and EUR/PLN (Polish Ztotys), in this or-
der. Let us draw the four time series; see Figure 16.8.

dates = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/euraud-20200101-20200630-dates. txt",
dtype="datetime64[s]")

labels = ["AUD", "CNY", "GBP", "PLN"]

styles = ["solid", "dotted", "dashed", "dashdot"]

for 1 in range(eurxxx.shape[1]):
plt.plot(dates, eurxxx[:, 1], ls=styles[1], label=labels[1])

plt.legend(loc="upper right", bbox_to_anchor=(1, 0.9)) # a bit lower

plt.show()
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Figure16.8. EUR/AUD, EUR/CNY, EUR/GBP, and EUR/PLN exchange rates in the first
half of 2020.

Unfortunately, they are all on different scales. This is why the plot is not necessarily
readable. It would be better to draw these time series on four separate plots (compare
the trellis plots in Section 12.2..5).

Another idea is to depict the currency exchange rates relative to the prices on some day,
say, the first one; see Figure 16.9.

for 1 in range(eurxxx.shape[1]):
plt.plot(dates, eurxxx[:, i]/eurxxx[0, 1],
ls=styles[1], label=labels[i])
plt.legend()
plt.show()

This way, e.g., arelative EUR/AUD rate of c. 1.15 in mid-March means that if an Aussie
bought some Euros on the first day, and then sold them three-ish months later, they
would have 15% more wealth (the Euro become 15% stronger relative to AUD).

Exercise 16.14 Based onthe EUR/AUD and EUR/PLN records, compute and plotthe AUD/PLN
as well as PLN/AUD rates.

Exercise16.15 (*) Draw the EUR/AUD and EUR/GBP rates on a single plot, but where each
series has its own® y-axis.

Exercise16.16 (*) Draw the EUR/xxx rates for your favourite currencies over a larger period.

° https://matplotlib.org/stable/gallery/subplots_axes_and_figures/secondary_axis.html


https://matplotlib.org/stable/gallery/subplots_axes_and_figures/secondary_axis.html
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Figure 16.9. EUR/AUD, EUR/CNY, EUR/GBP, and EUR/PLN exchange rates relative to
the prices on the first day.

Use data™® downloaded from the European Central Bank. Add a few moving averages. For each
year, identify the lowest and the highest rate.

16.3.6 Candlestick plots ()
Consider the BTC/USD data for 2021:

btcusd = np.genfromtxt("https://raw.githubusercontent.com/gagolews/" +
"teaching-data/master/marek/btcusd_ohlcv_2021.csv",
delimiter=",")
btcusd[:6, :4] # preview (we skip the Volume column for readability)
## array([[28994.01 , 29600.627, 28803.586, 29374.152],

## [29376.455, 33155.117, 29091.182, 32127.268],
## [32129.408, 34608.559, 32052.316, 32782.023],
## [32810.949, 33440.219, 28722.756, 31971.914],
#H [31977.041, 34437.59 , 30221.188, 33992.43 ],
## [34013.613, 36879.699, 33514.035, 36824.363]])

This gives the open, high, low, and close (OHLC) prices on the 365 consecutive days,
which is a common way to summarise daily rates.

The mplfinance (matplotlib-finance) package defines a few functions related to the
plotting of financial data. Let us briefly describe the well-known candlestick plot.

19 https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/
html/index.en.html
" https://github.com/matplotlib/mplfinance
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https://github.com/matplotlib/mplfinance
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import mplfinance as mpf
dates = np.arange("2021-01-01", "2022-01-01", dtype="datetime64[D]")
mpf.plot(
pd.DataFrame(
btcusd,
columns=["Open", "High", "Low", "Close", "Volume"]
).set_index(dates).iloc[:31, :],
type="candle",
returnfig=True
)
plt.show()

Figure 16.10. A candlestick plot for the BTC/USD exchange rates in January 2021.

Figure 16.10 depicts the January 2021 data. Let us stress that this is not a box and
whisker plot. The candlestick body denotes the difference in the market opening and
the closing price. The wicks (shadows) give the range (high to low). White candle-
sticks represent bullish days — where the closing rate is greater than the opening one
(uptrend). Black candles are bearish (decline).

Exercise 16.17 Draw the BTC/USD vates for the entire year and add the 10-day moving aver-
ages.

Exercise16.18 (*) Draw a candlestick plot manually, without using the mp1finance package.
Hint: matplotlib.pyplot.fill might be helpful.
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Exercise16.19 (*) Using matplotlib.pyplot.fill_between add a semi-transparent poly-
gon that fills the area bounded between the Low and High prices on all the days.

16.4 Further reading

Data science classically deals with information that is or can be represented in tabular
form and where particular observations (which can be multidimensional) are usually
independent from but still to some extent similar to each other. We often treat them
as samples from different larger populations which we would like to describe or com-
pare at some level of generality (think: health data on patients being subject to two
treatment plans that we wish to evaluate).

From this perspective, time series are already quite distinct: there is some depend-
ence observed in the time domain. For instance, a price of a stock that we observe
today is influenced by what was happening yesterday. There might also be some sea-
sonal patterns or trends under the hood. For a comprehensive introduction to forecast-
ing; see [52, 71]. Also, for data of this kind, employing statistical modelling techniques
(stochastic processes) can make a lot of sense; see, e.g., [86].

