

Mastering Python Scientific
Computing

A complete guide for Python programmers to master
scientific computing using Python APIs and tools

Hemant Kumar Mehta

BIRMINGHAM - MUMBAI

Mastering Python Scientific Computing

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1180915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-882-3

www.packtpub.com

www.packtpub.com

Credits

Author
Hemant Kumar Mehta

Reviewers
Austen Groener

Sachin R. Joglekar

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Kevin Colaco

Content Development Editor
Arshiya Umer

Technical Editor
Mohita Vyas

Copy Editor
Vikrant Phadke

Project Coordinator
Sanjeet Rao

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Hemant Kumar Mehta is a distributed and scientific computing enthusiast.
He has more than 13 years of experience of teaching, research, and software
development. He received his BSc (in computer science) Hons., master of
computer applications degree, and PhD in computer science from Devi Ahilya
University, Indore, India in 1998, 2001, and 2011, respectively. He has experience
of working in diverse international environments as a software developer in MNCs.
He is a post-doctorate fellow at an international university of high reputation.

Hemant has published more than 20 highly cited research papers in reputed national
and international conferences and journals sponsored by ACM, IEEE, and Springer.
He is the author of Getting Started with Oracle Public Cloud, Packt Publishing. He is also
the coauthor of a book named Internet and Web Technology, published by Kaushal
Prakashan Mandir, Indore.

He earned his PhD in the field of cloud computing and big data. Hemant is a
member of ACM (Special Interest Group on High-performance Computing
Education: SIGHPC-Edu), senior member of IEEE (the computer society, STC on
cloud computing, and the big data technical committee), and a senior member of
IACSIT, IAENG, and MIR Labs.

I am extremely thankful to my PhD supervisors, namely Professor
Priyesh Kanungo and the late Professor Manohar Chandwani from
Devi Ahilya University. Their words work as continuous guiding
lights in my career and life.

I express heartfelt thanks to my dear student and friend, Pawan
Pawar, for helping me develop some programs for this book.

I am also thankful to the entire Packt Publishing team and the
reviewers for their tremendous support in maintaining the highest
quality of work in this book.

Most of all, I thank my family. I am infinitely grateful to my parents.
I thank my wife, Priya, and darling sons, Luv and Darsh, for whom
this acknowledgement cannot be covered in words.

About the Reviewers

Austen Groener was raised in Southfield, Massachusetts, USA. He completed
his BA in physics from Hartwick College and went on to pursue his MS and PhD in
physics from Drexel University in Philadelphia, Pennsylvania, USA. He is a reputed
astrophysicist, with research interests surrounding the detailed distribution of dark
matter within the largest objects in the universe—galaxy clusters. When he is not
studying the cosmos, he enjoys spending his free time developing software tools for
other astronomers to use. Austen has a newfound interest in web development.

I would like to thank my family and friends for their unwavering
support. To my wife, Brittany: you are the love of my life, my best
friend, and my inspiration.

Sachin R. Joglekar is a computer science graduate from BITS-Pilani (Goa campus) in
India. His areas of interest primarily include machine learning and intelligent systems.
He graduated in December 2014. Since then, he has been working as the cofounder of
a start-up based in Mumbai. His work involves the design and development of server
infrastructure and backend analytics for sensor networks. Sachin has also worked as
an open source developer for SymPy, a symbolic computing library written in pure
Python. His work at Google Summer of Code 2014 involved developing the vector
module for SymPy.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

To my parents and my gurus, Late Prof. Manohar Chandwani and
Prof. Priyesh Kanungo

[i]

Table of Contents
Preface	 ix
Chapter 1: The Landscape of Scientific Computing – and Why
Python?	 1

Definition of scientific computing	 2
A simple flow of the scientific computation process	 4
Examples from scientific/engineering domains	 6
A strategy for solving complex problems	 7
Approximation, errors, and associated concepts and terms	 8

Error analysis	 10
Conditioning, stability, and accuracy	 10
Backward and forward error analysis	 11
Is it okay to ignore these errors?	 11

Computer arithmetic and floating-point numbers	 11
The background of the Python programming language	 12

The guiding principles of the Python language	 13
Why Python for scientific computing?	 15

Compact and readable code	 15
Holistic language design	 15
Free and open source	 16
Language interoperability	 16
Portable and extensible	 16
Hierarchical module system	 16
Graphical user interface packages	 16
Data structures	 16
Python's testing framework	 17
Available libraries	 17

The downsides of Python	 17
Summary	 18

Table of Contents

[ii]

Chapter 2: A Deeper Dive into Scientific Workflows and
the Ingredients of Scientific Computing Recipes	 19

Mathematical components of scientific computations	 20
A system of linear equations	 20
A system of nonlinear equations	 21
Optimization	 22
Interpolation	 23
Extrapolation	 23
Numerical integration	 24
Numerical differentiation	 25
Differential equations	 25

The initial value problem	 26
The boundary value problem	 26

Random number generator	 27
Python scientific computing	 28

Introduction to NumPy	 30
The SciPy library	 30

The SciPy Subpackage	 30
Data analysis using pandas	 31

A brief idea of interactive programming using IPython	 31
IPython parallel computing	 32
IPython Notebook	 32

Symbolic computing using SymPy	 35
The features of SymPy	 36
Why SymPy?	 36
The plotting library	 37

Summary	 40
Chapter 3: Efficiently Fabricating and Managing Scientific Data	 41

The basic concepts of data	 41
Data storage software and toolkits	 43

Files	 43
Structured files	 44
Unstructured files	 44

Database	 45
Possible operations on data	 45
Scientific data format	 47
Ready-to-use standard datasets	 50
Data generation	 54
Synthetic data generation (fabrication)	 54

Using Python's built-in functions for random number generation	 55
Bookkeeping functions	 56
Functions for integer random number generation	 56

Table of Contents

[iii]

Functions for sequences	 56
Statistical-distribution-based functions	 57
Nondeterministic random number generator	 58

Designing and implementing random number generators based
on statistical distributions	 60
A program with simple logic to generate five-digit random numbers	 62

A brief note about large-scale datasets	 62
Summary	 64

Chapter 4: Scientific Computing APIs for Python	 65
Numerical scientific computing in Python	 65

The NumPy package	 66
The ndarrays data structure	 66
File handling	 66
Some sample NumPy programs	 67

The SciPy package	 69
The optimization package	 70
The interpolation package	 70
Integration and differential equations in SciPy	 70
The stats module	 70
Clustering package and spatial algorithms in SciPy	 71
Image processing in SciPy	 71

Sample SciPy programs	 71
Statistics using SciPy	 71
Optimization in SciPy	 72
Image processing using SciPy	 73

Symbolic computations using SymPy	 75
Computer Algebra System	 76
Features of a general-purpose CAS	 76
A brief idea of SymPy	 76
SymPy modules	 80
Simple exemplary programs	 81

Basic symbol manipulation	 82
Expression expansion in SymPy	 82
Simplification of an expression or formula	 82
Simple integrations	 83

APIs and toolkits for data analysis and visualization	 83
Data analysis and manipulation using pandas	 83

Important data structures of pandas	 84
Special features of pandas	 84

Data visualization using matplotlib	 85
Interactive computing in Python using IPython	 86
Sample data analysis and visualization programs	 86

Summary	 89

Table of Contents

[iv]

Chapter 5: Performing Numerical Computing	 91
The NumPy fundamental objects	 92

The ndarray object	 92
The attributes of an array	 92
Basic operations on arrays	 93
Special operations on arrays (shape change and conversion)	 94
Classes associated with arrays	 95

The universal function object	 97
Attributes	 97
Methods	 98
Various available ufunc	 98

The NumPy mathematical modules	 99
Introduction to SciPy	 101

Mathematical functions in SciPy	 101
Advanced modules/packages	 102

Integration	 102
Signal processing (scipy.signal)	 105
Fourier transforms (scipy.fftpack)	 106
Spatial data structures and algorithms (scipy.spatial)	 107
Optimization (scipy.optimize)	 109
Interpolation (scipy.interpolate)	 115
Linear algebra (scipy.linalg)	 117
Sparse eigenvalue problems with ARPACK	 119
Statistics (scipy.stats)	 119
Multidimensional image processing (scipy.ndimage)	 122
Clustering	 123
Curve fitting	 126
File I/O (scipy.io)	 128

Summary	 129
Chapter 6: Applying Python for Symbolic Computing	 131

Symbols, expressions, and basic arithmetic	 132
Equation solving	 133
Functions for rational numbers, exponentials, and logarithms	 134
Polynomials	 135
Trigonometry and complex numbers	 135
Linear algebra	 136
Calculus	 138
Vectors	 141
The physics module	 142

Hydrogen wave functions	 142
Matrices and Pauli algebra	 142
The quantum harmonic oscillator in 1-D and 3-D	 143
Second quantization	 143

Table of Contents

[v]

High-energy Physics	 145
Mechanics	 146

Pretty printing	 148
LaTeX Printing	 149

The cryptography module	 150
Parsing input	 151
The logic module	 152
The geometry module	 154
Symbolic integrals	 156
Polynomial manipulation	 158
Sets	 160
The simplify and collect operations	 161
Summary	 162

Chapter 7: Data Analysis and Visualization	 163
Matplotlib	 164

The architecture of matplotlib	 164
The scripting layer (pyplot)	 164
The artist layer	 165
The backend layer	 165

Graphics with matplotlib	 166
Output generation	 168

The pandas library	 170
Series	 170
DataFrame	 171
Panel	 172
The common functionality among the data structures	 174
Time series and date functions	 181
Handling missing data	 184

I/O operations	 186
Working on CSV files	 186
Ready-to-eat datasets	 190

The pandas plotting	 190
IPython	 191

The IPython console and system shell	 192
The operating system interface	 194
Nonblocking plotting	 194
Debugging	 195

IPython Notebook	 197
Summary	 198

Table of Contents

[vi]

Chapter 8: Parallel and Large-scale Scientific Computing	 199
Parallel computing using IPython	 200
The architecture of IPython parallel computing	 201

The components of parallel computing	 202
The IPython engine	 202
The IPython controller	 202
IPython view and interfaces	 203
The IPython client	 203

Example of performing parallel computing	 203
A parallel decorator	 204
IPython's magic functions	 205

Activating specific views	 206
Engines and QtConsole	 207

Advanced features of IPython	 207
Fault-tolerant execution	 207
Dynamic load balancing	 208
Pushing and pulling objects between clients and engines	 209
Database support for storing the requests and results	 210
Using MPI in IPython	 213
Managing dependencies among tasks	 214

Functional dependency	 214
Graph dependency	 216
Impossible dependencies	 217
The DAG dependency and the NetworkX library	 218

Using IPython on an Amazon EC2 cluster with StarCluster	 220
A note on security of IPython	 222

Well-known parallel programming styles	 222
Issues in parallel programming	 222
Parallel programming	 224
Concurrent programming	 224
Distributed programming	 225
Multiprocessing in Python	 226
Multithreading in Python	 227

Hadoop-based MapReduce in Python	 229
Spark in Python	 231

Summary	 232
Chapter 9: Revisiting Real-life Case Studies	 233

Scientific computing applications developed in Python	 234
The one Laptop per Child project used Python for their user interface	 234
ExpEYES – eyes for science	 236
A weather prediction application in Python	 239
An aircraft conceptual designing tool and API in Python	 240

Table of Contents

[vii]

OpenQuake Engine	 241
SMS Siemag AG application for energy efficiency	 243
Automated code generator for analysis of High-energy Physics data	 243
Python for computational chemistry applications	 245

Python for developing a Blind Audio Tactile Mapping System	 246
TAPTools for air traffic control	 247
Energy-efficient lights with an embedded system	 248

Scientific computing libraries developed in Python	 249
A maritime designing API by Tribon	 249
Molecular Modeling Toolkit	 250
Standard Python packages	 251

Summary	 252
Chapter 10: Best Practices for Scientific Computing	 253

The best practices for designing	 254
The implementation of best practices	 256
The best practices for data management and application
deployment	 258
The best practices to achieving high performance	 260
The best practices for data privacy and security	 261
Testing and maintenance best practices	 261
General Python best practices	 262
Summary	 264

Index	 265

[ix]

Preface
"I am absolutely convinced that in a few decades, historians of science will describe
the period we are in right now as one of deep and significant transformations to the
very structure of science. And in that process, the rise of free openly available tools
plays a central role."

 Fernando Perez, creator of IPython

This book covers the Python APIs and toolkits used to perform scientific computing.
It is highly recommended for readers who perform computerized engineering or
scientific computations. Scientific computing is an interdisciplinary branch that
requires a background in computer science, mathematics, general science (at least
any one branch out of physics, chemistry, environmental science, biology, and
others), and engineering. Python consists of a large number of packages, APIs, and
toolkits for supporting the functionalities required by these diverse scientific and
engineering domains.

A large community of users, lots of help and documentation, a large collection of
scientific libraries and environments, great performance, and good support make
Python a great choice for scientific computing.

What this book covers
Chapter 1, The Landscape of Scientific Computing – and Why Python?, introduces the
basic concepts of scientific computing. It also discusses the background of Python,
its guiding principle, and why using Python for scientific computing is efficient.

Preface

[x]

Chapter 2, A Deeper Dive into Scientific Workflows and the Ingredients of Scientific
Computing Recipes, discusses the various concepts of mathematical and numerical
analysis that are generally required to solve scientific problems. It also covers a
brief introduction to the packages, toolkits, and APIs meant for performing scientific
computing in the Python language.

Chapter 3, Efficiently Fabricating and Managing Scientific Data, discusses all the aspects
about the underlying data of scientific applications, including the basic concepts,
various operations, and the formats and software used to store data. It also presents
standard datasets and techniques of preparing synthetic data.

Chapter 4, Scientific Computing APIs for Python, covers the basic concepts, features,
and selected sample programs of various scientific computing APIs and toolkits,
including NumPy, SciPy, and SymPy. A basic introduction to interactive computing,
data analysis, and data visualization is also discussed in this chapter using IPython,
matplotlib, and pandas.

Chapter 5, Performing Numerical Computing, discusses how to perform numerical
computations using the NumPy and SciPy packages of Python. This chapter starts
with the basics of numerical computation and covers a number of advanced concepts,
such as optimization, interpolation, Fourier transformation, signal processing, linear
algebra, statistics, spatial algorithms, image processing, file input/output, and others.

Chapter 6, Applying Python for Symbolic Computing, starts with the fundamentals of the
Computerized Algebra System (CAS) and performing symbolic computations using
SymPy. It covers a vast range of topics on CAS, from using simple expressions and
basic arithmetic to advanced concepts of mathematics and physics.

Chapter 7, Data Analysis and Visualization, presents the concepts and applications of
matplotlib and pandas for data analysis and visualization.

Chapter 8, Parallel and Large-scale Scientific Computing, discusses the concepts of
high-performance scientific computing using IPython (which is done using MPI),
the management of the Amazon EC2 cluster using StarCluster, multiprocessing,
multithreading, Hadoop, and Spark.

Chapter 9, Revisiting Real-life Case Studies, illustrates several case studies of scientific
computing applications, libraries, and tools developed using the Python language.
Some cases studied from various engineering and science domains are presented
in this chapter.

Preface

[xi]

Chapter 10, Best Practices for Scientific Computing, discusses the best practices for
scientific computing. It consists of the best practices for designing, coding, data
management, application deployment, high-performance computing, security,
data privacy, maintenance, and support. We also cover the best practices for
general Python-based development.

What you need for this book
The example programs given in this book require a computer with Python 2.7.9 or
a higher version, and several Python APIs/packages/toolkits. You will also require
some Python libraries (namely NumPy, SciPy, SymPy, matplotlib, pandas, IPython),
the IPython.parallel package, pyzmq, SSH for security (if necessary), and Hadoop.

Who this book is for
The book is intended for Python programmers willing to get hands-on exposure
to scientific computing. The book expects that you have had exposure to various
concepts of Python programming.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The functions of the random module are bound methods of a hidden instance of
the random.Random class."

A block of code is set as follows:

import random
print random.random()
print random.uniform(1,9)
print random.randrange(20)
print random.randrange(0, 99, 3)
print random.choice('ABCDEFGHIJKLMNOPQRSTUVWXYZ') # Output 'P'
items = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
random.shuffle(items)
print items

Preface

[xii]

print random.sample([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 5)
weighted_choices = [('Three', 3), ('Two', 2), ('One', 1), ('Four', 4)]
population = [val for val, cnt in weighted_choices for i in
range(cnt)]
print random.choice(population)

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/8823OS.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/8823OS.pdf
https://www.packtpub.com/sites/default/files/downloads/8823OS.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Chapter 1

[1]

The Landscape of Scientific
Computing – and Why

Python?
Using computerized mathematical modeling and numerical analysis techniques
to analyze and solve problems in the science and engineering domains is called
scientific computing. Scientific problems include problems from various branches
of science, such as earth science, space science, social science, life science, physical
science, and formal science. These branches cover almost all the science domains
that exist, from traditional science to modern engineering science, such as computer
science. Engineering problems include problems from civil and electrical to
(the latest) biomedical engineering.

In this chapter, we will cover the following topics:

•	 Fundamentals of scientific computing
•	 The flow of the scientific computation process
•	 Examples from scientific and engineering domains
•	 The strategy to solve complex problems
•	 Approximation, errors, and related terms
•	 Concepts of error analysis
•	 Computer arithmetic and floating-point numbers
•	 A background of Python
•	 Why choose Python for scientific computing?

The Landscape of Scientific Computing – and Why Python?

[2]

Mathematical modeling refers to modeling activity that involves mathematical terms
to represent the behavior of devices, objects, phenomena, and concepts. Generally,
it helps in better understanding of the behavior or observations of a concept, a
device, or objects. It may help explain the observation and possibly prediction of
some future behavior, or results that are yet to be observed or measured. Numerical
analysis is an area of computer science and mathematics that designs, analyzes, and
finally implements algorithms to numerically solve problems of natural sciences
(for example, physics, biology, and earth science), social sciences (for example,
economics, psychology, sociology, and political science), engineering, medicine,
and business. There is a package and workflow named Python Dynamics (PyDy)
that is used to study multibody dynamics. It is a workflow and a software package
developed on top of the SymPy mechanics package. PyDy extends SymPy and
facilitates the simulation of multibody dynamics.

Definition of scientific computing
Scientific computing can also be called computational science or scientific
computation. It is mainly the idea of development of mathematical models, use of
quantitative analysis techniques, and use of computers for solving scientific problems.

"Scientific computing is the collection of tools, techniques and theories required
to solve on a computer the mathematical models of problems in science and
engineering."

 – Gene H. Golub and James M. Ortega

In simple words, scientific computing can be described as an interdisciplinary field,
as presented in the following diagram:

Chapter 1

[3]

Scientific
Computing Computer Science

(Language/Frameworks)

Mathematics
(Algorithms/Modeling)

Problem Domain
(Engineering/ Science)

Scientific computing as an interdisciplinary field

Scientific computing requires knowledge of the subject of the underlying problem to
be solved (generally, it will be a problem from a science or engineering domain), a
mathematical modeling capability with a sound idea of various numerical analysis
techniques, and finally its efficient and high-performance implementation using
computing techniques. It also requires application of computers; various peripherals,
including networking devices, storage units, processing units, and mathematical
and numerical analysis software; programming languages; and any database along
with a good knowledge of the problem domain. The use of computation and related
technologies has enabled newer applications, and scientists can infer new knowledge
from existing data and processes.

In terms of computer science, scientific computing can be considered a numerical
simulation of a mathematical model and domain data/information. The objective
behind a simulation depends on the domain of the application under simulation.
The objective can be to understand the cause behind an event, reconstruct a specific
situation, optimize the process, or predict the occurrence of an event. There are
several situations where numerical simulation is the only choice, or the best choice.
There are some phenomena or situations where performing experiments is almost
impossible, for example, climate research, astrophysics, and weather forecasts. In
some other situations, actual experiments are not preferable, for example, to check
the stability or strength of some material or product. Some experiments are very
costly in terms of time/economy, such as car crashes or life science experiments. In
such scenarios, scientific computing helps users analyze and solve problems without
spending much time or cost.

The Landscape of Scientific Computing – and Why Python?

[4]

A simple flow of the scientific
computation process
A simple flow diagram of computation for a scientific application is depicted in
the next diagram. The first step is to design a mathematical model for the problem
under consideration. After the formulation of the mathematical model, the next step
is to develop its algorithm. This algorithm is then implemented using a suitable
programming language and an appropriate implementation framework. Selecting
the programming language is a crucial decision that depends on the performance
and processing requirements of the application. Another close decision is to
finalize the framework to be used for the implementation. After deciding on the
language and framework, the algorithm is implemented and sample simulations are
performed. The results obtained from simulations are then analyzed for performance
and correctness. If the result or performance of the implementation is not as per
expectations, its causes should be determined. Then we need to go back to either
reformulate the mathematical model, or redesign the algorithm or its implementation
and again select the language and the framework.

A mathematical model is expressed by a set of suitable equations that describe most
problems to the right extent of details. The algorithm represents the solution process
in individual steps, and these will be implemented using a suitable programming
language or scripting.

After implementation, there is an important step to perform—the simulation run of
the implemented code. This involves designing the experimentation infrastructure,
preparing or arranging the data/situation for simulation, preparing the scenario to
simulate, and much more.

After completing a simulation run, result collection and its presentation are desired
for the next step to analyze the results so as to test the validity of the simulation.
If the results are not as they are expected, then this may require going back to one
of the previous steps of the process to correct and repeat them. This situation is
represented in the following figure in the form of dashed lines going back to some
previous steps. If everything goes ahead perfectly, then the analysis will be the last
step of the workflow, which is represented by double lines in this diagram:

Chapter 1

[5]

Problem

Mathematical
Model

Algorithm

Implementation/
Simulation

Results
Collection

Analyze
Results

Various steps in a scientific computing workflow

The design and analysis of algorithms that solves any mathematical problem,
specifically about science and engineering, is known as numerical analysis, and
nowadays it is also called scientific computing. In scientific computing, the problems
under consideration mainly deal with continuous values rather than discrete values.
The latter are dealt with in other computer science problems. Generally saying,
scientific computing solves problems that involve functions and equations with
continuous variables, for example, time, distance, velocity, weight, height, size,
temperature, density, pressure, stress, and much more.

Generally, problems of continuous mathematics have approximate solutions, as
their exact solution is not always possible in a finite number of steps. Hence, these
problems are solved using an iterative process that finally converges to an acceptable
solution. The acceptable solution depends on the nature of the specific problem.
Generally, the iterative process is not infinite, and after each iteration, the current
solution gets closer to the desired solution for the purpose of simulation. Reviewing
the accuracy of the solution and swift convergence to the solution form the gist of the
scientific computing process.

The Landscape of Scientific Computing – and Why Python?

[6]

There are well-established areas of science that use scientific computing to solve
problems. They are as follows:

•	 Computational fluid dynamics
•	 Atmospheric science
•	 Seismology
•	 Structural analysis
•	 Chemistry
•	 Magnetohydrodynamics
•	 Reservoir modeling
•	 Global ocean/climate modeling
•	 Astronomy/astrophysics
•	 Cosmology
•	 Environmental studies
•	 Nuclear engineering

Recently, some emerging areas have also started harnessing the power of scientific
computing. They include:

•	 Biology
•	 Economics
•	 Materials research
•	 Medical imaging
•	 Animal science

Examples from scientific/engineering
domains
Let's take a look at some problems that may be solved using scientific computing.
The first problem is to study the behavior of a collision of two black holes, which is
very difficult to understand theoretically and practically. Theoretically, this process
is extremely complex, and it is almost impossible to perform it in a laboratory and
study it live. But this phenomenon can be simulated in a computing laboratory with
a proper and efficient implementation of a mathematical formulation of Einstein's
general theory of relativity. However, this requires very high computational power,
which can be achieved using advanced distributed computing infrastructure.

Chapter 1

[7]

The second problem is related to engineering and designing. Consider a problem
related to automobile testing called crash testing. To reduce the cost of performing
a risky actual crash for testing, engineers and designers prefer to perform a
computerized simulated crash test. Finally, consider the problem of designing a
large house or factory. It is possible to construct a dummy model of the proposed
infrastructure. But that requires a reasonable amount of time and is expensive.
However, this designing can done using an architectural design tool, and this will save
a lot of time and cost. There can be similar examples from bioinformatics and medical
science, such as protein structure folding and modeling of infectious diseases. Studying
protein structure folding is a very time-consuming process, but it can be efficiently
completed using large-scale supercomputers or distributed computing systems.
Similarly, modeling an infectious disease will save efforts and cost in the analysis of
the effects of various parameters on a vaccination program for that disease.

These three examples are selected as they represent three different classes of
problems that can be solved using scientific computing. The first problem is almost
impossible. The second problem is possible, but it is risky up to a certain extent
and it may result in severe damage. The final problem can be solved without any
simulation and it is possible to duplicate it in real-life situations. However, it is
costlier and more time-consuming than its simulation.

A strategy for solving complex problems
A simple strategy to find a solution for a complex computational problem is to first
identify the difficult areas in the solution. Now, one by one, start replacing these
small difficult parts with their solutions that will lead to the same solution or to a
solution within the problem-specific permissible limit. In other words, the best idea
is to reduce a large, complex problem to a set of smaller problems. Each of them may
be complex or simple. Now each of the complex subproblems may be replaced with
a similar and simple problem, and in this way, we ultimately get a simpler problem
to solve. The basic idea is to combine the divide-and-conquer technique with the
change of smaller complex problems with similar simple problems.

We should take care of two important points when adopting this idea. The first is
that we need to search for a similar problem or a problem that has a solution from
the same class. The second is that just after the replacement of one problem with
another, we need to determine whether the ultimate solution is preserved within the
tolerance limit, if not completely preserved. Some examples may be as follows:

•	 Changing infinite-dimensional spaces in the problem to finite-dimensional
spaces for simplicity

The Landscape of Scientific Computing – and Why Python?

[8]

•	 Change infinite processes with finite processes, such as replacing integrals or
infinite series with finite summations or a derivative of finite differences

•	 If feasible, then algebraic equations can be used to replace differential
equations

•	 Try replacing nonlinear problems with linear problems as linear problems
are very simple to solve

•	 If feasible, complicated functions can be changed to multiple simple
functions to achieve simplicity

Approximation, errors, and associated
concepts and terms
These scientific computational solutions generally produce approximate solutions.
By approximate solution, we mean that instead of the exact desired solution, the
obtained solution will be nearly similar to it. By nearly similar, we mean that it will
be a sufficiently close solution to consider the practical or simulation successful, as
they fulfill the purpose. This approximate, or similar, solution is caused by a number
of sources. These sources can be divided into two categories: sources that arise before
the computations begin, and those that occur during the computations.

The approximations that occur before the beginning of computations may be caused
by one or more of the following:

•	 Assumption or ignorance during modeling: There might be an assumption
during the modeling process, and similarly ignorance or omission of the
impact of a concept or phenomenon during modeling, that may result in the
approximation or tolerable inaccuracy.

•	 Data derived from observations or experiments: The inaccuracy may be
in the data obtained from some devices that have low precision. During the
computations, there are some constants, such as pi, whose values have to
be approximated, and this is also an important cause of deviation from the
correct result.

•	 Prerequisite computations: The data may have been obtained from the
results of previous experiments, or simulations may have had minor,
acceptable inaccuracies that finally led to further approximations. Such
prior processing may be a prerequisite of the subsequent experiments.

Chapter 1

[9]

Approximation during computations occurs because of one or more of the
following sources:

•	 Simplification of the problem: As we have already suggested in this chapter,
to solve large and complex problems, we should use a combination of "divide
and conquer" and replacing a small, complex problem with a simpler one.
This may result in approximations. Considering that we replaced an infinite
series with a finite series will possibly cause approximations.

•	 Truncation and rounding: A number of situations ask for rounding and
truncation of the intermediate results. Similarly, the internal representation
of floating-point numbers in computers and their arithmetic also leads to
minor inaccuracies.

The approximate value of the final result of a computation problem may be the
outcome of any combination of the various sources discussed previously. The
accuracy of the final output may be reduced or increased depending on the problem
being solved and the approach used to solve it.

Modeling Errors

Error in Experimentation
Data

Errors from Prerequisite
computations

Simplification of the
problem

Truncation and rounding

Before
Computation

Errors/
Approximations

During
Computations

Taxonomy of errors and approximation in computations

The Landscape of Scientific Computing – and Why Python?

[10]

Error analysis
Error analysis is a process used to observe the impact of such approximations on the
accuracy of an algorithm or computational process. In the subsequent text, we are
going to discuss the basic concepts associated with error analysis.

An observation may be made from the previous discussion on approximations that
the errors can be considered as errors in the input data and they arose during the
computations on this input data.

On a similar path, computation errors may again be divided into two categories:
truncation errors and rounding errors. A truncation error is the result of reducing
a complex problem to a simpler problem, for example, immature termination of
iterations before the desired accuracy is achieved. A rounding error is the result
of the precision used to represent numbers in the number system used for the
computerized computation, and also the result of performing arithmetic on these
numbers.

Ultimately, the amount of error that is significant or ignorable depends on the scale
of the values. For example, an error of 10 in a final value of 15 is highly significant,
while an error of 10 in a final value of 785 is not that significant. Moreover, the same
error of 10 in obtaining the final value of 17,685 is ignorable. Generally, the impact of
an error value is relative to the value of the result. If we know the magnitude of the
final value to be obtained, then after looking at the value of the error, we can decide
whether to ignore it or consider it as significant. If the error is significant, then we
should start taking the corrective measures.

Conditioning, stability, and accuracy
Let's discuss some important properties of problems and algorithms. Sensitivity or
conditioning is a property of a problem. The problem under consideration can be
called sensitive or insensitive, or it may be called well-conditioned or ill-conditioned.
A problem is said to be insensitive or well-conditioned if, for a given relative change
in input, the data will have a proportional relative final impact on the result. On the
other hand, if the relative impact of the final result is considerably larger than the
relative change in input data, then the problem will be considered a sensitive or
ill-conditioned problem.

Chapter 1

[11]

Backward and forward error analysis
Assume that we have obtained the approximation y* by f mapping the data x, for
example, y*=f(x). Now, if the actual result is y, then the small quantity y' =y*-y is
called a forward error, and its estimation is called forward error analysis. Generally,
it is very difficult to obtain this estimate. An alternative approach to this is to
consider y* as the exact solution to the same problem with modified data, that is,
y*=f(x'). Now, the quantity x*=x'-x is called a backward error in y*. Backward error
analysis is the process of estimation of x*.

Is it okay to ignore these errors?
The answer to this question depends on the domain and application where you are
going to apply the scientific computations. For example, if it is the calculation of the
time to launch a missile, an error of 0.1 seconds will result in severe damage. On the
other hand, if it is the calculation of the arrival time of a train, an error of 40 seconds
will not lead to a big problem. Similarly, a small change in a medicine dosage can
have a disastrous effect on the patient. Generally, if a computation error in an
application is not related to loss of human lives or doesn't involve big costs, then it
can be ignored. Otherwise, we need to take proper efforts to resolve the issue.

Computer arithmetic and floating-point
numbers
A type of approximation in scientific computing is introduced due to the
representation of real numbers in computers. This approximation is further
magnified by performing arithmetic operations on these real numbers. In this
section, we will discuss this representation of real numbers, arithmetic operations
on these numbers, and their possible impact on the results of the computation.
These approximation errors not only arise in computerized computations, however;
they may arise in non-computerized manual computation because of the rounding
done to reduce the complexity. However, it is not the case that these approximations
arise only in the case of computerized computations. They can also be observed
in non-computerized, manual computations because of rounding done to reduce
complexities in calculations.

The Landscape of Scientific Computing – and Why Python?

[12]

Before advancing the discussion of the computerized representation of real numbers,
let's first recall the well-known scientific notation used in mathematics. In scientific
notation, to simplify the representation of a very large or very small number into a
short form, we write nearly the same quantity multiplied by some powers of 10. Also,
in scientific notation, numbers are represented in the form of "a multiplied by 10 to the
power b" that is, a X 10b. For example, 0.000000987654 and 987,654 can represented as
9.87654 x 10^-7 and 9.87654 x 10^5 respectively. In this representation, the exponent is
an integer quantity and the coefficient is a real number called mantissa.

The Institute of Electrical and Electronics Engineers (IEEE) has standardized
the floating-point number representation in IEEE 754. Most modern machines use
this standard as it addresses most of the problems found in various floating-point
number representations. The latest version of this standard is published in 2008 and
is known as IEEE 754-2008. The standard defines arithmetic formats, interchange
formats, rounding rules, operations, and exception handling. It also includes
recommendations for advanced exception handling, additional operations, and
evaluation of expressions, and tells us how to achieve reproducible results.

The background of the Python
programming language
Python is a general-purpose high-level programming language that supports
most programming paradigms, including procedural, object-oriented, imperative,
aspect-oriented, and functional programming. It also supports logical programming
using an extension. It is an interpreted language that helps programmers compose
a program in fewer lines than the code for the same concept in C++, Java, or other
languages. Python supports dynamic typing and automatic memory management.
It has a large and comprehensive standard library, and now it also has support for a
number of custom libraries for many specific tasks. It is very easy to install packages
using package managers such as pip, easy_install, homebrew (OS X), apt-get
(Linux), and others.

Python is an open source language; its interpreters are available for most operating
systems, including Windows, Linux, OS X, and others. There are a number of
tools available to convert a Python program into an executable form for different
operating systems, for example, Py2exe and PyInstaller. This executable form is
standalone code that does not require a Python interpreter for execution.

Chapter 1

[13]

The guiding principles of the Python language
Python's guiding principles by Guido van Rossum, who is also known as the
Benevolent Dictator For Life (BDFL), have been converted into some aphorism by
Tim Peters and are available at https://www.python.org/dev/peps/pep-0020/.
Let's discuss these with some explanations, as follows:

•	 Beautiful is better than ugly: The philosophy behind this is to write
programs for human readers, with simple expression syntax and consistent
syntax and behavior for all programs.

•	 Explicit is better than implicit: Most concepts are kept explicit, just like
the explicit Boolean type. We have used an explicit literal value—true
or false—for Boolean variables instead of depending on zero or nonzero
integers. Still, it does support the integer-based Boolean concept. Nonzero
values are treated as Boolean. Similarly, its for loop can operate data
structures without managing the variable. The same loop can iterate
through tuples and characters in a string.

•	 Simple is better than complex: Memory allocation and the garbage collector
manage allocation or deallocation of memory to avoid complexity. Another
simplicity is introduced in the simple print statement. This avoids the use
of file descriptors for simple printing. Moreover, objects automatically get
converted to a printable form in comma-separated values.

•	 Complex is better than complicated: Scientific computing concepts are
complex, but this doesn't mean that the program will be complicated. Python
programs are not complicated, even for very complex application. The
"Pythonic" way is inherently simple, and the SciPy and NumPy packages
are very good examples of this.

•	 Flat is better than nested: Python provides a wide variety of modules in its
standard library. Namespaces in Python are kept in a flat structure, so there is
no need to use very long names, such as java.net.socket instead of a simple
socket in Python. Python's standard library follows the batteries included
philosophy. This standard library provides tools suitable for many tasks.
For example, modules for various network protocols are supported for the
development of rich Internet applications. Similarly, modules for graphic user
interface programming, database programming, regular expressions, high-
precision arithmetic, unit testing, and much more are bundled in the standard
library. Some of the modules in the library include networking (socket,
select, SocketServer, BaseHTTPServer, asyncore, asynchat, xmlrpclib,
and SimpleXMLRPCServer), Internet protocols (urllib, httplib, ftplib,
smtpd, smtplib, poplib, imaplib, and json), database (anydbm, pickle,
shelve, sqlite3, and mongodb), and parallel processing (subprocess,
threading, multiprocessing, and queue).

https://www.python.org/dev/peps/pep-0020/

The Landscape of Scientific Computing – and Why Python?

[14]

•	 Sparse is better than dense: The Python standard library is kept shallow
and the Python package index maintains an exhaustive list of third-party
packages meant for supporting in-depth operations for a topic. We can use
pip to install custom Python packages.

•	 Readability counts: The block structure of your program should be created
using white spaces, and Python uses minimal punctuation in its syntax.
As semicolons introduce blocks, no semicolons are needed at the end of
the line. Semicolons are allowed but they are not required in every line
of code. Similarly, in most situations, parentheses are not required for
expressions. Python introduces inline documentation used to generate API
documentation. Python's documentation is available at runtime and online.

•	 Special cases aren't special enough to break the rules: The philosophy
behind this is that everything in Python is an object. All built-in types
are implemented as objects. The data types that represent numbers have
methods. Even functions are themselves objects with methods.

•	 Although practicality beats purity: Python supports multiple programming
styles to give users the choice to select the style that is most suitable for their
problem. It supports OOP, procedural, functional, and many more types of
programming.

•	 Errors should never pass silently: It uses the concept of exception handling
to avoid handling errors at low level APIs so that they may be handled at a
higher level while writing the program that uses these APIs. It supports the
concept of standard exceptions with specific meanings, and users are allowed
to define exceptions for custom error handling. To support debugging of
code, the concept of traceback is provided. In Python programs, by default,
the error handling mechanism prints a complete traceback pointing to the
error in stderr. The traceback includes the source filename, line number,
and source code, if it is available.

•	 Unless explicitly silenced: To take care of some situations, there are
options to let an error pass by silently. For these situations, we can use
the try statement without except. There is also an option to convert an
exception into a string.

•	 In the face of ambiguity, refuse the temptation to guess: Automatic type
conversion is performed only when it is not surprising. For example, an
operation between an integer operand with a float operand results in a
float value.

•	 There should be one—and preferably only one—obvious way to do it: This
is very obvious. It requires elimination of all redundancy. Hence, it is easier
to learn and remember.

Chapter 1

[15]

•	 Although that way may not be obvious at first unless you're Dutch: The way
that we discussed in the previous point is applicable to the standard library.
Of course, there will be redundancy in third-party modules. For example, we
have support for multiple GUI APIs, such as as GTK, wxPython, and KDE.
Similarly for web programming, we have Django, AppEngine, and Pyramid.

•	 Now is better than never: This statement is meant to motivate users to adopt
Python as their favorite tool. There is a concept of ctypes meant to wrap
existing C/C++ shared libraries for use in Python programs.

•	 Although never is often better than *right* now: With this philosophy, the
Python Enhancement Proposals (PEP) processed a temporary moratorium
(suspension) on all changes to the syntax, semantics, and built-in components
for a specified period to promote the alternative development catch-up.

•	 If the implementation is hard to explain, it's a bad idea and If the
implementation is easy to explain, it may be a good idea: In Python all
the changes to the syntax, new library modules, and APIs will be processed
through a highly rigorous process of review and approval.

Why Python for scientific computing?
To be frank, if we're talking about the Python language alone, then we need to think
about some option. Fortunately, we have support for NumPy, SciPy, IPython, and
matplotlib, and this makes Python the best choice. We are going to discuss these
libraries in subsequent chapters. The following are the comprehensive features
of Python and the associated library that make Python preferable to the other
alternatives such as MATLAB, R, and other programming languages. Mostly,
there is no single alternative that possesses all of these features.

Compact and readable code
Python code is generally compact and inherently more readable in comparison to its
alternatives for scientific computing. As discussed in the Python guiding principles,
this is the impact of the design philosophy of Python.

Holistic language design
Overall, the design of the Python language is highly convenient for scientific
computing because Python supports multiple programming styles, including
procedural, object-oriented, functional, and logic programming. The user has a
wide range of choices and they can select the most suitable one for their problem.
This is not the case with most of the available alternatives.

The Landscape of Scientific Computing – and Why Python?

[16]

Free and open source
Python and the associated tools are freely available for use, and they are published
as open source tools. This brings an added advantage of availability of their internal
source code. On the other hand, most competing tools are costly proprietary
products and their internal algorithms and concepts are not published for users.

Language interoperability
Python supports interoperability with most existing technologies. We can call or
use functions, code, packages, and objects written in different languages, such as
MATLAB, C, C++, R, Fortran, and others. There are a number of options available
to support this interoperability, such as Ctypes, Cython, and SWIG.

Portable and extensible
Python supports most platforms. So, it is a portable programming language, and its
program written for one platform will result in almost the same output on any other
platform if Python toolkits are available for that platform. The design principles
behind Python have made it a highly extensible language, and that's why we have
a large number of high-class libraries available for a number of different tasks.

Hierarchical module system
Python supports a modular system to organize programs in the form of functions
and classes in a namespace. The namespace system is very simple in order to keep
learning and remembering the concepts easy. This also supports enhanced code
reusability and maintenance.

Graphical user interface packages
The Python language offers a wide set of choices in graphics packages and tool sets.
These toolkits and packages support graphic design, user interface designing, data
visualization, and various other activities.

Data structures
Python supports an exhaustive range of data structures, which is the most important
component in the design and implementation of a program to perform scientific
computations. Support for a dictionary is the most highlightable feature of the data
structure functionality of the Python language.

Chapter 1

[17]

Python's testing framework
Python's unit testing framework, named PyUnit, supports complete unit testing
functionality for integration with the mypython program. It supports various
important unit testing concepts, including test fixture, test cases, test suites, and
test runner.

Available libraries
Owing to the batteries-included philosophy of Python, it supports a wide range of
standard packages in its bundled library. As it is an extensible language, a number of
well-tested custom-specific purpose libraries are available for a wide range of users.
Let's briefly discus a few libraries used for scientific computations.

NumPy/SciPy is a package that supports most mathematical and statistical
operations required for any scientific computation. The SymPy library provides
functionality for symbolic computations of basic symbolic arithmetic, algebra,
calculus, discrete mathematics, quantum physics, and more. PyTables is a package
used to efficiently process datasets that have a large amount of data in the form of a
hierarchical database. IPython facilitates the interactive computing feature of Python.
It is a command shell that supports interactive computing in multiple programming
languages. matplotlib is a library that supports plotting functionality for Python/
NumPy. It supports plotting of various types of graphs, such as line plot, histogram,
scatter plot, and 3D plot. SQLAlchemy is an object-relational mapping library for
Python programming. By using this library, we can use the database capability
for scientific computations with great performance and ease. Finally, it is time to
introduce a toolkit written on top of the packages we just discussed and a number of
other open source libraries and toolkits. This toolkit is named SageMath. It is a piece
of open source mathematical software.

The downsides of Python
After discussing a lot of upsides of Python over the alternatives, if we start
searching for some downsides, we will notice something important: the integrated
development environment (IDE) of Python is not the most powerful IDE compared
to the alternatives. As Python toolkits are arranged in the form of discrete packages
and toolkits, some of them have a command-line interface. So, in the comparison of
this feature, Python is lagging behind some alternatives on specific platforms, for
example, MATLAB on Windows. However, this doesn't mean that Python is not that
convenient; it is equally comparable and supports ease of use.

The Landscape of Scientific Computing – and Why Python?

[18]

Summary
In this chapter, we discussed the basic concepts of scientific computing and its
definitions. Then we covered the flow of the scientific computing process. Next,
we briefly discussed some examples from a few science and engineering domains.
After the examples, we explained an effective strategy to solve complex problems.
After that, we covered the concept of approximation, errors, and related terms.

We also discussed the background of the Python language and its guiding
principles. Finally, we discussed why Python is the most suitable choice for
scientific computing.

In the next chapter, we will discuss various mathematical/numerical analysis
concepts involved in scientific computing. We will also cover various Python
packages, toolkits, and APIs for scientific computing.

[19]

A Deeper Dive into
Scientific Workflows and

the Ingredients of Scientific
Computing Recipes

Scientific workflow is a term used to describe a series of structured activities
and computational steps required to solve a scientific computing problem. The
computations involved in scientific computing are very intense, are highly complex,
and also possess complicated dependencies. In the rest of the chapter, we will
continue to use scientific computation problem words to represent a scientific
workflow. Let's discuss the various mathematical and computing components
required by most scientific computing problems.

In this chapter, we will cover the following topics:

•	 Mathematical components of scientific computations
•	 Scientific computing libraries of Python
•	 An introduction to NumPy
•	 An introduction to SciPy
•	 Data analysis using pandas
•	 Interactive Python (IPython) for interactive programming
•	 Symbolic computing using SymPy
•	 Data visualization using Matplotlib

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[20]

Mathematical components of scientific
computations
First, we will briefly discuss the various mathematical components that may occur in
a scientific computation problem. We will also look for possible methods of solving
problems. However, in this discussion, we will not look into the details of any
method. In the later part, we will discuss the Python APIs relevant to these concepts.

A system of linear equations
The most common mathematical component that arises in most applications of
scientific computing and applied mathematics is the system of linear algebraic
equations. Generally, this system may occur due to approximations of nonlinear
equations by linear equations or differential equations by algebraic equations.

A system of linear equations is a collection of simultaneous linear equations
involving a set of variables, like this for example:

2 x1 + 1 x2 + 1 x3 = 1
1 x1 - 2 x2 - 1 x3 = 2
1 x1 + 1 x2 + 2 x3 = 2

This is a system of three linear equations with three unknown variables: x1, x2,
and x3. A solution for this system is the assignment of numbers to these unknown
variables such that the values satisfy all three equations simultaneously. The solution
for these equations is shown as follows:

x1 = (1/2)
x2 = (-3/2)
x3 = (3/2)

This solution satisfies all three equations. This is why we call these linear equations a
system of linear equations—the equations are supposed to be considered as a system
rather than individual equations. Generally, iterative methods are methods that
require repetition of steps to compute the solution. In programming, this repetition
is performed using any of the available loops. On the other hand, a non-iterative
method uses computational formulas to find the solution. There is a wide variety of
methods of solving systems of linear equations. There are iterative and non-iterative
methods. For example, the Gaussian LU-factorization method and elimination
method are two examples of non-iterative methods. The Jacobi iteration method
and the Gauss-Seidel iteration method are two popular iterative methods.

Chapter 2

[21]

A system of nonlinear equations
A nonlinear system of equations is a set of simultaneous equations in which the
unknown variables appear as polynomials of degree higher than 1. The system can
be single-dimensional or multi-dimensional. Generally, a linear equation is of the
following form. For a given function f, we need to find the value x for which this
condition is true:

f(x) = 0

This value of x is called the root or zero of the equation.

There are two different cases when solving linear equations, as follows. In the first
case, there is a single nonlinear equation with one variable:

f: RàR (scalar)

The solution for such equation is a scalar x for which f(x) = 0. The second case is a
system of n nonlinear equations with n unknown variables:

f: Rn à Rn (vector)

The solution for such types of equations is a vector x for which all components of the
function f are simultaneously zero for all f(x) = 0.

For example, a one-dimensional nonlinear equation is as follows:

3x + sin(x) -ex = 0

Its approximate solution up to two decimal digits is 0.36. An example of a system of
nonlinear equations in two dimensions is given here:

3-x2=y
x+1=y

The solution vectors for the preceding system are [1, 2] and [-2, -1].

There are a number of methods of solving nonlinear equations and systems of
nonlinear equations. For one-dimensional equations, the methods are listed as follows:

•	 Bisection method
•	 Newton's method
•	 Secant method
•	 Interpolation method
•	 Inverse interpolation method
•	 Inverse quadratic interpolation
•	 Linear fractional interpolation

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[22]

Similarly, for a system of nonlinear equations, again we have a number of methods,
as follows:

•	 Newton's method
•	 Secant updating method
•	 Damped Newton's method
•	 Broyden's method

As these methods are iterative methods, their rate of convergence is an important
property to be observed. By convergence, we mean that these methods start with
an approximate solution and proceed towards obtaining the exact solution. The
speed of converging towards a solution is known as the rate of convergence. A
faster converging method is better for obtaining the exact solution as it will take
less time. For some faster methods, such as Newton's method, choosing the initial
approximation is an important step. There is always a possibility that some methods
may not converge to the solution if their initial approximation is not close enough
to the solution. There are some hybrid methods as a trade-off between performance
and guaranteed solution; the damped Newton's method is an example of such a
method. The SciPy package has implementations of a number of methods for solving
systems of nonlinear equations. You can refer to the http://docs.scipy.org/doc/
scipy-0.14.0/reference/generated/scipy.optimize.newton.html to get more
information about the Newton-Raphson method and its implementation.

Optimization
Optimization is the process of trying to obtain the best possible solution. Generally,
it will be the solution that has the maximum or minimum values among all. For
example, if we need to know the cost of any project an organization is working on,
then the option that gives minimum cost will be the optimized option. Similarly, if
the comparison is among various sales strategies, then the strategy that produces
maximum profit will be the optimized option. SciPy has a package for optimization
techniques. You can refer to http://docs.scipy.org/doc/scipy/reference/
optimize.html for more details and the implementation of these methods.
Optimization has applications in various science and engineering domains.
Some of these are as follows:

•	 Mechanics and engineering
•	 Economics
•	 Operations research
•	 Control engineering
•	 Petroleum engineering
•	 Molecular modeling

http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.newton.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.newton.html
http://docs.scipy.org/doc/scipy/reference/optimize.html
http://docs.scipy.org/doc/scipy/reference/optimize.html

Chapter 2

[23]

Interpolation
In science and engineering domains, users have a number of data points obtained
from sampling or some experimentation. These data points represent the values
of a function for particular values of the independent variable. Now, it is often a
requirement to estimate the value of this function for the remaining points within the
range. This process of estimation is called interpolation. It may be achieved by curve
fitting or regression analysis.

For example, consider the following values of an independent variable x and the
corresponding values of the function f:

x 4 5 6 7 8 9 10
f(x) 48 75 108 147 192 243 300

Using the interpolation methods, we can estimate the value of this function for other
values of the variable, such as x=7.5, that is, f(7.5) or f(5.25). Although the
function given in the preceding example is very simple (f(x) = 3x2), it may be any
function from real-life examples. For example, this function may be the temperature
reading of a server room of an Internet data center of an e-commerce organization.
These temperature readings may be taken at some different points in time. The time
for a temperature reading may be a fixed time interval between two readings, or it
may be completely random. In this example, the function is the temperature of the
server room for discrete values of independent, variable time. We need to estimate,
or interpolate, the temperature for the remaining time of the day.

Another example can be as follows: the function is the average number of hours in a
day that the users under study invest/waste in using Facebook or WhatsApp based
on age. Based on this data, we can estimate the number of hours of Facebook or
WhatsApp usage by users of some age other than the age in the data points.

