
[1]

Mastering pandas for Finance

Master pandas, an open source Python Data
Analysis Library, for financial data analysis

Michael Heydt

BIRMINGHAM - MUMBAI

Mastering pandas for Finance

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1190515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-510-4

www.packtpub.com

www.packtpub.com

Credits

Author
Michael Heydt

Reviewers
James Beveridge

Philipp Deutsch

Jon Gaither

Jim Holmström

Francesco Pochetti

Commissioning Editor
Kartikey Pandey

Content Development Editor
Merwyn D'souza

Technical Editor
Shashank Desai

Copy Editor
Sarang Chari

Project Coordinator
Neha Bhatnagar

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Michael Heydt is an independent consultant, educator, and trainer with nearly
30 years of professional software development experience, during which time, he
focused on Agile software design and implementation using advanced technologies
in multiple verticals, including media, finance, energy, and healthcare. He holds
an MS degree in mathematics and computer science from Drexel University and
an executive master's of technology management degree from the University of
Pennsylvania's School of Engineering and Wharton Business School. His studies
and research have focused on technology management, software engineering,
entrepreneurship, information retrieval, data sciences, and computational finance.
Since 2005, he has specialized in building energy and financial trading systems
for major investment banks on Wall Street and for several global energy-trading
companies, utilizing .NET, C#, WPF, TPL, DataFlow, Python, R, Mono, iOS,
and Android. His current interests include creating seamless applications using
desktop, mobile, and wearable technologies, which utilize high-concurrency,
high-availability, and real-time data analytics; augmented and virtual reality; cloud
services; messaging; computer vision; natural user interfaces; and software-defined
networks. He is the author of numerous technology articles, papers, and books. He
is a frequent speaker at .NET user groups and various mobile and cloud conferences,
and he regularly delivers webinars and conducts training courses on emerging
and advanced technologies. To know more about Michael, visit his website at
http://bseamless.com/.

http://bseamless.com/

About the Reviewers

James Beveridge is a product analyst and machine learning specialist. He earned
his BS degree in mathematics from Cal Poly, San Luis Obispo, CA. He has worked
with the finance and analytics teams in technology and marketing companies in
the Bay Area, Chicago, and New York. His current work focuses on segmentation
and classification modeling, statistics, and product development. He has enjoyed
contributing to this book as a technical reviewer.

Philipp Deutsch obtained degrees in mathematics and physics from the University
of Vienna and the Vienna University of Technology before starting a career in financial
services and consulting. He has worked on a number of projects involving data
analytics across Europe, both in the banking and consumer/retail sectors, and has
extensive experience in Python, R, and SQL. He currently lives in London.

Jon Gaither is a senior information systems student at Clemson University with
a background in finance. He started learning Python during his sophomore year of
college. Since then, he has dabbled in frameworks such as Flask, Django, and pandas
purely out of interest. Outside of Python, Jon has studied Java, SAS, VBA, and SQL.
His professional experience comes from internships in financial services and satellite
communications.

Jim Holmström is soon to graduate with a bachelor's degree in engineering
physics and a master's degree in machine learning from KTH Royal Institute of
Technology, Stockholm.

He is currently a developer and partner at Watty—an electricity data analysis
start-up that creates a breakdown of a household's energy spending from the total
electricity consumption data. Watty's leading-edge technology stack has pandas as
an integral part.

Both professionally and in his free time, he enjoys data analysis, functional
programming, and well-structured code.

For more information, visit http://portfolio.jim.pm.

Francesco Pochetti graduated in physical chemistry in Rome in 2012 and was
employed at Avio in Italy. He worked there for 2 years as a solid rocket propellant
specialist, taking care of the formulation and development of rocket fuels for both
military and aerospace purposes. In July 2014, he moved to Berlin to attend Data
Science Retreat—a 3-month boot camp in data analysis and machine learning in
Python and R. After this short German experience, he ended up at Amazon in
Luxembourg, where he currently works as a business analyst for Kindle content.

In his spare time, he likes to read and play around with several programming
languages, Python being among his preferred ones. You can follow him and his
data-related projects at http://francescopochetti.com/.

http://portfolio.jim.pm
http://francescopochetti.com/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with pandas Using Wakari.io	 1

What is Wakari?	 2
Creating a Wakari cloud account	 3

Updating existing packages	 6
Installing new packages	 7

Installing the samples in Wakari	 10
Summary	 12

Chapter 2: Introducing the Series and DataFrame	 13
Notebook setup	 14
The main pandas data structures – Series and DataFrame	 14

The Series	 14
The DataFrame	 15

The basics of the Series and DataFrame objects	 15
Creating a Series and accessing elements	 16
Size, shape, uniqueness, and counts of values	 19
Alignment via index labels	 21
Creating a DataFrame	 23
Example data	 26
Selecting columns of a DataFrame	 27
Selecting rows of a DataFrame using the index	 30

Slicing using the [] operator	 31
Selecting rows by the index label and location – .loc[] and .iloc[]	 32
Selecting rows by the index label and/or location – .ix[]	 33
Scalar lookup by label or location using .at[] and .iat[]	 34

Selecting rows using the Boolean selection	 35
Arithmetic on a DataFrame	 36

Reindexing the Series and DataFrame objects	 39
Summary	 44

Table of Contents

[ii]

Chapter 3: Reshaping, Reorganizing, and Aggregating	 45
Notebook setup	 46
Loading historical stock data	 46

Organizing the data for the examples	 47
Reorganizing and reshaping data	 48

Concatenating multiple DataFrame objects	 48
Merging DataFrame objects	 56
Pivoting	 59
Stacking and unstacking	 60
Melting	 62

Grouping and aggregating	 63
Splitting	 63
Aggregating	 70

Summary	 72
Chapter 4: Time-series	 73

Notebook setup	 74
Time-series data and the DatetimeIndex	 74
Creating time-series with specific frequencies	 82
Representing intervals of time using periods	 83
Shifting and lagging time-series data	 87
Frequency conversion of time-series data	 91
Resampling of time-series	 93
Summary	 97

Chapter 5: Time-series Stock Data	 99
Notebook setup	 100
Obtaining historical stock and index data	 100

Fetching historical stock data from Yahoo!	 101
Fetching index data from Yahoo!	 102

Visualizing financial time-series data	 103
Plotting closing prices	 103
Plotting volume-series data	 105
Combined price and volumes	 106
Plotting candlesticks	 107

Fundamental financial calculations	 111
Calculating simple daily percentage change	 112
Calculating simple daily cumulative returns	 115
Analyzing the distribution of returns	 116

Histograms	 117
Q-Q plots	 120
Box-and-whisker plots	 122

Comparison of daily percentage change between stocks	 124

Table of Contents

[iii]

Moving windows	 128
Volatility calculation	 133

Rolling correlation of returns	 135
Least-squares regression of returns	 136

Comparing stocks to the S&P 500	 138
Summary	 144

Chapter 6: Trading Using Google Trends	 145
Notebook setup	 146
A brief on Quantifying Trading Behavior in Financial Markets
Using Google Trends	 147
Data collection	 148

The data from the paper	 149
Gathering our own DJIA data from Quandl	 151
Google Trends data	 154

Generating order signals	 159
Computing returns	 161
Cumulative returns and the result of the strategy	 163
Summary	 165

Chapter 7: Algorithmic Trading	 167
Notebook setup	 168
The process of algorithmic trading	 168

Momentum strategies	 169
Mean-reversion strategies	 169

Moving averages	 169
Simple moving average	 169
Exponentially weighted moving average	 173

Technical analysis techniques	 177
Crossovers	 177

Pairs trading	 179
Algo trading with Zipline	 181

Algorithm – buy apple	 181
Algorithm – dual moving average crossover	 192
Algorithm – pairs trade	 196

Summary	 203
Chapter 8: Working with Options	 205

Introducing options	 206
Notebook setup	 208

Options data from Yahoo! Finance	 208
Implied volatility	 212

Volatility smirks	 214

Table of Contents

[iv]

Calculating payoff on options	 216
The call option payoff calculation	 216
The put option payoff calculation	 219

Profit and loss calculation	 221
The call option profit and loss for a buyer	 223
The call option profit and loss for the seller	 226
Combined payoff charts	 227
The put option profit and loss for a buyer	 229
The put option profit and loss for the seller	 231

The pricing of options	 233
The pricing of options with Black-Scholes	 234

Deriving the model	 235
The formulas	 236

Black-Scholes using Mibian	 237
Charting option price change over time	 238
The Greeks	 240

Calculation and visualization	 241
Summary	 244

Chapter 9: Portfolios and Risk	 245
Notebook setup	 246
An overview of modern portfolio theory	 247

Concept	 248
Mathematical modeling of a portfolio	 248

Risk and expected return	 248
Diversification	 249
The efficient frontier	 249

Modeling a portfolio with pandas	 250
Constructing an efficient portfolio	 254

Gathering historical returns for a portfolio	 254
Formulation of portfolio risks	 256
The Sharpe ratio	 259
Optimization and minimization	 260

Constructing an optimal portfolio	 261
Visualizing the efficient frontier	 262
Value at Risk	 266
Summary	 270

Index	 271

[v]

Preface
Mastering pandas for Finance will teach you how to use Python and pandas to
model and solve real-world financial problems using pandas, Python, and several
open source tools that assist in various financial tasks, such as option pricing and
algorithmic trading.

This book brings together various diverse concepts related to finance in an attempt
to provide a unified reference to discover and learn several important concepts in
finance and explains how to implement them using a core of Python and pandas that
provides a unified experience across the different models and tools.

You will start by learning about the facilities provided by pandas to model financial
information, specifically time-series data, and to use its built-in capabilities to
manipulate time-series data, group and derive aggregate results, and calculate
common financial measurements, such as percentage changes, correlation of time-
series, various moving window operations, and key data visualizations for finance.

After establishing a strong foundation from which to use pandas to model financial
time-series data, the book turns its attention to using pandas as a tool to model
the data that is required as a base for performing other financial calculations. The
book will cover diverse areas in which pandas can assist, including the correlations
of Google trends with stock movements, creating algorithmic trading systems,
and calculating options payoffs, prices, and behaviors. The book also shows how
to model portfolios and their risk and to optimize them for specific risk/return
tolerances.

Preface

[vi]

What this book covers
Chapter 1, Getting Started with pandas Using Wakari.io, walks you through using
Wakari.io, an online collaborative data analytics platform, that utilizes Python,
IPython Notebook, and pandas. We will start with a brief overview of Wakari.io
and step through how to upgrade the default Python environment and install all
of the tools used throughout this text. At the end, you will have a fully functional
financial analytics platform supporting all of the examples we will cover.

Chapter 2, Introducing the Series and DataFrame, teaches you about the core pandas
data structures—the Series and the DataFrame. You will learn how a Series expands
on the functionality of the NumPy array to provide much richer representation and
manipulation of sequences of data through the use of high-performance indices.
You will then learn about the pandas DataFrame and how to use it to model
two-dimensional tabular data.

Chapter 3, Reshaping, Reorganizing, and Aggregating, focuses on how to use pandas to
group data, enabling you to perform aggregate operations on grouped data to assist
with deriving analytic results. You will learn to reorganize, group, and aggregate
stock data and to use grouped data to calculate simple risk measurements.

Chapter 4, Time-series, explains how to use pandas to represent sequences of pricing
data that are indexed by the progression of time. You will learn how pandas
represents date and time as well as concepts such as periods, frequencies, time zones,
and calendars. The focus then shifts to learning how to model time-series data with
pandas and to perform various operations such as shifting, lagging, resampling, and
moving window operations.

Chapter 5, Time-series Stock Data, leads you through retrieving and performing
various financial calculations using historical stock quotes obtained from Yahoo!
Finance. You will learn to retrieve quotes, perform various calculations, such as
percentage changes, cumulative returns, moving averages, and volatility, and finish
with demonstrations of several analysis techniques including return distribution,
correlation, and least squares analysis.

Chapter 6, Trading Using Google Trends, demonstrates how to form correlations
between index data and trends in searches on Google. You will learn how to gather
index data from Quandl along with trend data from Google and then how to
correlate this time-series data and use that information to generate trade signals,
which will be used to calculate the effectiveness of the trading strategy as compared
to the actual market performance.

Preface

[vii]

Chapter 7, Algorithmic Trading, introduces you to the concepts of algorithmic trading
through demonstrations of several trading strategies, including simple moving
averages, exponentially weighted averages, crossovers, and pairs-trading. You
will then learn to implement these strategies with pandas data structures and to
use Zipline, an open source back-testing tool, to simulate trading behavior on
historical data.

Chapter 8, Working with Options, teaches you to model and evaluate options. You
will first learn briefly about options, how they function, and how to calculate their
payoffs. You will then load options data from Yahoo! Finance into pandas data
structures and examine various options attributes, such as implied volatility and
volatility smiles and smirks. We then examine the pricing of options with Black-
Scholes using Mibian and finish with an overview of Greeks and how to calculate
them using Mibian.

Chapter 9, Portfolios and Risk, will teach you how to model portfolios of multiple
stocks using pandas. You will learn about the concepts of Modern Portfolio Theory
and how to apply those theories with pandas and Python to calculate the risk and
returns of a portfolio, assign different weights to different instruments in a portfolio,
derive the Sharpe ratio, calculate efficient frontiers and value at risk, and optimize
portfolio instrument allocation.

What you need for this book
This book assumes that you have some familiarity with programming concepts, but
even those without programming, or specifically Python programming, experience,
will be comfortable with the examples as they focus on pandas constructs more
than Python or programming. The examples are based on Anaconda Python 2.7 and
pandas 0.15.1. If you do not have either installed, guidance is provided in Chapter 1,
Getting Started with pandas Using Wakari.io, on installing both on Windows, OS X, and
Ubuntu systems. For those interested in not installing any software, instructions are
also given on using the Wakari.io online Python data analysis service. Data is either
provided with the text or is available for download via pandas from data services
such as Yahoo! Finance. We will also use several open source software packages
such as Zipline and Mibian, the retrieval, installation, and usage of which will be
explained during the appropriate chapters.

Preface

[viii]

Who this book is for
If you are interested in quantitative finance, financial modeling, trading, or simply
want to learn Python and pandas as applied to finance, then this book is for you.
Some knowledge of Python and pandas is assumed, but the book will spend time
explaining all of the necessary pandas concepts that are required within the context
of application to finance. Interest in financial concepts is helpful, but no prior
knowledge is expected.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "This information can be easily imported
into DataFrame using the pd.read_csv() function as follows."

A block of code entered in a Python interpreter is set as follows:

import pandas as pd
df = pd.DataFrame.from_items([('column1', [1, 2, 3])])
print (df)

Any command-line/IPython input or output is written as follows:

In [2]:

 # create a DataFrame with 5 rows and 3 columns

 df = pd.DataFrame(np.arange(0, 15).reshape(5, 3),

 index=['a', 'b', 'c', 'd', 'e'],

 columns=['c1', 'c2', 'c3'])

 df

Out[2]:

 c1 c2 c3

 a 0 1 2

 b 3 4 5

 c 6 7 8

 d 9 10 11

 e 12 13 14

Preface

[ix]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once
dropped, click on the Upload Files button and you will see the following files in
your Wakari directory."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. The code examples in the book are also publicly
available on Wakari.io at https://wakari.io/sharing/bundle/Pandas4Finance/
MasteringPandas4Finance_Index.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://wakari.io/sharing/bundle/Pandas4Finance/MasteringPandas4Finance_Index
https://wakari.io/sharing/bundle/Pandas4Finance/MasteringPandas4Finance_Index

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started with pandas
Using Wakari.io

In Mastering pandas for Finance, we will examine the use of pandas to manage
financial data and perform various financial analyses with a specific focus on
financial processes that can be facilitated using the capabilities provided within
pandas, along with an occasional quantitative financial technique. I have made
an assumption that you have basic knowledge of Python programming and have
used IPython and IPython Notebooks. Knowledge of pandas is preferred, but we
will cover enough information on pandas for any reader to be able to understand
the technique being used. We will occasionally and briefly touch upon areas of
quantitative finance, but those times will be mostly for information purposes and
will have implementations that are provided in the code of the text.

During this voyage of discovery, we will begin with an overview/review of concepts
and data structures in pandas that are of importance to financial analysis. We will
then move into various concepts, techniques, tools, and examples of specific financial
analysis problems as solved with Python, pandas, and several other Python libraries
and tools, including Wakari, matplotlib, SciPy, Quandl, Zipline, and Mibian.
These will be varied in nature, and topics ranging from analysis of historical stock
data, correlating search data with trends in stock prices, algorithmic trading and
backtesting, options modeling and pricing, and portfolio and risk analysis will be
covered.

In this first chapter, we will walk through creating an account and environment
in Wakari.io and installing the code samples into that environment. I have chosen
Wakari.io as a basis for a pandas-based financial environment because it is relatively
painless to get up and running with all of the tools we will utilize, and also the
samples provided in the code bundle of this book are in the IPython Notebook
format, which is simple to use within Wakari.io.

Getting Started with pandas Using Wakari.io

[2]

The use of Wakari, however, does not prevent you from using your own Python
environment. The examples in the text will run in any Python environment and were
originally built using the Anaconda and IPython Notebook formats with all of the
mentioned tools installed within the environment. Just in case you don't want to use
Wakari, all the code examples in the text are presented as IPython and will run in a
properly configured IPython environment.

So, let's get started. In this chapter, we will cover the following topics:

•	 What is Wakari.io?

•	 Creating a Wakari account

•	 Updating the default Wakari environment to run all our examples

•	 Installing and running the code samples in Wakari

What is Wakari?
Wakari (http://continuum.io/wakari) is a collaborative data analytics platform that
allows you to explore data and create analytic scripts in collaboration with IPython
Notebooks. It is an offering of Continuum Analytics, the creators of the Anaconda
Python distribution, which is generally considered to be one of the best Python
distributions. Wakari is offered as a solution that you can run in your enterprise at
an expense, or as a web- or cloud-based solution offered on a freemium basis. The
following screenshot shows Wakari as an offering of Continuum Analytics:

http://continuum.io/wakari

Chapter 1

[3]

The approach in this text will be to guide you in using the cloud-based Wakari
solution. This environment provides an effective quick start to learning pandas and
performing all the data analysis in this text but with very minimal effort in managing
a local Python installation.

Creating a Wakari cloud account
The cloud-based offering for Wakari is available at https://wakari.io. For
convenience, from this point on, I will refer to Wakari.io as Wakari, but always know
that I am referring to the cloud-based solution.

Wakari is a freemium service that allows you to run web-based Python distributions.
Specifics on the free part of the freemium services can be found on the site, but all of
the examples in this text can be run for free in the Wakari environment (at least at the
time of writing this book). Wakari offers very low resistance to success in learning all
of the concepts in this text as well as many others.

The guidance in this chapter will take you through creating and setting up an online
Python environment, which can run all of the examples in this book. To start, open
your browser and enter https://wakari.io in the address bar. This will display the
following page:

https://wakari.io

Getting Started with pandas Using Wakari.io

[4]

Sign up for a new account, and upon successful registration for the service, you will
be presented with the following web interface to manage IPython Notebooks:

IPython Notebooks are a default feature in Wakari for the purpose of developing
Python applications. All the examples in this book were developed as IPython
Notebooks, although the code can be run sequentially in IPython or even Python.
An advantage of IPython Notebooks is the ability to intermix markdown with
Python code within a semi-dynamic web page, which allows easy reuse of code,
and perhaps more importantly, publishing of code on the Web.

As a matter of fact, you can find all the code files for this book on
Wakari at https://wakari.io/sharing/bundle/Pandas4Finance/
MasteringPandas4Finance_Index.

https://wakari.io/sharing/bundle/Pandas4Finance/MasteringPandas4Finance_Index
https://wakari.io/sharing/bundle/Pandas4Finance/MasteringPandas4Finance_Index

Chapter 1

[5]

At the time of writing this book, the default Python environment provided by
Wakari is Python 2.7.9, and more specifically, Anaconda 1.9.1 (all version numbers
are at the time of writing, so when you read this, they may be newer). This is, in
general, a good environment for what we want to accomplish in this book, although
a few packages need updating and several others need to be installed. In Wakari,
pandas is currently at 0.16.0, which is satisfactory for our needs.

The specific packages that either need updating or installing are as follows:

•	 matplotlib
•	 Zipline
•	 Quandl
•	 html5lib
•	 Mibian
•	 tzlocal

We will go over each of these briefly and also see how to install/update each. In
general, the update/install process will be performed using a shell within Wakari.
One of the spectacular features of Wakari includes running both interactive IPython
sessions and operating system shells directly in the browser.

From a new environment within Wakari, you can open terminals using the
Terminals tab. Click on the Terminals tab, and you will see the following screenshot,
which represents a default IPython shell for your account (currently referred to as
np18py27-19):

Getting Started with pandas Using Wakari.io

[6]

You can perform any Python programming within this web-based interface,
including all of the examples in this book. However, the default Wakari environment
needs a few updates and first-time installs to run all of the examples in the text.

We can perform updates to the environment by opening a shell. This can be
performed by selecting Shell from the drop-down menu, along with np18py27-1.9,
and pressing the +Tab button. After that, you will be presented with the following
screenshot:

We are now in an OS shell that provides you with many options, including updating
your Python environment, which we will now perform.

Updating existing packages
We need to update one package in the default Wakari environment—matplotlib. This
is the graphics package we will use at various points in this book. For most of the
purposes, the version in Wakari (1.3.1) is satisfactory, but the candlestick charts that
we will create require an update to matplotlib from 1.3.1 to a higher version. This is
performed with the conda package manager using the conda update matplotlib
command. When issuing this, you will see something similar to the following in the
terminal tab in your web browser:

Chapter 1

[7]

Installing new packages
The remainder of the packages need to be installed. All these package installations
follow the same process, although there are slightly different commands, which
alternate between using pip and the conda package manager for installation.

For time zone operations, tzlocal is used and is updated using pip. The installation
is performed as shown here:

Getting Started with pandas Using Wakari.io

[8]

The samples do not use html5lib directly, but other libraries do use it indirectly. We
will use these libraries to read and parse data. We need to update this using conda,
as shown here:

A library provided at https://www.quandl.com/, Quandl is a provider of data that
you can integrate into your applications via download or the API. The Python API
that we will use to access S&P 500 data is free and can be installed using conda, as
shown here:

https://www.quandl.com/

Chapter 1

[9]

Available at https://www.quantopian.com/, Zipline is a backtesting/trading
simulator that we will use. Quantopian is a website that focuses on algorithmic
trading, and it produces Zipline, which it uses as one of its underlying technologies.
Although installed using conda, Zipline requires the use of a different channel.
Notice the slight variation in the use of conda to specify the Quantopian channel
in the following screenshot:

The final package we need to install is Mibian, a small library that computes
Black-Scholes and its derivatives. This is installed using pip, as shown here:

We are now ready to run any of the sample Notebooks.

https://www.quantopian.com/

Getting Started with pandas Using Wakari.io

[10]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Installing the samples in Wakari
To install the examples in Wakari, download the code bundle and unzip the files to a
local directory. You will see a set of files as shown here:

To upload the files to Wakari, click on the upload files icon and drag the files into the
Drag & Drop Here section of the web page:

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[11]

Once dropped, click on the Upload Files button, and you will see the following files
in your Wakari directory:

Getting Started with pandas Using Wakari.io

[12]

At this point, you should be able to open and run any of the Notebooks and
even examine the data in the browser. As an example, the following screenshot
demonstrates the Notebook for Chapter 2, Introducing the Series and DataFrame,
opened in Wakari:

Summary
This chapter was a brief introduction to this book. You learned how to set up a
Python environment in Wakari.io to be able to run the code samples provided
throughout the text. This included instructions on how to update the default Wakari.
io Python environment to support the required packages that are required for all of
the examples in the remainder of the text.

In the next chapter, we will dive into using pandas and its core data structures,
Series and DataFrame. These will be core to representing data in later chapters,
where we primarily use pandas DataFrame objects to represent financial data, which
we apply to various financial analyses.

[13]

Introducing the Series and
DataFrame

pandas provides a comprehensive set of data structures for working with and
manipulating data and performing various statistical and financial analyses. The
two primary data structures in pandas are Series and DataFrame. In this chapter,
we will examine the Series object and how it extends a NumPy ndarray to provide
operations such as indexed data retrieval, axis labeling, and automatic alignment.
Then, we will move on to examine how DataFrame extends the capabilities of
Series to use columnar/tabular data, which can be of more than one data type.

The intention of this chapter is to be not only a refresher for those with basic
familiarity with pandas, but also a means by which someone who is not initiated
with pandas can gain enough familiarity with the two data structures and have a
good foundation as we move into more finance-related subjects in later chapters. We
will not cover all the details of using Series and DataFrame but will focus on core
functionality related to what will be used later in this book for financial analysis. For
extensive coverage of Series and DataFrame, I recommend the companion book,
Learning pandas, Packt Publishing, which goes into both in extensive detail.

Specifically, this chapter will cover the following topics:

•	 An overview of the Series and DataFrame objects
•	 Creating and accessing elements of a Series
•	 Determining the shapes and counts of items in a Series
•	 Alignment of items in a Series via index labels
•	 Creating a DataFrame
•	 Loading example financial data to demonstrate the DataFrame

Introducing the Series and DataFrame

[14]

•	 Selecting rows of a DataFrame through several concepts using its index
•	 Boolean selection of rows of a DataFrame using logical expressions
•	 Performing arithmetic on a DataFrame
•	 Reindexing the Series and DataFrame objects

Notebook setup
To utilize the examples in this chapter, we will need to include the following imports
and settings in either your IPython or IPython Notebook environment:

In [1]:

 import pandas as pd

 import numpy as np

 pd.set_option('display.notebook_repr_html', False)

 pd.set_option('display.max_columns', 8)

 pd.set_option('display.max_rows', 8)

The main pandas data structures – Series
and DataFrame
Several classes for manipulating data are provided by pandas. Of those, we are
interested in Series and more interested in DataFrame.

The Series
The Series is the primary building block of pandas and represents a one-
dimensional labeled array based on the NumPy ndarray. The Series extends the
functionality of the NumPy ndarray by adding an associated set of labels that are
used to index the elements of the array. A Series can hold zero or more instances
of any single data type.

This labeled index adds significant power to access the elements of the Series over
a NumPy array. Instead of simply accessing elements by position, a Series allows
access to items through the associated index labels. The index also assists in a feature
of pandas referred to as alignment, where operations between two Series are applied
to values with identical labels.

Chapter 2

[15]

The DataFrame
The Series is the basis for data representation and manipulation in pandas, but
since it can only associate a single value with any given index label, it ends up
having limited ability to model multiple variables of data at each index label.
The pandas DataFrame solves this by providing the ability to seamlessly manage
multiple Series, where each of the Series represents a column of the DataFrame
and also by automatically aligning values in each column along the index labels of
the DataFrame.

In a sense, a DataFrame can be thought of as a dictionary-like container of one or
more Series objects, as a spreadsheet, or probably the best description for those new
to pandas is to compare a DataFrame to a relational database table. But even that
comparison is limiting, as a DataFrame has very distinct qualities (such as automatic
alignment of Series data by index labels) that make it much more capable of
exploratory data analysis than either a spreadsheet or a relational database table.

A good way to think about a DataFrame is that it unifies two or more Series
into a single data structure. Each Series then represents a named column of the
DataFrame, and instead of each column having its own index, the DataFrame
provides a single index and the data in all columns is aligned to the master index
of the DataFrame. Each index label then references a slice of data across all of the
Series at the label, forming what is essentially a record of information associated
with that particular index label.

A DataFrame also introduces the concept of an axis, which you will often see in the
pandas documentation and in many of its methods. A DataFrame has two axes,
horizontal and vertical. Functions from pandas can then be applied to either axis,
in essence, stating that it applies either to all the values in selected rows or to all the
items in specific columns.

The basics of the Series and DataFrame
objects
Now let's examine using the Series and DataFrame objects, building up an
understanding of their capabilities that will assist us in working with financial data.

Introducing the Series and DataFrame

[16]

Creating a Series and accessing elements
A Series can be created by passing a scalar value, a NumPy array, or a Python
dictionary/list to the constructor of the Series object. The following command
creates a Series from 100 normally distributed random numbers:

In [2]:

 np.random.seed(1)

 s = pd.Series(np.random.randn(100))

 s

Out[2]:

 0 1.624345

 1 -0.611756

 2 -0.528172

 3 -1.072969

 ...

 96 -0.343854

 97 0.043597

 98 -0.620001

 99 0.698032

 Length: 100, dtype: float64

Individual elements of a Series can be retrieved using the [] operator of the Series
object. The item with the index label 2 can be retrieved using the following code:

In [3]:

 s[2]

Out[3]:

 -0.528171752263

Multiple values can be retrieved using an array of label values, as shown here:

In [4]:

 s[[2, 5, 20]]

Out[4]:

 2 -0.528172

 5 -2.301539

Chapter 2

[17]

 20 -1.100619

 dtype: float64

A Series supports slicing using the : slice notation. The following command
retrieves the elements of the Series where labels are greater than 3 but less than 8
(the end value is not inclusive in pandas slicing, which is a slight difference from
NumPy arrays):

In [5]:

 s[3:8]

Out[5]:

 3 -1.072969

 4 0.865408

 5 -2.301539

 6 1.744812

 7 -0.761207

 dtype: float64

Note that the slice did not return only the values but each element (index label and
value) of the Series with the specified labels.

The .head() and .tail() methods are provided by pandas to examine just the first
or last few records in a Series. By default, these return the first or last five rows,
respectively, but you can use the n parameter or just pass in an integer to specify the
number of rows:

In [6]:

 s.head()

 0 1.624345

 1 -0.611756

 2 -0.528172

 3 -1.072969

 4 0.865408

 dtype: float64

In [7]:

 s.tail()

Introducing the Series and DataFrame

[18]

Out[7]:

 95 0.077340

 96 -0.343854

 97 0.043597

 98 -0.620001

 99 0.698032

 dtype: float64

A Series consists of an index and a sequence of values. The index can be retrieved
using the .index property:

In [8]:

 s.index

Out[8]:

 Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
 95, 96, 97, 98, 99], dtype='int64')

The values in the series using the .values property are as follows:

In [9]:

 s.values

Out[9]:

 array([1.62434536, -0.61175641, -0.52817175, -1.07296862,
 0.86540763, -2.3015387, 1.74481176, -0.7612069,
 0.3190391, -0.24937038, 1.46210794, -2.06014071,
 -0.3224172, -0.38405435, 1.13376944,

 ...

 -0.34385368, 0.04359686, -0.62000084, 0.69803203])

When creating a Series and not explicitly setting the index label values via the
Series constructor, pandas will assign sequential integer values starting at 0. To
specify non-default index labels, use the index parameter of the Series object
constructor or assign them using the .index property after creation.

Chapter 2

[19]

The following command creates a Series and sets the index labels at the time of
construction:

In [10]:

 s2 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])

 s2

Out[10]:

 a 1

 b 2

 c 3

 d 4

 dtype: int64

A Series can be directly initialized from a Python dictionary. The keys of the
dictionary are used as index labels for the Series:

In [11]:

 s2 = pd.Series({'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5})

 s2

Out[11]:

 a 1

 b 2

 c 3

 d 4

 e 5

 dtype: int64

Size, shape, uniqueness, and counts of
values
There are several useful methods of determining the size of a Series as well as to get
measurements of the distinct values and their quantities that are contained within
the Series.

Introducing the Series and DataFrame

[20]

The number of elements in a Series can be determined using the len() function:

In [12]:

 s = pd.Series([10, 0, 1, 1, 2, 3, 4, 5, 6, np.nan])

 len(s)

Out[12]:

 10

This can also be determined using the .shape property, which returns a tuple
containing the dimensionality of the Series. Since a Series is one-dimensional, only
the length value is provided in the tuple:

In [13]:

 s.shape

Out[13]:

 (10,)

The number of rows in a Series that do not have a value of NaN can be determined
with the .count() method:

In [14]:

 s.count()

Out[14]:

 9

To determine all of the unique values in a Series, pandas provides the .unique()
method:

In [15]:

 s.unique()

Out[15]:

 array([5., 0., 1., 2., 3., 4., 5., 6., nan])

 dtype: int64

The count of each of the unique items in a Series can be obtained using .value_
counts():

Chapter 2

[21]

In [16]:

 s.value_counts()

Out[16]:

 5 2

 1 2

 6 1

 4 1

 3 1

 2 1

 0 1

dtype: int64

This result is sorted by pandas such that the counts are descending so that the most
common values are at the top, which can help with quick analysis of data.

Alignment via index labels
A fundamental difference between a NumPy ndarray and a pandas Series is the
ability of a Series to automatically align data from another Series based upon
label values before performing an operation. We will examine alignment using the
following two Series objects:

In [17]:

 s3 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])

 s3

Out[17]:

 a 1

 b 2

 c 3

 d 4

 dtype: int64

In [18]:

 s4 = pd.Series([4, 3, 2, 1], index=['d', 'c', 'b', 'a'])

 s4

Introducing the Series and DataFrame

[22]

Out[18]:

 d 4

 c 3

 b 2

 a 1

 dtype: int64

The values in the two series are added in the following:

In [19]:

 s3 + s4

Out[19]:

 a 2

 b 4

 c 6

 d 8

 dtype: int64

The process of adding two Series objects differs from an array as it first aligns
data based upon the index label values instead of simply applying the operation to
elements in the same position. This becomes significantly powerful when using the
pandas Series to combine data based upon labels instead of having to first order the
data manually.

This is a very different result than if it was a pure NumPy ndarray being added. A
NumPy ndarray would add the items in identical positions of each array, resulting
in different values, as shown here:

In [20]:

 a1 = np.array([1, 2, 3, 4])

 a2 = np.array([4, 3, 2, 1])

 a1 + a2

Out[20]:

 array([5, 5, 5, 5])

Chapter 2

[23]

Creating a DataFrame
There are a several ways to create a DataFrame. Probably, the most straightforward
one is creating it from a NumPy array. The following command creates a DataFrame
from a two-dimensional NumPy array:

In [21]:

 pd.DataFrame(np.array([[10, 11], [20, 21]]))

Out[21]:

 0 1

 0 10 11

 1 20 21

Each row of the array forms a row in the DataFrame. Since we did not specify an
index, pandas creates a default int64 index in the same manner as a Series. Since
we also did not specify column names, pandas also assigns the names for each
column with a zero-based integer series.

A DataFrame can also be initialized by passing a list of Series objects:

In [22]:

 df1 = pd.DataFrame([pd.Series(np.arange(10, 15)),

 pd.Series(np.arange(15, 20))])

 df1

Out[22]:

 0 1 2 3 4

 0 10 11 12 13 14

 1 15 16 17 18 19

The dimensions of a DataFrame can be determined using its .shape property. A
DataFrame is always two-dimensional. The shape informs us with the first value
the number of rows and with the second the number of columns:

In [23]:

 df1.shape

Out[23]:

 (2, 5)

Introducing the Series and DataFrame

[24]

Column names can be specified at the time of creating the DataFrame using the
columns parameter of the DataFrame constructor:

In [24]:

 df = pd.DataFrame(np.array([[10, 11], [20, 21]]),

 columns=['a', 'b'])

 df

Out[24]:

 a b

 0 10 11

 1 20 21

The names of the columns of a DataFrame can be accessed with its .columns
property:

In [25]:

 df.columns

Out[25]:

 Index([u'a', u'b'], dtype='object')

The names of the columns can be changed by assigning the .columns property with
a list of new names:

In [26]:

 df.columns = ['c1', 'c2']

 df

Out[26]:

 c1 c2

 0 10 11

 1 20 21

Index labels can likewise be assigned using the index parameter of the constructor
or by assigning a list directly to the .index property:

In [27]:

 df = pd.DataFrame(np.array([[0, 1], [2, 3]]),

 columns=['c1', 'c2'],

Chapter 2

[25]

 index=['r1', 'r2'])

 df

Out[27]:

 c1 c2

 r1 0 1

 r2 2 3

Like the Series, the index of a DataFrame can be accessed with its .index property:

In [28]:

 df.index

Out[28]:

 Index([u'r1', u'r2'], dtype='object')

Likewise, the values can be accessed using the .values property. Note that the result
is a multidimensional array:

In [29]:

 df.values

Out[29]:

 array([[0, 1],

 [2, 3]])

A DataFrame can also be created by passing a dictionary containing one or more
Series objects, where the dictionary keys contain the column names and each Series
is one column of data:

In [30]:

 s1 = pd.Series(np.arange(1, 6, 1))

 s2 = pd.Series(np.arange(6, 11, 1))

 pd.DataFrame({'c1': s1, 'c2': s2})

Out[30]:

 c1 c2

 0 1 6

 1 2 7

 2 3 8

Introducing the Series and DataFrame

[26]

 3 4 9

 4 5 10

A DataFrame also does automatic alignment of the data for each Series passed in
by a dictionary. As a demonstration, the following command adds a third column in
the DataFrame initialization. This third Series contains two values and will specify
its index. When the DataFrame is created, all Series in the dictionary are aligned with
each other by the index label as it is added to the DataFrame:

In [31]:

 s3 = pd.Series(np.arange(12, 14), index=[1, 2])

 pd.DataFrame({'c1': s1, 'c2': s2, 'c3': s3})

Out[31]:

 c1 c2 c3

 0 1 6 NaN

 1 2 7 12

 2 3 8 13

 3 4 9 NaN

 4 5 10 NaN

The first two Series did not have an index specified so they both were indexed with
0 to 4. The third Series has index values; therefore, the values for those indices
are placed in the DataFrame in the row with the matching index from the previous
columns. Then, pandas automatically fills in NaN for the values that were not
supplied.

Example data
Wherever possible, the code samples in this chapter will utilize a dataset provided
with the code bundle of the book. This dataset makes the examples a little less
academic in nature. These will be read from files using the pd.read_csv() function,
which will load the sample data from the file into a DataFrame.

The dataset we will use is a snapshot of the S&P 500 from Yahoo! Finance. For now,
we will load this data into a DataFrame that can be used to demonstrate various
operations. This code only uses four specific columns of data in the file by specifying
those columns via the usecols parameter to pd.read_csv(). The following
command reads in the 50 lines of data:

Chapter 2

[27]

In [32]:

 sp500 = pd.read_csv("sp500.csv",

 index_col='Symbol',

 usecols=[0, 2, 3, 7])

We can examine the first five rows of the DataFrame using the .head() method:

In [33]:

 sp500.head()

Out[33]:

 Sector Price Book Value

 Symbol

 MMM Industrials 141.14 26.668

 ABT Health Care 39.60 15.573

 ABBV Health Care 53.95 2.954

 ACN Information Technology 79.79 8.326

 ACE Financials 102.91 86.897

The index of the DataFrame consists of the symbols for the 500 stocks representing
the S&P 500:

In [34]:

 sp500.index

Out[34]:

 Index([u'MMM', u'ABT', u'ABBV', u'ACN', u'ACE', u'ACT',
 u'ADBE', u'AES', u'AET', u'AFL', u'A', u'GAS', u'APD', u'ARG',
 u'AKAM', u'AA', u'ALXN', u'ATI', u'ALLE', u'AGN', u'ADS',
 u'ALL', u'ALTR', u'MO', u'AMZN', u'AEE', u'AEP', u'AXP',
 u'AIG', u'AMT', u'AMP', u'ABC', u'AME', u'AMGN', u'APH',
 u'APC', u'ADI', u'AON', u'APA', ...], dtype='object')

Selecting columns of a DataFrame
Selecting the data in specific columns of a DataFrame is performed using the []
operator. This can be passed to either a single object or a list of objects. These objects
are then used to look up columns either by the zero-based location or by matching
the objects to the values in the columns index.

Introducing the Series and DataFrame

[28]

Passing a single integer, or a list of integers, to [] will have the DataFrame attempt to
perform a location-based lookup of the columns. The following command retrieves
the data in the second and third columns:

In [35]:

 sp500[[1, 2]].head(3)

Out[35]:

 Price Book Value

 Symbol

 MMM 141.14 26.668

 ABT 39.60 15.573

 ABBV 53.95 2.954

Selecting columns by passing a list of values will result in another DataFrame with
data copied from the original DataFrame. This is true even if the list only has a single
integer value, as the following command demonstrates:

In [36]:

 sp500[[1]].head(3)

Out[36]:

 Price

 Symbol

 MMM 141.14

 ABT 39.60

 ABBV 53.95

Note that even though we asked for just a single column by position, the value was
still in a list passed to the [] operator, hence the double set of brackets [[]]. This is
important, as not passing a list always results in a value-based lookup of the column.