Signals such as audio, images, and video are different because structured randomness
does not play a dominant role there (unless it is a noise that we would like to filter out).
Instead, what is happening in the frequency (think: perceiving pitches when listen-
ing to music) or spatial (seeing green grass and sky in a photo) domain should be of
interest.

Signal processing thus requires a distinct set of tools, e.g., Fourier analysis and finite
impulse response (discrete convolution) filters. This course obviously cannot be about
everything (also because it requires some more advanced calculus skills that we did
not assume the reader to have at this time); but see, e.g., [83, 85].

Nevertheless, keep in mind that these are not completely independent domains. For
example, we can extract various features of audio signals (e.g., overall loudness,
timbre, and danceability of each recording in a large song database) and then treat
them as tabular data to be analysed using the techniques described in this course.
Moreover, machine learning (e.g., convolutional neural networks) algorithms may
also be used for tasks such as object detection on images or optical character recog-
nition; see, e.g., [42].

16.5 Exercises

Exercise16.20 Assume we have a time series with n observations. What is a 1- and an n-
moving average? Which one is smoother, a (0.01n)- ora (0.1n)- one?
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Exercise 16.21 What is the UNIX Epoch?

Exercise 16.22 How can we recreate the original series when we are given its numpy. diff-
transformed version?

Exercise 16.23 (*) In your own words, describe the key elements of a candlestick plot.






Changelog

Important Anybug/typo reports/fixes'* are appreciated. The most up-to-date version
of this book can be found at https://datawranglingpy.gagolewski.com/.

Below is the list of the most noteworthy changes.
. under development (v1.0.3.9xxx):
- New HTML theme (includes light and dark mode).

- Not using seaborn where it can easily be replaced by 1-3 calls to the lower-
level matplotlib, especially in the numpy chapters. This way, we can learn how
to create some popular charts from scratch. In particular, we are now using
own functions to display a heat map and a pairs plot.

Use numpy . genfromtxt more eagerly.

A few more examples of using f-strings for results’ pretty-printing.

Bug fixes and a lot of other minor extensions.

(...) todo (...) work in progress (...) more to come (...)
* 2023-02-06 (v1.0.3):
- Numeric reference style; updated bibliography.

- Reduce the file size of the screen-optimised PDF at the cost of a slight de-
crease of the quality of some figures.

- The print-optimised PDF now uses selective rasterisation of parts of figures,
not whole pages containing them. This should increase the quality of the
printed version of this book.

- Bug fixes.

- Minor extensions, including: pandas.Series.dt.strftime, more details how
to avoid pitfalls in data frame indexing, etc.

o 2022-08-24 (v1.0.2):

- First printed (paperback) version can be ordered from Amazon®.

12 https://github.com/gagolews/datawranglingpy
13 https://www.amazon.com/dp/0645571911
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- Fixed page margin and header sizes.
— Minor typesetting and other fixes.
+ 2022-08-12 (V1.0.1):
- Cover.
- ISBN 978-0-6455719-1-2 assigned.

+ 2022-07-16 (V1.0.0):

Preface complete.

- Handling tied observations.

— Plots now look better when printed in black and white.
- Exception handling.

- File connections.

- Other minor extensions and material reordering: more aggregation func-
tions, pandas.unique, pandas.factorize, probability vectors representing
binary categorical variables, etc.

- Final proofreading and copyediting.
o 2022-06-13 (v0.5.1):
- The Kolmogorov—Smirnov Test (one and two sample).

- The Pearson Chi-Squared Test (one and two sample and for independence).

Dealing with round-off and measurement errors.

Adding white noise (jitter).

Lambda expressions.

Matrices are iterable.

o 2022-05-31(V0.4.1):

— The Rules.

Matrix multiplication, dot products.

Euclidean distance, few-nearest-neighbour and fixed-radius search.

Aggregation of multidimensional data.

Regression with k-nearest neighbours.

Least squares fitting of linear regression models.

Geometric transforms; orthonormal matrices.

SVD and dimensionality reduction/PCA.

Classification with k-nearest neighbours.
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Clustering with k-means.

Text Processing and Regular Expression chapters merged.

Unidimensional Data Aggregation and Transformation chapters merged.

pandas.GroupBy objects are iterable.

Semitransparent histograms.

Contour plots.
- Argument unpacking and variadic arguments (*args, **kwargs).

e 2022-05-23 (v0.3.1):

More lightweight mathematical notation.

Some equalities related to the mathematical functions we rely on (the natural
logarithm, cosine, etc.).

A way to compute the most correlated pair of variables.

A note on modifying elements in an array and on adding new rows and
columns.

An example seasonal plot in the time series chapter.

Solutions to the SQL exercises added; to ignore small round-off errors, use
pandas.testing.assert_frame_equal instead of pandas.DataFrame.equals.

More details on file paths.

* 2022-04-12 (VO.2.1):
- Many chapters merged or relocated.
- Added captions to all figures.

- Improved formatting of elements (information boxes such as note, important,
exercise, example).

o 2022-03-27 (VO.1.1):
- First public release — most chapters are drafted, more or less.
- Using Sphinx for building.

* 2022-01-05 (v0.0.0):

- Project started.
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