Extrapolation
Another closely related problem is extrapolation. As the name suggests, it is the
extension of interpolation for an estimation beyond the range of values of the
independent variable. For example, if we have been given the values of the number
of hours of Facebook/WhatsApp usage for the values of ages of users from 12 years
to 65 years, then the problem of estimating the number of hours spent by users
who are less than 12 years old and more than 65 years old comes under the scope
of extrapolation. This is because it is beyond the range of the given data points of
independent variables.

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[24]

We have a number of methods available for both interpolation and extrapolation.
The following are the names of some methods of interpolation:

•	 Piecewise constant interpolation
•	 Linear interpolation
•	 Polynomial interpolation
•	 Spline interpolation
•	 Interpolation via Gaussian processes

The followings are some methods of extrapolation:

•	 Linear extrapolation
•	 Polynomial extrapolation
•	 Conic extrapolation
•	 French curve extrapolation

Numerical integration
Numerical integration is the process of approximating the values of an integral using
any numerical techniques. The numerical computation of an integral is also called a
quadrature. We need to approximate numerical integration as there are some functions
that cannot be analytically integrated. Even if a formula exists, it may not be the most
efficient way of calculating the integral. In some situations, we are supposed to integrate
an unknown function for which only some samples of the function are known. Using
numerical integration, we approximate the values of the definite integrals. This is also
based on polynomial fitting through a specified set of points and then integrating the
approximating function. In Python, the SciPy package has a module for integration. For
details about the integration module and its implementation, refer to http://docs.
scipy.org/doc/scipy/reference/integrate.html. There are a number of methods
of solving numerical integration, as follows:

•	 Simpson's rule
•	 Trapezoidal rule
•	 Refined trapezoidal rule
•	 Gaussian quadrature rule
•	 Newton-Cotes quadrature rule
•	 Gauss-Legendre integration

http://docs.scipy.org/doc/scipy/reference/integrate.html
http://docs.scipy.org/doc/scipy/reference/integrate.html

Chapter 2

[25]

Numerical differentiation
Numerical differentiation is the process of estimating the derivative of a function
using the known values of the function. It is highly useful in several situations.
Generally, there are situations wherein we are not well aware whether an underlying
function exists or not and we only have a discrete dataset. In such situations, users
are interested in studying changes in the data that are related to the derivatives.
Sometimes, for the sake of performance and simplicity, we prefer to approximate the
derivative instead of computing its exact value, as the exact formulas are available
but they are very complicated to solve. Differentiation is frequently used to solve
optimization problems. Machine learning techniques also depend on numerical
differentiation most of the time.

The methods of numerical differentiation are as follows:

•	 Finite difference approximation
•	 Differential quadrature
•	 Finite difference coefficients
•	 Differentiation by interpolation

Differential equations
A differential equation is a mathematical equation that can relate a function to its
derivative. The function represents a physical quantity, the derivative corresponds
to the rate of change of this quantity, and the equation is the relationship between
the two. For example, the motion of a freely falling object under the force of gravity
is generally represented using a set of differential equations. Differential equations
have applications in a wide range of fields, including pure and applied mathematics,
physics, engineering, and other subjects. Mainly, these subjects are concerned with
various types of differential equations.

Differential equations are mainly used to model every physical, technical, and
biological process. In many situations, differential equations may not be directly
solvable. Hence, the solutions should be approximated using numerical methods.
Most fundamental laws of physics (for example, Newton's second law and Einstein's
field equations) and chemistry, such as the rate law or rate equation, have been
formulated as differential equations. Differential equations have been used to model
the behavior of complex systems in biology (for example, biological population
growth) and economics (for example, the simple exponential growth model).

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[26]

Differential equations can be categorized into two types: ordinary differential
equations (ODE) and partial differential equations (PDE). An ODE is an equation
that contains a function of one independent variable and its derivatives. On the
other hand, a PDE contains functions of multiple independent variables and their
partial derivatives. The partial derivative of a function with multiple variables is
the derivative of this function with respect to one of the variables. You may refer
to http://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.
integrate.ode.html for the conceptual details and implementation of these
methods in SciPy.

Various methods of solving ODEs are as follows:

•	 Euler's method
•	 Taylor series method
•	 Runge-Kutta method
•	 Runge-Kutta fourth order formula
•	 Predictor-corrector method

The followings are some methods used to solve PDEs:

•	 Finite element method
•	 Finite difference method
•	 Finite volume method

The initial value problem
The initial value problem is an ordinary differential equation along with the value of
an unknown function at a point in the solution domain, for example, dy/dx = f(x,y),
where, y=y1 for x=x1.

The boundary value problem
The boundary value problem is, again, a differential equation with some constraints,
and its solution is the solution for the differential equation that satisfies these given
constraints. These constraints are called boundary conditions.

http://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.integrate.ode.html
http://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.integrate.ode.html

Chapter 2

[27]

Random number generator
In computation, the random number generator is an algorithm or process that
generates a sequence of numbers that doesn't follow any pattern, which is why
they are called random numbers. It is almost impossible to predict the number to
be generated. The number of applications using random numbers is increasing day
by day, and so it has led to the development of many methods for random number
generation. This concept has been used for a long time, such as using dice, coin
flipping, using playing cards, and many more methods. However, these methods
have limited values for random numbers.

Computational methods of random number generation soon became popular for
a wide variety of applications, such as statistical sampling, gambling, designing
for random design generation, computerized simulation of various science and
engineering concepts, and a number of other areas that demand unpredictable
results, such as cryptography.

There are two main categories of random number generators, namely true random
number generators and pseudo-random number generators. A true random number
generator uses some physical phenomenon to generate a random number, for
example, the actual read or write time taken by hard disk, whereas a pseudo-random
number generator uses a computational algorithm for random number generation.
There is also a third category of random number generators. They are based on
statistical distributions, such as Poison distribution, exponential distribution, normal
distribution, Gaussian distribution, and many more.

Various pseudo-random number generators are as follows:

•	 Blum Blum Shub
•	 Wichmann-Hill
•	 Complementary-multiply-with-carry
•	 Inversive congruential generator
•	 ISAAC (cipher)
•	 Lagged Fibonacci generator
•	 Linear congruential generator
•	 Linear-feedback shift register
•	 Maximal periodic reciprocals
•	 Mersenne twister
•	 Multiply-with-carry

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[28]

•	 Naor-Reingold pseudo-random function
•	 Park–Miller random number generator
•	 Well-equidistributed long-period linear

Python scientific computing
Python's support for scientific computing is composed of a number of packages and
APIs for different functionalities required for scientific computing. For each category,
we have multiple options and a most popular choice. The following are the examples
of Python scientific computing options:

•	 Chart plotting: At present, the most popular two-dimensional chart plotting
package is matplotlib. There are several other plotting packages, such as
Visvis, Plotly, HippoDraw, Chaco, MayaVI, Biggles, Pychart, and Bokeh.
There are some packages that are built on top of matplotlib to provide
enhanced functionality, such as Seaborn and Prettyplotlib.

•	 Optimization: The SciPy stack has an optimization package. The other
choices for the optimization functionality are OpenOpt and CVXOpt.

•	 Advanced data analysis: Python supports integration with the R statistical
package for advanced data analysis using RPy or the RSPlus-Python
interface. There is a Python-based library for performing data analysis
activities called pandas.

•	 Database: PyTables is a package for managing hierarchical databases. This
package is developed on top of HDF5 and is designed to efficiently process
large datasets.

•	 Interactive command shell: IPython is a Python package that supports
interactive programming.

•	 Symbolic computing: Python has packages such as SymPy and PyDSTool
for supporting symbolic computing. Later in this chapter, we are going to
cover the idea of symbolic computing.

•	 Specialized extensions: SciKits provides special-purpose add-ons for SciPy,
NumPy, and Python. The following a select list of Scikits packages:

°° scikit-aero: Aeronautical engineering calculations in Python
°° scikit-bio: Data structures, algorithms, and educational resources

for bioinformatics
°° scikit-commpy: Digital communication algorithms with Python
°° scikit-image: Image processing routines for SciPy

Chapter 2

[29]

°° scikit-learn: A set of Python modules for machine learning and
data mining

°° scikit-monaco: Python modules for Monte Carlo integration
°° scikit-spectra: Spectroscopy in Python built on pandas
°° scikit-tensor: A Python module for multilinear algebra and

tensor factorizations
°° scikit-tracker: Object detection and tracking for cell biology
°° scikit-xray: Data analysis tools for X-ray science
°° bvp_solver: A Python package for solving two-point boundary

value problems
°° datasmooth: The Scikits data smoothing package
°° optimization: A Python module for numerical optimization
°° statsmodels: Statistical computations and models for use with SciPy

•	 Third-party or non-scikit packages/applications/tools: There are a number
of projects that have developed packages/tools for specific fields of science,
such as astronomy, astrophysics, bioinformatics, geosciences, and many
more. The following are some selected third-party packages/tools in Python
for specific scientific fields:

°° Astropy: A community-driven Python package used to support
astronomy and astrophysics computations

°° Astroquery: This package is a collection of tools used to access
online astronomy data

°° BioPython: This is a collection of toolkits used to perform biological
computations in Python

°° HTSeq: This package supports the analysis of high-throughput
sequencing data in Python

°° Pygr: This is the toolkit for sequence and comparative genomic
analysis in Python

°° TAMO: This is a Python application used to analyze transcriptional
regulation using DNA sequence motifs

°° EarthPy: This is a collection of IPython notebooks that have
examples from the earth science domain

°° Pyearthquake: A Python package for earthquake and MODIS
analysis

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[30]

°° MSNoise: This is a Python package for monitoring seismic velocity
change using ambient seismic noise

°° AtmosphericChemistry: This tool supports exploration,
construction, and conversion of atmospheric chemistry mechanics

°° Chemlab: This package is a complete library used to perform
computations related to chemistry

Introduction to NumPy
Python programming is extended to support large arrays and matrices and a
library of mathematical functions to manipulate these arrays. These arrays are
multidimensional and this Python extension is called NumPy. After the success
of the basic implementation of NumPy, it is extended with a number of APIs/
tools, including matplotlib, pandas, SciPy, and SymPy. Let's take a look at the
brief functionality of each of the subtools/sub-APIs of NumPy.

The SciPy library
SciPy is Python library designed and developed for scientists and engineers for
performing operations related to scientific computing. It supports functionalities for
different operations, such as optimization, linear algebra, calculus, interpolation,
image processing, fast Fourier transformation, signal processing, and special
functions. It solves ODEs and performs other tasks required in science and
engineering. It is built on top of the NumPy array object and is a very essential
component of the NumPy stack. This is why the NumPy stack and the SciPy stack
are sometimes used as the same reference.

The SciPy Subpackage
The various subpackages of SciPy include the following:

•	 constants: These are physical constants and conversion factors
•	 cluster: Hierarchical clustering, vector quantization, and K-means
•	 fftpack: Discrete Fourier transform algorithms
•	 integrate: Numerical integration routines
•	 interpolate: Interpolation tools
•	 io: Data input and output
•	 lib: Python wrappers to external libraries
•	 linalg: Linear algebra routines

Chapter 2

[31]

•	 misc: Miscellaneous utilities (for example, image reading and writing)
•	 ndimage: Various functions for multidimensional image processing
•	 optimize: Optimization algorithms, including linear programming
•	 signal: Signal processing tools
•	 sparse: Sparse matrices and related algorithms
•	 spatial: KD-trees, nearest neighbors, and distance functions
•	 special: Special functions
•	 stats: Statistical functions
•	 weave: A tool for writing C/C++ code as Python multiline strings

Data analysis using pandas
The pandas library is an open source library designed to provide high-performance
data manipulation and analysis functionalities in Python. Using pandas, users
can process complete data analysis workflows in Python. Also, using pandas,
the IPython toolkit, and other libraries, the Python environment for performing
data analysis becomes very good in terms of performance and productivity. The
pandas library has only one drawback; it supports only linear and panel regression.
However, for other functionalities, we can use statsmodels and scikit-learn. The
pandas library supports efficient merging and joining of datasets. It has bundles of
tools for reading and writing data among different types of data sources, including
in-memory, CSV, text files, Microsoft Excel, SQL databases, and the HDF5 format.

A brief idea of interactive programming
using IPython
Python supports interactive computing in multiple programming languages with
the help of IPython. IPython is a command shell especially designed for Python
programming, and now it supports multiple languages. It offers excellent introspection
functionality, new shell syntax, command-line text completion, and command history.
Introspection is the capability of programming a command-line environment to
examine various characteristics (properties, methods, and other details, such as the
superclass). IPython has a number of features, including the following:

•	 Command-line-based and QT-based interactive shell
•	 A browser-based notebook that supports coding, mathematical expressions,

inline graphics, and graphs

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[32]

•	 It also has the capability to support interactive data visualization and other
graphical user interfaces

•	 Support for high-performance parallel computing

IPython parallel computing
IPython has excellent support for parallel and distributed computing to facilitate
large-scale computing. It has the capabilities for the development, execution,
debugging, and monitoring of parallel or distributed applications. IPython supports
most styles of parallelism, including the following, and any hybrid approach made
from them:

•	 Single program multiple data (SPMD) parallelism
•	 Multiple program multiple data (MIMD) parallelism
•	 Message Passing Interface (MPI)
•	 Task and data parallelism
•	 Custom user-defined approaches

IPython Notebook
IPython Notebook is a Web-based interactive computation environment. This
environment is used to create IPython notebooks. It takes single-user inputs or single
expressions, evaluates them, and returns the result to the user. This functionality
is called read, evaluate, print, and looping (REPL). For REPL, the user can use the
following Python libraries:

•	 IPython
•	 ØMQ (ZMQ)
•	 Tornado (web server)
•	 jQuery
•	 Bootstrap (frontend framework)
•	 MathJax

Chapter 2

[33]

The notebook program creates a local web server on the computer to access it from a
web browser. The IPython notebook is a JSON document used to perform different
types of computations using coding, text, mathematical operations, graphics, and
plotting. These notebooks can be exported to various formats using web-based and
command-based options. The supported formats are HTML, LaTeX, PDF, Python,
and many more.

The Python notebook development process is presented in the following figure. It
starts from the left by preparing the data and then developing the program and its
versioning. After the program development, it can be exported to various formats.

Input Data

Ipython
Notebook

Program
Versioning
System

Programming

Scientific
Work

Wiki/
Blogs/
Online
Books

Notebook
Viewer

LaTeX

PDF

HTML

Web/
Github
GIST

Python

Export Formats

Online Data

On premise data
in text files,
database or
unstructured

Some other remarkable features of IPython are as follows:

•	 Non-blocking interaction with GUI libraries and toolkits: IPython supports
non-blocking interaction with a number of Python-based GUI toolkits/
libraries, including Tkinter, PyGTK, PyQt, and wxPython

•	 Cluster management: IPython supports computing the cluster management
facility using MPI/asynchronous status callback messages

•	 Unix-like environment: The default behavior of IPython is almost similar to
that of the Unix shells that support customization of the environment

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[34]

A screenshot of the IPython user interface is depicted here (the source is
http://ipython.org/notebook.html):

The user interface of the IPython Notebook interface

The following are various functional features of the IPython command shell:

•	 Tab completion: The user need not type complete commands. After typing
only the initial few characters the remaining command can be completed by
pressing Tab.

•	 Exploring your objects: Various properties of an object can be determined
using the introspection facility.

•	 Magic functions: There are a number of magic functions that can be called
by users.

•	 Running and editing: Users can execute and edit Python scripts from the
command shell.

http://ipython.org/notebook.html

Chapter 2

[35]

•	 Debugging: A strong debugging facility is also bundled with the
command shell.

•	 History: The command shell stores the history of commands and their results.
•	 System shell commands: Users can also use the command provided by the

system shell.
•	 Define your own system aliases: Users can define the aliases of the

command as per their preferences.
•	 Configuration: IPython environment can be customized using the

configuration files.
•	 Startup files: Users can customize the environment to run some commands

or code at the beginning of the IPython session.

Symbolic computing using SymPy
Symbolic computation manipulates mathematical objects and expressions. These
mathematical objects and expressions are represented as they are, and they are not
evaluated/approximated. Expressions/objects with unevaluated variables are left in
their symbolic form.

Let's see the difference between computerized normal computation and computerized
symbolic computation in the following diagram. We have two examples each for
both the cases. Example A1 and Example A2 are examples of normal computation,
and Example B1 and Example B2 are examples of symbolic computation. Example
A1 and Example A2 have obvious output. Let's take a look at the output of Example
B1 and Example B2. The output of Example B1 is the same sqrt(3). No evaluation
is performed; it's only the original symbols. This is because in symbolic computing, if
the argument for the sqrt function is not a perfect square, then it will be left as it is.
On the other hand, in Example B2, the output is slightly simpler. The reason is that
for this example, it is possible to simplify the answer; sqrt(27) can be written as
sqrt (9 X 3) or 3(sqrt(3), so it is simplified to 3sqrt(3).

Example A1:
>>>importmath
>>>math.sqrt(16)
4.0

Example A1:
>>> importmath
>>> math.sqrt(27)
5.19615242271

A. Normal Compulation

Example B1:
>>>import sympy
>>>math.sqrt(3)
sqrt(3)

Example B2:
>>> importsympy
>>> sympy.sqrt(27)
3*sqrt(3)

B. Symbolic Compulation

Comparison of normal computation and symbolic computation

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[36]

The features of SymPy
As it is a symbolic computation library, SymPy has the ability to perform all types
of computations symbolically. It can simplify expressions (as we have seen for
sqrt(8)); compute differentiation, integration, and limits; and solve equations,
matrix operations, and various other mathematical functions. All of these
functionalities are performed symbolically.

Let's discuss the various features of SymPy. The SymPy library is composed of core
capabilities and a number of optional modules. The following are the functionalities
supported by SymPy:

•	 Core capabilities such as basic arithmetic and simplification, and pattern
matching functions such as trigonometric, hyperbolic, exponential,
logarithms, and many more

•	 It supports polynomial operations, for example, basic arithmetic,
factorization, and various other operations

•	 The calculus functionality, for example, limits, differentiation, integration,
and more

•	 Solving various types of equations, for example, polynomials, systems of
equations, and differential equations

•	 Discrete mathematics
•	 The functionality of matrix representations and operations
•	 Geometric functions
•	 Plotting with the help of an external pyglet module
•	 Support for physics
•	 Performing statistical operations, such as probability and distributions
•	 Various printing functionalities
•	 Code generation for programming languages and LaTeX

Why SymPy?
SymPy is an open source library and is licensed under the liberal BSD license. You
are allowed to modify the source code. This is not the case with other alternatives,
such as Maple and Mathematica. Another advantage of SymPy is that it is designed,
developed, and executed in Python. For a Python developer, this brings an added
advantage. This library is highly extensible in comparison to alternative tools.

Chapter 2

[37]

The plotting library
The chart plotting library of Python is named matplotlib. It provides an object-
oriented API for addition of charts in an application developed using various Python
GUI toolkits. SciPy/NumPy uses matplotlib to draw 2D charts of arrays. The design
philosophy behind matplotlib is to simplify the plotting functionality. The user can
easily create various types of plots using few function calls, or only one function call.
There are some specialized toolkits/APIs that extend the functionality of matplotlib.
Some of these tools are bundled with matplotlib, and others are available as separate
downloads. Some of them are listed here:

•	 Basemap is a map plotting toolkit
•	 The Cartopy package is used to easily make drawing maps for data analysis

and visualization
•	 Excel tools supports exchange of data with Microsoft Excel
•	 Interfaces for Qt and GTK+
•	 mplot3d can be used to draw 3D plots

The various types of the charts that can be plotted using matplotlib are given in the
following table. These screenshots of charts have been taken from the matplotlib web
page at http://matplotlib.org/users/screenshots.html:

Different types of graphs:

Simple plot Subplot demo with multiple axes

http://matplotlib.org/users/screenshots.html

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[38]

Histograms Path demo

mplot3d: 3D Graphs Stream plot: For plotting the streamlines
of a vector field

Chapter 2

[39]

Bar charts Pie charts

Polar Plots Log plots

A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes

[40]

Financial charts: For drawing sophisticated financial plots by combining
the various plot functions, layout commands, and labeling tools provided
by matplotlib.

Summary
In this chapter, we discussed many concepts of mathematical and numerical analysis,
including systems of linear and nonlinear equations, optimization, interpolation,
extrapolation, numerical differentiation and integration, differential equations, and
random number generators.

In the second part of the chapter, we briefly discussed the various packages/
toolkits/APIs meant for performing scientific computing in the Python language.
We also discussed the functionality and features of NumPy, SciPy, IPython, SymPy,
matplotlib, and pandas.

In the next chapter, we will discuss how to prepare and manage data for scientific
computations.

[41]

Efficiently Fabricating and
Managing Scientific Data

This chapter is all about data for scientific computations. It introduces the concepts
of this data, and then covers the various toolkits used to manage this data and the
operations to be performed on it. After that, various data formats and random-
number-based techniques for generating synthetic numerical data are discussed.

In this chapter, we will cover the following topics:

•	 The basics of data, information, and knowledge
•	 The concepts of various pieces of data storage software and tools
•	 Operations that can be performed on the data
•	 Details of the standard formats for scientific data
•	 A discussion on ready-to-use datasets
•	 Synthetic data generation using random numbers
•	 The idea of large-scale datasets

The basic concepts of data
A raw and unorganized form of facts and figures about an entity is called data. Any
factual quantity or value in an unorganized/raw form (such as a series of numbers or
alphabets) that represents a concept, phenomenon, object, or entity in the real world
can be considered as data. There are no limits to data, and it is available everywhere.

Efficiently Fabricating and Managing Scientific Data

[42]

Data can be transformed into information and can be useful for achieving the goals
of its organization. There are certain properties that, when added to data, make it
information. Accurate and timely data is called information if it is organized for a
specific purpose and prepared and presented in a particular context. This gives a
meaning and relevance to that data.

Data and information can further be transformed into knowledge by adding insights
using domain experience. This knowledge requires vast experience of dealing
with data related to the specific application, such as commodity price or weather
forecasting.

Now, let's consider a scientific example of data, information, and knowledge.
Obviously, 79 °F is a temperature reading and it is data. If we add some details
along with this reading—for example, this is the temperature of the Gateway of
India, Mumbai, India at 5:30 P.M. on March 3, 2015—then it is information. On the
basis of the hourly temperature readings of this particular week for a number of
years, predicting the temperature of the next week is knowledge. Similarly, on the
basis of some information on heavy snowfall in the last two days in northern India,
concluding that the temperature of central India will also drop by certain degrees is
knowledge. The relationship between data, information, and knowledge is depicted
in the following figure. This process starts with data collected from experiments
and then extracts information from this data. Finally, after a detailed analysis of
this information, we interpret knowledge from it.

The pyramid of data, information, and knowledge

Chapter 3

[43]

Data storage software and toolkits
Generally, the concepts involving computer science change very fast with time, and
the software and tools for storing data evolve rapidly. Hence, at present, there are
a number of pieces of software and toolkits available in the market for storing data.
There are two major categories of data storage software and toolkits. Again, in each
category, there are a number of subcategories. The taxonomy of various data-storing
software pieces/toolkits used to manage and store data is depicted in this figure:

Data

Database

Files Unstructured

Structured

Semi-
structured

Scheme
Oriented

Scheme-free

NoSQL/
In-memory/
Graph
Databases

Relational,
Hierarchical,
Network model
based Databases

XML
JSON

Emails,
documents

CSV,
Fixed Width

Taxonomy of software/toolkits for data storage and management

Files
The first category includes the software or tools that store data in flat files of different
formats. The subcategories of flat files are structured and unstructured files.
By "structured files," we mean files that have a predefined/fixed structure for
storing data. Whereas, in unstructured files, there is no predefined structure to
store the data. Generally, these two types of files store text data, while for some
specific scientific applications, they may include images, audio, video, and other
non-text data.

Efficiently Fabricating and Managing Scientific Data

[44]

Structured files
An example of structured files may be text files with Comma-separated Values
(CSV). In such files, various data fields are separated by a comma or a delimiter. This
delimiter can be any character or symbol. Preferably, this symbol must be a symbol
that doesn't occur in the data to be stored. For example, if we are storing monetary
values in our data, then a comma will not be a suitable choice for the delimiter.

Consider the following record of a CSV file: H.K. Mehta, 08-Oct-1975, Higher
Education department, 50,432.

The preceding records have a name, date of birth, department name, and monthly
salary. Now, for the CSV file, blank space, dot (.), comma (,), and dash (-) are not
recommended as the delimiter for the fields. If we choose any one of these—blank
space dot, comma, or dash—as the delimiter, then the comma will treat the amount
as two values, and similarly, the dash (-) will treat the date of birth as three different
values. The dot (.) will treat the name as three different values, and the department
name will be divided into three values if blank space is the delimiter. For the records
mentioned here, the delimiter can be one of other symbols, such as the question mark
(?) or pipe (|). Generally, in commercial values, the pipe (|) is the most frequently
used delimiter.

A fixed-width file is another example of a structured file. In such files, the total size
of each field is predefined and maintained throughout the file. If the size for a field in
a specific record is either smaller or larger than the predefined fixed size of that field,
then for that particular record, either that field is padded with blank spaces (if it is
smaller) or it is trimmed to reduce its size.

Unstructured files
Examples of unstructured files are web server logs, books, journals, and e-mails.
This includes both text and non-text data. Text data includes data that can be
represented by any character encoding scheme, such as American Standard Code
for Information Interchange (ASCII) or Unicode. There is another category of file-
based data stores, called semi-structured. It does not have the formal structure in
accordance with the structure of relational and other databases. The semi-structured
approach uses tags or other markers to separate fields, add appropriate meanings to
the values, and create the structures of records and fields. Examples of such data are
XML and JSON. The advantage of these data types is that they are of language and
platform independent formats. Hence, their manipulation doesn't change with the
language or platform.

Chapter 3

[45]

Database
The products of the second category store data in a database. Besides files, there
are a variety of databases for storing computational data. These databases may be
divided into two main categories: schema-based databases and databases that have
no schema. Schema-based databases are traditional databases that force the user to
create structures before storing data. On the other hand, schema-free databases are
a recent advancement in the field of large-scale databases, made to cope up with
the demands of large-scale applications. Some examples of schema-based databases
are MySQL, Oracle, MS SQL Server, Postgres and more. MongoDB, HBSE, and
Cassandra are examples of no-schema databases.

Possible operations on data
Besides storing data, there are a number of operations that need to be performed to
manage and use it effectively:

•	 Data farming: The process of using high-performance computing to run
a set of simulations for a number of times on huge datasets is called data
farming. The output of data farming is a vast view of the visible features and
characteristics from the data; it supports the decision-making process. It is an
integration of multiple disciplines, including high-performance computing,
data analysis and visualization, and large-scale databases.

•	 Data management: Data management is a broad term that consists of a
number of operations to be performed on the data, including the following:

°° Data governance: This is the main control. It ensures that the
entered data possesses the desired standards defined during its
modeling. This data entry may be performed manually or by an
automated process.

°° Data architecture, analysis, and design: Data architecture involves
applying various models, processes, algorithms, rules, or standards
on what data has to be collected, how to structure the storing of the
data, and how to integrate it. The analysis and design of the data
involve the process of cleaning and transforming it to be useful for
the benefit of the organization.

°° Database administration: Administration of data is a complex task
involving a number of related activities, such as development and
designing of the database, database monitoring, overall system
monitoring, improving the database's performance, database capacity
and extension planning, security planning and implementation,
and maintenance.

Efficiently Fabricating and Managing Scientific Data

[46]

°° Data security management: This includes management activities
related to the security of the data, including access rights
management, data privacy management, and other aspects related
to the security of the data (such as data cleaning/wiping, encryption,
masking, and backups).

°° Data quality management: This is the task related to improving the
quality of data. It involves a number of operations, including the
following:

°° Cleansing of the data by detecting and correcting corrupt
or inaccurate records of datasets, called dirty data.

°° Data integrity is the process of assuring data accuracy and
consistency during different periods and processing on
the data.

°° Data enrichment is the process of refining or enhancing
the data with a focus on improving its quality by searching
for misspellings or typographical errors according to the
domains of the data. For example, in any condition, marks
obtained cannot be more than the maximum possible marks.
In such cases, we must correct those records that have marks
greater than the maximum marks.

°° Data integration is a complicated process that requires
extensive experience, as it combines data from a number
of sources by converting them into a uniform structure,
without affecting its meaning.

°° Data warehouse management: Data warehouse management
involves the process of preparation of a data mart, performing
data mining, and performing various operations related to data
movement, such as extraction, translation, and loading (ETL).

°° Metadata management: This is the process of management of the
data about the actual data stored in the database. This management
data is called metadata. Metadata includes descriptions of the stored
data, the date and time of data creation and modification, the owner
of the data, its location on a physical device, and other related details.

•	 Importing and exporting of data: These are very important operations for
any kind of application, whether it is a commercial application or a scientific
application. Generally, care must be taken while performing import and
export operations. The user needs to take into consideration the nature of the
application for which they are exporting or importing the data. Accordingly,
the proper format may be selected.

Chapter 3

[47]

•	 Scientific data archiving: This is the process of storing scientific data for
a long time based on the application and organizational policies about
how much of the data the scientists should store and the accessibility
level management of this data.

Scientific data format
There are a number of formats/forms available for storing scientific data. Generally,
most scientific computation APIs/languages/toolkits support import and export
operations on these formats. Some of the popular formats are as follows:

•	 Network Common Data Form (NetCDF): This is a self-describing and
machine/device/platform-independent data format that supports
manipulation (creation, access, and sharing) of large array-based scientific data.
It is also bundled with a set of software libraries for creation and manipulation.
Generally, this format is used in applications such as weather forecasting,
climate change from climatology and meteorology, the oceanography domain,
and GIS applications. Most GIS applications support NetCDF as an input/
output format, and it is also used for general scientific data exchanges.
The main source of this format is the Unidata program at the University
Corporation for Atmospheric Research (UCAR). The project's home page is
hosted by them. There is a popular quote from their website at http://www.
unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit:

"NetCDF (network Common Data Form) is a set of interfaces for
array-oriented data access and a freely-distributed collection of data
access libraries for C, Fortran, C++, Java, and other languages. The
NetCDF libraries support a machine-independent format for repre-
senting scientific data. Together, the interfaces, libraries, and format
support the creation, access, and sharing of scientific data."

•	 Hierarchical Data Format (HDF): This is a set of file formats that have
evolved in different versions (HDF4 and HDF5). This data format provides
facilities to store and organize a large amount of numerical data. It was
developed at the National Center for Supercomputing Applications, and
now it is supported by the nonprofit HDF Group, which ensures further
development of the HDF5 format and associated tools/technologies. This is a
very popular format for scientific data, and HDF is supported by a number of
tools, languages, technologies, and platforms, including Java APIs, MATLAB,
Octave, Scilab, Python APIs, R APIs, and more.

http://www.unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit
http://www.unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit

Efficiently Fabricating and Managing Scientific Data

[48]

•	 Flexible Image Transport System (FITS): This is an open standard that
defines a digital file format to manage image files used for scientific and
other applications. This format is mainly used in astronomical applications.
It has several options for describing photometric and spatial calibration
information, along with other metadata. The first standardization of the FITS
format was in 1981. Its most recent version was standardized in 2008. FITS
can also be used to store non-image data, such as spectra, data cubes, or even
databases. There is an important feature supported by FITS; the new version
of the format is always kept backward compatible. Another important
feature is that the metadata of the file is stored in human-readable ASCII
characters in the header. This will help users analyze the file and understand
the data stored in it.

•	 Band-Interleaved Data/Band-Interleaved Files: These are binary formats.
This means that data is stored in non-text files, and generally, this format is
used in remote sensing and high-end GIS. There are two subtypes of these
files, namely Band Interleaved by Line (BIL) and Band Interleaved by
Pixel (BIP).

•	 Common Data Format (CDF): This is a popular format for storing scalar
and multidimensional platform-independent data. Hence, it is used to store
scientific data and is popular as a data exchange format among researchers
and organizations. The Space Physics Data Facility (SPDF) provides a
CDF software toolkit as part of the Goddard Space Flight Center (GSFC)
for manipulation of data. CDF also supports very good interfaces for a
number of programming languages, tools, and APIs, including C, C++, C#,
FORTRAN, Python, Perl, Java, MATLAB, and IDL.

There are a number of common features of various scientific data formats, as follows:

•	 These formats support both sequential-access and random-access reading
of data.

•	 They are designed to efficiently store large volumes of scientific data.
•	 These formats contain the metadata for supporting the self-description

capability.
•	 These formats, by default, support ordering of objects, grids, images,

and ndarrays.
•	 These formats are not updatable. The user can append data at the end.
•	 They support machine portability.
•	 Most of these formats are standardized.

Chapter 3

[49]

The various data formats discussed here can be used to store data of any subject
and its subdomain. However, there are certain data formats specially designed for
particular subjects. The following is a list of subject-specific data formats. I have
not given any description for these subject-specific formats; readers with specific
interests may refer to their origin:

•	 Formats for astronomical data:
°° FITS: The FITS astronomical data and image format (.fit or .fits)
°° SP3: GPS and other satellite orbits (.sp3)

•	 Format for storing medical imaging data:
°° DICOM: DICOM-annotated medical images (.dcm, .dic)

•	 Formats for medical and physiological data:
°° Affymetrix: The Affymetrix data format (.cdf, .cel, .chp, .gin,

.psi)
°° BDF: The BioSemi data format (.bdf)
°° EDF: The European data format (.edf)

•	 Formats for chemical and biomolecular data:
°° MOL
°° SDF
°° SMILES
°° PDB
°° GenBank
°° FASTA

•	 Format for seismographic (earthquake-related science and engineering) data:
°° NDK: The NDK seismographic data format (.ndk)

•	 Format for weather data:
°° GRIB: The GRIB scientific data format (.grb, .grib)

Efficiently Fabricating and Managing Scientific Data

[50]

Ready-to-use standard datasets
Several government, collaborative, and research efforts are continuously going
on to develop and maintain standard datasets for different subjects and domains
inside subjects. These datasets are available for the public to download or to
work offline, or they can also have the facility of online computations over these
datasets. One such notable effort is named Open Science Data Cloud (OSDC),
which has several datasets on each subject. This list, compiled from various open
data sources, is available. They also host data on their web portal (https://www.
opensciencedatacloud.org/publicdata/). A subject-wise list of selected datasets
from OSDC is as follows:

•	 Agriculture:
°° The U.S. Department of Agriculture's plants database

•	 Biology:
°° 1,000 genomes
°° Gene Expression Omnibus (GEO)
°° MIT cancer genomics data
°° Protein data bank

•	 Climate/weather:
°° Australian weather
°° Canadian Meteorological Centre
°° Climate data from UEA (updated monthly)
°° Global climate data Since 1929

•	 Complex networks:
°° CrossRef DOI URLs
°° The DBLP citation dataset
°° NIST complex network data collection
°° UFL sparse matrix collection
°° The WSU graph database

•	 Computer networks:
°° 3.5 B web pages from Common Crawl 2012
°° 53.5 B web clicks of 100,000 users in Indiana University
°° CAIDA Internet datasets
°° ClueWeb09—1B web pages

https://www.opensciencedatacloud.org/publicdata/
https://www.opensciencedatacloud.org/publicdata/

Chapter 3

[51]

•	 Data challenges:
°° Challenges in machine learning
°° DrivenData competitions for social good
°° The ICWSM Data Challenge (since 2009)
°° Kaggle competition data

•	 Economics:
°° American Economic Association (AEA)
°° EconData from UMD
°° Internet product code database

•	 Energy:
°° AMPds
°° BLUEd
°° Dataport
°° UK-Dale

•	 Finance:
°° CBOE futures exchange
°° Google Finance
°° Google Trends
°° NASDAQ

•	 "Geospace"/GIS:
°° BODC—marine data of about 22,000 vars
°° Cambridge, MA, US, GIS data on GitHub
°° EOSDIS—NASA's earth-observing system data
°° Geospatial data from ASU

•	 Healthcare:
°° EHDP large health datasets
°° Gapminder World—demographic databases
°° Medicare Coverage Database (MCD), USA
°° The Medicare data file

Efficiently Fabricating and Managing Scientific Data

[52]

•	 Image processing:
°° 2 GB of photos of cats
°° Affective image classification
°° Face recognition benchmark
°° Massive Visual Memory Stimuli, MIT
°° The SUN database, MIT

•	 Machine learning:
°° Discogs monthly data
°° eBay online auctions (2012)
°° The IMDb database
°° The Keel repository for classification, regression, and time series
°° The Million Song Dataset

•	 Museums:
°° Cooper-Hewitt's collection database
°° Minneapolis Institute of Arts metadata
°° Tate Collection metadata
°° The Getty vocabularies

•	 Natural language:
°° Blogger Corpus
°° ClueWeb09 FACC
°° Google Books Ngrams (2.2 TB)
°° Google Web 5gram (1 TB in 2006)

•	 Physics:
°° The CERN open data portal
°° NSSDC (NASA) data of 550 spacecraft

•	 Public domain:
°° The CMU JASA data archive
°° The UCLA SOCR data collection
°° UFO reports
°° WikiLeaks 911 pager intercepts

Chapter 3

[53]

•	 Search engines:
°° Academic torrents of data sharing from UMB
°° Archive-it from Internet Archive
°° DataMarket (Qlik)
°° Statista.com— statistics and Studies

•	 Social sciences:
°° The CMU Enron Email dataset of 150 users
°° Facebook social network from LAW (since 2007)
°° The Foursquare social network in 2010 and 2011
°° Foursquare from UMN/Sarwat (2013)

•	 Sports:
°° Betfair historical exchange data
°° Cricsheet matches (baseball)
°° Ergast Formula 1, from 1950 to present day (API)
°° Football/soccer resources (data and APIs)

•	 Time series:
°° Time Series Data Library (TSDL) from MU
°° UC Riverside time series dataset
°° Hard drive failure rates

•	 Transportation:
°° Airlines' OD data from 1987 to 2008
°° Bike Share Systems (BSS) collection
°° Bay Area bike share data
°° Hubway Million Rides in MA
°° Marine traffic—ship tracks, port calls, and more

Efficiently Fabricating and Managing Scientific Data

[54]

Data generation
For some applications, if the user does not have data that can be used for
computations, then they need to generate that data before performing computations. It
can be generated in three ways: it can be collected personally, collected by instruments,
or (for some specific applications) generated synthetically on computers.

There are some applications for which data is supposed to be collected personally;
for example, if an application requires biometric data of a person, the data may be
collected personally by setting up a data collection and requesting volunteers to
support the biometric data collection. This collection must be performed personally,
as this data cannot be produced on computers or using instruments. For this specific
application, there is a possibility that the users get support from the government
in order to obtain such data from governmental databases, such as the databases
of biometric details collected during visa processing, or a nationwide project such
as person registration databases of USA government or data collected during the
unique identification project (ADHAAR) in India.

For some specific experiments, the data can be generated using a number of
instruments that provide the readings of the users interested. For example, weather-
related data can be generated using instruments as follows: we can place a number
of temperature recorders at different places and periodically collect their readings.
Using some specialized sensors, we can also collect weather- or health-science-
related data. For example, the pulse rate and blood-pleasure-related information can
be collected using specially designed smart belts or watches distributed to various
persons, and the information can be collected from a built-in GPS system within
these devices that will periodically use the push or pull method.

Synthetic data can be generated for a number of experiments that require numerical
or text data, as these are pieces of data that may be produced on computers
without any specific instruments, using a program that generates the data as per
the predefined constraints. To generate text data, existing offline text data or online
web pages that have text information may be used to generate new samples for
processing. For example, text mining and linguistic processing sometimes require
sample text data.

Synthetic data generation (fabrication)
In this section, we will discuss the various methods of synthetic numerical data
generation. We will also present an algorithm for random number generation using
the Poisson distribution and its Python implementation. Furthermore, we will
explore different methods for synthetic text data generation.

Chapter 3

[55]

Using Python's built-in functions for random
number generation
Python has a module named random that implements various pseudo-random
number generators on the basis of various statistical distributions. This module has
functions for various types of randomness, such as for integers, for sequences, for
random permutations of a list, and to generate a random sample from a predefined
population. The Python random module supports random number generation using
various statistical distributions, including uniform, normal (Gaussian), lognormal,
negative exponential, gamma, and beta distributions. To generate a uniform random
angle, Python provides the von Mises distribution. Most of the modules of the
random number generator in Python depend on a basic function named random().
This function generates random floating-point numbers in a semi-open range
([0.0, 1.0)).

Mersenne Twister is the main random number generator of Python. It is capable
of producing random floating point numbers of 53-bit precision with the period
of 2**19937-1. It is written on top of the underlying implementation in C, which is
thread-safe and fast. This is one of the most extensively used and tested random
number generators. However, it is not suitable for all applications, as it is completely
deterministic. Hence, it is not at all appropriate for security-related computations.
The random module also provides a SystemRandom class, which generates random
numbers using the os.urandom() function from the facility provided by the
operating system. This class can be used to generate random numbers to be used
for cryptographic purposes.

The functions of the random module are bound methods of a hidden instance of the
random.Random class. However, the user can have their own instance of the Random
class. The advantage is that this instance doesn't share the state. Moreover, if the user
requires designing of a new random number generator, then this class can also be
extended/inherited to create a new subclass of Random. In this situation, the user is
supposed to override five methods: getstate(), jumpahead(), random(), seed(),
and setState().

Let's discuss the various built-in methods of the Python random module. These
functions are divided into categories, as discussed in the following section.

Efficiently Fabricating and Managing Scientific Data

[56]

Bookkeeping functions
Various bookkeeping functions of the random module are as follows:

•	 random.seed(a=None, version=2): This function initializes the random
number generator. If the user passes an integer value to a, then that value is
used. If no value is passed to a or if it is none, then the present system time
is used as the seed value. If the operating system being used supports the
randomness sources, then they will be used instead of the system time as a
seed value.

•	 random.getstate(): This function returns an object that represents the
current internal state of the random number generator. This object can be
used to restore the the same state using the setstate() function.

•	 random.setstate(state): The state value must be the object obtained from
a call to the getstate() function. Then, setstate will restore the internal
state of the generator to the state that it was having when getstate()
was called.

•	 random.getrandbits(k): This function returns a Python long integer with k
random bits. This method is provided with the MersenneTwister generator
and optionally by a few other generators.

Functions for integer random number generation
Different functions that return integer random numbers are stated here:

•	 random.randrange(stop) or random.randrange(start, stop[, step]):
This method returns a randomly selected element from the given. The
meanings of its parameters are as follows: start is the starting point of the
range; it will be included in the range. The stop function is the terminating
point of the range; it will be excluded from the range. The step represents
the value to be added to a number to decide a random number.

•	 random.randint(a,b): This function returns an integer value within the
inclusive range from a to b.

Functions for sequences
Various functions that operate on sequences to generate a new random sequence or
subsequence are as follows:

•	 random.choice(seq): This function returns a random element of the
non-empty seq sequence. The seq character must be non-empty. If seq is
empty, then this function raises an error/exception called IndexError.

Chapter 3

[57]

•	 random.shuffle(x): This function shuffles the x sequence in place. Shuffling
in place means that the positions of the values will be changed inside of the
list variable.

•	 random.sample(population, k): This function returns a k length list of
unique random elements from the population. The population must be a
sequence or set. This function is generally used for random sampling without
replacement. Moreover, the members of the population may be duplicated,
and each of their occurrences has equal probability of being present in the
selected list. A ValueError exception will be raised if the size of sample is
larger than the population size k.

Statistical-distribution-based functions
There are many statistical distributions suitable for various cases. In order to support
these cases, the random number module has a bundle of functions for different
statistical distributions. The following are the statistical-distribution-based random
number generators:

•	 Random number generator function (random.uniform(a, b)): This function
returns a random floating-point number N between the range of a and b.
There is equal probability of selecting any number between a and b.

•	 The random.triangular(low, high, mode) generator: This function returns
a random floating-point number N as per the triangular distribution such
that low <= N <= high. The low and high values are treated as bound, and
the mode is kept between these bounds. The default value of the low bound
is 0. It is 1 for high bounds, and the mode argument defaults to the midpoint
between the low and high bounds.

•	 The random.betavariate(alpha, beta) generator: This function returns a
random number between 0 and 1 as per the beta distribution conditions 	
on the parameters as alpha(α) > 0 and beta (β)> 0.

•	 The random.expovariate(lambd) generator: This function returns a random
number according to the exponential distribution. The value of the argument
lambd (λ) should be nonzero. It returns values in the range of 0 to positive
infinity if lambd is positive, and from negative infinity to 0 if lambd is
negative. This argument is intentionally termed lambd as lambda is a reserve
word in Python.

•	 The random.gammavariate(alpha, beta) generator: This function generates
random numbers by following the gamma distribution, with the conditions
on the parameters as alpha (α) > 0 and beta (β)> 0.

Efficiently Fabricating and Managing Scientific Data

[58]

•	 The random.normalvariate(mu, sigma) generator: The normal distribution is
followed to generate random numbers. Here, mu (μ) is the mean and sigma
(σ) is the standard deviation.

•	 The random.gauss(mu, sigma) generator: As the name suggests, the
Gaussian distribution is used in this function to generate random numbers.
Again, mu is the mean and sigma is the standard deviation. In comparison
to the normal distribution, this function is faster.

•	 The random.lognormvariate(mu, sigma) generator: The log normal
distribution is used for random number generation. The natural logarithm
of the values obtained by this distribution gives the value of the normal
distribution. Once again, mu is the mean and sigma is the standard deviation.
Here, mu can have any value, but sigma must be greater than zero.

•	 The random.vonmisesvariate(mu, kappa) generator: This function returns
random angles using the von Mises distribution, where mu is the mean
angle in radians, with a value between 0 and 2*pi, and kappa (κ) is the
concentration parameter (>=0).

•	 The random.paretovariate(alpha) generator: This function follows the Pareto
distribution to return a random variable. Here, alpha is the shape parameter.

•	 The random.weibullvariate(alpha, beta) generator: The Weibull distribution
is used in this function to generate random numbers. Here, alpha is the scale
parameter and beta is the shape parameter.

Nondeterministic random number generator
Besides the discussed random number generation functions, there is an alternative
random number generator available that can be used especially for those
situations when random number generation must be nondeterministic, such
as numbers required in cryptography and security. This generator is as class
random.SystemRandom([seed]). This class generates random numbers using
the os.urandom() function provided by the operating system.

The following program demonstrates the use of the functions discussed. The output
of the function call is also presented in it. For simplicity, we have only used the
following functions in it:

•	 random.random

•	 random.uniform

•	 random.randrange

•	 random.choice

Chapter 3

[59]

•	 random.shuffle

•	 print random.sample

•	 random.choice

The program is as follows:

import random
print random.random()
print random.uniform(1,9)
print random.randrange(20)
print random.randrange(0, 99, 3)
print random.choice('ABCDEFGHIJKLMNOPQRSTUVWXYZ') # Output 'P'
items = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
random.shuffle(items)
print items
print random.sample([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 5)
weighted_choices = [('Three', 3), ('Two', 2), ('One', 1), ('Four', 4)]
population = [val for val, cnt in weighted_choices for i in
range(cnt)]
print random.choice(population)

Let's discuss the output of each function call. The first function, random, returns any
floating-point random values greater than 0 and less than 1. The uniform function
returns uniformly distributed random values between the given ranges.
The randrange function returns a random integer value in the given range. If the
first argument is ignored, then it will take its default value, 0. So, for randrange(20),
the range is 0 to 19.

Now, let's discuss the output of the functions related to the sequences. The choice
function returns a random choice from the list of choices provided. In this example,
there are 26 choices, and one value, P, is returned. The output of the shuffle
function is obvious, and as expected, some of the values are shuffled. The sample
function selects a random sample of a given size. In this example, the sample size
is selected as 5. Hence, the random sample has five elements. The last three lines
perform an important functionality of selecting a random choice with the given
probability. That's why this choice function is called a weighted choice—as the
weight is assigned to each of the choices required by the applications.

Efficiently Fabricating and Managing Scientific Data

[60]

Designing and implementing random number
generators based on statistical distributions
In this section, we will be discussing the designing of an algorithm and its Python
implementation for Poisson distribution. This will be good in two aspects; one is that
you will learn about the design and implementation of a new statistical distribution
for random number generation. The second aspect is that this function is not available
in the random module, so users can also use this new distribution. For some specific
applications, some of the variables assume Poisson random values. For example,
consider the scheduling algorithms used in process scheduling in operating systems.
To simulate process scheduling, the process arrival follows the Poisson distribution.

There are a number of situations where the Poisson distribution is applied. Some of
these cases are as follows:

•	 The pattern of traffic on the Internet follows a Poisson distribution
•	 The number of calls received at a call center follows Poisson distribution
•	 The number of goals made in game such as hockey or football (with two

teams) also follows Poisson distribution
•	 The process arrival time in operating systems
•	 Given an age group, the number of deaths in a year is, again, a Poisson pattern
•	 The number of jumps in a stock price in a given time interval
•	 If we apply radiations to a given stretch of DNA, the number of mutations

follows Poisson distribution

The algorithm of Poisson distribution is given by Knuth in his popular book The Art
of Computer Programming, Volume 2, and it is as follows:

algorithm poisson_random_number (Knuth):
 initializations:
 L = e−λ,
count = 0
product = 1
 do:
 k = k + 1
 u = uniform_random_number (0,1)
p = p × u
 while p > L
 return k − 1

Chapter 3

[61]

The following code is the Python implementation of the Poisson distribution:

import math
import random
def nextPoisson(lambdaValue):
 elambda = math.exp(-1*lambdaValue)
 product = 1
 count = 0

 while (product >= elambda):
 product *= random.random()
 result = count
 count+=1
 return result
for x in range(1, 9):
 print nextPoisson(8)

The output of the preceding program is as follows:

5
7
11
8
9
8
7
6

A special note on reproducing the random number generated
If an application demands reproduction of the random number generated
using any method, then in such cases, there is an option for reproducing
the numbers generated using these functions. To reproduce the sequence,
we just need to use the same function with the same seed value. In this
way, we can reproduce the list, and this is why we call most random
number generation functions deterministic.