If the values passed to [] consist of non-integers, then the DataFrame will attempt
to match the values to the values in the columns index. The following command
retrieves the Price column by name:

In [37]:

 sp500['Price']

Chapter 2

[29]

Out[37]:

 Symbol

 MMM 141.14

 ABT 39.60

 ABBV 53.95

 ACN 79.79

 ...

 YUM 74.77

 ZMH 101.84

 ZION 28.43

 ZTS 30.53

 Name: Price, dtype: float64

Multiple columns can be selected by name by passing a list of the column names and
results in a DataFrame (even if a single item is passed in the list):

In [38]:

 sp500[['Price', 'Sector']]

Out[38]:

 Price Sector

 Symbol

 MMM 141.14 Industrials

 ABT 39.60 Health Care

 ABBV 53.95 Health Care

 ACN 79.79 Information Technology

 YUM 74.77 Consumer Discretionary

 ZMH 101.84 Health Care

 ZION 28.43 Financials

 ZTS 30.53 Health Care

 [500 rows x 2 columns]

Columns can also be retrieved using what is referred to as attribute access. Each
column in a DataFrame dynamically adds a property to the DataFrame for each
column where the name of the property is the name of the column. Since this selects
a single column, the resulting value is a Series:

Introducing the Series and DataFrame

[30]

In [39]:

 sp500.Price

Out[39]:

 Symbol

 MMM 141.14

 ABT 39.60

 ABBV 53.95

 ACN 79.79

 ...

 YUM 74.77

 ZMH 101.84

 ZION 28.43

 ZTS 30.53

 Name: Price, dtype: float64

Note that this will not work for the Book Value column as the name has a space.

Selecting rows of a DataFrame using the
index
The elements of an array or Series are selected using the [] operator. The
DataFrame overloads [] to select columns instead of rows except for a specific case
of slicing. Therefore, most operations of selecting one or more rows in a DataFrame
require alternate methods to using [].

Understanding this is important in pandas as it is a common mistake to try to select
rows using [] due to familiarity with other languages or data structures. When doing
so, errors are often received and can often be difficult to diagnose without realizing
that [] is working along a completely different axis than with a Series object.

Row selection using index on a DataFrame then breaks down into the following
general categories of operations:

•	 Slicing using the [] operator
•	 Label- or location-based lookup using .loc, .iloc, and .ix
•	 Scalar lookup by label or location using .at and .iat

Chapter 2

[31]

We will briefly examine each of these techniques and attributes. Remember, all of
these are working against the content of the index of the DataFrame. There is no
involvement of data in the columns when selecting rows. We will cover this in the
next section on Boolean selection.

Slicing using the [] operator
Slicing a DataFrame across its index is syntactically identical to slicing a Series.
Because of this, we will not go into the details of the various permutations of slices in
this section and only give representative examples applied to a DataFrame.

Slicing works along both positions and labels. The following command demonstrates
several examples of slicing by position:

In [40]:

 sp500[:3]

Out[40]:

 Sector Price Book Value

 Symbol

 MMM Industrials 141.14 26.668

 ABT Health Care 39.60 15.573

 ABBV Health Care 53.95 2.954

The following command returns rows starting with the XYL label through the YUM
label:

In [41]:

 sp500['XYL':'YUM']

Out[41]:

 Sector Price Book Value

 Symbol

 XYL Industrials 38.42 12.127

 YHOO Information Technology 35.02 12.768

 YUM Consumer Discretionary 74.77 5.147

In general, although slicing a DataFrame has its uses, high-performance systems tend
to shy away from it and use other methods. Additionally, the slice notation for rows
on a DataFrame using integers can be confusing as it looks like accessing columns by
position and hence can lead to subtle bugs.

Introducing the Series and DataFrame

[32]

Selecting rows by the index label and
location – .loc[] and .iloc[]
Rows can be retrieved via the index label value using .loc[]:

In [42]:

 sp500.loc['MMM']

Out[42]:

 Sector Industrials

 Price 141.14

 Book Value 26.668

 Name: MMM, dtype: object

In [43]:

 sp500.loc[['MMM', 'MSFT']]

Out[43]:

 Sector Price Book Value

 Symbol

 MMM Industrials 141.14 26.668

 MSFT Information Technology 40.12 10.584

Rows can be retrieved by location using .iloc[]:

In [44]:

 sp500.iloc[[0, 2]]

Out[44]:

 Sector Price Book Value

 Symbol

 MMM Industrials 141.14 26.668

 ABBV Health Care 53.95 2.954

It is possible to look up the location in index of a specific label value, which can then
be used to retrieve the row(s):

Chapter 2

[33]

In [45]:

 i1 = sp500.index.get_loc('MMM')

 i2 = sp500.index.get_loc('A')

 i1, i2

Out[45]:

 (0, 10)

In [46]:

 sp500.iloc[[i1, i2]]

Out[46]:

 Sector Price Book Value

 Symbol

 MMM Industrials 141.14 26.668

 A Health Care 56.18 16.928

Selecting rows by the index label and/or
location – .ix[]
A DataFrame also contains an .ix[] property that can be used to look up rows
by either the index label or location, essentially combining .loc and .iloc in one.
The following command looks up rows by the index label by passing a list of non-
integers:

In [47]:

 sp500.ix[['MSFT', 'ZTS']]

Out[47]:

 Sector Price Book Value

 Symbol

 MSFT Information Technology 40.12 10.584

 ZTS Health Care 30.53 2.150

Introducing the Series and DataFrame

[34]

The location-based lookup can be performed by passing a list of integers:

In [48]:

 sp500.ix[[10, 200, 450]]

Out[48]:

 Sector Price Book Value

 Symbol

 A Health Care 56.18 16.928

 GIS Consumer Staples 53.81 10.236

 TRV Financials 92.86 73.056

In general, the use of .ix is not preferred due to potential confusion. The use
of .loc and .iloc is recommended and also results in higher performance.

Scalar lookup by label or location using .at[]
and .iat[]
Scalar values can be looked up by label using .at[] by passing the row label and
then the column name/value:

In [49]:

 sp500.at['MMM', 'Price']

Out[49]:

 141.14

Scalar values can also be looked up by location using .iat[] by passing both the
row location and then the column location. This is the preferred method of accessing
single values and results at the highest performance:

In [50]:

 sp500.iat[0, 1]

Out[50]:

 141.14

Chapter 2

[35]

Selecting rows using the Boolean selection
Rows can also be selected using the Boolean selection with an array calculated from
the result of applying a log logical condition to the values in any of the columns. This
allows us to build more complicated selections than those based simply upon index
labels or positions.

Consider the following command that is an array of all companies that have a price
below 100.0:

In [51]:

 sp500.Price < 100

Out[51]:

 Symbol

 MMM False

 ABT True

 ABBV True

 ACN True

 ...

 YUM True

 ZMH False

 ZION True

 ZTS True

 Name: Price, Length: 500, dtype: bool

This results in a Series that can be used to select rows where the value is True:

In [52]:

 sp500[sp500.Price < 100]

Out[52]:

 Sector Price Book Value

 Symbol

 ABT Health Care 39.60 15.573

 ABBV Health Care 53.95 2.954

 ACN Information Technology 79.79 8.326

Introducing the Series and DataFrame

[36]

 ADBE Information Technology 64.30 13.262

 YHOO Information Technology 35.02 12.768

 YUM Consumer Discretionary 74.77 5.147

 ZION Financials 28.43 30.191

 ZTS Health Care 30.53 2.150

 [407 rows x 3 columns]

Multiple conditions can be put together using parentheses, and at the same time, it is
possible to select only a subset of the columns. The following command retrieves the
symbols and price for all stocks with a price less than 10 and greater than 0:

In [53]:

 sp500[(sp500.Price < 10) & (sp500.Price > 0)] [['Price']]

Out[53]:

 Price

 Symbol

 FTR 5.81

 HCBK 9.80

 HBAN 9.10

 SLM 8.82

 WIN 9.38

Arithmetic on a DataFrame
Arithmetic operations using scalar values will be applied to every element of a
DataFrame. To demonstrate this, we will use a DataFrame initialized with random
values:

In [54]:

 np.random.seed(123456)

 df = pd.DataFrame(np.random.randn(5, 4),

 columns=['A', 'B', 'C', 'D'])

 df

Out[54]:

 A B C D

Chapter 2

[37]

 0 0.469112 -0.282863 -1.509059 -1.135632

 1 1.212112 -0.173215 0.119209 -1.044236

 2 -0.861849 -2.104569 -0.494929 1.071804

 3 0.721555 -0.706771 -1.039575 0.271860

 4 -0.424972 0.567020 0.276232 -1.087401

By default, any arithmetic operation will be applied across all rows and columns of
a DataFrame and will return a new DataFrame with the results (leaving the original
unchanged):

In [55]:

 df * 2

Out[55]:

 A B C D

 0 0.938225 -0.565727 -3.018117 -2.271265

 1 2.424224 -0.346429 0.238417 -2.088472

 2 -1.723698 -4.209138 -0.989859 2.143608

 3 1.443110 -1.413542 -2.079150 0.543720

 4 -0.849945 1.134041 0.552464 -2.174801

When performing an operation between a DataFrame and a Series, pandas will
align the Series index along the DataFrame columns, performing what is referred
to as a row-wise broadcast. To demonstrate this, the following example retrieves the
first row of the DataFrame and then subtracts this from each row of the DataFrame.
The Series is being broadcast by pandas to each row of the DataFrame, which aligns
each series item with the DataFrame item of the same index label and then applies
the minus operator on the matched values:

In [56]:

 df – df.iloc[0]

Out[56]:

 A B C D

 0 0.000000 0.000000 0.000000 0.000000

 1 0.743000 0.109649 1.628267 0.091396

 2 -1.330961 -1.821706 1.014129 2.207436

 3 0.252443 -0.423908 0.469484 1.407492

 4 -0.894085 0.849884 1.785291 0.048232

Introducing the Series and DataFrame

[38]

An arithmetic operation between two DataFrame objects will align with both the
column and index labels. The following command extracts a small portion of df and
subtracts it from df. The result demonstrates that the aligned values subtract to 0,
while the others are set to NaN:

In [57]:

 subframe = df[1:4][['B', 'C']]

 subframe

Out[57]:

 B C

 1 -0.173215 0.119209

 2 -2.104569 -0.494929

 1 -0.706771 -1.039575

In [58]:

 df – subframe

Out[58]:

 A B C D

 0 NaN NaN NaN NaN

 1 NaN 0 0 NaN

 2 NaN 0 0 NaN

 3 NaN 0 0 NaN

 4 NaN NaN NaN NaN

Additional control of an arithmetic operation can be gained using the arithmetic
methods provided by the DataFrame object. These methods provide the specification
of a particular axis. The following command demonstrates subtraction along a
column axis by using the DataFrame object; the .sub() method subtracts the A
column from every column:

In [59]:

 a_col = df['A']

 df.sub(a_col, axis=0)

Chapter 2

[39]

Out[59]:

 A B C D

 0 0 -0.751976 -1.978171 -1.604745

 1 0 -1.385327 -1.092903 -2.256348

 2 0 -1.242720 0.366920 1.933653

 3 0 -1.428326 -1.761130 -0.449695

 4 0 0.991993 0.701204 -0.662428

Reindexing the Series and DataFrame
objects
Reindexing in pandas is a process that makes the data present in a Series or
DataFrame match with a given set of labels along a particular axis. This is core to the
functionalities of pandas as it enables label alignment across multiple objects.

The process of performing a reindex does the following:

•	 Reorders existing data to match a set of labels
•	 Inserts NaN markers where no data exists for a label
•	 Fills missing data for a label using a type of logic (defaulting to adding

NaNs)

The following is a simple example of reindexing a Series. The following Series has
an index with numerical values, and the index is modified to be alphabetic by simply
assigning a list of characters to the .index property, making the values able to be
accessed via the character labels in the new index:

In [60]:

 np.random.seed(1)

 s = pd.Series(np.random.randn(5))

 s

Out[60]:

 0 1.624345

 1 -0.611756

 2 -0.528172

 3 -1.072969

 4 0.865408

Introducing the Series and DataFrame

[40]

 dtype: float64

In [61]:

 s.index = ['a', 'b', 'c', 'd', 'e']

 s

Out[61]:

 a 1.624345

 b -0.611756

 c -0.528172

 d -1.072969

 e 0.865408

 dtype: float64

Greater flexibility in creating a new index is provided using the .reindex() method.
One example of flexibility of .reindex() over assigning the .index property
directly is that the list provided to .reindex() can be of a different length than the
number of rows in the Series:

In [62]:

 s2 = s.reindex(['a', 'c', 'e', 'g'])

 s2['a'] = 0

 s2

Out[62]:

 a 0.000000

 c -0.528172

 e 0.865408

 g NaN

 dtype: float64

In [63]:

 s['a']

Out[63]:

 1.6243453636632417

Chapter 2

[41]

There are several things here that are important to point out about .reindex():

•	 The result is a new Series (the value of s['a']) remains unchanged) with
the labels provided as a parameter, and if the existing Series had a matching
label, that value is copied to the new Series

•	 If there is an index label created for which the Series did not have an
already existing label, the value will be assigned NaN

Reindexing is also useful when you want to align two Series to perform an
operation on matching elements from each series, but for some reason, the two
Series had index labels that would not initially align.

The following example demonstrates this, where the first Series has indices as
sequential integers, but the second one has string representation of what would be
sequential integers.

The addition of both Series has the following result, which is all NaNs and an
Int64Index that has repeated label values:

In [64]:

 s1 = pd.Series([0, 1, 2], index=[0, 1, 2])

 s2 = pd.Series([3, 4, 5], index=['0', '1', '2'])

 s1 + s2

Out[64]:

 0 NaN

 1 NaN

 2 NaN

 0 NaN

 1 NaN

 2 NaN

 dtype: float64

This is almost an epic fail situation that can happen if values intended to be numeric
are presented with one being numeric and the other as string. In this case, pandas
first tries to align with the indices and finds no matches, so it copies the index labels
from the first Series and tries to append the indices from the second Series. But
since they are a different type, it defaults back to a zero-based integer sequence,
which results in duplicate values. And finally, all the resulting values are NaN
because the operation tries to add the item in the first series with the integer label 0,
which has the value 0 but can't find the item in the other series with the integer label
0; therefore, the result is NaN (and this fails six times in this case).

Introducing the Series and DataFrame

[42]

Once this situation is identified, it becomes fairly simple to fix with reindexing the
second Series by casting the values to int:

In [65]:

 s2.index = s2.index.values.astype(int)

 s1 + s2

Out[65]:

 0 3

 1 5

 2 7

dtype: int64

The default action of inserting NaN as a missing value during .reindex() can be
changed using fill_value of the method. The following command demonstrates
using 0 instead of NaN:

In [66]:

 s2 = s.copy()

 s2.reindex(['a', 'f'], fill_value=0)

Out[66]:

 a 1.624345

 f 0.000000

 dtype: float64

When performing a reindex on ordered data, such as a time-series, it is possible to
perform interpolation or filling of values. There will be a more elaborate discussion
on interpolation and filling of values in Chapter 4, Time-series, but the following
examples introduce the concept. To demonstrate the concept, let's use the following
Series:

In [67]:

 s3 = pd.Series(['red', 'green', 'blue'], index=[0, 3, 5])

 s3

Out[67]:

 0 red

 3 green

Chapter 2

[43]

 5 blue

 dtype: object

The following command demonstrates forward filling, often referred to as the last
known value. The Series is reindexed to create a contiguous integer index, and using
the method='ffill' parameter, any new index labels are assigned a value from the
previously seen value along the Series. Here's the command:

In [68]:

 s3.reindex(np.arange(0,7), method='ffill')

Out[68]:

 0 red

 1 red

 2 red

 3 green

 4 green

 5 blue

 6 blue

 dtype: object

By contrast, the result of the same Series when backwards filling using the
method='bfill' parameter is shown here:

In [69]:

 s3.reindex(np.arange(0,7), method='bfill')

Out[69]:

 0 red

 1 green

 2 green

 3 green

 4 blue

 5 blue

 6 NaN

dtype: object

Introducing the Series and DataFrame

[44]

Summary
In this chapter, we briefly overviewed the pandas Series and DataFrame objects,
how they are used to represent data, and how to select data in both via queries,
columns, and indices. The concept of reindexing both classes of objects is also
introduced, and as we get into the later chapters, it will be common to perform
reindexing of time-series data.

In the next chapter, we will examine indexing in more depth with an eye towards
how performing various aggregations of data can derive results from the information
represented in pandas. As we progress into more specific financial analysis, this
combination of reindexing and aggregation will form the basis of much of the
analysis performed later in the book.

[45]

Reshaping, Reorganizing,
and Aggregating

In the first two chapters, we gave you a general overview of pandas and examined
some of the basics of the pandas DataFrame. Our coverage of the DataFrame was
focused solely upon simple manipulation of a single DataFrame, such as adding and
removing columns and rows, indexing the contents, selecting content, basic indexing,
and performing simple arithmetic upon its data.

In this chapter, we will expand our scope of data operations on DataFrame objects
to include more complex techniques of manipulating data and deriving results from
grouped sets of financial data. The examples in this chapter will focus on retrieving,
organizing, reshaping, and grouping/aggregating data to be able to perform basic
statistical operations.

Specifically, in this chapter, we will cover the following topics:

•	 Loading historical stock data from the Web or from files
•	 Concatenating and merging stock price data along multiple axes
•	 Merging data in multiple DataFrame objects
•	 Pivoting stock price data between axes
•	 Stacking, unstacking, and melting of stock data
•	 Splitting and grouping stock data to be able to calculate aggregate results

Reshaping, Reorganizing, and Aggregating

[46]

Notebook setup
To utilize the examples in this chapter, we will need to include the following imports
and settings in either your IPython or IPython Notebook environment, as shown
here:

In [1]:

 import pandas as pd

 import numpy as np

 import datetime

 import matplotlib.pyplot as plt

 %matplotlib inline

 pd.set_option('display.notebook_repr_html', False)

 pd.set_option('display.max_columns', 15)

 pd.set_option('display.max_rows', 8)

 pd.set_option('precision', 3)

Loading historical stock data
The examples in this chapter will utilize data extracted from Yahoo! Finance. This
information can be extracted live from the web services or from files provided with
the source. This data consists of stock prices for MSFT and AAPL for the year 2012.

The following command can be used to load the stock information directly from the
Web:

In [2]:

 import pandas.io.data as web

 start = datetime.datetime(2012, 1, 1)

 end = datetime.datetime(2012, 12, 30)

 msft = web.DataReader("MSFT", 'yahoo', start, end)

 aapl = web.DataReader("AAPL", 'yahoo', start, end)

 # these save the data to file - optional for the examples

 #msft.to_csv("msft.csv")

 #aapl.to_csv("aapl.csv")

Chapter 3

[47]

If you are not online or just want to load the data from the file, you can use the
following command. I actually recommend using this data as even though the online
data is historical, the adjusted close values are sometimes changed to represent other
events and can potentially cause some output different than what is in the text:

In [3]:

 msft = pd.read_csv("msft.csv", index_col=0, parse_dates=True)

 aapl = pd.read_csv("aapl.csv", index_col=0, parse_dates=True)

Organizing the data for the examples
With this information in hand, various slices of data are created to facilitate the
various examples through the chapter, as shown here:

In [4]:

 msft[:3]

Out[4]:

 Open High Low Close Volume Adj Close

 Date

 2012-01-03 26.55 26.96 26.39 26.77 64731500 24.42183

 2012-01-04 26.82 27.47 26.78 27.40 80516100 24.99657

 2012-01-05 27.38 27.73 27.29 27.68 56081400 25.25201

In [5]:

 aapl[:3]

Out[5]:

 Open High Low Close Volume Adj Close

 Date

 2012-01-03 409.40 412.50 409.00 411.23 75555200 55.41

 2012-01-04 410.00 414.68 409.28 413.44 65005500 55.71

 2012-01-05 414.95 418.55 412.67 418.03 67817400 56.33

Reshaping, Reorganizing, and Aggregating

[48]

Reorganizing and reshaping data
When working with financial information, it is often the case that data retrieved
from almost any data source will not be in the format that you need to perform the
analyses that you want.

Or perhaps, just as likely, the data from a specific source may be incomplete and
require collection of data from another source, at which point, the data needs to be
either concatenated or merged through join-like operations across the data.

Even if the data is complete or after combining it from various sources, it may still
be organized in a manner that is not conducive to a specific type of analysis. Hence,
it needs to be restructured.

Fortunately, pandas provides rich capabilities for concatenating, merging, and
pivoting data. These following sections take us through several common scenarios
of each, using stock data.

Concatenating multiple DataFrame objects
Concatenation in pandas is the process of creating a new pandas object by combining
data from two (or more pandas) objects into a new pandas object along a single,
specified axis of the two objects. Concatenation with stock data is useful to combine
values taken at different time periods, to create additional columns representing
other measurements at a particular date and time for a specific stock, or to add a
column for the same measurement of a different stock but for the same time period.

DataFrame objects are concatenated by pandas along a specified axis—the two axes
being the index labels of the rows and the columns. This is done by first extracting
the labels from both the DataFrame object indices along the specified axis, using that
set as the index of the new DataFrame, and then copying the values along the other
axis into the result in an orderly manner, that is, from the first DataFrame and then
from the second DataFrame.

The result of a concatenation always contains the union of the number of items in
both objects along the specific axis. As we will see later in this section, this is different
than a merge or join that could result in the resulting number of items not necessarily
being equivalent to the union of the number of items in the source DataFrame
objects.

The tricky part of concatenation is how pandas deals with the items along the other
axis during the concatenation. The set of values, be they rows when concatenating
along the columns or columns when concatenating along rows, is defined using
relational algebra on the values in that axis's index.

Chapter 3

[49]

To demonstrate various forms of concatenation, we will start with the following
data that shows the adjusted closing prices for MSFT for the months of January and
February 2012 represented in the following command. This dataset simulates the
retrieval of stock information representing two different time periods and stores the
data in two different DataFrame objects, as shown here:

In [6]:

 msftA01 = msft['2012-01'][['Adj Close']]

 msftA02 = msft['2012-02'][['Adj Close']]

 msftA01[:3]

Out[6]:

 Adj Close

 Date

 2012-01-03 24.42

 2012-01-04 25.00

 2012-01-05 25.25

In [7]:

 msftA02[:3]

Out[7]:

 Adj Close

 Date

 2012-02-01 27.27

 2012-02-02 27.32

 2012-02-03 27.59

To combine both of these sets of data into a single DataFrame, we perform a
concatenation. To demonstrate the following concatenates, the first three rows from
each DataFrame are as follows:

In [8]:

 pd.concat([msftA01.head(3), msftA02.head(3)])

Out[8]:

 Adj Close

 Date

 2012-01-03 24.42

Reshaping, Reorganizing, and Aggregating

[50]

 2012-01-04 25.00

 2012-01-05 25.25

 2012-02-01 27.27

 2012-02-02 27.32

 2012-02-03 27.59

The resulting DataFrame contains an index identical in structure to both of the
objects, with labels from the first object and then the second object copied into the
new object. At first glance, it may appear that the concatenation is a pure copy of the
rows from each DataFrame into the new DataFrame, but as we will see, the process is
more elaborate (and hence flexible). This will become more evident as we take a look
at more examples.

The following example concatenates the first five adjusted close values in January
for both MSFT and AAPL. These have identical index labels and result in duplicate
index labels in the new DataFrame. During a concatenation along the row axis,
pandas will not align the index labels. They will be copied and this can create
duplicate, identical index labels:

In [9]:

 aaplA01 = aapl['2012-01'][['Adj Close']]

 withDups = pd.concat([msftA01[:3], aaplA01[:3])

 withDups

Out[9]:

 Adj Close

 Date

 2012-01-03 24.42

 2012-01-04 25.00

 2012-01-05 25.25

 2012-01-03 55.41

 2012-01-04 55.71

 2012-01-05 56.33

This has resulted in duplicated index labels and will result in multiple items being
returned for those labels, as shown here:

In [10]:

 withDups.ix['2012-01-03']

Out[10]:

Chapter 3

[51]

 Adj Close

 Date

 2012-01-03 24.42

 2012-01-03 55.41

This concatenation has lost whether the Adj Close value in the new DataFrame
came from the MSFT or AAPL DataFrame. This source DataFrame of each row
can be preserved during concatenation by specifying the value of the keys in the
new DataFrame. These keys will add an additional level to the index (making a
MultiIndex), which then can be used to identify the source DataFrame:

In [11]:

 closes = pd.concat([msftA01[:3], aaplA01[:3]],

 keys=['MSFT', 'AAPL'])

 closes

Out[11]:

 Adj Close

 Date

 MSFT 2012-01-03 24.42

 2012-01-04 25.00

 2012-01-05 25.25

 AAPL 2012-01-03 55.41

 2012-01-04 55.71

 2012-01-05 56.33

Using this new MultiIndex, it is then possible to extract the values for either stock
from this new DataFrame by only using the index labels. The following command
does this for the MSFT entries:

In [12]:

 closes.ix['MSFT'][:3]

Out[12]:

 Adj Close

 Date

 2012-01-03 24.42

 2012-01-04 25.00

 2012-01-05 25.25

Reshaping, Reorganizing, and Aggregating

[52]

Concatenation along the row axis can also be performed using DataFrame objects
with multiple columns. The following command modifies the previous example to
use the Adj Close and Volume columns in each DataFrame. Although not evident
from the output, there are duplicate rows for each date in the result:

In [13]:

 msftAV = msft[['Adj Close', 'Volume']]

 aaplAV = msft[['Adj Close', 'Volume']]

 pd.concat([msftAV, aaplAV])

Out[13]:

 Adj Close Volume

 Date

 2012-01-03 24.42 64731500

 2012-01-04 25.00 80516100

 2012-01-05 25.25 56081400

 2012-01-06 25.64 99455500

 2012-12-24 70.72 43938300

 2012-12-26 69.74 75609100

 2012-12-27 70.02 113780100

 2012-12-28 69.28 88569600

 [498 rows x 2 columns]

The columns in the DataFrame objects in a concatenation do not have to have the
same names. The following command demonstrates a concatenation where the
aaplA DataFrame only consists of the Adj Close column, whereas the MSFT
DataFrame has both Adj Close and Volume columns:

In [14]:

 aaplA = aapl[['Adj Close']]

 pd.concat([msftAV, aaplA])

Out[14]:

 Adj Close Volume

 Date

 2012-01-03 24.42 64731500

 2012-01-04 25.00 80516100

Chapter 3

[53]

 2012-01-05 25.25 56081400

 2012-01-06 25.64 99455500

 2012-12-24 70.72 NaN

 2012-12-26 69.74 NaN

 2012-12-27 70.02 NaN

 2012-12-28 69.28 NaN

 [498 rows x 2 columns]

Since the rows originating from the aapl DataFrame do not have a Volume column,
pandas inserts NaN into the Volume column for those rows.

The set of columns that results from a concatenation along the row axis is the result
of relational algebra across the names of the columns. In this default scenario, the
resulting column is the union of column names from each DataFrame. This can be
changed to an intersection using the join parameter. The following command makes
the set of resulting columns the intersection of the column names by specifying
join='inner':

In [15]:

 pd.concat([msftAV, aaplA], join='inner')

Out[15]:

 Adj Close

 Date

 2012-01-03 24.42

 2012-01-04 25.00

 2012-01-05 25.25

 2012-01-06 25.64

 2012-12-24 70.72

 2012-12-26 69.74

 2012-12-27 70.02

 2012-12-28 69.28

 [498 rows x 1 columns]

Reshaping, Reorganizing, and Aggregating

[54]

We can change the axis for concatenation to the columns using axis=1:

In [16]:

 msftA = msft[['Adj Close']]

 closes = pd.concat([msftA, aaplA], axis=1)

 closes[:3]

Out[16]:

 Adj Close Adj Close

 Date

 2012-01-03 24.42 55.41

 2012-01-04 25.00 55.71

 2012-01-05 25.25 56.33

Note that this DataFrame has two Adj Close columns and only consists of 249 rows
(the concatenation along axis=0 has 498). Because of the use of axis=1, the union of
the index labels is derived instead from the column names, and the columns are copied
one by one in an orderly manner from the DataFrame objects, including duplicates.

It is also possible to concatenate with multiple columns where the DataFrame objects
do not have the same set of index labels. The following command concatenates the
first five msftAV values and the first three aaplAV values:

In [17]:

 pd.concat([msftAV[:5], aaplAV[:3]], axis=1,

 keys=['MSFT', 'AAPL'])

Out[17]:

 MSFT AAPL

 Adj Close Volume Adj Close Volume

 Date

 2012-01-03 24.42 64731500 55.41 75555200

 2012-01-04 25.00 80516100 55.71 65005500

 2012-01-05 25.25 56081400 56.33 67817400

 2012-01-06 25.64 99455500 NaN NaN

 2012-01-09 25.31 59706800 NaN NaN

This results in duplicate column names, so we use the keys parameter to create
MultiIndex for the columns. Since there were row index labels that were not found
in aaplCV, pandas fills those with NaN.

Chapter 3

[55]

Just as with concatenation along the row axis, the type of join performed by
pd.concat() can be changed using the join parameter. The following command
performs an inner join instead of an outer join, which results in the intersection of
row index labels:

In [18]:

 pd.concat([msftA[:5], aaplA[:3]], axis=1,

 join='inner', keys=['MSFT', 'AAPL'])

Out[18]:

 MSFT AAPL

 Adj Close Adj Close

 Date

 2012-01-03 24.42 55.41

 2012-01-04 25.00 55.71

 2012-01-05 25.25 56.33

The resulting DataFrame only has three rows because those index labels were the
only ones in common in the two concatenated DataFrame objects.

If you want to ignore indices in the result of pd.concat(), you can use the ignore_
index=True parameter, which will drop the index and create a default zero-based
integer index, as shown here:

In [19]:

 pd.concat([msftA[:3], aaplA[:3]], ignore_index=True)

Out[19]:

 Adj Close

 0 24.42

 1 25.00

 2 25.25

 3 55.41

 4 55.71

 5 56.33

Reshaping, Reorganizing, and Aggregating

[56]

Merging DataFrame objects
The combination of pandas objects is allowed using relational database-like join
operations, high-performance in-memory operations, and the pd.merge() function.

Merging in pandas differs from concatenation in that the pd.merge() function
combines data based on the values of the data in one or more columns instead of
using the index label values along a specific axis.

The default process that pd.merge() uses is to first identify the columns the data of
which will be used in the merge, and then to perform an inner join based upon that
information. The columns used in the join are, by default, selected as those in both
DataFrame objects with common names (an intersection of the column labels).

To demonstrate a merge, we will use the following two DataFrame objects, one with
the volumes and the other with the adjusted close values for MSFT. Both have the
index reset:

In [20]:

 msftAR = msftA.reset_index()

 msftVR = msft[['Volume']].reset_index()

 msftAR[:3]

Out[20]:

 Date Adj Close

 0 2012-01-03 24.42

 1 2012-01-04 25.00

 2 2012-01-05 25.25

In [21]:

 msftVR[:3]

Out[21]:

 Date Volume

 0 2012-01-03 64731500

 1 2012-01-04 80516100

 2 2012-01-05 56081400

Chapter 3

[57]

Instead of using Date as the index, these have Date as a column so that it can be used
in the merge. Our goal is to create a DataFrame that contains a Date column and
both AdjClose and Volume columns. This can be accomplished with the following
statement:

In [22]:

 msftCVR = pd.merge(msftAR, msftVR)

 msftCVR[:5]

Out[22]:

 Date Adj Close Volume

 0 2012-01-03 24.42 64731500

 1 2012-01-04 25.00 80516100

 2 2012-01-05 25.25 56081400

 3 2012-01-06 25.64 99455500

 4 2012-01-09 25.31 59706800

The column in common is Date; therefore, pandas performs an inner join on the
values in that column across both DataFrame objects. Once that set is calculated,
pandas copies in the appropriate values for each row from both DataFrame objects.

The types of joins supported by pd.merge() are similar to the different types of joins
supported in relational databases. They are as follows:

•	 left: Use keys from the left DataFrame (equivalent to SQL's left-outer join)
•	 right: Use keys from the right DataFrame (equivalent to SQL's right-outer

join)
•	 outer: Use the union of keys from both DataFrame objects (equivalent to

SQL's full outer join)
•	 inner: Use the intersection of keys from both DataFrame objects (equivalent

to SQL's inner join)

To demonstrate each difference in the results between inner and outer joins, we will
use the following data:

In [23]:

 # we will demonstrate join semantics using this DataFrame

 msftAR0_5 = msftAR[0:5]

 msftAR0_5

Reshaping, Reorganizing, and Aggregating

[58]

Out[23]:

 Date Adj Close

 0 2012-01-03 24.42

 1 2012-01-04 25.00

 2 2012-01-05 25.25

 3 2012-01-06 25.64

 4 2012-01-09 25.31

In [24]:

 msftVR2_4 = msftVR[2:4]

 msftVR2_4

Out[24]:

 Date Volume

 2 2012-01-05 56081400

 3 2012-01-06 99455500

For an inner join, since there are only two rows with matching dates, the result only
has two rows and merges the DataFrame objects where Date values are in common,
as shown here:

In [25]:

 pd.merge(msftAR0_5, msftVR2_4)

Out[25]:

 Date Adj Close Volume

 0 2012-01-05 25.25 56081400

 1 2012-01-06 25.64 99455500

This can be changed to an outer join with how='outer'. All rows from the outer
DataFrame are returned (msftAR0_5), and values not found in the inner DataFrame
(msftVR2_4) are replaced with NaN:

In [26]:

 pd.merge(msftAR0_5, msftVR2_4, how='outer')

Out[26]:

 Date Adj Close Volume

 0 2012-01-03 24.42 NaN

Chapter 3

[59]

 1 2012-01-04 25.00 NaN

 2 2012-01-05 25.25 56081400

 3 2012-01-06 25.64 99455500

 4 2012-01-09 25.31 NaN

Pivoting
Financial data is often stored in a format where the data is not normalized and,
therefore, has repeated values in many columns or values that logically should exist
in other tables. An example of this would be the following, where the historical
prices for multiple stocks are represented in a single DataFrame using a Symbol
column. The following command creates a DataFrame with this schema and
populates the records:

In [27]:

 msft.insert(0, 'Symbol', 'MSFT')

 aapl.insert(0, 'Symbol', 'AAPL')

 combined = pd.concat([msft, aapl]).sort_index()

 s4p = combined.reset_index();

 s4p[:5]

Out[27]:

 Date Symbol Open High Low Close Volume Adj Close

 0 2012-01-03 MSFT 26.55 26.96 26.39 26.77 64731500 24.42

 1 2012-01-03 AAPL 409.40 412.50 409.00 411.23 75555200 55.41

 2 2012-01-04 MSFT 26.82 27.47 26.78 27.40 80516100 25.00

 3 2012-01-04 AAPL 410.00 414.68 409.28 413.44 65005500 55.71

 4 2012-01-05 MSFT 27.38 27.73 27.29 27.68 56081400 25.25

Now let's suppose we want to extract, from this DataFrame, a new DataFrame that
is indexed by date and has columns representing the AdjClose value for all of the
stocks listed in the Symbol column. This can be performed using the .pivot()
method of the DataFrame:

In [28]:

 closes = s4p.pivot(index='Date', columns='Symbol',

 values='Adj Close')

 closes[:3]

Reshaping, Reorganizing, and Aggregating

[60]

Out[28]:

 Symbol AAPL MSFT

 Date

 2012-01-03 55.41 24.42

 2012-01-04 55.71 25.00

 2012-01-05 56.33 25.25

This has taken all the distinct values from the Symbol column, pivoted them into
columns on the new DataFrame, and then entered the values in those columns from
the AdjClose value for the specific symbol from the original DataFrame.

Stacking and unstacking
The DataFrame methods similar in operation to the pivot function are .stack() and
.unstack(). Stacking unpivots the column labels into another level of the index. To
demonstrate this, the following command pivots the MSFT and AAPL columns into
the index:

In [29]:

 stackedCloses = closes.stack()

 stackedCloses

Out[29]:

 Date Symbol

 2012-01-03 AAPL 55.41

 MSFT 24.42

 2012-01-04 AAPL 55.71

 MSFT 25.00

 ...

 2012-12-27 AAPL 70.02

 MSFT 25.29

 2012-12-28 AAPL 69.28

 MSFT 24.91

 dtype: float64

This has created a new index with an additional level named Symbol (from the name
of the columns index). Each row is then indexed by both Date and Symbol. And for
each unique Date and Symbol level, pandas has inserted the appropriate Adj Close
value.

Chapter 3

[61]

The result of this allows the efficient lookup of any Adj Close value using the index.
To look up the Adj Close value for AAPL on 2012-01-03, we can use the following
command:

In [30]:

 stackedCloses.ix['2012-01-03', 'AAPL']

Out[30]:

 55.41

The result here is equivalent to the following value-based lookup, but is significantly
more efficient, uses less typing, and is also organized better, causing less mental
clutter.

Using a MultiIndex, it is also possible to look up values for just a specific Date:

In [31]:

 stackedCloses.ix['2012-01-03']

Out[31]:

 Symbol

 AAPL 55.41

 MSFT 24.42

 dtype: float64

For a specific Symbol, here is the command:

In [32]:

 stackedCloses.ix[:, 'MSFT']

Out[32]:

 Date

 2012-01-03 24.42

 2012-01-04 25.00

 2012-01-05 25.25

 2012-01-06 25.64

 ...

 2012-12-24 25.38

 2012-12-26 25.20

 2012-12-27 25.29

Reshaping, Reorganizing, and Aggregating

[62]

 2012-12-28 24.91

 dtype: float64

The .unstack() method performs the opposite function; that is, it pivots a level of
an index into a column in a new DataFrame. The following command unstacks the
last level of the MultiIndex and results in a DataFrame equivalent to the original
unstackedCloses:

In [33]:

 unstackedCloses = stackedCloses.unstack()

 unstackedCloses[:3]

Out[33]:

 Symbol AAPL MSFT

 Date

 2012-01-03 55.41 24.42

 2012-01-04 55.71 25.00

 2012-01-05 56.33 25.25

Melting
Melting is the process of transforming a DataFrame into a format where each
row represents a unique id-variable combination. The following command
demonstrates melting the s4p DataFrame into an id-variable combination
consisting of the Date and Symbol columns as the ID and the other columns mapped
into the variables:

In [34]:

 melted = pd.melt(s4p, id_vars=['Date', 'Symbol'])

 melted[:5]

Out[34]:

 Date Symbol variable value

 0 2012-01-03 MSFT Open 26.55

 1 2012-01-03 AAPL Open 409.40

 2 2012-01-04 MSFT Open 26.82

 3 2012-01-04 AAPL Open 410.00

 4 2012-01-05 MSFT Open 27.38

Chapter 3

[63]

During a melt, the column(s) specified by the id_vars parameter remain columns
(in this case Date and Symbol). All other columns have their names mapped to the
values in the variable column—one row for each variable column of an id_var
column value combination.

This organization of data is useful to select chunks of information based upon a
specific ID variable and then one or more variables. As an example, the following
command returns all measurements for 2012-01-03 and the MSFT symbol:

In [35]:

 melted[(melted.Date=='2012-01-03') & melted.Symbol=='MSFT')]

Out[35]:

 Date Symbol variable value

 0 2012-01-03 MSFT Open 26.55

 498 2012-01-03 MSFT High 26.96

 996 2012-01-03 MSFT Low 26.39

 1494 2012-01-03 MSFT Close 26.77

 1992 2012-01-03 MSFT Volume 64731500.00

 2490 2012-01-03 MSFT Adj Close 24.42

Grouping and aggregating
Data in pandas can be easily split into groups and then summarized using various
statistical and quantitative calculations. This process in pandas nomenclature is often
referred to as the split-apply-combine pattern.

In this section, we will look at using this pattern as applied to stock data. We will
split the data by various time and symbol combinations and then apply statistical
operations to begin analyzing the risk and return on our sample data.

Splitting
Objects in pandas are split into groups using the .groupby() method. To
demonstrate this, we will use the stock price data introduced earlier in the chapter
but slightly reorganized to facilitate understanding of the grouping process:

In [36]:

 s4g = combined[['Symbol', 'AdjClose']].reset_index()

 s4g.insert(1, 'Year', pd.DatetimeIndex(s4g['Date']).year)

Reshaping, Reorganizing, and Aggregating

[64]

 s4g.insert(2, 'Month[:5]',pd.DatetimeIndex(s4g['Date']).month)

 s4g[:5]

Out[36]:

 Date Year Month Symbol Adj Close

 0 2012-01-03 2012 1 MSFT 24.42

 1 2012-01-03 2012 1 AAPL 55.41

 2 2012-01-04 2012 1 MSFT 25.00

 3 2012-01-04 2012 1 AAPL 55.71

 4 2012-01-05 2012 1 MSFT 25.25

This data differs from before as only the AdjClose value is utilized, and the Date
column is broken apart into two other columns, Year and Month. This splitting of the
date is done to be able to provide the ability to group the data by Month and Year for
each Symbol variable.