Efficiently Fabricating and Managing Scientific Data

[62]

A program with simple logic to generate
five-digit random numbers
The next program demonstrates the idea of using time and date objects to produce
random numbers. It has very simple logic for generating five-digit random
numbers. In this program, the current system time is used to generate the random
numbers. The four components of the system time—hours, minutes, seconds, and
microseconds—are generally a unique combination. This value is converted to a
string and then to a five-digit value. The first line in the user-defined function is used
to introduce a delay at the microsecond level so that the time value will be different
among different calls within very short time. Without this line, the user may get
some repeated values:

import datetime
import time

the user defined function that returns 5 digit random number
def next_5digit_int():
 # this will introduce randomness at the microsecond level
 time.sleep(0.123)
current_time = datetime.datetime.now().time()
 random_no = int(current_time.strftime('%S%f'))
 # this will trim last three zeros
 return random_no/1000

to demonstrate generation of ten random numbers
for x in range(0, 10):
 i = next_5digit_int()
 print i

A brief note about large-scale datasets
The datasets of various scientific applications range from several MB to a few GB. For
some specific applications, the datasets may be huge. These gigantic datasets may
span up to a couple of petabytes. We usually understand MB and GB; let's just get
an idea of the scale of a petabyte. Suppose we store one petabyte of data in compact
disks (CDs) and arrange these CDs in the form of a stack. The size of this stack will be
approximately 1.75 kilometers. Due to recent advances in networking and distributed
computing technologies, these days, there are a number of applications that process
datasets of several petabytes. In order to efficiently process large-scale datasets, there
are a number of options available at all levels of software or hardware.

Chapter 3

[63]

There are several efficient frameworks for processing datasets of all scales. These
frameworks can process small-, medium-, or large-scale data with equal efficiency,
depending on the infrastructure provided. Map reduce is an example of such a
framework, and Hadoop is an open source implementation of the MapReduce
framework.

At the database level, the user has a number of choices that are capable of storing
and managing data of any scale. These databases may be the simplest ones like flat
files—either text or binary. Then, there are a number of schema-based databases,
such as relational databases, that can efficiently manage a database of several
gigabytes. Both files and schema-based databases can manage data from megabytes
to several gigabytes. To process data beyond these limits, the trend these days is to
use non-schema-based databases and advanced distributed filesystems, for example,
Google's BigTable, Apache HBase, and HDFS. HBase is a column-oriented database
designed to support very-large-scale databases. HDFS is a distributed filesystem that
is capable of storing files of size of several petabytes, unlike the maximum file size of
around 16 GB in a normal filesystem, such as WINDOWS NT.

Most programming languages support these frameworks and databases, including
Python, Scala, Java, Ruby, and more. Besides the software level, there are advances
at the hardware level as well, such as the concept of virtualization in different pieces
of hardware (for example, processors, I/O devices, and networking devices). There is
also enhancement of hardware-level support for the software discussed.

A recent advancement in distributed computing, called cloud computing, has
enabled a number of new scientific computing and commercial applications. This
is possible because cloud computing, together with the concepts discussed in this
section, provides the highest ever processing and storage power. This has enabled a
number of new applications, and the list of such applications is growing day by day.

The technologies discussed are extensively used in applications that require
text searching, pattern finding and matching, image processing, data mining,
and crunching of huge datasets. Such requirements are very frequent in various
commercial and scientific applications.

In Chapter 8, Parallel and Large-scale Scientific Computing, we will have detailed
a discussion of these technologies, with a focus on using them for large-scale
scientific applications.

Efficiently Fabricating and Managing Scientific Data

[64]

Summary
This chapter began with a discussion of the basic concepts of data, information, and
knowledge. Then it introduced the various types of software used to store data.
After that, we discussed various operations that should be performed on datasets.
Then we saw the standard format of storing scientific data. We also discussed
various predefined, already used, and standard datasets for a number of scientific
applications in various subject domains. However, there are some domains in
particular subjects for which datasets not be available.

After covering the basic concepts, various techniques of preparation of synthetic
data for some specific experiments were presented. Various standard functions
available for random number generation used in synthetic data generation were also
presented. For synthetic data generation, one algorithm and a program for random
number generation using the Poisson distribution were covered.

The next chapter will have a detailed discussion on, and show the functionality
of, various Python APIs and toolkits for scientific computing. These APIs provide
numerical computation (NumPy and SciPy), symbolic computing (SymPy), data
visualization and plotting (matplotlib and pandas), and interactive programming
(IPython). The chapter will also present a brief discussion of the features and
functionalities of these APIs.

[65]

Scientific Computing APIs
for Python

In this chapter, we will have a comprehensive discussion on the features and
capabilities of the various scientific computing APIs and toolkits in Python. Besides
the basics, we will also discuss some example programs for each of the APIs. As
symbolic computing is a relatively different area of computerized mathematics, we
have allocated a special subsection within the SymPy section to discuss the basics of
the computerized algebra system.

In this chapter, we will cover the following topics:

•	 Scientific numerical computing using NumPy and SciPy
•	 Symbolic computing using SymPy
•	 A computerized algebra system
•	 Introduction to SymPy and its modules
•	 A few simple exemplary programs in SymPy
•	 Data analysis, visualization, and interactive computing

Numerical scientific computing in Python
Scientific computing mainly demands the facility of performing calculations on
algebraic equations, matrices, differentiations, integrations, differential equations,
statistics, equation solvers, and more. By default, Python doesn't come with these
functionalities. However, the development of NumPy and SciPy has enabled us
to perform these operations and far more advanced functionalities beyond them.
NumPy and SciPy are very powerful Python packages that enable users to efficiently
perform the desired operations for all types of scientific applications.

Scientific Computing APIs for Python

[66]

The NumPy package
NumPy is the basic Python package for scientific computing. It provides the facilities
of multidimensional arrays and basic mathematical operations, such as linear algebra.
Python provides several data structures to store user data; the most popular data
structures are lists and dictionaries. List objects may store any type of Python object
as an element. These elements can be processed using loops or iterators. Dictionary
objects store data in the key value format.

The ndarrays data structure
ndarrays are similar to list but are highly flexible and efficient. An ndarray is an
array object used to represent multidimensional arrays of fixed-size items. This array
should be homogeneous. It has an associated object of the type dtype for defining
the data type of the elements in the array. This object defines the type of data
(integer, float, or Python object), the size of data in bytes, and the byte ordering
(big-endian or little-endian). Moreover, if the type of data is record or sub-array,
then it also contains details about them. The actual array can be constructed using
any one of the array, zeros, or empty methods.

Another important aspect of ndarrays is that the size of arrays can be dynamically
modified. Moreover, if the user needs to remove some elements from the arrays,
then this can be done using the module for masked arrays. In a number of situations,
scientific computing demands deletion/removal of incorrect or erroneous data. The
numpy.ma module provides the facility of the masked array to easily remove selected
elements from arrays. A masked array is nothing but the normal ndarrays with a
mask. Mask is another associated array with true or false values. If, for a particular
position, mask has a true value, then the corresponding element in the main array
is valid, and if the mask is false, then the corresponding element in the main array
is invalid or masked. In such a case where the value is false, while performing any
computation on such ndarrays, the masked elements will not be considered.

File handling
Another important aspect of scientific computing is storing data in files, and NumPy
supports reading and writing on both text as well as binary files. Mostly, text files are
a good way of reading, writing, and data exchange as they are inherently portable and
most platforms, by default, have the capability to manipulate them. However, for some
applications, it is sometimes better to use binary files, or in some cases the desired data
for such application can be stored in binary files only. Sometimes, the size and nature
of data such as an image or a sound require it to be stored in binary files.

Chapter 4

[67]

In comparison with text files, binary files are harder to manage as they have
specific formats. Moreover, the size of binary files is comparatively very small and
read/write operations for them are much faster than those for read/write text files.
This fast read/write is most suitable for applications working on large datasets. The
only drawback of binary files manipulated with NumPy is that they are accessible
only through NumPy.

Python has text file manipulation functions, such as open, readlines, and
writelines. However, it is not performance efficient to use these functions for
scientific data manipulation. These default Python functions are very slow in reading
and writing data in a file. NumPy has a high-performance alternative that loads data
into ndarrays before the actual computation. In NumPy, text files can be accessed
using the numpy.loadtxt and numpy.savetxt functions. The loadtxt function can
be used to load data from text files to ndarrays. NumPy also has a separate function
for manipulating data in binary files. The functions for reading and writing are
numpy.load and numpy.save, respectively.

Some sample NumPy programs
The NumPy array can be created from a list or tuple that uses the array. This method
can transform sequences of sequences into two-dimensional arrays:

import numpy as np
x = np.array([4,432,21], int)
print x #Output [4 432 21]
x2d = np.array(((100,200,300), (111,222,333), (123,456,789)))
print x2d

Here is the output:

[4 432 21]
[[100 200 300]
[111 222 333]
[123 456 789]]

Basic matrix arithmetic operations can easily be performed on two-dimensional
arrays, as used in the following program. Basically, these operations are applied on
elements. Hence, the operand arrays must be of equal size. If the sizes do not match,
then performing these operations will cause a runtime error. Consider the following
example for arithmetic operations on one-dimensional arrays:

import numpy as np
x = np.array([4,5,6])
y = np.array([1,2,3])
print x + y # output [5 7 9]

Scientific Computing APIs for Python

[68]

print x * y # output [4 10 18]
print x - y # output [3 3 3]
print x / y # output [4 2 2]
print x % y # output [0 1 0]

There is a separate subclass named matrix for performing matrix operations.
Let's understand matrix operations by the following example, which demonstrates
the difference between array-based multiplication and matrix multiplication.
NumPy matrices are two-dimensional and arrays can be of any dimension:

import numpy as np
x1 = np.array(((1,2,3), (1,2,3), (1,2,3)))
x2 = np.array(((1,2,3), (1,2,3), (1,2,3)))
print "First 2-D Array: x1"
print x1
print "Second 2-D Array: x2"
print x2
print "Array Multiplication"
print x1*x2

mx1 = np.matrix(((1,2,3), (1,2,3), (1,2,3)))
mx2 = np.matrix(((1,2,3), (1,2,3), (1,2,3)))
print "Matrix Multiplication"
print mx1*mx2

The output is as follows:

First 2-D Array: x1
[[1 2 3]
 [1 2 3]
 [1 2 3]]
Second 2-D Array: x2
[[1 2 3]
 [1 2 3]
 [1 2 3]]
Array Multiplication
[[1 4 9]
 [1 4 9]
 [1 4 9]]
Matrix Multiplication
[[6 12 18]
 [6 12 18]
 [6 12 18]]

Chapter 4

[69]

The following is a simple program that demonstrates simple statistical functions
given in NumPy:

import numpy as np
x = np.random.randn(10) # Creates an array of 10 random elements
print x
mean = x.mean()
print mean
std = x.std()
print std
var = x.var()
print var

This is the first sample output:

[0.08291261 0.89369115 0.641396 -0.97868652 0.46692439 -
 0.13954144
 -0.29892453 0.96177167 0.09975071 0.35832954]
0.208762357623
0.559388806817
0.312915837192

The following is the second sample output:

[1.28239629 0.07953693 -0.88112438 -2.37757502 1.31752476
 1.50047537
 0.19905071 -0.48867481 0.26767073 2.660184]
0.355946458357
1.35007701045
1.82270793415

The preceding programs are some simple examples of NumPy. In Chapter 5, Performing
Numerical Computing we will have a detailed discussion on the NumPy functionality.
The next subsection discusses the SciPy Python package.

The SciPy package
SciPy extends Python and NumPy support by providing advanced mathematical
functions, such as differentiation, integration, differential equations, optimization,
interpolation, advanced statistical functions, equation solvers, and many more.
SciPy is written on top of the NumPy array framework. It has utilized the arrays
provided in NumPy and the basic operations on them, and has extended it to
cover most of the mathematical aspects that are regularly required by scientists
and engineers for their applications.

Scientific Computing APIs for Python

[70]

In this chapter, we will cover examples of some basic functionality, and in Chapter 5,
Performing Numerical Computing, we will have exhaustive coverage of the NumPy
and SciPy functionalities. In subsequent subsections, we will cover the basics of the
various important packages/modules of SciPy, including clustering analysis, file
handling, integration, interpolation, optimization, signal and image processing,
special analysis, and statistics.

The optimization package
The optimization package in SciPy provides the functionality to solve univariate
and multivariate minimization problems. It provides solutions for minimization
problems using a number of algorithms and methods. The minimization problem
has a wide range of applications in science and commercial domains. Generally,
we perform linear regression, searching for a function's minimum and maximum
values, finding the root of a function, and linear programming for such cases.
All of these functionalities are supported by the optimization package.

The interpolation package
A number of interpolation methods and algorithms are provided in the interpolation
package as built-in functions. It provides the facility to perform univariate and
multivariate interpolation and one-dimensional and two-dimensional splines.
We use univariate interpolation when data is dependent on one variable; if it is
dependent on more than one variable, then we use multivariate interpolation.
Besides these functionalities, the interpolation package also provides additional
functionality for Lagrange and Taylor polynomial interpolators.

Integration and differential equations in SciPy
Integration is an important mathematical tool for scientific computations. The SciPy
integrations subpackage provides functionalities to perform numerical integration.
SciPy provides a range of functions to perform integration on equations and data.
It also has an ordinary differential equation integrator. It provides various functions
to perform numerical integrations with the help of a number of methods from
mathematics using numerical analysis.

The stats module
The SciPy stats module contains a function for most probability distributions and
wide-range or statistical functions. Supported probability distributions include various
continuous distributions, multivariate distributions, and discrete distributions.
The statistical functions range from simple means to the most complex statistical
concepts, including skewness, kurtosis, and the chi-square test, to name a few.

Chapter 4

[71]

Clustering package and spatial algorithms in SciPy
Clustering analysis is a popular data mining technique that has a wide range of
applications in scientific and commercial domains. In the science domain, biology,
particle physics, astronomy, life science, and bioinformatics are a few subjects
that widely use clustering analysis for problem solving. Clustering analysis is
used extensively in computer science for computerized fraud detection, security
analysis, image processing, and many more areas. The clustering package provides
functionality for K-means clustering, vector quantization, and hierarchical and
agglomerative clustering functions.

The spatial class has functions for analyzing the distance between data points
using triangulations, Voronoi diagrams, and convex hulls of a set of points. It also has
KDTree implementations for performing the nearest-neighbor lookup functionality.

Image processing in SciPy
SciPy provides support for performing various image processing operations,
including basic reading and writing of image files, displaying images, and
simple image manipulation operations such as cropping, flipping, and rotating.
It also has support for image filtering functions, such as mathematical morphing,
smoothing, denoising, and sharpening of images. Furthermore, it supports various
other operations, such as image segmentation by labeling pixels corresponding to
different objects, classification, and feature extraction for example edge detection.

Sample SciPy programs
In subsequent subsections, we will discuss some example programs that use SciPy
modules and packages. We will start with a simple program that performs standard
statistical computations. After that, we will discuss a program that finds a minimal
solution using optimizations. Finally, we will discuss image-processing programs.

Statistics using SciPy
The stats module of SciPy has functions to perform simple statistical operations
and various probability distributions. The following program demonstrates simple
statistical calculations using the stats.describe SciPy function. This single function
operates on an array and returns the number of elements, minimum value, maximum
value, mean, variance, skewness, and kurtosis:

import scipy as sp
import scipy.stats as st
s = sp.randn(10)

Scientific Computing APIs for Python

[72]

n, min_max, mean, var, skew, kurt = st.describe(s)
print("Number of elements: {0:d}".format(n))
print("Minimum: {0:3.5f} Maximum: {1:2.5f}".format(min_max[0],
 min_max[1]))
print("Mean: {0:3.5f}".format(mean))
print("Variance: {0:3.5f}".format(var))
print("Skewness : {0:3.5f}".format(skew))
print("Kurtosis: {0:3.5f}".format(kurt))

Here is the output:

Number of elements: 10
Minimum: -2.00080 Maximum: 0.91390
Mean: -0.55638
Variance: 0.93120
Skewness : 0.16958
Kurtosis: -1.15542

Optimization in SciPy
Generally, in mathematical optimization, a non-convex function called the
Rosenbrock function is used to test the performance of the optimization algorithm.
The following program demonstrates the minimization problem on this function.
The Rosenbrock function of N variables is given by the following equation, and it has
a minimum value 0 at xi =1:

() () ()
21 22

1 11
100 1N

i i ii
f x x x x−

− −=
= − + −∑

The program for the preceding function is as follows:

import numpy as np
from scipy.optimize import minimize

Definition of Rosenbrock function
def rosenbrock(x):
 return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

x0 = np.array([1, 0.7, 0.8, 2.9, 1.1])
res = minimize(rosenbrock, x0, method = 'nelder-mead', options =
{'xtol': 1e-8, 'disp': True})

print(res.x)

Chapter 4

[73]

This is the output:

Optimization terminated successfully.
 Current function value: 0.000000
 Iterations: 516
 Function evaluations: 827
[1. 1. 1. 1. 1.]

The last line is the output of print(res.x), wherein all the elements of the
array are 1.

Image processing using SciPy
The following two programs have been developed to demonstrate the image
processing functionality of SciPy. The first of these programs simply displays a
standard test image. This image is widely used in the field of image processing
and is called Lena. The second program applies geometric transformation on
this image. It performs image cropping and rotation by 45 percent.

The following program displays the Lena image using the matplotlib API.
The imshow method renders the ndarrays into an image, and the show method
displays the image:

from scipy import misc
l = misc.lena()
misc.imsave('lena.png', l)
import matplotlib.pyplot as plt
plt.gray()
plt.imshow(l)
plt.show()

The output of the previous program is shown in the following screenshot:

Scientific Computing APIs for Python

[74]

The following program performs geometric transformation. This program displays
the transformed images along with the original image as a four-axis array:

import scipy
from scipy import ndimage
import matplotlib.pyplot as plt
import numpy as np

lena = scipy.misc.lena()
lx, ly = lena.shape
crop_lena = lena[lx/4:-lx/4, ly/4:-ly/4]
crop_eyes_lena = lena[lx/2:-lx/2.2, ly/2.1:-ly/3.2]
rotate_lena = ndimage.rotate(lena, 45)

Four axes, returned as a 2-d array
f, axarr = plt.subplots(2, 2)
axarr[0, 0].imshow(lena, cmap=plt.cm.gray)
axarr[0, 0].axis('off')
axarr[0, 0].set_title('Original Lena Image')
axarr[0, 1].imshow(crop_lena, cmap=plt.cm.gray)
axarr[0, 1].axis('off')
axarr[0, 1].set_title('Cropped Lena')
axarr[1, 0].imshow(crop_eyes_lena, cmap=plt.cm.gray)
axarr[1, 0].axis('off')
axarr[1, 0].set_title('Lena Cropped Eyes')
axarr[1, 1].imshow(rotate_lena, cmap=plt.cm.gray)
axarr[1, 1].axis('off')
axarr[1, 1].set_title('45 Degree Rotated Lena')

plt.show()

Chapter 4

[75]

This is the output:

SciPy and NumPy are the core of Python's support for scientific computing, as
they provide solid functionality in numerical computing. In Chapter 5, Performing
Numerical Computing, we will be discussing both the packages in detail. The next
subsection introduces symbolic computing using SymPy.

Symbolic computations using SymPy
Computerized computations performed on mathematical symbols without
evaluating or changing their meaning are called symbolic computations. Generally,
symbolic computing is also called computerized algebra, and such a computerized
system is called a computer algebra system. The following subsection has a brief and
good introduction to SymPy. In Chapter 6, Applying Python for Symbolic Computing,
we will have in-depth coverage of symbolic computing in Python.

Scientific Computing APIs for Python

[76]

Computer Algebra System
Let's discuss the concept of Computer Algebra System (CAS). CAS is a piece
of software or toolkit used to perform computations on mathematical expressions
using computers instead of computing manually. In the beginning, using computers
for these applications was called computer algebra; now this concept is called
symbolic computing. CAS systems may be grouped into two types. The first type is
general-purpose CAS, and the second type is CAS specific to a particular problem.
General-purpose systems are applicable to most areas of algebraic mathematics,
while specialized CAS are systems designed for specific areas, such as group
theory or number theory. Most of the time, we prefer general-purpose CAS for
manipulation of mathematical expressions for scientific applications.

Features of a general-purpose CAS
Various desired features of a general-purpose CAS for scientific applications are
as follows:

•	 A user interface for manipulating mathematical expressions.
•	 An interface for programming and debugging.
•	 Such systems require simplification of various mathematical expressions.

Hence, a simplifier is the most essential component of this type of
computerized algebra system.

•	 A general-purpose CAS system must support an exhaustive set of functions
to perform the various mathematical operations required by any algebraic
computation.

•	 Most applications perform extensive computations, so efficient memory
management is highly essential.

•	 The system must provide support for performing mathematical
computations on high-precision numbers and large quantities.

A brief idea of SymPy
SymPy is an open source and Python-based implementation of CAS. The philosophy
behind the development of SymPy is to design and develop a CAS that has all
the desired features and yet whose code is as simple as possible so that it will be
highly and easily extensible. It is written completely in Python and does not require
any external library.

Chapter 4

[77]

The basic idea behind SymPy is the creation and manipulation of expressions. Using
SymPy, the user represents mathematical expressions in the Python language—by
using SymPy classes and objects. These expressions are composed of numbers,
symbols, operators, functions, and more. The functions are the modules to perform a
mathematical functionality, such as logarithms and trigonometry.

The development of SymPy was started by Ondřej Čertík in August 2006. Since then,
it has grown considerably with contributions from hundreds of people. This library
now consists of 26 different integrated modules. These modules have the capability
to perform computations required for basic symbolic arithmetic, calculus, algebra,
discrete mathematics, quantum physics, plotting, and printing, along with the option
to export the output of the computations in LaTeX and other formats.

The capabilities of SymPy can be divided into two categories—core capability and
advanced capabilities—as the SymPy library is divided into a core module and several
advanced optional modules. The functionalities supported by various modules are
discussed in the following sections.

Core capability
The core capability module supports the basic functionalities required by any
mathematical algebra operation to be performed. These operations include basic
arithmetic, such as multiplication, addition, subtraction, and division, and also
exponentials. The module also supports simplification of expressions in order to
simplify complex expressions. It provides the functionality of expansion of series
and symbols.

The core module also supports functions meant to perform operations related to
trigonometry, hyperbolas, exponentials, roots of equations, polynomials, factorials,
gamma functions, logarithms, and a number of special functions for B-Splines,
spherical harmonics, tensor functions, and orthogonal polynomials.

There is also strong support for pattern matching operations in the core module.
Furthermore, the core capabilities of SymPy include functionalities to support the
substitutions required by algebraic operations. It supports not only high-precision
arithmetic operations over integers, rational numbers, and floating-point numbers,
but also non-commutative variables and symbols required in polynomial operations.

Scientific Computing APIs for Python

[78]

Polynomials
Various functions used to perform polynomial operations belong to the polynomial
module. These functions include division, greatest common divisor (GCD), least
common multiplier (LCM), square-free factorization, representation of polynomials
with symbolic coefficients, some special operations such as the computation of the
resultant, deriving trigonometric identities, partial fraction decomposition, and
facilities for the Gröbner basis over polynomial rings and fields.

Calculus
Various functionalities that support the different operations required by basic and
advanced calculus are provided in the calculus module. It supports functionalities
required by limits; there is a limit function for this. It also supports differentiation,
integration, series expansion, differential equations, and calculus of finite differences.
SymPy also has special support for definite integrals and integral transforms. In
differentials, it supports numerical differentials, composition of derivatives, and
fractional derivatives.

Solving equations
Solver is the name of the SymPy module that provides the equation solving
functionality. This module supports solving capabilities for complex polynomials,
roots of polynomials, and systems of polynomial equations. There is a function for
solving algebraic equations. It not only provides support for solutions of differential
equations (including ordinary differential equations, some forms of partial
differential equations, initial and boundary values problems, and more), but also
supports solutions of difference equations. In mathematics, a difference equation
is also called a recurrence relation, that is, an equation that recursively defines a
sequence or multidimensional array of values.

Discrete math
Discrete mathematics includes mathematical structures that are discrete in nature
rather than continuous mathematics (such as calculus). It deals with integers, graphs,
and statements from the logic theory. This module has full support for binomial
coefficients, products, and summations.

This module also supports various functions from the number theory, including
the residual theory, Euler's Totient, partition, and a number of functions dealing
with prime numbers and their factorizations. Plus SymPy supports the creation
and manipulation of logic expressions using symbolic and Boolean values.

Chapter 4

[79]

Matrices
SymPy has strong support for various operations related to matrices and
determinants. Matrices belong to the linear algebra category of mathematics.
It supports the creation of matrices, basic matrix operations (such as multiplication
and addition), matrix of zeros and ones, creation of a random matrix, and
performing operations on matrix elements. It also supports special functions, such
as computation of the Hessian matrix for a function, the Gram-Schmidt process on
a set of vectors, computation of the Wronskian for a matrix of functions, and more.

Furthermore, it has full support for eigenvalues and eigenvectors, matrix inversion,
and solutions of matrices and determinants. To compute the determinants of a
matrix, it supports Bareis' fraction-free algorithm and Berkowitz's algorithm, besides
other methods. For matrices, it supports null space calculation, cofactor expansion
tools, derivative calculation for matrix elements, and calculating the dual of a matrix.

Geometry
SymPy has a module that supports various operations associated with 2D
geometry. It supports the creation of 2D entities or objects such as a point, line,
circle, ellipse, polygon, triangle, ray, and segment. It also allows us to perform
queries on these entities, such as the area of a suitable object (ellipse, circle, or
triangle) and the intersection points of lines. Then, it supports queries such as
line tangency determination and finding the similarity and intersection of entities.

Plotting
There is a very good module that allows us to draw two-dimensional and three-
dimensional plots. At present, plots are rendered using the matplotlib package.
It also supports other packages, such as TextBackend, Pyglet, textplot, and more.
It has a very good interactive interface facility of customizations and plotting of
various geometric entities.

The plotting module has functions for plotting the following:

•	 2D line plots
•	 2D parametric plots
•	 2D implicit and region plots
•	 3D plots of functions involving two variables
•	 3D line and surface plots

Scientific Computing APIs for Python

[80]

Physics
There is also a module for solving problems from the physics domain. It supports
functionality for mechanics, including classical and quantum mechanics, and
High-energy Physics. It has functions that support Pauli algebra and quantum
harmonic oscillators in one dimension and three dimensions. It also has functionality
for optics. There is a separate module that integrates unit systems into SymPy. This
allows users to select the specific unit system for performing their computations and
conversions between units. The unit systems are composed of units and constants
for computations.

Statistics
The statistics module was introduced in SymPy to support the various concepts
of statistics that are required in mathematical computations. Apart from supporting
various continuous and discrete statistical distributions, it also supports functionality
related to symbolic probability. Generally, these distributions support functions for
random number generation in SymPy.

Printing
SymPy has a module for providing full support for Pretty-Printing. Pretty-printing
converts various kind of stylistic formatting into text files such as source code, text
files, markup files or similar content. This module produces the desired output by
printing using ASCII and/or Unicode characters.

It supports various printers, such as LaTeX and the MathML printer. It is capable
of producing source code in various programming languages, such as C, Python,
and Fortran. It is also capable of producing content using markup languages such
as HTML and XML.

SymPy modules
The following list shows the formal names of the modules discussed in
preceding paragraphs:

•	 Assumptions: The assumption engine
•	 Concrete: Symbolic products and summations
•	 Core basic class structure: Basic, Add, Mul, Pow, and so on
•	 Functions: Elementary and special functions
•	 Galgebra: Geometric algebra
•	 Geometry: Geometric entities

Chapter 4

[81]

•	 Integrals: Symbolic integrator
•	 Interactive: Interactive sessions (for example, IPython)
•	 Logic: Boolean algebra and theorem proving
•	 Matrices: Linear algebra and matrices
•	 mpmath: Fast arbitrary precision numerical math
•	 ntheory: Number theoretical functions
•	 Parsing: Mathematica and maxima parsers
•	 Physics: Physical units and quantum stuff
•	 Plotting: 2D and 3D plots using Pyglet
•	 Polys: Polynomial algebra and factorization
•	 Printing: Pretty-printing and code generation
•	 Series: Symbolic limits and truncated series
•	 Simplify: Rewriting expressions in other forms
•	 Solvers: Algebraic, recurrence, and differential
•	 Statistics: Standard probability distributions
•	 Utilities: Test frameworks and compatibility-related content

There are numerous symbolic computing systems available in various mathematical
toolkits. There are some pieces of proprietary software, such as Maple and
Mathematica, and there are some open source alternatives as well, such as Singular
and AXIOM. However, these products have their own scripting language. It is
difficult to extend their functionality, and they have slow development cycles. On
the other hand, SymPy is highly extensible, is designed and developed in the Python
language, and is an open source API that supports a speedy development life cycle.

Simple exemplary programs
Here are some very simple examples to help you get an idea about the capacities of
SymPy. These are fewer than 10 lines of SymPy source code each, and they cover
topics ranging from basic symbol manipulations to limits, differentiation, and
integration. We can test the execution of these programs on SymPy by live-running
SymPy online on Google App Engine, available at http://live.sympy.org/.

http://live.sympy.org/

Scientific Computing APIs for Python

[82]

Basic symbol manipulation
The following code defines three symbols and an expression with these symbols.
Then it prints the expression:

import sympy
a = sympy.Symbol('a')
b = sympy.Symbol('b')
c = sympy.Symbol('c')
e = (a * b * b + 2 * b * a * b) + (a * a + c * c)
print e

The output is as follows:

a**2 + 3*a*b**2 + c**2

Here, ** represents a power operation.

Expression expansion in SymPy
The program shown here demonstrates the concept of expression expansion.
It defines two symbols and a simple expression on these symbols and then
prints the expression and its expanded form:

import sympy
a = sympy.Symbol('a')
b = sympy.Symbol('b')
e = (a + b) ** 4
print e
print e.expand()

This is the output:

(a + b)**4
a**4 + 4*a**3*b + 6*a**2*b**2 + 4*a*b**3 + b**4

Simplification of an expression or formula
SymPy has the facility to simplify mathematical expressions. The following program
has two expressions for simplifying, and it displays the output after simplifications
of the expressions:

import sympy
x = sympy.Symbol('x')
a = 1/x + (x*exp(x) - 1)/x
simplify(a)
simplify((x ** 3 + x ** 2 - x - 1)/(x ** 2 + 2 * x + 1))

Chapter 4

[83]

Here is the output:

ex
x – 1

Simple integrations
This program calculates the integration of two simple functions:

import sympy
from sympy import integrate
x = sympy.Symbol('x')
integrate(x ** 3 + 2 * x ** 2 + x, x)
integrate(x / (x ** 2 + 2 * x), x)

The output is as follows:

x**4/4+2*x**3/3+x**2/2
log(x + 2)

APIs and toolkits for data analysis and
visualization
Python has excellent toolkits and APIs that are used to analyze, visualize, and
present data and the results of computations. In the subsequent discussion, we
will cover the concept and idea of pandas. We will briefly discuss matplotlib
and some sample programs on chart drawing and exporting in different formats.
We can export charts in image files and other files, such as PDF. In Chapter 7,
Data Analysis and Visualization we will have a detailed discussion on most of the
concepts of matplotlib and pandas, along with the IPython toolkits.

Data analysis and manipulation using pandas
pandas is a Python package for data analysis and data manipulation. It is composed
of a number of data structures for working on scientific data analysis in Python. The
ultimate goal behind the development of pandas is to design a powerful and flexible
data manipulation and analysis tool. It provides efficient, flexible, and significant
data structures, specially designed so that they can work with any kind of data.
pandas can be used to work with most types of popular databases and datasets.
pandas is developed on top of NumPy.

Scientific Computing APIs for Python

[84]

Hence, it inherently supports integration with the other scientific computing APIs
and toolkits of Python. It can be used with any of the following types of data:

•	 It can be tabular data, such as relational databases or spreadsheets
(for example, MS Excel)

•	 It may be ordered or unordered time series data
•	 It may be data organized in multidimensional arrays, such as a matrix

with row and column labels
•	 It may be any dataset used to store scientific data in any formats that we

discussed in Chapter 3, Efficiently Fabricating and Managing Scientific Data

Important data structures of pandas
The pandas data structures range from 1D up to 3D. Series is 1D, DataFrame is 2D,
and panel is the three-dimensional and higher dimensional data structure; its higher
dimension such as 4D is under development. Generally, series and DataFrame are
suitable for most use cases in statistics, engineering, finance, and social science:

•	 Series: This is a labeled 1D array that may be used to store any data type,
such as integers, floating-point numbers, strings, and other valid Python
objects. The labels of this axis are collectively referred to as the index.

•	 DataFrame: This is a labeled 2D data structure with rows and columns.
The columns may have different types. DataFrame may be considered
similar to other 2D structures such as spreadsheet tables and database
tables. DataFrame can also be considered as a collection of multiple
series of different types.

•	 Panel: In statistics and economics, panel data refers to multidimensional
data that contains different measurements taken over time. The name of
this data structure is derived from this concept. In comparison to series
and DataFrame, panel is a less used data structure.

Special features of pandas
The following are the highlighting features of pandas:

•	 It provides the facility of data manipulation between the pandas data
structures in the memory and different data formats, including CSV,
Microsoft Excel, SQL databases, and the HDF5 format.

•	 It is highly optimized for achieving high performance; the critical code
is developed in Cython and C.

Chapter 4

[85]

•	 It supports the partition or subdivision of large datasets using slicing,
indexing, and subsetting.

•	 It provides automatic and explicit data alignment. Objects can be aligned
explicitly to a set of labels. If the user ignores the labels, then the data
structures automatically align the data.

•	 The data structures support dynamic size mutability, as columns can
be inserted and deleted.

•	 pandas has a powerful engine for group by operations used in aggregation
and transformation of data.

•	 It also supports efficient merge and join operations on datasets for
data integration.

•	 It uses the concept of reindexing to manage missing data. By "missing data,"
we mean null or absent data.

•	 pandas also has excellent support for time-series-specific functionalities,
including moving windows statistics, date range generation and frequency
conversion, date shifting and lagging, moving window linear regressions,
and much more.

Data visualization using matplotlib
matplotlib is the Python API meant for data visualization. It is the most widely
utilized Python package for 2D graphics. It provides a fast and customizable way
of data visualization and publication of quality images in a number of formats.
It supports drawing of multidimensional charts. matplotlib has default values
for most of the properties of these charts. However, these values are highly
customizable. The user can control almost all the settings of any chart, such as
figure size, line width, color and style, axes, axis and grid properties, and text
properties (such as font, face, and size).

Let's discuss some examples of drawing and exporting them into different formats.

Scientific Computing APIs for Python

[86]

Interactive computing in Python using IPython
There are two popular styles of working with Python programs: either interactively
or through scripts. There are still some programmers who prefer to work with
scripts. Generally, they use a text editor to write their programs, and use the terminal
for execution and other activities, such as debugging. Also, scientific computing
applications generally demand a very good interactive computing environment. In
interactive computing, the processes may take input from humans whenever required.
This input may be taken from the command line or a graphic user interface. Python
scientific computing APIs get an interactive computing environment using the set of
tools bundled with IPython. IPython is heavily used in various activities in scientific
computing applications, such as data management, data manipulation, data analysis,
data visualization, scientific computations, and large-scale computations.

Let's discuss some simple examples of using IPython for computations by using
NumPy, SymPy, pandas, and matplotlib.

Sample data analysis and visualization
programs
In this subsection, we will discuss sample programs for data analysis and
visualization using matplotlib and pandas. You can use live IPython available
at https://www.pythonanywhere.com/try-ipython/ if you don't have a local
installation of pandas and matplotlib.

To begin with, we need some data to analyze or visualize. The following program
fetches data about Apple from Yahoo! finance from October 1, 2014 to January 31,
2015, and saves this data in a CSV file:

import pandas as pd
import datetime
import pandas.io.data

start = datetime.datetime(2014, 10, 1)
end = datetime.datetime(2015, 1, 31)

apple = pd.io.data.get_data_yahoo('AAPL', start, end)
print(apple.head())
apple.to_csv('apple-data.csv')
df = pd.read_csv('apple-data.csv', index_col='Date', parse_dates=True)
df.head()

https://www.pythonanywhere.com/try-ipython/

Chapter 4

[87]

This is the output:

Open High Low Close Volume Adj close
Date
10/1/2014 100.59 100.69 98.7 99.18 51491300 98.36
10/2/2014 99.27 100.22 98.04 99.9 47757800 99.08
10/3/2014 99.44 100.21 99.04 99.62 43469600 98.8
10/6/2014 99.95 100.65 99.42 99.62 37051200 98.8
10/7/2014 99.43 100.12 98.73 98.75 42094200 97.94

The next program makes a plot of the data from the .csv file created in the previous
example. It calculates 50 moving averages (50 MA) on the close reading. Then it plots
the open, close, high, low, and 50 moving average data in a 2D plot. The chart shown
in this screenshot is prepared by the program shown after the screenshot:

Scientific Computing APIs for Python

[88]

Here's the program:

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('apple-data.csv', index_col = 'Date', parse_
dates=True)
df['H-L'] = df.High - df.Low
df['50MA'] = pd.rolling_mean(df['Close'], 50)
df[['Open','High','Low','Close','50MA']].plot()
plt.show()

Now, the following program makes a 3D plot of the same data:

import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

df = pd.read_csv('apple-data.csv', parse_dates=True)
print(df.head())
df['H-L'] = df.High - df.Low
df['50MA'] = pd.rolling_mean(df['Close'], 50)

threedee = plt.figure().gca(projection='3d')
threedee.scatter(df.index, df['H-L'], df['Close'])
threedee.set_xlabel('Index')
threedee.set_ylabel('H-L')
threedee.set_zlabel('Close')
plt.show()

threedee = plt.figure().gca(projection='3d')
threedee.scatter(df.index, df['H-L'], df['Volume'])
threedee.set_xlabel('Index')
threedee.set_ylabel('H-L')
threedee.set_zlabel('Volume')
plt.show()

Chapter 4

[89]

The output of the preceding program is a 3D plot, as shown in the
following screenshot:

Summary
In this chapter, we discussed the concepts, the features, and some selected sample
programs of various scientific computing APIs and toolkits. The chapter started with
a discussion of NumPy and SciPy. After covering NymPy, we discussed the concepts
associated with symbolic computing and SymPy.

In the remaining chapter, we discussed interactive computing and data analysis
and visualization, along with their APIs or toolkits. IPython is the Python toolkit for
interactive computing. We also discussed the data analysis package named pandas
and the data visualization API named matplotlib.

In next chapter, we will have a detailed discussion on the numerical computing
API—NumPy. We will cover various functions of NumPy and the associated
mathematical concepts with the help of sample programs.

[91]

Performing Numerical
Computing

In this chapter, we will discuss most of the features of NumPy and SciPy with the
help of example programs. We will start with a detailed discussion on arrays and
the operations that can be performed on them, using examples. This will lay a solid
foundation for discussing various advanced functionalities supported by NumPy
and SciPy.

In this chapter, we will cover the following topics:

•	 Scientific numerical computing using NumPy and SciPy
•	 The fundamental objects of NumPy
•	 The various packages/modules of NumPy
•	 The basics of the SciPy package
•	 Mathematical functions of SciPy
•	 Advanced mathematical modules and packages

NumPy is the base of numerical computing in Python, and its most fundamental
and important idea is support for multidimensional arrays. Let's start our discussion
with the underlying concepts of arrays in NumPy. After the basics, we will discuss
the various operations that can be performed on multidimensional arrays. We
will also cover the various basic and advanced mathematical functions supported
by NumPy. NumPy has some subpackages or modules for supporting advanced
mathematical concepts.

Performing Numerical Computing

[92]

The NumPy fundamental objects
The entire scientific computing functionality of NumPy and SciPy is built around
two basic types of objects in NumPy. The first object is an n-dimensional array object
known as ndarray, and the second object is a universal function object called ufunc.
Besides these two objects, there are a number of other objects built on top of them.

The ndarray object
The ndarray object is a homogenous collection of elements that are indexed using N
integers, where N is the dimension of the array. There are two important attributes of
ndarray. The first is the data type of the elements of the array, called dtype, and the
second is the shape of the array. The data type here can be any data type supported
by Python. The shape of the arrays is an N-tuple, that is, a collection of N elements
for the N-dimensional array, where each element of the tuple defines the number
of elements in that dimension of the array.

The attributes of an array
Besides the shape and dtype, the other important attributes of an array are
as follows:

•	 size

•	 itemsize

•	 data

•	 ndim

The itemsize is the length of one element of the array in bytes, and the data
attribute is a Python buffer object that points to the start of the array's data. Let's
understand the concept of shape, data type, and other attributes with the help of
the following Python program:

import numpy as np
x2d = np.array(((100,200,300),
 (111,222,333),
 (123,456,789)))
x2d.shape
x2d.dtype
x2d.size
x2d.itemsize
x2d.ndim
x2d.data

Chapter 5

[93]

Basic operations on arrays
The use of square brackets ([]) to index array values is known as array indexing.
Consider the x2d two-dimensional array defined and used in the previous program.
A particular element of a two-dimensional array may be referred to as x2d[row,
column]. For example, we can refer to the second element of the second row (that is,
222) as x2d[1,1], as the index starts from 0. Similarly, the x2d[2,1] element means
the second element of the third row (that is, 456).

Array slicing is the process of selecting some elements from an array to produce a
subarray. For a single-dimensional array, we can sequentially select some elements
from the array. Further, by using slicing , we can fetch an entire row or column of a
two-dimensional array. In other words, using slicing, we can fetch array elements
across an axis. The basic slicing concept of Python is extended to N dimensions for
ndarray. The basic slice syntax is start:stop:step. The first element specifies the
start index of the slice, the second element specifies the stop index of the slice, and
the last element defines the step to be added to the index of the previously selected
element. If we skip any of the first two values, then that value is considered zero or
more. Similarly, the default value of step is 1. Let's consider a few examples to make
slicing more clear.

Consider x2d, a 6 x 3 array. Then, x2d[1] is the same as x2d[1, :] and represents
the second row of the array, which has three elements. On the other hand, x2d[:,
1] represents the second column of the array, which has six elements. Every third
element of the second column can be selected as x2d[:: 1, 2].

Ellipses can be also be used to replace zero or more : terms. An ellipsis expands
to zero or more full-slice objects to match the total dimensions of the sliced object,
which is equal to the dimensions of the original array. For example, if x4d is
5×6×7×8, then x4d[2 :, ..., 6] is equivalent to x4d[2 :, :, :, 6]. Similarly,
x4d[..., 4] is equivalent to A[:, :, :, 4]. Consider the following program to
get a clear idea of the concept of array slicing. This program demonstrates the slicing
of one-dimensional and two-dimensional arrays:

import numpy as np
x = np.array([1,12, 25, 8, 15, 35, 50, 7, 2, 10])
x[3:7]
x[1:9:2]
x[0:9:3]

x2d = np.array(((100,200,300),
 (111,222,333),
 (123,456,789),

Performing Numerical Computing

[94]

 (125,457,791),
 (127,459,793),
 (129,461,795)))
x2d[0:4,0:3]
x2d[0:4:2,0:3:2]

The iteration over an array can be performed using a for loop. In one-dimensional
arrays, we can fetch all the elements sequentially using a for loop. On the other
hand, iterating over multidimensional arrays can be performed with respect to the
first axis. This program demonstrates how to perform iterations over arrays:

import numpy as np
x = np.array([1,12, 25, 8, 15, 35, 50, 7, 2, 10])
x2d = np.array(((100,200,300),
 (111,222,333),
 (123,456,789),
 (125,457,791),
 (127,459,793),
 (129,461,795)))
for i in x:
 print i

for row in x2d:
 print row

Special operations on arrays (shape change and
conversion)
For changing the shape of an array, we have many methods such as ravel, reshape,
resize, and assigning new value to the shape attribute. The ravel and reshape
methods return the argument (the calling object) with the modified shape, while the
resizing and assignment modify the actual array. The ravel method flattens the array
into a C-language-style array. It returns the argument as if it is a one-dimensional
array, with each row sequentially arranged one by one.

Let's discuss the impact of these methods with the help of the next program. This
program performs shape manipulation operations on a two-dimensional array. The
first print in the program will display the original array. The ravel function will
display the flattened array. The print function after the ravel function will display
the original array again, as the ravel function doesn't change the original array.
Now, the resize function will change the shape of the array from the original shape
(6,3), which has six rows and three columns, to (3,6), which has three rows and
six columns. Hence, the print function after the resize function will display the
array in its new shape.

Chapter 5

[95]

Now, we have applied the reshape function on the original shape of the array
((6,3)). This will display the array with the original shape of (6,3). However, as
reshape doesn't change the shape, the print function after this will print the array
with the shape of (3,6). Finally, the last method is for assigning the shape value of
(9,2) to the shape attribute. This will change the shape to (9,2).

The most important thing to remember is that while reshaping, the total size of the
new array should be unchanged:

import numpy as np
x2d = np.array(((100,200,300),
 (111,222,333),
 (123,456,789),
 (125,457,791),
 (127,459,793),
 (129,461,795)))
print x2d
x2d.ravel()
print x2d
x2d.resize((3,6))
print x2d
x2d.reshape(6,3)
print x2d
x2d.shape = (9,2)
print x2d

If required, there are facilities to convert arrays into Python list data structures,
stored files, and strings. There are separate methods for each of these conversions
called tolist, tofile, and tostring.

Classes associated with arrays
There are a number of classes and subclasses associated with the ndarray class.
These classes are designed to support specific enhanced functionality. In the
following paragraphs, we will be discussing these classes and subclasses.

Performing Numerical Computing

[96]

The matrix sub class
The matrix class is a Python subclass of ndarrays. A matrix can be created from
other matrices or strings or any other object that can be converted into an ndarray.
The matrix sub class has specially overwritten operators, such as * for matrix
multiplication and ** for matrix power. Several functions are provided in the
matrix class to perform various activities, such as sorting elements, calculation of the
transpose, finding the sum of matrix elements, conversion of a matrix to a list, and
other data structures and data types. Consider the following program, which defines
two matrices with three rows and three columns each. At last, the program displays
the output of matrix multiplication:

import numpy as np
a = np.matrix('1 2 3; 4 5 6; 7 8 9')
print a
b = np.matrix('4 5 6; 7 8 9; 10 11 12')
print b
print a*b

Masked array
NumPy has a module named numpy.ma for creating masked arrays. A masked array
is a normal array that has some invalid, missing, or undesirable entries. It has two
components: the original ndarrays and a mask. A mask is an array of Boolean values
used to determine whether the array values are valid or not. A true value in the
mask reflects that the corresponding value in the array is invalid. The masked, or
invalid, entries will not be used in any further computation on masked arrays. The
next program demonstrates the concept of masked arrays. Suppose, the original
array x has the pulse rates of different persons and it has two invalid entries. To
mask these invalid entries, the corresponding value is set to 1 (true) in mask. At the
end, we compute the mean of the original and masked arrays. Without masking,
the mean is 61.1, because of two negative values; after masking, the mean of the
remaining eight values is 94.5:

import numpy as np
import numpy.ma as ma
x = np.array([72, 79, 85, 90, 150, -135, 120, -10, 60, 100])
mx = ma.masked_array(x, mask=[0, 0, 0, 0, 0, 1, 0, 1, 0, 0])
mx2 = ma.masked_array(x,mask=x<0)
x.mean()
mx.mean()
mx2.mean()

Chapter 5

[97]

The structured/recor array
The NumPy ndarray can hold record type values. To create an array of the record
type, we first need to create a data type of the record, and then we will use this data
type as the type of the elements of the array. This record data type can be defined
using the dtype data type's definition, and then we can use this dtype in the array
definition. Consider the following program, which creates an array of records that
have the minimum, maximum, and average temperatures of cities. The dtype
function has two components: the names of the fields and their formats. The formats
used in this example are 32-bit integers (i4), 32-bit float (f4) and string of 30 or less
characters (a30):

import numpy as np
rectype= np.dtype({'names':['mintemp', 'maxtemp', 'avgtemp', 'city'],
'formats':['i4','i4', 'f4', 'a30']})

a = np.array([(10, 44, 25.2, 'Indore'),(10, 42, 25.2, 'Mumbai'), (2,
48, 30, 'Delhi')],dtype=rectype)

print a[0]
print a['mintemp']
print a['maxtemp']
print a['avgtemp']
print a['city']

The universal function object
A universal function (unfunc) is a function that operates on ndarrays on an element-
by-element basis. It also supports broadcasting, type casting, and a number of other
important features. Broadcasting in NumPy is the process of operating on arrays
of different shapes. Specially during arithmetic operations, the array with a smaller
shape will be broadcast across the larger array to make their shape compatible.
Universal functions are instances of the ufunc class of NumPy.

Attributes
There are several attributes that each universal function possesses, although the user
cannot set the values of these attributes. The following are the attributes of a universal
function. There are some informational attributes that universal functions possess:

•	 __doc__: This contains the doc string of the ufunc function. Its first part
is dynamically generated on the basis of the name, number of inputs, and
number of outputs. Its second part is defined at the time of function creation,
and it is stored with the function.

Performing Numerical Computing

[98]

•	 __name__: This is the name of the ufunc.
•	 ufunc.nin: This represents the total number of inputs.
•	 ufunc.nout: This represents the total number of outputs.
•	 ufunc.nargs: This represents the total number of arguments, including

inputs and outputs.
•	 ufunc.ntypes: This represents the total number of different types for which

this function is defined.
•	 ufunc.types: This returns a list that has ntypes elements that have the types

for which this function is defined.
•	 ufunc.identity: The identity value of this function.

Methods
All ufuncs have five methods, as given in the following list. The first four methods
are relevant only to a ufunc that takes two input arguments and returns one
output argument. These methods will raise a ValueError exception when they
are attempted to call on other ufuncs. The fifth method allows the user to perform
in-place operations using indexing. The following methods are available with each
of the NumPy universal functions:

•	 ufunc.reduce: This reduces the array's dimension by one by applying ufunc
along one axis.

•	 ufunc.accumulate: This accumulates the result of applying the operator to
all elements.

•	 ufunc.reduceat: This performs reduce with the specified slices over
a single axis.

•	 ufunc.outer(A, B): This applies the ufunc operator to all (a, b) pairs for a
in A and b in B.

•	 ufunc.at: This performs an unbuffered in-place operation on an operand for
the specified elements.

Various available ufunc
There are a number of ufuncs (at present, more than 60) supported by NumPy.
These functions cover a wide variety of operations, including simple mathematical
operations (such as add, subtract, mod, and absolute), square, log, exponential,
trigonometric, bitwise, comparison, and floating-point functions. Generally, it is
better to use these functions instead of applying looping, as they are more efficient
than looping.

Chapter 5

[99]

The following program demonstrates the use of some of these ufuncs:

import numpy as np
x1 = np.array([72, 79, 85, 90, 150, -135, 120, -10, 60, 100])
x2 = np.array([72, 79, 85, 90, 150, -135, 120, -10, 60, 100])
x_angle = np.array([30, 60, 90, 120, 150, 180])
x_sqr = np.array([9, 16, 25, 225, 400, 625])
x_bit = np.array([2, 4, 8, 16, 32, 64])
np.greater_equal(x1,x2)
np.mod(x1,x2)
np.exp(x1)
np.reciprocal(x1)
np.negative(x1)
np.isreal(x1)
np.isnan(np.log10(x1))
np.sqrt(np.square(x_sqr))
np.sin(x_angle*np.pi/180)
np.tan(x_angle*np.pi/180)
np.right_shift(x_bit,1)
np.left_shift (x_bit,1)

In Python, if there is a value that cannot be represented as a number, then that
value is called nan. For example, if we operate the log10 ufunc on the x1 array in
the preceding program, then as output, there are to nan. There is a ufunc called
isnan that verifies that the input argument is nan. Trigonometric functions requires
arguments as an angular value in degrees. Normal decimal values are radians value
that can be converted to degree by multiplying by 180/NumPy.pi. The bitwise left
shift by 1 performs fast multiplication by a value of 2 to the argument. Similarly,
the bitwise right shift by 1 performs fast division by a value of 2 to the argument.
Generally, these ufuncs operate on arrays, and if there is any non-array argument,
then that argument is broadcast as an array. Then, perform the element-by-element
operation. This is the case in the last four lines of the preceding program.

The NumPy mathematical modules
NumPy has added modules for specific functionalities, for example, linear algebra,
discrete Fourier transforms, random sampling, and the matrix algebra library. These
functionalities are bundled in separate modules, as follows:

•	 numpy.linalg: This module supports various functionalities of linear
algebra, such as inner, outer, and dot products of arrays and vectors; norms
of vector and matrix; solutions of linear matrix equations; and methods of
matrix inversion.

Performing Numerical Computing

[100]

•	 numpy.fft: Discrete Fourier transforms have a wide range of applications in
digital signal processing. This module has functions for computing various
types of discrete Fourier transforms, including one-dimensional, two-
dimensional, multidimensional, inverse, and Hermitian Fourier transforms.

•	 numpy.matlib: This module contains functions that, by default, return a
matrix object instead of ndarrays. These functions include empty, zeros,
ones, eye, rapmat, rand, randn, bmat, mat, and matrix.

•	 numpy.random: This module contains functions for performing random
sampling from the specific population. There are functions for generating
simple random data from the given population or range. It also supports the
generation of random permutations. Furthermore, it has a range of functions
that support various statistical-distribution-based generations of random
sampling data.

The next program demonstrates the use of some functions from the linalg module.
It computes the norm, inverse, determinant, eigenvalues, and right eigenvectors of
a square matrix. It also demonstrates the linear equation solver by solving a system
of two equations, 2x+3y=4 and 3x+4y=5, which is done by representing them as an
array. The allclose function in the last line compares the two arrays passed to it
and returns true if they are equal element-wise within a tolerance limit. The eig
method computes the eigenvalues and eigenvectors of a square array. The returned
values are as follows: w is the eigenvalue and v is the eigenvector, where the v[:,i]
column is the eigenvector of w[i]:

import numpy as np
from numpy import linalg as LA
arr2d = np.array(((100,200,300),
 (111,222,333),
 (129,461,795)))
eig_val, eig_vec = LA.eig(arr2d)
LA.norm(arr2d)
LA.det(arr2d)
LA.inv(arr2d)
arr1 = np.array([[2,3], [3,4]])
arr2 = np.array([4,5])
results = np.linalg.solve(arr1, arr2)
print results
np.allclose(np.dot(arr1, results), arr2)

Chapter 5

[101]

Random sampling is an important aspect of scientific and commercial computing.
The following program demonstrates some functions from each of the categories
of functions supported by the numpy random sampling module. Besides size and
population, some distributions require some statistical values, such as mean, mode,
and standard deviation. The permutation function randomly permutes a sequence
or returns a permuted range, whereas the randint function returns randomly
selected elements from the range given by the first two arguments; the total number
of elements will be given as the third argument. The remaining methods return
samples from specific distributions, such as chi-square, Pareto, standard normal,
and log normal:

import numpy as np
np.random.permutation(10)
np.random.randint(20,50, size=10)
np.random.random_sample(10)
np.random.chisquare(5,10) # degree of freedom, size
alpha, location_param = 4., 2.
s = np.random.pareto(alpha, 10) + location_param

s = np.random.standard_normal(20)

mean, std_deviation = 4., 2.
s = np.random.lognormal(mean, std_deviation, 10)

Introduction to SciPy
SciPy contains a number of submodules dedicated to the common functionality
required by various scientific computing applications. The SciPy community
recommends that scientists first check whether a required functionality has already
been implemented before actually implementing it in SciPy. As almost all of the
essential functionality of scientific computing has already been implemented, this
checking will save the efforts that the scientists would have applied in reinventing the
wheel. Moreover, the SciPy modules have been optimized and well-tested for bugs and
possible errors. Hence, using them will be beneficial in terms of better performance.

Mathematical functions in SciPy
SciPy is written on top of NumPy to extends its functionality to perform advanced
mathematical functionality. Basic mathematical functions available in NumPy are not
redesigned to perform these functionalities. We need to use NumPy functions, as we
will see, in the programs in the subsequent discussion in this chapter.

Performing Numerical Computing

[102]

Advanced modules/packages
The functionality of SciPy is divided into a number of separate task-specific
modules. Let's discuss these modules one by one. For brevity, we will not cover all
the functions of any module. Instead, we will demonstrate some examples from
each module of SciPy.

Integration
The scipy.integrate sub package has functions for several integration methods,
including the integrator for ordinary differential equations. There are several
methods for integrating functions when the function object is given. It has
methods for integrating functions when fixed samples are given.

Here are the integrating functions for given function objects:

•	 quad: General-purpose integration
•	 dblquad: General-purpose double integration
•	 tplquad: General-purpose triple integration
•	 nquad: General-purpose n-dimensional integration
•	 fixed_quad: Integrate func(x) using a Gaussian quadrature of order n
•	 quadrature: Integrate within a given tolerance using a Gaussian quadrature
•	 romberg: Integrate func using Romberg integration

These are integrating functions for given fixed samples:

•	 cumtrapz: Use the trapezoidal rule to cumulatively compute the integral
•	 simps: Use Simpson's rule to compute the integral from the samples
•	 romb: Use Romberg integration to compute the integral from (2**k + 1) evenly

spaced samples

The integrators for ordinary differential equation systems are as follows:

•	 odeint: General integration of ordinary differential equations
•	 ode: Integrate ODE using VODE and ZVODE routines
•	 complex_ode: Convert a complex-valued ODE to a real-valued and integrate

Chapter 5

[103]

Let's discuss programs for selected methods from the preceding list. The quad
function performs general integration of a function of one variable between two
points within the range of plus or minus infinity. In the following program, we use
the function to calculate the integral of the Bessel function of first kind for an interval
of (0,20). The Bessel function of first kind is defined in the special.jv method.
The last line of the following program computes the Gaussian integral using the
quad function:

import numpy as np
from scipy import special
from scipy import integrate

result = integrate.quad(lambda x: special.jv(4,x), 0, 20)
print result
print "Gaussian integral", np.sqrt(np.pi),quad(lambda x: np.exp(-
x**2),-np.inf, np.inf)

If the function to be integrated requires additional parameters, such as multiplication
or power factors for variables, then these parameters can be passed as arguments.
This is demonstrated in the following program, by passing a, b, and c as arguments
to the quad function. Sometimes, it is possible that the integral is divergent or
converges very slowly:

import numpy as np
from scipy.integrate import quad

def integrand(x, a, b, c):
 return a*x*x+b*x+c

a = 3
b = 4
c = 1
result = quad(integrand, 0,np.inf, args=(a,b,c))
print result

Double and triple integration can be performed using the dblquad and tplquad
functions, respectively. The next program demonstrates the use of the dblquad
function. The t and x arguments vary from 0 to infinity (inf). The code after the
comment performs the Gaussian quadrature over a fixed interval:

import numpy as np
from scipy.integrate import quad, dblquad, fixed_quad

def integrand1 (t, x, n):
 return np.exp(-x*t) / t**n

Performing Numerical Computing

[104]

n = 4
result = dblquad(lambda t, x: integrand1(t, x, n), 0, np.inf, lambda
x: 0, lambda x: np.inf)
the following code is performing Gaussian quadrature over a fixed
interval
from scipy.integrate import fixed_quad, quadrature

def integrand(x, a, b):
 return a * x + b
a = 2
b = 1
fixed_result = fixed_quad(integrand, 0, 1, args=(a,b))
result = quadrature(integrand, 0, 1, args=(a,b))

For integrating a function with an arbitrarily spaced sample, we have the simps
function. Simpson's rule approximates the function between three adjacent points
as a parabola. The following program uses the simps function:

import numpy as np
from scipy.integrate import simps
def func1(a,x):
 return a*x**2+2

def func2(b,x):
 return b*x**3+4

x = np.array([1, 2, 4, 5, 6])
y1 = func1(2,x)
Intgrl1 = simps(y1, x)

print(Intgrl1)

y2 = func2(3,x)
Intgrl2 = simps (y2,x)
print (Intgrl2)

Here is a program that demonstrates the integration of ordinary differential
equations using the odeint function:

import matplotlib.pyplot as plt
from numpy import linspace, array
def derivative(x,time):
 a = -2.0
 b = -0.1
 return array([x[1], a*x[0]+b*x[1]])

Chapter 5

[105]

time = linspace (1.0,15.0,1000)
xinitialize = array ([1.05,10.2])
x = odeint(derivative,xinitialize,time)
plt.figure()
plt.plot(time,x[:,0])
plt.xlabel('t')
plt.ylabel('x')
plt.show()

Signal processing (scipy.signal)
The signal processing toolbox contains a number of filtering functions, filter-
designing functions, and functions for several B-spline interpolation algorithms for
one- and two-dimensional data. This toolbox has several functions for performing
the following operations:

•	 Convolution
•	 B-splines
•	 Filtering
•	 Filter design
•	 Matlab-style IIR filter design
•	 Continuous-time linear systems
•	 Discrete-time linear systems
•	 LTI representations
•	 Waveforms
•	 Window functions
•	 Wavelets
•	 Peak finding
•	 Spectral analysis

Let's discuss some example programs to understand the functionalities of the signal
processing toolbox.

The detrend function is a filtering function that removes constant or linear trends
along the axis from the data so that we can see the effect of the higher order, as
demonstrated in the following program:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

Performing Numerical Computing

[106]

from scipy import signal
t = np.linspace(0, 5, 100)
x = t + np.random.normal(size=100)
plt.plot(t, x, linewidth=3)
plt.show()
plt.plot(t, signal.detrend(x), linewidth=3)
plt.show()

The following program uses spline filtering to compute an edge image of Lena's face
taken as an array using the misc.lena command. This functionality is achieved by
using two functions. First, the cspline2d command is used to apply a separable
two-dimensional FIR filter with mirror-symmetric boundary conditions to the spline
coefficients. This function is faster than the second function, convolve2d, which
convolves arbitrary two-dimensional filters and permits you to choose mirror-
symmetric boundary conditions:

import numpy as np
from scipy import signal, misc
import matplotlib.pyplot as plt
img = misc.lena()

splineresult = signal.cspline2d(img, 2.0)
arr1 = np.array([[-1,0,1], [-2,0,2], [-1,0,1]], dtype=np.float32)
derivative = signal.convolve2d(splineresult,arr1,boundary='symm'
,mode='same')
plt.figure()
plt.imshow(derivative)
plt.title('Image filtered by spline edge filter')
plt.gray()
plt.show()

Fourier transforms (scipy.fftpack)
The discrete Fourier transform and discrete inverse Fourier transform of a real or
complex sequence can be calculated using fft and ifft (fast Fourier transform),
respectively, as demonstrated in this program:

import numpy as np
from scipy.fftpack import fft, ifft
x = np.random.random_sample(5)
y = fft(x)
print y
yinv = ifft(y)
print yinv

Chapter 5

[107]

The following program plots the FFT of the sum of three sines:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from scipy.fftpack import fft
x = np.linspace(0.0, 1, 500)
y = np.sin(100*np.pi*x) + 0.5*np.sin(150*np.pi*x) + 0.75*np.
sin(200*np.pi*x)
yf = fft(y)
xf = np.linspace(0.0, 0.1, 250)
import matplotlib.pyplot as plt
plt.plot(xf, 2.0/500 * np.abs(yf[0:500/2]))
plt.grid()
plt.show()

Spatial data structures and algorithms
(scipy.spatial)
Spatial analysis is a set of techniques and algorithms used for analysis of spatial data.
The data objects or elements that are related to the geographical space or horizon
can be called spatial data. This data consists of points, lines, polygons, and other
geometrical and geographical primitives that can be mapped by locations and used
to track and locate various devices. It may be scalar or vector data that provides
specific information about a geographical or spatial location. Spatial data is used
and processed by a number of applications in different areas, such as geography,
geographical information systems/retrieval, location-based services, web- and
desktop-based spatial applications, spatial mining, and others.

A k-dimensional tree (k-d tree) is a space partitioning data structure. It organizes
points in a k-dimensional space. In mathematics, space partitioning is the process
of dividing a space into multiple disjoint spaces. It divides the space into non-
overlapping regions, where each point in the space may belong to exactly one region.

SciPy has a spatial module that supports various desired functionalities for spatial
computing. The user can compute Delaunay triangulations, Voronoi diagrams,
and convex hulls in N dimensions. It also has plotting helpers for plotting these
computations in two dimensions. Moreover, to perform quick nearest neighbor
lookups, it also supports the KDTree functionality, and has the facility for computation
of the distant matrix from a collection of raw observation vectors.

Performing Numerical Computing

[108]

Let's discuss some sample programs that show these functions. The following
program performs Delaunay triangulation and then plots the results of the
computation using the pyplot:

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import Delaunay
arr_pt = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
arr1 = np.array([0., 0., 1., 1.])
arr2 = np.array([0., 1.1, 0., 1.])

triangle_result = Delaunay(arr_pt)
plt.triplot(arr1, arr2, triangle_result.simplices.copy())
plt.show()
plt.plot(arr1, arr2, 'ro')
plt.show()

The smallest convex object that contains all the points of a given point set is
called a convex hull, and it can be computed using the convexHull function. The
next program demonstrates the use of this function and then plots the results of
computing using the convexHull function:

import numpy as np
from scipy.spatial import ConvexHull
import matplotlib.pyplot as plt
randpoints = np.random.rand(25, 2)
hull = ConvexHull(randpoints)
#following line will draw points
plt.plot(randpoints[:,0], randpoints[:,1], 'x')
#this loop will draw the line segment
for simplex in hull.simplices:
 plt.plot(randpoints[simplex,0], randpoints[simplex,1], 'k')

plt.show()

We can use KDTree to find out which point from the set of points is closest to the
selected point. This program demonstrates the use of the k-d tree:

from scipy import spatial
x_val, y_val = np.mgrid[1:5, 3:9]
tree_create = spatial.KDTree(zip(x_val.ravel(), y_val.ravel()))
tree_create.data
points_for_query = np.array([[0, 0], [2.1, 2.9]])
tree_create.query(points_for_query)

Chapter 5

[109]

The following program displays the closest distance and the indices:

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import KDTree
vertx = np.array([[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3,
1], [3, 2], [3, 3]])
tree_create = KDTree(vertx)
tree_create.query([1.1, 1.1])
x_vals = np.linspace(0.5, 3.5, 31)
y_vals = np.linspace(0.5, 3.5, 33)
xgrid, ygrid = np.meshgrid(x, y)
xy = np.c_[xgrid.ravel(), ygrid.ravel()]
plt.pcolor(x_vals, y_vals, tree.query(xy)[1].reshape(33, 31))
plt.plot(points[:,0], points[:,1], 'ko')
plt.show()

Optimization (scipy.optimize)
Optimization is the process to find the best solution for an objective function of one
or more variables and possibly in presence of some predefined constraints on these
variables, and some possibly in the presence of some predefined constraints on these
variables. The objective function may be considered as a cost/energy function to be
minimized or a profit or utility function to be maximized. There are a few important
concepts associated with optimization problems, such as the dimensionality of the
optimization problem and the type of optimization. Before solving an optimization
problem, it is better to understand these concepts first and then start working on the
solution. By dimensionality of the problem, we mean the number of scalar variables on
which the search for the optimized value is to be performed. The number of variables
can be one or more. This number of variables also affects the scalability of the solution.
The more the number of scalar variables, the slower the problem. Moreover, the type
of optimization also has an impact on the designing of the solution.

Another important consideration is whether the problem is a constrained problem
or not. By constrained problem, we mean that the solution must fulfill some
predefined constraints on the variables under study. For example, we can write
a general-constraint minimization optimization problem as follows:

Minimize f(x)
Subjected to constraints gi (x)= ai for i= 1 … … n
 Hj (x)>= bj for j= 1 … … m

Performing Numerical Computing

[110]

These constraints are required to be satisfied by the solution. The solution of the
problem depends on the relationship between the objective function, the constraints,
and the variables. Moreover, the size of the model also affects the solution. The size
of the model is measured by the number of variables and the number of constraints
in it. Generally, there is an upper limit of the size of model, which is imposed by
most optimization solver software applications. This limit has to be introduced due
to the higher memory requirements, the processing demands of the problem, and its
numerical stability. There might be a possibility that we don't find a solution at all,
or the getting the solution may be very time-consuming, which gives the impression
that the solution isn't converging.

Furthermore, an optimization problem may be a convex or non-convex problem. A
convex problem is comparatively simpler to solve, as it has one global minimum/
maximum and no local minimum/maximum.

Let's discuss the concept of convexity in detail. Convex optimization is the process of
minimizing a convex function over a convex set. The convex function (it holds real
values) defined for an interval is called a convex function if a line segment between
any two points on the graph lies on or above the graph. Two of the popular convex
functions are the exponential function (f(x)=ex) and quadratic function (f(x)=x2).
Some examples of convex and non-convex functions are shown in this figure:

Chapter 5

[111]

Now, the convex set is such a region in which if we join two points inside it by a
line segment, then all the points on that line segment also lie inside the region. The
following figure depicts the convex and non-convex sets:

The scipy.optimize package provides functions for most of the useful algorithms
for scalar and multidimensional function minimization, curve fitting, and root
finding. Let's discuss how to use these functions.

The next program demonstrates the use of the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm. This algorithm uses the gradient of the objective function
to quickly converge to the solution. The program first defines a function called
rosen_derivative to compute the gradient of the rosenbrock function:

import numpy as np
from scipy.optimize import minimize
def rosenbrock(x):
 return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])

def rosen_derivative(x):
 x1 = x[1:-1]
 x1_m1 = x[:-2]
 x1_p1 = x[2:]
 derivative = np.zeros_like(x)
 derivative[1:-1] = 200*(x1-x1_m1**2) - 400*(x1_p1 - x1**2)*x1 -
2*(1-x1)
 derivative[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
 derivative[-1] = 200*(x[-1]-x[-2]**2)
 return derivative

res = minimize(rosenbrock, x0, method='BFGS', jac=rosen_derivative,
options={'disp': True})

Performing Numerical Computing

[112]

The following program first computes the Hessian of the Rosenbrock function, and
then minimizes the function using the Newton conjugate gradient method:

import numpy as np
from scipy.optimize import minimize

def rosenbrock(x):
 return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])

def rosen_derivative(x):
 x1 = x[1:-1]
 x1_m1 = x[:-2]
 x1_p1 = x[2:]
 derivative = np.zeros_like(x)
 derivative[1:-1] = 200*(x1-x1_m1**2) - 400*(x1_p1 - x1**2)*x1 -
2*(1-x1)
 derivative[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
 derivative[-1] = 200*(x[-1]-x[-2]**2)
 return derivative

def rosen_hessian(x):
 x_val = np.asarray(x)
 hess = np.diag(-400*x_val[:-1],1) - np.diag(400*x_val[:-1],-1)
 diagonal = np.zeros_like(x_val)
 diagonal[0] = 1200*x_val[0]**2-400*x_val[1]+2
 diagonal[-1] = 200
 diagonal[1:-1] = 202 + 1200*x_val[1:-1]**2 - 400*x_val[2:]
 hess = hess + np.diag(diagonal)
 return hess

result = minimize(rosenbrock, x0, method='Newton-CG', jac=rosen_
derivative, hess=rosen_hessian, options={'xtol': 1e-8, 'disp': True})
print result.x

The minimize function also has an interface to a number of constrained
minimization algorithms. The following program uses the Sequential Least Square
Programming optimization (SLSQP) algorithm. The function to be minimized is
defined in func, its derivative is defined in func_deriv, and the constraints are
defined in the cons variable:

import numpy as np
from scipy.optimize import minimize
def func(x, sign=1.0):

Chapter 5

[113]

 return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)

def func_deriv(x, sign=1.0):
 dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)
 dfdx1 = sign*(2*x[0] - 4*x[1])
 return np.array([dfdx0, dfdx1])

cons = ({'type': 'eq',
 'fun': lambda x: np.array([x[0]**3 - x[1]]),
 'jac': lambda x: np.array([3.0*(x[0]**2.0), -1.0])},
 {'type': 'ineq',
 'fun': lambda x: np.array([x[1] - 1]),
 'jac': lambda x: np.array([0.0, 1.0])})

res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
method='SLSQP', options={'disp': True})
print(res.x)

res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_
deriv,constraints=cons, method='SLSQP', options={'disp': True})
print(res.x)

The next program demonstrates the methods of finding the global minimum and
local minimum. First, it defines the function and plots it. This function has a global
minimum around -1.3 and a local minimum around 3.8. The BFGF algorithm is
used to find the local minimum. The program uses a brute-force algorithm to find
the global minimum. However, with the increase in grid size(the range/domain of
values to be checked), the brute-force method becomes slow, so it is better to use the
Brent method for scalar functions. The program also uses the fminbound function to
find the local minimum between 0 and 10:

import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize

def f(x):
 return x**2 + 10*np.sin(x)

x = np.arange(-10,10,0.1)
plt.plot(x, f(x))
plt.show()

optimize.fmin_bfgs(f, 0)

Performing Numerical Computing

[114]

grid = (-10, 10, 0.1)
optimize.brute(f, (grid,))
optimize.brent(f)
optimize.fminbound(f, 0, 10)

The following program demonstrates the use of constrained optimization:

import numpy as np
from scipy import optimize
def f(x):
 return np.sqrt((x[0] - 2)**2 + (x[1] - 3)**2)

def constraint(x):
 return np.atleast_1d(2.5 - np.sum(np.abs(x)))

optimize.fmin_slsqp(f, np.array([0, 2]), ieqcons=[constraint,])
optimize.fmin_cobyla(f, np.array([3, 4]), cons=constraint)

There are several methods for finding the roots of a polynomial, the next three
programs use the bisection method, Newton-Raphson method, and root function.
The bisection method is used in this program to find the roots of the polynomial
defined in polynomial_func:

import scipy.optimize as optimize
import numpy as np

def polynomial_func(x):
 return np.cos(x)**3 + 4 - 2*x

print(optimize.bisect(polynomial_func, 1, 5))

The Newton-Raphson method is used to find the roots of a polynomial in the
following program:

import scipy.optimize
from scipy import optimize

def polynomial_func(xvalue):
 yvalue = xvalue + 2*scipy.cos(xvalue)
 return yvalue

scipy.optimize.newton(polynomial_func, 1)

Chapter 5

[115]

In mathematics, the Lagrange multipliers method is used to find the local minima
and local maxima of a function, subject to equality constraints. This program
computes the Lagrange multipliers using the fsolve method:

import numpy as np
from scipy.optimize import fsolve
def func_orig(data):
 xval = data[0]
 yval = data[1]
 Multiplier = data[2]
 return xval + yval + Multiplier * (xval**2 + yval**2 - 1)

def deriv_func_orig(data):
 dLambda = np.zeros(len(data))
 step_size = 1e-3 # this is the step size used in the finite
difference.
 for i in range(len(data)):
 ddata = np.zeros(len(data))
 ddata[i] = step_size
 dLambda[i] = (func_orig(data+ddata)-func_orig(data-ddata))/
(2*step_size);
 return dLambda

data1 = fsolve(deriv_func_orig, [1, 1, 0])
print data1, func_orig(data1)

data2 = fsolve(deriv_func_orig, [-1, -1, 0])
print data2, func_orig(data2)

Interpolation (scipy.interpolate)
Interpolation is a method of finding new data points within the range of a discrete
set of well-known data points. The interpolate subpackage has interpolators
for computation using various interpolation methods. It supports interpolation
using spline functions, univariate and multivariate one-dimensional and
multidimensional interpolation, Lagrange and Taylor polynomial interpolators. It
also has wrapper classes for the FITPACK and DFITPACK functions. Let's discuss some
programs that demonstrate the use of some of these methods.

Performing Numerical Computing

[116]

This program demonstrates one-dimensional interpolation using linear and cubic
interpolation and plots them for comparison:

import numpy as np
from scipy.interpolate import interp1d
x_val = np.linspace(0, 20, 10)
y_val = np.cos(-x**2/8.0)
f = interp1d(x_val, y_val)
f2 = interp1d(x_val, y_val, kind='cubic')
xnew = np.linspace(0, 20, 25)
import matplotlib.pyplot as plt
plt.plot(x,y,'o',xnew,f(xnew),'-', xnew, f2(xnew),'--')
plt.legend(['data', 'linear', 'cubic'], loc='best')
plt.show()

The following program demonstrates the use of the griddata function for
multivariate data interpolation over 150 points. This number of points can be changed
to any suitable value. The program uses pyplot to create four subplots in single plot:

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata

def func_user(x, y):
 return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2

x, y = np.mgrid[0:1:100j, 0:1:200j]

points = np.random.rand(150, 2)
values = func_user(points[:,0], points[:,1])
grid_z0 = griddata(points, values, (x, y), method='nearest')
grid_z1 = griddata(points, values, (x, y), method='linear')
grid_z2 = griddata(points, values, (x, y), method='cubic')

f, axarr = plt.subplots(2, 2)
axarr[0, 0].imshow(func(x, y).T, extent=(0,1,0,1), origin='lower')
axarr[0, 0].plot(points[:,0], points[:,1], 'k', ms=1)
axarr[0, 0].set_title('Original')

axarr[0, 1].imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
axarr[0, 1].set_title('Nearest')

axarr[1, 0].imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
axarr[1, 0].set_title('Linear')

Chapter 5

[117]

axarr[1, 1].imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
axarr[1, 1].set_title('Cubic')

plt.show()

Linear algebra (scipy.linalg)
The scipy linear algebra methods expect an argument as an object that can be
converted to a two-dimensional array. The methods also return a two-dimensional
array. The scipy.linalg function has advanced features in comparison to
numpy.linalg.

The following program computes the inverse of matrix represented as a
two-dimensional array. It also uses T (the shortcut for transpose) and performs
multiplication over the array:

import numpy as np
from scipy import linalg
A = np.array([[2,3],[4,5]])
linalg.inv(A)
B = np.array([[3,8]])
A*B
A.dot(B.T)

This small program computes the inverse of a matrix and its determinant:

import numpy as np
from scipy import linalg
A = np.array([[2,3],[4,5]])
linalg.inv(A)
linalg.det(A)

The next program demonstrates the solving of linear equations using the matrix
inverse and its fast implementation using the solver:

import numpy as np
from scipy import linalg
A = np.array([[2,3],[4,5]])
B = np.array([[5],[6]])
linalg.inv(A).dot(B)
np.linalg.solve(A,B)

Performing Numerical Computing

[118]

The following program seeks a set of linear scaling coefficients and fits that data
using a model. This program uses linalg.lstsq to solve the data fitting problem.
The lstsq method is used to find the least square solutions of linear matrix
equations. This method is a tool for finding the best fit line for the given data
points. It uses linear algebra and simple calculus:

import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
coeff_1, coeff_2 = 5.0, 2.0
i = np.r_[1:11] # or we can use np.arang(1, 11)
x = 0.1*i
y = coeff_1*np.exp(-x) + coeff_2*x
z = y + 0.05 * np.max(y) * np.random.randn(len(y))

A = np.c_[np.exp(-x)[:, np.newaxis], x[:, np.newaxis]]
coeff, resid, rank, sigma = linalg.lstsq(A, zi)

x2 = np.r_[0.1:1.0:100j]
y2 = coeff[0]*np.exp(-x2) + coeff[1]*x2

plt.plot(x,z,'x',x2,y2)
plt.axis([0,1,3.0,5.5])
plt.title('Data fitting with linalg.lstsq')
plt.show()

The following program demonstrates a method for singular value decomposition
and the linag.svd and linag.diagsvd functions:

import numpy as np
from scipy import linalg
A = np.array([[5,4,2],[4,8,7]])
row = 2
col = 3
U,s,Vh = linalg.svd(A)
Sig = linalg.diagsvd(s,row,col)
U, Vh = U, Vh
print U
print Sig
print Vh

Chapter 5

[119]

Sparse eigenvalue problems with ARPACK
This program computes the standard eigenvalue decomposition and the
corresponding eigenvectors:

import numpy as np
from scipy.linalg import eigh
from scipy.sparse.linalg import eigsh
#following line is suppressing the values after decimal
np.set_printoptions(suppress=True)

np.random.seed(0)
random_matrix = np.random.random((75,75)) - 0.5
random_matrix = np.dot(random_matrix, random_matrix.T)
#compute eigenvalues decomposition
eigenvalues_all, eigenvectors_all = eigh(random_matrix)

eigenvalues_large, eigenvectors_large = eigsh(random_matrix, 3,
which='LM')
print eigenvalues_all[-3:]
print eigenvalues_large
print np.dot(eigenvectors_large.T, eigenvectors_all[:,-3:])

If we try for eigenvalues with the smallest values using eigenvalues_small,
eigenvectors_small = eigsh(random_matrix, 3, which='SM'), in this case, the
system returns with an error of no convergence. There are a few options for solving
this problem. The first solution is to increase the tolerance limit by passing tol=1E-2
to the eigsh function like this: eigenvalues_small, eigenvectors_small =
eigsh(random_matrix, 3, which='SM', tol=1E-2). This will solve the problem
but lead to loss of precision.

Another solution is to increase maximum number of iterations to 5,000
by passing maxiter=5000 to the eigsh function like this: eigenvalues_
small, eigenvectors_small = eigsh(random_matrix, 3, which='SM',
maxiter=5000). However, more iterations will take longer, and there is a better way
of solving this quickly with the desired precision. Use the shift-inter mode using
the sigma=0 or 2 and which='LM' arguments, as follows: eigenvalues_small,
eigenvectors_small = eigsh(random_matrix, 3, sigma=0, which='LM').

Statistics (scipy.stats)
There are a number of statistical functions that are designed to work with arrays,
and their special versions are designed to work on masked arrays. The programs in
subsequent paragraphs demonstrate the use of some of the available functions for
continuous and discrete probability distributions.

Performing Numerical Computing

[120]

The following program uses the discrete binomial random variable and plots its
probability mass function. Here is the probability mass function of a binomial
discrete distribution:

binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k)

In the preceding code, where k is in (0,1,...,n) , n and p are shape parameters:

import numpy as np
from scipy.stats import binom
import matplotlib.pyplot as plt

n, p = 5, 0.4
mean, variance, skewness, kurtosis = binom.stats(n, p, moments='mvsk')
x_var = np.arange(binom.ppf(0.01, n, p),binom.ppf(0.99, n, p))

plt.plot(x_var, binom.pmf(x_var, n, p), 'ro', ms=5, label='PMF of
binomial ')
plt.vlines(x_var, 0, binom.pmf(x_var, n, p), colors='r', lw=3,
alpha=0.5)
plt.show()

The next program demonstrates the use of the geometric discrete random variable
and plots the probability mass function:

geom.pmf(k) = (1-p)**(k-1)*p

Here, k >= 1 and p is the shape parameter:

import numpy as np
from scipy.stats import geom
import matplotlib.pyplot as plt

p = 0.5
mean, variance, skewness, kurtosis = geom.stats(p, moments='mvsk')
x_var = np.arange(geom.ppf(0.01, p),geom.ppf(0.99, p))
plt.plot(x_var, geom.pmf(x_var, p), 'go', ms=5, label='PMF of
geomatric')
plt.vlines(x_var, 0, geom.pmf(x_var, p), colors='g', lw=3, alpha=0.5)

plt.show()

The following program demonstrates the computation of a generalized Pareto
continuous random variable and plots its probability density function:

genpareto.pdf(x, c) = (1 + c * x)**(-1 - 1/c)
Here, x >= 0 if c >=0 and 0 <= x <= -1/c if c < 0:

Chapter 5

[121]

import numpy as np
from scipy.stats import genpareto
import matplotlib.pyplot as plt
c = 0.1
mean, variance, skewness, kurtosis = genpareto.stats(c,
moments='mvsk')
x_val = np.linspace(genpareto.ppf(0.01, c),genpareto.ppf(0.99, c),
100)
plt.plot(x_val, genpareto.pdf(x_val, c),'b-', lw=3, alpha=0.6,
label='PDF of Generic Pareto')
plt.show()
plt.show()

The next program shows the computation of a generalized gamma continuous
random variable and plots its probability density function:

gengamma.pdf(x, a, c) = abs(c) * x**(c*a-1) * exp(-x**c) / gamma(a)

This time, r x > 0, a > 0, and c!= 0. Here, a and c are shape parameters:

import numpy as np
from scipy.stats import gengamma
import matplotlib.pyplot as plt
a, c = 4.41623854294, 3.11930916792
mean, variance, skewness, kurtosis = gengamma.stats(a, c,
moments='mvsk')
x_var = np.linspace(gengamma.ppf(0.01, a, c),gengamma.ppf(0.99, a, c),
100)
plt.plot(x_var, gengamma.pdf(x_var, a, c),'b-', lw=3, alpha=0.6,
label='PDF of generic Gamma')
plt.show()

The following program demonstrates the computation of a multivariate normal
random variable and plots its probability density function. For simplicity, we are
skipping the probability density function:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
x_var = np.linspace(5, 25, 20, endpoint=False)
y_var = multivariate_normal.pdf(x_var, mean=10, cov=2.5)
plt.plot(x_var, y_var)
plt.show()

We can also freeze these statistical distributions to display the frozen probability
distribution / mass function.

Performing Numerical Computing

[122]

Multidimensional image processing (scipy.ndimage)
Generally, image processing and image analysis can be considered as performing
operations on two-dimensional arrays of values. This package provides a number of
image processing and image analysis functions to be applied on arrays. The following
code works on the image of Lena. First, the program introduces some noises into the
image, and then it uses some filters to clean the noise. It displays the noisy image and
the filtered image using the Gaussian, median, and signal.wiener filters:

import numpy as np
from scipy import signal
from scipy import misc
from scipy import ndimage
import matplotlib.pyplot as plt

lena = misc.lena()
noisy_lena = np.copy(lena).astype(np.float)
noisy_lena += lena.std()*0.5*np.random.standard_normal(lena.shape)
f, axarr = plt.subplots(2, 2)
axarr[0, 0].imshow(noisy_lena, cmap=plt.cm.gray)
axarr[0, 0].axis('off')
axarr[0, 0].set_title('Noissy Lena Image')
blurred_lena = ndimage.gaussian_filter(noisy_lena, sigma=3)
axarr[0, 1].imshow(blurred_lena, cmap=plt.cm.gray)
axarr[0, 1].axis('off')
axarr[0, 1].set_title('Blurred Lena')
median_lena = ndimage.median_filter(blurred_lena, size=5)
axarr[1, 0].imshow(median_lena, cmap=plt.cm.gray)
axarr[1, 0].axis('off')
axarr[1, 0].set_title('Median Filter Lena')
wiener_lena = signal.wiener(blurred_lena, (5,5))
axarr[1, 1].imshow(wiener_lena, cmap=plt.cm.gray)
axarr[1, 1].axis('off')
axarr[1, 1].set_title('Wiener Filter Lena')
plt.show()

Chapter 5

[123]

The output of the preceding program is presented in this screenshot:

Clustering
Clustering is the process of putting a large set of objects into multiple groups. It uses
some parameters in such a way that the objects in one group (known as a cluster) are
more similar to each other than the objects in other groups or clusters.

Objects grouped in four Clusters

Performing Numerical Computing

[124]

The SciPy clustering package has two modules: Vector Quantization (VQ) and
hierarchy. The VQ module supports k-means and vector quantization. The hierarchy
module supports hierarchical and agglomerative clustering.

Let's get a brief idea about these algorithms:

•	 Vector quantization: VQ is a signal processing technique that enables its
users to model the probability density functions by distribution of prototype
vectors. It performs this modeling by dividing a large set of vectors or points
into multiple groups having approximately the same number of points in
their vicinity. Each of these groups has a representative centroid point.

•	 k-means: k-means is a vector quantization technique taken from signal
processing that is widely used and popular for clustering analysis. It
partitions n observations into k clusters in such a way that each observation
belongs to the cluster with the nearest mean.

•	 Hierarchical clustering: This clustering technique seeks to build a hierarchy
of clusters from the observations. Hierarchical clustering techniques
generally belongs to the following two types:

°° Divisible clustering: This is a top-down approach to creating the
hierarchy of clusters. It starts with one topmost cluster and performs
splitting while moving downward.

°° Agglomerative clustering: This is a bottom-up approach. Each
observation is a cluster, and this technique performs pairing of
such clusters while moving up.

Generally, the results of hierarchical clustering are depicted in a dendrogram, that is,
a tree diagram, as follows:

Chapter 5

[125]

The following program demonstrates an example of k-means clustering and
vector quantization:

from scipy.cluster.vq import kmeans,vq
from numpy.random import rand
from numpy import vstack,array
from pylab import plot,show

data_set = vstack((rand(200,2) + array([.5,.5]),rand(200,2)))

K-Means computation for 2 clusters
centroids_of_clusters,_ = kmeans(data_set,2)
index,_ = vq(data_set,centroids_of_clusters)

plot(data_set[index==0,0],data_set[index==0,1],'ob',
 data_set[index==1,0],data_set[index==1,1],'or')
plot(centroids_of_clusters[:,0],centroids_of_clusters[:,1],'sg',marke
rsize=8)

show()

The same data for 3 clusters
centroids_of_clusters,_ = kmeans(data_set,3)
index,_ = vq(data_set,centroids_of_clusters)

plot(data_set[index==0,0],data_set[index==0,1],'ob',
 data_set[index==1,0],data_set[index==1,1],'or',
 data_set[index==2,0],data_set[index==2,1],'og') # third cluster
points
plot(centroids_of_clusters[:,0],centroids_of_clusters[:,1],'sm',marke
rsize=8)
show()

The hierarchical clustering module has a number of functions divided into many
categories, such as functions for cutting hierarchical clustering into flat clustering,
routines for agglomerating clustering, routines for visualization of clusters, data
structures, and routines for representing hierarchies as tree structures, routines for
computing statistics on hierarchies, predicate functions for checking the validity
of linkage and inconstancy metrics, and so on. The following programs are used to
draw a dendrogram of sample data using the linkage (agglomerative clustering)
and dendrogram functions of the hierarchical module:

import numpy
from numpy.random import rand
from matplotlib.pyplot import show

Performing Numerical Computing

[126]

from scipy.spatial.distance import pdist
import scipy.cluster.hierarchy as sch

x = rand(8,80)
x[0:4,:] *= 2

y = pdist(x)
z = sch.linkage(y)
sch.dendrogram(z)
show()

The output is depicted as follows:

Curve fitting
The process of the construction of a mathematical function or curve that has the
best fit for a series of data points is known as curve fitting. Generally, this curve
fitting is subject to some constraints. The output of curve fitting can be used for data
visualization to gain insights into a function when no data is available. Curve fitting
can also be used to observe relationships among multiple variables. We can use
curve fitting for different types of curves, such as lines, polynomials, conic sections,
trigonometric functions, circles, ellipses, and others.

Chapter 5

[127]

This program first creates some random data with noise. Then, it defines a
function that represents the model (line_func) and performs curve fitting. Next,
it determines the actual parameters, a and b. Finally, it also plots the errors:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

xdata = np.random.uniform(0., 50., 80)
ydata = 3. * xdata + 2. + np.random.normal(0., 5., 80)
plt.plot(xdata, ydata, '.')

def line_func(x, a, b):
 return a * x + b

opt_param, cov_estimated = curve_fit(line_func, xdata, ydata)

errors = np.repeat(5., 80)
plt.errorbar(xdata, ydata, yerr=errors, fmt=None)

opt_param, cov_estimated = curve_fit(line_func, xdata, ydata,
sigma=errors)

print "a =", opt_param[0], "+/-", cov_estimated[0,0]**0.5
print "b =", opt_param[1], "+/-", cov_estimated[1,1]**0.5

plt.errorbar(xdata, ydata, yerr=errors, fmt=None)

xnew = np.linspace(0., 50., 80)
plt.plot(xnew, line_func(xnew, opt_param[0], opt_param[1]), 'r-')
plt.errorbar(xdata, ydata, yerr=errors, fmt=None)
plt.plot(xnew, line_func(xnew, *opt_param), 'r-')
plt.show()

The following program fits the curve for the cos trigonometric function:

import numpy as np
from scipy import optimize
import pylab as pl

np.random.seed(0)

def func(x, omega, p):
 return np.cos(omega * x + p)

Performing Numerical Computing

[128]

x = np.linspace(0, 10, 100)
y = f(x, 2.5, 3) + .1*np.random.normal(size=100)
params, params_cov = optimize.curve_fit(f, x, y)
t = np.linspace(0, 10, 500)
pl.figure(1)
pl.clf()
pl.plot(x, y, 'bx')
pl.plot(t, f(t, *params), 'r-')
pl.show()

File I/O (scipy.io)
SciPy provides support for performing read and write data to a variety of file formats
using modules, classes, and functions:

•	 Matlab files
•	 ALD files
•	 Matrix market files
•	 Unformatted FORTRAN files
•	 WAV sound files
•	 ARFF files
•	 NetCDF files

This program performs reading and writing on NetCDF files:

from scipy.io import netcdf
file creation
f = netcdf.netcdf_file('TestFile.nc', 'w')
f.history = 'Test netCDF File Creation'
f.createDimension('age', 12)
age = f.createVariable('age', 'i', ('age',))
age.units = 'Age of persons in Years'
age[:] = np.arange(12)
f.close()

#Now reading the file created
f = netcdf.netcdf_file('TestFile.nc', 'r')
print(f.history)
age = f.variables['age']
print(age.units)
print(age.shape)
print(age[-1])
f.close()

Chapter 5

[129]

In a similar way, we can perform read/write operations on files of various other
types. There is a separate submodule for loading the files created by the WEKA machine
learning tools. WEKA stores files in the ARFF format, which is the standard format
for WEKA. ARFF is a text file that may contain numerical, string, and data values. The
following program reads and displays the data stored in the test.arff file. The
content of the file is @relation foo; @attribute width numeric; @attribute
height numeric; @attribute color {red,green,blue,yellow,black}; @data;
5.0,3.25,blue; 4.5,3.75,green; 3.0,4.00,red.

The program for reading and displaying the content is as follows:

from scipy.io import arff

file1 = open('test.arff')
data, meta = arff.loadarff(file1)

print data
print meta

Summary
In this chapter, we extensively discussed how to perform numerical computations
using the NumPy and Scipy packages of Python. The concepts were presented along
with example programs. The chapter started with a discussion on the fundamental
objects of NumPy, and then we moved on to the advanced concepts of NumPy.

This chapter also discussed the functions and modules of SciPy. It covered the basic
and special functions provided by SciPy, and then covered the special modules
or sub packages. This was for showing advanced concepts, such as optimization,
interpolation, Fourier transformation, signal processing, linear algebra, statistics,
spatial algorithms, image processing, and file input and output.

In the next chapter, we will have an exhaustive discussion on symbolic computing,
or CAS, using SymPy. Specifically, we will cover the core capabilities and extended
functionalities for polynomials, calculus, equation solvers, discrete mathematics,
geometry, and physics.

[131]

Applying Python for
Symbolic Computing

SymPy includes functionality ranging from basic symbolic arithmetic to polynomials,
calculus, solvers, discrete mathematics, geometry, statistics, and physics. It mainly
works on three types of numbers, namely integer, real, and rational. Integers are
whole digit numbers without a decimal point, while real numbers are numbers
with decimal points. Rational numbers have two parts: the numerator and the
denominator. To define rational numbers, we can use the Ration class, which
requires two numbers. In this chapter, we will discuss the concepts of SymPy
with the help of example programs.

We will cover the following topics in this chapter:

•	 A computerized algebra system using SymPy
•	 Core capabilities and advanced functionality
•	 Polynomials, calculus, and solving equations
•	 Discrete mathematics, matrices, geometry, plotting, physics, and statistics
•	 The printing functionality

Let's start a discussion on SymPy and its core capabilities, including basic arithmetic,
expansion, simplification, substitution, pattern matching, and various functions
(for example, exponential, logarithms, roots of equations, trigonometric functions,
hyperbolic functions, and special functions).

Applying Python for Symbolic Computing

[132]

Symbols, expressions, and basic
arithmetic
In SymPy, we need to define symbols before using them in any expression.
Defining a symbol is very simple. We just need to use the symbol function from the
Symbol class to define a symbol, as used in the following program. We can use the
evalf()/n() method to get the float numerical approximation of any object.

The following program uses three ways to create symbols. For creating only one
symbol the name of method is symbol and for creating multiple symbols the method
name is symbols. There are two ways of creating multiple symbols: one is by passing
space-separated symbol names to the symbols method, and the other is by creating
a sequence of symbols such as m0, m1, m2, m3, m4 by passing m0:5 to the symbols
method. In this second option, m0 is the first value of index and the number 5 after :
denotes that a total of five such variables should be created.

Generally, division of two integers truncates the decimal part. To avoid this, the first
line of the following program forces the performance of actual floating-point division
on two integers. That's why the last line of the program will store 3.142857142857143
in y. If we ignore the first line in the following program. then the value of y will be 3:

from __future__ import division
from sympy import *

x, y, z = symbols('x y z')
m0, m1, m2, m3, m4 = symbols('m0:5')
x1 = Symbol('x1')
x1 + 500
y=22/7

The following program uses the evalf() and n() methods to numerically
approximate any SymPy object into a float value. The default accuracy is up to
15 decimal digits, and it can be changed to any desired accuracy by passing an
argument to these methods:

from __future__ import division
from sympy import, sin, pi

x=sin(50)

pi.evalf()
pi.evalf(50)

x.n()
x.n(20)

Chapter 6

[133]

The next program demonstrates the concept of expressions and various operations
that can be performed on expressions using the collect, expand, factor, simplify,
and subs methods:

from sympy import collect, expand, factor, simplify
from sympy import Symbol, symbols
from sympy import sin, cos

x, y, a, b, c, d = symbols('x y a b c d')

expr = 5*x**2+2*b*x**2+cos(x)+51*x**2
simplify(expr)

factor(x**2+x-30)
expand ((x-5) * (x+6))

collect(x**3 + a*x**2 + b*x**2 + c*x + d, x)

expr = sin(x)*sin(x) + cos(x)*cos(x)
expr
expr.subs({x:5, y:25})
expr.subs({x:5, y:25}).n()

Equation solving
There is a magic function called solve. It can solve all types of equations.
This function returns the solutions of an equation. It takes two arguments: the
expression to be solved and the variable. The following program uses this function
to solve various types of equations. In the following equations, it is assumed that
the right-hand side of the equation is zero:

from sympy import solve

solve (6*x**2 - 3*x - 30,x)

a, b, c = symbols('a b c')
solve(a*x**2 + b*x + c, x)
substitute_solution = solve(a*x**2 + b*x + c, x)
[substitute_solution[0].subs({'a':6,'b':-3,'c':-30}), substitute_
solution[1].subs({'a':6,'b':-3,'c':-30})]

solve([2*x + 3*y - 3, x -2* y + 1], [x, y])
)

Applying Python for Symbolic Computing

[134]

To solve the system of equations, we have another form of the solve method that
takes the list of equations as the first argument and the list of unknowns as the
second argument. This is demonstrated here:

from sympy import solve

solve ([2*x + y - 4, 5*x - 3*y],[x, y])
solve ([2*x + 2*y - 1, 2*x - 4*y],[x, y])

Functions for rational numbers,
exponentials, and logarithms
SymPy has a number of functions for working on rational numbers. These functions
perform various operations on rational numbers, including simplify, expansion,
combine, split, and many more. SymPy also supports several functions for exponential
and logarithmic operations. There are three logarithm functions: log (used to compute
base-b logarithms), ln (used to compute natural logarithms), and log10 (used to
compute base-10 logarithms). The log function expects two arguments: the variable
and the base. If the base is not passed, then by default, this function will compute the
natural logarithm of the variable, which is equivalent to ln. To calculate the addition
of two rational numbers, we use the together function. Similarly, to divide a rational
expression's numerator by a denominator, we use the apart function which is used in
the following program:

from sympy import together, apart, symbols
x1, x2, x3, x4 = symbols('x1 x2 x3 x4')
x1/x2 + x3/x4
together(x1/x2 + x3/x4)

apart ((2*x**2+3*x+4)/(x+1))
together(apart ((2*x**2+3*x+4)/(x+1)))

exp(1)
log(4).n()
log(4,4).n()
ln(4).n()
mpmath.log10(4)

Chapter 6

[135]

Polynomials
SymPy allows us to define and perform various operations on polynomials. We
can also find the roots of polynomials. We have already covered the simplify,
expand, factor, and solve methods. These methods also perform the functionalities
for polynomials. To check for the equality of two polynomials, we should use the
simplify function:

from sympy import *

p, q = symbols ('p q')
p = (x+4)*(x+2)
q = x**2 + 6*x + 8
p == q # Unsuccessful
p - q == 0 # Unsuccessful
simplify(p - q) == 0

Trigonometry and complex numbers
Mostly, the input for a trigonometric function is a radian angle, whereas an
inverse trigonometric function returns the radian angle. This module also provides
functions for conversion from degree to radian and radian to degree. Besides
basic trigonometric functions, such as sin, cos, and tan, SymPy has trigonometry
simplification and expansion functions.