This data consists of four categorical variables (Date, Symbol, Year, and Month) and
one continuous variable, AdjClose. In pandas, it is possible to group by any single
categorical variable by passing its name to .groupby(). The following command
groups by the Symbol column:

In [37]:

 s4g.groupby('Symbol')

Out[37]:

 <pandas.core.groupby.DataFrameGroupBy object at 0x7ffaeeb49a10>

The result of calling .groupby() on a DataFrame is not the actual grouped data but
a DataFrameGroupBy object (a SeriesGroupBy for a grouping on a Series). The
grouping has not actually been performed yet as grouping is a deferred/lazy process
in pandas.

This result of .groupby() is a subclass of a GroupBy object and is an interim
description of the grouping to be performed (if you are a C# programmer, this feels
a lot like an expression tree created by LINQ). This allows pandas to first validate
that the grouping description provided to it is valid relative to the data before the
processing starts.

Chapter 3

[65]

There are number of useful properties on a GroupBy object. The .groups property
will return a Python dictionary whose keys represent the name of each group (if
multiple columns are specified, it is a tuple), and the values are an array of the index
labels contained within each group:

In [38]:

 grouped = s4g.groupby('Symbol')

 type(grouped.groups)

Out[38]:

 dict

In [39]:

 grouped.groups

Out[39]:

 {u'AAPL': [1, 3, 5, 7, 9, 11, 13, 14, 16, 18, 20, 23, 25, 27, 29,
 30, 33, 34, 37, 38, 41, 43, 45, 46, 48, 50, 53, 54, 56, 58, 61,
 63, 64, 67, 69, 71, 72, 75, 77, 79, 81, 82, 84, 89, 91, 92, 94,

 ...

 452, 455, 456, 458, 460, 463, 464, 466, 468, 471, 472, 474, 476,
 478, 480, 482, 484, 487, 488, 490, 492, 494, 497]

 'MSFT': [0, 2, 4, 6, 10, 12, 15, 17, 19, 21, 22, 24, 26, 28, 31, 32,

 ...

 477, 479, 481, 483, 485, 486, 489, 491, 493, 495, 496]}

The Python len() function can be used to return the number of groups, which will
result from the grouping as well as the .ngroups property:

In [40]:

 len(grouped), grouped.ngroups

Out[40]:

 (2, 2)

Reshaping, Reorganizing, and Aggregating

[66]

Splitting is not performed until you take some type of action on the GroupBy object.
It is, however, possible to iterate over several properties of the object to view how the
data will be grouped (hence forcing it to be grouped). The following helper function
demonstrates this and will be used frequently throughout this chapter:

In [41]:

 def print_groups (groupobject):

 for name, group in groupobject:

 print name

 print group.head()

In [42]:

 print_groups(grouped)

Out[42]:

 AAPL

 Date Year Month Symbol Adj Close

 1 2012-01-03 2012 1 AAPL 55.41

 3 2012-01-04 2012 1 AAPL 55.71

 5 2012-01-05 2012 1 AAPL 56.33

 7 2012-01-06 2012 1 AAPL 56.92

 9 2012-01-09 2012 1 AAPL 56.83

 MSFT

 Date Year Month Symbol Adj Close

 0 2012-01-03 2012 1 MSFT 24.42

 2 2012-01-04 2012 1 MSFT 25.00

 4 2012-01-05 2012 1 MSFT 25.25

 6 2012-01-06 2012 1 MSFT 25.64

 8 2012-01-09 2012 1 MSFT 25.31

Looking at these results gives us some insight into what pandas is doing with this
specific splitting operation. It has created, for each distinct value in the Symbol
column of the original DataFrame, a group consisting of a DataFrame (this is
different from the functionality provided by itertools.groupby, so be careful
if you are used to using that library for this functionality). It then copies the non-
grouped columns and data into each of those DataFrame objects and then uses the
values from the specified column(s) as the group name.

Chapter 3

[67]

The .size() method of the object gives a nice summary of the size of all the groups:

In [43]:

 grouped.size()

Out[43]:

 Symbol

 AAPL 249

 MSFT 249

 dtype: int64

If you want the data for the items in any given group, you can use the .get_group()
property. The following command retrieves the MSFT group:

In [44]:

 grouped.get_group('MSFT')

Out[44]:

 Date Year Month Symbol Adj Close

 0 2012-01-03 2012 1 MSFT 24.42

 2 2012-01-04 2012 1 MSFT 25.00

 4 2012-01-05 2012 1 MSFT 25.25

 6 2012-01-06 2012 1 MSFT 25.64

 491 2012-12-24 2012 12 MSFT 25.38

 493 2012-12-26 2012 12 MSFT 25.20

 495 2012-12-27 2012 12 MSFT 25.29

 496 2012-12-28 2012 12 MSFT 24.91

 [249 rows x 5 columns]

Grouping can be performed upon multiple columns by passing a list of column
names. The following command groups the data by the Symbol and Year and Month
variables:

In [45]:

 mcg = s4g.groupby(['Symbol', 'Year', 'Month'])

 print_groups(mcg)

Reshaping, Reorganizing, and Aggregating

[68]

Out[45]:

 ('AAPL', 2012, 1)

 Date Year Month Symbol Adj Close

 1 2012-01-03 2012 1 AAPL 55.41

 3 2012-01-04 2012 1 AAPL 55.71

 5 2012-01-05 2012 1 AAPL 56.33

 7 2012-01-06 2012 1 AAPL 56.92

 9 2012-01-09 2012 1 AAPL 56.83

 ('AAPL', 2012, 2)

 Date Year Month Symbol Adj Close

 41 2012-02-01 2012 2 AAPL 61.47

 43 2012-02-02 2012 2 AAPL 61.33

 45 2012-02-03 2012 2 AAPL 61.94

 46 2012-02-06 2012 2 AAPL 62.52

 48 2012-02-07 2012 2 AAPL 63.18

 ('AAPL', 2012, 3)

 ...

Since multiple columns were specified, the name of each group is now a tuple with
the value from Symbol, Year, and Month that represents the group.

The examples up to this point have used a DataFrame without any specific indexing
(just the default sequential numerical index). This type of data would actually be
very well suited for a hierarchical index, which can then be used directly to group
the data based upon index label(s). To demonstrate this, the following command
creates a new DataFrame with a MultiIndex consisting of the original Symbol, Year,
and Month columns:

In [46]:

 mi = s4g.set_index(['Symbol', 'Year', 'Month'])

 mi

Out[46]:

 Date Adj Close

 Symbol Year Month

 MSFT 2012 1 2012-01-03 24.42

 AAPL 2012 1 2012-01-03 55.41

 MSFT 2012 1 2012-01-04 25.00

 AAPL 2012 1 2012-01-04 55.71

Chapter 3

[69]

 12 2012-12-27 70.02

 MSFT 2012 12 2012-12-27 25.29

 12 2012-12-28 24.91

 AAPL 2012 12 2012-12-28 69.28

 [498 rows x 2 columns]

Grouping can now be performed using the levels of the hierarchical index. The
following groups by the index level 0 (Symbol names):

In [47]:

 mig_l1 = mi.groupby(level=0)

 print_groups(mig_l1)

Out[47]:

 AAPL

 Date Adj Close

 Symbol Year Month

 AAPL 2012 1 2012-01-03 55.41

 1 2012-01-04 55.71

 1 2012-01-05 56.33

 1 2012-01-06 56.92

 1 2012-01-09 56.83

 MSFT

 Date Adj Close

 Symbol Year Month

 MSFT 2012 1 2012-01-03 24.42

 1 2012-01-04 25.00

 1 2012-01-05 25.25

 1 2012-01-06 25.64

 1 2012-01-09 25.31

Grouping by multiple levels can be performed by passing multiple levels to
.groupby(). Also, if the MultiIndex has names specified, then those names can be
used instead of the integers for the levels. The following command groups the three
levels of the MultiIndex by using their names:

Reshaping, Reorganizing, and Aggregating

[70]

In [48]:

 mig_l12 = mi.groupby(level=['Symbol', 'Year', 'Month'])

 print_groups(mig_l12)

Out[48]:

 ('AAPL', 2012, 1)

 Date Adj Close

 Symbol Year Month

 AAPL 2012 1 2012-01-03 55.41

 1 2012-01-04 55.71

 1 2012-01-05 56.33

 1 2012-01-06 56.92

 1 2012-01-09 56.83

 ('AAPL', 2012, 2)

 ...

 ('MSFT', 2012, 12)

 Date Adj Close

 Symbol Year Month

 MSFT 2012 12 2012-12-03 24.79

 12 2012-12-04 24.74

 12 2012-12-05 25.02

 12 2012-12-06 25.07

 12 2012-12-07 24.82

Aggregating
Armed with the capability to group the stock data on a monthly basis, we can now
start to drive analysis of the data. Specifically, we will develop methods to calculate
the risk on a stock based on a time-window of a calendar month.

Aggregation is performed using the .aggregate(), or in short .agg(), method of
the GroupBy object. The parameter set to .agg() is a reference to a function that is
applied to each group. The following command will calculate the mean of the values
across each Symbol, Year, and Month:

Chapter 3

[71]

In [49]:

 mig_l12.agg(np.mean)

Out[49]:

 Adj Close

 Symbol Year Month

 AAPL 2012 1 57.75

 2 67.05

 3 77.82

 4 81.66

 MSFT 2012 9 28.64

 10 27.04

 11 26.00

 12 25.31

 [24 rows x 1 columns]

The result of the aggregation will have an identically structured index as the original
data. If you do not want this to happen, you can use the as_index=False option of
the .groupby() method to specify not to duplicate the structure of the index, which
may be convenient in several situations, including where a function expects the data
with a numerical index:

In [50]:

 s4g.groupby(['Symbol', 'Year', 'Month'],

 as_index=False).agg(np.mean)[:5]

Out[50]:

 Symbol Year Month Adj Close

 0 AAPL 2012 1 57.75

 1 AAPL 2012 2 67.05

 2 AAPL 2012 3 77.82

 3 AAPL 2012 4 81.66

 4 AAPL 2012 5 76.09

Reshaping, Reorganizing, and Aggregating

[72]

This has derived the same results, but there is a slightly different organization.

It is possible to apply multiple aggregation functions to each group in a single call to
.agg() by passing them in a list:

In [51]:

 mig_l12.agg([np.mean, np.std])

Out[51]:

 Adj Close

 mean std

 Symbol Year Month

 AAPL 2012 1 57.75 1.80

 2 67.05 3.57

 3 77.82 4.16

 4 81.66 3.06

 MSFT 2012 9 28.64 0.43

 10 27.04 0.67

 11 26.00 1.00

 12 25.31 0.36

 [24 rows x 2 columns]

Summary
In this chapter, we examined several fundamental techniques for loading (importing
and reading data), combining, grouping, and analyzing stock pricing data with
pandas. In the next chapter on time-series data with pandas, we will dive deeper into
working with data provided in different time frequencies, converting the periods of
data into other frequencies, and working with aggregating data based upon sliding/
rolling windows instead of simple calendar months.

[73]

Time-series
A time-series is a sequence of data points, typically consisting of successive
measurements made at a regular frequency and over a specific time interval. Time-
series analysis is composed of various methods for making decisions based upon the
data in a time-series by extracting meaningful statistics. Time-series forecasting is
the process of developing a model based upon data in a time-series, and using it to
predict future values based upon previously observed values. Regression analysis is
the process of testing whether one or more independent time-series affect the current
value of another time-series.

There is extensive support for working with time-series data in pandas. In this
chapter, we will examine representing time-series data with the pandas Series
and DataFrame as well as several common techniques for manipulating this data.
The techniques learned in this chapter will set the basis for the remaining chapters,
where we will examine several financial processes using time-series data, including a
historical analysis of stock performance, correlating multiple streams of financial and
social data to develop trading strategies, optimize portfolio allocation, and calculate
risk based upon historical data.

In this chapter, we will cover the following:

•	 DatetimeIndex and its use in time-series data
•	 Creating time-series with specific frequencies
•	 Calculation of new dates using date offsets
•	 Representation of intervals of time user periods
•	 Shifting and lagging time-series data
•	 Frequency conversion of time-series data
•	 Upsampling and downsampling of time-series data

Time-series

[74]

There are very robust facilities for handling date and time in pandas that
we are not going to cover in detail in this chapter. We will focus on just
the time-series capabilities we require for the later chapters. For more
extensive coverage of everything that can be done, refer to my book
Learning pandas, Packt Publishing or the online pandas documentation on
time-series and data functionality at http://pandas.pydata.org/
pandas-docs/stable/timeseries.html.

Notebook setup
The examples in this chapter will utilize the following configuration of the Python
environment:

In [1]:

 import numpy as np

 import pandas as pd

 pd.set_option('display.notebook_repr_html', False)

 pd.set_option('display.max_columns', 10)

 pd.set_option('display.max_rows', 8)

 pd.set_option('precision', 7)

 import datetime

 from datetime import datetime

 import matplotlib.pyplot as plt

 %matplotlib inline

 pd.options.display.mpl_style = 'default'

Time-series data and the DatetimeIndex
Excelling at manipulating time-series data, pandas was created initially for use in
finance, and from its inception, it has had facilities for managing complete date and
time-series operations to handle complex financial scenarios. These capabilities have
been progressively expanded and refined over all of its versions.

http://pandas.pydata.org/pandas-docs/stable/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/timeseries.html

Chapter 4

[75]

The representations of dates, times, and time intervals and periods provided by
pandas, which are pandas's own, are above and beyond those provided in other
Python frameworks such as SciPy and NumPy. The pandas implementations provide
additional capabilities that are required to model time-series data, and to transform
data across different frequencies, periods, and calendars for different organizations
and financial markets.

Specific dates and times in pandas are represented using the pandas Timestamp
class. Timestamp is based on NumPy's dtype datetime64 and has higher precision
than Python's built-in datetime object. This increased precision is frequently
required for accurate financial calculations.

Sequences of timestamp objects are represented by pandas as a DatetimeIndex,
which is a type of pandas index that is optimized for indexing by dates and times.
There are several ways to create DatetimeIndex objects in pandas. The following
command creates a DatetimeIndex from an array of datetime objects:

In [2]:

 dates = [datetime(2014, 8, 1), datetime(2014, 8, 2)]

 dti = pd.DatetimeIndex(dates)

 dti

Out[2]:

 <class 'pandas.tseries.index.DatetimeIndex'>

 [2014-08-01, 2014-08-02]

 Length: 2, Freq: None, Timezone: None

A Series will also automatically construct a DatetimeIndex as its index when
passing a list of datetime objects as the index parameter:

In [3]:

 np.random.seed(123456)

 ts = pd.Series(np.random.randn(2), dates)

 type(ts.index)

Out[3]:

 pandas.tseries.index.DatetimeIndex

Time-series

[76]

The Series object has taken the datetime objects and constructed a DatetimeIndex
from the date values, where each value of the DatetimeIndex is a Timestamp object,
and each element of the index can be used to access the corresponding value in the
Series object. To demonstrate this, the following command shows several ways
in which we can access the value in the Series with the date 2014-08-02 as an
index label:

In [4]:

 ts[datetime(2014, 8, 2)]

Out[4]:

 -0.28286334432866328

In [5:

 ts['2014-8-2']

Out[5]:

 -0.28286334432866328

The Series object can also create a DatetimeIndex when passing a list of
strings, which pandas will gladly recognize as dates and perform the appropriate
conversions:

In [6]:

 np.random.seed(123456)

 dates = ['2014-08-01', '2014-08-02']

 ts = pd.Series(np.random.randn(2), dates)

 ts

Out[6]:

 2014-08-01 0.469112

 2014-08-02 -0.282863

 dtype: float64

Chapter 4

[77]

Also provided by pandas is the pd.to_datetime() function, which is used to
perform a conversion of a list of potentially mixed type items into a DatetimeIndex:

In [7]:

 dti = pd.to_datetime(['Aug 1, 2014', '2014-08-02',

 '2014.8.3', None])

 dti

Out[7]:

 <class 'pandas.tseries.index.DatetimeIndex'>

 [2014-08-01, ..., NaT]

 Length: 4, Freq: None, Timezone: None

Notice that None is converted into a not-a-time value, NaT, which
represents that the source data could not be converted into datetime.

But be careful as, by default, the pd.to_datetime() function will fall back to
returning a NumPy array of objects if it cannot parse a value, as demonstrated here:

In [8]:

 dti2 = pd.to_datetime(['Aug 1, 2014', 'foo'])

 type(dti2)

Out[8]:

 numpy.ndarray

To force the function to convert to dates and DatetimeIndex, you can use the
coerce=True parameter, as shown here:

In [9]:

 pd.to_datetime(['Aug 1, 2014', 'foo'], coerce=True)

Out[9]:

 <class 'pandas.tseries.index.DatetimeIndex'>

 [2014-08-01, NaT]

 Length: 2, Freq: None, Timezone: None

Time-series

[78]

The pandas default is that date strings are always month first. If you need to parse
dates with the day as the first component, you can use the dayfirst=True option,
which can be useful as data can often have day first, particularly when it is non-U.S.
data. The following command demonstrates this in action and also shows how the
ordering can be changed:

In [10]:

 dti1 = pd.to_datetime(['8/1/2014'])

 dti2 = pd.to_datetime(['1/8/2014'], dayfirst=True)

 dti1[0], dti2[0]

Out[10]:

 (Timestamp('2014-08-01 00:00:00'),

 Timestamp('2014-08-01 00:00:00'))

A range of timestamps at a specific frequency can easily be created using the
pd.date_range() function. The following command creates a Series from a
DatetimeIndex of 10 consecutive days:

In [11]:

 np.random.seed(123456)

 dates = pd.date_range('8/1/2014', periods=10)

 s1 = pd.Series(np.random.randn(10), dates)

 s1[:5]

Out[11]:

 2014-08-01 0.469112

 2014-08-02 -0.282863

 2014-08-03 -1.509059

 2014-08-04 -1.135632

 2014-08-05 1.212112

 Freq: D, dtype: float64

Chapter 4

[79]

Like any pandas index, a DatetimeIndex can be used for various index operations,
such as data alignment, selection, and slicing. To demonstrate slicing using a
DatetimeIndex, we will refer to the Yahoo! Finance stock quotes for MSFT from
2012 through 2014 using the pandas DataReader class (more info on DataReader is
available at http://pandas.pydata.org/pandas-docs/version/0.15.2/remote_
data.html):

In [12]:

 import pandas.io.data as web

 msft = web.DataReader("MSFT", 'yahoo', '2012-1-1', '2013-12-30')

 msft.head()

Out[12]:

 Open High Low Close Volume Adj Close

 Date

 2012-01-03 26.55 26.96 26.39 26.77 64731500 24.42183

 2012-01-04 26.82 27.47 26.78 27.40 80516100 24.99657

 2012-01-05 27.38 27.73 27.29 27.68 56081400 25.25201

 2012-01-06 27.53 28.19 27.53 28.11 99455500 25.64429

 2012-01-09 28.05 28.10 27.72 27.74 59706800 25.30675

The msft variable is a DataFrame that represents a time-series of multiple data
points (Open, High, Low, and so on) for the MSFT stock. To make these examples
easier, from this DataFrame, we can create a pandas Series consisting of just the
Adj Close values:

In [13]:

 msftAC = msft['Adj Close']

 msftAC.head(3)

Out[13]:

 Date

 2012-01-03 24.42183

 2012-01-04 24.99657

 2012-01-05 25.25201

 Name: Adj Close, dtype: float64

http://pandas.pydata.org/pandas-docs/version/0.15.2/remote_data.html
http://pandas.pydata.org/pandas-docs/version/0.15.2/remote_data.html

Time-series

[80]

The msftAC variable is a pandas Series object. I point this out as several of the
operations to retrieve values from Series objects differ, depending upon whether
the operation is being applied to a Series or a DataFrame. This can cause some
slight confusion if this is not recognized.

The slicing notation is overridden to very conveniently allow the passing of strings
representing dates as the values for the slice. The following command retrieves
MSFT data for dates from 2012-01-01 to 2012-01-05:

In [14]:

 msft['2012-01-01':'2012-01-05']

Out[14]:

 Open High Low Close Volume Adj Close

 Date

 2012-01-03 26.55 26.96 26.39 26.77 64731500 24.42183

 2012-01-04 26.82 27.47 26.78 27.40 80516100 24.99657

 2012-01-05 27.38 27.73 27.29 27.68 56081400 25.25201

A specific item can be retrieved from a time-series represented by a DataFrame by
specifying the date/time index value and using the .loc method. The result is a
Series where the index labels are the column names, with the values for each being
in a specific row for each of the columns:

In [15]:

 msft.loc['2012-01-03']

Out[15]:

 Open 26.55000

 High 26.96000

 Low 26.39000

 Close 26.77000

 Volume 64731500.00000

 Adj Close 24.42183

 Name: 2012-01-03 00:00:00, dtype: float64

Chapter 4

[81]

Note that the following syntax does not work as the DataFrame attempts to look for a
column with the name 2012-01-03:

In [16]:

 # msft['2012-01-03'] # commented to prevent killing the notebook

This syntax does work on a Series object that is a time-series, and this looks for an
index label with the matching date:

In [17]:

 msftAC['2012-01-03']

Out[17]:

 24.42183

This is a subtle difference that sometimes causes headaches when using
time-series data in pandas. So be careful or always convert your Series
objects to DataFrame objects to use a lookup, using .loc to lookup
using the index.

One of the advantages of pandas is the ability to be able to select based upon partial
datetime specifications. As an example, the following command selects MSFT data
for the month of February 2012:

In [18]:

 msft['2012-02'].head(5)

Out[18]:

 Open High Low Close Volume Adj Close

 Date

 2012-02-01 29.79 30.05 29.76 29.89 67409900 27.26815

 2012-02-02 29.90 30.17 29.71 29.95 52223300 27.32289

 2012-02-03 30.14 30.40 30.09 30.24 41838500 27.58745

 2012-02-06 30.04 30.22 29.97 30.20 28039700 27.55096

 2012-02-07 30.15 30.49 30.05 30.35 39242400 27.68781

Note that this did not require the use of the .loc method, as pandas
first identifies this as a partial date and then looks along the index of
the DataFrame instead of a column (although .loc can be used to
perform an equivalent operation).

Time-series

[82]

It is also possible to slice, starting at the beginning of a specific month and ending at
a specific day of the month:

In [19]:

 msft['2012-02':'2012-02-09'][:5]

Out[19]:

 Open High Low Close Volume Adj Close

 Date

 2012-02-01 29.79 30.05 29.76 29.89 67409900 27.26815

 2012-02-02 29.90 30.17 29.71 29.95 52223300 27.32289

 2012-02-03 30.14 30.40 30.09 30.24 41838500 27.58745

 2012-02-06 30.04 30.22 29.97 30.20 28039700 27.55096

 2012-02-07 30.15 30.49 30.05 30.35 39242400 27.68781

Creating time-series with specific
frequencies
Time-series data in pandas can also be created to represent intervals of time other
than daily frequency. Different frequencies can be generated with pd.date_range()
by utilizing the freq parameter. This parameter defaults to a value of D, which
represents daily frequency.

To introduce the creation of nondaily frequencies, the following command creates
a DatetimeIndex with one-minute intervals using freq='T':

In [20]:

 bymin = pd.Series(np.arange(0, 90*60*24),

 pd.date_range('2014-08-01',

 '2014-10-29 23:59:00',

 freq='T'))

 bymin

Out[20]:

 2014-08-01 00:00:00 0

 2014-08-01 00:01:00 1

 2014-08-01 00:02:00 2

 ...

Chapter 4

[83]

 2014-10-29 23:57:00 129597

 2014-10-29 23:58:00 129598

 2014-10-29 23:59:00 129599

 Freq: T, dtype: int64

This time-series allows us to use forms of slicing at finer resolution. Earlier, we saw
slicing at day and month levels, but now we have a time-series with minute-based
data that we can slice down to hours and minutes (and smaller intervals if we use
finer frequencies):

In [21]:

 bymin['2014-08-01 12:30':'2014-08-01 12:59']

Out[21]:

 2014-08-01 12:30:00 750

 2014-08-01 12:31:00 751

 2014-08-01 12:32:00 752

 ...

 2014-08-01 12:57:00 777

 2014-08-01 12:58:00 778

 2014-08-01 12:59:00 779

 Freq: T, dtype: int64

A complete list can be found at http://pandas.pydata.org/
pandas-docs/stable/timeseries.html#offset-aliases.

Representing intervals of time using
periods
It is often required to represent not just a specific time or sequence of timestamps,
but to represent an interval of time using a start date and an end date (an example of
this would be a financial quarter). This representation of a bounded interval of time
can be represented in pandas using Period objects.

Period objects consist of a start time and an end time and are created from a
start date with a given frequency. The start time is referred to as the anchor of the
Period object, and the end time is then calculated from the start date and the period
specification.

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

Time-series

[84]

To demonstrate this, the following command creates a period representing a 1-month
period anchored in August 2014:

In [22]:

 aug2014 = pd.Period('2014-08', freq='M')

 aug2014

Out[22]:

 Period('2014-08', 'M')

The Period function has start_time and end_time properties that inform us of the
derived start and end times of Period:

In [23]:

 aug2014.start_time, aug2014.end_time

Out[23]:

 (Timestamp('2014-08-01 00:00:00'),

 Timestamp('2014-08-31 23:59:59.999999999'))

Since we specified a period that starts using a partial date specification of August
2014, pandas determines the anchor (start_time) as 2014-08-01 00:00:00 and
then calculates the end_time property based upon the specified frequency; in this
case, calculating 1 month from the start_time anchor and returning the last unit
of time prior to this.

Mathematical operations are overloaded on Period objects, so as to calculate another
period based upon the value represented in Period. As an example, the following
command creates a new Period based upon the aug2014 period object by adding 1
to the period. Since aug2014 has a period of 1 month, the resulting value is that start
date (2014-08-01) + 1 * 1 month (the period represented by the object), and, hence,
the result is the last moment of time prior to 2014-09-01:

In [24]:

 sep2014 = aug2014 + 1

 sep2014

Out[24]:

 Period('2014-09', 'M')

Chapter 4

[85]

This seems as though pandas has simply added one to the month in the Period
object aug2014. However, examining start_time and end_time of sep2014, we can
see something interesting:

In [25]:

 sep2014.start_time, sep2014.end_time

Out[25]:

 (Timestamp('2014-09-01 00:00:00'),

 Timestamp('2014-09-30 23:59:59.999999999'))

The Period object has the ability to know that September has 30 days
and not 31. This is the advantage that the Period object has over
simple addition. It is not simply adding 30 days (in this example),
but one unit of the period. This helps to solve many difficult date
management problems.

Period objects are useful when combined into a collection referred to as a
PeriodIndex. The following command creates a pandas PeriodIndex consisting of
1-month intervals for the year of 2013:

In [26]:

 mp2013 = pd.period_range('1/1/2013', '12/31/2013', freq='M')

 mp2013

Out[26]:

 <class 'pandas.tseries.period.PeriodIndex'>

 [2013-01, ..., 2013-12]

 Length: 12, Freq: M

A PeriodIndex differs from a DatetimeIndex in that in a PeriodIndex, the index
labels are Period objects:

In [27]:

 for p in mp2013:

 print "{0} {1} {2} {3}".format(p, p.freq,

 p.start_time, p.end_time)

Time-series

[86]

Out[27]:

 2013-01 M 2013-01-01 00:00:00 2013-01-31 23:59:59.999999999

 2013-02 M 2013-02-01 00:00:00 2013-02-28 23:59:59.999999999

 2013-03 M 2013-03-01 00:00:00 2013-03-31 23:59:59.999999999

 2013-04 M 2013-04-01 00:00:00 2013-04-30 23:59:59.999999999

 2013-05 M 2013-05-01 00:00:00 2013-05-31 23:59:59.999999999

 2013-06 M 2013-06-01 00:00:00 2013-06-30 23:59:59.999999999

 2013-07 M 2013-07-01 00:00:00 2013-07-31 23:59:59.999999999

 2013-08 M 2013-08-01 00:00:00 2013-08-31 23:59:59.999999999

 2013-09 M 2013-09-01 00:00:00 2013-09-30 23:59:59.999999999

 2013-10 M 2013-10-01 00:00:00 2013-10-31 23:59:59.999999999

 2013-11 M 2013-11-01 00:00:00 2013-11-30 23:59:59.999999999

 2013-12 M 2013-12-01 00:00:00 2013-12-31 23:59:59.999999999

With a PeriodIndex, we can then construct a Series using it as the index:

In [28]:

 np.random.seed(123456)

 ps = pd.Series(np.random.randn(12), mp2013)

 ps

Out[28]:

 2013-01 0.469112

 2013-02 -0.282863

 2013-03 -1.509059

 ...

 2013-10 -2.104569

 2013-11 -0.494929

 2013-12 1.071804

 Freq: M, dtype: float64

We now have a time-series where the value at a specific index label represents a
measurement that spans a period of time, such as the average value of a security
in a given month, instead of at a specific time. This becomes very useful when we
perform resampling of the time-series to another frequency, which we will do a little
later in this chapter.

Chapter 4

[87]

Shifting and lagging time-series data
A common operation on time-series data is to shift or "lag" the values back and
forward in time, such as to calculate percentage change from sample to sample. The
pandas method for this is .shift(), which will shift the values in the index by a
specified number of units of the index's period.

To demonstrate shifting and lagging, we will use the adjusted close values for MSFT.
As a refresher, the following command shows the first 10 items in that time-series:

In [29]:

 msftAC[:5]

Out[29]:

 Date

 2012-01-03 24.42183

 2012-01-04 24.99657

 2012-01-05 25.25201

 2012-01-06 25.64429

 2012-01-09 25.30675

 Name: Adj Close, dtype: float64

The following command shifts the adjusted closing prices forward by 1 day:

In [30]:

 shifted_forward = msftAC.shift(1)

 shifted_forward[:5]

Out[30]:

 Date

 2012-01-03 NaN

 2012-01-04 24.42183

 2012-01-05 24.99657

 2012-01-06 25.25201

 2012-01-09 25.64429

 Name: Adj Close, dtype: float64

Time-series

[88]

Notice that the value of the index label of 2012-01-03 is now NaN. When shifting
at the same frequency as that of the index, the shift will result in one or more NaN
values being added for the labels at one end of the Series, and a loss of the same
number of values at the other end. The amount of NaN values is the same as the
number of specified periods.

If we examine the tail of both the original and shifted Series, we will see that the
last value in the Series was shifted away:

In [31]:

 msftAC.tail(5), shifted_forward.tail(5)

Out[31]:

 (Date

 2013-12-23 35.39210

 2013-12-24 35.83668

 2013-12-26 36.18461

 2013-12-27 36.03964

 2013-12-30 36.03964

 Name: Adj Close, dtype: float64, Date

 2013-12-23 35.56607

 2013-12-24 35.39210

 2013-12-26 35.83668

 2013-12-27 36.18461

 2013-12-30 36.03964

 Name: Adj Close, dtype: float64)

The original Series ended with two values of 36.04 for both 2013-12-27 and
2013-12-30, and the value that was originally at 2013-12-30 is now lost.

It is also possible to shift values in the opposite direction. The following command
demonstrates this by shifting the Series by -2:

In [32]:

 shifted_backwards = msftAC.shift(-2)[:10]

 shifted_backwards[:5]

Chapter 4

[89]

Out[32]:

 Date

 2012-01-03 25.25201

 2012-01-04 25.64429

 2012-01-05 25.30675

 2012-01-06 25.39797

 2012-01-09 25.28850

 Name: Adj Close, dtype: float64

This results in two NaN values at the tail of the resulting Series:

In [33]:

 shifted_backwards.tail(5)

Out[34]:

 Date

 2013-12-23 36.18461

 2013-12-24 36.03964

 2013-12-26 36.03964

 2013-12-27 NaN

 2013-12-30 NaN

 Name: Adj Close, dtype: float64

It is possible to shift by different frequencies using the freq parameter. This will
create a time-series with a new index, where the index labels are adjusted by the
number of specified units of the given frequency. As an example, the following
command shifts forward the time-series with a frequency of 1 day by one second:

In [35]:

 msftAC.shift(1, freq="S")

Out[35]:

 Date

 2012-01-03 00:00:01 24.42183

 2012-01-04 00:00:01 24.99657

 2012-01-05 00:00:01 25.25201

 ...

Time-series

[90]

 2013-12-26 00:00:01 36.18461

 2013-12-27 00:00:01 36.03964

 2013-12-30 00:00:01 36.03964

 Name: Adj Close, dtype: float64

The resulting DataFrame or Series is essentially the same as the original, with the
specified number of units of frequency added to each index label. No data will be
shifted out or replaced with NaN as this is not performing realignment.

An alternate form of shifting is provided by pandas using the .tshift() method.
Rather than changing the alignment of the data, .tshift() simply results in a
new Series or DataFrame, where the values of the index labels are changed by the
specified number of offsets of the value of the freq parameter. This is demonstrated
by the following command, which modifies the index labels by 1 day:

In [37]:

 msftAC.tshift(1, freq="D")

Out[37]:

 Date

 2012-01-04 24.42183

 2012-01-05 24.99657

 2012-01-06 25.25201

 ...

 2013-12-27 36.18461

 2013-12-28 36.03964

 2013-12-31 36.03964

 Name: Adj Close, dtype: float64

A practical application of shifting is the calculation of daily percentage changes from
the previous day. The following command calculates the day-to-day percentage
change in the adjusted closing price for MSFT:

In [38]:

 msftAC / msftAC.shift(1) – 1

Out[38]:

 Date

 2012-01-03 NaN

 2012-01-04 0.023534

Chapter 4

[91]

 2012-01-05 0.010219

 ...

 2013-12-26 0.009709

 2013-12-27 -0.004006

 2013-12-30 0.000000

 Name: Adj Close, dtype: float64

Frequency conversion of time-series data
The frequency of the data in a time-series can be converted in pandas using the
.asfreq() method of a Series or DataFrame. To demonstrate, we will use the
following small subset of the MSFT stock closing values:

In [39]:

 sample = msftAC[:2]

 sample

Out[39]:

 Date

 2012-01-03 24.42183

 2012-01-04 24.99657

 Name: Adj Close, dtype: float64

We have extracted the first 2 days of adjusted close values. Let's suppose we want to
resample this to have hourly sampling of data in-between the index labels. We can
do this with the following command:

In [40]:

 sample.asfreq("H")

Out[40]:

 2012-01-03 00:00:00 24.42183

 2012-01-03 01:00:00 NaN

 2012-01-03 02:00:00 NaN

 ...

 2012-01-03 22:00:00 NaN

 2012-01-03 23:00:00 NaN

 2012-01-04 00:00:00 24.99657

 Freq: H, Name: Adj Close, dtype: float64

Time-series

[92]

A new index with hourly index labels has been created by pandas, but when aligning
to the original time-series, only two values were found, thereby leaving the others
filled with NaN.

We can change this default behavior using the method parameter of the .asfreq()
method. One method is pad or ffill that will fill with the last known value:

In [41]:

 sample.asfreq("H", method="ffill")

Out[41]:

 2012-01-03 00:00:00 24.42183

 2012-01-03 01:00:00 24.42183

 2012-01-03 02:00:00 24.42183

 ...

 2012-01-03 22:00:00 24.42183

 2012-01-03 23:00:00 24.42183

 2012-01-04 00:00:00 24.99657

 Freq: H, Name: Adj Close, dtype: float64

The other method is to use backfill/bfill, which will use the next known value:

In [42]:

 sample.asfreq("H", method="bfill")

Out[42]:

 2012-01-03 00:00:00 24.42183

 2012-01-03 01:00:00 24.99657

 2012-01-03 02:00:00 24.99657

 ...

 2012-01-03 22:00:00 24.99657

 2012-01-03 23:00:00 24.99657

 2012-01-04 00:00:00 24.99657

 Freq: H, Name: Adj Close, dtype: float64

Chapter 4

[93]

Resampling of time-series
Frequency conversion provides basic conversion of data using the new frequency
intervals and allows the filling of missing data using either NaN, forward filling,
or backward filling. More elaborate control is provided through the process of
resampling.

Resampling can be either downsampling, where data is converted to wider
frequency ranges (such as downsampling from day-to-day to month-to-month)
or upsampling, where data is converted to narrower time ranges. Data for the
associated labels are then calculated by a function provided to pandas instead
of simple filling.

To demonstrate upsampling, we will calculate the daily cumulative returns for
the MSFT stock over 2012 and 2013 and resample it to monthly frequency. We will
examine the return calculation in more detail in Chapter 5, Time-series Stock Data,
but for now, we will use it as a demonstration of the mechanics of up and down
resampling of time-series data.

The cumulative daily return for MSFT can be calculated with the following command
using .shift() and application of the .cumprod() method, as shown here:

In [43]:

 msft_cum_ret = (1 + (msftAC / msftAC.shift() – 1)).cumprod()

 msft_cum_ret

Out[43]:

 Date

 2012-01-03 NaN

 2012-01-04 1.023534

 2012-01-05 1.033993

 ...

 2013-12-26 1.481650

 2013-12-27 1.475714

 2013-12-30 1.475714

 Name: Adj Close, dtype: float64

A time-series can be resampled using the .resample() method. This method
provides a very flexible means to specify the frequency conversion involved in the
resampling, as well as the means by which the resampled values are selected or
calculated.

Time-series

[94]

The following command downsamples the daily cumulative returns from day-to-day
to month-to-month:

In [44]:

 msft_monthly_cum_ret = msft_cum_ret.resample("M")

 msft_monthly_cum_ret

Out[44]:

 Date

 2012-01-31 1.068675

 2012-02-29 1.155697

 2012-03-31 1.210570

 ...

 2013-10-31 1.350398

 2013-11-30 1.471915

 2013-12-31 1.482362

 Freq: M, Name: Adj Close, dtype: float64

As the resample period is specified as monthly, pandas will break the index labels
into monthly intervals bounded on calendar months, and the new index label for a
group will be the month's end date. The value for each index entry will be the mean
of the values for the month. This can be verified for January 2012 with the following
command:

In [45]:

 msft_cum_ret['2012-01'].mean()

Out[45]:

 1.0687314108366739

The means by which the value for each index label is calculated can be controlled
using the how parameter. Any function that is available via dispatching can be
used and given to the how parameter by name. The default is to use the np.mean()
function, as we can see in the following example:

In [46]:

 ms6t_cum_ret.resample("M", how="mean")

Chapter 4

[95]

Out[46]:

 Date

 2012-01-31 1.068731

 2012-02-29 1.155794

 2012-03-31 1.210669

 ...

 2013-10-31 1.350497

 2013-11-30 1.472052

 2013-12-31 1.482453

 Freq: M, Name: Adj Close, Length: 24

We can use how="ohlc", which will give us a summary of the open, high, low, and
close values during each sampling period. For each resampling period (monthly in
this example), pandas will return the first value in the period (open), the maximum
value (high), the lowest value (low), and the final value in the period (close):

In [47]:

 msft_cum_ret.resample("M", how="ohlc")[:5]

Out[47]:

 open high low close

 Date

 2012-01-31 1.023751 1.110565 1.023751 1.103194

 2012-02-29 1.116708 1.198608 1.116708 1.193694

 2012-03-31 1.214169 1.235463 1.186732 1.212940

 2012-04-30 1.214169 1.219083 1.141278 1.203931

 2012-05-31 1.203522 1.203522 1.099918 1.104832

The type of index resulting from a resampling is controlled by the kind parameter,
which can be set to timestamp (the default) or period. In the resampling examples
up to this point, the resample has returned Timestamp and, in particular, returned
the last day of the month. The following command demonstrates returning an index
based on periods instead of time stamps, which can be quite useful if we need to
have the start and end timestamps for each sample:

In [48]:

 by_periods = msft_cum_ret .resample("M",

 how="mean",

Time-series

[96]

 kind="period")

 for i in by_periods.index[:5]:

 print ("{0}:{1} {2}".format(i.start_time, i.end_time,

 by_periods[i]))

 2012-01-01 00:00:00:2012-01-31 23:59:59.99999999 1.06873141084

 2012-02-01 00:00:00:2012-02-29 23:59:59.99999999 1.15579443079

 2012-03-01 00:00:00:2012-03-31 23:59:59.99999999 1.21066934703

 2012-04-01 00:00:00:2012-04-30 23:59:59.99999999 1.18474610975

 2012-05-01 00:00:00:2012-05-31 23:59:59.99999999 1.14058893604

To demonstrate upsampling, we will examine the process using the second and third
days of MSFT's adjusted close values:

In [49]:

 sample = msft_cum_ret[1:3]

 sample

Out[49]:

 Date

 2012-01-04 1.023751

 2012-01-05 1.033989

 Name: Adj Close, dtype: float64

Our upsample example will have to resample this data to an hourly interval:

In [50]:

 by_hour = sample.resample("H")

 by_hour

Out[50]:

 Date

 2012-01-04 00:00:00 1.023751

 2012-01-04 01:00:00 NaN

 2012-01-04 02:00:00 NaN

 ...