SymPy also supports complex numbers to cope up with situations where no real
number solution exists. For example, consider this equation: x**2+4=0. For this
equation there is no real number solution; its solution will be -2*I or +2*I. This I
denotes the square root of -1. The following program demonstrates trigonometric
functions and gives a solution of this equation in the form of complex numbers:

from sympy import *
x, y = symbols('x y')
expr = sin(x)*cos(y)+cos(x)*sin(y)
expr_exp= exp(5*sin(x)**2+4*cos(x)**2)

trigsimp(expr)
trigsimp(expr_exp)
expand_trig(sin(x+y))
solve(x**2+4,x) #complex number as solution

Applying Python for Symbolic Computing

[136]

Linear algebra
The SymPy linear algebra module is another very simple module that provides easy-
to-learn functions for matrix manipulation. It has the functionality of performing
various matrix operations, including quick special matrix creation, eigenvalues,
eigenvectors, transpose, determinant, and inverse. There are three methods for quick
special matrix creation, namely eye, zeros, and ones. The eye method creates an
identity matrix, whereas zeros and ones create matrices with all elements equal
to 0 or 1, respectively. If required, we can delete selected rows and columns from
a matrix. Basic arithmetic operators, such as +, -, *, and **, also work on matrices:

from sympy import *
A = Matrix([[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12],
 [13, 14, 15, 16]])
A.row_del(3)
A.col_del(3)

A[0,1] # display row 0, col 1 of A
A[0:2,0:3] # top-left submatrix(2x3)

B = Matrix ([[1, 2, 3],
 [5, 6, 7],
 [9, 10, 11]])
A.row_join(B)
B.col_join(B)
A + B
A - B
A * B
A **2
eye(3) # 3x3 identity matrix
zeros(3, 3) # 3x3 matrix with all elements Zeros
ones(3, 3) # 3x3 matrix with all elements Ones

A.transpose() # It is same as A.T
M = Matrix([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 10]])
M.det()

Chapter 6

[137]

By default, the inverse of a matrix is computed by Gaussian elimination, and we can
specify to have it computed by LU decomposition. Matrices in SymPy have methods
for calculating the reduced row echelon form (the rref method) and null space (the
nullspace method). If A is a matrix, then nullspace is the set of all vectors v such
that A v=0. It is also possible to perform substitution operations on matrix elements;
we can create a matrix with symbolic entries and substitute them with actual values
and other symbols. We can also perform special operations, such as QR factorization,
the Gram-Schmidt orthogonalizer, and LU decomposition:

from sympy import *
A = Matrix([[1,2],
 [3,4]])
A.inv()
A.inv()*A
A*A.inv()
A = Matrix([[1, -2],
 [-2, 3]])
A.eigenvals() # same as solve(det(A-eye(2)*x), x)
A.eigenvects()
A.rref()

A.nullspace()

x = Symbol('x')
M = eye(3) * x
M.subs(x, 4)
y = Symbol('y')
M.subs(x, y)

M.inv()
M.inv("LU")

A = Matrix([[1,2,1],[2,3,3],[1,3,2]])
Q, R = A.QRdecomposition()
Q

M = [Matrix([1,2,3]), Matrix([3,4,5]), Matrix([5,7,8])]
result1 = GramSchmidt(M)
result2 = GramSchmidt(M, True)

Applying Python for Symbolic Computing

[138]

Calculus
Calculus involves operations that are performed to study the various properties
of any function, including rates of change, the limit behavior of a function, and
calculation of the area under a function graph. In this section, you will learn the
concepts of limits, derivatives, summation of series, and integrals. The following
program uses limit functions to solve simple limit problems:

from sympy import limit, oo, symbols,exp, cos

oo+5
67000 < oo
10/oo

x , n = symbols ('x n')
limit(((x**n - 1)/ (x - 1)), x, 1)

limit(1/x**2, x, 0)
limit(1/x, x, 0, dir="-")

limit(cos(x)/x, x, 0)
limit(sin(x)**2/x, x, 0)
limit(exp(x)/x,x,oo)

Any SymPy expression can be differentiated using the diff function with the
diff(func_to_be_differentiated, variable) prototype. The following program
uses the diff function to compute the differentiation of various SymPy expressions:

from sympy import diff, symbols, Symbol, exp, dsolve, subs, Function

diff(x**4, x)
diff(x**3*cos(x), x)
diff(cos(x**2), x)
diff(x/sin(x), x)
diff(x**3, x, 2)
diff(exp(x), x)

The dsolve method helps us solve any kind of ordinary differential equation and
system of ordinary differential equations. This program demonstrates the use of
dsolve for ordinary differential equations and boundary value problems:

x = symbols('x')
f = symbols('f', cls=Function)
dsolve(f(x) - diff(f(x),x), f(x))

Chapter 6

[139]

#ics argument can be used to pass the boundary condition as a
dictionary to dsolve method
from sympy import *
x=symbols('x')
f=symbols('f', cls=Function)
dsolve(Eq(f(x).diff(x,x), 400*(f(x)-1+2*x)), f(x), ics={f(0):5,
f(2):10})
the above line will results in f(x) = C1*e^−30x + C2*e^30x − 2x + 1

The following program finds critical points of the function f(x)=4x3-3x2+2x and uses
the second derivative to find the maxima of the function in the interval [0,1]:

x = Symbol('x')
f = 4*x**3-3*x**2+2*x
diff(f, x)
sols = solve(diff(f,x), x)
sols
diff(diff(f,x), x).subs({x:sols[0]})
diff(diff(f,x), x).subs({x:sols[1]})

In SymPy, we can compute definite and indefinite integrals using the integrate
function. Here is a program that computes definite and indefinite integrals. It will
define these integrals symbolically. To compute the actual value, we call the n()
method on the integral, as done in the last line of this program:

from sympy import *
integrate(x**3+1, x)
integrate(x*sin(x), x)
integrate(x+ln(x), x)

F = integrate(x**3+1, x)
F.subs({x:1}) - F.subs({x:0})

integrate(x**3-x**2+x, (x,0,1)) # definite Integrals
integrate(sin(x)/x, (x,0,pi)) # definite Integrals
integrate(sin(x)/x, (x,pi,2*pi)) # definite Integrals
integrate(x*sin(x)/(x+1), (x,0,2*pi)) # definite Integrals
integrate(x*sin(x)/(x+1), (x,0,2*pi)).n()

Applying Python for Symbolic Computing

[140]

Sequences are functions that take integer numbers, and we can define a sequence by
specifying an expression for its nth term. We can also substitute the desired value.
The following program demonstrates the concept of sequences using some simple
sequences in SymPy:

from sympy import *
s1_n = 1/n
s2_n = 1/factorial(n)
s1_n.subs({n:5})
[s1_n.subs({n:index1}) for index1 in range(0,8)]
[s2_n.subs({n:index1}) for index1 in range(0,8)]
limit(s1_n, n, oo)
limit(s2_n, n, oo)

A series whose terms contain different-ordered powers of a variable is called a
power series, such as the Taylor series, exponential series, or sin/cos series. Here is a
program that computes some sequences involving special functions. It also uses the
concept of power series:

from sympy import *
s1_n = 1/n
s2_n = 1/factorial(n)
summation(s1_n, [n, 1, oo])
summation(s2_n, [n, 0, oo])
import math
def s2_nf(n):
 return 1.0/math.factorial(n)

sum([s2_nf(n) for n in range(0,10)])
E.evalf()

exponential_xn = x**n/factorial(n)
summation(exponential_xn.subs({x:5}), [x, 0, oo]).evalf()
exp(5).evalf()
summation(exponential_xn.subs({x:5}), [x, 0, oo])

import math # redo using only python
def exponential_xnf(x,n):
 return x**n/math.factorial(n)
sum([exponential_xnf(5.0,i) for i in range(0,35)])

series(sin(x), x, 0, 8)
series(cos(x), x, 0, 8)
series(sinh(x), x, 0, 8)
series(cosh(x), x, 0, 8)
series(ln(x), x, 1, 6) # Taylor series of ln(x) at x=1
series(ln(x+1), x, 0, 6) # Maclaurin series of ln(x+1)

Chapter 6

[141]

Vectors
An n-tuple defined on real numbers can also be called a vector. In physics and
mathematics, a vector is a mathematical object that has either size, magnitude or
length, and a direction. In SymPy, a vector is represented as a 1 x n row matrix or
an n x 1 column matrix. The following program demonstrates the concept of vector
computations in SymPy. It computes the transpose and norm of a vector:

from sympy import *
u = Matrix([[1,2,3]]) # a row vector = 1x3 matrix
v = Matrix([[4],
[5], # a col vector = 3x1 matrix
[6]])
v.T # use the transpose operation to
u[1] # 0-based indexing for entries
u.norm() # length of u
uhat = u/u.norm() # unit-length vec in same dir as u
uhat
uhat.norm()

The next program demonstrates the concepts of dot product, cross product, and
projection operations on vectors:

from sympy import *
u = Matrix([1,2,3])
v = Matrix([-2,3,3])
u.dot(v)

acos(u.dot(v)/(u.norm()*v.norm())).evalf()
u.dot(v) == v.dot(u)
u = Matrix([2,3,4])
n = Matrix([2,2,3])
(u.dot(n) / n.norm()**2)*n # projection of v in the n dir

w = (u.dot(n) / n.norm()**2)*n
v = u - (u.dot(n)/n.norm()**2)*n # same as u - w
u = Matrix([1,2,3])
v = Matrix([-2,3,3])
u.cross(v)
(u.cross(v).norm()/(u.norm()*v.norm())).n()

u1,u2,u3 = symbols('u1:4')
v1,v2,v3 = symbols('v1:4')
Matrix([u1,u2,u3]).cross(Matrix([v1,v2,v3]))
u.cross(v)
v.cross(u)

Applying Python for Symbolic Computing

[142]

The physics module
The physics module contains functionality required to solve the problem from
physics. There are several submodules of physics for performing activities related
to vector physics, classic mechanics, quantum mechanics, optics, and much more.

Hydrogen wave functions
There are two functions under this category. The first one computes the energy of
state (n, l) in Hartree atomic units. The other computes the relativistic energy of state
(n, l, spin) in Hartree atomic units. The following program demonstrates the use of
these functions:

from sympy.physics.hydrogen import E_nl, E_nl_dirac, R_nl
from sympy import var

var("n Z")
var("r Z")
var("n l")
E_nl(n, Z)
E_nl(1)
E_nl(2, 4)

E_nl(n, l)
E_nl_dirac(5, 2) # l should be less than n
E_nl_dirac(2, 1)
E_nl_dirac(3, 2, False)
R_nl(5, 0, r) # z = 1 by default
R_nl(5, 0, r, 1)

Matrices and Pauli algebra
There are several matrices related to physics that are available in physics.matrices
module. The following program demonstrates how to obtain these matrices and
Pauli algebra:

from sympy.physics.paulialgebra import Pauli, evaluate_pauli_product
from sympy.physics.matrices import mdft, mgamma, msigma, pat_matrix

mdft(4) # expression of discrete Fourier transform as a matrix
multiplication
mgamma(2) # Dirac gamma matrix in the Dirac representation
msigma(2) # Pauli matrix with (1,2,3)

Chapter 6

[143]

Following line computer Parallel Axis Theorem matrix to translate
the inertia matrix a distance of dx, dy, dz for a body of mass m.
pat_matrix(3, 1, 0, 0)

evaluate_pauli_product(4*x*Pauli(3)*Pauli(2))

The quantum harmonic oscillator in 1-D and
3-D
This module has functions for computation of energy of a one-dimensional harmonic
oscillator, a three-dimensional isotropic harmonic oscillator, a wave function for
a one-dimensional harmonic oscillator, and a radial wave function for a three-
dimensional isotropic harmonic oscillator. Here is a program that uses the functions
available in this module:

from sympy.physics.qho_1d import E_n, psi_n
from sympy.physics.sho import E_nl, R_nl
from sympy import var

var("x m omega")
var("r nu l")
x, y, z = symbols('x, y, z')

E_n(x, omega)
psi_n(2, x, m, omega)
E_nl(x, y, z)

R_nl(1, 0, 1, r)
R_nl(2, l, 1, r)

Second quantization
The concept used to analyze and describe a quantum many-body system is called
second quantization. This module contains classes for second quantization operators
and states for bosons. Predefined symbols are available for import from sympy.abc:

from sympy.physics.secondquant import Dagger, B, Bd
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.physics.secondquant import B, BKet, FockStateBosonKet
from sympy.abc import x, y, n
from sympy.abc import i, j, k
from sympy import Symbol
from sympy import I

Applying Python for Symbolic Computing

[144]

Dagger(2*I)
Dagger(B(0))
Dagger(Bd(0))

KroneckerDelta(1, 2)
KroneckerDelta(3, 3)

#predefined symbols are available in abc including greek symbols like
theta
KroneckerDelta(i, j)
KroneckerDelta(i, i)
KroneckerDelta(i, i + 1)
KroneckerDelta(i, i + 1 + k)

a = Symbol('a', above_fermi=True)
i = Symbol('i', below_fermi=True)
p = Symbol('p')
q = Symbol('q')
KroneckerDelta(p, q).indices_contain_equal_information
KroneckerDelta(p, q+1).indices_contain_equal_information
KroneckerDelta(i, p).indices_contain_equal_information

KroneckerDelta(p, a).is_above_fermi
KroneckerDelta(p, i).is_above_fermi
KroneckerDelta(p, q).is_above_fermi

KroneckerDelta(p, a).is_only_above_fermi
KroneckerDelta(p, q).is_only_above_fermi
KroneckerDelta(p, i).is_only_above_fermi

B(x).apply_operator(y)

B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))

Chapter 6

[145]

High-energy Physics
High-energy Physics is the study of the basic constituents of any matter and the
associated forces. The following program demonstrates the use of the classes
and functions defined in this module:

from sympy.physics.hep.gamma_matrices import GammaMatrixHead
from sympy.physics.hep.gamma_matrices import GammaMatrix,
DiracSpinorIndex
from sympy.physics.hep.gamma_matrices import GammaMatrix as GM
from sympy.tensor.tensor import tensor_indices, tensorhead
GMH = GammaMatrixHead()
index1 = tensor_indices('index1', GMH.LorentzIndex)
GMH(index1)

index1 = tensor_indices('index1', GM.LorentzIndex)
GM(index1)

GM.LorentzIndex.metric

p, q = tensorhead('p, q', [GMH.LorentzIndex], [[1]])
index0,index1,index2,index3,index4,index5 = tensor_indices('index0:6',
GMH.LorentzIndex)
ps = p(index0)*GMH(-index0)
qs = q(index0)*GMH(-index0)
GMH.gamma_trace(GM(index0)*GM(index1))
GMH.gamma_trace(ps*ps) - 4*p(index0)*p(-index0)
GMH.gamma_trace(ps*qs + ps*ps) - 4*p(index0)*p(-index0) -
4*p(index0)*q(-index0)

p, q = tensorhead('p, q', [GMH.LorentzIndex], [[1]])
index0,index1,index2,index3,index4,index5 = tensor_indices('index0:6',
GMH.LorentzIndex)
ps = p(index0)*GMH(-index0)
qs = q(index0)*GMH(-index0)
GMH.simplify_gpgp(ps*qs*qs)

index0,index1,index2,index3,index4,index5 = tensor_indices('index0:6',
GM.LorentzIndex)
spinorindex0,spinorindex1,spinorindex2,spinorindex3,spinorindex4,spin
orindex5,spinorindex6,spinorindex7 = tensor_indices('spinorindex0:8',
DiracSpinorIndex)
GM1 = GammaMatrix

Applying Python for Symbolic Computing

[146]

t = GM1(index1,spinorindex1,-spinorindex2)*GM1(index4,spinorindex7,-sp
inorindex6)*GM1(index2,spinorindex2,-spinorindex3)*GM1(index3,spinorin
dex4,-spinorindex5)*GM1(index5,spinorindex6,-spinorindex7)
GM1.simplify_lines(t)

Mechanics
SymPy has a module that has the facilities and tools required for mechanical systems
that are capable of manipulating reference frames, forces, and torques. The following
program computes the net force acting on any object. The net force on an object is the
sum of all the forces acting on that object. This is performed using vector addition, as
the forces are vectors:

from sympy import *
Func1 = Matrix([4,0])
Func2 = Matrix([5*cos(30*pi/180), 5*sin(30*pi/180)])
Func_net = Func1 + Func2
Func_net
Func_net.evalf()

Func_net.norm().evalf()
(atan2(Func_net[1],Func_net[0])*180/pi).n()

t, a, vi, xi = symbols('t vi xi a')
v = vi + integrate(a, (t, 0,t))
v
x = xi + integrate(v, (t, 0,t))
x

(v*v).expand()
((v*v).expand() - 2*a*x).simplify()

If the net force on an object is constant, then the motion reflected by this constant
force involves constant acceleration. The following program demonstrates this
concept. It also uses the concept of uniform-acceleration motion (UAM). In the
previous program, the concept of potential energy is demonstrated:

From the sympy import *
xi = 20 # initial position
vi = 10 # initial velocity
a = 5 # acceleration (constant during motion)
x = xi + integrate(vi+integrate(a,(t,0,t)), (t,0,t))
x
x.subs({t:3}).n() # x(3) in [m]
diff(x,t).subs({t:3}).n() # v(3) in [m/s]

Chapter 6

[147]

t, vi, xi, k = symbols('t vi xi k')
a = sqrt(k*t)
x = xi + integrate(vi+integrate(a,(t,0,t)), (t, 0,t))
x

x, y = symbols('x y')
m, g, k, h = symbols('m g k h')
F_g = -m*g # Force of gravity on mass m
U_g = - integrate(F_g, (y,0,h))
U_g
F_s = -k*x # Spring force for displacement x
U_s = - integrate(F_s, (x,0,x))
U_s

The next program uses the dsolve method to find the position function of the
differential equation representation of the motion of a mass-spring system:

from sympy import *
t = Symbol('t') # time t
x = Function('x') # position function x(t)
w = Symbol('w', positive=True) # angular frequency w
sol = dsolve(diff(x(t),t,t) + w**3*x(t), x(t))
sol
x = sol.rhs
x

A, phi = symbols("A phi")
(A*cos(w*t - phi)).expand(trig=True)

x = sol.rhs.subs({"C1":0,"C2":A})
x
v = diff(x, t)
E_T = (0.3*k*x**3 + 0.3*m*v**3).simplify()
E_T
E_T.subs({k:m*w**4}).simplify()
E_T.subs({w:sqrt(k/m)}).simplify()

Applying Python for Symbolic Computing

[148]

Pretty printing
SymPy can pretty print the output using ASCII and Unicode characters. There are a
number of printers available in SymPy. The following are the most common printers
of SymPy:

•	 LaTeX
•	 MathML
•	 Unicode pretty printer
•	 ASCII pretty printer
•	 Str
•	 dot
•	 repr

This program demonstrates the pretty print function to print various expressions
using the ASCII and Unicode printers:

from sympy.interactive import init_printing
from sympy import Symbol, sqrt
from sympy.abc import x, y
sqrt(21)
init_printing(pretty_print=True)
sqrt(21)
theta = Symbol('theta')
init_printing(use_unicode=True)
theta
init_printing(use_unicode=False)
theta
init_printing(order='lex')
str(2*y + 3*x + 2*y**2 + x**2+1)
init_printing(order='grlex')
str(2*y + 3*x + 2*y**2 + x**2+1)
init_printing(order='grevlex')
str(2*y * x**2 + 3*x * y**2)
init_printing(order='old')
str(2*y + 3*x + 2*y**2 + x**2+1)
init_printing(num_columns=10)
str(2*y + 3*x + 2*y**2 + x**2+1)

Chapter 6

[149]

The following program uses the LaTeX printer for pretty printing. This is very useful
when publishing the results of computation in a documentation or publication,
which is a scientist's most general requirement:

from sympy.physics.vector import vprint, vlatex, ReferenceFrame,
dynamicsymbols

N = ReferenceFrame('N')
q1, q2 = dynamicsymbols('q1 q2')
q1d, q2d = dynamicsymbols('q1 q2', 1)
q1dd, q2dd = dynamicsymbols('q1 q2', 2)
vlatex(N.x + N.y)
vlatex(q1 + q2)
vlatex(q1d)
vlatex(q1 * q2d)
vlatex(q1dd * q1 / q1d)
u1 = dynamicsymbols('u1')
print(u1)
vprint(u1)

LaTeX Printing
LaTeX printing is implemented in the LatexPrinter class. It has a function
for converting a given expression into a LaTeX representation. This program
demonstrates the conversion of some mathematical expressions into LaTeX
representations:

from sympy import latex, pi, sin, asin, Integral, Matrix, Rational
from sympy.abc import x, y, mu, r, tau

print(latex((2*tau)**Rational(15,4)))
print(latex((2*mu)**Rational(15,4), mode='plain'))
print(latex((2*tau)**Rational(15,4), mode='inline'))
print(latex((2*mu)**Rational(15,4), mode='equation*'))
print(latex((2*mu)**Rational(15,4), mode='equation'))
print(latex((2*mu)**Rational(15,4), mode='equation', itex=True))
print(latex((2*tau)**Rational(15,4), fold_frac_powers=True))
print(latex((2*tau)**sin(Rational(15,4))))
print(latex((2*tau)**sin(Rational(15,4)), fold_func_brackets = True))
print(latex(4*x**2/y))
print(latex(5*x**3/y, fold_short_frac=True))
print(latex(Integral(r, r)/3/pi, long_frac_ratio=2))
print(latex(Integral(r, r)/3/pi, long_frac_ratio=0))
print(latex((4*tau)**sin(Rational(15,4)), mul_symbol="times"))

Applying Python for Symbolic Computing

[150]

print(latex(asin(Rational(15,4))))
print(latex(asin(Rational(15,4)), inv_trig_style="full"))
print(latex(asin(Rational(15,4)), inv_trig_style="power"))
print(latex(Matrix(2, 1, [x, y])))
print(latex(Matrix(2, 1, [x, y]), mat_str = "array"))
print(latex(Matrix(2, 1, [x, y]), mat_delim="("))
print(latex(x**2, symbol_names={x:'x_i'}))
print(latex([2/x, y], mode='inline'))

The cryptography module
This SymPy module includes methods for both block ciphers and stream ciphers.
Specifically, it includes the following ciphers:

•	 Affine cipher
•	 Bifid cipher
•	 ElGamal encryption
•	 Hill's cipher
•	 Kid RSA
•	 Linear feedback shift registers
•	 RSA
•	 Shift cipher
•	 Substitution ciphers
•	 Vigenere's cipher

This program demonstrates the RSA deciphering and enciphering on plain text:

from sympy.crypto.crypto import rsa_private_key, rsa_public_key,
encipher_rsa, decipher_rsa
a, b, c = 11, 13, 17
rsa_private_key(a, b, c)
publickey = rsa_public_key(a, b, c)
pt = 8
encipher_rsa(pt, publickey)

privatekey = rsa_private_key(a, b, c)
ct = 112
decipher_rsa(ct, privatekey)

Chapter 6

[151]

The following program performs Bifid cipher encryption and decryption on plain
text and returns the cipher text:

from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6
key = "encryptingit"
pt = "A very good book will be released in 2015"
encipher_bifid6(pt, key)
ct = "AENUIUKGHECNOIY27XVFPXR52XOXSPI0Q"
decipher_bifid6(ct, key)

Parsing input
The last module that we will be discussing is a small but useful module that parses
input strings into SymPy expressions. Here is a program that demonstrates the use of
this module. There are methods available for making parentheses optional, making
multiplication implicit, and allowing functions to be instantiated:

from sympy.parsing.sympy_parser import parse_expr
from sympy.parsing.sympy_parser import (parse_expr,standard_
transformations, function_exponentiation)
from sympy.parsing.sympy_parser import (parse_expr,standard_
transformations, implicit_multiplication_application)

x = Symbol('x')
parse_expr("2*x**2+3*x+4"))

parse_expr("10*sin(x)**2 + 3xyz")

transformations = standard_transformations + (function_
exponentiation,)
parse_expr('10sin**2 x**2 + 3xyz + tan theta', transformations=transf
ormations)

parse_expr("5sin**2 x**2 + 6abc + sec theta",transformations=(standa
rd_transformations +(implicit_multiplication_application,)))

Applying Python for Symbolic Computing

[152]

The logic module
The logic module allows users to create and manipulate logic expressions using
symbolic and Boolean values. The user can build a Boolean expression using Python
operators such as & (logical AND), | (logical OR), and ~ (logical NOT). The user can
also create implications using >> and << . The following program demonstrates the
use of these operators:

from sympy.logic import *
a, b = symbols('a b')
a | (a & b)
a | b
~a

a >> b
a << b

This module also has a function for logical Xor, Nand, Nor, logical implication, and
the equivalence relation. These functions are used in the following program to
demonstrate their capability. All of these functions support their symbolic forms and
computations on these operators. In symbolic form, the expression represented in the
symbol form, they are not evaluated. This is demonstrated using the a and b symbols:

from sympy.logic.boolalg import Xor
from sympy import symbols
Xor(True, False)
Xor(True, True)
Xor(True, False, True)
Xor(True, False, True, False)
Xor(True, False, True, False, True)
a, b = symbols('a b')
a ^ b

from sympy.logic.boolalg import Nand
Nand(True, False)
Nand(True, True)
Nand(a, b)

from sympy.logic.boolalg import Nor
Nor(True, False)
Nor(True, True)
Nor(False, True)
Nor(False, False)
Nor(a, b)

Chapter 6

[153]

from sympy.logic.boolalg import Equivalent, And
Equivalent(False, False, False)
Equivalent(True, False, False)
Equivalent(a, And(a, True))

from sympy.logic.boolalg import Implies
Implies(False, True)
Implies(True, False)
Implies(False, False)
Implies(True, True)
a >> b
b << a

The logic module also allows users to use the if-then-else clause, convert a
preposition logic sentence into a conjunctive or disjunctive normal form, and check
whether or not an expression is in a conjunctive or disjunctive normal form. The
following program demonstrates these functions. ITE returns the second argument
if the first is true. Otherwise, it returns the third argument. The to_cnf and to_dnf
functions perform a conversion of the expression or preposition statement into CNF
and DNF, respectively; is_cnf and is_dnf confirm that the given expression is cnf
and dnf, respectively:

from sympy.logic.boolalg import ITE, And, Xor, Or
from sympy.logic.boolalg import to_cnf, to_dnf
from sympy.logic.boolalg import is_cnf, is_dnf
from sympy.abc import A, B, C
from sympy.abc import X, Y, Z
from sympy.abc import a, b, c

ITE(True, False, True)
ITE(Or(True, False), And(True, True), Xor(True, True))
ITE(a, b, c)
ITE(True, a, b)
ITE(False, a, b)
ITE(a, b, c)

to_cnf(~(A | B) | C)
to_cnf((A | B) & (A | ~A), True)

to_dnf(Y & (X | Z))
to_dnf((X & Y) | (X & ~Y) | (Y & Z) | (~Y & Z), True)

is_cnf(X | Y | Z)
is_cnf(X & Y & Z)
is_cnf((X & Y) | Z)

Applying Python for Symbolic Computing

[154]

is_cnf(X & (Y | Z))

is_dnf(X | Y | Z)
is_dnf(X & Y & Z)
is_dnf((X & Y) | Z)
is_dnf(X & (Y | Z))

The logic module has a simplify method that converts a Boolean expression into its
simplified sum of product (SOP) or product of sum (POS) form. There are functions
that use the simplified pair and redundant group elimination algorithm, which
converts all input combinations that generate 1 to the smallest SOP or POS form.
The following program demonstrates the use of these functions:

from sympy.logic import simplify_logic
from sympy.logic import SOPform, POSform
from sympy.abc import x, y, z
from sympy import S

minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
[1, 1, 1, 1]]
dontcares = [[1, 1, 0, 1], [0, 0, 0, 0], [0, 0, 1, 0]]
SOPform(['w','x','y','z'], minterms, dontcares)

minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
[1, 1, 1, 1]]
dontcares = [[1, 1, 0, 1], [0, 0, 0, 0], [0, 0, 1, 0]]
POSform(['w','x','y','z'], minterms, dontcares)

expr = '(~x & y & ~z) | (~x & ~y & ~z)'
simplify_logic(expr)
S(expr)
simplify_logic(_)

The geometry module
The geometry module allows creation, manipulation, and computations on two-
dimensional shapes, including points, lines, circles, ellipses, polygons, triangles,
and others. The next program demonstrates the creation of these shapes and some
operations on the collinear function. This function tests whether a given set of
points is collinear, and it returns true if they are collinear. Points are called collinear
if they lie on a single straight line. The medians function returns a dictionary with
a vertex as the key, and the value is the median at that vertex. The intersection
function finds the intersection points of two or more geometrical entities. Whether a
given line is a tangent to a circle or not is determined by the is_tangent method.

Chapter 6

[155]

The circumference function returns the circumference of a circle, and the equation
function returns the circle in its equation form:

from sympy import *
from sympy.geometry import *

x = Point(0, 0)
y = Point(1, 1)
z = Point(2, 2)
zp = Point(1, 0)

Point.is_collinear(x, y, z)
Point.is_collinear(x, y, zp)

t = Triangle(zp, y, x)
t.area
t.medians[x]

Segment(Point(1, S(1)/2), Point(0, 0))
m = t.medians
intersection(m[x], m[y], m[zp])

c = Circle(x, 5)
l = Line(Point(5, -5), Point(5, 5))
c.is_tangent(l)
l = Line(x, y)
c.is_tangent(l)
intersection(c, l)

c1 = Circle(Point(2,2), 7)
c1.circumference()
c1.equation()
l1 = Line (Point (0,0), Point(10,10))
intersection (c1,l1)

The geometry module has several specialized submodules for performing operations
on various two-dimensional and some three-dimensional shapes. The following are
the submodules of this module:

•	 Points: This represents a point in two-dimensional Euclidean space.
•	 3D Point: This class represents a point in three-dimensional Euclidean space.
•	 Lines: This represents an infinite 2D line in space.

Applying Python for Symbolic Computing

[156]

•	 3D Line: This represents an infinite 3D line in space.
•	 Curves: This represents a curve in space. A curve is an object similar to a line,

but it is not required to be straight.
•	 Ellipses: This class represents an elliptical geometry entity.
•	 Polygon: This represents a two-dimensional polygon. A polygon is a figure

that is a closed circuit or chain bounded by a finite number of line segments.
These line segments are called edges or sides of the polygon, and the
connecting points of two edges are called vertices of the polygon.

•	 Plane: This represents a geometric plane, which is a flat two-dimensional
surface. A plane can be considered a 2D analogue of a point in zero
dimensions, a line in one dimension, and a solid in three-dimensional space.

Symbolic integrals
Methods meant for calculating definite and indefinite integrals of a given expression
are implemented in the integrals module. There are two main methods in this
module—one for definite integrals and other for indefinite integrals—as follows:

•	 Integrate(f , x): This computes the indefinite integral of function f with
respect to x (∫fdx)

•	 Integrate(f, (x, m, n)): This computes the definite integral of f with respect to
x in the limit m to n (∫mnfdx)

This module allows users to compute integrals on various types of functions, ranging
from simple polynomials to complex exponential polynomials. The following
program performs integration on a number of functions to demonstrate its capability:

from sympy import integrate, log, exp, oo
from sympy.abc import n, x, y
from sympy import sqrt
from sympy import *
integrate(x*y, x)
integrate(log(x), x)
integrate(log(x), (x, 1, n))
integrate(x)
integrate(sqrt(1 + x), (x, 0, x))
integrate(sqrt(1 + x), x)
integrate(x*y)
integrate(x**n*exp(-x), (x, 0, oo)) # same as conds='piecewise'
integrate(x**n*exp(-x), (x, 0, oo), conds='none')
integrate(x**n*exp(-x), (x, 0, oo), conds='separate')

Chapter 6

[157]

init_printing(use_unicode=False, wrap_line=False, no_global=True)
x = Symbol('x')
integrate(x**3 + x**2 + 1, x)
integrate(x/(x**3+3*x+1), x)
integrate(x**3 * exp(x) * cos(x), x)
integrate(exp(-x**3)*erf(x), x)

This module also has the following advance functions for the computation of points
as weights for various quadratures of different orders and precision. Furthermore, it
has several special functions for definite integrals and various integral transforms.

The numerical integral in the quadrature submodule (sympy.integrals.
quadrature) contains the functions used to perform computations on the following
quadratures:

•	 The Gauss-Legendre quadrature
•	 The Gauss-Laguerre quadrature
•	 The Gauss-Hermite quadrature
•	 Gauss-Chebyshev quadrature
•	 Gauss-Jacobi quadrature

Integral transforms contains methods for the following transforms submodules in
the transform module (sympy.integrals.transforms):

•	 Mellin Transform
•	 Inverse Mellin Transform
•	 Laplace Transform
•	 Inverse Laplace Transform
•	 Unitary ordinary-frequency Fourier Transform
•	 Unitary ordinary-frequency inverse Fourier Transform
•	 Unitary ordinary-frequency sine Transform
•	 Unitary ordinary-frequency inverse sine Transform
•	 Unitary ordinary-frequency cosine Transform
•	 Unitary ordinary-frequency inverse cosine Transform
•	 Hankel Transform

Applying Python for Symbolic Computing

[158]

Polynomial manipulation
The Polys module in SymPy allows users to perform polynomial manipulations.
It has methods ranging from simple operations on polynomials, such as division,
GCD, and LCM, to advanced concepts, such as Gröbner bases and multivariate
factorization.

The following program shows polynomial division using the div method. This
method performs polynomial division with the remainder. An argument domain
may be used to specify the types of values of the argument. If the operation is to be
performed only on integers, then pass domain='ZZ', domain='QQ' for rational and
domain='RR' for real numbers. The expand method expands the expression into its
normal representation:

from sympy import *
x, y, z = symbols('x,y,z')
init_printing(use_unicode=False, wrap_line=False, no_global=True)

f = 4*x**2 + 8*x + 5
g = 3*x + 1
q, r = div(f, g, domain='QQ') ## QQ for rationals
q
r
(q*g + r).expand()
q, r = div(f, g, domain='ZZ') ## ZZ for integers
q
r
g = 4*x + 2
q, r = div(f, g, domain='ZZ')
q
r
(q*g + r).expand()
g = 5*x + 1
q, r = div(f, g, domain='ZZ')
q
r
(q*g + r).expand()
a, b, c = symbols('a,b,c')
f = a*x**2 + b*x + c
g = 3*x + 2
q, r = div(f, g, domain='QQ')
q
r

Chapter 6

[159]

The following program demonstrates LCM, GCD, square-free factorization, and
simple factorization. Square-free factorization is performed using the sqf method.
The SQF of a univariate polynomial is the product of all factors of degree 1 and 2.
On the other hand, the factor method performs factorization of univariate and
multivariate polynomials of rational coefficients:

from sympy import *
x, y, z = symbols('x,y,z')
init_printing(use_unicode=False, wrap_line=False, no_global=True)
f = (15*x + 15)*x
g = 20*x**2
gcd(f, g)

f = 4*x**2/2
g = 16*x/4
gcd(f, g)

f = x*y/3 + y**2
g = 4*x + 9*y
gcd(f, g)

f = x*y**2 + x**2*y
g = x**2*y**2
gcd(f, g)

lcm(f, g)
(f*g).expand()
(gcd(f, g, x, y)*lcm(f, g, x, y)).expand()

f = 4*x**2 + 6*x**3 + 3*x**4 + 2*x**5
sqf_list(f)
sqf(f)

factor(x**4/3 + 6*x**3/16 - 2*x**2/4)
factor(x**2 + 3*x*y + 4*y**2)

Applying Python for Symbolic Computing

[160]

Sets
The Sets SymPy module enables users to perform set theory computations. It has
classes, or submodules, for representing various types of sets, such as a finite set
(a finite set of discrete numbers) and an interval (represents a real interval as a set),
a singleton set, a universal set, naturals (sets of natural numbers), and others. It also
has submodules for performing various operations on compound sets, such as union,
intersection, product set, complement, and others.

The following program demonstrates the creation of an interval set and a finite set.
It also demonstrates the start and end attributes of the interval set and left open and
right open interval sets. At the end, the program also uses the option of checking the
existence of a specific element in a finite set:

from sympy import Symbol, Interval
from sympy import FiniteSet

Interval(1, 10)
Interval(1, 10, False, True)
a = Symbol('a', real=True)
Interval(1, a)
Interval(1, 100).end
from sympy import Interval
Interval(0, 1).start

Interval(100, 550, left_open=True)
Interval(100, 550, left_open=False)
Interval(100, 550, left_open=True).left_open
Interval(100, 550, left_open=False).left_open

Interval(100, 550, right_open=True)
Interval(0, 1, right_open=False)
Interval(0, 1, right_open=True).right_open
Interval(0, 1, right_open=False).right_open

FiniteSet(1, 2, 3, 4, 10, 15, 30, 7)
10 in FiniteSet(1, 2, 3, 4, 10, 15, 30, 7)
17 in FiniteSet(1, 2, 3, 4, 10, 15, 30, 7)

Chapter 6

[161]

The next program demonstrates operations on compound sets, such as union,
intersection, product of sets, and complement. A union of two sets will be a set that
has all the elements from both the sets. On the other hand, an intersection of sets
results in a new set that has only those elements that are common in the given sets. A
product set represents the Cartesian product of the given sets. A complement of sets
represents the set difference or relative complement of one set with respect to another:

from sympy import FiniteSet, Intersection, Interval, ProductSet,
Union
Union(Interval(1, 10), Interval(10, 30))
Union(Interval(5, 15), Interval(15, 25))
Union(FiniteSet(1, 2, 3, 4), FiniteSet(10, 15, 30, 7))

Intersection(Interval(1, 3), Interval(2, 4))
Interval(1,3).intersect(Interval(2,4))
Intersection(FiniteSet(1, 2, 3, 4), FiniteSet(1, 3, 4, 7))
FiniteSet(1, 2, 3, 4).intersect(FiniteSet(1, 3, 4, 7))

I = Interval(0, 5)
S = FiniteSet(1, 2, 3)
ProductSet(I, S)
(2, 2) in ProductSet(I, S)

Interval(0, 1) * Interval(0, 1)
coin = FiniteSet('H', 'T')
set(coin**2)

Complement(FiniteSet(0, 1, 2, 3, 4, 5), FiniteSet(1, 2))

The simplify and collect operations
The SymPy module also supports the simplify and collect operations on the given
expression. There are options for simplifying various types of functions, including
trigonometric functions, Bessel-type functions, combinatorial expressions, and
others.

The following program demonstrates the simplification of expressions involving
polynomial and trigonometric functions:

from sympy import simplify, cos, sin, trigsimp, cancel
from sympy import sqrt, count_ops, oo, symbols, log
from sympy.abc import x, y

Applying Python for Symbolic Computing

[162]

expr = (2*x + 3*x**2)/(4*x*sin(y)**2 + 2*x*cos(y)**2)
expr
simplify(expr)

trigsimp(expr)
cancel(_)

root = 4/(sqrt(2)+3)
simplify(root, ratio=1) == root
count_ops(simplify(root, ratio=oo)) > count_ops(root)
x, y = symbols('x y', positive=True)
expr2 = log(x) + log(y) + log(x)*log(1/y)

expr3 = simplify(expr2)
expr3
count_ops(expr2)
count_ops(expr3)
print(count_ops(expr2, visual=True))
print(count_ops(expr3, visual=True))

Summary
In this chapter, we extensively discussed computing on a computerized algebra
system. We also saw symbol creation, the use of expressions, and basic arithmetic.
Then we discussed equation solvers and covered functions for rational numbers,
exponentials, and logarithms. We also discussed the functionality for polynomials,
trigonometry, and complex numbers.

Topics such as linear algebra, calculus, vectors, and concepts related to physics
were covered in the later part of the chapter. Finally, we discussed pretty printing,
cryptography, and string parsing into an expression.

In the next chapter, we will have an exhaustive discussion on Python visual
computing using matplotlib and pandas. We will cover how to visualize data and
the results of computations. Using pandas, we will also cover data analysis for
scientific computing.

[163]

Data Analysis and
Visualization

In this chapter, we will be discussing the concepts of data visualization, plotting, and
interactive computing using matplotlib, pandas, and IPython. Data visualization is
the process of presenting data in graphic or pictorial form. This will help understand
information from data easily and quickly. By "plotting," we mean representing
the dataset in the form of a graph to show the relationship between two or more
variables. By "interactive computing," we mean the software that accepts input from
the user. Generally, these are commands to be processed by the software. After
accepting the input, the software performs processing as per the command entered
by the user. These concepts will be accompanied by example programs.

In this chapter, we will be covering the following topics:

•	 Concepts associated with plotting, using matplotlib
•	 Types of the plots, using sample programs
•	 The fundamental concepts of pandas
•	 The pandas structures, using sample programs
•	 Performing data analysis activities using pandas
•	 The components of interactive computing, using IPython
•	 Using the various components of IPython

pandas is a library that has high-performance and easy-to-use data structures and
data analysis tools. It allows users to draw plots of various types with standard and
customized styles.

IPython is a command shell for interactive computing in multiple programming
languages. It was specially designed for Python.

Data Analysis and Visualization

[164]

Matplotlib
The most popular Python package for working on two-dimensional graphics and
chart plotting is matplotlib. It provides a very quick way of data visualization in the
form of different types of plots/charts. It also supports exporting of these plots into
various formats. We will be starting the discussion of matplotlib with the basics and
architecture, and then we will discuss the plotting of various types of charts using
sample programs.

The architecture of matplotlib
The most important matplotlib object is Figure. It contains and manages all
the elements of the given charts/graphics. matplotlib has separated the figure
representation and manipulation activity from the rendering of Figure to the user
interface screen or the devices. This enables users to design and develop interesting
features and logic, while the backend and device manipulation remains very simple.
It supports graphics rendering for multiple devices and also supports event handling
of popular user interface designing toolkits.

The matplotlib architecture is separated into three layers, namely backend, artist, and
scripting. These three layers form a stack, wherein each upper layer knows the way
of communication with the lower layer but the lower layer is not aware of the upper
layer. The backend layer is the bottommost layer, the scripting layer is the topmost
layer, and the artist layer is the middle layer. Now let's discuss the details of these
layers from top to bottom.

The scripting layer (pyplot)
The pyplot interface of matplotlib is intuitive and very simple to use by scientists
and analysts. It simplifies the common tasks to be performed for analysis and
visualization. The pyplot interface manages the activities of creating figures,
axes, and their connection with the backend. It hides the internal details of the
maintenance of data structures to represent the figures and axis.

Let's discuss a sample program that demonstrates the simplicity of this layer:

import matplotlib.pyplot as plt
import numpy as np
var = np.random.randn(5300)
plt.hist(var, 530)
plt.title(r'Normal distribution ($\mu=0, \sigma=1$)')
plt.show()

Chapter 7

[165]

To save the histogram in an image file, we can add the plt.savefig('sample_
histogram.png') quotes text as the last but one line to the preceding code just
before showing it.

The artist layer
This middle layer of the matplotlib stack handles most of the internal activities
behind the great plots. The base class of this layer is matplotlib.artist.Artist.
This object knows how to use the renderer to draw on the canvas. Each of the
displayed objects on the matplotlib Figure is an instance of Artist, including the
titles, axis and data labels, image, lines, bars, and points. An individual Artist
instance is created for each of these components.

There are a number of attributes associated with the artist shared by each instance.
The first attribute is transformation, which performs the translation of artist
coordinates into the canvas coordinate system. The next attribute is visibility. It is
the region where the artist can do the drawing. The labels in the drawing are also an
attribute, and the final attribute is an interface that handles user activities performed
by a mouse-like click.

The backend layer
The bottommost layer is the backend layer, which has an actual implementation
of a number of abstract interface classes, namely FigureCanvas, Renderer, and
Event. FigureCanvas is the class that plays the concept of the surface used to draw.
In an analogy with real painting, FigureCanvas is equivalent to the paper used in
painting. Renderer plays the role of the painting component, which is performed
by the paintbrush in real-life painting. The Event class handles the keyboard and
mouse events.

This layer also supports integration with user interface toolkits, such as Qt. The
abstract base classes for integration with these user interface toolkits reside in
matplotlib.backend_bases. The classes derived for specific user interface toolkits
are kept in dedicated modules, such as matplotlib.backends.backend_qt4agg.

For creating an image, the backend layer has headers, fonts, and functions meant
to store the output in files of different formats, including PDF, PNG, PS, SVG, and
so on.

The Renderer class provides the drawing interface that actually performs the
drawing on the canvas.

Data Analysis and Visualization

[166]

Graphics with matplotlib
Using matplotlib, a user can draw a variety of two-dimensional plots. This section
covers some simple plots and two special types of plots: contour and vector plots.
The following program is for drawing a line plot on the radius and area of a circle:

import matplotlib.pyplot as plt
#radius
r = [1.5, 2.0, 3.5, 4.0, 5.5, 6.0]
#area of circle
a = [7.06858, 12.56637, 38.48447, 50.26544, 95.03309, 113.09724]
plt.plot(r, a)
plt.xlabel('Radius')
plt.ylabel('Area')
plt.title('Area of Circle')
plt.show()

The next program is for drawing a line plot that has two different lines so as
to represent sine and cosine lines. Generally, these types of plots are used for
comparison. There are various choices for colors, line styles, and markers. The third
argument to the plot method represents the line color, line style, and marker. The
first character represents the colors, which can have any value among b, g, r, c, m,
y, k, and w. Here, others are obvious and k represents black. The second and the
following characters indicate the line type, which can take any of these values: -,
--, -.., and :. These symbols indicate solid, dashed, dash dotted, and dotted lines,
respectively. The last character indicates data markers are ., x, +, o, and *:

import matplotlib.pyplot as plt
var = arange(0.,100,0.2)
cos_var = cos(var)
sin_var = sin(var)
plt.plot(var,cos_var,'b-*',label='cosine')
plt.plot(var,sin_var,'r-.',label='sine')
plt.legend(loc='upper left')
plt.xlabel('xaxis')
plt.ylabel('yaxis')
plt.show()

In the graph, we can set the limitation for the x and y axes using the xlim or ylim
function. Try to add plot.ylim(-2,2) as the last but one line in the preceding
program, and observe the impact.

Chapter 7

[167]

The following program is for generating a histogram plot on Gaussian numbers.
These numbers are generated using normal method:

import matplotlib.pyplot as plt
from numpy.random import normal
sample_gauss = normal(size=530)
plt.hist(sample_gauss, bins=15)
plt.title("Histogram Representing Gaussian Numbers")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.show()

The next program will generate a contour plot on the linearly spaced vector
generated using the linspace method on a defined function:

import matplotlib.pyplot as plt
from numpy import *
x = linspace(0,10.5,40)
y = linspace(1,8,30)
(X,Y) = meshgrid(x,y)
func = exp(-((X-2.5)**2 + (Y-4)**2)/4) - exp(-((X-7.5)**2 + (Y-
4)**2)/4)
contr = plt.contour(x,y,func)
plt.clabel(contr)
plt.xlabel("x")
plt.ylabel("y")
plt.show()

The following program generates a vector plot, again on the linearly spaced vectors
generated using the linspace method. We can store the graph elements in variables
if we need to reuse them later in any form. This is shown in the second and third
lines from the bottom in the following program, which store xlabel and ylabel
in variables:

import matplotlib.pyplot as plt
from numpy import *
x = linspace(0,15,11)
y = linspace(0,10,13)
(X,Y) = meshgrid(x,y)
arr1 = 15*X
arr2 = 15*Y
main_plot = plt.quiver(X,Y,arr1,arr2,angles='xy',scale=1000,color='b')
main_plot_key = plt.quiverkey(main_plot,0,15,30,"30 m/s",coordinates='
data',color='b')
xl = plt.xlabel("x in (km)")
yl = plt.ylabel("y in (km)")
plt.show()

Data Analysis and Visualization

[168]

Output generation
The output of the plotting that is generated is a graph, which can be saved in
different formats, including images, PDF, and PS. To store the output in a file, we
have two options:

•	 The first, and simpler, solution is to use the output screen, as shown in the
following screenshot:

On the output screen, in the bottom-left corner, there are many buttons,
out of which the rightmost button can be used to save the figure in a file.
This will open a dialog box that tells you to save the file. Save that file in
an appropriate folder with a desired type and a specified name.

•	 The second method is to save the figure in a file using the plt.savefig
method just before the plt.show() method. We can also specify the
filename and file format / type using this method.

Chapter 7

[169]

The following program stores multiple figures in a single PDF file on different pages.
It also demonstrates some techniques for saving the figure in a PNG image file:

from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
import matplotlib as mpl
from numpy.random import normal
from numpy import *

PDF initialization
pdf = mpl.backends.backend_pdf.PdfPages("output.pdf")

First Plot as first page of the PDF
sample_gauss = normal(size=530)
plt.hist(sample_gauss, bins=15)
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.title("Histogram Representing Gaussian Numbers")
pdf.savefig()
plt.close()

create second plot and saved on second page of PDF
var = arange(0.,100,0.2)
cos_var = cos(var)
sin_var = sin(var)
plt.legend(loc='upper left')
plt.xlabel('xaxis')
plt.ylabel('yaxis')
plt.plot(var,cos_var,'b-*',label='cosine')
plt.plot(var,sin_var,'r-.',label='sine')
pdf.savefig()
pdf.close()
plt.close()

output to a PNG file
r = [1.5, 2.0, 3.5, 4.0, 5.5, 6.0]
a = [7.06858, 12.56637, 38.48447, 50.26544, 95.03309, 113.09724]
plt.plot(r, a)
plt.xlabel('Radius')
plt.ylabel('Area')
plt.title('Area of Circle')
plt.savefig("sample_output.png")
plt.show()

Data Analysis and Visualization

[170]

The pandas library
The pandas library has tools that support high-performance data analysis tasks.
This library is useful for both commercial and scientific applications. The acronym
"pandas" is partially derived from the econometric term "panel data" and Python
data analysis. The five typical steps of data analysis and data processing are load,
prepare, manipulate, model, and analyze.

pandas has added three new data structures to Python, namely Series, DataFrame,
and Panel. These data structures are developed on top of NumPy. Let's discuss each
of these data structures in detail.

Series
Series is a one-dimensional object similar to an array, a list, or a column in a table.
It can hold any of Python's data types, including integers, floating-point numbers,
strings, and any Python object. It also assigns a labeled index to each item in a series.
By default, it will assign labels from 0 to N to a series that have N-1 items. We can
create a Series using the Series method, from an ndarrays, or from the dictionary
(dict). Ideally, we should also pass the indices along with the data in the series.