 2012-01-04 22:00:00 NaN

 2012-01-04 23:00:00 NaN

 2012-01-05 00:00:00 1.033989

 Freq: H, Name: Adj Close, Length: 25

Chapter 4

[97]

Hourly index labels have been created by pandas, but the alignment only propagates
two values into the new time-series and fills the others with NaN. This is an inherent
issue with upsampling as in the result there is missing information. By default,
pandas uses NaN but provide other methods to fill in values.

As with frequency conversion, the new index labels can be forward filled or back
filled using the fill_method parameter and specifying bfill or ffill. Another
option is to interpolate the missing data, which can be done using the time-series
object's .interpolate() method, which will perform a linear interpolation:

In [51]:

 by_hour.interpolate()

Out[51]:

 Date

 2012-01-04 00:00:00 1.023751

 2012-01-04 01:00:00 1.024178

 2012-01-04 02:00:00 1.024604

 ...

 2012-01-04 22:00:00 1.033135

 2012-01-04 23:00:00 1.033562

 2012-01-05 00:00:00 1.033989

 Freq: H, Name: Adj Close, Length: 25

Summary
In this chapter, we examined the many ways in pandas to represent various units of
time and time-series data. Understanding date and time-series as well as frequency
conversion is critical to analyzing financial information. We examined several ways
of manipulating time-series data represented by stock price information, working
with dates, times, time zones, and calendars. In closing, the chapter examined the
means of converting the data in time-series into different frequencies.

In the next chapter, we will dive deeper into an analysis of historical stock data using
time-series in pandas, greatly expanding our knowledge of both pandas and using it
to analyze financial data.

[99]

Time-series Stock Data
In the previous chapter, we looked at time-series operations with pandas. The focus
of the chapter was on the mechanics of time-series albeit with examples drawn from
finance using historical stock data. In this chapter, we will continue to examine
historical stock data, focusing on performing common financial analyses upon this
data. At this point in the book, pandas moves to become a tool to facilitate analysis
instead of being the story itself.

We will first look at gathering historical stock and index data from web sources and
how to organize it to easily perform the various analyses we will undertake. We
will then move on to demonstrating common visualizations for these types of data.
These visualizations are used extensively, and they will help you gain a quick and
intuitive understanding of patterns hidden in the data. Finally, we will dive into
several common financial analyses performed on historical stock quotes, explaining
how to use pandas to perform these operations. The focus will be on the analysis
of historical data as we will revisit this data in later chapters on trading algorithms,
which are used to predict future values.

Specifically, in this chapter, we will progress through the following tasks:

•	 Fetching and organizing stock and index data from Yahoo!
•	 Plotting closing prices, volumes, combined prices and volumes, and

candlestick charts
•	 Calculating simple daily percentage change and cumulative return
•	 Resampling daily data to a monthly period and calculating simple monthly

percentage change and cumulative return
•	 Analyzing the distribution of returns using histograms, Q-Q plots, and

boxplots
•	 Determining the correlation of daily returns across multiple stocks and

market indexes, including creating heatmaps and scatter plots of correlations

Time-series Stock Data

[100]

•	 Calculating and visualizing correlation
•	 Calculating and visualizing risk relative to expected returns
•	 Determining the rolling correlation of returns
•	 Computating least-squares regression of returns
•	 Analyzing the performance of stocks relative to the S&P 500 index

Notebook setup
The workbook and examples will all require the following code to execute and
format output. It is similar to the previous chapters but also includes matplotlib
imports to support many of the graphics that will be created and some modifications
to fit data to the page in the text:

In [1]:

 import pandas as pd

 import pandas.io.data

 import numpy as np

 import datetime

 import matplotlib.pyplot as plt

 %matplotlib inline

 pd.set_option('display.notebook_repr_html', False)

 pd.set_option('display.max_columns', 6)

 pd.set_option('display.max_rows', 10)

 pd.set_option('display.width', 78)

 pd.set_option('precision', 3)

Obtaining historical stock and index data
The examples will use two sets of data obtained from Yahoo! Finance. The first one
is a series of stock values for several stocks over the calendar years 2012–2014. The
second set of data is the S&P 500 average over the same period. Note that although
we are using data from a fixed period in time, the adjusted close values tend to
change slightly over time, so there may be slight differences in output when you run
the code as compared to what is in the text.

Chapter 5

[101]

Fetching historical stock data from Yahoo!
The examples in this chapter will use historical quotes for Apple (AAPL), Microsoft
(MSFT), General Electric (GE), IBM (IBM), American Airlines (AA), Delta Airlines
(DAL), United Airlines (UAL), Pepsi (PEP), and Coca-Cola (KO).

These stocks were chosen deliberately to have a sample of multiple stocks in each of
three different sectors: technology, airlines, and soft drinks. The purpose of this is
to demonstrate deriving correlations in various stock price measurements over the
selected time period among the stocks in similar sectors and to also demonstrate the
difference in stocks between sectors.

Historical stock quotes can be retrieved from Yahoo! using the DataReader class. The
following command will obtain the historical quotes for Microsoft (MSFT) for the
entirety of 2012-2014:

In [2]:

 start = datetime.date(2012, 1, 1)

 end = datetime.date(2014, 12, 31)

 msft = pd.io.data.DataReader('MSFT', "yahoo", start, end)

 msft[:5]

Out[2]:

 Open High Low Close Volume Adj Close

 Date

 2012-01-03 26.55 26.96 26.39 26.77 64731500 24.42

 2012-01-04 26.82 27.47 26.78 27.40 80516100 25.00

 2012-01-05 27.38 27.73 27.29 27.68 56081400 25.25

 2012-01-06 27.53 28.19 27.53 28.11 99455500 25.64

 2012-01-09 28.05 28.10 27.72 27.74 59706800 25.31

To effectively compare this data, we will want to pull the historical quotes for each
stock and store them all in a single DataFrame, which we can use as a source for
the various analyses. To facilitate this, we will start with the following function
that will get the quotes for a list of stock tickers and return all the results in a single
DataFrame, which is indexed by Ticker and then Date:

In [3]:

 def get(tickers, start, end):

 def data(ticker):

Time-series Stock Data

[102]

 return pd.io.data.DataReader(ticker, 'yahoo', start, end)

 datas = map(data, tickers)

 return pd.concat(datas, keys=tickers, names=['Ticker','Date'])

Using this function, we can now load the data for all of our stocks:

In [4]:

 tickers = ['AAPL','MSFT','GE','IBM','AA','DAL','UAL', 'PEP', 'KO']

 all_data = get(tickers, start, end)

 all_data[:5]

Out[4]:

 Open High Low Close Volume Adj Close

 Ticker Date

 AAPL 2012-01-03 409.40 412.50 409.00 411.23 75555200 55.41

 2012-01-04 410.00 414.68 409.28 413.44 65005500 55.71

 2012-01-05 414.95 418.55 412.67 418.03 67817400 56.33

 2012-01-06 419.77 422.75 419.22 422.40 79573200 56.92

 2012-01-09 425.50 427.75 421.35 421.73 98506100 56.83

Fetching index data from Yahoo!
One set of examples will demonstrate the correlation of the various stocks against the
S&P 500 average. To do this, we need to retrieve this data. This can also be retrieved
from Yahoo! Finance and DataReader, but using the ^GSPC symbol. The following
command reads this historical data and stores it in sp500_all:

In [5]:

 sp_500 = pd.io.data.DataReader("^GSPC", "yahoo", start, end)

 sp_500[:5]

Out[5]:

 Open High Low Close Volume Adj Close

 Date

 2012-01-03 1258.86 1284.62 1258.86 1277.06 3943710000 1277.06

 2012-01-04 1277.03 1278.73 1268.10 1277.30 3592580000 1277.30

 2012-01-05 1277.30 1283.05 1265.26 1281.06 4315950000 1281.06

 2012-01-06 1280.93 1281.84 1273.34 1277.81 3656830000 1277.81

 2012-01-09 1277.83 1281.99 1274.55 1280.70 3371600000 1280.70

Chapter 5

[103]

Visualizing financial time-series data
One of the best ways to determine patterns and relationships in financial data is
to create visualizations of the information. We will examine a number of common
financial visualizations and how to create them before diving into the various
analyses.

Plotting closing prices
The closing price of a stock can be easily plotted with matplotlib for either a single
stock or multiple stocks on the same graph. We have already pulled down all the
historical data for our stocks, so to visualize the closing prices, we will need to
extract those values and pass and plot them with .plot().

Most of the examples will focus on the adjusted closing price instead of the close
price as this takes into account splits and dividends and reflects a continuous change
in the value of each stock. To facilitate the use of this field, we can extract just the
adjusted close value for each stock into its own pandas object.

This happens to be very simple because of the way we organized it when it was
retrieved. We first extract the Adj Close column and then reset the index to move
the dates into a column:

In [6]:

 # reset the index to make everything columns

 just_closing_prices = all_data[['Adj Close']].reset_index()

 just_closing_pricesp[:5]

Out[6]:

 Ticker Date Adj Close

 0 AAPL 2012-01-03 55.41

 1 AAPL 2012-01-04 55.71

 2 AAPL 2012-01-05 56.33

 3 AAPL 2012-01-06 56.92

 4 AAPL 2012-01-09 56.83

We moved the dates into a column because we now want to pivot Date into the
index and each Ticker value into a column:

In [7]:

 daily_close_px = just_closing_prices.pivot('Date', 'Ticker',

 'Adj Close')

Time-series Stock Data

[104]

 daily_close_px[:5]

Out[7]:

 Ticker AA AAPL DAL ... MSFT PEP UAL

 Date ...

 2012-01-03 8.91 55.63 7.93 ... 24.60 60.85 18.90

 2012-01-04 9.12 55.93 7.90 ... 25.17 61.16 18.52

 2012-01-05 9.03 56.55 8.22 ... 25.43 60.68 18.39

 2012-01-06 8.84 57.14 8.21 ... 25.83 59.92 18.21

 2012-01-09 9.10 57.05 8.17 ... 25.49 60.24 17.93

Using this DataFrame, we can easily plot a single stock's closing price by selecting
the specific column and calling .plot(). The following command plots AAPL:

In [8]:

 _ = daily_close_px['AAPL'].plot(figsize=(12,8));

Chapter 5

[105]

All the close prices can also be easily plotted against each other simply by calling
.plot() on the entire DataFrame:

In [9]:

 _ = daily_close_px.plot(figsize=(12,8));

Plotting volume-series data
Stock trading volume data is normally plotted using matplotlib bar charts. This
is made almost embarrassingly easy using pandas and the .bar() function. The
following command plots the volume for MSFT:

In [10]:

 msftV = all_data.Volume.loc['MSFT']

Time-series Stock Data

[106]

 plt.bar(msftV.index, msftV)

 plt.gcf().set_size_inches(12,6)

Combined price and volumes
A common type of financial graph plots a stock trading volume relative to its closing
price. The following command constructs this combined chart:

In [11]:

 top = plt.subplot2grid((4,4), (0, 0), rowspan=3, colspan=4)

 top.plot(daily_close_px.index,

 daily_close_px['MSFT'],

 label='Adjusted Close')

 plt.title('MSFT Adjusted Close Price from 2011 - 2014')

 plt.legend(loc=2)

 bottom = plt.subplot2grid((4,4), (3,0), rowspan=1, colspan=4)

 bottom.bar(msftV.index, msftV)

 plt.title('Microsoft Daily Trading Volume')

 plt.gcf().set_size_inches(12,8)

 plt.subplots_adjust(hspace=0.75)

Chapter 5

[107]

Plotting candlesticks
The open-high-low-close plots, often referred to as candlestick charts, are a type
of chart used to illustrate movements in the price of a financial instrument over
time. These charts generally consist of a thin vertical line for each unit of time that
represents the range of the price during that unit of time and then overlying the thin
line is a thicker bar that represents the spacing between the open and close prices.
From these charts, it is easy to get a visual feel for the overall movement of the price
not only over the entire duration of the chart but also how much the price varies
during each unit of measurement.

To demonstrate the process of creating candlestick charts, we will utilize the data
for MSFT from the month of December 2014, plotting each day's data as a separate
candlestick.

We will also demonstrate the process of selecting specific dates for the x axis labels as
displaying labels for all 31 days of the month will be too cluttered. The out chart will
display labels only for the Mondays during the month.

Time-series Stock Data

[108]

Additionally, we will format the labels in the MMM DD format, where MMM represents
a three-character month code (in this case, always Dec), and DD will be a two-digit
date. As an example, the label for Monday December 15 will be Dec 15.

The first step we will perform is to select the subset of data for MSFT in Dec 15 from
our DataFrame of adjusted close values. We have pivoted both Ticker and Date
into the index, so we will use chained calls to .loc to first retrieve only the rows
for MSFT and then a slice using a partial date specification to extract only rows for
2014-12:

In [12]:

 subset = all_data.loc['MSFT'].loc['2014-12':'2014-12'] \

 .reset_index()

 subset[:5]

Out[12]:

 Date Open High ... Close Volume Adj Close

 0 2014-12-01 47.88 48.78 ... 48.62 31191600 48.28

 1 2014-12-02 48.84 49.05 ... 48.46 25743000 48.12

 2 2014-12-03 48.44 48.50 ... 48.08 23534800 47.74

 3 2014-12-04 48.39 49.06 ... 48.84 30320400 48.49

 4 2014-12-05 48.82 48.97 ... 48.42 27313400 48.08

We reset the index to move Date into a column as, in the end, the date for the
charting function needs to be in a column. The process is complicated in that the
date-formatting functions we will use do not use the same representation for a date
that pandas uses. We will, therefore, need to convert the values in our Date column
into that representation and add them as a new column to our set of data.

The representation of a date required by the date formatter is a floating point number
representing the number of days since the 0001-01-01 universal time plus 1.

You can find out more about this date representation and the formatting
of labels for dates at http://matplotlib.org/api/dates_api.
html.

We can convert dates to this representation by first converting our pandas date to
pydatetime and then using the matplotlib.date2num function to convert once
more into the representation needed for the matplotlib label formatter. The following
command will use the .apply() method of the DataFrame to convert each value in
the Date column to this representation and add it as the new column date_num:

http://matplotlib.org/api/dates_api.html
http://matplotlib.org/api/dates_api.html

Chapter 5

[109]

In [13]:

 import matplotlib.dates as mdates

 subset['date_num'] = subset['Date'] \

 .apply(lambda date: mdates.date2num(date.to_pydatetime()))

 subset[:5]

Out[13]:

 Date Open High ... Volume Adj Close date_num

 0 2014-12-01 47.88 48.78 ... 31191600 48.28 735568

 1 2014-12-02 48.84 49.05 ... 25743000 48.12 735569

 2 2014-12-03 48.44 48.50 ... 23534800 47.74 735570

 3 2014-12-04 48.39 49.06 ... 30320400 48.49 735571

 4 2014-12-05 48.82 48.97 ... 27313400 48.08 735572

Our data is almost ready for use in drawing our candlestick chart. But unfortunately,
the candlestick_ohlc function does not know how to work with DataFrame
objects, so we must convert our data to another format. Specifically, we need to
provide this function with a list of tuples, where each tuple consists of the date_num,
Open, High, Low, and Close). We can organize the required data this way with the
following command:

In [14]:

 subset_as_tuples = [tuple(x) for x in subset[['date_num',

 'Open',

 'High',

 'Low',

 'Close']].values]

 subset_as_tuples

Out[14]:

 [(735568.0,

 47.880000000000003,

 48.780000000000001,

 47.710000000000001,

 48.619999999999997),

 (735569.0,

 48.840000000000003,

 49.049999999999997,

 48.200000000000003,

Time-series Stock Data

[110]

 48.460000000000001),

 (735570.0, 48.439999999999998, 48.5, 47.810000000000002,
 48.079999999999998),

 (735571.0,

 48.390000000000001,

 49.060000000000002,

 48.200000000000003,

 48.840000000000003),

 (735572.0, 48.82, 48.969999999999999, 48.380000000000003,
 48.420000000000002)]

The input data for our chart is now ready. To set up the chart to know how we
would like to format the x axis labels, we need to do two things. The first thing to
do is create an instance of DateFormatter and configure it to format the dates as
we want, as shown here:

In [15]:

 from matplotlib.dates import DateFormatter

 week_formatter = DateFormatter('%b %d') # e.g., Jan 12

We also need to let the chart know how to select which data points on the x axis that
we would like to label. We do this by creating an instance of WeekdayLocator and
initializing it with the constant MONDAY:

In [16]:

 from matplotlib.dates import (WeekdayLocator, MONDAY)

 mondays = WeekdayLocator(MONDAY) # major ticks on the mondays

We are now all set to draw the chart with the following command:

In [17]:

 plt.figure(figsize(12,8))

 fig, ax = plt.subplots()

 ax.xaxis.set_major_locator(mondays)

 ax.xaxis.set_major_formatter(week_formatter)

 from matplotlib.finance import candlestick_ohlc

 candlestick_ohlc(ax, subset_as_tuples, width=0.6,

 colorup='g',colordown='r')

Chapter 5

[111]

Here's a final note on the chart that we have created; we specified colors for the
candlesticks to represent whether the close price finished the day above or below the
open price. If it finished above the open price, we had an overall gain during the day,
and we denote this with green. In the other scenario, we use red to denote that we
had a loss for the day.

Fundamental financial calculations
There are a number of analyses and data conversions commonly used to analyze the
performance of historical stock quotes. These calculations generally relate to either
analyzing the rate of return from an investment in a stock over a daily or monthly
basis or how multiple stocks perform relative to each other or a market index. The
calculations could also relate to determining the riskiness of an investment in a stock
relative to others. We will now look at all of these operations using our previously
collected stock data.

Time-series Stock Data

[112]

Calculating simple daily percentage change
The simple daily percentage change (without dividends and other factors) is the
amount of percentage change in the value of a stock over a single day of trading. It is
defined by the following formula:

Using this formula, the following command calculates the percentage change for AA
between 2014-01-04 and 2014-01-05:

In [18]:

 AA_p_t0 = daily_close_px.iloc[0]['AA'] #Pt-1

 AA_p_t1 = daily_close_px.iloc[1]['AA'] #Pt

 r_t1 = AA_p_t1 / AA_p_t0 - 1 # returns

 AA_p_t0, AA_p_t1, r_t1

Out[18]:

 (8.91, 9.12, 0.023569023569023573)

AA moved from 8.91 to 9.12 between those two days for an increase of 2.4 percent.
We can use this result to determine the correctness of applying this formula to an
entire DataFrame.

There are several ways of calculating the simple daily return across an entire
DataFrame. One means is by using slicing. The following command uses the trick of
dividing a slice of the DataFrame that excludes the first row by the values sliced to
exclude the last value:

In [19]:

 dpc_1 = daily_close_px.iloc[1:] / \

 daily_close_px.iloc[:-1].values - 1

 dpc_1.ix[:,'AA':'AAPL'][:5]

Out[19]:

 Ticker AA AAPL

 Date

 2012-01-04 0.024 0.005

 2012-01-05 -0.010 0.011

Chapter 5

[113]

 2012-01-06 -0.021 0.010

 2012-01-09 0.029 -0.002

 2012-01-10 0.001 0.004

At first glance, you might wonder how this works. This example benefits from
the fact that we are dividing a slice of the values in a DataFrame by a slice of the
values in a two-dimensional array, which doesn't do an alignment of values as the
denominator does not have an index (it's not a pandas object at all).

We can visualize this using the following two commands:

In [20]:

 price_matrix_minus_day1 = daily_close_px.iloc[1:]

 price_matrix_minus_day1[:5]

Out[20]:

 Ticker AA AAPL DAL ... MSFT PEP UAL

 Date ...

 2012-01-04 9.10 55.71 7.89 ... 25.00 60.75 18.52

 2012-01-05 9.02 56.33 8.20 ... 25.25 60.28 18.39

 2012-01-06 8.83 56.92 8.19 ... 25.64 59.52 18.21

 2012-01-09 9.09 56.83 8.15 ... 25.31 59.83 17.93

 2012-01-10 9.10 57.03 8.14 ... 25.40 59.77 17.48

In [21]:

 daily_close_px.iloc[:-1].values

Out[21]:

 array([[8.89, 55.41, 7.92, ..., 24.42, 60.44, 18.9],

 [9.1 , 55.71, 7.89, ..., 25. , 60.75, 18.52],

 ...,

 [15.79, 113.46, 48.68, ..., 47.11, 96.09, 65.22],

 [15.82, 112.08, 49.13, ..., 46.69, 95.32, 66.05]])

So, when we do the division (and subsequently subtract 1 from the division), pandas
matches the row/column in the DataFrame to the row/column in the array. As an
example, 2012-01-14/AA is 9.1 / 8.89 – 1 = 0.024, which matches with our result.

Time-series Stock Data

[114]

Another way to perform this calculation is by performing a shift of the values using
the pandas .shift() method:

In [22]:

 dpc_2 = daily_close_px / daily_close_px.shift(1) - 1

 dpc_2.ix[:,0:2][:5]

Out[22]:

 Ticker AA AAPL

 Date

 2012-01-03 NaN NaN

 2012-01-04 0.024 0.005

 2012-01-05 -0.009 0.011

 2012-01-06 -0.021 0.010

 2012-01-09 0.029 -0.002

Note that this has the same values as the previous example but also
includes 2012-01-03 with the NaN values.

This process performs alignment as .shift() moves the values along the axis and
results in a pandas object instead of a list of values.

Probably the easiest way to do this is with the built-in .pct_change() method of a
pandas Series or DataFrame. This calculation is actually so commonly performed in
pandas and finance that it was baked into the library:

In [23]:

 daily_pct_change = daily_close_px.pct_change()

 daily_pct_change.ix[:,0:2][:5]

Out[23]:

 Ticker AA AAPL

 Date

 2012-01-03 NaN NaN

 2012-01-04 0.024 0.005

 2012-01-05 -0.009 0.011

 2012-01-06 -0.021 0.010

 2012-01-09 0.029 -0.002

Chapter 5

[115]

The last thing we will want to do here is set the NaN values to 0. This is not strictly
required, and the examples will work without it, but it is a good practice:

In [24]:

 daily_pct_change.fillna(0, inplace=True)

 daily_pct_change.ix[:5,:5]

Out[24]:

 Ticker AA AAPL DAL GE IBM

 Date

 2012-01-03 0.000 0.000 0.000 0.000 0.000

 2012-01-04 0.024 0.005 -0.004 0.011 -0.004

 2012-01-05 -0.009 0.011 0.039 -0.001 -0.005

 2012-01-06 -0.021 0.010 -0.001 0.005 -0.011

 2012-01-09 0.029 -0.002 -0.005 0.011 -0.005

Calculating simple daily cumulative returns
The cumulative daily rate of return is useful to determine the value of an investment
at regular intervals after investment. This is calculated from the daily percentage
change values by multiplying (1 + the current day's percentage change) with the
cumulative product of all of the previous values. This is represented by the following
formula:

This is actually calculated very succinctly using the following code and the
.cumprod() method:

In [25]:

 cum_daily_return = (1 + daily_pct_change).cumprod()

 cum_daily_return.ix[:,:2][:5]

Out[25]:

 Ticker AA AAPL DAL GE IBM

 Date

 2012-01-03 0.000 0.000 0.000 0.000 0.000

 2012-01-04 0.024 0.005 -0.004 0.011 -0.004

 2012-01-05 -0.009 0.011 0.039 -0.001 -0.005

Time-series Stock Data

[116]

 2012-01-06 -0.021 0.010 -0.001 0.005 -0.011

 2012-01-09 0.029 -0.002 -0.005 0.011 -0.005

This informs us that the value of $1 invested in AA on 2012-01-03 would be worth
$1.772 on 2014-12-31.

We can plot the cumulative returns to see how the different stocks compare. This
gives a nice view of how the stocks will change your investment over time and how
they perform relative to each other:

In [26]:

 cum_daily_return.plot(figsize=(12,8))

 plt.legend(loc=2);

Analyzing the distribution of returns
If you want to get a feel for the difference in distribution of the daily returns for
a particular stock, you can plot the returns using several common visualizations,
including:

Chapter 5

[117]

•	 Histograms
•	 Q-Q plots
•	 Box and whisker plots

Histograms
Histograms give you an overall feel for the distribution of returns. In general, return
distributions are approximately normal in shape, demonstrating a familiar bell curve
shape.

Histograms can be generated using the .hist() method of a pandas Series. The
method can be supplied with a number of different parameters, of which one of the
most important is the number of bins that the data is to be lumped into. We will use
50 bins, which gives a good feel for the distribution of daily changes across three
years of data.

The following command shows the distribution of the daily returns for AAPL:

In [27]:

 aapl = daily_pct_change['AAPL']

 aapl.hist(bins=50, figsize=(12,8));

Time-series Stock Data

[118]

This chart tells us several things. First, most of the daily changes center around
0.0, and there is a small amount of skew to the left, but the data appears fairly
symmetrical and normally distributed.

If we use the .describe() method on this data, we will get some useful summary
statistics that describe the histogram:

In [28]:

 aapl.describe()

Out[28]:

 count 754.000

 mean 0.001

 std 0.017

 min -0.124

 25% -0.007

 50% 0.001

 75% 0.011

 max 0.089

 Name: AAPL, dtype: float64

Using this information, some of our conclusions from the histogram can be
rationalized. The mean of the distributions is very close to 0.0, being 0.001. The
standard deviation is 0.017. The percentiles tell us that 25 percent of the points fall
below -0.007, 50 percent below 0.001, and 75 percent below 0.011.

We can provide parameters to .describe() to further specify the percentiles that
we would like to calculate. The following command asks the method to give us the
breakdown at the 2.5, 50, and 97.5 percentiles:

In [29]:

 aapl.describe(percentiles=[0.025, 0.5, 0.975])

Out[29]:

 count 754.000

 mean 0.001

 std 0.017

 min -0.124

 2.5% -0.032

 50% 0.001

Chapter 5

[119]

 97.5% 0.032

 max 0.089

 Name: AAPL, dtype: float64

This range of percentiles is commonly used to formulate a 95 percent confidence
interval. If our return distribution is perfectly normally distributed (with an equal
distribution of gains and losses), then we would expect our 2.5 percent value to be
-1.95996 times the standard deviation less than the mean, and the 97.5 percent value
to be 1.95996 times the standard deviation above the mean.

Manually calculating these, we get the 2.5 percent value as -0.032 and the 97.5
percent value as 0.034. These are roughly equivalent, again giving us a good feeling
that this stock has an equal distribution of gains and losses.

And, statistically speaking, this range of values gives us the 95 percent confidence
interval, which tells us that over the last three years, the daily return on 95 percent of
the days will fall within -0.032 percent and 0.032 percent.

To compare the return distributions of more than one stock using histograms, we can
visualize these distributions on all stocks in a single visual by creating a matrix of
histograms. As demonstrated here, pandas allows us to do this very simply:

In [30]:

 daily_pct_change.hist(bins=50, sharex=True, figsize=(12,8));

Time-series Stock Data

[120]

The labels on the axis are a bit squished together. That is fine as it is the relative
shapes of the histograms that are the most important. The sharex=True parameter
tells pandas to ensure a common range of x axis values on all of the histograms,
which facilitates our comparison of the overall distributions.

Using this chart, we get a feel for the difference in performance of these nine stocks
during this time. Stocks with a wider interval have higher fluctuation in returns and,
hence, are more volatile. Stocks where the curve is skewed demonstrate a propensity
to have either larger (skewed right) or smaller rates (skewed left) of return during
the period of measurement.

Q-Q plots
A Q-Q plot, short for Quantile-Quantile plot, is a probability plot comparing two
probability distributions by plotting their quantiles against each other. We can use a
Q-Q plot of the returns of a stock compared to a normal distribution to get a feel of
how close our returns are to a normal distribution. We can get an idea of this from
histograms, but a Q-Q plot gives a much better representation.

We can create a Q-Q plot of our returns using the probplot() function of scipy.
stats.

You will need to ensure you have scipy installed in your Python
environment to generate these plots.

As an example, we can plot the returns of AAPL against a sequence of random
normal values. We can generate this plot using the following command that
generates a Q-Q plot of our distribution date compared to a normal distribution:

In [31]:

 import scipy.stats as stats

 f = plt.figure(figsize=(12,8))

 ax = f.add_subplot(111)

 stats.probplot(aapl, dist='norm', plot=ax)

 plt.show();

Chapter 5

[121]

We will not get into detailed analysis of Q-Q plots in this book. For more details,
I recommend http://en.wikipedia.org/wiki/Q-Q_plot and http://stats.
stackexchange.com/questions/101274/how-to-interpret-a-qq-plot.

A distribution of data in a Q-Q plot would show perfect correspondence to a normal
distribution if all of the blue dots fell exactly along the red line and the slope of the
red line would be 1.0 (representing perfect correlation and an R^2 value of 1.0).
Our returns are correlated at a level of 0.9295, which is representative of a very high
degree of correlation.

Between quantiles -2 and +2, most of our data is very close to being perfectly
correlated. This range is also very close to our 95 percent confidence interval (just
slightly wider, which actually means higher confidence). It is outside this range that
we begin to see differences in the levels of correlation of the distribution with what
appears to be a similar amount of skew along both tails but perhaps with a little
more towards the negative.

http://en.wikipedia.org/wiki/Q-Q_plot
http://stats.stackexchange.com/questions/101274/how-to-interpret-a-qq-plot
http://stats.stackexchange.com/questions/101274/how-to-interpret-a-qq-plot

Time-series Stock Data

[122]

Box-and-whisker plots
A box plot is a convenient way to graphically depict groups of data through their
quartiles. The box portion of the plot represents the range from the low quantile to
the high quantile, and the box is split by a line that represents the median value.
A box plot may also have lines extending out from both sides of the box, which
represent the amount of variability outside of the upper and lower quartiles. These
are often referred to as whiskers, hence the use of the term box-and-whisker plot.

To demonstrate this, the following command creates a box-and-whisker plot for the
AAPL daily returns:

In [32]:

 daily_pct_change[['AAPL']].plot(kind='box', figsize=(3,6));

The box in the chart represents the range of the values in the 25 percent (Q1) and 75
percent (Q3) quartiles. The red line is the median value.

Chapter 5

[123]

The dashed lines extend out to what is referred to as an IQR of 1.5, where the
inter-quartile range (IQR) is defined as Q3–Q1. In this case, the IQR is 1.5 * (0.011-
(-0.007)) = 0.027. Hence, we have a line at 0.011 + 0.027 = 0.038 and another at -0.007-
0.027 = -0.034. These values represent an amount where sample values beyond are
considered outliers. Those outliers are then individually plotted along the vertical to
give an idea of their values and quantities.

These become particularly useful when we align them next to each other to compare
the distributions of multiple datasets. To demonstrate this, the following command
does this for the returns of all of our stocks:

In [33]:

 daily_pct_change.plot(kind='box', figsize=(12,8));

This plot gives us a very good comparison of the performance of these stocks over
this period of time. The wider the box, the higher the variability and the risk. The
closer the median line to either side of the box or the longer a whisker is than the
other, the greater the skew in the distribution.

Time-series Stock Data

[124]

Comparison of daily percentage change
between stocks
A scatter plot is also a very effective means of being able to visually determine the
relationship between the rate of percentage change in prices between two stocks.
To demonstrate this, we will use the following function that will plot the values
in two series relative to each other:

In [34]:

 def render_scatter_plot(data, x_stock_name,

 y_stock_name, xlim=None, ylim=None):

 fig = plt.figure(figsize=(12,8))

 ax = fig.add_subplot(111)

 ax.scatter(data[x_stock_name], data[y_stock_name])

 if xlim is not None: ax.set_xlim(xlim)

 ax.autoscale(False)

 ax.vlines(0, -10, 10)

 ax.hlines(0, -10, 10)

 ax.plot((-10, 10), (-10, 10))

 ax.set_xlabel(x_stock_name)

 ax.set_ylabel(y_stock_name)

The following graph shows the relationship between the daily percentage change of
MSFT and AAPL:

In [35]:

 limits = [-0.15, 0.15]

 render_scatter_plot(daily_pct_change, 'MSFT', 'AAPL', xlim=limits)

Chapter 5

[125]

In this plot, excluding several outliers, this cluster appears to demonstrate a small
amount of correlation between the two stocks as the linear correlation would seem
to be closer to horizontal (slope = 0, that is, no correlation) than a perfect diagonal.
As we have seen, an actual correlation actually shows the correlation to be 0.236
(the slope of the regression line), which backs up our visual analysis.

Time-series Stock Data

[126]

This can be compared to the relationship between DAL and UAL, which shows very
high correlation:

In [36]:

 render_scatter_plot(daily_pct_change, 'DAL', 'UAL', xlim=limits)

This is supported with an actual correlation that is calculated to be 0.76.

It is not required to draw every graph independently to compare all relationships.
The very useful scatter matrix graph provided by pandas plots the scatters for all
combinations of stocks that gives a very easy means of eyeballing all combinations.
The use of alpha=0.1 adds transparency to the points on the graph, which helps
with small graphs with many overlapping points, as shown here:

In [37]:

 # all stocks against each other, with a KDE in the diagonal

 _ = pd.scatter_matrix(daily_pct_change, diagonal='kde', alpha=0.1,

 figsize=(12,12));

Chapter 5

[127]

The diagonal is a kernel density estimation graph, which estimates the
distribution and, in simple terms, represents a continuous histogram of
the relationships.

Time-series Stock Data

[128]

Moving windows
A number of functions are provided to compute moving (also known as rolling)
statistics, where the function computes the statistic on a window of data represented
by a particular period of time and then slides the window across the data by a
specified interval, continually calculating the statistic as long as the window falls first
within the dates of the time-series.

With the following functions, pandas provides direct support for rolling windows:

Function Description
rolling_mean This is the mean of the values in the window
rolling_std This is the standard deviation of the values in the

window
rolling_var This is the variance of values
rolling_min This is the minimum of the values in the window
rolling_max This is maximum of the values in the window
rolling_cov This is the covariance of values
rolling_quantile This is the moving window score at the percentile/

sample quantile
rolling_corr This is the correlation of the values in the window
rolling_median This is the median of the values in the window
rolling_sum This is the sum of the values in the window
rolling_apply This is the application of a user function to the values

in the window
rolling_count This is the number of non-NaN values in a window
rolling_skew This is the skewedness of the values in the window
rolling_kurt This is the kurtosis of the values in the window

As a practical example, a rolling mean is commonly used to smooth out short-term
fluctuations and highlight longer-term trends in data and is used quite commonly in
financial time-series analysis.

To demonstrate this, we will calculate a rolling window on the adjusted close values
for MSFT for the year 2012. The following command extracts the raw values for 2012
and plots them to gives us an idea of the shape of the data:

In [38]:

 msftAC = msft['2012']['Adj Close']

 msftAC[:5]

Chapter 5

[129]

Out[38]:

 Date

 2012-01-03 24.42

 2012-01-04 25.00

 2012-01-05 25.25

 2012-01-06 25.64

 2012-01-09 25.31

 Name: Adj Close, dtype: float64

In [39]:

 sample = msftAC['2012']

 sample.plot(figsize=(12,8));

Time-series Stock Data

[130]

The following command calculates the rolling mean with a window of 5 periods and
plots it against the raw data:

In [40]:

 sample.plot(figsize=(12,8))

 pd.rolling_mean(sample, 5).plot(figsize=(12,8));

From this, it can be seen how the pd.rolling_mean function provides a smoother
representation of the underlying data. A larger window smoothens out the variance
but at the cost of accuracy. We can see how this gets smoother as the window size
is increased. The following command plots the rolling mean of window size 5, 10,
and 20 periods against the raw data:

In [41]:

 sample.plot(figsize=(12,8))

 pd.rolling_mean(sample, 5).plot(figsize=(12,8))

 pd.rolling_mean(sample, 10).plot(figsize=(12,8))

 pd.rolling_mean(sample, 20).plot(figsize=(12,8));

Chapter 5

[131]

Note that the larger the window, the more the data missing at the beginning of
the curve. A window of size n requires n data points before the measure can be
calculated, hence the gap in the beginning of the plot.

Any function can be applied via a rolling window using the pd.rolling_apply
function. The supplied function will be passed an array of values in the window
and should return a single value. Then pandas will combine these results into a
time-series.

Time-series Stock Data

[132]

To demonstrate this, the following command calculates the mean average deviation,
which gives a feel of how far on average all the values in the sample are from the
overall mean:

In [42]:

 mean_abs_dev = lambda x: np.fabs(x - x.mean()).mean()

 pd.rolling_apply(sample, 5, mean_abs_dev).plot(figsize=(12,8));

An expanding window mean can be calculated using a slight variant of the
pd.rolling_mean function that repeatedly calculates the mean by always starting
with the first value in the time-series, and for every iteration, increasing the window
size by one. An expanding window mean will be more stable (less responsive) than
a rolling window because greater the size of the window, the less the impact of the
next value:

In [43]:

 expanding_mean = lambda x: pd.rolling_mean(x, len(x),

 min_periods=1)

 sample.plot()

 pd.expanding_mean(sample).plot();

Chapter 5

[133]

Volatility calculation
The volatility of a stock is a measurement of the change in variance in the returns
of a stock over a specific period of time. It is common to compare the volatility of
a stock with another stock to get a feel for which may have less risk or to a market
index to examine the stock's volatility in the overall market. Generally, the higher the
volatility, the riskier the investment in that stock, which results in investing in one
over another.

Volatility is calculated by taking a rolling window standard deviation on the
percentage change in a stock. The size of the window affects the overall result. The
wider the window, the less representative the measurement will become. As the
window narrows, the result approaches the standard deviation. So, it is a bit of
an art to pick the proper window size based upon the data sampling frequency.
Fortunately, pandas makes this very easy to modify interactively.

Time-series Stock Data

[134]

As a demonstration, the following command calculates the volatility of all the stock
in our sample with a window of 75 days:

In [44]:

 min_periods = 75

 vol = pd.rolling_std(daily_pct_change, min_periods) * \

 np.sqrt(min_periods)

 vol.plot(figsize=(10, 8));

Chapter 5

[135]

The lines higher on the chart represent overall higher volatility and hence represent
a riskier investment. PEP seems to have the lowest overall volatility, while it appears
that UAL has the highest.

Rolling correlation of returns
We previously examined the calculation of the overall correlation between two
stocks over a time period (3 years in our case). This can also be performed using
rolling windows to demonstrate how the correlation has changed over time:

In [45]:

 rolling_corr = pd.rolling_corr(daily_pct_change['AAPL'],

 daily_pct_change['MSFT'],

 window=252).dropna()

 rolling_corr[251:] #first 251 are NaN

Out[45]:

 Date

 2014-01-02 0.08

 2014-01-03 0.08

 2014-01-06 0.07

 2014-01-07 0.07

 2014-01-08 0.07

 ...

 2014-12-24 0.23

 2014-12-26 0.23

 2014-12-29 0.23

 2014-12-30 0.23

 2014-12-31 0.24

 dtype: float64

Time-series Stock Data

[136]

We can visualize this change in correlation over time as follows:

In [46]:

 rolling_corr.plot(figsize=(12,8));

Least-squares regression of returns
The correlations that we have examined up until this point show the relationship of
the change in daily return from two investments. They do not capture the change in
the volatility between two investments. This can be calculated using least-squares
regression using the pandas ols(), the ordinary least-squares function.

The following command calculates this on the returns of AAPL and MSFT:

In [47]:

 model = pd.ols(y=daily_pct_change['AAPL'],

 x={'MSFT': daily_pct_change['MSFT']},

 window=250)

 model

Out[47]:

Chapter 5

[137]

 ------------------Summary of Regression Analysis------------------

 Formula: Y ~ <MSFT> + <intercept>

 Number of Observations: 250

 Number of Degrees of Freedom: 2

 R-squared: 0.0535

 Adj R-squared: 0.0497

 Rmse: 0.0132

 F-stat (1, 248): 14.0223, p-value: 0.0002

 Degrees of Freedom: model 1, resid 248

 -----------------Summary of Estimated Coefficients----------------

 Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%

 --

 MSFT 0.2617 0.0699 3.74 0.0002 0.1247 0.3987

 intercept 0.0013 0.0008 1.56 0.1193 -0.0003 0.0030

 ------------------------End of Summary----------------------------

The beta from the resulting model gives us an idea of the relationship between the
changes in volatility of the two stocks over the period:

In [48]:

 model.beta[0:5] # what is the beta?