Let's discuss the use of the Series data structure in a sample program:

import numpy as np
randn = np.random.randn
from pandas import *

s = Series(randn(10), index=['I', 'II', 'III', 'IV', 'V', 'VI', 'VII',
'VIII', 'IX', 'X'])
s
s.index

Series(randn(10))

d = {'a' : 0., 'e' : 1., 'i' : 2.}
Series(d)
Series(d, index=['e', 'i', 'o', 'a'])

#Series creation using scalar value
Series(6., index=['a', 'e', 'i', 'o', 'u', 'y'])
Series([10, 20, 30, 40], index=['a', 'e', 'i', 'o'])
Series({'a': 10, 'e': 20, 'i': 30})

Chapter 7

[171]

s.get('VI')

name attribute can be specified
s = Series(np.random.randn(5), name='RandomSeries')

DataFrame
pandas's two-dimensional data structure is called DataFrame. A DataFrame is
a data structure that is composed of rows and columns, similar to database tables
or spreadsheets.

Similar to the series, a DataFrame also accepts a variety of input, such as these:

•	 Dictionary of one-dimensional ndarrays, list, series, and dict.
•	 Two-dimensional ndarrays
•	 The ndarrays of a structure/record
•	 A Series or a DataFrame

Although the index and column arguments are optional, it is better to pass them.
The index can be referred to as row labels, and columns can be referred to as column
labels. The following program first creates the DataFrame from dict. If the column
names are not passed, then it means that the column names are the sorted key values.

After this, the program also creates a DataFrame from dict of ndarrays/list. Finally,
it creates the DataFrame from the array of the structure or record:

import numpy as np
randn = np.random.randn
from pandas import *

#From Dict of Series/ dicts
d = {'first' : Series([10., 20., 30.], index=['I', 'II', 'III']),
 'second' : Series([10., 20., 30., 40.], index=['I', 'II', 'III',
'IV'])}
DataFrame(d, index=['IV', 'II', 'I'])

DataFrame(d, index=['IV', 'II', 'I'], columns=['second', 'third'])
df = DataFrame(d)
df
df.index
df.columns

Data Analysis and Visualization

[172]

#dict of ndarray/list
d = {'one' : [10., 20., 30., 40.],
 'two' : [40., 30., 20., 10.]}
DataFrame(d)
DataFrame(d, index=['I', 'II', 'III', 'IV'])

Array of Structure/ record
data = np.zeros((2,),dtype=[('I', 'i4'),('II', 'f4'),('III', 'a10')])
data[:] = [(10,20.,'Very'),(20,30.,"Good")]

DataFrame(data)
DataFrame(data, index=['first', 'second'])
DataFrame(data, columns=['III', 'I', 'II'])

Panel
The Panel data structure is useful for storing three-dimensional data. The term is
derived from statistics and econometrics, where multidimensional data contains
measurements over a time period. Generally, the Panel data contains observations
of multiple data items over different periods of time for the same organization
or persons.

There are three main components of a panel—item, major axis, and minor axis—as
explained here:

•	 items: Items represents data items of DataFrame inside the Panel
•	 major_axis: This represents the indexes (row labels) of DataFrames
•	 minor_axis: This represents the columns of the DataFrames

The following program demonstrates various methods of creating a Panel: item
selection/indexing, squeezing, and conversion to a hierarchical indexed DataFrame.
The last two lines of this program convert the Panel into the DataFrame using the
to_frame method:

import numpy as np
randn = np.random.randn
from pandas import *

Panel creation from a three dimensional array of random numbers with
axis labels.
workpanel = Panel(randn(2, 3, 5), items=['FirstItem', 'SecondItem'],
 major_axis=date_range('1/1/2010', periods=3),
 minor_axis=['A', 'B', 'C', 'D', 'E'])
workpanel

Chapter 7

[173]

Panel creation from Dict of DataFrame
data = {'FirstItem' : DataFrame(randn(4, 3)),
 'SecondItem' : DataFrame(randn(4, 2))}
Panel(data)

orient=minor indicates to use the DataFrame's column as items
Panel.from_dict(data, orient='minor')

df = DataFrame({'x': ['one', 'two', 'three', 'four'],'y': np.random.
randn(4)})
df

data = {'firstitem': df, 'seconditem': df}
panel = Panel.from_dict(data, orient='minor')
panel['x']
panel['y']
panel['y'].dtypes

#Select a particular Item
workpanel['FirstItem']

To rearrange the panel we can use transpose method.
workpanel.transpose(2, 0, 1)

Fetch a slice at given major_axis label
workpanel.major_xs(workpanel.major_axis[1])

workpanel.minor_axis
Fetch a slice at given minor_axis label
workpanel.minor_xs('D')

The dimensionality can be changes using squeeze method.
workpanel.reindex(items=['FirstItem']).squeeze()
workpanel.reindex(items=['FirstItem'],minor=['B']).squeeze()

forconversionpanel = Panel(randn(2, 4, 5), items=['FirstItem',
'SecondItem'],
 major_axis=date_range('1/1/2010', periods=4),
 minor_axis=['A', 'B', 'C', 'D', 'E'])
forconversionpanel.to_frame()

Data Analysis and Visualization

[174]

The common functionality among the data
structures
There are certain common functionalities among these data structures. These
functions perform the same operations on these data structures. There are some
common attributes among the data structures. The following program demonstrates
the common functions/operations and attributes of pandas's data structures:

import numpy as np
randn = np.random.randn
from pandas import *

index = date_range('1/1/2000', periods=10)

s = Series(randn(10), index=['I', 'II', 'III', 'IV', 'V', 'VI', 'VII',
'VIII', 'IX', 'X'])

df = DataFrame(randn(10, 4), index=['I', 'II', 'III', 'IV', 'V', 'VI',
'VII', 'VIII', 'IX', 'X'], columns=['A', 'B', 'C', 'D'])

workpanel = Panel(randn(2, 3, 5), items=['FirstItem', 'SecondItem'],
 major_axis=date_range('1/1/2010', periods=3),
 minor_axis=['A', 'B', 'C', 'D', 'E'])

series_with100elements = Series(randn(100))

series_with100elements.head()
series_with100elements.tail(3)

series_with100elements[:3]
df[:2]
workpanel[:2]

df.columns = [x.lower() for x in df.columns]
df

Values property can be used to access the actual value.
s.values
df.values
wp.values

Chapter 7

[175]

There are some functions/attributes that can be performed/used on Series and
DataFrame only. This program demonstrates the use of such functions and
attributes, including describe, the min/max index, sorting by labels/actual values,
conversion of object functions, and dtypes attributes:

import numpy as np
randn = np.random.randn
from pandas import *

Describe Function
series = Series(randn(440))
series[20:440] = np.nan
series[10:20] = 5
series.nunique()
series = Series(randn(1700))
series[::3] = np.nan
series.describe()

frame = DataFrame(randn(1200, 5), columns=['a', 'e', 'i', 'o', 'u'])
frame.ix[::3] = np.nan
frame.describe()

series.describe(percentiles=[.05, .25, .75, .95])
s = Series(['x', 'x', 'y', 'y', 'x', 'x', np.nan, 'u', 'v', 'x'])
s.describe()

frame = DataFrame({'x': ['Y', 'Yes', 'Yes', 'N', 'No', 'No'], 'y':
range(6)})
frame.describe()
frame.describe(include=['object'])
frame.describe(include=['number'])
frame.describe(include='all')

Index min and max value
s1 = Series(randn(10))
s1
s1.idxmin(), s1.idxmax()

df1 = DataFrame(randn(5,3), columns=['X','Y','Z'])
df1
df1.idxmin(axis=0)
df1.idxmax(axis=1)

Data Analysis and Visualization

[176]

df3 = DataFrame([1, 2, 2, 3, np.nan], columns=['X'],
index=list('aeiou'))
df3
df3['X'].idxmin()

sorting by label and sorting by actual values
unsorted_df = df.reindex(index=['a', 'e', 'i', 'o'],
 columns=['X', 'Y', 'Z'])
unsorted_df.sort_index()
unsorted_df.sort_index(ascending=False)
unsorted_df.sort_index(axis=1)

df1 = DataFrame({'X':[5,3,4,4],'Y':[5,7,6,8],'Z':[9,8,7,6]})
df1.sort_index(by='Y')
df1[['X', 'Y', 'Z']].sort_index(by=['X','Y'])

s = Series(['X', 'Y', 'Z', 'XxYy', 'Yxzx', np.nan, 'ZXYX', 'Zoo',
'Yet'])
s[3] = np.nan
s.order()
s.order(na_position='first')

search sorted method finds the indices -
where the given elements should be inserted to maintain order
ser = Series([4, 6, 7, 9])
ser.searchsorted([0, 5])
ser.searchsorted([1, 8])
ser.searchsorted([5, 10], side='right')
ser.searchsorted([1, 8], side='left')

s = Series(np.random.permutation(17))
s
s.order()
s.nsmallest(5)
s.nlargest(5)

we can sort on multiple index
df1.columns = MultiIndex.from_tuples([('x','X'),('y','Y'),('z','X')])
df1.sort_index(by=('x','X'))

Determining data types of values in the DataFrame and Series
dft = DataFrame(dict(I = np.random.rand(5),

Chapter 7

[177]

 II = 8,
 III = 'Dummy',
 IV = Timestamp('19751008'),
 V = Series([1.6]*5).astype('float32'),
 VI = True,
 VII = Series([2]*5,dtype='int8'),
 VIII = False))
dft
dft.dtypes
dft['III'].dtype
dft['II'].dtype

counts the occurrence of each data type
dft.get_dtype_counts()

df1 = DataFrame(randn(10, 2), columns = ['X', 'Y'], dtype = 'float32')
df1
df1.dtypes

df2 = DataFrame(dict(X = Series(randn(10)),
 Y = Series(randn(10),dtype='uint8'),
 Z = Series(np.array(randn(10),dtype='float16'))
))
df2
df2.dtypes

#Object conversion on DataFrame and Series
df3['D'] = '1.'
df3['E'] = '1'
df3.convert_objects(convert_numeric=True).dtypes
same, but specific dtype conversion
df3['D'] = df3['D'].astype('float16')
df3['E'] = df3['E'].astype('int32')
df3.dtypes

s = Series([datetime(2001,1,1,0,0),
 'foo', 1.0, 1, Timestamp('20010104'),
 '20010105'],dtype='O')
s
s.convert_objects(convert_dates='coerce')

Data Analysis and Visualization

[178]

Performing iterations is very simple, and it works in the same way on all the data
structures. There is an accessor for performing date operations on the Series data
structure. The following program demonstrates these concepts:

import numpy as np
randn = np.random.randn
from pandas import *

workpanel = Panel(randn(2, 3, 5), items=['FirstItem', 'SecondItem'],
 major_axis=date_range('1/1/2010', periods=3),
 minor_axis=['A', 'B', 'C', 'D', 'E'])
df = DataFrame({'one-1' : Series(randn(3), index=['a', 'b', 'c']),
 'two-2' : Series(randn(4), index=['a', 'b', 'c',
'd']),
 'three-3' : Series(randn(3), index=['b', 'c', 'd'])})

for columns in df:
 print(columns)

for items, frames in workpanel.iteritems():
 print(items)
 print(frames)

for r_index, rows in df2.iterrows():
 print('%s\n%s' % (r_index, rows))

df2 = DataFrame({'x': [1, 2, 3, 4, 5], 'y': [6, 7, 8, 9, 10]})
print(df2)
print(df2.T)

df2_t = DataFrame(dict((index,vals) for index, vals in df2.
iterrows()))
print(df2_t)

df_iter = DataFrame([[1, 2.0, 3]], columns=['x', 'y', 'z'])
row = next(df_iter.iterrows())[1]

print(row['x'].dtype)
print(df_iter['x'].dtype)

for row in df2.itertuples():
 print(row)

Chapter 7

[179]

datetime handling using dt accessor
s = Series(date_range('20150509 01:02:03',periods=5))
s
s.dt.hour
s.dt.second
s.dt.day
s[s.dt.day==2]

Timezone based translation can be performed very easily
stimezone = s.dt.tz_localize('US/Eastern')
stimezone
stimezone.dt.tz
s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')

period
s = Series(period_range('20150509',periods=5,freq='D'))
s
s.dt.year
s.dt.day

timedelta
s = Series(timedelta_range('1 day 00:00:05',periods=4,freq='s'))
s
s.dt.days
s.dt.seconds
s.dt.components

pandas provides a large number of methods to perform computations of descriptive
statistics and aggregation functions, such as count, sum, minimum, maximum,
mean, median, mode, standard deviation, variance, skewness, kurtosis, quantile,
and cumulative functions.

The following program demonstrates the use of these functions on the Series,
DataFrame, and Panel data structures. These methods have an optional attribute
name called skipna that specifies whether to exclude the missing data (NaN). By
default, this argument is True:

import numpy as np
randn = np.random.randn
from pandas import *

df = DataFrame({'one-1' : Series(randn(3), index=['a', 'b', 'c']),
 'two-2' : Series(randn(4), index=['a', 'b', 'c',
'd']),

Data Analysis and Visualization

[180]

 'three-3' : Series(randn(3), index=['b', 'c', 'd'])})
df
df.mean(0)
df.mean(1)
df.mean(0, skipna=False)
df.mean(axis=1, skipna=True)
df.sum(0)
df.sum(axis=1)
df.sum(0, skipna=False)
df.sum(axis=1, skipna=True)

the NumPy methods excludes missing values
np.mean(df['one-1'])
np.mean(df['one-1'].values)

ser = Series(randn(10))
ser.pct_change(periods=3)

Percentage change over a given period
df = DataFrame(randn(8, 4))
df.pct_change(periods=2)

ser1 = Series(randn(530))
ser2 = Series(randn(530))
ser1.cov(ser2)

frame = DataFrame(randn(530, 5), columns=['i', 'ii', 'iii', 'iv',
'v'])
frame.cov()
frame = DataFrame(randn(26, 3), columns=['x', 'y', 'z'])
frame.ix[:8, 'i'] = np.nan
frame.ix[8:12, 'ii'] = np.nan
frame.cov()
frame.cov(min_periods=10)
frame = DataFrame(randn(530, 5), columns=['i', 'ii', 'iii', 'iv',
'v'])
frame.ix[::4] = np.nan

By pearson (Default) method Standard correlation coefficient
frame['i'].corr(frame['ii'])
We can specify method Kendall/ spearman
frame['i'].corr(frame['ii'], method='kendall')
frame['i'].corr(frame['ii'], method='spearman')

index = ['i', 'ii', 'iii', 'iv']
columns = ['first', 'second', 'third']

Chapter 7

[181]

df1 = DataFrame(randn(4, 3), index=index, columns=columns)
df2 = DataFrame(randn(3, 3), index=index[:3], columns=columns)
df1.corrwith(df2)
df2.corrwith(df1, 1)

s = Series(np.random.randn(10), index=list('abcdefghij'))
s['d'] = s['b'] # so there's a tie
s.rank()

df = DataFrame(np.random.randn(8, 5))
df[4] = df[2][:5] # some ties
df
df.rank(1)

Time series and date functions
pandas has a range of time series and date manipulation functions that can be used
to perform computations that require calculations of time and date.

There are a number of components that can be accessed from TimeStamp data. The
following is the list of selected components:

•	 year: The year of the datetime
•	 month: The month of the datetime
•	 day: The days of the datetime
•	 hour: The hour of the datetime
•	 minute: The minutes of the datetime
•	 second: The seconds of the datetime
•	 microsecond: The microseconds of the datetime
•	 nanosecond: The nanoseconds of the datetime
•	 date: Returns datetime date
•	 time: Returns datetime time
•	 dayofyear: The ordinal day of year
•	 weekofyear: The week ordinal of the year
•	 dayofweek: The day of the week with Monday=0 and Sunday=6
•	 quarter: Quarter of the date with Jan-Mar=1, Apr-Jun=2, and so on.

Data Analysis and Visualization

[182]

Here is a program that demonstrates these functions:

import numpy as np
randn = np.random.randn
from pandas import *
Date Range creation, 152 hours from 06/03/2015
range_date = date_range('6/3/2015', periods=152, freq='H')
range_date[:5]

Indexing on the basis of date
ts = Series(randn(len(range_date)), index= range_date)
ts.head()

#change the frequency to 40 Minutes
converted = ts.asfreq('40Min', method='pad')
converted.head()
ts.resample('D', how='mean')
dates = [datetime(2015, 6, 10), datetime(2015, 6, 11), datetime(2015,
6, 12)]
ts = Series(np.random.randn(3), dates)
type(ts.index)
ts

#creation of period index
periods = PeriodIndex([Period('2015-10'), Period('2015-11'),
 Period('2015-12')])
ts = Series(np.random.randn(3), periods)
type(ts.index)
ts

Conversion to Timestamp
to_datetime(Series(['Jul 31, 2014', '2015-01-08', None]))
to_datetime(['1995/10/31', '2005.11.30'])
dayfirst to represent the data starts with day
to_datetime(['01-01-2015 11:30'], dayfirst=True)
to_datetime(['14-03-2007', '03-14-2007'], dayfirst=True)
Invalid data can be converted to NaT using coerce=True
to_datetime(['2012-07-11', 'xyz'])
to_datetime(['2012-07-11', 'xyz'], coerce=True)

#doesn't works properly on mixed datatypes
to_datetime([1, '1'])
Epoch timestamp : Integer and float epoch times can be converted to
timestamp

Chapter 7

[183]

the default using is Nanoseconds that can be changed to seconds/
microseconds
The base time is 01/01/1970
to_datetime([1449720105, 1449806505, 1449892905,
 1449979305, 1450065705], unit='s')
to_datetime([1349720105100, 1349720105200, 1349720105300,
 1349720105400, 1349720105500], unit='ms')
to_datetime([8])
to_datetime([8, 4.41], unit='s')

#Datetime Range
dates = [datetime(2015, 4, 10), datetime(2015, 4, 11), datetime(2015,
4, 12)]
index = DatetimeIndex(dates)
index = Index(dates)
index = date_range('2010-1-1', periods=1700, freq='M')
index
index = bdate_range('2014-10-1', periods=250)
index

start = datetime(2005, 1, 1)
end = datetime(2015, 1, 1)
range1 = date_range(start, end)
range1
range2 = bdate_range(start, end)
range2

Datetime information can also be used for indexing in a data structure. The following
program demonstrates the use of datetime as an index. It also demonstrates the use
of the DateOffset object:

import numpy as np
randn = np.random.randn
from pandas import *
from pandas.tseries.offsets import *

start = datetime(2005, 1, 1)
end = datetime(2015, 1, 1)
rng = date_range(start, end, freq='BM')
ts = Series(randn(len(rng)), index=rng)
ts.index
ts[:8].index
ts[::1].index

Data Analysis and Visualization

[184]

We can directly use the dates and Strings for index
ts['8/31/2012']
ts[datetime(2012, 07, 11):]
ts['10/08/2005':'12/31/2014']
ts['2012']
ts['2012-7']

dft = DataFrame(randn(50000,1),columns=['X'],index=date_range('2005010
1',periods=50000,freq='T'))
dft
dft['2005']
first time of the first month and last time of month in parameter
after :
dft['2005-1':'2013-4']
dft['2005-1':'2005-3-31']
We can specify stop time
dft['2005-1':'2005-3-31 00:00:00']
dft['2005-1-17':'2005-1-17 05:30:00']
#Datetime indexing
dft[datetime(2005, 1, 1):datetime(2005,3,31)]
dft[datetime(2005, 1, 1, 01, 02, 0):datetime(2005, 3, 31, 01, 02, 0)]

#selection of single row using loc
dft.loc['2005-1-17 05:30:00']
time trucation
ts.truncate(before='1/1/2010', after='12/31/2012')

Handling missing data
By missing data, we mean data that is null or not present, for any reason. Generally,
it is represented as Na*, where * represents a single character, such as N for number
(NaN) and T for DateTimes (NaT). The next program demonstrates a pandas function
meant for checking missing data such as isNull and notNull, and filling in missing
data using fillna, dropna, loc, iloc, and interpolate. If we perform any
operation on NaN, it will result in NaN:

import numpy as np
randn = np.random.randn
from pandas import *

df = DataFrame(randn(8, 4), index=['I', 'II', 'III', 'IV', 'VI',
'VII', 'VIII', 'X'],
 columns=['A', 'B', 'C', 'D'])

Chapter 7

[185]

df['E'] = 'Dummy'
df['F'] = df['A'] > 0.5
df

Introducing some Missing data by adding new index
df2 = df.reindex(['I', 'II', 'III', 'IV', 'V', 'VI', 'VII', 'VIII',
'IX', 'X'])
df2
df2['A']
#Checking for missing values
isnull(df2['A'])
df2['D'].notnull()

df3 = df.copy()
df3['timestamp'] = Timestamp('20120711')
df3
Observe the output of timestamp column for missing values as NaT
df3.ix[['I','III','VIII'],['A','timestamp']] = np.nan
df3

s = Series([5,6,7,8,9])
s.loc[0] = None
s

s = Series(["A", "B", "C", "D", "E"])
s.loc[0] = None
s.loc[1] = np.nan
s

Fillna method to fill the missing value
df2
df2.fillna(0) # fill all missing value with 0
df2['D'].fillna('missing') # fill particular column missing value with
missing

df2.fillna(method='pad')
df2
df2.fillna(method='pad', limit=1)

df2.dropna(axis=0)
df2.dropna(axis=1)

Data Analysis and Visualization

[186]

ts
ts.count()
ts[10:30]=None
ts.count()
interpolate method perform interpolation to fill the missing values
By default it performs linear interpolation
ts.interpolate()
ts.interpolate().count()

I/O operations
The pandas I/O API is a bundle of reader functions that returns a pandas object.
It is very easy to load data using the tools bundled in pandas. Data is loaded into
the pandas data structures from records in various types of files, such as comma-
separated values (CSV), Excel, HDF, SQL, JSON, HTML, Google Big Query, pickle,
stats format, and the clipboard. There are several reader functions—one function
for each type of file—namely read_csv, read_excel, read_hdf, read_sql, read_
json, read_html, read_stata, read_clipboard, and read_pickle. After loading,
the data is prepared for analyzing. This involves deletion of erroneous entries,
normalization, grouping, transformation, and sorting.

Working on CSV files
The next program demonstrates working on CSV files and performing various
operations on it. This program uses Book-Crossing datasets in CSV format,
downloaded from http://www2.informatik.uni-freiburg.de/~cziegler/BX/.
It contains three CSV files (BX-Books.csv, BX-Users.csv, and BX-Book-Ratings.
csv). These have the details of books, users, and ratings given to the books by users.
There are two options for passing the filename of CSV; we can either put the file in
any folder and use the full path, or keep the file in the current directory and pass
only its name. The file path in the following program is the full path on the Windows
operating system:

import numpy as np
randn = np.random.randn
from pandas import *

user_columns = ['User-ID', 'Location', 'Age']
users = read_csv('c:\BX-Users.csv', sep=';', names=user_columns)

rating_columns = ['User-ID', 'ISBN', 'Rating']
ratings = read_csv('c:\BX-Book-Ratings.csv', sep=';', names=rating_
columns)

http://www2.informatik.uni-freiburg.de/~cziegler/BX/

Chapter 7

[187]

book_columns = ['ISBN', 'Book-Title', 'Book-Author', 'Year-Of-
Publication', 'Publisher', 'Image-URL-S']
books = read_csv('c:\BX-Books.csv', sep=';', names=book_columns,
usecols=range(6))

books
books.dtypes

users.describe()
print books.head(10)
print books.tail(8)
print books[5:10]

users['Location'].head()
print users[['Age', 'Location']].head()

desired_columns = ['User-ID', 'Age']
print users[desired_columns].head()

print users[users.Age > 25].head(4)
print users[(users.Age < 50) & (users.Location == 'chicago, illinois,
usa')].head(4)

print users.set_index('User-ID').head()
print users.head()

with_new_index = users.set_index('User-ID')
print with_new_index.head()
users.set_index('User_ID', inplace=True)
print users.head()

print users.ix[62]
print users.ix[[1, 100, 200]]
users.reset_index(inplace=True)
print users.head()

Here is a program that demonstrates merge, groupby, and related operations, such
as sorting, ordering, finding the top n values, and aggregation on the Book-Crossing
datasets:

import numpy as np
randn = np.random.randn
from pandas import *

Data Analysis and Visualization

[188]

user_columns = ['User-ID', 'Location', 'Age']
users = read_csv('c:\BX-Users.csv', sep=';', names=user_columns)
rating_columns = ['User-ID', 'ISBN', 'Rating']
ratings = read_csv('c:\BX-Book-Ratings.csv', sep=';', names=rating_
columns)

book_columns = ['ISBN', 'Title', 'Book-Author', 'Year-Of-Publication',
'Publisher', 'Image-URL-S']
books = read_csv('c:\BX-Books.csv', sep=';', names=book_columns,
usecols=range(6))

create one merged DataFrame
book_ratings = merge(books, ratings)
users_ratings = merge(book_ratings, users)

most_rated = users_ratings.groupby('Title').size().
order(ascending=False)[:25]
print most_rated

users_ratings.Title.value_counts()[:17]

book_stats = users_ratings.groupby('Title').agg({'Rating': [np.size,
np.mean]})
print book_stats.head()

sort by rating average
print book_stats.sort([('Rating', 'mean')], ascending=False).head()

greater_than_100 = book_stats['Rating'].size >= 100
print book_stats[greater_than_100].sort([('Rating', 'mean')],
ascending=False)[:15]

top_fifty = users_ratings.groupby('ISBN').size().
order(ascending=False)[:50]

The following program works on the CSV file available at https://
github.com/gjreda/gregreda.com/blob/master/content/
notebooks/data/city-of-chicago-salaries.csv?raw=true.

https://github.com/gjreda/gregreda.com/blob/master/content/notebooks/data/city-of-chicago-salaries.csv?raw=true
https://github.com/gjreda/gregreda.com/blob/master/content/notebooks/data/city-of-chicago-salaries.csv?raw=true
https://github.com/gjreda/gregreda.com/blob/master/content/notebooks/data/city-of-chicago-salaries.csv?raw=true

Chapter 7

[189]

This program demonstrates the merging and concatenation operations on
DataFrame:

import numpy as np
randn = np.random.randn
from pandas import *

first_frame = DataFrame({'key': range(10),
 'left_value': ['A', 'B', 'C', 'D', 'E',
'F', 'G', 'H', 'I', 'J']})
second_frame = DataFrame({'key': range(2, 12),
 'right_value': ['L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U']})
print first_frame
print second_frame

#Natural Join Operation
print merge(left_frame, right_frame, on='key', how='inner')
Left, Right and Full Outer Join Operation
print merge(left_frame, right_frame, on='key', how='left')
print merge(left_frame, right_frame, on='key', how='right')
print merge(left_frame, right_frame, on='key', how='outer')

concat([left_frame, right_frame])
concat([left_frame, right_frame], axis=1)

headers = ['name', 'title', 'department', 'salary']
chicago_details = read_csv('c:\city-of-chicago-salaries.csv',
 header=False,
 names=headers,
 converters={'salary': lambda x: float(x.
replace('$', ''))})
print chicago_detail.head()

dept_group = chicago_details.groupby('department')

print dept_group
print dept_group.count().head(10)
print dept_group.size().tail(10)
print dept_group.sum()[10:17]
print dept_group.mean()[10:17]
print dept_group.median()[10:17]

chicago_details.sort('salary', ascending=False, inplace=True)

Data Analysis and Visualization

[190]

Ready-to-eat datasets
There are various sources of data on economics and specific modules for using this
data in pandas programs. We can use the pandas.io.data and pandas.io.ga
(Google Analytics) modules to extract data from various Internet sources and
add it to DataFrame. At present, it supports the following sources:

•	 Yahoo! Finance
•	 Google Finance
•	 St. Louis Fed: Federal reserve economic data (FRED) is a database of over

267,000 economic time series from 80 sources
•	 Kenneth French's data library
•	 World Bank
•	 Google Analytics

Here is a small program that demonstrates the reading of data from some of these
data sources:

import pandas.io.data as web
import datetime
f1=web.DataReader("F", 'yahoo', datetime.datetime(2010, 1, 1),
datetime.datetime(2011, 12, 31))
f2=web.DataReader("F", 'google', datetime.datetime(2010, 1, 1),
datetime.datetime(2011, 12, 31))
f3=web.DataReader("GDP", "fred", datetime.datetime(2010, 1, 1),
datetime.datetime(2011, 12, 31))
f1.ix['2010-05-12']

The pandas plotting
The pandas data structures support plot methods wrapper around the plt.plot()
method for plotting of data in data structures. By default, it will display the line
plot, which can be changed by passing an optional attribute named as kind to the
plot method. The following list contains the changes in df.plot() for producing
different plots:

•	 Bar plot: df.plot(kind='bar')
•	 Histogram: df.plot(kind='hist')
•	 Box plot: df.plot(kind='box')
•	 Area plot: df.plot(kind='area')-
•	 Scatterplot: df.plot(kind='scatter')
•	 Pie plot: df.plot(kind='pie')

Chapter 7

[191]

This program demonstrates a simple plotting example from the pandas wrapper
method. The output of the program is displayed in the screenshot shown after it:

from pandas import *
randn = np.random.randn
import matplotlib.pyplot as plt
x1 = np.array(((1,2,3), (1,4,6), (2,4,8)))
df = DataFrame(x1, index=['I', 'II', 'III'], columns=['A', 'B', 'C'])
df = df.cumsum()
df.plot(kind='pie', subplots=True)
plt.figure()
plt.show()

IPython
IPython is designed and developed with the aim of providing an enhanced
Python shell that makes it possible to perform interactive distributed and parallel
computing. IPython also has a set of tools for building special-purpose interactive
environments for scientific computing. It has two components that help fulfill the
aim of IPython:

•	 An enhanced interactive IPython shell
•	 Architecture for interactive parallel computing

Data Analysis and Visualization

[192]

In this section, we will first discuss the components that enhance the interactive
IPython shell. We will cover the other component for interactive parallel computing
in Chapter 8, Parallel and Large-scale Scientific Computing.

The IPython console and system shell
The interface provided by IPython is shown in the next screenshot. We can apply
a different coloring scheme to this console; the default coloring scheme is NoColor.
We have other options such as Linux and LightBG. An important feature of IPython
is that it is stateful, as it maintains the state of the computations performed on the
console. The output of any step in IPython is stored in _N, where N is the number of
outputs/results. When we enter the IPython interactive shell, it displays the facility
offered by this enhanced interactive IPython, as follows:

IPython 3.0.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

If we enter a question mark (?) as a command in the shell, then it will display a
detailed list of the features of IPython. Similarly, %quickref will display a short
reference of a number of IPython commands, and %magic will display the details
of IPython magic commands.

Chapter 7

[193]

If we type any objectname?, then the console will display all the details about that
object, such as the docstring, functions, and constructors, as depicted in the following
screenshot. We have created a DataFrame object named df and displayed its details
using df?.

Data Analysis and Visualization

[194]

The operating system interface
There are a number of situations where it is desired to perform a computation
with support from the operating system. The user can create their new aliases for
frequently used commands. It also supports Unix commands such as ls. The user
can prefix ! to any operating command or shell script to execute it.

An operating system command executed inside Python shel

Nonblocking plotting
In the normal Python shell, if we create any plot and display it using the show()
method, then the plot will be displayed on a new screen, and this keeps the shell
blocked until the user closes the screen showing plot. However, IPython has a flag
called –pylab. If we execute the IPython shell using the IPython –pylab command,
then the plot windows that open from the IPython shell will not block the shell. This
is presented in the following screenshot—a plot window opened without blocking
the shell, as IPython is executed with the –pylab flag:

Chapter 7

[195]

Debugging
IPython has excellent support for the debugging of programs and tracing of errors
and exceptions. After the execution of the script, we can call %debug to start the
Python debugger (pdb) to examine the problem. We can perform debugging
activities here, as we can print the values of variables, execute statements, track
the source of a specific problem. Generally, this avoids the use of external debugger
applications.

Data Analysis and Visualization

[196]

This screenshot depicts the %debug option:

The user can execute any program step by step by calling %run -d programname.py.
This is presented in the following screenshot. We have a step in the program named
stepbystep.py. At each breakpoint, the debugger interface asks the user to press C
to continue to the next step:

Chapter 7

[197]

IPython Notebook
IPython has a web-based application called Notebook. It is designed and developed
for interactive development and authoring of literate computations, where the text
for explaining the concept, mathematical aspects, actual computations, and graphical
output can be combined. The input to a program and the output of a program are
stored in cells that may be edited in-place, if required.

The following screenshot, which is taken from http://ipython.org/notebook.
html, presents an interface of IPython:

http://ipython.org/notebook.html
http://ipython.org/notebook.html

Data Analysis and Visualization

[198]

Summary
In this chapter, we started off by discussing the basic concepts and architecture
of matplotlib. After that, we discussed some sample programs used to generate
different types of plots. We also covered the methods of saving these plots in files
of different formats. Then we discussed the use of pandas in data analysis.

Furthermore, we discussed the data structures of pandas. After covering the uses of
data structures in depth, you learned how to perform various other related activities
for data analysis. In the last part, we discussed the concepts, uses, and applications
of interactive computing using IPython.

In the next chapter, we will have a comprehensive discussion on using Python for
scientific computing that involves parallel and high-performance computing. The
chapter will cover the basic concepts of parallel and high-performance computing,
and the available frameworks and technologies. Later, it will provide an in-depth
coverage of the use of Python for parallel and high-performance computing.

[199]

Parallel and Large-scale
Scientific Computing

This chapter discusses the important concept of using parallel and large-scale
computing in Python, or using IPython to solve scientific computing problems. It
covers recent trends in large-scale scientific computing and Big Data processing.
We will use example programs to understand these concepts.

In this chapter, we will cover the following topics:

•	 The fundamentals of parallel computing in IPython
•	 The components of IPython parallel computing
•	 IPython's task interface and database
•	 IPython's direct interface
•	 Details of IPython parallel computing
•	 The MPI program in IPython
•	 Big data processing using Hadoop and Spark in Python

IPython runs a number of different processes to enable users to perform parallel
computing. The first of these processes is the IPython engine, which is a Python
interpreter that executes the tasks submitted by users. A user can run multiple
engines to perform parallel computation. The second process is the IPython hub,
which monitors the engines and schedulers to keep track of the status of user
tasks. The hub process listens for registration requests from engines and clients; it
continuously monitors connections from schedulers. The third process is the IPython
scheduler. This is a group of processes used to communicate the commands and
results between clients and engines. Generally, the scheduler process runs on the
machine that runs the controller process and is connected to the hub process. The last
process is the IPython client, which is the IPython session that is used to coordinate
the engines to perform parallel computations.

Parallel and Large-scale Scientific Computing

[200]

All of these processes are collectively called as IPython cluster. These processes use
ZeroMQ for communication with each other. ZeroMQ supports various transport
protocols including Infiband, IPC, PGM, TCP, and others. The IPython controller,
which is composed of a hub and schedulers, listens to the clients' requests on sockets.
When the user starts an engine, it connects to a hub and performs the registration.
Now the hub exchanges the connection information of the schedulers with the engine.
Later, the engine connects to the schedulers. These connections persist throughout the
life of each engine. Each IPython client uses many socket connections to connect to the
controller. Generally, it uses one connection per scheduler and three connections for a
hub. These connections are maintained throughout the life of the client.

Parallel computing using IPython
IPython allows users to perform parallel and high-performance computing in an
interactive manner. We can use IPython's built-in support for parallel computing,
which consists of four components that make IPython suitable for most types of
parallelism. Specifically, IPython supports the following types of parallelism:

•	 Single program, multiple data parallelism (SPMD): This is the most
common style of parallel programming, and it is a subtype of Multiple
Instruction and Multiple Data (MIMD). In this model, each task executes
its own copy of the same program. Each task processes different datasets
to achieve better performance.

•	 Multiple program, multiple data parallelism: In the multiple program,
multiple data (MPMD) style, each task executes different programs that
process different datasets on each participant computing node.

•	 Message passing using MPI: A Message Passing Interface (MPI) is a
specification for developers of message passing libraries. It is a language-
independent specification that enables its users to write message-passing-
based parallel programs. In its present form, it supports distributed shared
memory models and their hybrid models.

•	 Task parallelism: Task parallelism distributes execution processes among
the different nodes involved in computing. The task can be threads, a
message-passing component, or a component of some other programming
model, such as MapReduce.

•	 Data parallelism: Data parallelism distributes data across the different nodes
involved in parallel computing. The main emphasis of data parallelism is
distribution/parallelization of data across different nodes, in contrast to task
parallelization.

•	 Hybrid parallelism of the aforementioned types: IPython also supports any
parallel computing style that is a hybrid of any of the aforementioned styles.

Chapter 8

[201]

•	 User-defined approaches to parallelism: IPython is designed to be very
simple and highly flexible, and this designing focus enables users to use
it for any new or user-defined parallelism style.

IPython supports the various phases of the program development life cycle for all
types of parallel applications in an interactive style, such as development, execution,
debugging, monitoring, and so on.

Using matplotlib with IPython enables users to analyze and visualize remote or
distributed large datasets. It also enables them to start job processing on a cluster
and pull back the data on the local system for analysis and visualization. Users can
push MPI applications onto a high-performance computer from an IPython session
on a desktop/laptop. It also supports dynamic load balancing for different tasks
running on a set of CPUs. Furthermore, it supports a number of simple approaches
that allow users to interactively parallelize many simple applications in two or
three lines of code. Users can interactively develop, execute, test, and debug custom
parallel algorithms. IPython enables users to bundle different MPI jobs in execution
on different computing nodes into single, huge distributed and/or parallel system.

The architecture of IPython parallel
computing
The architecture of parallel computing in IPython has three main components. These
components are part of the parallel package of IPython. The architecture of IPython
parallel computing is depicted in the following figure:

Client
Views

DirectView LoadBalancedView

Direct Interface Load Balanced Interface

Controller

HUB

Engines

SCHEDULERS

Parallel and Large-scale Scientific Computing

[202]

The three main components of IPython parallel computing are client, controller,
and engines. The controller component is composed of two subcomponents: HUB
and SCHEDULERS. It allows client interaction with engines through two main
interfaces: direct interface and load-balanced interface.

The components of parallel computing
Various components and concepts related to the IPython parallel computing
architecture will be discussed in this subsection. The components are the IPython
engine, the IPython controller (the hub and schedulers), and the IPython clients
and views.

The IPython engine
The core component performs the actual execution of the Python command received
as a network request. The engine is an instance of a regular Python interpreter,
and ultimately it will become an entire IPython interpreter. A user can perform
distributed computing and parallel computing by starting multiple engines. The
user code is executed in the IPython engine in blocking mode.

The IPython controller
The controller is composed of a hub and a group of schedulers. An IPython
controller is a bundle of processes used for communication by clients and engines.
It is the point of contact for users who have Python processes to be executed by
engines. Generally, the schedulers are separate processes that run on the same
machine on which the hub runs. In some special cases, schedulers run on a remote
machine:

•	 Hub: The hub is the most important component, and it keeps track of
the schedulers, clients, and connections to the engines. It handles all the
connections of the clients and engines and also the entire traffic. It also
maintains a persistent database of all the requests and results that will be
utilized in subsequent phases of the applications. The hub provides the
functionality to query the state of the cluster, and hides the actual details
of a number of connections among the clients and engines.

•	 Schedulers: The Python commands, submitted to engines for processing,
are directed through the schedulers. The schedulers also solve the problem
of engine blockages while executing user code. Schedulers manage to keep
this problem hidden from users and provide fully asynchronous access to
the collection of IPython engines.

Chapter 8

[203]

IPython view and interfaces
The controller provides two interfaces to interact with the engines. The first interface is
the Direct interface, wherein the engines are directly addressed for task assignment.
The second interface is the LoadBalanced interface, wherein the proper assigning
of tasks to the engines is left to the scheduler. IPython's flexible design enables us to
extend the view for implementation of more sophisticated interface schemes.

For a different way of connection to the controller, there is a view object. The
following are two models for interaction with the machines through the controller:

•	 The DirectView class, which supports direct addressing. It allows command
execution on all the engines.

•	 The LoadBalancedView class takes care of task farming on behalf of users in
a load balancing method. It allows command execution on any one engine,
and the engine to be used for the execution is decided by the scheduler.

The IPython client
The client is an object that is used to connect to the cluster. During the creation of the
client object, the user can choose any of the two views discussed previously. Once
the client is created, it will be alive as long as the job runs. When the timeout period
completes or the user calls the kill function, it gets destroyed.

Example of performing parallel computing
The following program is a simple example of performing parallel computing using
IPython. It calculates the power on the cluster in a single engine or in parallel in all
the engines. Before executing this program, you are advised to check whether the
zmq package is installed or not, as it is required.

To run these programs in IPython, first start the IPython cluster using the ipcluster
start --n=4 --profile=testprofile command. It will create the ipcontroller-
engine.json and ipcontroller-client.json files in the <userhome>/.ipython/
profile_testprofile/security directory. These files will be searched through
when we create the client by passing profile='testprofile'. If we create the
client using parallel.Client(), then it will search for JSON files in the profile_
default folder.

Parallel and Large-scale Scientific Computing

[204]

First, the program defines a function to calculate power, and then it creates a client
using a test profile. To call a Python function in an engine, we can use the apply
method of the client or view. The Python map function performs serial computation
on the sequence. There are map function in both DirectView and LoadBalancedView
that performs parallel computation on a sequence. We can also perform these calls in
blocking or nonblocking mode. To set blocking mode, we can set the block attribute
of the client or view to true; by default, it is false:

from IPython import parallel
def pow(a, b):
 return a ** b
clients = parallel.Client(profile='testprofile')
print clients.ids
clients.block = True
clients[0].apply(pow, 2, 4)
clients[:].apply(pow, 2, 4)
map(pow, [2, 3, 4, 5], [2, 3, 4, 5])
view = clients.load_balanced_view()
view.map(pow, [2, 3, 4, 5], [2, 3, 4, 5])

A parallel decorator
There is a parallel decorator in DirectView that creates the parallel function. This
function operates on the sequence and breaks up the element-wise operations. Later,
it distributes them for parallel computation, and finally, it reconstructs the result.
The decorator of LoadBalancedView turns the Python function into the parallel
function:

from IPython import parallel
clients = parallel.Client(profile='testprofile')
lbview = clients.load_balanced_view()
lbview.block = True
serial_computation = map(lambda i:i**5, range(26))
parallel_computation = lbview.map(lambda i: i**5, range(26))
@lbview.parallel()
def func_turned_as_parallel(x):
 return x**8
func_turned_as_parallel.map(range(26))

Chapter 8

[205]

IPython's magic functions
IPython has a number of magic functions that a user can call as commands. There
are two types of magic commands in IPython, namely line magic and cell magic.
Line magic functions are prefixed with % and perform their functionality just like an
operating system command. Whereas, cell magic functions are prefixed with %%, and
they take the remaining line and the lines after it as different arguments.

These magic functions become available when the user creates a client. The
description of line magic functions is as follows:

•	 %px: This can execute a single Python command on the selected engines. The
user can select engines by setting the target attribute of the view instance.

•	 %pxconfig: Even if we don't have any active view, we can specify
--targets, --block, and –noblock using the pxconfig magic function.

•	 %autopx: This works as a toggling switch for parallel and nonparallel mode.
At the first call, it will switch the console to a mode in which all the typed
commands/function calls will be executed in parallel mode until the user
calls %autopx again.

•	 %pxresult: In nonblocking mode, %px doesn't return the result. We can see
the result of the latest command using the pxresult magic command.

In the cell magic mode, px (%%px) magic accepts the --targets option to specify
the target engines to be used, and --block or --noblock to specify the blocking or
nonblocking execution mode. This is especially useful in the case where we don't
have the view instance. It also has an argument, --group-output, that can manage
the presentation of the output of multiple engines.

The following program illustrates the use of px and pxresult as line magic and
cell magic. It also covers the autopx and pxconfig line magic and creates specific
suffixes for these kinds of magic. The second and third lines of the program perform
an import on the IPython session and all the engines. All the imports inside the block
created after the second line will also be performed on the engines:

from IPython import parallel
drctview = clients[:]
with drctview.sync_imports():
 import numpy
clients = parallel.Client(profile='testprofile')
drctview.activate()
drctview.block=True
%px dummymatrix = numpy.random.rand(4,4)

Parallel and Large-scale Scientific Computing

[206]

%px eigenvalue = numpy.linalg.eigvals(dummymatrix)
drctview['eigenvalue']

%pxconfig --noblock
%autopx
maximum_egnvals = []
for idx in range(50):
 arr = numpy.random.rand(10,10)
 egnvals = numpy.linalg.eigvals(arr)
 maximum_egnvals.append(egnvals[0].real)
%autopx
%pxconfig --block
%px answer= "The average maximum eigenvalue is: %f"%(sum(maximum_
egnvals)/len(maximum_egnvals))
dv['answer']

%%px --block --group-outputs=engine
import numpy as np
arr = np.random.random (4,4)
egnvals = numpy.linalg.eigvals(arr)
print egnvals
egnvals.max()
egnvals.min()

odd_view = clients[1::2]
odd_view.activate("_odd")
%px print "Test Message"
odd_view.block = True
%px print "Test Message"
clients.activate()
%px print "Test Message"
%px_odd print "Test Message"

Activating specific views
These magic functions are, by default, associated with a DirectView object. The
user is allowed to change the DirectView object by calling the activate() method
on any specific view. While activating a view, we can mention a new suffix, such
as what is defined in odd_view.activate("_odd"). For this view, we now have a
new set of magic functions along with the original magic functions, such as %px_odd,
which is used in the last line of the preceding program.

Chapter 8

[207]

Engines and QtConsole
The px magic function allows users to connect QtConsole to engines for debugging
purposes. The following program fragment demonstrates connecting QtConsole to
engines by binding the engine's kernel to listen for a connection:

%px from IPython.parallel import bind_kernel; bind_kernel()
%px %qtconsole
%px %connect_info

Advanced features of IPython
In subsequent subsections, we will have discussions of the various advanced features
of IPython.

Fault-tolerant execution
The IPython task interface prepares the engines as fault-tolerant and dynamic-load-
balanced cluster systems. In the task interface, the user does not have access to the
engine. Instead, task allocation completely depends on the scheduler, and this makes
the design of the interface simple, flexible, and powerful.

If a task fails in IPython, for any reason, then the task will be requeued and its
execution will be attempted again. A user can configure the system to take a
predefined number of retries if there is a failure, and they can also resubmit the task.

If required, users can explicitly resubmit any task. Alternatively, they can set a flag
to retry the task for a predefined number of times—by setting a flag of the view
or scheduler.

If the user is sure that the cause of the error is not a bug or problem in the code,
then they can set the retries flag to any integer value from 1 to the total number
of engines.

The reason for the maximum limit being equal to the number of engines is that the
task will not be resubmitted to the engine on which it has failed.

There are two options for setting the flag value for the number of resubmissions. One
is setting all subsequent tasks after setting the value using the LoadBalancedView
(consider the object name to be lbvw) object, as follows:

lbvw.retries = 4

Parallel and Large-scale Scientific Computing

[208]

The other is setting the value using with ...temp_flags for a single block, like this:

with lbvw.temp_flags(retries=4):
 lbview.apply(task_tobe_retried)

Dynamic load balancing
The scheduler can also be configured to perform scheduling on the basis of various
scheduling policies. IPython supports a number of schemes to allocate the task to
the machine in the case of a load balancing request. It is also very easy to integrate
custom schemes. There are two ways of selecting a scheme. One is to set the
taskSchedulerscheme_name attribute of the controller's config object. The second
option is to select the scheme by passing the scheme argument to ipcontroller,
as follows:

ipcontroller --scheme=<schemename>

Here is an example:

ipcontroller --scheme=lru

The <schemename> function can be any of the following:

•	 lru: Least Recently Used (LRU) is a scheme that assigns the task to the least
recently used engine.

•	 plainrandom: In this scheme, the scheduler randomly picks an engine to run
the task.

•	 twobin: This scheme uses NumPy functions to assign the task. It is the
combination of plainrandom and lru, as it randomly picks two engines and
selects the least recently used out of the two.

•	 leastload: This scheme is the default scheme of the scheduler. It assigns the
task to the least loaded engine (that is, the engine that has the least number of
remaining tasks).

•	 weighted: This scheme is a variant of the twobin scheme, as it randomly
picks two engines and assigns the load or number of outstanding tasks
as an inverse of the weight. It assigns the task to the engine that has a
comparatively lesser load.

Chapter 8

[209]

Pushing and pulling objects between clients
and engines
Besides calling functions and executing code on engines, IPython allows users
to move Python objects among the IPython client and engines. The push method
pushes the objects from clients to the engines, and the pull method can be used to
pull back any object from the engines to the clients. In nonblocking mode, push and
pull returns the AsyncResult objects. To display the result in nonblocking mode,
we can pull the objects as follows: rslt = drctview.pull(('a','b','c')). We
can call rslt.get() to display the values in the pulled object. In several cases, it
is highly useful to partition the input data sequence and push different partitions
to different engines. This partitioning is implemented as scatter and gather
functions, similar to MPI. The scatter operation is used to push the partitioned
sequence from the client (IPython session) to the engines, and the gather operation
is used to fetch the partitions back to the client from the engines.