Out[48]:

 MSFT intercept

 Date

 2012-12-31 0.394 0.001

 2013-01-02 0.407 0.001

 2013-01-03 0.413 0.001

 2013-01-04 0.421 0.001

 2013-01-07 0.420 0.001

Time-series Stock Data

[138]

Also, this can be easily plotted, as shown here:

In [49]:

 _ = model.beta['MSFT'].plot(figsize=(12, 8)); # plot the beta

Comparing stocks to the S&P 500
The analyses until this point have been performed only between stocks. It is often
useful to perform some of these against a market index such as the S&P 500. This
will give a sense of how those stocks compare to movements in the overall market.

At the beginning of the chapter, we loaded the S&P 500 data for the same time period
as the other stocks. To perform comparisons, we can perform the same calculations
to derive the daily percentage change and cumulative returns on the index:

In [50]:

 sp_500_dpc = sp_500['Adj Close'].pct_change().fillna(0)

 sp_500_dpc[:5]

Chapter 5

[139]

Out[50]:

 Date

 2012-01-03 0.000

 2012-01-04 0.000

 2012-01-05 0.003

 2012-01-06 -0.003

 2012-01-09 0.002

 Name: Adj Close, dtype: float64

We can concatenate the index calculations in the results of the calculations of the
stocks. This will let us easily compare the overall set of stocks and index calculations:

In [51]:

 dpc_all = pd.concat([sp_500_dpc, daily_pct_change], axis=1)

 dpc_all.rename(columns={'Adj Close': 'SP500'}, inplace=True)

 dpc_all[:5]

Out[51]:

 SP500 AA AAPL ... MSFT PEP UAL

 Date ...

 2012-01-03 0.00e+00 0.00 0.00 ... 0.00 0.00 0.00

 2012-01-04 1.88e-04 0.02 0.01 ... 0.02 0.01 -0.02

 2012-01-05 2.94e-03 -0.01 0.01 ... 0.01 -0.01 -0.01

 2012-01-06 -2.54e-03 -0.02 0.01 ... 0.02 -0.01 -0.01

 2012-01-09 2.26e-03 0.03 -0.00 ... -0.01 0.01 -0.02

Now, we calculate the cumulative daily returns with the following command:

In [52]:

 cdr_all = (1 + dpc_all).cumprod()

 cdr_all[:5]

Out[52]:

 SP500 AA AAPL ... MSFT PEP UAL

 Date ...

 2012-01-03 1 1.00 1.00 ... 1.00 1.00 1.00

 2012-01-04 1 1.02 1.01 ... 1.02 1.01 0.98

 2012-01-05 1 1.01 1.02 ... 1.03 1.00 0.97

Time-series Stock Data

[140]

 2012-01-06 1 0.99 1.03 ... 1.05 0.98 0.96

 2012-01-09 1 1.02 1.03 ... 1.04 0.99 0.95

Also, we will calculate the correlation of the daily percentage change values as
follows:

In [53]:

 dpc_corrs = dpc_all.corr()

 dpc_corrs

Out[53]:

 SP500 AA AAPL ... MSFT PEP UAL

 SP500 1.00 0.60 0.41 ... 0.54 0.52 0.32

 AA 0.60 1.00 0.24 ... 0.31 0.23 0.22

 AAPL 0.41 0.24 1.00 ... 0.19 0.09 0.06

 DAL 0.42 0.25 0.14 ... 0.15 0.17 0.76

 GE 0.73 0.46 0.24 ... 0.34 0.38 0.24

 IBM 0.53 0.31 0.21 ... 0.36 0.26 0.12

 KO 0.53 0.23 0.16 ... 0.27 0.56 0.14

 MSFT 0.54 0.31 0.19 ... 1.00 0.28 0.13

 PEP 0.52 0.23 0.09 ... 0.28 1.00 0.13

 UAL 0.32 0.22 0.06 ... 0.13 0.13 1.00

 [10 rows x 10 columns]

Of interest in the correlations is each stock relative to the S&P 500. We can extract
this with the following command:

In [54]:

 dpc_corrs.ix['SP500']

Out[54]:

 SP500 1.00

 AA 0.60

 AAPL 0.41

 DAL 0.42

 GE 0.73

 IBM 0.53

 KO 0.53

Chapter 5

[141]

 MSFT 0.54

 PEP 0.52

 UAL 0.32

 Name: SP500, dtype: float64

GE shows that it moved in the most similar way to the S&P 500, while UAL showed
that it moved the least like the index. A plot of the returns shows this, as GE indeed
follows right along the S&P 500, which was quite a good investment relative to the
S&P 500 after March 2013:

In [55]:

 _ = cdr_all[['SP500', 'GE', 'UAL']].plot(figsize=(12,8));

Time-series Stock Data

[142]

We can examine these conclusions with scatter plots of both against the S&P 500, as
shown here:

In [56]:

 render_scatter_plot(dpc_all, 'GE', 'SP500')

 plt.savefig('5104_05_23.png', bbox_inches='tight', dpi=300)

Here's another plot:

In [57]:

 render_scatter_plot(dpc_all, 'UAL', 'SP500')

Chapter 5

[143]

This shows that GE is fairly tightly correlated to the S&P 500. UAL has a much more
distributed cluster of points around the origin, which supports that it has a lot less
correlation.

Time-series Stock Data

[144]

Summary
In this chapter, we examined various means of performing the analysis of stock and
index data. We started with loading historical quotes from Yahoo! Finance, moved
on to how to create various visualizations for this data, and then to performing
various financial analyses that are common for analyzing stock market data.

We focused in this chapter purely upon the analysis of historical data. We neither
made any attempts to use this data to predict the future and to make decisions on
trade execution, nor did we look at the management of portfolios, where historical
data can be used to calculate optimal portfolios. We will come to both of these
chapters later in the book, where the techniques in this chapter will be leveraged
to help with those concepts.

[145]

Trading Using Google Trends
Several years ago, a paper titled Quantifying Trading Behavior in Financial Markets
Using Google Trends was published in Scientific Reports. This paper asked this
question: "Is it possible to predict efficient trading strategies based upon the
frequency of certain words in Google searches?"

The authors went through a number of interesting steps involved in gathering
data and performing analyses. They derived a set of financial keywords from the
Financial Times website that they thought were good words for examining patterns
of search for financial information.

With this, they built a robust set of keywords using Google Sets (which is now
defunct). Using those keywords, they collected Google Trends data on those words
over a period of years and defined a trading execution plan to buy or sell based upon
the changes in the search history on all of their terms. They ran the strategies for all
the keywords and ranked the value of their investments for each search phrase.

What was their conclusion? It appears to be very likely that this can be used to beat
random investment in the S&P 500 index. This result is perhaps debatable, but the
process itself is an interesting one to attempt using pandas. It demonstrates the
bringing in of historical data from multiple sources and using the statistical analysis
of one stream of data to make decisions on investing and valuating a portfolio based
on another stream.

In this chapter, we will investigate by gathering much of the data that they collected
and in reproducing their results as closely as possible (and we will be very close
to their results). All of the steps that they performed can be simply reproduced
using pandas. Together, they provide an excellent example of social data collection
and how it can be applied to make money. They also present a very interesting
introduction to using pandas to develop trading strategies, which this book will
now turn its attention to and run with for its remainder.

Trading Using Google Trends

[146]

We will go through the following topics in detail:

•	 A brief summary of Quantifying Trading Behavior in Financial Markets
Using Google Trends

•	 Retrieving trend data from Google Trends
•	 Obtaining Dow Jones Index data from Quandl
•	 Generating trade orders
•	 Calculating investment results
•	 Conclusions

For your reference, the paper is available at http://www.nature.
com/srep/2013/130425/srep01684/full/srep01684.html.

Notebook setup
The workbook and examples will all require the following code to execute and
format output. It is similar to the previous chapters but also includes matplotlib
imports to support many of the graphics that will be created, several options to fit
data to the page in the text, the CSV (comma separated value) framework and the RE
(regular expression) framework. Here's the code I am talking about:

In [1]:

 import pandas as pd

 import numpy as np

 import datetime as dt

 import matplotlib.pyplot as plt

 import pandas.io.data as web

 pd.set_option('display.notebook_repr_html', False)

 pd.set_option('display.max_columns', 8)

 pd.set_option('display.max_rows', 10)

 pd.set_option('display.width', 78)

 pd.set_option('precision', 6)

 %matplotlib inline

http://www.nature.com/srep/2013/130425/srep01684/full/srep01684.html
http://www.nature.com/srep/2013/130425/srep01684/full/srep01684.html

Chapter 6

[147]

A brief on Quantifying Trading Behavior
in Financial Markets Using Google
Trends
The authors of this paper state that financial markets are a prime target for
investigating the prediction of market movements based upon the social habits of
people searching for and gathering information to gain a competitive advantage in
order to capture opportunities for personal financial gain.

They go on to investigate whether search query data from Google Trends can
historically be used to provide insights into the information gathering process that
leads up to making trading decisions in the stock market.

The authors gather data from Google Trends and Dow Jones Industrial Average
(DJIA) for the period of 2004-01-01 to 2011-02-28. They seed the process with
some financial terms (specifically the term, debt) that can yield a bias towards
the search for financial results. They take the initial set of terms and then build a
larger set of terms using Google Sets to suggest more search terms based upon the
seed terms. They decide upon using 98 different search terms and analyze trading
decisions made upon the volume of the searches on each of those terms.

They use weekly DJIA closing values on the first trading day of the week, usually
Monday but occasionally Tuesday. Google Trends data is reported on a Sunday
through Saturday interval.

To be able to relate search behavior in Google to market movements, the authors
correlate the volumes of search terms relative to the movement of the DJIA. The
authors then propose a trading strategy, where, if the average number of searches
for a term on Google has increased at the end of a three-week window, then there
should be an upturn in the market the following week. Therefore, a trader should
take a long position, transferring all current holdings into the newly identified
position. Given the property prediction of market gains, a profit will be made over
that one week period due to the increase in the value of the investment.

If the number of searches at the end of the three-week period has decreased from
the previous three-week average, then we should go short and sell our holdings
at the end of the first day of the next trading week, and then buy them back at the
beginning of the next week. If the market moves down during this period, then we
will have profited.

Trading Using Google Trends

[148]

The authors also present an analysis of the performance of their strategy. This
analysis is based upon the search term "debt" and how their position increased based
upon their strategy. This is represented in the following graph by the solid blue line
and shows they produced 326 percent:

The dashed lines represent the standard deviation of the cumulative return for a
strategy that involves buying and selling financial instruments in an uncorrelated
and random manner, and the results are derived from the simulation of 10,000
realizations of the random strategy. Their conclusion is that there is a significantly
large enough difference in the results of their Google Trends strategy over the
random strategies to determine that that is validity to their assertion.

They do neglect transaction fees, stating that their strategy only involves 104
transactions per year but could have an effect on the results if taken into account. They
state that they ignored the transaction fees as their goal is to determine the overall
effectiveness of relating social data to market movement to gain advantage as a trader.

In our analysis in this chapter, we will proceed with gathering Google Trends data
for the search term "debt" for the same period of time as in the paper, along with
DJIA data, and set up a model for replicating this investment strategy. Our goal
is not to validate their research but to be able to learn various concepts and their
implementation in Python with pandas. From this, you will learn valuable skills to
obtain and relate data from disparate data feeds, model a trading strategy, and use
a trading back-tester to evaluate the effectiveness of the strategies.

Data collection
Our goal will be to create a DataFrame, which contains both the authors' DJIA and
Google Trends data combined with data that we also collect dynamically from the
Web for each. We will check that our data conforms to what they had collected,
and then we will use our data to simulate trades based upon their algorithm.

Chapter 6

[149]

The data used in the study is available on the Internet. I have included it in the
examples for the text. But we will also dynamically collect this information to
demonstrate those processes using pandas. We will perform the analysis both
on the data provided by the authors as well as our freshly collected data.

Unfortunately, but definitely not uncommon in the real world, we will also run
into several snags in data collection that we need to work around. First, Yahoo!
no longer provides DJIA data, so we can't fetch that data with the DataReader class
of pandas. We will get around Yahoo! Finance no longer providing DJIA data using
a web-based service named Quandl, which is a good service to also introduce to a
reader of this text.

Second, Google Sets, used by the authors to derive their search terms, is now
defunct—having been turned off by Google. That is actually disappointing, but we
are just going to model results on the single search term "debt", which the authors
claim had the best results.

Third, access to Google Trends data is, for lack of a better description, wonky. I will
provide a .csv file that we will use, but we will also take time to discuss dynamically
downloading the data.

The data from the paper
The data from the paper is available on the Internet, but I have also included it in
the data folder of the code samples. It can be loaded into pandas using the following
command:

In [2]:

 paper = pd.read_csv('PreisMoatStanley2013.dat',

 delimiter=' ',

 parse_dates=[0,1,100,101])

 paper[:5]

Out[2]:

 Google Start Date Google End Date arts banking ... \

 0 2004-01-04 2004-01-10 0.95667 0.19333 ...

 1 2004-01-11 2004-01-17 0.97000 0.20333 ...

 2 2004-01-18 2004-01-24 0.92667 0.19667 ...

 3 2004-01-25 2004-01-31 0.95000 0.19667 ...

 4 2004-02-01 2004-02-07 0.89333 0.20333 ...

Trading Using Google Trends

[150]

 water world DJIA Date DJIA Closing Price

 0 1.91333 4.83333 2004-01-12 10485.18

 1 1.93333 4.76667 2004-01-20 10528.66

 2 1.89333 4.60000 2004-01-26 10702.51

 3 1.92000 4.53333 2004-02-02 10499.18

 4 1.88667 4.53333 2004-02-09 10579.03

 [5 rows x 102 columns]

The data from the paper is a single file containing all of the DJIA data combined with
a normalization of the search volume for each of their 98 keywords. Each keyword
used for a search is represented as a column.

We want to extract from each row the values in the debt column, the Google Trends
Week End date, and the closing price and date for the DJIA. We can do this with the
following pandas code:

In [3]:

 data = pd.DataFrame({'GoogleWE': paper['Google End Date'],

 'debt': paper['debt'].astype(np.float64),

 'DJIADate': paper['DJIA Date'],

 'DJIAClose': paper['DJIA Closing Price']

 .astype(np.float64)})

 data[:5]

Out[3]:

 DJIAClose DJIADate GoogleWE debt

 0 10485.18 2004-01-12 2004-01-10 0.21000

 1 10528.66 2004-01-20 2004-01-17 0.21000

 2 10702.51 2004-01-26 2004-01-24 0.21000

 3 10499.18 2004-02-02 2004-01-31 0.21333

 4 10579.03 2004-02-09 2004-02-07 0.20000

The paper's Google Trends data has been normalized relative to all of their resulting
searches. We will see the raw values when we get this data on our own. The
important thing with this data is not actually the value but the change in value over
time, which can be used to represent the relative change in search volumes for the
given period.

Chapter 6

[151]

Gathering our own DJIA data from Quandl
It has historically been possible to retrieve DJIA data from Yahoo! Finance using
the pandas DataReader class. Unfortunately, Yahoo! has stopped providing DJIA
data, so we need an alternative to get this data. We can retrieve this data from
Quandl (https://www.quandl.com/). Quandl is a provider of datasets specifically
related to quantitative analysis. An account can be created for free, and they provide
API-based access to their data. They also provide client libraries for multiple
languages, including Python, Java, and C#. In Chapter 1, Getting Started with pandas
Using Wakari.io, we added their library to our Python environment. Here's the
command for this discussion:

In [4]:

 import Quandl

 djia = Quandl.get("YAHOO/INDEX_DJI",

 trim_start='2004-01-01',

 trim_end='2011-03-05')

Alternatively, you can load this data from a file provided with the code packet for
the text:

In [5]:

 # djia = pd.read_csv("djia.csv", index_col=0)

The following command gives us an overview of the data that was retrieved. It is a
set of daily variables from the DJIA between and including the specified dates:

In [6]:

 djia[:3]

Out[6]:

 Open High Low Close Volume Adjusted Close

 Date

 2004-01-02 10452.7 10527.0 10384.3 10409.9 1688900 10409.9

 2004-01-05 10411.9 10544.1 10411.9 10544.1 2212900 10544.1

 2004-01-06 10543.9 10549.2 10499.9 10538.7 1914600 10538.7

https://www.quandl.com/

Trading Using Google Trends

[152]

We would now like to merge the Close values in this data into our DataFrame. We
will want to do this by aligning our dates with the data in the DJIADate column.
We also want to drop all of the days the data of which does not align. We can do
this simply with a pandas merge. To perform this, we first need to extract the Close
values and move the dates from the index to a column, as shown here:

In [7]:

 djia_closes = djia['Close'].reset_index()

 djia_closes[:3]

Out[7]:

 Date Close

 0 2004-01-02 10409.9

 1 2004-01-05 10544.1

 2 2004-01-06 10538.7

Now, we will create a new DataFrame object with the two datasets merged based
upon the DJIADate and Date columns from the two respective DataFrame objects
(we drop the DJIADate column from the result as it is redundant and set Date to be
the index), as follows:

In [8]:

 data = pd.merge(data, djia_closes,

 left_on='DJIADate', right_on='Date')

 data.drop(['DJIADate'], inplace=True, axis=1)

 data = data.set_index('Date')

 data[:3]

Out[8]:

 DJIAClose GoogleWE debt Close

 Date

 2004-01-12 10485.18 2004-01-10 0.21 10485.2

 2004-01-20 10528.66 2004-01-17 0.21 10528.7

 2004-01-26 10702.51 2004-01-24 0.21 10702.5

Chapter 6

[153]

Upon examining this data, it is evident that there is a fairly good match between the
DJIA closing prices. If we plot both series next to each other, we will see that they are
practically identical. The following is the command to plot the data:

In [17]:

 data[['DJIAClose', 'Close']].plot(figsize=(12,8));

We can also check the statistics of the differences in the values, as shown here:

In [10]:

 (data['DJIAClose']-data['Close']).describe()

Out[10]:

 count 371.00000

 count 373.00000

 mean -0.00493

 std 0.03003

 min -0.05000

 25% -0.03000

Trading Using Google Trends

[154]

 50% -0.01000

 75% 0.02000

 max 0.04000

 dtype: float64

The overall differences appear to be well less than one-tenth of a point and seem
likely to be just from rounding errors.

One final check can examine the correlation of the two series of data:

In [11]:

 data[['DJIAClose', 'Close']].corr()

Out[11]:

 DJIAClose Close

 DJIAClose 1 1

 Close 1 1

There is a perfect positive correlation. With this summarizing performed, we can
have strong confidence that our data is prepared properly.

Google Trends data
The authors provided their own version of Google Trends data for the term "debt".
This is convenient, but we want to get our own Google Trends data. Unfortunately,
there does not currently appear to be any API access to this data. But there are
several ways that we can go about retrieving it. One way is to use the mechanize
framework to automate a web-crawling process. Another way, which is what we
will do, is to use the web portal to download the CSV for the data we want.

You can search in your browser for any term and get the associated trend data at
http://www.google.com/trends/. The following command demonstrates the
result of searching for the term debt:

http://www.google.com/trends/

Chapter 6

[155]

This is pretty but not usable in our pandas application. Fortunately, if we go to the
options button, we see the option Download as CSV, as shown in the following
screenshot:

Trading Using Google Trends

[156]

You can download this for yourself. The data is also provided in the data folder of
the samples for the book. The name of the file is trends_report_debt.csv. The
following command shows the contents of the first few lines of the file:

In [12]:

 !head trends_report_debt.csv

 # type trends_report_debt.csv # on windows

 Web Search interest: debt

 United States; Jan 2004 - Feb 2011

 Interest over time

 Week,debt

 2004-01-04 - 2004-01-10,63

 2004-01-11 - 2004-01-17,60

 2004-01-18 - 2004-01-24,61

 2004-01-25 - 2004-01-31,63

 2004-02-01 - 2004-02-07,61

This is not a particularly friendly CSV file, and we need to do a little bit of processing
to extract the data properly. The following command reads the file and selects trend
data in the range of dates we are working with:

In [13]:

 from StringIO import StringIO

 with open("trends_report_debt.csv") as f:

 data_section = f.read().split('\n\n')[1]

 trends_data = pd.read_csv(

 StringIO(data_section),

 header=1, index_col='Week',

 converters={

 'Week': lambda x: pd.to_datetime(x.split(' ')[-1])

 }

)

 our_debt_trends = trends_data['2004-01-01':'2011-02-28'] \

 .reset_index()

Chapter 6

[157]

 our_debt_trends[:5]

Out[13]:

 Week debt

 0 2004-01-10 63

 1 2004-01-17 60

 2 2004-01-24 61

 3 2004-01-31 63

 4 2004-02-07 61

The numbers do not represent an actual count of the number of searches. It is simply
a number provided by Google that you can use to compare with the other periods
in the dataset to get a sense of how the volume changes. I'm sorry about the fact that
they keep the good data to themselves, but there is enough here for us to work with.

We can start by combining this data into our dataset and check how well they
conform. We will do the same as before and use pd.merge(). This time, we will join
on the GoogleWE column on the left and the Week column on the right. The following
command performs the merge, renames debt columns, and moves the indexes
around:

In [14]:

 final = pd.merge(data.reset_index(), our_debt_trends,

 left_on='GoogleWE', right_on='Week',

 suffixes=['_P', '_O'])

 final.drop('Week', inplace=True, axis=1)

 final.set_index('Date', inplace=True)

 final[:5]

Out[14]:

 DJIAClose GoogleWE debtP Close debtO

 Date

 2004-01-12 10485.18 2004-01-10 0.21000 10485.2 63

 2004-01-20 10528.66 2004-01-17 0.21000 10528.7 60

 2004-01-26 10702.51 2004-01-24 0.21000 10702.5 61

 2004-02-02 10499.18 2004-01-31 0.21333 10499.2 63

 2004-02-09 10579.03 2004-02-07 0.20000 10579.0 61

Trading Using Google Trends

[158]

We can create a new DataFrame with the normalized trend data from both the paper
and our trend data (indexed by GoogleWE) and check to see how closely our trend
data correlates with that used in the paper:

In [15]:

 combined_trends = final[['GoogleWE', 'debtP', 'debtO']] \

 .set_index('GoogleWE')

 combined_trends[:5]

Out[15]:

 DebtP debtO

 GoogleWE

 2004-01-10 0.21000 63

 2004-01-17 0.21000 60

 2004-01-24 0.21000 61

 2004-01-31 0.21333 63

 2004-02-07 0.20000 61

A correlation between these series shows that they are highly correlated. There is
some difference as the data retrieved from Google is constantly renormalized and
will cause small differences in the trend data that was captured earlier:

In [16]:

 combined_trends.corr()

Out[16]:

 debtP debtO

 debtP 1.00000 0.95766

 debtO 0.95766 1.00000

Plotting these two against each other, we can see they are very closely correlated:

In [17]:

 fig, ax1 = plt.subplots(figsize=(12,8))

 ax1.plot(combined_trends.index,

 combined_trends.debtP, color='b')

 ax2 = ax1.twinx()

 ax2.plot(combined_trends.index,

 combined_trends.debtO, color='r')

 plt.show()

Chapter 6

[159]

Generating order signals
In the trading strategy that we will define, we want to be able to decide whether
there is enough movement in the volume of searches on debt to go and execute a
trade in the market that will make us a profit. The paper defines this threshold as
though there is a higher search volume at the end of a Google Trends week than in
the previous three-week average of the search volume, and then we will go short.
If there is a decline, we will go long the following week.

The first thing we will need to do is reorganize our data by moving the GoogleWE
dates into the index. We are going to make our decisions based upon these
week-ending dates and use the Close price in an associated record as the basis
for our trade as that price represents the Close price at the beginning of the next
week. We also drop the DJIAClose column as it is redundant with Close:

In [18]:

 base = final.reset_index().set_index('GoogleWE')

 base.drop(['DJIAClose'], inplace=True, axis=1)

 base[:3]

Trading Using Google Trends

[160]

Out[18]:

 Date debtP Close debtO

 GoogleWE

 2004-01-10 2004-01-12 0.21 10485.2 63

 2004-01-17 2004-01-20 0.21 10528.7 60

 2004-01-24 2004-01-26 0.21 10702.5 61

We now need to calculate the moving average of the previous three weeks for
each week. This is easily performed with pandas, and the following command will
compute the moving average for both the trends provided in the paper and the data
we just collected from Google Trends:

In [19]:

 base['PMA'] = pd.rolling_mean(base.debtP.shift(1), 3)

 base['OMA'] = pd.rolling_mean(base.debtO.shift(1), 3)

 base[:5]

Out[19]:

 Date debtP Close debtO PMA OMA

 GoogleWE

 2004-01-10 2004-01-12 0.21000 10485.2 63 NaN NaN

 2004-01-17 2004-01-20 0.21000 10528.7 60 NaN NaN

 2004-01-24 2004-01-26 0.21000 10702.5 61 NaN NaN

 2004-01-31 2004-02-02 0.21333 10499.2 63 0.21000 61.33333

 2004-02-07 2004-02-09 0.20000 10579.0 61 0.21111 61.33333

The code shifts the calculated values by one week. This is because we need the three
previous weeks' rolling mean at each week. Not shifting would include the current
week in the average, and we want to make decisions on the prior three.

We now need to make a decision on how to execute based upon this information.
This is referred to as generating order signals. The current organization of the data
makes this simple to perform as we need to simply subtract the moving average
from the current trend value for each week. If there is a decrease, we assign 1 as a
value, and we assign -1 as a value in the opposite situation:

In [20]:

 base['signal0'] = 0 # default to 0

 base.loc[base.debtP > base.PMA, 'signal0'] = -1

 base.loc[base.debtP < base.PMA, 'signal0'] = 1

 base['signal1'] = 0

Chapter 6

[161]

 base.loc[base.debtO > base.OMA, 'signal1'] = -1

 base.loc[base.debtO < base.OMA, 'signal1'] = 1

 base[['debtP', 'PMA', 'signal0', 'debtO', 'OMA', 'signal1']]

Out[20]:

 debtP PMA signal0 debtO OMA signal1

 GoogleWE

 2004-01-10 0.21000 NaN 0 63 NaN 0

 2004-01-17 0.21000 NaN 0 60 NaN 0

 2004-01-24 0.21000 NaN 0 61 NaN 0

 2004-01-31 0.21333 0.21000 -1 63 61.33333 -1

 2004-02-07 0.20000 0.21111 1 61 61.33333 1

 2011-01-29 0.19000 0.17889 -1 65 58.33333 -1

 2011-02-05 0.17667 0.18000 1 57 59.33333 1

 2011-02-12 0.17333 0.18222 1 58 60.66667 1

 2011-02-19 0.18000 0.18000 1 64 60.00000 -1

 2011-02-26 0.17000 0.17667 1 58 59.66667 1

 [373 rows x 6 columns]

The trade signals based on our data are very similar but have slight differences due
to the difference in the normalization of the data.

Computing returns
Every week, we will reinvest the entirety of our portfolio. Because of this, the return
on the investment over the week will be reflected simply by the percentage change
in the DJIA between the close of the first Monday and the close of the following
Monday, but with the factor taken into account on whether we went short or long.

We have already accounted for going short or long using -1 or 1 for the signal,
respectively. Now, we just need to calculate the percentage change, shift it by one
week back in time, and multiply it by the signal value. We shift the percentage
change back one week as we want to multiply the signal value for the current week
by the next percentage change from the next week:

Trading Using Google Trends

[162]

In [21]:

 base['PctChg'] = base.Close.pct_change().shift(-1)

 base[['Close', 'PctChg', 'signal0', 'signal1']][:5]

Out[21]:

 Close PctChg signal0 signal1

 GoogleWE

 2004-01-10 10485.2 0.00415 0 0

 2004-01-17 10528.7 0.01651 0 0

 2004-01-24 10702.5 -0.01900 0 0

 2004-01-31 10499.2 0.00760 -1 -1

 2004-02-07 10579.0 0.01285 1 1

To calculate the returns gained each week, we simply multiply the signal value by
the percentage change (we will do this for both signals for both sets of trends):

In [22]:

 base['ret0'] = base.PctChg * base.signal0

 base['ret1'] = base.PctChg * base.signal1

 base[['Close', 'PctChg', 'signal0', 'signal1',

 'ret0', 'ret1']][:5]

Out[22]:

 Close PctChg signal0 signal1 ret0 ret1

 GoogleWE

 2004-01-10 10485.2 0.00415 0 0 0.00000 0.00000

 2004-01-17 10528.7 0.01651 0 0 0.00000 0.00000

 2004-01-24 10702.5 -0.01900 0 0 -0.00000 -0.00000

 2004-01-31 10499.2 0.00760 -1 -1 -0.00760 -0.00760

 2004-02-07 10579.0 0.01285 1 1 0.01285 0.01285

Chapter 6

[163]

Cumulative returns and the result of the
strategy
We now have all the weekly returns based upon our strategy. We can calculate
the overall net percentage return of the investments at the end by applying
the cumulative product of 1 + base.ret0 (the return of each week) and then
subtracting 1 from the cumulative product:

In [23]:

 base['cumret0'] = (1 + base.ret0).cumprod() - 1

 base['cumret1'] = (1 + base.ret1).cumprod() - 1

 base[['cumret0', 'cumret1']]

Out[23]:

 cumret0 cumret1

 GoogleWE

 2004-01-10 0.00000 0.00000

 2004-01-17 0.00000 0.00000

 2004-01-24 0.00000 0.00000

 2004-01-31 -0.00760 -0.00760

 2004-02-07 0.00515 0.00515

 2011-01-29 2.70149 0.84652

 2011-02-05 2.73394 0.86271

 2011-02-12 2.71707 0.85430

 2011-02-19 2.72118 0.85225

 2011-02-26 NaN NaN

 [373 rows x 2 columns]

Trading Using Google Trends

[164]

At the end of our run of this strategy, we can see that we have made a profit. We
now plot the returns based on the data from the paper:

In [24]:

base['cumret0'].plot(figsize=(12,4));

This shows that our implementation of the strategy produces a very similar result
to that published in the paper. We only obtained a 271 percent increase in value
compared to their stated return of 326 percent, but the curve almost identically follows
the same path as theirs. This suggests that our strategy executes similarly to theirs
although there must be some slight differences in the calculations of some of the
decisions. The important thing is you learned a number of concepts in pandas.

When we used our own data from Google Trends, we still had gains but not to the
extent they received using their trend data. We now plot the two sets of data using
the following command:

In [25]:
 data[['cumret0', 'cumret1']].plot(figsize=(12,4));

Chapter 6

[165]

Although the trend data we received from Google followed very similar paths, small
differences in the data can be seen when examining the order signals that will make the
accumulation of returns more modest. This is likely to be because there is an overall
sensitivity around where the total change in volume of the search term is very close to
0, but the strategy still decides to execute one way or the other and causes returns to
not grow as rapidly. But again, we are not analyzing the correctness of their results but
seeing whether we can replicate the process and decision making using pandas.

Summary
In this chapter, we took an in-depth look at collecting a type of social data and using
it to see whether we could identify trends in the data that can be correlated with
market movements in order to gain an advantage over the general movement of the
market. We did this by reproducing results from a published paper, which concludes
that it is possible. We were able to reproduce very similar results and you learned a
general process of analyzing data and making decisions on trading in the market.

The best part of this is that during this process, you saw that pandas provides a
very robust framework for financial time-series analysis as well as for the analysis
of simple social data. You learned how to work with multiple time-series that have
different frequencies and how to manipulate them to be able to have frequencies
that can be aligned to be able to apply decisions made in one to execution in another.
This included various concepts such as frequency conversion, grouping by year and
day of week, generating signals based upon data, and shifting calculations back
and forth to align properly to relate data at different periods to each other with
simple pandas formulas.

But there is also a lot that we did not cover. Our strategy was based purely on
historical data and can lead to a look-ahead bias. It also did not cover the effects that
our trades may have on the actual market. It did not factor in transaction costs. Perhaps
most significantly, we did not perform the simulation of alternative strategies.

In the upcoming chapters, we will dive into each of these concepts (and more). In the
next chapter on algorithmic trading, we will start to look at more elaborate strategies
for investing in the market where we do not have perfect knowledge, need to learn
on the fly, and make decisions based on imperfect data.

[167]

Algorithmic Trading
In this chapter, we will examine how to use pandas and a library known as Zipline
to develop automated trading algorithms. Zipline (http://www.zipline.io/) is a
Python-based algorithmic trading library. It provides event-driven approximations
of live-trading systems. It is currently used in production as the trading engine that
powers Quantopian (https://www.quantopian.com/), a free, community-centered
platform for collaborating on the development of trading algorithms with a
web browser.

We previously simulated trading based on a historical review of social and stock
data, but these examples were naive in that they glossed over many facets of real
trading, such as transaction fees, commissions, and slippage, among many others.
Zipline provides robust capabilities to include these factors in the trading model.

Zipline also provides a facility referred to as backtesting. Backtesting is the ability
to run an algorithm on historical data to determine the effectiveness of the decisions
made on actual market data. This can be used to vet the algorithm and compare it to
others in an effort to determine the best trading decisions for your situation.

We will examine three specific and fundamental trading algorithms: simple
crossover, dual moving average crossover, and pairs trade. We will first look at how
these algorithms operate and make decisions, and then we will actually implement
these using Zipline and execute and analyze them on historical data.

This chapter will cover the following topics in detail:

•	 The process of algorithmic trading
•	 Momentum and mean-reversion strategies
•	 Moving averages and their significance in automated decision making
•	 Simple and exponentially weighted moving averages
•	 Common algorithms used in algorithmic trading

http://www.zipline.io/
https://www.quantopian.com/

Algorithmic Trading

[168]

•	 Crossovers, including simple and dual moving average crossovers
•	 Pairs trading strategies
•	 Implementing dual moving crossover and pairs trading algorithms in Zipline

Notebook setup
The Notebook and examples will all require the following code to execute and
format output. Later in the chapter, we will import the Zipline package but only after
first discussing how to install it in your Python environment:

In [1]:

 import pandas as pd

 import pandas.io.data as web

 import numpy as np

 from datetime import datetime

 import matplotlib.pyplot as plt

 %matplotlib inline

 pd.set_option('display.notebook_repr_html', False)

 pd.set_option('display.max_columns', 8)

 pd.set_option('display.max_rows', 10)

 pd.set_option('display.width', 78)

 pd.set_option('precision', 6)

The process of algorithmic trading
Algorithmic trading is the use of an automated system to execute trades in a market.
These trades are executed in a predetermined manner using one or more algorithms
and without human interaction. In this chapter, we will examine several common
trading algorithms, along with tools that you can use in combination with pandas to
determine the effectiveness of your trading algorithms.

Financial markets move in cycles. Proper identification of the movement of the
market can lead to opportunities for profit by making appropriate and timely buys
or sells of financial instruments. There are two broad categories for predicting
movement in the market, which we will examine in this chapter: momentum
strategies and mean-reversion strategies.

Chapter 7

[169]

Momentum strategies
In momentum trading, trading focuses on stocks that are moving in a specific direction
on high volume, measuring the rate of change in price changes. It is typically measured
by continuously computing price differences at fixed time intervals. Momentum is a
useful indicator of the strength or weakness of the price although it is typically more
useful during rising markets as they occur more frequently than falling markets;
therefore, momentum-based prediction gives better results in a rising market.

Mean-reversion strategies
Mean reversion is a theory in trading that prices and returns will eventually move
back towards the mean of the stock or of another historical average, such as the
growth of the economy or an industry average. When the market price is below the
average price, a stock is considered attractive for purchase as it is expected that the
price will rise and, hence, a profit can be made by buying and holding the stock as it
rises and then selling at its peak. If the current market price is above the mean, the
expectation is the price will fall and there is potential for profit in shorting the stock.

Moving averages
Whether using a momentum or mean-reversion strategy for trading, the analyses
will, in one form or another, utilize moving averages of the closing price of stocks.
We have seen these before when we looked at calculating a rolling mean. We will
now examine several different forms of rolling means and cover several concepts
that are important to use in order to make trading decisions based upon how one
or more means move over time:

•	 Simple moving average
•	 Exponential moving average

Simple moving average
A moving average is a technical analysis technique that smooths price data by
calculating a constantly updated average price. This average is taken over a specific
period of time, ranging from minutes, to days, weeks, and months. The period
selected depends on the type of movement of interest, such as making a decision
on short-term, medium-term, or long-term investment.

Moving averages give us a means to relate the price data to determine a trend indicator.
A moving average does not predict price direction but instead gives us a means of
determining the direction of the price with a lag, which is the size of the window.

Algorithmic Trading

[170]

In financial markets, a moving average can be considered support in a rising market
and resistance in a falling market.

For more info on support and resistance, visit http://www.
investopedia.com/articles/technical/061801.asp.

To demonstrate this, take a look at the closing price of MSFT for 2014 related to its
7-day, 30-day, and 120-day rolling means during the same period:

In [2]:

 msft = web.DataReader("MSFT", "yahoo",

 datetime(2000, 1, 1),

 datetime(2014, 12, 31))

 msft[:5]

Out[2]:

 Open High Low Close Volume Adj Close

 Date

 2000-01-03 117.38 118.62 112.00 116.56 53228400 41.77

 2000-01-04 113.56 117.12 112.25 112.62 54119000 40.36

 2000-01-05 111.12 116.38 109.38 113.81 64059600 40.78

 2000-01-06 112.19 113.88 108.38 110.00 54976600 39.41

 2000-01-07 108.62 112.25 107.31 111.44 62013600 39.93

Now, we can calculate the rolling means using pd.rolling_mean():

In [3]:

 msft['MA7'] = pd.rolling_mean(msft['Adj Close'], 7)

 msft['MA30'] = pd.rolling_mean(msft['Adj Close'], 30)

 msft['MA90'] = pd.rolling_mean(msft['Adj Close'], 90)

 msft['MA120'] = pd.rolling_mean(msft['Adj Close'], 120)

http://www.investopedia.com/articles/technical/061801.asp
http://www.investopedia.com/articles/technical/061801.asp

Chapter 7

[171]

Then, we plot the price versus various rolling means to see this concept of support:

In [4]:

 msft['2014'][['Adj Close', 'MAm7',

 'MA30', 'MA120']].plot(figsize=(12,8));

The price of MSFT had a progressive rise over 2014, and the 120-day rolling mean
has functioned as a floor/support, where the price bounces off this floor as it
approaches it. The longer the window of the rolling mean, the lower and smoother
the floor will be in an uptrending market.

Algorithmic Trading

[172]

Contrast this with the price of the stock in 2002, when it had a steady decrease
in value:

In [5]:

 msft['2014'][['Adj Close', 'MA7',

 'MA30', 'MA120']].plot(figsize=(12,8));

In this situation, the 120-day moving average functions as a ceiling for about 9
months. This ceiling is referred to as resistance as it tends to push prices down as
they rise up towards this ceiling.

The price does not always respect the moving average. In both
of these cases, the prices have crossed over the moving average,
and, at times, it has reversed its movement slightly before or
just after crossing the average.

Chapter 7

[173]

In general, though, if the price is above a particular moving average, then it can be
said that the trend for that stock is up relative to that average and when the price is
below a particular moving average, the trend is down.

The means of calculating the moving average used in the previous example is
considered a simple moving average (SMA). The example demonstrated calculated
the 7, 30, and 120 SMA values.

While valuable and used to form the basis of other technical analyses, simple moving
averages have several drawbacks. They are listed as follows:

•	 The shorter the window used, the more the noise in the signal feeds into
the result

•	 Even though it uses actual data, it is lagging behind it by the size of
the window

•	 It never reaches the peaks or valleys of the actual data as it is smoothing
the data

•	 It does not tell you anything about the future
•	 The average calculated at the end of the window can be significantly skewed

by the values earlier in the window that are significantly skewed from the
mean

To help address some of these concerns, it is common to instead use an exponentially
weighted moving average.

Exponentially weighted moving average
Exponential moving averages reduce the lag and effect of exceptional values early
in a window by applying more weight to recent prices. The amount of weighting
applied to the most recent price depends on the number of periods in the moving
average and how the exponential function is formulated.

In general, the weighted moving average is calculated using the following formula:

In the preceding formula, is the input and is the result.

Algorithmic Trading

[174]

The EW functions in pandas support two variants of exponential weights:
The default, adjust=True, uses the following weights:

When adjust=False is specified, moving averages are calculated using the
following formula:

The preceding formula is followed by this formula:

This is equivalent to using weights:

However, instead of dealing with these formulas as described, pandas takes a
slightly different approach to specifying the weighting. Instead of specifying an
alpha between 0 and 1, pandas attempts to make the process less abstract by letting
you specify alpha in terms of either span, center of mass, or half life:

One must specify precisely one of the three values to the pd.ewma() function at
which point pandas will use the corresponding formulation for alpha.

Chapter 7

[175]

As an example, a span of 10 corresponds to what is commonly referred to as a 10-day
exponentially weighted moving average. The following command demonstrates
the calculation of the percentage weights that will be used for each data point in a
10-span EWMA (alpha=0.18181818):

In [6]:

 periods = 10

 alpha = 2.0/(periods +1)

 factors = (1-alpha) ** np.arange(1, 11)

 sum_factors = factors.sum()

 weights = factors/sum_factors

 weights

Out[6]:

 array([0.21005616, 0.17186413, 0.14061611, 0.11504954,
 0.09413145, 0.07701664, 0.06301361, 0.05155659, 0.04218267,
 0.03451309])

The most recent value is weighted at 21 percent of the result, and this decreases by a
factor (1-alpha) across all the points, and the total of these weights is equal to 1.0.

The center of mass option specifies the point where half of the number of weights
would be on each side of the center of mass. In the case of a 10-period span, the center
of mass is 5.5. Data points 1, 2, 3, 4, and 5 are on one side, and 6, 7, 8, 9, and 10 are on
the other. The actual weight is not taken into account—just the number of items.

The half-life specification specifies the period of time for the percentage of the
weighting factor to become half of its value. For the 10-period span, the half-life
value is 3.454152. The first weight is 0.21, and we would expect that to reduce to
0.105 just under halfway between points 4 and 5 (1+3.454152=4.454152). These
values are 0.115 and 0.094, and 0.105 is indeed between the two.

Algorithmic Trading

[176]

The following example demonstrates how the exponential weighted moving average
differs from a normal moving average. It calculates both kinds of averages for a
90-day window and plots the results:

In [7]:

 span = 90

 msft_ewma = msft[['Adj Close']].copy()

 msft_ewma['MA90'] = pd.rolling_mean(msft_ewma, span)

 msft_ewma['EWMA90'] = pd.ewma(msft_ewma['Adj Close'],

 span=span)

 msft_ewma['2014'].plot(figsize=(12, 8));

The exponential moving averages exhibit less lag, and, therefore, are more sensitive to
recent prices and price changes. Since more recent values are favored, they will turn
before simple moving averages, facilitating decision making on changes in momentum.

Comparatively, a simple moving average represents a truer average of prices for
the entire time period. Therefore, a simple moving average may be better suited to
identify the support or resistance level.

Chapter 7

[177]

Technical analysis techniques
We will now cover two categories of technical analysis techniques, which utilize
moving averages in different ways to be able to determine trends in market movements
and hence give us the information needed to make potentially profitable transactions.
We will examine how this works in this section, and in the upcoming section on Zipline,
we will see how to implement these strategies in pandas and Zipline.

Crossovers
A crossover is the most basic type of signal for trading. The simplest form of a
crossover is when the price of an asset moves from one side of a moving average to
the other. This crossover represents a change in momentum and can be used as a
point of making the decision to enter or exit the market.

The following command exemplifies several crossovers in the Microsoft data:

In [8]:

 msft['2002-1':'2002-9'][['Adj Close',

 'MA30']].plot(figsize=(12,8));

Algorithmic Trading

[178]

As an example, the cross occurring on July 09, 2002, is a signal of the beginning
of a downtrend and would likely be used to close out any existing long positions.
Conversely, a close above a moving average, as shown around August 13, may
suggest the beginning of a new uptrend and a signal to go short on the stock.

A second type of crossover, referred to as a dual moving average crossover, occurs
when a short-term average crosses a long-term average. This signal is used to
identify that momentum is shifting in the direction of the short-term average. A buy
signal is generated when the short-term average crosses the long-term average and
rises above it, while a sell signal is triggered by a short-term average crossing long-
term average and falling below it.

To demonstrate this, the following command shows MSFT for January 2002 through
June 2002. There is one crossover of the 30- and 90-day moving averages with the
30-day crossing moving from above to below the 90-day average. This is a significant
signal of the downswing of the stock during upcoming intervals:

In [9]:

 msft['2002-1':'2002-6'][['Adj Close', 'MA30', 'MA90']

].plot(figsize=(12,8));

Chapter 7

[179]

Pairs trading
Pairs trading is a strategy that implements a statistical arbitrage and convergence.
The basic idea is that, as we have seen, prices tend to move back to the mean. If two
stocks can be identified that have a relatively high correlation, then the change in the
difference in price between the two stocks can be used to signal trading events if one
of the two moves out of correlation with the other.

If the change in the spread between the two stocks exceeds a certain level (their
correlation has decreased), then the higher-priced stock can be considered to be in a
short position and should be sold as it is assumed that the spread will decrease as the
higher-priced stock returns to the mean (decreases in price as the correlation returns
to a higher level). Likewise, the lower-priced stock is in a long position, and it is
assumed that the price will rise as the correlation returns to normal levels.

This strategy relies on the two stocks being correlated as temporary reductions in
correlation by one stock making either a positive or negative move. This is based
upon the effects on one of the stocks that outside of shared market forces. This
difference can be used to our advantage in an arbitrage by selling and buying equal
amounts of each stock and profiting as the two prices move back into correlation.
Of course, if the two stocks move into a truly different level of correlation, then this
might be a losing situation.

Coca-Cola (KO) and Pepsi (PEP) are a canonical example of pairs-trading as they
are both in the same market segment and are both likely to be affected by the same
market events, such as the price of the common ingredients.

Algorithmic Trading

[180]

As an example, the following screenshot shows the price of Pepsi and Coca-Cola
from January 1997 through June 1998 (we will revisit this series of data later when
we implement pairs trading):

These prices are generally highly correlated during this period, but there is a marked
change in correlation that starts in August 1997 and seems to take until the end of
the year to move back into alignment. This is a situation where pairs trading can give
profits if identified and executed properly.

Chapter 7

[181]

Algo trading with Zipline
Zipline is a very powerful tool with many options, most of which we will not be able
to investigate in this book. It makes creating trading algorithms and their simulation
on historical data very easy (but there is still some creativity required).

Zipline provides several operational models. One allows the execution of Python
script files via the command line. We will exclusively use a model where we include
Zipline into our pandas application and request it to run our algorithms.

To do this, we will need to implement our algorithms and instruct Zipline on how
to run them. This is actually a very simple process, and we will walk through
implementing three algorithms of increasing complexity: buy apple, dual moving
average crossover, and pairs trade.

The algorithms that we will implement have been discussed earlier: the dual
moving average crossover and the pairs trading mean-reversion algorithm. We
will, however, start with a very simple algorithm, buy apple, which will be used to
demonstrate the overall process of how to create an algorithm as well as to show
many of the things that Zipline handles automatically.

The three examples we will examine are available as part of this distribution, but we
will examine them in detail. They have been modified to work exclusively within
an IPython environment using pandas and to implement several of the constructs
inherent in the examples in a manner that is better for understanding in the context
of this book.

Algorithm – buy apple
Trading algorithms in Zipline are implemented in several manners. The technique
we will use is creating a subclass of Zipline, that is, the TradingAlgorithm class and
run the simulation within IPython with the Zipline engine.

The tracing is implemented as a static variable and the initialize
method is called by Zipline as a static method to set up trading
simulation. Also, initialize is called by Zipline prior to the
completion of the call to super(), so to enable tracing, the
member must be initialized before the call to super().

Algorithmic Trading

[182]

The following is a simple algorithm for trading AAPL that is provided with the
Zipline examples, albeit modified to be in a class, and run in IPython. Then, print
some additional diagnostic code to trace how the process is executing in more detail:

In [11]:

 class BuyApple(zp.TradingAlgorithm):

 trace=False

 def __init__(self, trace=False):

 BuyApple.trace = trace

 super(BuyApple, self).__init__()

 def initialize(context):

 if BuyApple.trace: print("---> initialize")

 if BuyApple.trace: print(context)

 if BuyApple.trace: print("<--- initialize")

 def handle_data(self, context):

 if BuyApple.trace: print("---> handle_data")

 if BuyApple.trace: print(context)

 self.order("AAPL", 1)

 if BuyApple.trace: print("<-- handle_data")

Trading simulation starts with the call to the static .initialize() method. This
is your opportunity to initialize the trading simulation. In this sample, we do not
perform any initialization other than printing the context for examination.

The implementation of the actual trading is handled in the override of the
handle_data method. This method will be called for each day of the trading
simulation. It is your opportunity to analyze the state of the simulation provided by
the context and make any trading actions you desire. In this example, we will buy
one share of AAPL regardless of how AAPL is performing.

The trading simulation can be started by instantiating an instance of BuyApple()
and calling that object's .run method, thereby passing the base data for the
simulation, which we will retrieve from Zipline's own method for accessing data
from Yahoo! Finance:

In [12]:

 import zipline.utils.factory as zpf

 data = zpf.load_from_yahoo(stocks=['AAPL'],

Chapter 7

[183]

 indexes={},

 start=datetime(1990, 1, 1),

 end=datetime(2014, 1, 1),

 adjusted=False)

 data.plot(figsize=(12,8));

Our first simulation will purposely use only one week of historical data so that we
can easily keep the output to a nominal size that will help us to easily examine the
results of the simulation:

In [13]:

 result = BuyApple().run(data['2000-01-03':'2000-01-07'])

 ---> initialize

 BuyApple(

 capital_base=100000.0

 sim_params=

 SimulationParameters(

 period_start=2006-01-01 00:00:00+00:00,

 period_end=2006-12-31 00:00:00+00:00,

Algorithmic Trading

[184]

 capital_base=100000.0,

 data_frequency=daily,

 emission_rate=daily,

 first_open=2006-01-03 14:31:00+00:00,

 last_close=2006-12-29 21:00:00+00:00),

 initialized=False,

 slippage=VolumeShareSlippage(

 volume_limit=0.25,

 price_impact=0.1),

 commission=PerShare(cost=0.03, min trade cost=None),

 blotter=Blotter(

 transact_partial=(VolumeShareSlippage(

 volume_limit=0.25,

 price_impact=0.1), PerShare(cost=0.03, min trade cost=None)),

 open_orders=defaultdict(<type 'list'>, {}),

 orders={},

 new_orders=[],

 current_dt=None),

 recorded_vars={})

 <--- initialize

 ---> handle_data

 BarData({'AAPL': SIDData({'volume': 1000, 'sid': 'AAPL',
 'source_id': 'DataFrameSource-fc37c5097c557f0d46d6713256f4eaa3',
 'dt': Timestamp('2000-01-03 00:00:00+0000', tz='UTC'), 'type': 4,
 'price': 111.94})})

 <-- handle_data

 ---> handle_data

 [2015-04-16 21:53] INFO: Performance: Simulated 5 trading days
 out of 5.

 [2015-04-16 21:53] INFO: Performance: first open: 2000-01-03
 14:31:00+00:00

 [2015-04-16 21:53] INFO: Performance: last close: 2000-01-07
 21:00:00+00:00

 BarData({'AAPL': SIDData({'price': 102.5, 'volume': 1000, 'sid':
 'AAPL', 'source_id': 'DataFrameSource-
 fc37c5097c557f0d46d6713256f4eaa3', 'dt': Timestamp('2000-01-04
 00:00:00+0000', tz='UTC'), 'type': 4})})

Chapter 7

[185]

 <-- handle_data

 ---> handle_data

 BarData({'AAPL': SIDData({'price': 104.0, 'volume': 1000, 'sid':
 'AAPL', 'source_id': 'DataFrameSource-
 fc37c5097c557f0d46d6713256f4eaa3', 'dt': Timestamp('2000-01-05
 00:00:00+0000', tz='UTC'), 'type': 4})})

 <-- handle_data

 ---> handle_data

 BarData({'AAPL': SIDData({'price': 95.0, 'volume': 1000, 'sid':
 'AAPL', 'source_id': 'DataFrameSource-
 fc37c5097c557f0d46d6713256f4eaa3', 'dt': Timestamp('2000-01-06
 00:00:00+0000', tz='UTC'), 'type': 4})})

 <-- handle_data

 ---> handle_data

 BarData({'AAPL': SIDData({'price': 99.5, 'volume': 1000, 'sid':
 'AAPL', 'source_id': 'DataFrameSource-
 fc37c5097c557f0d46d6713256f4eaa3', 'dt': Timestamp('2000-01-07
 00:00:00+0000', tz='UTC'), 'type': 4})})

 <-- handle_data

The context in the initialize method shows us some parameters that the
simulation will use during its execution. The context also shows that we start with
a base capitalization of 100000.0. There will be a commission of $0.03 assessed for
each share purchased.

The context is also printed for each day of trading. The output shows us that Zipline
passes the price data for each day of AAPL. We do not utilize this information in this
simulation and blindly purchase one share of AAPL.

The result of the simulation is assigned to the result variable, which we can analyze for
detailed results of the simulation on each day of trading. This is a DataFrame where
each column represents a particular measurement during the simulation, and each row
represents the values of those variables on each day of trading during the simulation.

We can examine a number of the variables to demonstrate what Zipline was doing
during the processing. The orders variable contains a list of all orders made during
the day. The following command gets the orders for the first day of the simulation:

In [14]:

 result.iloc[0].orders

Out[14]:

 [{'amount': 1,

Algorithmic Trading

[186]

 'commission': None,

 'created': Timestamp('2000-01-03 00:00:00+0000', tz='UTC'),

 'dt': Timestamp('2000-01-03 00:00:00+0000', tz='UTC'),

 'filled': 0,

 'id': 'dccb19f416104f259a7f0bff726136a2',

 'limit': None,

 'limit_reached': False,

 'sid': 'AAPL',

 'status': 0,

 'stop': None,

 'stop_reached': False}]

This tells us that Zipline placed an order in the market for one share of AAPL on
2000-01-03. The order filled the value 0, which means that this trade has not yet
been executed in the market.

On the second day of trading, Zipline reports that two orders were made:

In [15]:

 result.iloc[1].orders

Out[15]:

 [{'amount': 1,

 'commission': 0.03,

 'created': Timestamp('2000-01-03 00:00:00+0000', tz='UTC'),

 'dt': Timestamp('2000-01-04 00:00:00+0000', tz='UTC'),

 'filled': 1,

 'id': 'dccb19f416104f259a7f0bff726136a2',

 'limit': None,

 'limit_reached': False,

 'sid': 'AAPL',

 'status': 1,

 'stop': None,

 'stop_reached': False},

 {'amount': 1,

 'commission': None,

 'created': Timestamp('2000-01-04 00:00:00+0000', tz='UTC'),

 'dt': Timestamp('2000-01-04 00:00:00+0000', tz='UTC'),

 'filled': 0,

 'id': '1ec23ea51fd7429fa97b9f29a66bf66a',

Chapter 7

[187]

 'limit': None,

 'limit_reached': False,

 'sid': 'AAPL',

 'status': 0,

 'stop': None,

 'stop_reached': False}]

The first order listed has the same ID as the order from day one. This tells us that this
represents that same order, and we can see this from the filled key, which is now 1
and from the fact that this order has been filled in the market.

The second order is a new order, which represents our request on the second day of
trading, which will be reported as filled at the start of day two.

During the simulation, Zipline keeps track of the amount of cash we have (capital)
at the start and end of the day. As we purchase stocks, our cash is reduced. Starting
and ending cash is represented by the starting_cash and ending_case variables
of the result.

Zipline also accumulates the total value of the purchases of stock during the
simulation. This value is represented in each trading period using the ending_value
variable of the result.

The following command shows us the running values for ending_cash and
ending_value, along with ending_value:

In [16]:

 result[['starting_cash', 'ending_cash', 'ending_value']]

Out[16]:

 starting_cash ending_cash ending_value

 2000-01-03 21:00:00 100000.00000 100000.00000 0.0

 2000-01-04 21:00:00 100000.00000 99897.46999 102.5

 2000-01-05 21:00:00 99897.46999 99793.43998 208.0

 2000-01-06 21:00:00 99793.43998 99698.40997 285.0

 2000-01-07 21:00:00 99698.40997 99598.87996 398.0

Ending cash represents the amount of cash (capital) that we have to invest at the end
of the given day. We made an order on day one for one share of the apple, but since
the transaction did not execute until the next day, we still have our starting seed at
the end of the day. But on day two, this will execute at the value reported at the close
of day one, which is 111.94. Hence, our ending_cash is reduced by 111.94 for one
share and also deducted is the $0.03 for the commission resulting in 9987.47.

Algorithmic Trading

[188]

At the end of day two, our ending_value, that is, our position in the market, is 102.5
as we have accumulated one share of AAPL, and it closed at 102.5 on day two.

We did not print starting_cash and starting_value
as this will always be equal to our initial capitalization of
100000.0 and a portfolio value of 0.0 as we have not yet
bought any securities.

While investing, we would be interested in the overall value of our portfolio, which,
in this case, would be the value of our on-hand cash + our position in the market.
This can be easily calculated:
In [17]:

 pvalue = result.ending_cash + result.ending_value

 pvalue

Out[17]:

 2000-01-03 21:00:00 100000.00000

 2000-01-04 21:00:00 99999.96999

 2000-01-05 21:00:00 100001.43998

 2000-01-06 21:00:00 99983.40997

 2000-01-07 21:00:00 99996.87996

 dtype: float64

There is also a convenient shorthand to retrieve this result:
In [18]:

 result.portfolio_value

Out[18]:

 2000-01-03 21:00:00 100000.00000

 2000-01-04 21:00:00 99999.96999

 2000-01-05 21:00:00 100001.43998

 2000-01-06 21:00:00 99983.40997

 2000-01-07 21:00:00 99996.87996

 Name: portfolio_value, dtype: float64

In a similar vein, we can also calculate the daily returns on our investment using
.pct_change():

In [19]:

 result.portfolio_value.pct_change()

Chapter 7

[189]

Out[19]:

 2000-01-03 21:00:00 NaN

 2000-01-04 21:00:00 -3.00103e-07

 2000-01-05 21:00:00 1.46999e-05

 2000-01-06 21:00:00 -1.80297e-04

 2000-01-07 21:00:00 1.34722e-04

 Name: portfolio_value, dtype: float64

This is actually a column of the results from the simulation, so we do not need to
actually calculate it:

In [20]:

 result['returns']

Out[20]:

 2000-01-03 21:00:00 NaN

 2000-01-04 21:00:00 -3.00103e-07

 2000-01-05 21:00:00 1.46999e-05

 2000-01-06 21:00:00 -1.80297e-04

 2000-01-07 21:00:00 1.34722e-04

 Name: portfolio_value, dtype: float64

Using this small trading interval, we have seen what type of calculations Zipline
performs during each period. Now, let's run this simulation over a longer period of
time to see how it performs. The following command runs the simulation across the
entire year 2000:

In [21]:

 result_for_2000 = BuyApple().run(data['2000'])

Out[21]:

 [2015-02-15 05:05] INFO: Performance: Simulated 252 trading days
 out of 252.

 [2015-02-15 05:05] INFO: Performance: first open: 2000-01-03
 14:31:00+00:00

 [2015-02-15 05:05] INFO: Performance: last close: 2000-12-29
 21:00:00+00:00

The following command shows us our cash on hand and the value of our
investments throughout the simulation:

In [22]:

 result_for_2000[['ending_cash', 'ending_value']]

Algorithmic Trading

[190]

Out[22]:

 ending_cash ending_value

 2000-01-03 21:00:00 100000.00000 0.00

 2000-01-04 21:00:00 99897.46999 102.50

 2000-01-05 21:00:00 99793.43998 208.00

 2000-01-06 21:00:00 99698.40997 285.00

 2000-01-07 21:00:00 99598.87996 398.00

 2000-12-22 21:00:00 82082.91821 3705.00

 2000-12-26 21:00:00 82068.19821 3643.12

 2000-12-27 21:00:00 82053.35821 3687.69

 2000-12-28 21:00:00 82038.51820 3702.50

 2000-12-29 21:00:00 82023.60820 3734.88

 [252 rows x 2 columns]

The following command visualizes our overall portfolio value during the year 2000:

In [23]:

 result_for_2000.portfolio_value.plot(figsize=(12,8));

Chapter 7

[191]

Our strategy has lost us money over the year 2000. AAPL generally trended
downward during the year, and simply buying every day is a losing strategy.

The following command runs the simulation over 5 years:

In [24]:

 result = BuyApple().run(data['2000':'2004']).portfolio_value

 result.plot(figsize=(12,8));

 [2015-04-16 22:52] INFO: Performance: Simulated 1256 trading days
 out of 1256.

 [2015-04-16 22:52] INFO: Performance: first open: 2000-01-03
 14:31:00+00:00

 [2015-04-16 22:52] INFO: Performance: last close: 2004-12-31
 21:00:00+00:00

Hanging in with this strategy over several more years has paid off as AAPL had a
marked upswing in value starting in mid-2013.

Algorithmic Trading

[192]

Algorithm – dual moving average crossover
We now analyze a dual moving average crossover strategy. This algorithm will
buy apple once its short moving average crosses its long moving average. This will
indicate upward momentum and a buy situation. It will then begin selling shares
once the averages cross again, which will represent downward momentum.

We will load data for AAPL for 1990 through 2014, but we will only use the data
from 1990 through 2001 in the simulation:

In [25]:

 sub_data = data['1990':'2002-01-01']

 sub_data.plot();

The following class implements a double moving average crossover where
investments will be made whenever the short moving average moves across the long
moving average. We will trade only at the cross, not continuously buying or selling
until the next cross. If trending down, we will sell all of our stock. If trending up, we
buy as many shares as possible up to 100. The strategy will record our buys and sells
in extra data returned from the simulation:

In [26]:

Chapter 7

[193]

 class DualMovingAverage(zp.TradingAlgorithm):

 def initialize(context):

 # we need to track two moving averages, so we will set

 # these up in the context the .add_transform method

 # informs Zipline to execute a transform on every day

 # of trading

 # the following will set up a MovingAverge transform,

 # named short_mavg, accessing the .price field of the

 # data, and a length of 100 days

 context.add_transform(zp.transforms.MovingAverage,

 'short_mavg', ['price'],

 window_length=100)

 # and the following is a 400 day MovingAverage

 context.add_transform(zp.transforms.MovingAverage,

 'long_mavg', ['price'],

 window_length=400)

 # this is a flag we will use to track the state of

 # whether or not we have made our first trade when the

 # means cross. We use it to identify the single event

 # and to prevent further action until the next cross

 context.invested = False

 def handle_data(self, data):

 # access the results of the transforms

 short_mavg = data['AAPL'].short_mavg['price']

 long_mavg = data['AAPL'].long_mavg['price']

 # these flags will record if we decided to buy or sell

 buy = False

 sell = False

 # check if we have crossed

 if short_mavg > long_mavg and not self.invested:

 # short moved across the long, trending up

 # buy up to 100 shares

 self.order_target('AAPL', 100)

 # this will prevent further investment until

Algorithmic Trading

[194]

 # the next cross

 self.invested = True

 buy = True # records that we did a buy

 elif short_mavg < long_mavg and self.invested:

 # short move across the long, trending down

 # sell it all!

 self.order_target('AAPL', -100)

 # prevents further sales until the next cross

 self.invested = False

 sell = True # and note that we did sell

 # add extra data to the results of the simulation to

 # give the short and long ma on the interval, and if

 # we decided to buy or sell

 self.record(short_mavg=short_mavg,

 long_mavg=long_mavg,

 buy=buy,

 sell=sell)

We can now execute this algorithm by passing it data from 1990 through 2001, as
shown here:

In [27]:

 results = DualMovingAverage().run(sub_data)

 [2015-02-15 22:18] INFO: Performance: Simulated 3028 trading days
 out of 3028.

 [2015-02-15 22:18] INFO: Performance: first open: 1990-01-02
 14:31:00+00:00

 [2015-02-15 22:18] INFO: Performance: last close: 2001-12-31
 21:00:00+00:00

To analyze the results of the simulation, we can use the following function that
creates several charts that show the short/long means relative to price, the value of
the portfolio, and the points at which we made buys and sells:

In [28]:

 def analyze(data, perf):

 fig = plt.figure()

 ax1 = fig.add_subplot(211, ylabel='Price in $')

 data['AAPL'].plot(ax=ax1, color='r', lw=2.)

 perf[['short_mavg', 'long_mavg']].plot(ax=ax1, lw=2.)

 ax1.plot(perf.ix[perf.buy].index, perf.short_mavg[perf.buy],

Chapter 7

[195]

 '^', markersize=10, color='m')

 ax1.plot(perf.ix[perf.sell].index, perf.short_mavg[perf.sell],

 'v', markersize=10, color='k')

 ax2 = fig.add_subplot(212, ylabel='Portfolio value in $')

 perf.portfolio_value.plot(ax=ax2, lw=2.)

 ax2.plot(perf.ix[perf.buy].index,

 perf.portfolio_value[perf.buy],

 '^', markersize=10, color='m')

 ax2.plot(perf.ix[perf.sell].index,

 perf.portfolio_value[perf.sell],

 'v', markersize=10, color='k')

 plt.legend(loc=0)

 plt.gcf().set_size_inches(14, 10)

Using this function, we can plot the decisions made and the resulting portfolio value
as trades are executed:

In [29]:

 analyze(sub_data, results)

Algorithmic Trading

[196]

The crossover points are noted on the graphs using triangles. Upward-pointing
red triangles identify buys and downward-pointing black triangles identify sells.
Portfolio value stays level after a sell as we are completely divested from the market
until we make another purchase.

Algorithm – pairs trade
To demonstrate a pairs trade algorithm, we will create one such algorithm and run
data for Pepsi and Coca-Cola through the simulation. Since these two stocks are in
the same market segment, their prices tend to follow each other based on common
influences in the market.

If there is an increase in the delta between the two stocks, a trader can potentially
make money by buying the stock that stayed the same and selling the increasing
stock. The assumption is that the two stocks will revert to a common spread on the
mean. Hence, if the stock that stayed normal increases to close the gap, then the
buy will result in increased value. If the rising stock reverts, then the sell will create
profit. If both happen, then even better.

To start with, we will need to gather data for Coke and Pepsi:

In [30]:

 data = zpf.load_from_yahoo(stocks=['PEP', 'KO'],

 indexes={},

 start=datetime(1997, 1, 1),

 end=datetime(1998, 6, 1),

 adjusted=True)

 data.plot(figsize=(12,8));

 PEP

 KO

Chapter 7

[197]

Analyzing the chart, we can see that the two stocks tend to follow along the same
trend line, but that there is a point where Coke takes a drop relative to Pepsi (August
1997 through December 1997). It then tends to follow the same path although with a
wider spread during 1998 than in early 1997.

Algorithmic Trading

[198]

We can dive deeper into this information to see what we can do with pairs trading.
In this algorithm, we will examine how the spread between the two stocks change.
Therefore, we need to calculate the spread:

In [31]:

 data['PriceDelta'] = data.PEP - data.KO

 data['1997':].PriceDelta.plot(figsize=(12,8))

 plt.ylabel('Spread')

 plt.axhline(data.Spread.mean());

Using this information, we can make a decision to buy one stock and sell the other
if the spread exceeds a particular size. In the algorithm we implement, we will
normalize the spread data on a 100-day window and use that to calculate the z-score
on each particular day.

If the z-score is > 2, then we will want to buy PEP and sell KO as the spread increases
over our threshold with PEP taking the higher price. If the z-score is < -2, then we
want to buy KO and sell PEP, as PEP takes the lower price as the spread increases.
Additionally, if the absolute value of the z-score < 0.5, then we will sell off any
holdings we have in either stock to limit our exposure as we consider the spread to
be fairly stable and we can divest.

Chapter 7

[199]

One calculation that we will need to perform during the simulation is calculating the
regression of the two series prices. This will then be used to calculate the z-score of
the spread at each interval. To do this, the following function is created:

In [32]:

 @zp.transforms.batch_transform

 def ols_transform(data, ticker1, ticker2):

 p0 = data.price[ticker1]

 p1 = sm.add_constant(data.price[ticker2], prepend=True)

 slope, intercept = sm.OLS(p0, p1).fit().params

 return slope, intercept

You may wonder what the @zp.transforms.batch_transform code does. At
each iteration of the simulation, Zipline will only give us the data representing the
current price. Passing the data from handle_data to this function would only pass
the current day's data. This decorator will tell Zipline to pass all of the historical
data instead of the current day's data. This makes this very simple as, otherwise,
we would need to manage multiple windows of data manually in our code.

The actual algorithm is then implemented using a 100-day window where we will
execute on the spread when the z-score is > 2.0 or < -2.0. If the absolute value of the
z-score is < 0.5, then we will empty our position in the market to limit exposure:

In [33]:

 class Pairtrade(zp.TradingAlgorithm):

 def initialize(self, window_length=100):

 self.spreads=[]

 self.invested=False

 self.window_length=window_length

 self.ols_transform= \

 ols_transform(refresh_period=self.window_length,

 window_length=self.window_length)

 def handle_data(self, data):

 # calculate the regression, will be None until 100 samples

 params=self.ols_transform.handle_data(data, 'PEP', 'KO')

 if params:

 intercept, slope=params

 zscore=self.compute_zscore(data, slope, intercept)

 self.record(zscore=zscore)

 self.place_orders(data, zscore)

Algorithmic Trading

[200]

 def compute_zscore(self, data, slope, intercept):

 # calculate the spread

 spread=(data['PEP'].price-(slope*data['KO'].price+

 intercept))

 self.spreads.append(spread) # record for z-score calc

 self.record(spread = spread)

 spread_wind=self.spreads[-self.window_length:]

 zscore=(spread - np.mean(spread_wind))/np.std(spread_wind)

 return zscore

 def place_orders(self, data, zscore):

 if zscore>=2.0 and not self.invested:

 # buy the spread, buying PEP and selling KO

 self.order('PEP', int(100/data['PEP'].price))

 self.order('KO', -int(100/data['KO'].price))

 self.invested=True

 self.record(action="PK")

 elif zscore<=-2.0 and not self.invested:

 # buy the spread, buying KO and selling PEP

 self.order('PEP', -int(100 / data['PEP'].price))

 self.order('KO', int(100 / data['KO'].price))

 self.invested = True

 self.record(action='KP')

 elif abs(zscore)<.5 and self.invested:

 # minimize exposure

 ko_amount=self.portfolio.positions['KO'].amount

 self.order('KO', -1*ko_amount)

 pep_amount=self.portfolio.positions['PEP'].amount

 self.order('PEP', -1*pep_amount)

 self.invested=False

 self.record(action='DE')

 else:

 # take no action

 self.record(action='noop')

Chapter 7

[201]

Then, we can run the algorithm with the following command:

In [34]:

 perf = Pairtrade().run(data['1997':])

 [2015-02-16 01:54] INFO: Performance: Simulated 356 trading days
 out of 356.

 [2015-02-16 01:54] INFO: Performance: first open: 1997-01-02
 14:31:00+00:00

 [2015-02-16 01:54] INFO: Performance: last close: 1998-06-01
 20:00:00+00:00

During the simulation of the algorithm, we recorded any transactions made, which
can be accessed using the action column of the result DataFrame:

In [35]:

 selection = ((perf.action=='PK') | (perf.action=='KP') |

 (perf.action=='DE'))

 actions = perf[selection][['action']]

 actions

Out[35]:

 1997-07-16 20:00:00 KP

 1997-07-22 20:00:00 DE

 1997-08-05 20:00:00 PK

 1997-10-15 20:00:00 DE

 1998-03-09 21:00:00 PK

 1998-04-28 20:00:00 DE

Our algorithm made six transactions. We can examine these transactions by
visualizing the prices, spreads, z-scores, and portfolio values relative to when we
made transactions (represented by vertical lines):

In [36]:

 ax1 = plt.subplot(411)

 data[['PEP', 'KO']].plot(ax=ax1)

 plt.ylabel('Price')

 data.Spread.plot(ax=ax2)

 plt.ylabel('Spread')

 ax3 = plt.subplot(413)

 perf['1997':].zscore.plot()

Algorithmic Trading

[202]

 ax3.axhline(2, color='k')

 ax3.axhline(-2, color='k')

 plt.ylabel('Z-score')

 ax4 = plt.subplot(414)

 perf['1997':].portfolio_value.plot()

 plt.ylabel('Protfolio Value')

 for ax in [ax1, ax2, ax3, ax4]:

 for d in actions.index[actions.action=='PK']:

 ax.axvline(d, color='g')

 for d in actions.index[actions.action=='KP']:

 ax.axvline(d, color='c')

 for d in actions.index[actions.action=='DE']:

 ax.axvline(d, color='r')

 plt.gcf().set_size_inches(16, 12)

Chapter 7

[203]

The first event is on 1997-7-16 when the algorithm saw the spread become less than
-2, and, therefore, triggered a sale of KO and a buy of PEP. This quickly turned
around and moved to a z-score of 0.19 on 1997-7-22, triggering a divesting of our
position. During this time, even though we played the spread, we still lost because
a reversion happened very quickly.

On 1997-08-05, the z-score moved above 2.0 to 2.12985 and triggered a purchase of KO
and a sale of PEP. The z-score stayed around 2.0 until 1997-10-15 when it dropped to
-0.1482 and, therefore, we divested. Between those two dates, since the spread stayed
fairly consistent around 2.0, our playing of the spread made us consistent returns as
we can see with the portfolio value increasing steadily over that period.

On 1998-03-09, a similar trend was identified, and again, we bought KO and sold PEP.
Unfortunately the spread started to minimize and we lost a little during this period.

Summary
In this chapter, we took an adventure into learning the fundamentals of algorithmic
trading using pandas and Zipline. We started with a little theory to set a framework
for understanding how the algorithms would be implemented. From there, we
implemented three different trading algorithms using Zipline and dived into the
decisions made and their impact on the portfolios as the transactions were executed.
Finally, we established a fundamental knowledge of how to simulate markets and
make automated trading decisions.

[205]

Working with Options
In this chapter, we will examine working with options data provided by Yahoo!
Finance using pandas. Options are a type of financial derivative and can be very
complicated to price and use in investment portfolios. Because of their level of
complexity, there have been many books written that are focus heavily on the
mathematics of options. Our goal will not be to cover the mathematics in detail but
to focus on understanding several core concepts in options, retrieving options data
from the Internet, manipulating it using pandas, including determining their value,
and being able to check the validity of the prices offered in the market.

In this chapter, we will specifically cover:

•	 A brief introduction to options
•	 Retrieving options data from Yahoo! Finance
•	 Examining the attributes of an option
•	 Implied volatility, including smiles and smirks
•	 Calculating the payoff of options
•	 Determining the profit and loss of options
•	 The pricing of options using Black-Scholes
•	 Using Mibian to price and determine the implied volatility of options

with Black-Scholes
•	 An introduction to the Greeks
•	 Examining the behavior of the Greeks

Working with Options

[206]

Introducing options
An option is a contract that gives the buyer the right, but not the obligation, to buy
or sell an underlying security at a specific price on or before a certain date. Options
are considered derivatives as their price is derived from one or more underlying
securities. Options involve two parties: the buyer and the seller. The parties buy and
sell the option, not the underlying security.

There are two general types of options: the call and the put. Let's look at them in detail:

•	 Call: This gives the holder of the option the right to buy an underlying
security at a certain price within a specific period of time. They are similar to
having a long position on a stock. The buyer of a call is hoping that the value
of the underlying security will increase substantially before the expiration
of the option and, therefore, they can buy the security at a discount from the
future value.

•	 Put: This gives the option holder the right to sell an underlying security at
a certain price within a specific period of time. A put is similar to having a
short position on a stock. The buyer of a put is betting that the price of the
underlying security will fall before the expiration of the option and they will,
thereby, be able to gain a profit by benefitting from receiving the payment in
excess of the future market value.

The basic idea is that one side of the party believes that the underlying security will
increase in value and the other believes it will decrease. They will agree upon a price
known as the strike price, where they place their bet on whether the price of the
underlying security finishes above or below this strike price on the expiration date of
the option.

Through the contract of the option, the option seller agrees to give the buyer the
underlying security on the expiry of the option if the price is above the strike price
(for a call).

The price of the option is referred to as the premium. This is the amount the buyer
will pay the seller to receive the option. The price of an option depends upon many
factors, of which the following are the primary factors:

•	 The current price of the underlying security
•	 How long the option needs to be held before it expires (the expiry date)
•	 The strike price on the expiry date of the option
•	 The interest rate of capital in the market
•	 The volatility of the underlying security
•	 There being an adequate interest between buyer and seller around the

given option

Chapter 8

[207]

The premium is often established so that the buyer can speculate on the future value
of the underlying security and be able to gain rights to the underlying security in the
future at a discount in the present.

The holder of the option, known as the buyer, is not obliged to exercise the option on
its expiration date, but the writer, also referred to as the seller, however, is obliged to
buy or sell the instrument if the option is exercised.

Options can provide a variety of benefits such as the ability to limit risk and the
advantage of providing leverage. They are often used to diversify an investment
portfolio to lower risk during times of rising or falling markets.

There are four types of participants in an options market:

•	 Buyers of calls
•	 Sellers of calls
•	 Buyers of puts
•	 Sellers of puts

Buyers of calls believe that the underlying security will exceed a certain level and
are not only willing to pay a certain amount to see whether that happens, but also
lose their entire premium if it does not. Their goal is that the resulting payout of the
option exceeds their initial premium and they, therefore, make a profit. However,
they are willing to forgo their premium in its entirety if it does not clear the strike
price. This then becomes a game of managing the risk of the profit versus the fixed
potential loss.

Sellers of calls are on the other side of buyers. They believe the price will drop and
that the amount they receive in payment for the premium will exceed any loss in the
price. Normally, the seller of a call would already own the stock. They do not believe
the price will exceed the strike price and that they will be able to keep the underlying
security and profit if the underlying security stays below the strike price by an
amount that does not exceed the received premium. Loss is potentially unbounded
as the stock increases in price above the strike price, but that is the risk for an upfront
receipt of cash and potential gains on the loss of price in the underlying instrument.

A buyer of a put is betting that the price of the stock will drop beyond a certain
level. By buying a put they gain the option to force someone to buy the underlying
instrument at a fixed price. By doing this, they are betting that they can force the sale
of the underlying instrument at a strike price that is higher than the market price and
in excess of the premium that they pay to the seller of the put option.

Working with Options

[208]

On the other hand, the seller of the put is betting that they can make an offer on an
instrument that is perceived to lose value in the future. They will offer the option for
a price that gives them cash upfront, and they plan that at maturity of the option,
they will not be forced to purchase the underlying instrument. Therefore, it keeps
the premium as pure profit. Or, the price of the underlying instruments drops only
a small amount so that the price of buying the underlying instrument relative to its
market price does not exceed the premium that they received.

Notebook setup
The examples in this chapter will be based on the following configuration in IPython:

In [1]:

 import pandas as pd

 import numpy as np

 import pandas.io.data as web

 from datetime import datetime

 import matplotlib.pyplot as plt

 %matplotlib inline

 pd.set_option('display.notebook_repr_html', False)

 pd.set_option('display.max_columns', 7)

 pd.set_option('display.max_rows', 15)

 pd.set_option('display.width', 82)

 pd.set_option('precision', 3)

Options data from Yahoo! Finance
Options data can be obtained from several sources. Publicly listed options are
exchanged on the Chicago Board Options Exchange (CBOE) and can be obtained
from their website. Through the DataReader class, pandas also provides built-in
(although in the documentation, this is referred to as experimental) access to options
data.

The following command reads all currently available options data for AAPL:

In [2]:

 aapl_options = web.Options('AAPL', 'yahoo')

 aapl_options = aapl_options.get_all_data().reset_index()

Chapter 8

[209]

This operation can take a while as it downloads quite a bit of data. Fortunately, it is
cached so that subsequent calls will be quicker, and there are other calls to limit the
types of data downloaded (such as just getting puts).

For convenience, the following command will save this data to a file for quick reload
at a later time. Also, it helps with the repeatability of the examples. The data retrieved
changes very frequently, so the actual examples in the book will use the data in the
file provided with the book. It saves the data for later use (it's commented out for now
so it does not overwrite the existing file). Here's the command we are talking about:

In [3]:

 #aapl_options.to_csv('aapl_options.csv')

This data file can be reloaded with the following command:

In [4]:

 aapl_options = pd.read_csv('aapl_options.csv',

 parse_dates=['Expiry'])

I highly recommend that you use the data file for the purposes
of going along with the chapter as options data changes very
frequently and loading directly from the Web will make the
results you get completely different from those in the chapter.