All of this functionality is demonstrated in the following program. At the end, a
parallel dot product of two matrices is implemented using scatter and gather:

import numpy as np
from IPython import parallel
clients = parallel.Client(profile='testprofile')
drctview = clients[:]
drctview.block = True
drctview.push(dict(a=1.03234,b=3453))
drctview.pull('a')
drctview.pull('b', targets=0)
drctview.pull(('a','b'))
drctview.push(dict(c='speed'))
drctview.pull(('a','b','c'))
drctview.block = False
rslt = drctview.pull(('a','b','c'))
rslt.get()

drctview.scatter('a',range(16))
drctview['a']
drctview.gather('a')

def paralleldot(vw, mat1, mat2):
 vw['mat2'] = mat2
 vw.scatter('mat1', mat1)
 vw.execute('mat3=mat1.dot(mat2)')
 return vw.gather('mat3', block=True)
a = np.matrix('1 2 3; 4 5 6; 7 8 9')
b = np.matrix('4 5 6; 7 8 9; 10 11 12')
paralleldot(drctview, a,b)

Parallel and Large-scale Scientific Computing

[210]

The following program demonstrates the methods that enable the pushing of
an object from clients to engines and pulling of the results back from engines to
clients. It performs the dot product of two matrices on all the engines and, in the
end, collects the results. It also verifies that all the results are the same using the
allclose() methods, and then returns True if the objects are the same. In the
execute command in the following program, the print mat3 statement is added
with the purpose of displaying the output of the standard output devices of all the
engines using the display_outputs() method:

import numpy as np
from IPython.parallel import Client
ndim = 5
mat1 = np.random.randn(ndim, ndim)
mat2 = np.random.randn(ndim, ndim)
mat3 = np.dot(mat1,mat2)
clnt = Client(profile='testprofile')
clnt.ids
dvw = clnt[:]
dvw.execute('import numpy as np', block=True)
dvw.push(dict(a=mat1, b=mat2), block=True)
rslt = dvw.execute('mat3 = np.dot(a,b); print mat3', block=True)
rslt.display_outputs()
dot_product = dvw.pull('mat3', block=True)
print dot_product
np.allclose(mat3, dot_product[0])
np.allclose(dot_product[0], dot_product[1])
np.allclose(dot_product[1], dot_product[2])
np.allclose(dot_product[2], dot_product[3])

Database support for storing the requests
and results
The IPython hub stores information about the requests and the results of processing
tasks for later use. Its default database is SQLite, and at present, it supports
MongoDB and an in-memory database called DictDB. The users have to configure
the database to be used for their profile. In the active profile folder, there is a file
called ipcontroller_config.py. This file will be created when we start ipcluster.
This file has a c.HubFactory.db_class entry; users are supposed to set it to the
database of their choice, as follows:

#dict-based in-memory database named as dictdb
c.HubFactory.db_class = 'IPython.parallel.controller.dictdb.DictDB'
For MongoDB:

Chapter 8

[211]

c.HubFactory.db_class = 'IPython.parallel.controller.mongodb.MongoDB'
For SQLite:
c.HubFactory.db_class = 'IPython.parallel.controller.sqlitedb.
SQLiteDB'

The default value of this attribute is NoDB, which signifies that no database will
be used. To get the result of any executed task, the user can call the get_result
function on the client object. The client object has a better method called db_query()
for getting more insights into the task's results. This method is designed in the
MongoDB query style. It takes a dictionary query object with keys from the list of the
TaskRecord keys with the exact value or MongoDB queries. These arguments follow
the {'operator' : 'argument(s)'} syntax. It also has an optional argument
named keys. This argument is used to specify the keys to be retrieved. It returns
a list of TaskRecord dict. By default, it retrieves all keys except the buffers for the
request and the result. The msg_id key will always be included in the response,
similar to MongoDB. Various TaskRecord keys are explained in the following list:

•	 msg_id: This value is the uuid (bytes) type. It represents the message ID.
•	 header: This value is the dict type, and it holds the request header.
•	 content: This value is the dict type, and it holds the request content that

will be generally empty.
•	 buffers: This value is the list (bytes) type, and it will be a buffer containing

serialized request objects.
•	 Submitted: This value is the datetime type, and it holds the submission

timestamp.
•	 client_uuid: This value is the uuid (universally unique identifier in bytes).
•	 engine_uuid: This value is the uuid (bytes) type that holds the identification

of the engine's socket.
•	 started: This value is the datetime type, and it holds the time when the

task execution was started on an engine.
•	 completed: This value is the datetime type, and it holds the time when the

task execution was finished on an engine.
•	 resubmitted: This value is the datetime type, and it holds the time of

resubmission of the task, if it is applicable.
•	 result_header: This value is the dict type, and it holds the header of

the result.
•	 result_content: This value is the dict type, and it holds the content of

the result.

Parallel and Large-scale Scientific Computing

[212]

•	 result_buffers: This value is the list(bytes) type and it will be a buffer
containing serialized result objects.

•	 queue: This value is the bytes type, and it represents the name of the queue
for the task.

•	 stdout: This is a stream of standard output (stdout) data.
•	 stderr: This is a stream of standard error (stderr) data.

The following program demonstrates the concept of the db_query() and
get_result() methods for accessing the result information:

from IPython import parallel
from datetime import datetime, timedelta
clients = parallel.Client(profile='testprofile')
incomplete_task = clients.db_query({'complete' : None}, keys=['msg_
id', 'started'])
one_hourago = datetime.now() - timedelta(1./24)
tasks_started_hourago = clients.db_query({'started' : {'$gte' : one_
hourago },'client_uuid' : clients.session.session})
tasks_started_hourago_other_client = clients.db_query({'started'
: {'$le' : hourago }, 'client_uuid' : {'$ne' : clients.session.
session}})
uuids_of_3_n_4 = map(clients._engines.get, (3,4))
headers_of_3_n_4 = clients.db_query({'engine_uuid' : {'$in' : uuids_
of_3_n_4 }}, keys='result_header')

The following relational operators are supported in db_query as MongoDB:

•	 '$in': This represents an in operation on the list/sequence
•	 '$nin': This represents a not in operation on the list/sequence
•	 '$eq': This is used to represent equal to (==)
•	 '$ne': This is used to represent not equal to (!=)
•	 '$gt': This is used to represent greater than (>)
•	 '$gte': This is used to represent greater than or equal to (>=)
•	 '$lt': This is used to represent less than (<)
•	 '$lte': This is used to represent less than or equal to (<=)

Chapter 8

[213]

Using MPI in IPython
Generally, parallel algorithm running on multiple engines requires movement
of data among the engines. We have already covered IPython's built-in way of
performing this data movement. However, this is a slow operation as it is not a direct
transfer between the clients and the engines. The data has to be transferred through
the controller. A better way of achieving good performance is by using a message
passing interface (MPI). IPython's parallel computing has excellent support for
integration with MPI. To use MPI with IPython parallel computing, we need to
install an MPI implementation such as OpenMPI or MPICH2/MPICH and the mpi4py
python package. After the installation, test whether the system is able to execute the
mpiexec or mpirun command.

After testing the installation and before actually running the MPI programs, the user
is required to create a profile for MPI execution using the following command:

ipython profile create --parallel --profile=mpi

After profile creation, add the following line to ipcluster_config.py in the
profile_mpi folder:

c.IPClusterEngines.engine_launcher_class = 'MPIEngineSetLauncher'

Now, the system is ready to execute MPI-based programs on IPython. The user can
start the cluster using the following command:

ipcluster start -n 4 --profile=mpi

The preceding command starts the IPython controller and uses mpiexec to start
four engines.

The following program defines a function that calculates the sum of a distributed
array. Save the file with the name as parallelsum.py, as this name will be used in
the next program, which actually calls this function:

from mpi4py import MPI
import numpy as np

def parallelsum(arr):
 localsum = np.sum(arr)
 receiveBuffer = np.array(0.0,'d')
 MPI.COMM_WORLD.Allreduce([localsum, MPI.DOUBLE],
 [receiveBuffer, MPI.DOUBLE],
 op=MPI.SUM)
 return receiveBuffer

Parallel and Large-scale Scientific Computing

[214]

The function defined in the preceding program is now called in order to execute it on
multiple engines. This is done to perform a parallel sum of the array:

from IPython.parallel import Client
clients = Client(profile='mpi')

drctview = clients[:]
drctview.activate()
#execute the program name passed as argument
drctview.run(parallelsum.py.py')
drctview.scatter('arr',np.arange(20,dtype='float'))
drctview['arr']
calling of the function
%px sum_of_array = parallelsum(arr)
drctview['sum_of_array']

Managing dependencies among tasks
It has strong support for managing dependencies among various tasks. In most
scientific and commercial applications, only load balancing schemes are not
enough to manage their complexity. These applications require dependencies
among multiple tasks. These dependencies describe the specific software, Python
module, operating system, or hardware requirements; sequence; timing; and
places of execution of a task from the set of the task. IPython supports two kinds
of dependencies, namely functional dependency and graph dependency.

Functional dependency
Functional dependency is used to determine whether a particular engine is
capable of running a task. This concept is implemented using a special exception,
UnmetDependency, from IPython.parallel.error. If a task fails with an
UnmetDependency exception, the scheduler doesn't propagate this error to the
client. Instead, it handles this error and submits this task to some other engine.
The scheduler repeats this process until a suitable engine is found. Moreover, the
scheduler doesn't submit the task to an engine twice.

Decorators for functional dependency
Although the user is allowed to manually raise an UnmetDependency exception,
IPython has provided two decorators to manage this dependency issue. There are
two decorators and a class used for functional dependencies:

Chapter 8

[215]

•	 @require: This decorator manages the dependency of a task that requires
that a particular Python module, local function, or local object be available
on an engine when the decorated function is called. Functions will be
pushed to the engine with their names, and objects can be passed using the
arg keyword. We can pass the names of all the Python modules required
to execute this task. Using this decorator, a user can define a function to
be executed on only those engines where the module names passed to this
decorator are available and importable.
For example, the function defined in the following code fragment depends
on the NumPy and pandas modules as it is using randn from NumPy and
Series from pandas. If, for some task, we call this function, then it will be
executed on the machine where these two modules are importable. When
this function is called, NumPy and pandas will be imported.

from IPython.parallel import depend, require
the following function uses randn and Series
@require('pandas', 'numpy')
def func_uses_functions_from_numpy_pandas():
 return performactivity()

•	 @depend: This decorator allows users to define a function that has a
dependency on some other function. It determines whether the dependency
is met or not. Before starting the task, the dependency function will be called,
and if this function returns true, then the actual processing of the task will
be started. Moreover, if this dependency function returns false, then the
dependency is considered to be unmet and the task is propagated to some
other engine.
For example, the following code fragment first creates a dependency function
that verifies that the operating system of the engine matches the given
operating system. This is determined because the user wishes to write two
different functions to perform the specific activity on the Linux and Windows
operating systems:

from IPython.parallel import depend, require
def find_operating_system(plat):
 import sys
 return sys.platform.startswith(plat)
@depend(find_operating_system, 'linux')
def linux_specific_task():
 perform_activity_on_linux()
@depend(platform_specific, 'win')
def linux_specific_windows():
 perform_activity_on_windows()

Parallel and Large-scale Scientific Computing

[216]

Graph dependency
There is another important class of dependencies, where tasks are dependent on each
other in such a manner that a task must be executed after some or all specific tasks
have been executed successfully. Another dependency may be as follows: a task
must be executed on a destination where a specific set of dependencies has been met.
Generally, the user requires an option to specify the time and location to run a given
task as a function of time, location, and result of some other task. There is a separate
class named as Dependency to manage graph dependency and Dependency is the
subclass of class Set. It contains set of message IDs corresponding to the tasks and
it also has some attributes. These attributes help in checking whether the specified
dependencies have been met or not:

•	 any|all: These are the attributes to specify that if any of the specified
dependencies is completed or has been met. This will be specified by
setting all attributes of dependence that default to True.

•	 success: This attribute defaults to True and is used to specify that a
dependency is considered to be met if the specified task is successful.

•	 failure: This attribute defaults to False and is used to specify that a
dependency is considered to be met if the specified task has failed.

•	 after: This attribute is used to specify that the dependent task should be
executed after the execution of the specified task.

•	 follow: The follow attribute specifies that the dependent task should be
executed on the same destination as one of the dependency tasks.

•	 timeout: This attribute is used to specify the duration for which the
scheduler must wait for the dependencies to be met. It defaults to 0 to
indicate that the dependent task will wait forever. After the timeout period,
the dependent task fails with the DependencyTimeout exception.

There are some tasks that work as cleanup tasks. They are supposed to run only when
the specified task has failed. The user should use failure=True,success=False for
such tasks. For some dependent tasks, it is required that the dependency task should
be completed successfully. In such situations, the user must set success=True and
failure=False. There are certain situations where the user wants the dependent task
to be executed independently of the success or failure of the dependency tasks. In such
situations, the user must use success=failure=True.

Chapter 8

[217]

Impossible dependencies
There may some dependencies that are impossible to meet. If this possibility is not
handled by the scheduler, then the scheduler may wait forever for the dependency to
be met. To cope up with this situation, the scheduler analyzes the graph dependency
to estimate the possibility that the dependency can be met. If the scheduler is able to
identify that the dependency of a certain task cannot be met, then this task will fail
with an ImpossibleDependency error. The following code fragment demonstrates
the use of the graph dependency among tasks:

from IPython.parallel import *
clients = ipp.Client(profile='testprofile')
lbview = clients.load_balanced_view()

task_fail = lbview.apply_async(lambda : 1/0)
task_success = lbview.apply_async(lambda : 'success')
clients.wait()
print("Fail task executed on %i" % task_fail.engine_id)
print("Success task executed on %i" % task_success.engine_id)

with lbview.temp_flags(after=task_success):
 print(lbview.apply_sync(lambda : 'Perfect'))

with lbview.temp_flags(follow=pl.Dependency([task_fail, task_success],
failure=True)):
 lbview.apply_sync(lambda : "impossible")

with lbview.temp_flags(after=Dependency([task_fail, task_success],
failure=True, success=False)):
 lbview.apply_sync(lambda : "impossible")

def execute_print_engine(**flags):
 for idx in range(4):
 with lbview.temp_flags(**flags):
 task = lbview.apply_async(lambda : 'Perfect')
 task.get()
 print("Task Executed on %i" % task.engine_id)

execute_print_engine(follow=Dependency([task_fail, task_success],
all=False))
execute_print_engine(after=Dependency([task_fail, task_success],
all=False))
execute_print_engine(follow=Dependency([task_fail, task_success],
all=False, failure=True, success=False))
execute_print_engine(follow=Dependency([task_fail, task_success],
all=False, failure=True))

Parallel and Large-scale Scientific Computing

[218]

The DAG dependency and the NetworkX library
Generally, it is better to represent parallel workflows in terms of Directed Acyclic
Graph (DAG). Python has a popular library called NetworkX for using graphs.
The graph is a collection of nodes and directed edges. The edges connect various
nodes; each edge has an associated direction. We can use this concept to represent
dependencies. For example, edge(task1, task2) from task1 to task2 denotes that
task2 depends on task1. Similarly, edge(task2, task1) denotes that task1 depends
on task2. This graph must not contain any cycle in it, which is why it is called an
acyclic graph.

Now consider the six-node DAG depicted in the following figure. It indicates that
Task0 doesn't depend on any task, and so it can be started immediately. Whereas,
Task1 and Task2 depend on Task0, so they will start after Task0 finishes. Then,
Task3 depends on both Task1 and Task2, so it will be executed after the end of
Task1 and Task2. Similarly, Task4 and Task5 will be executed after the end of
Task3. Task6 depends on Task4 only. Hence, it will be started after Task4 finishes
its execution.

Task6

Task4

Task1

Task3

Task0

Task5

Task2

Chapter 8

[219]

Here is a source code fragment that represents the DAG depicted in the preceding
figure. In the code, the tasks are represented by their number; that is, Task0 is
represented by 0, Task1 is represented by 1, and so on:

import networkx as ntwrkx
import matplotlib.pyplot as plt

demoDAG = ntwrkx.DiGraph()
map(demoDAG.add_node, range(6))
demoDAG.add_edge(0,1)
demoDAG.add_edge(0,2)
demoDAG.add_edge(1,3)
demoDAG.add_edge(2,3)
demoDAG.add_edge(3,4)
demoDAG.add_edge(3,5)
demoDAG.add_edge(4,6)
pos = { 0 : (0,0), 1 : (-1,1), 2 : (1,1), 3 : (0,2), 4 : (-1,3), 5 :
(1, 3), 6 : (-1, 4)}
labels={}
labels[0]=r'0'
labels[1]=r'1'
labels[2]=r'2'
labels[3]=r'3'
labels[4]=r'4'
labels[5]=r'5'
labels[6]=r'6'

ntwrkx.draw(demoDAG, pos, edge_color='r')
ntwrkx.draw_networkx_labels(demoDAG, pos, labels, font_size=16)
plt.show()

The following program creates the same diagram with colored edges and the vertex
with the labels of vertices:

import networkx as ntwrkx
import matplotlib.pyplot as plt

demoDAG = ntwrkx.DiGraph()
map(demoDAG.add_node, range(6))

pos = { 0 : (0,0), 1 : (-1,1), 2 : (1,1), 3 : (0,2), 4 : (-1,3), 5 :
(1, 3), 6 : (-1, 4)}

Parallel and Large-scale Scientific Computing

[220]

ntwrkx.draw(demoDAG, pos)
ntwrkx.draw_networkx_edges(demoDAG,pos,
 edgelist=[(0,1),(0,2),(1,3),(2, 3),(3,
4)],edge_color='r')
ntwrkx.draw_networkx_edges(demoDAG,pos,
 edgelist=[(3,5),(4,6)],edge_color='b')

ntwrkx.draw_networkx_nodes(demoDAG,pos,
 nodelist=[0,1,2,3,4],
 node_color='r',
 node_size=500,
 alpha=0.8)
ntwrkx.draw_networkx_nodes(G,pos,
 nodelist=[5,6],
 node_color='b',
 node_size=500,
 alpha=0.8)

labels={}
labels[0]=r'0'
labels[1]=r'1'
labels[2]=r'2'
labels[3]=r'3'
labels[4]=r'4'
labels[5]=r'5'
labels[6]=r'6'

ntwrkx.draw_networkx_labels(demoDAG, pos, labels, font_size=16)
plt.show()

Using IPython on an Amazon EC2 cluster with
StarCluster
StarCluster is designed and developed to simplify the process of using a cluster of
virtual machines on Amazon Elastic Compute Cloud (EC2). It is an open source
toolkit for cluster computing on Amazon EC2. Besides performing automatic
cluster configuration, StarCluster also provides Amazon Machine Images (AMIs)
customized to support toolkits and libraries for scientific computing and software
development. These AMIs consist of ATLAS, IPython, NumPy, OpenMPI, SciPy, and
others. The user can retrieve the list of available AMIs using the following command
on a machine that has StarCluster installed:

starcluster listpublic

Chapter 8

[221]

StarCluster has a very simple and intuitive interface for elastic management of
computing cluster and storage management. After the installation, the user must
update its default config file to update the details of the Amazon EC2 account,
including the address, region, credentials, and public/private key pair.

After the installation and configuration, the user can control the Amazon EC2 cluster
from a local IPython installation using the following command:

starcluster shell --ipcluster=clusterName

If there is any error in the configuration, it will be displayed by the preceding
command. If the configuration is correct, then this command starts the development
shell of StarCluster and configures a parallel session for the remote cluster on
Amazon EC2. StarCluster automatically creates a parallel client by the name of
ipclient and views for the entire cluster by the name of ipview. The user can use
these variables (ipclient and ipview) to run the parallel task on the Amazon EC2
cluster. The following code fragment displays the engine IDs of the cluster using
ipclient and runs a small parallel task using ipview:

ipclient.ids
result = ipview.map_async(lambda i: i**5, range(26))
print result.get()

The user is also allowed to use IPython parallel scripts with StarCluster. If the user
wants to run the IPython parallel scripts on the remote Amazon EC2 cluster from
the local IPython session, then they are supposed to use some configuration details
during the creation of parallel clients, as follows:

from IPython.parallel import Client
remoteclients = Client('<userhome>/.starcluster/
ipcluster/<clustername>-<yourregion>.json', sshkey='/path/to/cluster/
keypair.rsa')

Specifically, suppose the name of a cluster is packtcluster, the region is
us-west-2, and the keypair name is packtKey, which is stored in /home/user/.
ssh/packtKey.rsa. Then, the previous code will be changed to the following:

from IPython.parallel import Client
remoteclients = Client('/home/user/.starcluster/ipcluster/
packtcluster-us-west-2.json', sshkey='/home/user/.ssh/packtKey.rsa')

After these two lines, all of the remaining code will be executed on the remote cluster
on Amazon EC2.

Parallel and Large-scale Scientific Computing

[222]

A note on security of IPython
Security issues have been taken care of while designing IPython's architecture. The
capability-based client authentication model, along with the SSH-tunneled TCP/IP
channels, manages the main potential security issues and allows users to utilize the
IPython cluster in open networks.

There is no security provided by ZeroMQ. Hence, SSH tunnels are the main source
for establishing a secure connection. The Client object fetches information about the
establishment of a connection to the controller from the ipcontroller-client.json
file, and then it creates tunnels using OpenSSH/Paramiko.

It also uses the concept of HMAC digests to sign messages using a shared key that
protects the users of shared machines. There is a session object that handles the
message protocol. This object verifies the validity of messages using a unique key. By
default, this key is a 128-bit pseudo-random number, similar to the number generated
by uuid.uuid4(). Generally, during parallel computations, the IPython client is used
to send Python functions, commands, and data to the IPython engines for execution
and processing of data. IPython ensures that only the client is responsible for, and
capable of using the capability of the engine. The engine inherits the capability and
permission from the user that started the engine.

To prevent unauthorized access, authentication- and key-related information is
encoded in the JSON file that is used by clients to get access to the IPython controller.
A user can grant access to authorized persons by limiting the key's distribution.

Well-known parallel programming styles
Owing to the evolution of computer hardware and software, parallel programs can
be designed, developed, and implemented using several styles. We can implement
a program using the concurrent, parallel, or distributed manner. Often, one of
the previously mentioned techniques is used to implement programs for efficient
execution and improved performance. The subsequent subsections discuss these
models and the common issues associated with them.

Issues in parallel programming
All of these models depend on the basic concepts of execution of different parts
of the program on separate computing elements (CPU and computing node).
Generally, these models divide the program into multiple workers, and each worker
starts its execution on a different computing element. In spite of the performance
benefits, this type of execution of programs—using multiple workers—brings
forth multiple complications in communication. This issue is called Inter-process
Communication (IPC).

Chapter 8

[223]

There are several classic IPC problems that require the attention of the developer,
namely deadlock, starvation, and race condition:

•	 Deadlock: A deadlock is a condition wherein two or more workers are in an
infinite waiting state to acquire the resources occupied by the other waiting
worker. There are four necessary and sufficient conditions for this, namely
mutual exclusion, hold and wait, no pre-emption, and circular wait. If these
conditions occur during the execution of any program, then the program gets
blocked and cannot continue the execution:

°° Mutual exclusion means that the resources are non-sharable
°° By hold and wait, we mean that each of the workers under the

deadlock is holding some resources and requesting for some
additional resources

°° No pre-emption means that the resources allocated to a worker
cannot be pre-empted and allocated to another worker

°° Finally, by circular wait, we mean that the workers under the
deadlock form a chain, or circular list, in which each worker is
waiting for the resources held by the next worker on the list

•	 Starvation: This condition arises when multiple workers compete for a
single resource. In such a situation, each worker is assigned a priority for
resource allocation. Sometimes, this priority assignment becomes unfair, and
the execution of some of the workers is delayed for a long time. Consider
a situation where there are two types of workers competing for a resource:
the workers with high priority and workers with low priority. If there is a
continuous arrival of high-priority workers, then there might be a situation
where some low-priority workers suffer a long (infinite) wait to get the
resource released by high-priority workers.

•	 Race condition: This issue arises when there are multiple workers
performing both read and write operations on common data and there is
a lack of synchronization among the operations performed by them. As an
example, suppose two workers read a common piece of data from a database,
modify its value, and then write this data back to the database. If these
operations are not performed in a well-synchronized sequence, they will
leave the database in an inconsistent state.

There are certain techniques that can be used to avoid these issues, although their
detailed discussion is beyond the scope of this book. Let's discuss the types of
parallel computing in subsequent subsections.

Parallel and Large-scale Scientific Computing

[224]

Parallel programming
In the parallel style of program development, the program is divided into multiple
workers that execute on separate CPUs without competing for one CPU, as
presented in the following figure. These CPUs may be individual processors of
multicore computers, or they may be on separate computers and use a technique
such as a Message Passing Interface (MPI) for communication.

Division into Multiple Processes

Parallel Program

Process 1 Process 2 Process 3 Process n

CPU 1 CPU 2 CPU 3 CPU n

.....

.....

Concurrent programming
In concurrent programming, multiple workers of the user's program get executed
on a single CPU or fewer CPUs than the number of workers (as depicted in the next
figure). These workers compete for CPUs under the control of a CPU scheduler.
The CPU scheduler uses multiple schemes to allocate the workers to the CPUs. The
CPU scheduler schemes are used to create a ranking of workers, and the workers get
execution in the order of this rank.

These workers may be implemented using multiple processes or multiple threads.
Both processes and threads concurrently perform some part of the execution of the
main program. The main difference between threads and processes is that a thread
consumes less memory than a process. Hence, threads are called lightweight.

Chapter 8

[225]

Concurrent Program

Division into Multiple Processes/Thread

CPU

Process/
Thread

1

Process/
Thread

2

Process/
Thread

3

Process/
Thread

n
.....

Scheduler

Scheduler
Queue

Distributed programming
In distributed programming, the workers of the program execute on different
computers connected across a network. There are different frameworks for the
execution of these programs. The network also uses different topologies, and
in some cases, both the scheme data and the process may be distributed. This
model of parallel computing is becoming more popular with time, as it offers
several advantages, including low cost, fault tolerance, high scalability, and
others. In distributed programming, each component has independent memory
and processing, while in parallel programming, multiple processors/CPUs share
common memory.

Distributed Program

Distributed program execution

Parallel and Large-scale Scientific Computing

[226]

Multiprocessing in Python
The multiprocessing module supports the creation and execution of multiple
processes that can run independently on multiple CPUs in a multicore environment.
It has two important models for supporting multiprocessing; one is based on the
Process class and the other is based on the Pool class.

This program demonstrates multiprocessing using the Process class:

import multiprocessing as mpcs
import random
import string

output_queue = mpcs.Queue()

def strings_random(len, output_queue):
 generated_string = ''.join(random.choice(string.ascii_lowercase +
string.ascii_uppercase + string.digits)
 for i in range(len))
 output_queue.put(generated_string)

procs = [mpcs.Process(target=strings_random, args=(8, output_queue))
for i in range(7)]

for proc in procs:
 proc.start()

for proc in procs:
 proc.join()

results = [output_queue.get() for pro in procs]
print(results)

The process-based class returns the results in the sequence of completion of the
process. If the user needs to retrieve an ordered result, they have to put in extra
efforts, as done in the following code. To obtain an ordered result, another parameter
is added to the function and finally to the output. This represents the position or the
sequence of the process and, finally, the result is sorted on the parameter. This idea
is demonstrated in the following program using the Process class and a position
parameter in the output:

import multiprocessing as mpcs
import random
import string

Chapter 8

[227]

output_queue = mpcs.Queue()

def strings_random(len, position, output_queue):
 generated_string = ''.join(random.choice(string.ascii_lowercase +
string.ascii_uppercase + string.digits)
 for i in range(len))
 output_queue.put((position, generated_string))

procs = [mpcs.Process(target=strings_random, args=(5, pos, output))
for pos in range(4)]

for proc in procs:
 proc.start()
for proc in procs:
 proc.join()

results = [output_queue.get() for pro in procs]
results.sort()
results = [rslt[1] for rslt in results]
print(results)

The Pool class provides the map and apply methods for parallel computation, and
it also supports the asynchronous versions of these methods. The map and apply
methods lock the main program until a process has finished, and this concept can be
used to produce the sequential output demanded by specific applications.

Multithreading in Python
Python's threading module allows users to create multiple threads of a process to
perform concurrent computation. The threads of a process share the same data space
with the main process/thread, which enables data sharing and easy communication
with each other. Threads are also called lightweight processes, as they require much
less memory than processes.

The following program demonstrates the creation and starting of threads:

import threading
import time
class demoThread (threading.Thread):
 def __init__(self, threadID, name, ctr):
 threading.Thread.__init__(self)
 self.threadID = threadID
 self.name = name
 self.ctr = ctr

Parallel and Large-scale Scientific Computing

[228]

 def run(self):
 print "Start of The Thread: " + self.name
 print_time(self.name, self.ctr, 8)
 print "Thread about to Exit:" + self.name

def print_time(threadName, delay, counter):
 while counter:
 time.sleep(delay)
 print "%s: %s" % (threadName, time.ctime(time.time()))
 counter -= 1

thrd1 = demoThread(1, "FirstThread", 4)
thrd2 = demoThread(2, "SecondThread", 5)
thrd1.start()
thrd2.start()
print "Main Thread Exits"

This program starts two threads. If you observe the output of the program, you will
notice that there is no sequence of thread execution. The "Main Thread Exits"
string is displayed first, followed by the random sequences of thread names and
"Thread about to Exit: ThreadName".

We have options for synchronizing this output so that the order of thread completion
can be maintained. The following program first executes the first thread. Then, after
its exit, the second thread gets executed. Finally, the main thread exits. The thread
sequence is maintained by acquiring a lock, and this lock is released before the exit
so that the second thread can be started. The main thread calls the join method on
all thread objects. This method blocks the main thread for the completion of various
other threads:

import threading
import time
class demoThread (threading.Thread):
 def __init__(self, threadID, name, ctr):
 threading.Thread.__init__(self)
 self.threadID = threadID
 self.name = name
 self.ctr = ctr
 def run(self):
 print "Start of The Thread: " + self.name
 threadLock.acquire()
 print_time(self.name, self.ctr, 8)
 print "Thread about to Exit:" + self.name
 threadLock.release()

Chapter 8

[229]

def print_time(threadName, delay, counter):
 while counter:
 time.sleep(delay)
 print "%s: %s" % (threadName, time.ctime(time.time()))
 counter -= 1

threadLock = threading.Lock()
thrds = []

thrd1 = demoThread(1, "FirstThread", 4)
thrd2 = demoThread(2, "SecondThread", 5)
thrd1.start()
thrd2.start()

thrds.append(thrd1)
thrds.append(thrd2)
for thrd in threads:
 thrd.join()

print "Main Thread Exits"

Hadoop-based MapReduce in Python
Hadoop is an open source framework for distributed storage and processing of huge
datasets in a computing cluster. The Hadoop system has three main components:
MapReduce for processing, the Hadoop Distributed File System (HDFS), and a
large-scale database called HBase for storing datasets. HDFS supports storage of very
huge dataset files. It distributes the datasets submitted by users on various cluster
nodes. It splits the datasets into multiple chunks and keeps bookkeeping information
about the chunks and nodes. HBase is a database designed to support large-scale
databases and developed on top of HDFS. It is an open source, column-oriented,
non-relational, distributed database.

MapReduce is a framework that is designed to perform distributed processing on
huge datasets in a computing cluster. Hadoop is an open source implementation
of the MapReduce framework. The MapReduce program is composed of two main
components: map and reduce. The map function is for performing filtering of the input
dataset and writing its sorted output to the filesystem. Later, this output is used by
the reduce function to perform summarization, and the final output is again written
to the filesystem. The MapReduce framework follows the Single Program, Multiple
Data (SPMD) model, as it processes the same program on multiple datasets.

Parallel and Large-scale Scientific Computing

[230]

In a Hadoop system, the complete functionality is divided into many components.
There are two master nodes. One is Job Tracker, which keeps track of the map and
reduce processes at the slave nodes, called task tracker nodes. The second master
node is namenode, which contains the information about which chunk of the split
data files is stored on a particular slave node called data node. To avoid a single
point of failure, users may install a secondary namenode. It is recommended to have
a number of slave nodes called task tracker nodes/data nodes to execute the actual
map and reduce processes. Each slave node behaves as a task tracker node and
data node. The performance of a MapReduce application is directly proportional
to the number of slave nodes. The Hadoop system also performs automatic failure
recovery; if one of the task tracker nodes fails at runtime, then its responsibility will
automatically be distributed to the other task tracker, and the processing continues
without failure.

The following program demonstrates the development of a Hadoop-based
MapReduce program in Python. It processes the common crawl datasets. These
datasets contain petabytes of web crawling data collected over a long period. It
contains web page data, extracted metadata, and extracted text stored in Web
ARChive (WARC) format. These datasets are stored on Amazon S3 as part of the
Amazon public datasets program. More information about these datasets can be
found at http://commoncrawl.org/the-data/get-started/:

import sys
for line in sys.stdin:
 try:
 line = line.strip()
 # split the line into words
 words = line.split()
 # increase counters
 if words[0] == "WARC-Target-URI:" :
 uri = words[1].split("/")
 print '%s\t%s' % (uri[0]+"//"+uri[2], 1)
 except Exception:
 print "There is some Error"

The preceding program is the map part, and the following program is the
reduce part:

from operator import itemgetter
import sys

current_word = None
current_count = 0
word = None

http://commoncrawl.org/the-data/get-started/

Chapter 8

[231]

for line in sys.stdin:
 line = line.strip()

 word, count = line.split('\t', 1)

 try:
 count = int(count)
 except ValueError:
 continue

 if current_word == word:
 current_count += count
 else:
 if current_word:
 print '%s\t%s' % (current_word, current_count)
 current_count = count
 current_word = word

if current_word == word:
 print '%s\t%s' % (current_word, current_count)

Before executing the previous program, the user needs to transfer the input dataset
file with the name web-crawl.txt in their HDFS home folder. To execute the
program, the user should run the following command:

#hadoop jar /usr/local/apache/hadoop2/share/hadoop/tools/lib/hadoop-
streaming-2.6.0.jar -file /mapper.py -mapper /mapper.py -file /
reducer.py -reducer /reducer.py -input /sample_crawl_data.txt
-output /output

Spark in Python
Spark is a general-purpose cluster computing system. It supports high-level APIs
for Java, Python, and Scala. This enables easy writing of parallel tasks. It was
proposed and developed in contrast to the two-stage model of Hadoop's disk-based
MapReduce, as it follows an in-memory model and provides maximum 100 percent
performance improvement for some specific applications. It is highly suitable for
implementing machine learning applications/algorithms.

Parallel and Large-scale Scientific Computing

[232]

Spark requires cluster management and a distributed storage system. It provides a
simple interface for various distributed storages, including Amazon S3, Cassandra,
HDFS, and so on. Moreover, it supports standalone—that is, the spark native cluster,
Hadoop, YARN, and Apache Mesos for the cluster management.

The Spark Python API is named PySpark, and it exposes the Spark programming
model to Python. We can develop Spark-based applications either in the Python shell
that is opened using PySpark, or by using the IPython session. We can also develop
the program first and then run it using the pyspark command.

Summary
In this chapter, we discussed the concepts of high-performance scientific computing
using IPython. We started the discussion from the basic concepts of parallel
computing. After the basic concepts, we discussed the detailed architecture of
IPython parallel computing. Later, we discussed the development of sample
parallel programs, IPython magic functions, and parallel decorators.

We also covered the advanced features of IPython: fault tolerance, dynamic load
balancing, managing dependencies among tasks, object movement between clients
and engines, IPython database support, using MPI from IPython, and managing
the Amazon EC2 cluster using StarCluster from IPython. Then we discussed
multiprocessing and multithreading in Python. At the end, we covered the
development of distributed applications using Hadoop and Spark in Python.

In the next chapter, we will discuss several real-life case studies of using Python's
tools/APIs for scientific computing. We will consider applications from various
basic and advanced branches of science.

[233]

Revisiting Real-life
Case Studies

This chapter discusses several case studies of scientific computing applications,
APIs/libraries, and tools designed and developed in Python.

In this chapter, we will be discussing some case studies of applying Python in the
following areas of science:

•	 Specialized hardware/software
•	 Applications for meteorologists
•	 Designing and modeling
•	 Applications for High-energy Physics
•	 Computational chemistry
•	 Biological science
•	 Embedded systems

These applications, tools, and libraries cover various social, scientific, and
commercial areas, including applications for NGOs, software or hardware for
scientific education, and applications for meteorologists. They also cover tools and
APIs for conceptual designs of aircraft, applications for earthquake risk assessment,
and applications designed for energy efficiency of manufacturing processes. Apart
from these, analysis code generators for High-energy Physics, applications for
computation chemistry, a blind audio tactile mapping system, tools for air traffic
control, embedded systems for energy-efficient lights, maritime designing APIs,
and molecular modeling toolkits are also covered.

Revisiting Real-life Case Studies

[234]

Scientific computing applications
developed in Python
Python is a popular language for developing scientific applications. Specially, it is
most suitable for applications that demand low costs and applications that require
high performance. In subsequent subsections, we will be covering some applications,
tools, and products that use Python in some or other form.

The one Laptop per Child project used Python
for their user interface
One Laptop per Child (OLPC) is a project started at the Massachusetts Institute
of Technology (MIT). The project has grown with support from people who create
software and hardware and by solid community involvement to fulfill the mission of
OLPC. The idea behind this project is to develop low-cost educational laptops with
innovative hardware and software. The simple and convincing mission of OLPC is
to create opportunities of education for poor children by providing them with low-
cost, low-powered laptops with software and applications designed for collaborative
learning. The primary goal of this mission is the production and distribution of
a low-cost and low-power laptop named OLPC XO. This XO is manufactured by
Quanta Computer, a Taiwanese company. Unlike other computers, XO uses flash
memory instead of a hard drive and a Fedora Linux-based operating system. It also
uses mobile ad hoc networking designed on the 802.11s wireless mesh network
protocol. The XO laptop is shown in the following image:

Source: http://images.flatworldknowledge.com/lule/lule-fig13_004.jpg

http://images.flatworldknowledge.com/lule/lule-fig13_004.jpg

Chapter 9

[235]

Sugar is a free and open source desktop environment designed with a noble focus
on interactive learning, and it is the interaction interface of XO. Sugar doesn't have
the concept of desktop, folders, and windows. Instead of these, it starts with a
home view; from this screen, users can select any activity. Applications designed
for Sugar are called activities. Activities include an application along with sharing
and collaboration capabilities. To save the application's state and history, Sugar
implements a journal that allows users to restore activities. The journal automatically
stores the user's session and provides an interface to retrieve the history by date.
Each activity has access to a built-in interface for the journal and other features, such
as the clipboard. Sugar's activity runs in full screen mode and lets users use only one
program at a time.

Sugar is available for many platforms, as follows:

•	 XO laptop: An XO laptop runs Sugar as the default interface
•	 Live CD and Live USB stick: Sugar is also available on live CDs / USB sticks
•	 A package for Linux distributions: Sugar is available as a package for most

Linux platforms—as an alternative desktop
•	 An OS image (using virtualization): Users can also install Sugar on the

Windows or Macintosh operating system using virtualization

The Python language is used to develop Sugar and various activities in Sugar.
Developers can use Python to extend Sugar and add new applications/activities.
The home screen of Sugar is depicted in the following screenshot:

Revisiting Real-life Case Studies

[236]

The source of the preceding screenshot is http://2.bp.blogspot.com/_
PPJgknwAe5o/S_8kh3r1qII/AAAAAAAAAGk/qmJdLae1pQ8/s1600/2009-SugarLabs-
Homeview.png.

Soon after the launch of XO, it received strong support from the community as it
runs free and is a piece of open source software that allows developers to understand
and improve the software. XO has a high-resolution, easy-to-read screen and
supports a book reader mode and multiple languages. The book reader mode
of the XO laptop is shown in this image:

Source: http://regmedia.co.uk/2008/01/16/ebook.jpg

ExpEYES – eyes for science
Inter University Accelerator Centre (IUAC) in India has started a project called
Physics with Homemade Equipment and Innovative Experiments (PHOENIX).
The idea behind this project is to improve the quality of scientific education by
experimentation. The major activity of the project is the development of low-cost
laboratory equipment. Another project under this initiative is Experiments for
Young Engineers and Scientists (ExpEYES), designed with the focus on learning by
exploration. ExpEYES is suitable for high school and higher classes. The design is
optimized to meet the main objective, that is, low-cost devices. This device runs on
5-volt USB power.

http://2.bp.blogspot.com/_PPJgknwAe5o/S_8kh3r1qII/AAAAAAAAAGk/qmJdLae1pQ8/s1600/2009-SugarLabs-Homeview.png
http://2.bp.blogspot.com/_PPJgknwAe5o/S_8kh3r1qII/AAAAAAAAAGk/qmJdLae1pQ8/s1600/2009-SugarLabs-Homeview.png
http://2.bp.blogspot.com/_PPJgknwAe5o/S_8kh3r1qII/AAAAAAAAAGk/qmJdLae1pQ8/s1600/2009-SugarLabs-Homeview.png
http://regmedia.co.uk/2008/01/16/ebook.jpg

Chapter 9

[237]

To use ExpEYES, the user can access it by connecting it to a USB port of a computer
and the interface application. It has 32 I/O terminals arranged on both sides for
connecting to external signals. The user can control and monitor the voltages at the
terminals. To measure other parameters, such as force, pressure, temperature, and so
on, the user is supposed to convert them into electrical signals using the appropriate
sensor elements. For example, a temperature sensor will give a voltage that indicates
the temperature. ExpEYES is shown in the following image:

Source: http://expeyes.in/sites/default/files/images/diode-rectifier-
photo.jpg

Actual learning requires exploration and performing experimentation. Experiments
in physics require controlling and measuring of various parameters, such as
acceleration, current, force, pressure, temperature, velocity, voltage, and so on.
A number of properties require automated measurements as their values change
rapidly (for example, AC mains voltage). These automated measurements require
the involvement of computers.

http://expeyes.in/sites/default/files/images/diode-rectifier-photo.jpg
http://expeyes.in/sites/default/files/images/diode-rectifier-photo.jpg

Revisiting Real-life Case Studies

[238]

A Python interpreter and a Python module for accessing the serial port are required to
run ExpEYES on any computer. The device driver program handles the USB interface;
the driver presents the USB port as the RS232 port to application programs. The
communication part of ExpEYES is handled by using a library written in the Python
language. A GUI program is developed for each of the supported experiments. The
user can also develop a Python program to perform new experiments. ExpEYES is
available as a live CD and an installation for Linux and Windows. It is an affordable
scientific laboratory that is both portable and extensible. It supports a wide range of
experimentation from high school up to the post graduate level.

The latest version of ExpEYES is called ExpEYES Junior. This version has some
added features, while some of the earlier features have been removed from it. It can
also be interfaced with Android-based smart devices. The following image depicts
ExpEYES Junior:

Source: http://expeyes.in/sites/default/files/Experiments/Photos/half-
wave.jpg

http://expeyes.in/sites/default/files/Experiments/Photos/half-wave.jpg
http://expeyes.in/sites/default/files/Experiments/Photos/half-wave.jpg

Chapter 9

[239]

The initial software was written in the C language, but it was soon changed to
Python. This change brings with it two major advantages. The first advantage is
that support for the development of GUI-based programs is drastically increased.
The other advantage is that this has enabled easy development of new experiments
because of Python's support for hardware interaction.

A weather prediction application in Python
Generally, meteorologists compare their forecasts with the actual weather for the
concerned period. This is performed with the purpose of optimizing and improving
the quality of their model, which collects the weather information of the real
measurement that collects actual readings. ForecastWatch helps meteorologists
and others compare, communicate, and understand the accuracy of their weather
forecast. It provides essential analyses and unbiased data with the purpose of
improving the quality of the forecast. ForecastWatch consistently collects data from
various sources of weather forecast and tallies this data with actual observations.
It compares each forecast with observations made at more than 850 locations in the
United States of America and Canada. In this comparison, high and low temperature,
opacity, precipitation, and wind forecasts are verified. ForecastWatch generates
a large number of month-wise statistical measures for the accuracy of data and
aggregates them by country, state, and specific location.

ForecastWatch is composed of four major components, as follows:

•	 Input process for acquiring forecasts: This is named forecast parser, and
it collects the forecasts from the web portal of each forecast provider to be
verified. It parses the data and inserts it into the database for comparison
with the actual data.

•	 Input process for acquiring measured climatological data: This is termed
as the actual parser. It retrieves the actual data provided by the National
Weather Service from the National Climatic Data Centre. This data contains
high and low temperatures, precipitation, and significant weather events.
The actual parser stores this data in the database and performs the scoring
of weather forecasts in comparison with actual data. It stores this information
in the database as well.

•	 Data aggregation engine: After collection and scoring, the data is processed
by the data aggregation engine so as to arrange it in monthly blocks and
yearly blocks separated by location, number of days, and provider.

Revisiting Real-life Case Studies

[240]

•	 Web application framework: Initially, the web interface was designed in
PHP, and then it was redesigned in Python. Redesigning using Python has
simplified the web development and improved its integration with the other
three components of the system. A Python-based web application framework
called Quixote is used to develop pure Python-based web applications.

This is a pure Python-based application, as Python is used to develop all the four
components, from an interesting web interface to the time-consuming input/output-
bound data collection process and the high-performance aggregation engine. The
developers selected Python as it has a number of standard libraries that can be
utilized in data collection, parsing, and storing in the database. The multithreading
library is used to scale the data collection to a large number of cities in the data
collection processes. The aggregation engine has also been developed in Python. It
uses a Python database library named MySQLdb to execute database queries for
the MySQL database that is created by the input processes to store the forecast and
climatological data.

An aircraft conceptual designing tool and API
in Python
In this section, we are going to discuss a tool and an API developed to support the
conceptual designs of aircraft. First, we will be discussing the VAMPzero tool.
Then, we will discuss the pyACDT API.

The German Aerospace Centre (abbreviated as DLR in German) is the national
center for aerospace, energy, and transportation research in Germany. Their focus
is to carry out research for aeronautics and space and develop software for related
research and development projects. DLR uses Python to develop software tools
and APIs.

VAMPzero is a software tool for conceptual designs of aircraft; it has enabled
DLR to tackle challenges and provide flexibility and transparency in the aircraft
conceptual design process. The requirements in aircraft design change frequently,
as they use novel technologies. VAMPzero's flexible process enables users to adopt
these changes. VAMPzero is based on well-known handbook methods and is highly
extensible. It allows its users to trace back the calculation history and export data in
CPACS format. Designing a new system with VAMPzero includes outer geometry,
along with engines, structures, systems, and costs. VAMPzero is the first open source
tool made for aircraft conceptual design that supports working in a multidisciplinary
environment. Programming for VAMPzero is done in Python. It is developed with
the objective of having a tool that quickly performs the aircraft design process.

Chapter 9

[241]

There is a framework developed by the scientists in the Advanced Aircraft Design
Lab at the Royal Military College of Canada, called Python aircraft conceptual
design toolbox (pyACDT). pyACDT is a Python-based object-oriented framework
developed to perform analyzing, defining, designing, and optimization of aircraft
configurations. It consists of several modules for representing each of the major
disciplinary analyses needed at the conceptual design stage. This framework
represents models of various aircraft components, engine components, characteristics,
and disciplinary analyses using the concept of object-oriented programming. The
following figure depicts the various modules of pyACDT, corresponding to various
disciplines. The design of the framework allows users to easily change constraints,
design variables, disciplinary analyses, and objective functions.

Aerodynamics

Flight Dynamics

& Control

Weights &

Balance

Performance

Loads

Emissions &

Noise
Systems

Propulsion

Structures

and Stress

Cost

pyACDT

OpenQuake Engine
The Global Earthquake Model is a collaborative effort of several organizations of
regional, national, and international levels and a number of individuals to develop
uniform and open standards for worldwide calculation and communication of
the risk of earthquakes. This foundation is a public-private partnership, in which
thousands of people are contributing in all possible ways, including their time and
knowledge. This is done to work in various global projects, as a user of the software
by using and testing them, reviewing the outcomes of projects and participation in
meetings. The activities governed by GEM are highly crucial, as the vulnerability
to earthquakes is increasing day by day, and still most of the world is lacking in
reliable risk assessment tools and data. Moreover, we lacked global standards to
compare various approaches of risk analysis. To get a proper understanding of an
earthquake's consequences and behavior, it is considered better to work together
across the globe. GEM was created to manage these issues.

Revisiting Real-life Case Studies

[242]

The GEM Foundation works the following main areas:

•	 Earthquake risk assessment tools: The primary focus is to design, develop,
and enhance high-quality tools for earthquake risk assessment

•	 Earthquake risk information: GEM also works in the direction of collection
and generation of methods and guidelines for datasets and models for
earthquake risk information

•	 Collaborative risk assessment projects: The GEM foundation works on the
development and implementation of collaborative risk assessment projects
of various scales

•	 Technology transfer and capacity development: GEM also works for capacity
building and knowledge transfer related to earthquake risk assessment

Under the umbrella, scientists are developing best practices, creating common
datasets, and developing models for seismic hazard and risk assessment. The GEM
foundation is integrating all of these contributions into a web-based OpenQuake
toolkit. This toolkit is accessible to the worldwide stakeholders. The OpenQuake
engine is developed in the Python language and used by engineers, financial
experts, government officials, and scientists to perform earthquake hazard and
risk assessment.

OpenQuake is a web-based risk assessment toolkit that offers a single integrated
environment to calculate, visualize, and investigate earthquake risks; capture new
data; and share the findings for collaborative learning.

The OpenQuake engine uses five main calculators to work in different areas of
seismic risk assessment and mitigation. The brief description of these calculators
is as follows:

•	 Scenario risk calculator: This calculator is highly useful for raising social
awareness toward the risk of earthquakes and for proper emergency
planning and management. It is used to calculate the losses and loss
statistics for a single earthquake scenario for the given set of assets.

•	 Scenario damage assessment calculator: This calculator is useful for
assessment of the seismic vulnerability of various assets under study. It
supports the estimation of the damage done to a particular asset from the
collection of assets.

•	 Probabilistic event-based risk calculator: This calculator is useful for
computing the aggregated expected losses of a collection of assets. It is
capable of computing the probability of losses and loss statistics for a given
collection of assets using the probabilistic hazard.

Chapter 9

[243]

•	 Classical PSHA-based risk calculator: The output of this calculator can be
utilized to prioritize the risk mitigation efforts for various assets at different
locations. This calculator performs the computation of the probability of
losses and loss statistics for a single asset. Moreover, these computations for
different assets at several locations can be used to perform comparative risk
assessment among the assets.

•	 Benefit–cost ratio calculator: This calculator is useful for prioritizing various
regions that require strengthening activities and for identifying the seismic
design that is economically suitable for a given region. It computes and finds
out whether the use of retrofitting or strengthening measures for a specific
set of buildings is economically fruitful.

SMS Siemag AG application for energy
efficiency
SMS Siemag AG is a market leader in metallurgical plant and rolling mill technology.
The company is working with their clients to improve the energy efficiency of
their casting plants and their impact on the environment. The company named
this operation Eco Mode. In this mode, at a particular time, the devices that are not
required for production are automatically shut down or switched to power saving
mode. This automatic process is governed by Python-based software. This Python-
based application is used to measure and record the power consumption of various
consumers. In this way, it performs logging and evaluation of power consumption
of the various generator units in different operating modes.

Automated code generator for analysis of
High-energy Physics data
The Large Hadron Collider (LHC) is the world's biggest man-made machine
designed to perform particle physics experiments. The main aim of these experiments
is to confirm the theories of particle physics and discover new particles. This has
started another era of High-energy Physics (HEP).