Whether from the Web or the file, the following command restructures and tidies the
data into a format best used in the examples that follow:

In [5]:

 aos = aapl_options.sort(['Expiry', 'Strike'])[

 ['Expiry', 'Strike', 'Type', 'IV', 'Bid',

 'Ask', 'Underlying_Price']]

 aos['IV'] = aos['IV'].apply(lambda x: float(x.strip('%')))

Now, we can take a look at the data retrieved:

In [6]:

 aos

Out[6]:

 Expiry Strike Type IV Bid Ask Underlying_Price

 158 2015-02-27 75 call 271.88 53.60 53.85 128.79

 159 2015-02-27 75 put 193.75 0.00 0.01 128.79

Working with Options

[210]

 190 2015-02-27 80 call 225.78 48.65 48.80 128.79

 191 2015-02-27 80 put 171.88 0.00 0.01 128.79

 226 2015-02-27 85 call 199.22 43.65 43.80 128.79

There are 1,103 rows of options data available. The data is sorted by Expiry and then
the Strike price to help demonstrate examples.

Expiry is the data at which the particular option will expire and potentially be
exercised. We have the following expiry dates that were retrieved. Options typically
are offered by an exchange on a monthly basis and within a short overall duration from
several days to perhaps two years. In this dataset, we have the following expiry dates:

In [7]:

 aos['Expiry'].unique()

Out[7]:

 array(['2015-02-26T17:00:00.000000000-0700',

 '2015-03-05T17:00:00.000000000-0700',

 '2015-03-12T18:00:00.000000000-0600',

 '2015-03-19T18:00:00.000000000-0600',

 '2015-03-26T18:00:00.000000000-0600',

 '2015-04-01T18:00:00.000000000-0600',

 '2015-04-16T18:00:00.000000000-0600',

 '2015-05-14T18:00:00.000000000-0600',

 '2015-07-16T18:00:00.000000000-0600',

 '2015-10-15T18:00:00.000000000-0600',

 '2016-01-14T17:00:00.000000000-0700',

 '2017-01-19T17:00:00.000000000-0700'],
 dtype='datetime64[ns]')

For each option's expiration date, there are multiple options available, split between
puts and calls, and with different strike values, prices, and associated risk values.

As an example, the option with the index 158 that expires on 2015-02-27 is for
buying a call on AAPL with a strike price of $75. The price we would pay for each
share of AAPL would be the bid price of $53.60. Options typically sell 100 units of
the underlying security, and, therefore, this would mean that this option would cost
100 x $53.60 or $5,360 upfront:

In [8]:

 aos.loc[158]

Chapter 8

[211]

Out[8]:

 Expiry 2015-02-27 00:00:00

 Strike 75

 Type call

 IV 272

 Bid 53.6

 Ask 53.9

 Underlying_Price 129

 Name: 158, dtype: object

This $5,360 does not buy us 100 shares of AAPL. It gives us the right to buy 100
shares of AAPL on 2015-02-27 at $75 per share. We should only buy if the price of
AAPL is above $75 on 2015-02-27. If not, we will have lost our premium of $5360
and purchasing below will only increase our loss.

Also, note that these quotes were retrieved on 2015-02-25. This specific option has
only two days until it expires. That has a huge effect on its pricing. We will examine
the payout on options in detail in the next section, but in short, we can derive the
following points from this purchase:

•	 We have paid $5,360 for the option to buy 100 shares of AAPL on
2015-02-27 if the price of AAPL is above $75 on that date.

•	 The price of AAPL when the option was priced was $128.79 per share. If we
were to buy 100 shares of AAPL now, we would have paid $12,879.

•	 If AAPL is above $75 on 2015-02-27, we can buy 100 shares for $7500.

There is not a lot of time between the quote and Expiry of this option. With AAPL
being at $128.79, it is very likely that the price will be above $75 in two days' time.

Therefore, in two days' time:

•	 We can walk away if the price is $75 or above. Since we paid $5360, we
probably wouldn't want to do that.

•	 At $75 or above, we can force the execution of the option, where we give
the seller $7,500 and receive 100 shares of AAPL. If the price of AAPL
is still $128.79 per share, then we will have bought $12,879 of AAPL for
$7,500+$5,360, or $12,860 in total. Technically, we will have saved $19
over two days! But only if the price didn't drop.

•	 If, for some reason, AAPL dropped below $75 in two days, we kept our loss
to our premium of $5,360. This is not great, but if we had bought $12,879 of
AAPL on 2015-02-5 and it dropped to $74.99 on 2015-02-27, we would have
lost $12,879 – $7,499, or $5,380. So, we actually would have saved $20 in loss
by buying the call option.

Working with Options

[212]

It is interesting how this math works out. Excluding transaction fees, options are a
zero-loss game. It just comes down to how much risk is involved in the option versus
your upfront premium and how the market moves. If you feel you know something,
it can be quite profitable. Of course, it can also be devastatingly unprofitable.

We will not examine the put side of this example. It would
suffice to say it works out similarly from the side of the seller.

Implied volatility
There is one more field in our dataset that we didn't look at—implied volatility (IV).
We won't get into the details of the mathematics of how this is calculated, but this
reflects the amount of volatility that the market has factored into the option.

This is different to historical volatility (which is typically the standard deviation of
the previous year of returns). We will look at pricing the option in a later section,
but this comes out of pricing models as the amount of volatility needed for the
strike price/premium value over the duration of the option contract to make those
numbers work out nicely, as we have previously shown.

In general, it is informative to examine the IV relative to the strike price on a
particular Expiry date. The following command shows this in tabular form for calls
on 2015-02-27:

In [9]:

 calls1 = aos[(aos.Expiry=='2015-02-27') & (aos.Type=='call')]

 calls1[:5]

Out[9]:

 Expiry Strike Type IV Bid Ask Underlying_Price

 158 2015-02-27 75 call 271.88 53.60 53.85 128.79

 159 2015-02-27 75 put 193.75 0.00 0.01 128.79

 190 2015-02-27 80 call 225.78 48.65 48.80 128.79

 191 2015-02-27 80 put 171.88 0.00 0.01 128.79

 226 2015-02-27 85 call 199.22 43.65 43.80 128.79

Chapter 8

[213]

It appears that as the strike price approaches the underlying price, the implied
volatility decreases. Plotting this shows it even more clearly:

In [10]:

 ax = aos[(aos.Expiry=='2015-02-27') & (aos.Type=='call')] \

 .set_index('Strike')[['IV']].plot(figsize=(12,8))

 ax.axvline(calls1.Underlying_Price.iloc[0], color='g');

The shape of this curve is important as it defines points where options are considered
to be either in or out of the money. A call option is referred to as in the money when
the options strike price is below the market price of the underlying instrument. A
put option is in the money when the strike price is above the market price of the
underlying instrument. Being in the money does not mean that you will profit; it
simply means that the option is worth exercising.

Working with Options

[214]

Where and when an option is in our out of the money can be visualized by
examining the shape of its implied volatility curve. Because of this curved shape, it is
generally referred to as a volatility smile as both ends tend to turn upwards at both
ends, particularly, if the curve has a uniform shape around its lowest point. This is
demonstrated in the following graph, which shows the nature of being in or out of
the money for both puts and calls:

A skew on the smile demonstrates a relative demand that is greater toward the option
being either in or out of the money. When this occurs, the skew is often referred to as a
smirk.

Volatility smirks
Smirks can either be reverse or forward. The following graph demonstrates a reverse
skew, similar to what we have seen with our AAPL 2015-02-27 call:

Chapter 8

[215]

In a reverse-skew smirk, the volatility for options at lower strikes is higher than at
higher strikes. This is the case with our AAPL options expiring on 2015-02-27. This
means that the in-the-money calls and out-of-the-money puts are more expensive
than the out-of-the-money calls and in-the-money puts.

A popular explanation for the manifestation of the reverse volatility skew is that
investors are generally worried about market crashes and buy puts for protection.
One piece of evidence supporting this argument is the fact that the reverse skew did
not show up for equity options until after the crash of 1987.

Another possible explanation is that in-the-money calls have become popular
alternatives to outright stock purchases as they offer leverage and, hence, increased
ROI. This leads to greater demand for in-the-money calls and, therefore, increased IV
at the lower strikes.

The other variant of the volatility smirk is the forward skew. In the forward-skew
pattern, the IV for options at the lower strikes is lower than the IV at higher strikes.
This suggests that the out-of-the-money calls and in-the-money puts are in greater
demand compared to the in-the-money calls and out-of-the-money puts:

The forward-skew pattern is common for options in the commodities market. When
supply is tight, businesses would rather pay more to secure supply than to risk
supply disruption, for example, if weather reports indicate a heightened possibility
of an impending frost, fear of supply disruption will cause businesses to drive up
demand for out-of-the-money calls for the affected crops.

Working with Options

[216]

Calculating payoff on options
The payoff of an option is a relatively straightforward calculation based upon the
type of the option and is derived from the price of the underlying security on expiry
relative to the strike price. The formula for the call option payoff is as follows:

The formula for the put option payoff is as follows:

We will model both of these functions and visualize their payouts.

The call option payoff calculation
An option gives the buyer of the option the right to buy (a call option) or sell
(a put option) an underlying security at a point in the future and at a predetermined
price. A call option is basically a bet on whether or not the price of the underlying
instrument will exceed the strike price. Your bet is the price of the option (the
premium). On the expiry date of a call, the value of the option is 0 if the strike price
has not been exceeded. If it has been exceeded, its value is the market value of the
underlying security.

The general value of a call option can be calculated with the following function:

In [11]:

 def call_payoff(price_at_maturity, strike_price):

 return max(0, price_at_maturity - strike_price)

When the price of the underlying instrument is below the strike price, the value is 0
(out of the money). This can be seen here:

In [12]:

 call_payoff(25, 30)

Out[12]:

 0

When it is above the strike price (in the money), it will be the difference between the
price and the strike price:

In [13]:

Chapter 8

[217]

 call_payoff(35, 30)

Out[13]:

 5

The following function returns a DataFrame object that calculates the return for an
option over a range of maturity prices. It uses np.vectorize() to efficiently apply
the call_payoff() function to each item in the specific column of the DataFrame:

In [14]:

 def call_payoffs(min_maturity_price, max_maturity_price,

 strike_price, step=1):

 maturities = np.arange(min_maturity_price,

 max_maturity_price + step, step)

 payoffs = np.vectorize(call_payoff)(maturities, strike_price)

 df = pd.DataFrame({'Strike': strike_price, 'Payoff': payoffs},

 index=maturities)

 df.index.name = 'Maturity Price'

 return df

The following command demonstrates the use of this function to calculate the payoff
of an underlying security at finishing prices ranging from 10 to 25 and with a strike
price of 15:

In [15]:

 call_payoffs(10, 25, 15)

Out[15]:

 Payoff Strike

 Maturity Price

 10 0 15

 11 0 15

 12 0 15

 13 0 15

 14 0 15

 21 6 15

 22 7 15

 23 8 15

 24 9 15

 25 10 15

 [16 rows x 2 columns]

Working with Options

[218]

Using this result, we can visualize the payoffs using the following function:

In [16]:

 def plot_call_payoffs(min_maturity_price, max_maturity_price,

 strike_price, step=1):

 payoffs = call_payoffs(min_maturity_price, max_maturity_price,

 strike_price, step)

 plt.ylim(payoffs.Payoff.min() - 10, payoffs.Payoff.max() + 10)

 plt.ylabel("Payoff")

 plt.xlabel("Maturity Price")

 plt.title('Payoff of call option, Strike={0}'

 .format(strike_price))

 plt.xlim(min_maturity_price, max_maturity_price)

 plt.plot(payoffs.index, payoffs.Payoff.values);

The payoffs are visualized as follows:

In [17]:

 plot_call_payoffs(10, 25, 15)

Chapter 8

[219]

The put option payoff calculation
The value of a put option can be calculated with the following function:

In [18]:

 def put_payoff(price_at_maturity, strike_price):

 return max(0, strike_price - price_at_maturity)

While the price of the underlying is below the strike price, the value is 0:

In [19]:

 put_payoff(25, 20)

Out[19]:

 0

When the price is below the strike price, the value of the option is the difference
between the strike price and the price:

In [20]:

 put_payoff(15, 20)

Out[20]:

 5

This payoff for a series of prices can be calculated with the following function:

In [21]:

 def put_payoffs(min_maturity_price, max_maturity_price,

 strike_price, step=1):

 maturities = np.arange(min_maturity_price,

 max_maturity_price + step, step)

 payoffs = np.vectorize(put_payoff)(maturities, strike_price)

 df = pd.DataFrame({'Payoff': payoffs, 'Strike': strike_price},

 index=maturities)

 df.index.name = 'Maturity Price'

 return df

The following command demonstrates the values of the put payoffs for prices of 10
through 25 with a strike price of 25:

In [22]:

 put_payoffs(10, 25, 15)

Working with Options

[220]

Out[22]:

 Payoff Strike

 Maturity Price

 10 5 15

 11 4 15

 12 3 15

 13 2 15

 14 1 15

 21 0 15

 22 0 15

 23 0 15

 24 0 15

 25 0 15

 [16 rows x 2 columns]

The following function will generate a graph of payoffs:

In [23]:

 def plot_put_payoffs(min_maturity_price,

 max_maturity_price,

 strike_price,

 step=1):

 payoffs = put_payoffs(min_maturity_price,

 max_maturity_price,

 strike_price, step)

 plt.ylim(payoffs.Payoff.min() - 10, payoffs.Payoff.max() + 10)

 plt.ylabel("Payoff")

 plt.xlabel("Maturity Price")

 plt.title('Payoff of put option, Strike={0}'

 .format(strike_price))

 plt.xlim(min_maturity_price, max_maturity_price)

 plt.plot(payoffs.index, payoffs.Payoff.values);

Chapter 8

[221]

The following command demonstrates the payoffs for prices between 10 and 25 with
a strike price of 15:

In [24]:

 plot_put_payoffs(10, 25, 15)

Profit and loss calculation
The general idea with an option is that you want to make a profit on speculation on
the movement of the price of a security in the market, over a predetermined time
frame.

The amount of profit or loss from the option can be calculated using a combination
of the upfront premium and the payoff value of the option upon expiration. It is a
zero-sum game as when a buyer profits by a certain amount, the seller loses the same
amount, and vice versa.

Working with Options

[222]

The following table summarizes all of the profit and loss situations for both the buyer
and seller when entering into options contracts:

Type Scenario Buyer or
seller

Net
profit
or loss

Cash flow At the
end of the
window
period

Net amount

Call The maturity
price is above
the strike
price and the
premium is
less than the
payoff

Buyer Profit -Premium The buyer
buys the
underlying
instrument
at a
discounted
price from
the seller

-Premium +
payoff

Seller Loss +Premium The seller
sells the
underlying
instrument
to the
buyer at a
discount

-Payoff +
premium

The maturity
price is above
the strike
price and
the payoff is
less than the
premium

Buyer Loss -Premium The buyer
buys the
underlying
instrument
at a
discounted
price from
the seller

Payoff -
premium

Seller Profit +Premium The seller
sells the
underlying
instrument
to the
buyer at a
discount

Premium -
payoff

The maturity
price is below
the strike
price

Buyer Loss -Premium Nil -Premium

Seller Profit +Premium Nil Premium

Chapter 8

[223]

Type Scenario Buyer or
seller

Net
profit
or loss

Cash flow At the
end of the
window
period

Net amount

Put The maturity
price is equal
to or above
the strike
price

Buyer Loss -Premium Nil -Premium

Seller Profit +Premium Nil -Premium
The maturity
price is less
than the
strike price
and the
payoff is
greater than
the premium

Buyer Profit -Premium The buyer
receives
the
underlying
instrument
from the
seller

Payoff -
premium

Seller Loss +Premium Premium -
payoff

The maturity
price is less
than the
strike price
and the
payoff is
less than the
premium

Buyer Loss -Premium -Premium +
payoff

Seller Profit +Premium Premium -
payoff

The call option profit and loss for a buyer
A buyer of a call will pay to the seller the premium to obtain the option being in a
loss situation until the payoff exceeds the premium.

This can be demonstrated using the following function, which given the premium
and strike price and returns a DataFrame of return values for a range of maturity
prices for the buyer of a call:

In [25]:

 def call_pnl_buyer(premium, strike_price, min_maturity_price,

 max_maturity_price, step = 1):

Working with Options

[224]

 payoffs = call_payoffs(min_maturity_price,
 max_maturity_price,

 strike_price)

 payoffs['Premium'] = premium

 payoffs['PnL'] = payoffs.Payoff - premium

 return payoffs

The following command calculates the values of a call option starting at a price of 12
and with a strike price of 15 through the maturity values of 10 to 30:

In [26]:

 pnl_buyer = call_pnl_buyer(12, 15, 10, 35)

 pnl_buyer

Out[26]:

 Payoff Price Strike PnL

 Maturity Price

 10 0 12 15 -12

 11 0 12 15 -12

 12 0 12 15 -12

 13 0 12 15 -12

 14 0 12 15 -12

 31 16 12 15 4

 32 17 12 15 5

 33 18 12 15 6

 34 19 12 15 7

 35 20 12 15 8

 [26 rows x 4 columns]

The following function will visualize information in this DataFrame:

In [27]:

 def plot_pnl(pnl_df, okind, who):

 plt.ylim(pnl_df.Payoff.min() - 10, pnl_df.Payoff.max() + 10)

 plt.ylabel("Profit / Loss")

 plt.xlabel("Maturity Price")

Chapter 8

[225]

 plt.title('Profit and loss of {0} option, {1}, Premium={2}
Strike={3}'

 .format(okind, who, pnl_df.Premium.iloc[0],

 pnl_df.Strike.iloc[0]))

 plt.ylim(pnl_df.PnL.min()-3, pnl_df.PnL.max() + 3)

 plt.xlim(pnl_df.index[0], pnl_df.index[len(pnl_df.index)-1])

 plt.plot(pnl_df.index, pnl_df.PnL)

 plt.axhline(0, color='g');

This visualizes the particular DataFrame with the following chart:

In [28]:

 plot_pnl(pnl_buyer, "put", "Buyer")

The profit and loss stays at a loss of the initial premium until the payoff begins to
increase from 0 as the maturity price exceeds the strike price. There is a loss until
the payoff exceeds the premium, which, in this case, is at $27 (the premium and the
strike price).

Working with Options

[226]

The call option profit and loss for the seller
A seller of a call will initially profit from the receipt of the premium from the
buyer. The profit for a seller will be the premium as long as the price at maturity is
below the strike price. As the payoff increases for the buyer, the profit for the seller
decreases and will eventually become a loss once the buyer moves into profit.

This can be demonstrated using the following function, which, given the premium
and strike price, returns a DataFrame of returns values for a range of maturity prices
for the seller of a call:

In [29]:

 def call_pnl_seller(premium, strike_price, min_maturity_price,

 max_maturity_price, step = 1):

 payoffs = call_payoffs(min_maturity_price, max_maturity_price,

 strike_price)

 payoffs['Premium'] = premium

 payoffs['PnL'] = premium - payoffs.Payoff

 return payoffs

The following command calculates the values of a call option starting at a price of 12
and with a strike price of 15 through the maturity values of 10 to 30:

In [30]:

 pnl_seller = call_pnl_seller(12, 15, 10, 35)

 pnl_seller

Out[30]: Payoff Strike Premium PnL

 Maturity Price

 10 0 15 12 12

 11 0 15 12 12

 12 0 15 12 12

 13 0 15 12 12

 14 0 15 12 12

 31 16 15 12 -4

 32 17 15 12 -5

 33 18 15 12 -6

 34 19 15 12 -7

 35 20 15 12 -8

 [26 rows x 4 columns]

Chapter 8

[227]

This visualizes a particular DataFrame with the following chart:

In [31]:

 plot_pnl(pnl_seller, "call", "Seller")

The profit and loss stays at a profit matching the premium until the payoff begins
to increase from 0 as the maturity price exceeds the strike price. There is a profit
obtained until the payoff amount exceeds the premium, which in this case is at $27
(the premium + the strike price), at which point the seller of the call will increasingly
be at a loss as the maturity value increases.

Combined payoff charts
There will be many instances where you will see the payoffs/profit and loss for both
the buy and seller represented on a single chart. The following function will do this
for us:

Out[32]:

 def plot_combined_pnl(pnl_df):

 plt.ylim(pnl_df.Payoff.min() - 10, pnl_df.Payoff.max() + 10)

 plt.ylabel("Profit / Loss")

Working with Options

[228]

 plt.xlabel("Maturity Price")

 plt.title('Profit and loss of call option Strike={0}'

 .format(pnl_df.Strike.iloc[0]))

 plt.ylim(min(pnl_df.PnLBuyer.min(), pnl_df.PnLSeller.min())-3,

 max(pnl_df.PnLBuyer.max(), pnl_df.PnLSeller.max())+3)

 plt.xlim(pnl_df.index[0], pnl_df.index[len(pnl_df.index)-1])

 plt.plot(pnl_df.index, pnl_df.PnLBuyer, color='b')

 plt.plot(pnl_df.index, pnl_df.PnLSeller, color='r')

 plt.axhline(0, color='g');

This function expects to be given a DataFrame, which combines data from both the
profit and loss functions' calls and puts. This DataFrame can be constructed as follows:

In [33]:

 pnl_combined = pd.DataFrame({'PnLBuyer': pnl_buyer.PnL,

 'PnLSeller': pnl_seller.PnL,

 'Premium': pnl_buyer.Premium,

 'Strike': pnl_buyer.Strike,

 'Payoff': pnl_buyer.Payoff})

 pnl_combined

Out[33]:

 Payoff PnLBuyer PnLSeller Premium Strike

 Maturity Price

 10 0 -12 12 12 15

 11 0 -12 12 12 15

 12 0 -12 12 12 15

 13 0 -12 12 12 15

 14 0 -12 12 12 15

 31 16 4 -4 12 15

 32 17 5 -5 12 15

 33 18 6 -6 12 15

 34 19 7 -7 12 15

 35 20 8 -8 12 15

 [26 rows x 5 columns]

Chapter 8

[229]

Now, passing this in to the function, we are presented with the following graph with
both series of profit and loss plotted:

In [34]:

 plot_combined_pnl(pnl_combined)

This shows how the overall effect of buying and selling an option is a zero-sum
game. There are fixed losses or gains for the buyer and seller as long as the maturity
price is below the strike price. A maturity price above the strike price begins to flow
value back to the buyer from the seller. Conceptually, there is unlimited upside for
the buyer and unlimited downside for the seller.

The put option profit and loss for a buyer
A buyer of a put pays a premium to the put seller. They are at a loss of the premium
if the maturity price exceeds the strike price. As the maturity price falls below the
strike price at maturity, the loss will decrease. There will be an overall loss until the
payoff exceeds the premium.

Working with Options

[230]

This can be demonstrated using the following function which, given the premium
and strike price, returns a DataFrame of returns values for a range of maturity prices
for the buyer of a put option:

In [35]:

 def put_pnl_buyer(premium, strike_price, min_maturity_price,

 max_maturity_price, step = 1):

 payoffs = put_payoffs(min_maturity_price, max_maturity_price,

 strike_price)

 payoffs['Premium'] = premium

 payoffs['Strike'] = strike_price

 payoffs['PnL'] = payoffs.Payoff - payoffs.Premium

 return payoffs

The following command calculates the profit and loss of a put option for the buyer
starting at a price of 2 and with a strike price of 15 through the maturity values of
10 to 30:

In [36]:

 pnl_put_buyer = put_pnl_buyer(2, 15, 10, 30)

 pnl_put_buyer

Out[36]:

 Payoff Strike Premium PnL

 Maturity Price

 10 5 15 2 3

 11 4 15 2 2

 12 3 15 2 1

 13 2 15 2 0

 14 1 15 2 -1

 26 0 15 2 -2

 27 0 15 2 -2

 28 0 15 2 -2

 29 0 15 2 -2

 30 0 15 2 -2

 [21 rows x 4 columns]

Chapter 8

[231]

The following function will visualize information in this DataFrame:

In [37]:

 plot_pnl(pnl_put_buyer, "put", "Buyer")

There is a tendency to read this chart as the put buyer profiting at the purchase of the
put option. Remember that the horizontal axis is not time that increases from left to
right. Although it looks as though the buyer profits by $3 at the onset of purchasing
the option, this chart really shows how profit and loss varies at maturity for different
maturity prices. As long as the maturity price is greater than the strike price, there
is only a loss of the amount of the premium. The more the maturity price finishes
below the strike price, the better the chance to earn profit.

The put option profit and loss for the seller
A seller of a put receives the premium from the buyer of the put. They have a profit
of the premium if the maturity price exceeds the strike price. As the maturity price
falls below the strike price at maturity, the profit will decrease by the amount of
the payoff.

Working with Options

[232]

This can be demonstrated using the following function, which, given the premium
and strike price, returns a DataFrame of returns values for a range of maturity prices
for the seller of a put option:

In [38]:

 def put_pnl_seller(premium, strike_price, min_maturity_price,

 max_maturity_price, step = 1):

 payoffs = put_payoffs(min_maturity_price, max_maturity_price,

 strike_price)

 payoffs['Premium'] = premium

 payoffs['Strike'] = strike_price

 payoffs['PnL'] = payoffs.Premium - payoffs.Payoff

 return payoffs

The following command calculates the profit and loss of a put option for the seller
starting at a price of 2 and with a strike price of 15 through the maturity values of
10 to 30:

In [39]:

 pnl_put_seller = put_pnl_seller(30, 45, 20, 50)

 pnl_put_seller

Out[39]:

 Payoff Strike Premium PnL

 Maturity Price

 10 5 15 2 -3

 11 4 15 2 -2

 12 3 15 2 -1

 13 2 15 2 0

 14 1 15 2 1

 26 0 15 2 2

 27 0 15 2 2

 28 0 15 2 2

 29 0 15 2 2

 30 0 15 2 2

 [21 rows x 4 columns]

Chapter 8

[233]

The following function will visualize information in this DataFrame:

In [40]:

 plot_pnl(pnl_put_seller, "put", "Seller")

The pricing of options
There are two general styles of options: European and American. A European option
is an option that cannot be exercised before its expiration date. An American option
can be exercised at any point before its expiration date. American options are the
most common form of options traded in the market.

The pricing model of the two styles of options is significantly different. Since a
European option can only be exercised at its expiration, there exists a closed form
calculation for its market price. The common form of modeling for a European
option is the Black-Scholes pricing model.

Working with Options

[234]

The pricing of American options is complicated by their ability to be exercised at any
time, which prevents them having a closed-form pricing model. However, there are
several ways to price an American option, one of which we will examine later in the
chapter and is known as the binomial tree method.

A general characteristic of an American option compared to a European option is
that its price generally will be higher due to the flexibility and increased risk on the
counterparty side.

We will examine the pricing of European options using the Black-Scholes formula.
Our purpose is not to derive a complete understanding of how the prices are derived
but to use a pricing library to verify the price and implied volatility of options
retrieved from Yahoo! Finance.

Additionally, we will examine several underlying characteristics of the options
referred to as The Greeks, which are various partial derivatives of the Black-Scholes
formula relative to the various parameters of the function. These values are often
used in decision making with respect to the purchase of options.

The pricing of options with Black-Scholes
The Black-Scholes formula was developed by Fischer Black and Myron Scholes and
is a stochastic partial-differential equation that estimates the price of an option,
specifically a European option, which is an option that can only be exercised at the
end of its life. This is in contrast to an American option, which can be exercised at
any point after its purchase.

The basic idea behind Black-Sholes is to determine the value today of an options
contract for an underlying security in a year. The contract will have different
values depending upon whether the stock goes up or down, so the payoff curve
is not symmetrical. The model helps us to derive an underlying measure of the
probabilities of the underlying security ending up at various values at the end of the
year. If we can determine this, then we can also estimate a value for the contract.

The Black-Scholes model also makes several assumptions to keep the modeling simple:

•	 There is no arbitrage
•	 There is the ability to borrow money at a constant risk-free interest rate

throughout the life of the option
•	 There are no transaction costs
•	 The pricing of the underlying security follows a Brownian motion with

constant drift and volatility
•	 No dividends are paid from the underlying security

Chapter 8

[235]

This seems to be a list of very important assumptions but it is needed to get a
baseline model in place. More complicated scenarios can then be handled with
other derivations, but even with these assumptions, the resulting model is quite
representative of actual prices (as we will see).

Deriving the model
There are three primary factors that are taken into account for determining the value
of an option:

•	 The value of the cash to buy the option
•	 The value of the underlying security that is received (if any)
•	 The volatility of the underlying price during the life of the option

We have seen these three factors taken into account in our payoff models. We now
need to quantify these a bit more to be able to work out their expected values and
derive a value for the contract.

The value of the cash to buy
If the option is exercised, then the cash is paid only if the underlying stock price is
above the strike at maturity. Therefore, we need to determine the expected value
based upon the probability that the stock finishes above the strike price. The strike
price will be referred to as , and the probability of the stock finishing above will
be referred to as . The expected value is then with representing
the cumulative normal function. The variable represents a formulation of the
probability of the option exceeding the strike price (a little more on this later).

Given that the expected value is , this amount can be discounted using
 to give us the value of the cash to buy the option today as .

The value of the stock received
If the option is exercised, then we take possession of the underlying security at its
value in the market at the maturity of the option. It happens that the expected value
of this is proportional to the current value of the stock, which is referred to as . In
the Black-Scholes model, this expected value is referred to as .

 represents the proportion of the value of the current value of the stock, at
maturity of the option only if the option is exercised and 0 otherwise. Like , will
be stated a little later.

Working with Options

[236]

The formulas
Options are either calls or puts, so there are two derivations of the model. The
simpler of the two is the model for call options:

This states that the value of the call is the difference between the stock price and the
strike price using the probability scaling of each and discounting the strike price.

The formula for a put is slightly more complicated but similar:

d1 and d2
Finally, we get to and . These formulas are at the heart of the Black-Scholes
model. The mathematics of and are fairly complex and represent the
probability scale factors for the stock price () and strike price () using the
cumulative normal function . These will be presented as follows without further
explanation in this text. The formula for is as follows:

The formula for is as follows:

These appear complex (and their derivation is) but are easily implemented in a
programming language with the values simply plugged in. Also, the volatility
of the underlying price is represented in these equations by the sigma variable.

The parameters that can be plugged in are the following:

•	 N: The cumulative normal function
•	 T: Time to maturity expressed in years
•	 S: The stock price or other underlying assets
•	 K: The strike price
•	 r: The risk-free interest rate

Chapter 8

[237]

You may have noticed that we have not parameterized the volatility. This is one of
the things you need to remember using Black-Scholes. The volatility will be implied
via the other parameters.

Now, with this all in hand, we can now implement the Black-Sholes algorithm
in Python.

Black-Scholes using Mibian
For the sake of brevity, we will not get into the actual implementation of Black-
Scholes in Python. Instead, we will use a small but convenient library: MibianLib.
MibianLib is available at http://code.mibian.net/ and is open source. It provides
several methods for options price calculation, one of which is Black-Scholes. You can
examine the implementation to verify the previous formulations.

Now, let's examine the basic use of Mibian to calculate values using Black-Scholes.
To do this, we will examine two options that we retrieved from Yahoo! Finance
earlier in the chapter—the put and call expiring on 2015-01-15 with IV of 57.23 (the
put) and 52.73 (the call):

In [41]:

 aos[aos.Expiry=='2016-01-15'][:2]

Out[41]:

 Expiry Strike Type IV Bid Ask Underlying_Price

 0 2016-01-15 34.29 call 57.23 94.10 94.95 128.79

 1 2016-01-15 34.29 put 52.73 0.01 0.07 128.79

At the time of retrieving these, these options are 324 days from expiring:

In [42]:

 date(2016, 1, 15) - date(2015, 2, 25)

Out[42]:

 datetime.timedelta(324)

We have now collected all of the parameters to use the Black-Scholes pricing (using
an assumed 1 percent interest rate):

In [43]:

 import mibian

 c = mibian.BS([128.79, 34.29, 1, 324], 57.23)

http://code.mibian.net/

Working with Options

[238]

The call price can be retrieved via the .callPrice property:

In [43]:

 c.callPrice

Out[44]:

 94.878970089456217

Our result is a few cents off the actual quoted bid but between the bid and ask prices.
Given that we assumed a 1 percent interest rate, the result is right in the range we
would expect.

The put price is retrieved via the .putPrice property:

In [45]:

 c.putPrice

Out[45]:

 0.075934592996542705

This is very close to the ask value of the put option.

We can also use Mibian to calculate the implied volatility:

In [46]:

 c = mibian.BS([128.79, 34.29, 1, 324],

 callPrice=94.878970089456217)

Out[46]:

 57.22999572753906

Charting option price change over time
It can be useful to plot the price of an option until its expiration. We can do this by
varying the time to expiration and plotting the results. This can be done very easily
using pandas.

The following command calculates the call price for the AAPL option, varying from
1 to 364 days to expiry, and plots the change in price showing that the price of the
call decreases as the number of days to expiry increases:

In [47]:

 df = pd.DataFrame({'DaysToExpiry': np.arange(364, 0, -1)})

 df

Chapter 8

[239]

Out[47]:

 DaysToExpiry

 0 364

 1 363

 2 362

 3 361

 4 360

 359 5

 360 4

 361 3

 362 2

 363 1

 [364 rows x 1 columns]

In [48]:

 bs_v1 = mibian.BS([128.79, 34.29, 1, 324], volatility=57.23)

 calc_call = lambda r: mibian.BS([128.79, 34.29, 1,

 r.DaysToExpiry],

 volatility=57.23).callPrice

 df['CallPrice'] = df.apply(calc_call, axis=1)

 df

Out[48]:

 DaysToExpiry CallPrice

 0 364 94.96

 1 363 94.96

 2 362 94.96

 3 361 94.96

 4 360 94.95

 359 5 94.50

 360 4 94.50

 361 3 94.50

 362 2 94.50

 363 1 94.50

 [364 rows x 2 columns]

Working with Options

[240]

The following graph shows the call price decreasing as the days to expiry also
decreases:

In [49]:

 df[['CallPrice']].plot();

The Greeks
The Greeks are quantities representing the sensitivity of the price of options to the
change in the underlying parameters of the valuation of the derivative. The first-order
Greeks of options represent the change value relative to the change in price, volatility,
and time to expiry. Second-order and third-order Greeks do exist, but we will only
focus on the first-order Greeks and a single second-order Greek known as Gamma.

Chapter 8

[241]

The first-order Greeks are named and represented in the following table:

Name Description
Delta This is the rate of change of the option value with respect to a change in the

price of the underlying security
Vega This is the rate of change of the option value with respect to a change in the

volatility of the underlying security
Theta This is the rate of change of the option value with respect to the time to expiry
Rho This is the rate of change of the option value with respect to the interest rate
Gamma This is the rate of change of the Delta Greek with respect to a change in the

price of the underlying security

The Greeks are important tools in risk management to manage the exposure of
individual investments or combinations, such as in an investment portfolio. We will
not get into the detailed use for risk management as that is beyond the scope of this
book (and pandas), but they are worth mentioning in a chapter on options pricing.

Calculation and visualization
The Greeks in Black-Scholes are straightforward to calculate and are given with the
following formulas:

Greek Derivation Calls Puts

Delta

Gamma

Vega

Theta

Rho

Working with Options

[242]

We will not examine their implementation in this book, especially since they are
implemented in Mibian. However, we will demonstrate how the Greeks vary
in value by creating a DataFrame to alternate the values of the input in the
Black-Scholes pricing algorithm:

In [50]:

 greeks = pd.DataFrame()

 delta = lambda r: mibian.BS([r.Price, 60, 1, 180],

 volatility=30).callDelta

 gamma = lambda r: mibian.BS([r.Price, 60, 1, 180],

 volatility=30).gamma

 theta = lambda r: mibian.BS([r.Price, 60, 1, 180],

 volatility=30).callTheta

 vega = lambda r: mibian.BS([r.Price, 60, 1, 365/12],

 volatility=30).vega

 greeks['Price'] = np.arange(10, 70)

 greeks['Delta'] = greeks.apply(delta, axis=1)

 greeks['Gamma'] = greeks.apply(gamma, axis=1)

 greeks['Theta'] = greeks.apply(theta, axis=1)

 greeks['Vega'] = greeks.apply(vega, axis=1)

 greeks[:5]

Out[50]:

 Price Delta Gamma Theta Vega

 0 10 2.73e-17 1.10e-16 -1.37e-18 1.96e-96

 1 11 1.15e-15 4.00e-15 -6.00e-17 1.17e-86

 2 12 2.94e-14 8.88e-14 -1.59e-15 3.36e-78

 3 13 4.99e-13 1.32e-12 -2.78e-14 8.21e-71

 4 14 6.05e-12 1.42e-11 -3.45e-13 2.63e-64

Chapter 8

[243]

The following plot demonstrates how the different values for Delta, Gamma,
Theta, and Vega change for this particular option relative to change in their
respective parameters:

In [51]:

 greeks[['Delta', 'Gamma', 'Theta', 'Vega']].plot();

Working with Options

[244]

Summary
In this chapter, we examined several techniques for using pandas to calculate the
prices of options, their payoffs, and the profit and loss for the various combinations
of calls and puts for both buyers and sellers. We started with a brief introduction to
options, covered how to load current market data for options from Yahoo! Finance,
and then examined the properties of the data retrieved from the web services.

We then examined the pricing of options using Black-Scholes with a brief
explanation of how the algorithm models option prices. We also used the Mibian
library to calculate prices using Black-Scholes. We finished with a brief explanation
of the Greeks and how to calculate their values for various configurations of options.

In the next chapter, we will look at the modeling of investment portfolios using
Python and pandas and how we can calculate optimal portfolios that balance risk
and return for different investor types.

[245]

Portfolios and Risk
A portfolio is a grouping of financial assets, which may include stocks, bonds, and
mutual funds. It is generally accepted that a portfolio is designed based upon an
investor's risk tolerance, time frames, and investment goals. The allocation of the
assets in a portfolio, referred to as asset allocation, influences the risk/reward ratio
of the portfolio. The specific assets in a portfolio and the relative weighting of the
assets within the portfolio are designed to maximize the expected return, while also
minimizing the risk.

The process of determining the proper assets and their proportion relative to each
other within a portfolio involves a concept known as modern portfolio theory
(MPT). This is a theory in finance that has evolved since the 1950s and describes
the mathematics of constructing an optimal portfolio based upon risk and return
parameters. This involves selecting assets that are correlated based upon historical
returns, in such a manner that they function to diversify the portfolio.

In this chapter, we will examine the concepts of modern portfolio theory. We will
first start with an overview of MPT and how it utilizes a concept known as the
'efficient frontier' to determine an optimal portfolio. We will then examine a means
of modeling a portfolio with pandas, and then implement the mathematics of MPT to
calculate optimum portfolios and determine and visualize the efficient frontier for a
particular mix of assets. The chapter then closes of with a brief discussion of Value at
Risk, which helps us to understand the level potential loss that can be expected in a
portfolio for a specific period of time.

In this chapter, we will cover the following:

•	 An overview of modern portfolio theory
•	 Mathematical models of portfolios
•	 Risk and expected return
•	 The concepts of diversification and the efficient frontier

Portfolios and Risk

[246]

•	 Modeling a portfolio with pandas
•	 Gathering historical stock data within a portfolio
•	 Modeling different weights of assets in a portfolio
•	 Optimization and minimization using SciPy
•	 Calculating the Sharpe ratio of a portfolio
•	 Constructing an efficient portfolio
•	 Visualizing the efficient frontier for a set of assets
•	 Computing Value at Risk (VaR)

Notebook setup
The examples in this chapter will be based upon the following configuration in
IPython. One main difference in this setup is that in this chapter, we will be using
SciPy, specifically its optimization and statistical features, so this has imports that
are required for several of the examples:

In [1]:

 import pandas as pd

 import numpy as np

 import pandas.io.data as web

 from datetime import datetime

 import scipy as sp

 import scipy.optimize as scopt

 import scipy.stats as spstats

 import matplotlib.pyplot as plt

 import matplotlib.mlab as mlab

 %matplotlib inline

 pd.set_option('display.notebook_repr_html', False)

 pd.set_option('display.max_columns', 7)

 pd.set_option('display.max_rows', 10)

 pd.set_option('display.width', 82)

 pd.set_option('precision', 3)

Chapter 9

[247]

An overview of modern portfolio theory
Modern portfolio theory (MPT) is a theory of finance that attempts to maximize
the expected return on a set of investments (known as the portfolio), relative to
the overall risk of the combined items in the portfolio. The concept is that given a
particular level of risk, the return will be maximized for that risk. This is common
in retirement plans. The younger the investor and the smaller the amount in the
portfolio, the more there is a willingness to take risks on higher returns. As the
investor comes close to retirement and the total value of the portfolio is higher, the
more likely they are to take lower risks, to ensure that the base of the portfolio is not
lost but that at the tradeoff of potential gains being lower.

MPT provides a mathematical model of diversified investment with the goal of
selecting a collection of investments that has a combined risk that is less than
any individual asset in the portfolio. This is achievable by selecting individual
investments that have opposite correlations such that when one particular
investment goes down in value, another gains similarly in value and the overall net
of the portfolio remains consistent or at least minimizes the loss during downturns.
However, at the same time, this may also lower the overall gains in upturns. And
additionally, diversification has a tendency to also lower risk even if various assets
in the portfolio are not negatively correlated as the diversity itself tends to give an
overall less risky portfolio.

MPT assumes an individual investment's returns as normally distributed and then
defines risk as the standard deviation of the returns. It then models a portfolio as a
weighted combination of the assets such that the return of the overall portfolio is a
weighted sum of the combination of the returns of the assets. Then, by selecting a
set of investments that are not perfectly correlated, MPT attempts to reduce the total
variance of the overall portfolio return.

MPT was developed in the 1950s and through to the 1970s and represented a
significant advance in financial modeling. As a theory, it is interesting and does
have practical applications. But like other models of finance (for example, Black-
Scholes), it is heavily dependent on those assumptions and can lead to suboptimal
results when those conditions are not met. Nonetheless, it is an important financial
concept—one that can be implemented effectively using pandas and Python—and is
important to understand before branching out into more detailed models.

Portfolios and Risk

[248]

Concept
The basic idea behind MPT is that assets in a portfolio should not be selected
individually based upon their individual performance. It is instead important to
consider how each asset changes in value relative to other assets in the portfolio. This
represents a tradeoff between risk and expected return. The stocks in an efficient
portfolio are chosen based on the investor's risk tolerance, with an efficient portfolio
having at least two stocks above the minimum variance portfolio. For a given
amount of risk, MPT describes how to select a portfolio out of a set of investments
that has the highest expected return while being at or below the specified risk level.
On the flip side, for a given return, MPT specifies how to select a portfolio with the
least possible risk.

Mathematical modeling of a portfolio
In this chapter, we will examine the classical model of MPT. There have been many
extensions, but we will focus on the core.

Risk and expected return
A fundamental assumption of MPT is that investors are risk averse. This means that
given two portfolios that offer the same expected return, the investor will prefer
the less risky portfolio. Therefore, an investor will only take on a riskier portfolio if
higher expected returns make it worthwhile. And conversely, an investor wanting
higher expected returns must accept greater risk.

MPT makes the assumption that the standard deviation of returns can be used as
an accurate representation of risk. This is valid if asset returns are normally jointly
distributed, which are otherwise elliptically distributed.

Then, under the model:

•	 Portfolio return is the proportion-weighted combination of the constituents
of the returns of the assets

•	 Portfolio volatility is a function of the correlations of the constituent assets,
for all pairs of assets (i, j).

This goes on up to n assets in a portfolio. We will return to these formulas later when
we implement them in Python and then with pandas when we optimize portfolios.

Chapter 9

[249]

Diversification
An investor can then reduce risk by holding combinations of instruments that are not
positively correlated. If the asset pairs are perfectly uncorrelated (correlation of 0),
then the portfolio's return variance is the sum over all the instruments of the square
of the fraction held in the instrument multiplied by the instrument's return variance.

The efficient frontier
Using this model, the risk and expected returns of all possible combinations
of risky assets is computed. This can then be plotted in the risk-return space, a
two-dimensional space with the risk along the x axis and the expected return along
the y axis. The collection of all such portfolios will define a region of the graph, with
the left edge of what forms a hyperbola. This following hyperbola is often referred
to as the Markowitz Bullet:

The upper portion of the hyperbola, represented with a solid line, represents
the efficient frontier. All portfolios along the solid portion on the line can only
increase in return with increased risk. However, also note that any portfolio on the
efficient frontier also has a matching portfolio on the lower half of the bullet, which
represents a portfolio with the same amount of risk but with less expected return.
All things considered, an investor will want to take the portfolio with higher return
over one with lower return and with the same risk. Hence, only portfolios on the
portion of the hyperbola at higher returns than the minimum variance portfolio are
considered on the efficient frontier.

Portfolios and Risk

[250]

Modeling a portfolio with pandas
A basic portfolio model consists of a specification of one or more investments and
their quantities. A portfolio can be modeled in pandas using a DataFrame with one
column representing the particular instrument (such as a stock symbol) and the
other representing the quantity of the item held.

The following command will create a DataFrame representing a portfolio:

In [2]:

 def create_portfolio(tickers, weights=None):

 if (weights is None):

 shares = np.ones(len(tickers))/len(tickers)

 portfolio = pd.DataFrame({'Tickers': tickers,

 'Weights': weights},

 index=tickers)

 return portfolio

Using this, we can create a portfolio of two instruments, Stock A and Stock B.
The amount of shares for each is initialized to 1. This would represent an equally
weighted portfolio as the number of shares of each stock is the same:

In [3]:

 portfolio = create_portfolio(['Stock A', 'Stock B'],

 [1, 1])

 portfolio

Out[3]:

 Shares Tickers

 Stock A 1 Stock A

 Stock B 1 Stock B

We can then model mock returns for the last 5 years. The values used for returns
are picked to demonstrate a point about creating an equally-weighted portfolio
and to use negatively correlated instruments to create a representation of the
diversification effect:

In [4]:

 returns = pd.DataFrame(

 {'Stock A': [0.1, 0.24, 0.05, -0.02, 0.2],

 'Stock B': [-0.15, -0.2, -0.01, 0.04, -0.15]})

Chapter 9

[251]

 returns

Out[4]:

 Stock A Stock B

 0 0.10 -0.15

 1 0.24 -0.20

 2 0.05 -0.01

 3 -0.02 0.04

 4 0.20 -0.15

Using the portfolio share values and the returns, the following function will compute
the equally-weighted return for the underlying instruments:

In [5]:

 def calculate_weighted_portfolio_value(portfolio,

 returns,

 name='Value'):

 total_weights = portfolio.Weights.sum()

 weighted_returns = returns * (portfolio.Weights /

 total_weights)

 return pd.DataFrame({name: weighted_returns.sum(axis=1)})

We can now calculate the equally-weighted portfolio and concatenate it with our
original DataFrame of returns:

In [6]:

 wr = calculate_weighted_portfolio_value(portfolio,

 returns,

 "Value")

 with_value = pd.concat([returns, wr], axis=1)

 with_value

Out[6]:

 Stock A Stock B Value

 0 0.10 -0.15 -0.025

 1 0.24 -0.20 0.020

 2 0.05 -0.01 0.020

 3 -0.02 0.04 0.010

 4 0.20 -0.15 0.025

Portfolios and Risk

[252]

We can examine the volatility of each of the individual instruments combined with
the results of the weighted portfolio, as shown here:

In [7]:

 with_value.std()

Out[7]:

 Stock A 0.106677

 Stock B 0.103102

 Value 0.020310

 dtype: float64

Stock A had a volatility of 11 percent and Stock B of 10 percent. The combined
portfolio represented significantly lower volatility of 2 percent. This is because we
picked two negatively correlated stocks with similar volatility and combining them
has therefore reduced the overall risk.

We can visualize this using the following function:

In [8]:

 def plot_portfolio_returns(returns, title=None):

 returns.plot(figsize=(12,8))

 plt.xlabel('Year')

 plt.ylabel('Returns')

 if (title is not None): plt.title(title)

 plt.show()

Also examine the following graph:

In [9]:

 plot_portfolio_returns(with_value)

Chapter 9

[253]

It becomes apparent from this graph that the overall portfolio had much less
variability, and hence risk, than those of the individual instruments in the portfolio.

Just to check, we can also calculate the correlation of the original returns:

In [10]:

 returns.corr()

Out[10]:

 Stock A Stock B

 Stock A 1.000000 -0.925572

 Stock B -0.925572 1.000000

The returns of our two stocks have a negative correlation of -0.93, which tells us
that they can be used to offset each other's volatility.

Portfolios and Risk

[254]

This scenario used an equally-weighted portfolio of stocks that have a strong
negative correlation and returns of similar magnitude. The real trick that we will
examine in the upcoming sections will be to select an optimal portfolio from a set
of stocks and to also determine the proper weighting for each stock to reach the
optimized portfolio- that is, the efficient frontier.

Constructing an efficient portfolio
At the beginning of the chapter, we briefly covered the formulas to calculate the
estimated return and variance of a portfolio. We will now dive into implementations
of those calculations along with selecting portfolios that are on the efficient frontier.

To do this, we will need to cover the following concepts:

•	 Gathering of historical returns on the assets in the portfolio
•	 Formulation of portfolio risk based on historical returns
•	 Determining the Sharpe ratio for a portfolio
•	 Selecting optimal portfolios based upon Sharpe ratios

Gathering historical returns for a portfolio
In our examples, we will use data retrieved from Yahoo! Finance to create historical
returns for the stocks in the portfolio. The calculations we will perform will utilize
annualized returns. Yahoo! Finance data represents daily prices for the stocks, so we
will need to convert those prices into annualized returns.

We can start this process using the following function, which will retrieve the
adjusted closing prices for a list of stocks between the two dates and organize it in a
convenient way for the processes we will undertake:

In [11]:

 def get_historical_closes(ticker, start_date, end_date):

 p = web.DataReader(ticker, "yahoo", start_date, end_date)

 d = p.to_frame()['Adj Close'].reset_index()

 d.rename(columns={'minor': 'Ticker',

 'Adj Close': 'Close'}, inplace=True)

 pivoted = d.pivot(index='Date', columns='Ticker')

 pivoted.columns = pivoted.columns.droplevel(0)

 return pivoted

Chapter 9

[255]

Our examples will utilize AAPL, MSFT, and KO stocks, from 2010-01-01 through
2014-12-31. We can retrieve those daily prices as follows:

In [12]:

 closes = ef_get_historical_closes(['MSFT', 'AAPL', 'KO'],

 '2010-01-01', '2014-12-31')

In [13]:

 closes[:5]

Out[13]:

 Ticker AAPL KO MSFT

 Date

 2010-01-04 28.83805 24.46602 26.94331

 2010-01-05 28.88790 24.17006 26.95201

 2010-01-06 28.42840 24.16148 26.78661

 2010-01-07 28.37585 24.10143 26.50804

 2010-01-08 28.56450 23.65535 26.69085

Using this data, the following function will calculate annualized returns for each of
the stocks. We start with the following function, which converts daily prices into
daily returns:

In [14]:

 def calc_daily_returns(closes):

 return np.log(closes/closes.shift(1))

Our daily returns are shown here:
In [15]:

 daily_returns = calc_daily_returns(closes)

 daily_returns[:5]

Out[15]:

 Ticker AAPL KO MSFT

 Date

 2010-01-04 NaN NaN NaN

 2010-01-05 0.001727 -0.012171 0.000323

 2010-01-06 -0.016034 -0.000355 -0.006156

 2010-01-07 -0.001850 -0.002488 -0.010454

 2010-01-08 0.006626 -0.018682 0.006873

Portfolios and Risk

[256]

From the daily returns, we can calculate annualized returns using the following
function:

In [16]:

 def calc_annual_returns(daily_returns):

 grouped = np.exp(daily_returns.groupby(

 lambda date: date.year).sum())-1

 return grouped

This gives us the following as the annual returns:

In [17]:

 annual_returns = calc_annual_returns(daily_returns)

 annual_returns

Out[17]:

 Ticker AAPL KO MSFT

 2010 0.507219 0.189366 -0.079442

 2011 0.255580 0.094586 -0.045156

 2012 0.325669 0.065276 0.057989

 2013 0.080695 0.172330 0.442979

 2014 0.406225 0.052661 0.275646

Formulation of portfolio risks
Since we now have a return matrix, we can estimate its variance-covariance matrix,
and by combining it with a vector of weights for each of the assets, we can calculate
the overall portfolio variance (this flows into the Sharpe ratio calculation we will do
next).

The formulation of the portfolio variance starts with the calculation of the mean of
the returns for an individual stock:

Chapter 9

[257]

Using this, we can then calculate the variance in the returns of a single stock:

Here, is the stock's return for period i, is the mean of the returns, and is the
number of the observations.

The return volatility is simply the square root of the variance:

A portfolio will consist of one or more stocks. The return matrix for those stocks
consists of n stocks and m returns:

Using this return matrix, we can derive the formula for the expected return of stock i:

Each stock will make up a certain percentage of the portfolio. We represent this mix
of the stock in the portfolio using a vector of weights, w, which necessarily sums up
to 1:

We can apply this vector of weights to the assets in an n-stock portfolio, resulting in
the following formula that gives us the weighted expected return of the portfolio:

Portfolios and Risk

[258]

The variance of an n-stock portfolio is formulated using the following formula:

Here is the correlation coefficient between returns on assets i and j, and for
i=j.

Examining this formula more closely, the following equation can be seen:

Sigma happens to be the covariance matrix calculated from the returns matrix.

Pulling this all together with the summations, we come to the following formula,
which describes the variance of a weighted portfolio of n-stocks:

Therefore, the variance of a portfolio is determined by multiplying the weights
vector by the covariance matrix of the returns, and then multiplying that result
by the transpose of the weights vector.

This can be very succinctly implemented in Python using NumPy arrays and
matrices and the np.cov() function, which will calculate the covariance of the
returns:

In [18]:

 def calc_portfolio_var(returns, weights=None):

 if (weights is None):

 weights = np.ones(returns.columns.size) / \

 returns.columns.size

 sigma = np.cov(returns.T,ddof=0)

 var = (weights * sigma * weights.T).sum()

 return var

Chapter 9

[259]

Using this function, the variance of our portfolio (using equal weighting for each
stock) is determined by the following command:

In [19]:

 calc_portfolio_var(annual_returns)

Out[19]:

 0.0028795357274894692

The Sharpe ratio
The Sharpe ratio is a measurement of the risk-adjusted performance of portfolios. It
is calculated by subtracting the risk-free rate from the expected return of a portfolio
and then by dividing that result by the standard deviation of the portfolio returns.
It is described by the following equation:

The Sharpe ratio tells us whether a portfolio's returns are due to smart investment
decisions or a result of excess risk. Although one portfolio or fund can reap higher
returns than its peers, it is only a good investment if those higher returns do not
come with too much additional risk. The greater a portfolio's Sharpe ratio, the better
its risk-adjusted performance has been. A negative Sharpe ratio indicates that a less
risky asset would perform better than the security being analyzed.

The following function calculates Sharp Ratio for a portfolio with specified returns,
weights, and a risk-free rate:

In [20]:

 def sharpe_ratio(returns, weights = None, risk_free_rate = 0.015):

 n = returns.columns.size

 if weights is None: weights = np.ones(n)/n

 var = calc_portfolio_var(returns, weights)

 means = returns.mean()

 return (means.dot(weights) - risk_free_rate)/np.sqrt(var)

Portfolios and Risk

[260]

We can use this to evaluate the Sharpe ratio of our current portfolio with equal
weights using the following statement:

In [21]:

 Sharpe_ratio(returns)

Out[21]:

 3.2010949029381952

Now that we can calculate the Sharpe ratio for a portfolio with a given set of weights,
we need to be able to simulate the generation of different combinations of weights
and select the weights where the Sharpe ratio is maximized. This will give us the
efficient portfolio. This simulation of weights will be performed using SciPy's
optimization capabilities.

Optimization and minimization
We now need to perform optimizations to find the efficient portfolio. Optimizations
in Python can be performed using scipy.optimize. We will first demonstrate
optimization using a basic example and then later, we will optimize portfolios based
on Sharpe ratios.

Our basic example will be to minimize the following objective function:

Intuitively, we know that when x is 0, y is minimized. We can use this to check
the results of the minimization. The first step is to define the function we wish to
minimize:

In [22]:

 def y_f(x): return 2+x**2

We can perform the optimization using SciPy's fmin() function. The value 1000
is passed as a seed value for x, and the function will iterate values of x to find the
value of x where y_f is minimized:

In [23]:

 scopt.fmin(y_f, 1000)

 Optimization terminated successfully.

 Current function value: 2.000000

 Iterations: 27

Chapter 9

[261]

 Function evaluations: 54

Out[23]:

 array([0.])

The fmin() function ran 27 iterations, called y_f(x) with 54 different values of x,
and determined that the minimum result is 2.0. The array that is returned contains
the values for x at which y_f(x) = 2, which is a single value x=0.

Constructing an optimal portfolio
We are now able to create a function to use fmin() to determine the set of weights
that maximize the Sharpe ratio for a given set of returns representing the stocks in
our portfolio.

Since fmin() finds a minimum of the applied function, and the efficient portfolio
exists at the maximized Sharpe ratio, we need to provide a function that, in essence,
returns the negative of the Sharpe ratio, hence allowing fmin() to find a minimum:

In [24]:

 def negative_sharpe_ratio_n_minus_1_stock(weights,

 returns,

 risk_free_rate):

 """

 Given n-1 weights, return a negative sharpe ratio

 """

 weights2 = sp.append(weights, 1-np.sum(weights))

 return -sharpe_ratio(returns, weights2, risk_free_rate)

Our final function is given a DataFrame of returns, and a risk-free rate will run a
minimization process on our negative sharpe function. The process is seeded with
an array of equal weights, and fmin() will start from those values and try different
combinations of weights until we find the minimized negative Sharpe ratio. The
function then returns a tuple of the weights satisfying the minimization, along with
the optimal Sharpe ratio:

In [25]:

 def optimize_portfolio(returns, risk_free_rate):

 w0 = np.ones(returns.columns.size-1,

 dtype=float) * 1.0 / returns.columns.size

 w1 = scopt.fmin(negative_sharpe_ratio_n_minus_1_stock,

Portfolios and Risk

[262]

 w0, args=(returns, risk_free_rate))

 final_w = sp.append(w1, 1 - np.sum(w1))

 final_sharpe = sharpe_ratio(returns, final_w, risk_free_rate)

 return (final_w, final_sharpe)

Using this function, we can now determine the most efficient portfolio:

In [26]:

 optimize_portfolio(annual_returns, 0.0003)

 Optimization terminated successfully.

 Current function value: -7.829864

 Iterations: 46

 Function evaluations: 89

Out[26]:

 (array([0.76353353, 0.2103234 , 0.02614307]),
 7.8298640872716048)

We are told that our best portfolio would have 76.4 percent AAPL, 21.0 percent
KO, and 2.6 percent MSFT, and that portfolio would have a Sharpe ratio of
7.8298640872716048.

Visualizing the efficient frontier
Our optimization code generated the portfolio that is optimal for the specific risk-free
rate of return. This is one type of? portfolio. To be able to plot all of the portfolios along
the Markowitz bullet, we can change the optimization around a little bit.

The following function takes a weights vector, the returns, and a target return and
calculates the variance of that portfolio with an extra penalty the further the mean
is from the target return, so as to help push portfolios with weights further from the
mean considering they are on the frontier:

In [27]:

 def objfun(W, R, target_ret):

 stock_mean = np.mean(R,axis=0)

 port_mean = np.dot(W,stock_mean)

 cov=np.cov(R.T)

 port_var = np.dot(np.dot(W,cov),W.T)

 penalty = 2000*abs(port_mean-target_ret)

 return np.sqrt(port_var) + penalty

Chapter 9

[263]

We now create a function that will run through a set of desired return values,
ranging from the lowest returning stock to the highest returning stock. These
create the bounds for the possible rates of returns.

Each of these desired returns is passed to an optimizer, which will create a weights
vector that satisfies the minimization of the Sharpe ratio of a portfolio that matches
that specific level of risk.

For each optimal set of weights, the program will return the mean and standard
deviation (and weights) that represent the curve of the efficient frontier:

In [28]:

 def calc_efficient_frontier(returns):

 result_means = []

 result_stds = []

 result_weights = []

 means = returns.mean()

 min_mean, max_mean = means.min(), means.max()

 nstocks = returns.columns.size

 for r in np.linspace(min_mean, max_mean, 100):

 weights = np.ones(nstocks)/nstocks

 bounds = [(0,1) for i in np.arange(nstocks)]

 constraints = ({'type': 'eq',

 'fun': lambda W: np.sum(W) - 1})

 results = scopt.minimize(objfun, weights, (returns, r),

 method='SLSQP',

 constraints = constraints,

 bounds = bounds)

 if not results.success: # handle error

 raise Exception(result.message)

 result_means.append(np.round(r,4)) # 4 decimal places

 std_=np.round(np.std(np.sum(returns*results.x,axis=1)),6)

 result_stds.append(std_)

Portfolios and Risk

[264]

 result_weights.append(np.round(results.x, 5))

 return {'Means': result_means,

 'Stds': result_stds,

 'Weights': result_weights}

Given our previous set of stocks (AAPL, MSFT, and KO), the following command
will calculate all of the pairs of standard deviation and mean returns that fall on the
efficient frontier:

In [29]:

 frontier_data = calc_efficient_frontier(annual_returns)

The frontier_data function is a dictionary that contains an array for each of the
calculated standard deviations, mean returns, and weights that resulted from the
optimization.

We can examine the results by inspecting the values of several of the items in the
dictionary. The following command examines the first five standard deviations,
means, and entries in an array of optimal weights:

In [30]:

 frontier_data['Stds'][:5]

Out[30]:

 [0.055842999999999997, 0.053446, 0.052564, 0.051706000000000002,
0.050871]

In [31]:

 frontier_data['Stds'][:5]

Out[31]:

 [0.1148, 0.1169, 0.11890000000000001, 0.12089999999999999, 0.1229]

In [32]:

 frontier_data['Weights'][:5]

Out[32]:

 [array([-0., 1., 0.]),

 array([0.00512, 0.9308 , 0.06408]),

 array([0.01497, 0.9177 , 0.06733]),

Chapter 9

[265]

 array([0.02469, 0.90303, 0.07228]),

 array([0.03458, 0.89049, 0.07493])]

We can use the following function to visualize this efficient frontier:

In [33]:

 def plot_efficient_frontier(ef_data):

 plt.figure(figsize=(12,8))

 plt.title('Efficient Frontier')

 plt.xlabel('Standard Deviation of the porfolio (Risk))')

 plt.ylabel('Return of the portfolio')

 plt.plot(ef_data['Stds'], ef_data['Means'], '--');

The following shows how our efficient frontier look:

In [34]:

plot_efficient_frontier(frontier_data)

Portfolios and Risk

[266]

Value at Risk
Value at Risk (VaR) is a statistical technique used to measure the level of financial
risk within an investment portfolio, over a specific timeframe. It measures in three
variables—the amount of potential loss, the probability of the loss, and the timeframe.

As an example, a portfolio may have a 1-month 5 percent VaR of $1 million. This
means that there is a 5 percent probability that the portfolio will fall in value by
more than $1 million over a 1-month period. Likewise, it also means that a $1 million
loss should be expected once every 20 months.

The most common means of measuring VaR is by calculating the volatility.
There are three common means of calculating the volatility: using historical
data, variance-covariance, and the Monte Carlo simulation. We will examine
the variance-covariance method here, as there is a straightforward formulation
for the VaR once you have historical returns.

VaR assumes that returns are normally distributed. The returns for a stock or
portfolio over the desired period of time can then be created, and then we can
examine the amount of distribution of returns that fits within a z-score for the
desired confidence interval.

This concept can be visualized using a normal distribution curve. Common
percentages for VaR calculations typically are 1 percent and 5 percent. The following
example demonstrates calculating a 99 percent confidence interval, which is where
we would find the area in the normal distribution where the z-score less than -2.33:

Chapter 9

[267]

To apply this to the returns of a stock, the formula for the VaR for a given period is
shown here:

The position is the current market value of the stock, is the mean of the
returns for the specific period, and is the volatility (standard deviation of
the returns); z is the z-score representing the specific confidence interval—z=2.33 for
a 99 percent confidence interval, and z=1.64 for a 95 percent confidence interval.

To demonstrate this, we will examine the 1-year VaR for AAPL using returns from
the entirety of 2014. To calculate this, we can reuse the functions that we created for
calculating an efficient frontier.

We start the analysis by loading the daily prices for 2014 for AAPL and calculating
the daily returns:

In [35]:

 aapl_closes = get_historical_closes(['AAPL'],

 datetime(2014, 1, 1),

 datetime(2014, 12, 31))

 aapl_closes[:5]

Out[35]:

 Ticker AAPL

 Date

 2014-01-02 77.08570

 2014-01-03 75.39245

 2014-01-06 75.80357

 2014-01-07 75.26144

 2014-01-08 75.73806

In [36]:

 returns = calc_daily_returns(aapl_closes)

 returns[:5]

Out[36]:

 Ticker AAPL

 Date

Portfolios and Risk

[268]

 2014-01-02 NaN

 2014-01-03 -0.022211

 2014-01-06 0.005438

 2014-01-07 -0.007177

 2014-01-08 0.006313

We can plot these returns in a histogram to check that they appear to be normally
distributed:

In [37]:

 plt.figure(figsize=(12,8))

 plt.hist(returns.values[1:], bins=100);

Chapter 9

[269]

We can explicitly code z for the confidence interval, but we can also get the value of
z for any percentage using norm.ppf() from scipy.stats:

In [38]:

 z = spstats.norm.ppf(0.95)

 z

Out[38]:

 1.6448536269514722

We will model our position as though we have 1,000 shares of AAPL on 2014-12-31:

In [39]:

 position = 1000 * aapl_closes.ix['2014-12-31'].AAPL

 position

Out[39]:

 109950.0

The VaR is calculated as follows:

In [40]:

 VaR = position * (z * returns.AAPL.std())

 VaR

Out[40]:

 2467.5489391697483

This states that our holdings in AAPL at $109,950 have a VaR of $2,647. Therefore,
our maximum loss in the next year is $2,647 with a confidence of 95 percent.

Portfolios and Risk

[270]

Summary
In this chapter, we examined how to combine combinations of assets into a portfolio
and how to model those portfolios using pandas objects. Using a portfolio, we
examined how to calculate the overall risk involved in the portfolio, and learned how
we can use negatively correlated assets to be able to minimize risk.

We then expanded upon this concept of risk minimization, using concepts from
modern portfolio theory to be able to determine whether our portfolio represents the
best mix of assets to yield the highest return at a specific level of risk. This included
calculating the efficiency of a portfolio using the Sharpe ratio, and then using
optimization tools from SciPy to determine the optimum allocation of instruments in
the portfolio.

In closing, we went on a significant tour of using pandas to perform various tasks
related to finance. We touched on a number of the features built directly into pandas
to be able to model and manipulate financial data, particularly using time-series
data and the capabilities pandas provides to help solve complicated date- and
time-related problems. We also dived into other domain-specific analyses, such as
historical stock analysis, analyzing social data to make trading decisions, algorithmic
trading, options pricing, and portfolio management, thus offering a practical set of
examples for you to learn these concepts.

[271]

Index
A
aggregating 63, 70-72
algorithmic trading

about 168
mean-reversion strategies 169
momentum strategies 169
process 168
with Zipline 181

American option 233, 234
arithmetic operations, on DataFrame

performing 36-38

B
backtesting 167
Black-Scholes

deriving 235
formulas 236
implementing, Mibian used 237, 238
used, for pricing of options 234
value of cash, determining 235
value of received stock, determining 235

Boolean selection
rows, selecting with 35, 36

box-and-whisker plots 122, 123
buyer 207
buyers of calls 207
buyers of puts 207

C
call option

about 206
used, for calculating payoff on

options 216-218

used, for profit and loss calculation
of buyer 223-225

used, for profit and loss calculation
of seller 226, 227

Chicago Board Options Exchange
(CBOE) 208

classical model, MPT
diversification 249
efficient frontier 249
expected return 248
risk 248

Coca-Cola (KO) 179
crossover

about 177
example 178
pairs trading 179, 180

cumulative returns 163-165

D
data

reorganizing 48
reshaping 48

data collection
about 148, 149
data, from paper 149, 150
DJIA data, gathering from

Quandl 151-154
Google Trends data 154-158

DataFrame
about 15
arithmetic operations, performing 36-38
basics 15
code samples 26, 27
columns, selecting 27-29
creating 23-26

[272]

reindexing 39-42
rows, selecting by .iloc[] 32
rows, selecting by .ix[] property 33
rows, selecting by .loc[] 32
rows, selecting with index 30
scalar lookup, by label with .at[] 34
scalar lookup, by location with .iat[] 34
slicing, [] operator used 31

DataFrame objects
merging 56-58

date representation
URL 108

Delta 241
distribution of returns, analyzing

about 116
box-and-whisker plots 122, 123
histograms 117-119
Q-Q plots 120, 121

Dow Jones Industrial Average (DJIA) 147

E
efficient frontier

visualizing 262-264
European option 233, 234
exponentially weighted moving

average 173-176

F
financial time-series data visualizations

about 103
candlesticks, plotting 107-111
closing prices, plotting 103-105
combined price and volumes 106
volume-series data, plotting 105

first-order Greeks
about 240
Delta 241
Gamma 241
Rho 241
Theta 241
Vega 241

formulas, Black-Scholes
for d1 236, 237
for d2 236, 237

frequency conversion, time-series
data 91, 92

functions, for rolling windows
rolling_apply 128
rolling_corr 128
rolling_count 128
rolling_cov 128
rolling_kurt 128
rolling_max 128
rolling_mean 128
rolling_median 128
rolling_min 128
rolling_quantile 128
rolling_skew 128
rolling_std 128
rolling_sum 128
rolling_var 128

fundamental financial calculations
about 111
daily percentage change comparison,

between stocks 124-126
distribution of returns, analyzing 116
simple daily cumulative returns,

calculating 115
simple daily percentage change,

calculating 112-114

G
Gamma 240, 241
Google Trends

using 147, 148
Google Trends data 154-158
Greeks

about 240, 241
calculation 241, 242
first-order Greeks 240
visualization 241, 242

grouping 63

H
histograms 117-119
historical quotes

American Airlines (AA) 101
Apple (AAPL) 101
Coca-Cola (KO) 101
Delta Airlines (DAL) 101
General Electric (GE) 101
IBM (IBM) 101

[273]

Microsoft (MSFT) 101
Pepsi (PEP) 101
United Airlines (UAL) 101

historical stock data
fetching, from Yahoo! 101
loading 46
obtaining 100
organizing, for examples 47

I
implied volatility (IV)

about 212-214
smirks 214, 215

index data
fetching, from Yahoo! 102

inter-quartile range (IQR) 123

J
joins, pd.merge()

inner 57
left 57
outer 57
right 57

M
matplotlib 1
mean-reversion strategies 169
melting 62
Mibian

about 1
URL 237
used, for implementing

Black-Scholes 237, 238
MibianLib 237
modern portfolio theory. See MPT
momentum strategies 169
moving averages

about 169
exponentially weighted moving

average 173-176
simple moving average 169-173

moving windows
calculating 128

MPT
about 245
classical model 248
concept 248
overview 247

multiple DataFrame objects
concatenating 48-55

N
Notebook

implied volatility (IV) 212-214
options data, obtaining from Yahoo!

Finance 208-211
setting up 14, 46, 146, 208
setting up, SciPy used 246

O
online pandas documentation

URL 74
optimal portfolio

constructing 261, 262
options

about 205, 206
benefits 207
call 206
data obtaining, from

Yahoo! Finance 208-211
participants 207
payoff, calculating 216
put 206

P
pairs trading

about 179
example 179, 180

pandas
portfolio, modeling 250-254

pandas data structures
DataFrame 15
Series 14

participants, options
buyers of calls 207
buyers of puts 207
sellers of calls 207
sellers of puts 207

[274]

payoff, on options
calculating 216
calculating, with call option 216-218
calculating, with put option 219-221

Pepsi (PEP) 179
pivoting 59
portfolio

about 245
constructing 254
historical returns, gathering 254-256
minimization 260, 261
modeling, with pandas 250-254
optimization 260, 261
risks, formulation 256-259
Sharpe ratio 259, 260

premium 206
price, of options

about 233
American 233, 234
charting, until expiration 238-240
European 233, 234
factors 206
Greeks 240, 241
with Black-Scholes 234

profit and loss calculation
combined payoff charts 227-229
performing 221-223
with call option, for buyer 223-225
with call option, for seller 226, 227
with put option, for buyer 229-231
with put option, for seller 231, 232

put option
about 206
used, for calculating payoff on

options 219, 221
used, for profit and loss calculation

of buyer 229-231
used, for profit and loss calculation

of seller 231, 232

Q
Q-Q plots

about 120, 121
URL 121

Quandl
about 1, 8
DJIA data, gathering from 151-154
URL 8, 151

Quantifying Trading Behavior,
in financial markets 147, 148

Quantopian
about 9, 167
URL 9

R
resampling, time-series

about 93
downsampling 93-97
upsampling 93-97

returns
computing 161, 162

Rho 241
rolling windows

calculating 128-132
rows

selecting, with Boolean selection 35, 36

S
SciPy

about 1
used, for setting up Notebook 246

sellers of calls 207
sellers of puts 207, 208
Series

about 14
alignment, via index labels 21, 22
basics 15
creating 16-18
reindexing 39-42
shape, determining 20
size, determining 19
uniqueness, determining 20

Sharpe ratio 259, 260
simple moving average (SMA)

about 169, 173
drawbacks 173
example 170-172

smirks 214, 215

[275]

S&P 500 stocks
comparing 138-143

splitting 63-69
stacking 60-62

T
technical analysis techniques

about 177
crossover 177, 178

Theta 241
time-series

about 73
creating, with specific frequencies 82, 83
Notebook setup 74
Period objects, used for representing

intervals of time 83-86
resampling 93-97

time-series data
and DatetimeIndex 75-81
frequency conversion 91, 92
lagging 87-90
manipulating 74-81
Notebook, setting up 100
shifting 87-90

trade order signals
generating 159-161

U
unstacking 60-62

V
Value at Risk (VaR) 246, 266-269
volatility calculation

about 133-135
least-squares regression of returns 136, 137
rolling correlation of returns 135, 136

W
Wakari

about 1, 2
cloud account, creating 3-6
existing packages, updating 6

new packages, installing 7-9
reference 4
samples, installing 10-12
URL 2

Y
Yahoo! Finance

options data, obtaining 208-211

Z
Zipline

about 1, 167, 181
buy apple example 181-191
dual moving average crossover

example 192-196
pairs trade example 196-203
URL 167
used, for algorithmic trading 181

Thank you for buying
Mastering pandas for Finance

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

IPython Notebook Essentials
ISBN: 978-1-78398-834-1 Paperback: 190 pages

Compute scientific data and execute code
interactively with NumPy and SciPy

1.	 Perform Computational Analysis interactively.

2.	 Create quality displays using matplotlib and
Python Data Analysis.

3.	 Step-by-step guide with a rich set of examples
and a thorough presentation of the IPython
Notebook.

Python for Finance
ISBN: 978-1-78328-437-5 Paperback: 408 pages

Build real-life Python applications for quantitative
finance and financial engineering

1.	 Estimate market risk, form various portfolios,
and estimate their variance-covariance matrixes
using real-world data.

2.	 Explains many financial concepts and trading
strategies with the help of graphs.

3.	 A step-by-step tutorial with many Python
programs that will help you learn how to
apply Python to finance.

Please check www.PacktPub.com for information on our titles

Learning IPython for Interactive
Computing and Data Visualization
ISBN: 978-1-78216-993-2 Paperback: 138 pages

Learn IPython for interactive Python programming,
high-performance numerical computing, and data
visualization

1.	 A practical step-by-step tutorial, which will
help you to replace the Python console with
the powerful IPython command-line interface.

2.	 Use the IPython Notebook to modernize the way
you interact with Python.

3.	 Perform highly efficient computations with
NumPy and pandas.

IPython Interactive Computing
and Visualization Cookbook
ISBN: 978-1-78328-481-8 Paperback: 512 pages

Over 100 hands-on recipes to sharpen your skills
in high-performance numerical computing and
data science with Python

1.	 Leverage the new features of the IPython
Notebook for interactive web-based big
data analysis and visualization.

2.	 Become an expert in high-performance
computing and visualization for data analysis
and scientific modeling.

3.	 A comprehensive coverage of scientific
computing through many hands-on,
example-driven recipes with detailed,
step-by-step explanations.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with pandas Using Wakari.io
	What is Wakari?
	Creating a Wakari cloud account
	Updating existing packages
	Installing new packages

	Installing the samples in Wakari
	Summary

	Chapter 2: Introducing the Series and DataFrame
	Notebook setup
	The main pandas data structures – Series and DataFrame
	The Series
	The DataFrame

	The basics of the Series and DataFrame objects
	Creating a Series and accessing elements
	Size, shape, uniqueness, and counts of values
	Alignment via index labels
	Creating a DataFrame
	Example data
	Selecting columns of a DataFrame
	Selecting rows of a DataFrame using the index
	Slicing using the [] operator
	Selecting rows by the index label and
location – .loc[] and .iloc[]
	Selecting rows by the index label and/or
location – .ix[]
	Scalar lookup by label or location using .at[]
and .iat[]

	Selecting rows using the Boolean selection
	Arithmetic on a DataFrame

	Reindexing the Series and DataFrame objects
	Summary

	Chapter 3: Reshaping, Reorganizing, and Aggregating
	Notebook setup
	Loading historical stock data
	Organizing the data for the examples

	Reorganizing and reshaping data
	Concatenating multiple DataFrame objects
	Merging DataFrame objects
	Pivoting
	Stacking and unstacking
	Melting

	Grouping and aggregating
	Splitting
	Aggregating

	Summary

	Chapter 4: Time-series
	Notebook setup
	Time-series data and the DatetimeIndex
	Creating time-series with specific frequencies
	Representing intervals of time using periods
	Shifting and lagging time-series data
	Frequency conversion of time-series data
	Resampling of time-series
	Summary

	Chapter 5: Time-series Stock Data
	Notebook setup
	Obtaining historical stock and index data
	Fetching historical stock data from Yahoo!
	Fetching index data from Yahoo!

	Visualizing financial time-series data
	Plotting closing prices
	Plotting volume-series data
	Combined price and volumes
	Plotting candlesticks

	Fundamental financial calculations
	Calculating simple daily percentage change
	Calculating simple daily cumulative returns
	Analyzing the distribution of returns
	Histograms
	Q-Q plots
	Box-and-whisker plots

	Comparison of daily percentage change between stocks

	Moving windows
	Volatility calculation
	Rolling correlation of returns
	Least-squares regression of returns

	Comparing stocks to the S&P 500
	Summary

	Chapter 6: Trading Using Google Trends
	Notebook setup
	A brief on Quantifying Trading Behavior in Financial Markets Using Google Trends
	Data collection
	The data from the paper
	Gathering our own DJIA data from Quandl
	Google Trends data

	Generating order signals
	Computing returns
	Cumulative returns and the result of the strategy
	Summary

	Chapter 7: Algorithmic Trading
	Notebook setup
	The process of algorithmic trading
	Momentum strategies
	Mean-reversion strategies

	Moving averages
	Simple moving average
	Exponentially weighted moving average

	Technical analysis techniques
	Crossovers
	Pairs trading

	Algo trading with Zipline
	Algorithm – buy apple
	Algorithm – dual moving average crossover
	Algorithm – pairs trade

	Summary

	Chapter 8: Working with Options
	Introducing options
	Notebook setup
	Options data from Yahoo! Finance
	Implied volatility
	Volatility smirks

	Calculating payoff on options
	The call option payoff calculation
	The put option payoff calculation

	Profit and loss calculation
	The call option profit and loss for a buyer
	The call option profit and loss for the seller
	Combined payoff charts
	The put option profit and loss for a buyer
	The put option profit and loss for the seller

	The pricing of options
	The pricing of options with Black-Scholes
	Deriving the model
	The formulas

	Black-Scholes using Mibian
	Charting option price change over time
	The Greeks
	Calculation and visualization

	Summary

	Chapter 9: Portfolios and Risk
	Notebook setup
	An overview of modern portfolio theory
	Concept
	Mathematical modeling of a portfolio
	Risk and expected return
	Diversification
	The efficient frontier

	Modeling a portfolio with pandas
	Constructing an efficient portfolio
	Gathering historical returns for a portfolio
	Formulation of portfolio risks
	The Sharpe ratio
	Optimization and minimization

	Constructing an optimal portfolio
	Visualizing the efficient frontier
	Value at Risk
	Summary

	Index