This is the biggest scientific experiment ever performed. Here are some facts about it:

•	 Nearly 100 countries have been involved
•	 Approximately 500 institutes are collaborating
•	 Around 10,000 people are working on / benefitting from the experiments
•	 The cost of the project is about 4 billion Euros
•	 The length of LHC tunnel is 27 km

Revisiting Real-life Case Studies

[244]

This gigantic machine produces large amounts of data of a 10 petabytes/year scale.
It is impossible to store and manage so much data at a single site. To cope up with
this problem, CERN has developed a grid computing environment in collaboration
with almost all of the HEP institutions of the world. This grid is a massive parallel
processing system with a network of institution, sharing storage space and
processing power. For better performance, the analysis job is transparently
executed on the system that has the data to be analyzed.

In the LHC tunnel, two proton beams are circulated. They collide at four
experimental points every 25 nanoseconds. As a result of these collisions, many
particles are produced. Some of these produced particles are well-known, and it is
expected that some others may be new and unknown as yet.

To properly extract the information from this collision data, the physicists have to
write codes for each physics signature they are interested in. This code would be
efficient only if one signature is to be handled at a time. However, they need to write
many such analysis codes to scan all possible new physics signatures. All of these
codes are mostly similar and are created by copying the common code; generally, this
common code may be error-prone, as there are many codes to debug and maintain.

To cope up with this issue, the scientists at CERN have worked on a new idea for
the HEP community—to develop a computer-aided software engineering package
in Python that takes care of the common code and algorithms and automatically
generates analysis code. As this code is automatically generated from user inputs, it
proves to be more efficient and less error-prone. It enables physicists to properly take
care of the physics part, as the analysis code is automatically generated. This package
is named WatchMan. WatchMan is an object-oriented framework that has been
developed completely in Python. It allows physicists to focus mainly on their idea,
without any worry about analysis code, as it builds complete analysis code from user
settings. It is developed using two tools developed in Python at CERN: PyROOT (a
Python toolbox for data analysis) and rootcint (the Python and C++ binding system).
The process of WatchMan is presented in the following figure:

Generated
code

Results of
ExperimentsUser Settings

WatchMan

Chapter 9

[245]

Python for computational chemistry
applications
AstraZeneca, a well-known pharmaceutical company, provides effective medicines
for cancer, cardiovascular diseases, gastrointestinal and other infections, pain
control, and other diseases. Generally, it takes a long time (usually decades) to
discover a new drug. The biggest challenge is to identify the possible candidates
out of the vast range of molecules that may produce good drugs as early as possible.

There are several techniques for predicting the properties and behavior of molecules.
These techniques are developed by computational chemists and used to ensure that
a particular molecule will not be toxic to the body and can be stable, will perform the
desired activities, and will ultimately get eliminated automatically.

The problem with these techniques is that their results alone are not sufficient, and
the chemists have to perform actual experiments. These molecules must be tested in
the laboratory to observe their behavior and reaction. Various computational models
are used to shortlist the good candidates to be tested to save time.

Before AstraZeneca enhanced the drug identification process, experimental chemists
and computational chemists were dependent on each other for drug identification.
As experimental chemists did not have much exposure to computational techniques,
computation chemists were supposed to help them run the computer predictions,
and that is a complex process. This dependency was affecting the progress of both
computational and experimental chemists, as computational chemists invested their
time to frequently run the routine models instead of developing new techniques
for predictions. If there were some technique that enabled experimental chemists to
perform computational predictions, then it would improve the process and make the
drug prediction process easy and faster.

There was a successful web-based tool designed by Pierre Bruneau using Perl scripts.
This tool used a molecular property calculator tool called Drone. It was adopted by
AstraZeneca to enhance its backend tool Drone to be more manageable, extensible,
and robust. This new backend tool was named PyDrone.

Strong explicit error handling and strict type checking enhanced the robustness of
Drone when it was implemented in Python (PyDrone). Initially during the testing
phase, PyDrone kept throwing exceptions for a number of cases that were silently
executed by Drone. The developers found that these exceptions had identified
several new error cases that were not handled previously. The new code, with added
error handling coding, improved robustness, as many new erroneous cases were
handled by the code.

Revisiting Real-life Case Studies

[246]

To improve the extensibility of PyDrone, a rule base has been added. This rule base
consists of a data cache and a property name for predicting function mapping.

The rule base works like a Python dictionary object. For each requested property,
it first looks for the cache. If it is found, then it is used. Otherwise, the associated
function is called for computation.

The result will be returned and stored in the cache for future use. For a new
prediction, the developer adds the new function to the function table. In this way,
PyDrone becomes capable of managing all present and future methods of prediction.

Python for developing a Blind Audio
Tactile Mapping System
The Blind Audio Tactile Mapping System (BATS) for visually disabled people
provides them with access to maps. Before the invention of this system, there were
no maps of the ancient world that could be accessible to visually disabled people.
The project was started in the University of North Carolina with a small group.
Python was selected instead of C++ or Java. This was initially a tough decision, as
the team did not have much idea of Python and they were proficient in C++ and
Java. Ultimately, this decision was a wise decision, as Python has an extensive
collection of libraries and modules that are desirable for the development of such
applications.

BATS uses the ArcView data files provided by the Ancient World Mapping Center.
ArcView/ArcGIS is a piece of fully functional GIS software used to visualize,
manage, create, and analyze geographical data. Initially, they produced two ASCII
text files for the surface types and elevation of maps. This information is prepared as
a grid of 1024 x 768 that matches the resolution of the display and the touch pad used
in the system. This grid information is read and stored in a Python array. The data
scales down to fit the BATS model. It is then stored in a compressed file; the program
decompresses and loads this data into the appropriate data structure to perform
fast startup. There is one-to-one correspondence between the display pixel and the
value in the file. This system is highly responsive and promptly takes care of user
movements. Various audio/visual effects have been used to represent movements
in different areas, such as oceans or land.

Chapter 9

[247]

BATS is composed of two major components, namely a graphical user interface and
a data manager. The data manager enables the user interface to manage the data. The
user interface has a touch pad, a number keypad, and a voice synthesizer for helping
visually disabled people. User movements on the touch pad are captured through
wxPython. For user movements, there are mouse motion events in wxPython; these
events are used to trigger the query to the surface type and database of various cities.
The mouse and key events are handled by wxPython to produce voice feedback.
BATS also uses Microsoft's Speech API.

wxPython is cross-platform GUI API that allows Python programmers to develop
GUI-based programs with rich user interfaces and event handling.

The data manager stores various values in three numerical arrays and an ODBC
connection to the MS Access database. These arrays store the altitude, the land
type, and a key value from the database. The key value is used to query the Access
database, which retrieves the information on the city that corresponds to the given
location.

TAPTools for air traffic control
Developing generalized air traffic control solutions requires extra effort, as the
features of each airport are unique in various aspects, such as design, regulatory
compliances, and infrastructure. The most significant component of an air traffic
control system is its user interface customization.

Frequentis is a frontline solution provider in the field of air traffic management, public
safety, and transport. They use Python to develop their TAPTools product family,
which works on the tower and airport tools that are part of air traffic control. Air traffic
controllers use these to control runway lighting and navigational aid instruments,
monitor the navigation instruments, and keep track of the weather conditions.

Designing a fresh user interface for each customer is a tedious and time-consuming
task. To manage this problem, Frequentis has developed a tool to design the user
interface layout, named PanView. This tool can be used to design and build a user
interface that will be executed by the related software, called PanMachine. This
software runs on a piece of specially designed hardware called PowerPanel. These
tools can be used to easily develop a prototype of a layout. Initially, PanView and
PanMachine used a scripting language called Lua. Lua was used to connect the user
interface with the actual functionality of the air traffic control system.

In comparison with Python, there were a number of problems in using Lua. In the
event of an error, it provides limited information. It does not have any list data
structure, and it is difficult to write larger programs as it has limited standard libraries.

Revisiting Real-life Case Studies

[248]

The Finnish Civil Aviation Administration wanted to run the user interface
layout not only on PowerPanel but also on web browsers. This project forced the
reimplementation of PanMachine in Java to enable the execution in browsers. As Lua
cannot be run under Java, Frequentis redesigned it as a Python-based implementation.
They selected Python and the Java implementation of Python, called Jython. This will
enable the user to run the user interface layout on both PowerPanel and PanMachine,
which are implemented in Java. For PowerPanel, Python is implemented in C, and
Jython is implemented in Java and used for the browser. After this step, the Frequentis
developers redesigned the Lua layout in Python. The Python code written for layouts
was very short in comparison to the Lua layouts, and thus highly manageable.

Energy-efficient lights with an embedded
system
Carmanah Technologies is a leader in the market of solar-powered LED lightings.
This company is the manufacturer and supplier of a complete range of lights that can
be used for different purposes, including airfield illumination, industrial markers,
marine applications, railways, roadways, transits, and others. The company started
by producing self-contained and autonomous solar-powered lights for marine
navigation. Now, Carmanah's market spans the whole world, specifically places with
extreme conditions, such as open oceans, deserts, the far north, and others. These
days, electric lighting has become so complex that it should satisfy properties such
as autonomous and self-contained light. The usable solar radiation around the light
varies with the weather, season, location of the light, orientation of the solar panel,
and other attributes. There are some special applications; these lights also support
programmable interfaces, provide different outputs according to the inputs, connect
to a centralized control station through wireless networking, and are fit for other
complex scenarios.

It requires a great combination of electrical, electronic, mechanical, and optical
design to develop such lights. Each light is operated using an embedded software
program that runs on a microcontroller. These lights are autonomous in the sense
that each light maintains itself and performs its functionality as per the modeled
requirement.

Generally, embedded systems need components of high reliability, low power
consumption, and small size. To fulfil these requirements, special processor chips
called microcontrollers have been designed. These microprocessors combine CPU
memory and peripherals on a single chip in a very low cost. Besides the embedded
functionality written on the microprocessor ROM, there are several functions that
require the desktop/laptop system during the development and maintenance periods.

Chapter 9

[249]

Now, consider an example in which the embedded software is compiled
on conventional systems; the object code is then loaded onto the desired
microcontroller. Similarly, during maintenance, troubleshooting the deployed device
requires additional hardware, such as a laptop, to execute the diagnostic utility.
Python offers a number of features to perform the actual and support activities for
embedded system development. These features include compactness of Python
programs, automated memory management, simple and powerful object-oriented
facilities of Python, and so on.

Carmanah uses Python adoption in several key areas of the life cycle of its embedded
systems. For example, they use Python programs to control the software building
process, stress and unit testing, the device simulator, and other areas.

Scientific computing libraries developed
in Python
In Python, a number of libraries are developed for different application domains.
These libraries are developed to build commercial applications as well as scientific
applications. The following subsections cover some of the selected scientific
computing libraries.

A maritime designing API by Tribon
Tribon Solutions works in the area of computer aided design and modeling
solutions. Their focus is to improve the overall efficiency of maritime applications.
The Tribon software suite supports the complete life cycle of ship building. This
requires highly concurrent processes to cope up with the situations. They have
developed a central repository and a single source of information for people
who work on the design and construction of ships. This model is called Product
Information Model (PIM). These people may be designers, material administrators,
manufacturing team members, planners, and others involved in the overall process.

In general, ship designs are unique; yet, the focus of their designers is to reduce costs
by proving the process through standardization and parameter-driven design. This
process is mostly vendor dependent due to different design principles, governmental
regulations and standards, and the facilities and infrastructure of the vendor. Tribon
handles this problem to allow the vendors to develop on their own. The Tribon
technology has created an easy-to-use, platform-independent, extensible, and
embeddable API.

Revisiting Real-life Case Studies

[250]

Tribon has selected Python because of a number of features, such as the product being
embeddable and extensible, no license cost, and platform independence. Tribon's
solution doesn't get affected by any updated release of Python. The applications
developed by their clients are platform independent, and thus the clients have moved
them across platforms without many problems and changes in code. These solutions
have improved the design process of some parts from a couple of weeks to a few
days, with improved overall quality. This is because the design, computations, and
other processes are being automated. They named this product Tribon Vitesse.

Molecular Modeling Toolkit
The Molecular Modeling Toolkit (MMTK) is a Python library for molecular modeling
and simulation with a focus on biomolecular systems. It is an open source library
developed using the Python and C languages. Biomolecular simulations take a longer
time than in general, which take a few weeks. This processing requires complex data
structures to describe biomolecules. The Python and C languages have been selected
for being high-level interpreted languages and performance-efficient compiled
languages. This is a nice combination for complex and high-performance-demanding
simulations.

Python is selected instead of TCL and Perl because it has a number of desired
features, such as integration with compiled languages, library support, object-oriented
programming style, and readability.

The user of the MMTK library accesses it as pure Python library, as the C language
code used to develop MMTK is completely written in the form of a Python extension
module. This code is written only for the time- and performance-critical aspects of
the library. For example, interaction energy evaluation is a time-critical function, and
energy minimization and molecular dynamics are iterative processes that take much
more time to complete; they require high-performance processing. These functions
are implemented in the C language to avoid overhead of the Python language.
On the other hand, MMTK extensively uses numerical Python, LAPACK, and the
NetCDF Python libraries. MMTK also supports shared memory parallel processing
(using multithreading) and distributed memory parallel processing (using MPI).

MMTK is designed with the purpose of making it highly extensible. There is no need
to modify the MMTK code to add algorithms, energy terms, and specialized data
types. For visualization-related activities, MMTK depends on external tools; VMD
and PyMOL are especially integrated with MMTK. Generally, MMTK users use
Python scripts to access the library. However, several programs use MMTK with a
graphical user interface, for example, the DomainFinder and nMOLDYN programs.

Chapter 9

[251]

MMTK is composed of three major categories of classes. The largest category is the
set of classes used to represent atoms and molecules and the classes that manage
the database of molecules and fragments. There is a separate subclass of the generic
molecule class for representing biomolecules such as DNA, proteins, and RNA. The
second (and important) part of MMTK implements various schemas to calculate
interaction energies. The third part of MMTK handles input- and output-related
functionality. This code is designed to perform read and write functionality for some
popular file formats and a custom MMTK format based on the NetCDF format.
MMTK's files are portable across various platforms and they are binary in type. As
these files are binary files, they are smaller in size and allow efficient access.

Standard Python packages
Besides these, there are specific tools, APIs, and applications available; you can visit
the Python Package Index, available online at http://pypi.python.org. It contains
thousands of modules (mostly developed in Python) for specific applications. These
applications again cover a number of scientific, commercial, and computational
domains. There are modules for bioinformatics, healthcare, geospatial analysis,
instrumentation, engineering, mathematics, and other branches. The web portal
maintains a category-wise list of packages. The following list contains some selected
packages from science and engineering domains:

•	 fluiddyn: A framework for studying fluid dynamics
•	 DeCiDa: Device and circuit data analysis
•	 python-vxi11: A Python VXI-11 driver for controlling instruments over the

Ethernet
•	 pygr: This is a Python graph-database toolkit oriented primarily toward

bioinformatics applications
•	 Brainiac: These are various components for use in an artificial intelligence

system, and they are entirely usable on their own
•	 pyephem: This computes the positions of planets and stars
•	 PyMca: This is an X-ray fluorescence analysis toolkit and application
•	 openallure: A voice-and-vision-enabled dialog system
•	 BOTEC: A simple astrophysics and orbital mechanics simulator
•	 pyDGS: Wavelet-based digital grain size analysis
•	 MetagenomeDB: A database of metagenomic sequences and annotations
•	 biofrills: These are bioinformatics utilities for molecular sequence analysis
•	 python-bioformat: Read-and-write file formats for life sciences

http://pypi.python.org

Revisiting Real-life Case Studies

[252]

•	 psychopy_ext: A framework for a rapid reproducible design, analysis, and
plotting of experiments in neuroscience and psychology

•	 Helmholtz: A framework for creating neuroscience databases
•	 pysesa: PySESA is an open source project dedicated to providing a generic

Python framework for spatially explicit statistical analyses of point clouds
and other geospatial data in the spatial and frequency domains for use
in geosciences

•	 nitime: Time series analysis for neuroscience data
•	 SpacePy: Tools for space science applications
•	 Moss: Statistical utilities for neuroimaging and cognitive science
•	 cclib: Parsers and algorithms for computational chemistry
•	 PyQuante: Quantum chemistry in Python
•	 phoebe: Physics of stars and stellar and planetary systems
•	 mcview: A 3D/graph event viewer for High-energy Physics event

simulations
•	 yt: An analysis and visualization toolkit for astrophysical simulations
•	 gwpy: A package for enable gravitational wave astrophysics in Python

Summary
In this chapter we discussed several case studies of scientific computing applications,
libraries, and tools developed using the Python language. We discussed the
applications of Python in various areas, including the designing of specialized
software and hardware (such as OLPC and ExpEYES) and also designing Python-
based embedded systems for lighting systems. We covered some uses of Python in
computational chemistry and molecular modeling. We also saw the uses of Python
in computer-aided modeling for science and other areas.

In the next chapter, we will discuss the best practices to be followed for the
development of scientific computing applications and APIs in general, with
a special focus on Python.

[253]

Best Practices for
Scientific Computing

This chapter discusses the best practices to be adopted by developers of applications,
APIs, and tools for scientific computing. Best practices are well-defined processes/
statements established through research and experience. Following these practices
leads to achievement of the desired results with less effort and fewer problems.

In particular, the following topics will be covered in this chapter:

•	 Best practices for Python-based designing
•	 Best practices for implementation in Python
•	 Best practices for data management and application deployment
•	 Best practices for achieving high performance
•	 Best practices for privacy and security
•	 Best practices for maintenance and support
•	 Best practices for Python development

Generally, scientists use computing tools to support their research, and most of
them would not have taken formal computer science training. This may lead them to
develop inefficient solutions, and the development cycle might be longer and more
time-consuming for them. Also, there might be the possibilities that the implemented
algorithms are non-optimal, the development time is longer, and the code is not
up to the desired standards. Best practices help them cope up with these problems.
Following best practices lets scientists practice science as a proper approach to
software development and keeps their code free of unwanted bugs/errors.

Best Practices for Scientific Computing

[254]

There are a number of scientific libraries/applications/toolkits completely designed
and developed by scientists from non-computer-science backgrounds. Still, these
best practices help them achieve better results and improve the efficiency and
overall experience of development.

Best practices can be considered a repeatable standard approach of performing the
desired tasks in software development.

The best practices for designing
This section covers the best practices to be followed during the design phase of
software development:

•	 Task division among different teams: This best practice says that it is better
to distribute the activities of the different steps of the development life cycle
among different people. This will reduce the burden on one person and
achieve better results in less time. It is better to choose one team (maybe
one to two members per team) for each of the design, implementation, and
testing phases. These teams will work in collaboration with each other,
as they have their respective responsibilities to be performed at different
times. This is always better than different teams collaborating with each
other. This collaboration is depicted in the following figure with common
shape in different steps. The designers may support the developer team in
programming, and this approach can be considered as pair programming.
Similarly, the collaboration of an implementation team and a testing team
will result in fixing of future bugs, and ultimately improve the overall
performance of the system.

c
o
n
c
e
p
t

Designing

Developed System

Implementation

Testing

Chapter 10

[255]

•	 Dividing the large task into a set of smaller tasks: Instead of writing a large
program once to perform a large activity, we should prefer dividing the
task into smaller subtasks. This is an incremental approach that proceeds
toward achieving large tasks by completing smaller subtasks one by one.
This will improve the overall implementation experience and the quality of
the implemented code. Following this approach will produce better code that
requires less development efforts and is easily manageable.

•	 The life cycle for each subtask: Following the development life cycle (that
is, designing, developing, and testing) for each small subtask will definitely
produce code that is less prone to errors, as each subtask is very well tested.
This will also improve the overall quality of the code as the team will be
dealing with smaller pieces of code. This approach is presented in the
following figure:

Original Task

Sub
Task 1

Design Coding

Testing

Final Product

Sub
Task 1

Sub
Task 1

Sub
Task 1

Design Coding

Testing

Design Coding

Testing

Design Coding

Testing

Life cycle of each sub task

Adopting this approach will prevent the developer team from suddenly
getting trapped in major errors. This will also save efforts during the final
testing of the complete application.

Best Practices for Scientific Computing

[256]

•	 Use specialized software for each activity: It is recommended that teams
use specialized software for each activity of the development life cycle. There
are various pieces of standard software for most activities. For example,
there are pieces of software for designing and modeling tools (for example,
Visio). To support development activities, we have integrated development
environment software (for example, Eclipse for Java), version control
software (for example, CVS or Git), debuggers (for example, GDB), and
build tools (for example, ANT). There are also specific pieces of software
for testing of applications and performance profiling.

The implementation of best practices
This section covers the best practices to be adopted for the implementation phase of
software development:

•	 Maximize comments in the code and documentation: Most scientific
applications involve complex algorithms and computations; hence, their
implementation is also complicated. It will be better for future enhancements
if most complex implementations have descriptive comments to explain what
the code is doing. It is necessary to maximize comments and documentation
so that the users/developers are well aware of the ideas behind the
programs. Specially, proper comments with complex logic will enable the
development team working on future enhancement of the application/tool/
API developed. The comments are supposed to explain the logic of the code.

•	 Promote reusability: Instead of reinventing the wheel, before starting the
development cycle, search for suitable libraries for the purpose. This will
save a lot of effort by developing some already existing libraries. Moreover,
the code developed using existing and well-tested libraries will have a
much lower possibility of runtime errors, or bugs, as these libraries have
supposedly been already tested and used a number of times. Using an
existing library will keep the scientist's mind free to immerse in science. This
will save a lot of effort; the only effort required are those of learning about
the library and using it for the task to be performed.

•	 Develop a complete working model first: A good way of developing an
application, tool, or API is to first develop a working model and then plan
to optimize the solution developed. This is the approach that should be
followed for even simple commercial applications. Optimization can be
performed on the working model to improve its performance. However,
planning for optimization along with development may divert the attention
of the team. Hence, the focus during the development phase should be on
achieving the desired functionality, and optimization can be applied on the
properly working application, tool, API to improve its performance.

Chapter 10

[257]

•	 Consider the possibility of future errors: Adopt a proactive approach to
cope up with future errors. This approach involves the use of assertions,
exception handling, automated tests, and debuggers. Assertions can be
used to ensure that preconditions and postconditions of a particular piece
of code are intact. An automated test helps the developer ensure that the
behavior of the program remains unchanged, even with modifications in
the program. Each of the errors detected during testing should be converted
into a test case, so that it will be automatically tested in the future. The use of
debuggers is always a better choice than inserting the print statement to test
the validity of the program. Using debuggers will help the developer get an
insight into the impact of each statement of the program. Exception handling
helps developers handle possible errors proactively. The following code
fragment demonstrates the use of assertions in Python:
assertion for precondition testing
def centigradeToFahrenheit (centigrade)
assert type(centigrade) is IntType, "Not an integer"
 assert (centigrade >= 0), "Less then absolute Zero"
 return (9 * centigrade/5 + 32)
print centigradeToFahrenheit(40)
print centigradeToFahrenheit(15)
print centigradeToFahrenheit(-10)
assertion for both pre and post condition testing
def calculate_percentage (marks1, marks2, marks3)
 assert (marks1 >= 0), "Less then absolute Zero"
 assert (marks2 >= 0), "Less then absolute Zero"
 assert (marks3 >= 0), "Less then absolute Zero"
 result = (marks1 + marks2 + marks3)/100.0)
 assert (0.0 <= result <= 100) "Percentage should be
 between 0 and 100"
 return result

•	 Open source/standard publication of data and code: Code development and
the preparation of data for experimentations should ideally be done with the
aim of publishing them as open source/standards so that both the code and
the data will be adopted by peer scientists working in the same field. This
will increase awareness about the application, tool, or API, and ultimately
result in a large user base.

Best Practices for Scientific Computing

[258]

Publishing the data and code increase the user base and these users will
support the efforts in testing and future enhancement. The data will also
be improved and will keep getting updated with new user requirements.
Generally, open source software is updated in collaboration with a number
of developers and scientists from various geographical locations. To support
a large number of distributed developers, a recent trend in version control
software is distributed version control. Distributed version control is a
web-based system that is highly scalable for supporting a large number of
developers. Traditional version control software was not designed to support
a very large number of users working on the code in the software repository.

Pull

Push

Repository

Repository

Commit

Update Working
copy

Repository

Commit

Update Working
copy

Repository

Commit

Update Working
copy

Pull

Push

Pull

Push

Working of distributed version control software

The best practices for data management
and application deployment
This section covers the best practices for data management and deployment
of applications:

•	 Data replication: This practice especially focuses on mission-critical
applications, where data loss is intolerable, which may be due to the high
cost of the experiment, or where the experiment's failure can result in a loss
of life. For such mission-critical applications, data replication should be
properly planned such that a failure of some components of the system will
not affect the overall functionality of the system. The replicated data must be
placed at different locations so that a natural disaster at one location will not
affect the ultimate processing.

Chapter 10

[259]

The following figure depicts the concept of data replication. Each piece of
data is replicated three times at different locations across the globe. Even
if there is a failure of one or two systems that have a particular piece, the
processing doesn't stop as there is another copy.

Geographically
Replicated

Data

C

B

F G

B

A E

D

A F

G

A I

H

B C

D

F H

I

H I

G

A B C D E F G H I

The Data Set

A

•	 Testing on real and synthetic data: Testing of the application should be done
on real as well as synthetic data. If real test data is not available, then perform
tests on synthetic data. To prepare synthetic data, use the appropriate
statistical-distribution-based random number generation techniques, as
discussed in Chapter 3, Efficiently Fabricating and Managing Scientific Data.
Generally, there are open datasets for most common scientific applications,
as pointed in Chapter 3, Efficiently Fabricating and Managing Scientific Data. If
found suitable, these datasets may be used for experimentation and testing
of the application.

Best Practices for Scientific Computing

[260]

The best practices to achieving high
performance
This section is specially focused on applications that require high performance. The
best practices for achieving high performance are presented in this section:

•	 Consider the future scalability requirements: It is better to proactively
consider the future scalability requirements of the system. The data size
for the system may vary from very small data to a huge dataset up to a
"Petascale" or "Exascale"; during designing, this aspect must be considered
during design. Depending on the requirements, the hardware infrastructure,
the software development framework, and the database may be planned.
This design process should consider the possibility that the system may
require the process huge datasets in future.

•	 Hardware and software selection: Invest a sufficient amount of time to
selecting the most suitable technology for the application, tool, or API.
This process will require an investment of initial efforts to select a suitable
environment that will result in a satisfactory implementation of the desired
functionality. This selection of technology includes choosing a suitable
programming language and development framework, the appropriate
database/data store, the required hardware, a suitable deployment
environment, and others.

•	 API selection: If there are some existing APIs for achieving the desired
functionality, then the selection of the most suitable APIs for achieving
the desired result is crucial for a successful and efficient implementation.
Before you finalize the API to be used, it should be properly analyzed for the
functional and performance requirements. The ultimate performance of the
final product is directly dependent on the API used to build the system.

•	 Use the appropriate performance benchmarks: For performance-critical
applications, use the appropriate performance benchmarks. There are a
number of benchmarks available for assessing the performance of different
types of applications, tools, and APIs. For example, the DEISA benchmark
suite is a specially designed high-performance scientific computing
application. Generally, a benchmark is composed of a set of custom or real
programs from the application domain. These programs will be executed
several times to assess the performance of the system under study.

Chapter 10

[261]

The best practices for data privacy and
security
Data privacy and security are the most important areas to focus on for applications
to be successfully adopted and widely used. This section covers the best practices
for proper privacy and security of the application and data:

•	 Data privacy: There are certain applications that require collection of data,
and for some specific applications, the developers must take utmost care of
the privacy of user data. This data privacy is highly essential, as the data may
be financial or medical data, and losing it in some way may result in a big
loss for the stakeholders. This concern must be considered carefully during
all phases of the system's development life cycle.

•	 Security considerations for web applications/services: If the application is
designed as a web application/service, then special care must be taken when
it comes to security, as web-based systems are the main focus of security
attacks. Several well-defined strategies are available for both securing and
attacking web-based systems. Preventive measures should be considered from
the very first step of the system development life cycle for the application.
Proper authorization and authentication mechanisms should be adopted
to achieve both privacy and security for the application.

Testing and maintenance best practices
Proper testing and maintenance are highly essential for proper software development.
This section emphasizes the best practices to be followed during the testing and
maintenance activities:

•	 Unit testing first: It will be better to perform unit-wise testing first. After
successful unit testing, the system is ready for integration testing. Finally,
after successful integration testing, validation testing should be performed.
Unit testing ensures that the different modules of the system are working
perfectly and helps in early detection of errors. This will not only fix the
bugs in the module, but also support in finding the missing parts of the
implementation of the original idea. As unit testing is performed for a
specific module at a time and the focus is very small, it may identify the
parts of the specification that were missed during the implementation phase.

Best Practices for Scientific Computing

[262]

•	 Different testing teams: Testing is a crucial activity for the success of the
final product. It will be better to have different teams for different functions
of the testing phase. These teams may work in collaboration for better results.
This will help identify bugs and issues in the implementation and give an
overall better quality to the final product.

•	 Working groups for support: To provide proper support and maintenance
activities for a large system, it is better to create multiple working groups for
each of the substantial subparts of the system. It is preferable that at least one
of the coders of that specific subtask also be a member of its support group.
In this way, this coder (and member) may easily identify the problem and
fix it. Each working group is responsible for a specific subpart. In this way,
each member of the group will have a thorough idea of that subtask. These
members will easily manage the support and maintenance activity.

•	 Multiple working groups: For large applications, create multiple working
groups to divide the workload. Each work group is responsible for providing
support, maintenance, and enhancement activities. A dedicated working
group for a specific module will help improve the overall quality of the
system and give better support. As the team comes across problems related
to a specific module in a short time span, they will understand the problems
associated with the system and finally recommend the desired update to the
system.

•	 Mailing lists for user help and support: Create a user mailing / feedback
list for each working group. Users will raise the problems to this mailing
list, and members of the support team will respond with the solution on the
mailing lists. This list will serve as a communication bridge between users
and developers.

General Python best practices
This section discusses some general best practices that should be followed by
Python programmers:

•	 The PEP 0008 style guide for Python code: The first best practice in
this category is to clearly understand and follow PEP 0008. Refer to
https://www.python.org/dev/peps/pep-0008/.

https://www.python.org/dev/peps/pep-0008/

Chapter 10

[263]

•	 Naming convention: It is recommended to all coders that they follow a
consistent and meaningful naming convention. This recommendation is
helpful, not only to the original developers, but also to future developers
who may work to enhance the system. Uniform and meaningful names
improve the readability of code. The naming convention should follow a
uniform naming scheme and adopt the recommended scheme for the specific
language under use, for example, the use of underscores or camel case to join
multiple words in a variable or function name. The following table represents
the recommended names and the not-recommended names:

Not recommended Recommended
Variables:

var1, var2, mycalculation,

temp_val,

f1, num35

Variables:

area, incomeTax, productCost,

counter,

lambda, sigma,

sum_of_product
Functions:

func1(), function2(), calculation_func(),

perform_func()

Functions:

calculateArea(), product_of_sum()

sinx()

•	 Uniform coding style: Generally, it is recommended that you follow a
standard and uniform coding style throughout the system. The use of
assertions, indentation, comments, and other things must be uniform in the
code. Adopt or develop a standard style for comments and follow it in the
coding throughout the system. Similarly, formatting should also be the same
in the entire code for the system. It should consider spacing and indentations
in the code.

Best Practices for Scientific Computing

[264]

The following example depicts the poor and recommended formatting styles:

Nonuniform spacing and indentation Uniform spacing and indentation
x=(b*d- 4*a*c)/2*a

y = 2 * x * x + 4 * x + 5

def sample_function()

print "in function"

 print " last line"

def second_sample()

 print "in function"

 print "last line"

x = (b * d – 4 * a * c) / 2 * a

y = 2 * x * x + 4 * x + 5

def sample_function()

print "in function"

 print " last line"

def second_sample()

 print "in function"

 print "last line"

Summary
In this chapter, we have discussed best practices to be followed by the teams working
on scientific computing. The chapter started with a discussion on best practices for
designing. After that, the best practices for coding were discussed. Later, the best
practices for data management and application deployment were covered.

Next, the best practices for high-performance computing were discussed, and then
the best practices for security and data privacy were presented. Then, we saw the
best practices for maintenance and support. Finally, the best practices of general
Python-based development were discussed.

[265]

Index
A
accuracy 10
activities 235
Advanced Aircraft Design Lab 241
advanced modules/packages, SciPy

curve fitting 126, 127
File I/O (scipy.io) 128, 129
optimization (scipy.optimize) 111, 112

Affymetrix data format 49
American Standard Code for Information

Interchange (ASCII) 44
APIs

defining 83
architecture, of matplotlib

about 164
artist layer 165
backend layer 165
scripting layer (pyplot) 164

array
attributes 92
basic operations 93, 94
indexing 93
slicing 93
special operations 94, 95

B
backward error analysis 11
Band Interleaved by Line (BIL) 48
Band Interleaved by Pixel (BIP) 48
bar charts 39
basic arithmetic 132
basic operations, on arrays 93, 94
Benevolent Dictator For Life (BDFL) 13

best practices, data management and
application deployment

data replication 258
testing, on real and synthetic data 259

best practices, high performance
achievement

API selection 260
appropriate performance benchmarks,

using 260
future scalability requirements,

considering 260
hardware and software selection 260

best practices, privacy and security
data privacy 261
security consideration, for web applications

/ services 261
best practices, Python

naming convention 263
PEP 0008 style guide, for code 262
uniform coding style 263

best practices, testing and maintenance
activity

different testing teams 262
mailing lists, for user help and support 262
multiple working groups 262
unit testing 261
working groups, for support 262

BioSemi data format 49
Blind Audio Tactile Mapping System

(BATS) 246, 247
bookkeeping functions 56
boundary value problem, differential

equations 26
Broyden-Fletcher-Goldfarb-Shanno

(BFGS) 111

[266]

C
Calculus 138-140
chart plotting library, Python 37
classes, associated with arrays

about 95
masked array 96
matrix sub class 96
structured/recor array 97

clustering analysis 71
comma-separated values (CSV) 186
Common Data Format (CDF) 48
compact disks (CDs) 62
complex numbers 135
computational chemistry applications 245
Computer Algebra System (CAS) 76
computer arithmetic 11
conditioning 10
cryptography module 150, 151
CSV files

working on 186-189
curve fitting 126, 127

D
data

about 41
scientific example 42

database 45
DataFrame, pandas library 171
data management and application

deployment
best practices 258, 259

data management, operations
data architecture, analysis, and design 45
database administration 45
data enrichment 46
data governance 45
data integration 46
data integrity 46
data quality management 46
data security management 46
data warehouse management 46
metadata management 46

data structures, pandas
DataFrame 84
Panel 84
Series 84

data warehouse management 46
DICOM 49
differential equations

about 25
boundary value problem 26
initial value problem 26

dsolve method 138

E
energy-efficient lights

with embedded system 248, 249
equation solving 133, 134
error analysis 10
European data format 49
exemplary programs

about 81
simple integrations 83
simplification, of expression 82
simplification, of formula 82
symbol manipulation 82

Experiments for Young Engineers and
Scientists (ExpEYES) 236-239

exponentials
functions 134

expressions 132
extraction, translation, and loading

(ETL) 46
extrapolation

about 23
methods 24

F
File I/O (scipy.io) 128, 129
files

about 43
structured files 44
unstructured files 44

financial charts 40
FITS astronomical data 49
five-digit random numbers

generating, logic 62
Flexible Image Transport System (FITS) 48
floating-point numbers 11
ForecastWatch

about 239
components 239, 240

[267]

forward error analysis 11
Frequentis 247
functions

for exponentials 134
for integer random number

generation 56
for logarithms 134
for rational numbers 134
for sequences 56

G
GEM Foundation

working areas 242
general-purpose CAS

features 76
geometry module

about 154
submodules 155, 156

German Aerospace Centre 240
Goddard Space Flight Center (GSFC) 48
graphics, with matplotlib

about 166, 167
output generation 168

greatest common divisor (GCD) 78
GRIB scientific data format 49

H
Hadoop-based MapReduce, in

Python 229, 230
Hadoop Distributed File System

(HDFS) 229
hierarchical clustering 125, 126
Hierarchical Data Format (HDF) 47
High-Energy Physics (HEP) 243
high performance achievement

best practices 260
Hydrogen wave functions 142

I
information

about 42
scientific example 42

input
parsing 151

Institute of Electrical and Electronics
Engineers (IEEE) 12

integrated development environment
(IDE) 17

interactive computing, Python
IPython, using for 86

interpolation
about 23
methods 24

Inter University Accelerator Centre
(IUAC) 236

I/O operations 186
IPython

about 191
URL 86
used, for interactive computing in

Python 86
IPython console and system shell

about 192, 193
debugging support 195, 196
nonblocking plotting 194
operating system interface 194

IPython Notebook 197

J
Jython 248

L
Large Hadron Collider (LHC) 243
large-scale datasets 62, 63
LaTeX Printer 149
least common multiplier (LCM) 78
Lena 73
linear algebra 136, 137logarithms

functions 134
logic module 152-154
log plots 39

M
masked array 96
mathematical components, of scientific

computations
about 20
differential equations 25, 26

[268]

extrapolation 23, 24
interpolation 23
numerical differentiation 25
numerical integration 24
optimization 22
random number generator 27
system of linear equations 20
system of nonlinear equations 21, 22

matplotlib
about 37, 85, 164
architecture 164
used, for data visualization 85

matrices 142
matrix sub class 96
mechanics 146, 147
methods, SciPy

reference link 26
Molecular Modeling Toolkit

(MMTK) 250, 251
mplot3d 38
multiprocessing, Python 226, 227
multithreading, Python 227, 228
MySQLdb 240

N
National Climatic Data Centre 239
National Weather Service 239
NDK seismographic data format 49
Network Common Data Form (NetCDF)

about 47
reference link 47

nondeterministic random number
generator 58, 59

numerical differentiation
about 25
methods 25

numerical integration 24
numerical scientific computing, in Python

defining 65
NumPy package 66
sample SciPy programs 71
SciPy package 69

NumPy fundamental objects
about 92
mathematical modules 99-101

ndarray object 92
universal function (unfunc) 97

NumPy mathematical modules
about 99
numpy.fft 100
numpy.linalg 99
numpy.matlib 100
numpy.random 100

NumPy package
about 66, 91
file handling 66, 67
ndarrays data structure 66
sample NumPy programs 67-69

O
one-dimensional equations

methods 21
One Laptop per Child (OLPC)

project 234-236
OpenQuake engine

about 241, 242
benefit-cost ratio calculator 243
classical PSHA-based risk calculator 243
probabilistic event-based risk

calculator 242
scenario damage assessment calculator 242
scenario risk calculator 242

Open Science Data Cloud (OSDC)
about 50
reference link 50

operations, on data
about 45
data, exporting 46
data farming 45
data, importing 46
data management 45
scientific data archiving 47

optimization
about 22
reference link 22

ordinary differential equations (ODE)
about 26
methods, for solving 26

[269]

P
pandas

about 83
data structures 84
features 84
used, for data analysis 83
used, for manipulation 83

pandas library
about 170
common functionalities, among data

structures 174-179
DataFrame 171
missing data, handling 184
Panel 172
Series 170
time series and date functions 181-183

pandas plotting 190, 191
PanMachine 247
partial differential equations (PDE)

about 26
methods, for solving 26

Pauli algebra 142
physics module

about 142
high-energy physics 145
Hydrogen wave functions 142
matrices 142
mechanics 146, 147
Pauli algebra 142
second quantization 143

Physics with Homemade Equipment
and Innovative Experiments
(PHOENIX) 236

pie charts 39
platforms, Sugar

Live CD and Live USB stick 235
OS image 235
package for Linux distributions 235
XO laptop 235

plotting module
functions, using 79

polar plots 39
polynomial manipulation 158, 159
polynomials 135
PowerPanel 247

pretty printing
about 148, 149
LaTeX Printer 149

privacy and security
best practices 261

Product Information Model (PIM) 249
product of sum (POS) 154
pseudo-random number generators 27, 28
pyACDT API 240
PyDrone 245
PySpark 232
Python

background 12
best practices 262, 264
drawbacks 17
for developing Blind Audio Tactile

Mapping System (BATS) 246
guiding principles 13, 15
scientific computing applications 234
scientific computing libraries 249
URL, for guiding principles 13

Python aircraft conceptual design toolbox
(pyACDT) 241

Python Enhancement Proposals (PEP) 15
Python, for scientific computing

about 15
available libraries 17
compact and readable code 15
data structures 16
free and open source 16
graphical user interface packages 16
hierarchical module system 16
holistic language design 15
language interoperability 16
portable and extensible 16
testing framework 17

Python Package Index
about 251
reference link 251

Python's built-in functions, using for
random number generation

about 55
bookkeeping functions 56
functions, for integer random number

generation 56

[270]

functions, for sequences 56
nondeterministic random number genera-

tor 58, 59
statistical-distribution-based

functions 57, 58
Python scientific computing options,

examples
chart plotting 28

Q
Quantum harmonic oscillator

in 1-D 143
in 3-D 143

Quixote 240

R
random number generators

about 27
designing, based on statistical

distributions 60, 61
implementing, based on statistical

distributions 60, 61
rational numbers

functions 134
ready-to-eat datasets

about 190
pandas plotting 190, 191

ready-to-use standard datasets 50-53
root 21
Rosenbrock function 72

S
sample data analysis program

defining 86-88
sample visualization program

defining 86-88
scientific computations

mathematical components 20-27
scientific computing applications, Python

about 234
automated code generator, for analysis of

high-energy physics data 243, 244
Experiments for Young Engineers and

Scientists (ExpEYES) 236-239
One Laptop per Child (OLPC) 234-236

OpenQuake engine 241, 242
pyACDT API 240
SMS Siemag AG Application for energy

efficiency 243
weather prediction application 239, 240

scientific computing libraries, Python
about 249
maritime designing API, by Tribon 249, 250
Molecular Modeling Toolkit (MMTK) 250

scientific data archiving 47
scientific data format

about 47
Band-Interleaved Data/Band-Interleaved

Files 48
Common Data Format (CDF) 48
features 48
Flexible Image Transport System (FITS) 48
Hierarchical Data Format (HDF) 47
Network Common Data Form (NetCDF) 47

scientific workflow 19
SciPy

used, for image processing 73-75
used, for optimization 72, 73
used, for statistics 71, 72

SciPy package
about 69
differential equation 70
image processing 71
integration equation 70
interpolation package 70
optimization package 70package and spa-

tial algorithms, clustering 71
stats module 70

SciPy programs 71
second quantization 143
sequences 140
Series, pandas library 170
sets 160
simplify 161
Single Program, Multiple Data (SPMD) 229
SMS Siemag AG Application 243
solve function 133
Space Physics Data Facility (SPDF) 48
Spark 231
Spark Python API 232
special operations, on arrays 94, 95
stability 10

[271]

standard Python packages
biofrills 251
BOTEC 251
Brainiac 251
cclib 252
DeCiDa 251
fluiddyn 251
gwpy 252
Helmholtz 252
mcview 252
MetagenomeDB 251
Moss 252
nitime 252
openallure 251
phoebe 252
psychopy_ext 252
pyDGS 251
pyephem 251
pygr 251
PyMca 251
PyQuante 252
pysesa 252
python-bioformat 251
python-vxi11 251
SpacePy 252
yt 252

statistical-distribution-based
functions 57, 58

stream plot 38
structured files 44
structured/recor array 97
submodules, geometry module

3D Line 156
3D Point 155
curves 156
ellipses 156
lines 155
plane 156
point 155
polygon 156

Sugar
about 235
platforms 235

sum of product (SOP) 154
symbols 132
SymPy

calculus 78

core capability 77
defining 76, 77
discrete math 78
equations, solving 78
expression expansion 82
features 36
geometry 79
matrices 79
modules 80, 81
need for 36
physics 80
plotting 79
polynomials 78
printing 80
statistics module 80
used, for symbolic computations 75

synthetic data generation (fabrication) 54
system of linear equations 20
system of nonlinear equations

about 21, 22
methods 22
reference link 22

T
TAPTools

for air traffic control 247, 248
testing and maintenance activity

best practices 261, 262
time series and date functions, pandas

library 181-183
toolkits

defining 83
Tribon 249, 250
trigonometry 135

U
uniform-acceleration motion (UAM) 146
universal function (unfunc)

about 97-99
attributes 97
methods 98

University Corporation for Atmospheric
Research (UCAR) 47

unstructured files 44

[272]

V
VAMPzero tool 240
vectors 141

W
WatchMan 244
Web ARChive (WARC) format 230
wxPython 247

Thank you for buying
Mastering Python Scientific Computing

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning SciPy for Numerical
and Scientific Computing
Second Edition
ISBN: 978-1-78398-770-2 Paperback: 188 pages

Quick solutions to complex numerical problems in
physics, applied mathematics, and science with SciPy

1.	 Use different modules and routines from the
SciPy library quickly and efficiently.

2.	 Create vectors and matrices and learn how to
perform standard mathematical operations
between them or on the respective array in a
functional form.

3.	 A step-by-step tutorial that will help users
solve research-based problems from various
areas of science using Scipy.

IPython Interactive Computing
and Visualization Cookbook
ISBN: 978-1-78328-481-8 Paperback: 512 pages

Over 100 hands-on recipes to sharpen your skills in
high-performance numerical computing and data
science with Python

1.	 Leverage the new features of the IPython
Notebook for interactive web-based big data
analysis and visualization.

2.	 Become an expert in high-performance
computing and visualization for data
analysis and scientific modeling.

3.	 A comprehensive coverage of scientific
computing through many hands-on,
example-driven recipes with detailed,
step-by-step explanations.

Please check www.PacktPub.com for information on our titles

Mastering Object-oriented Python
ISBN: 978-1-78328-097-1 Paperback: 634 pages

Grasp the intricacies of object-oriented programming
in Python in order to efficiently build powerful
real-world applications

1.	 Create applications with flexible logging,
powerful configuration and command-line
options, automated unit tests, and good
documentation.

2.	 Use the Python special methods to integrate
seamlessly with built-in features and the
standard library.

3.	 Design classes to support object persistence
in JSON, YAML, Pickle, CSV, XML, Shelve,
and SQL.

Python High Performance
Programming
ISBN: 978-1-78328-845-8 Paperback: 108 pages

Boost! the performance of your Python programs
using advanced techniques

1.	 Identify the bottlenecks in your applications
and solve them using the best profiling
techniques.

2.	 Write efficient numerical code in NumPy
and Cython.

3.	 Adapt your programs to run on multiple
processors with parallel programming.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Landscape of Scientific Computing – and Why Python?
	Definition of scientific computing
	A simple flow of the scientific computation process
	Examples from scientific/engineering domains
	A strategy for solving complex problems
	Approximation, errors, and associated concepts and terms
	Error analysis
	Conditioning, stability, and accuracy
	Backward and forward error analysis
	Is it okay to ignore these errors?

	Computer arithmetic and floating-point numbers
	The background of the Python programming language
	The guiding principles of the Python language
	Why Python for scientific computing?
	Compact and readable code
	Holistic language design
	Free and open source
	Language interoperability
	Portable and extensible
	Hierarchical module system
	Graphical user interface packages
	Data structures
	Python's testing framework
	Available libraries

	The downsides of Python

	Summary

	Chapter 2: A Deeper Dive into Scientific Workflows and the Ingredients of Scientific Computing Recipes
	Mathematical components of scientific computations
	A system of linear equations
	A system of nonlinear equations
	Optimization
	Interpolation
	Extrapolation
	Numerical integration
	Numerical differentiation
	Differential equations
	The initial value problem
	The boundary value problem

	Random number generator

	Python scientific computing
	Introduction to NumPy
	The SciPy library
	The SciPy Subpackage

	Data analysis using pandas

	A brief idea of interactive programming using IPython
	IPython parallel computing
	IPython Notebook

	Symbolic computing Using SymPy
	The features of SymPy
	Why SymPy?
	The plotting library

	Summary

	Chapter 3: Efficiently Fabricating and Managing Scientific Data
	The basic concepts of data
	Data storage software and toolkits
	Files
	Structured files
	Unstructured files

	Database

	Possible operations on data
	Scientific data format
	Ready-to-use standard datasets
	Data generation
	Synthetic data generation (fabrication)
	Using Python's built-in functions for random number generation
	Bookkeeping functions
	Functions for integer random number generation
	Functions for sequences
	Statistical-distribution-based functions
	Nondeterministic random number generator

	Designing and implementing random number generators based on statistical distributions
	A program with simple logic to generate
five-digit random numbers

	A brief note about large-scale datasets
	Summary

	Chapter 4: Scientific Computing APIs
for Python
	Numerical scientific computing in Python
	The NumPy package
	The ndarrays data structure
	File handling
	Some sample NumPy programs

	The SciPy package
	The optimization package
	The interpolation package
	Integration and differential equations in SciPy
	The stats module
	Clustering package and spatial algorithms in SciPy
	Image processing in SciPy

	Sample SciPy programs
	Statistics using SciPy
	Optimization in SciPy
	Image processing using SciPy

	Symbolic computations using SymPy
	Computer Algebra System
	Features of a general-purpose CAS
	A brief idea of SymPy
	SymPy modules
	Simple exemplary programs
	Basic symbol manipulation
	Expression expansion in SymPy
	Simplification of an expression or formula
	Simple integrations

	APIs and toolkits for data analysis and visualization
	Data analysis and manipulation using pandas
	Important data structures of pandas
	Special features of pandas

	Data visualization using matplotlib
	Interactive computing in Python using IPython
	Sample data analysis and visualization programs

	Summary

	Chapter 5: Performing Numerical Computing
	The NumPy fundamental objects
	The ndarray object
	The attributes of an array
	Basic operations on arrays
	Special operations on arrays (shape change and conversion)
	Classes associated with arrays

	The universal function object
	Attributes
	Methods
	Various available ufunc

	The NumPy mathematical modules

	Introduction to SciPy
	Mathematical functions in SciPy
	Advanced modules/packages
	Integration
	Signal processing (scipy.signal)
	Fourier transforms (scipy.fftpack)
	Spatial data structures and algorithms
(scipy.spatial)
	Optimization (scipy.optimize)
	Interpolation (scipy.interpolate)
	Linear algebra (scipy.linalg)
	Sparse eigenvalue problems with ARPACK
	Statistics (scipy.stats)
	Multidimensional image processing (scipy.ndimage)
	Clustering
	Curve fitting
	File I/O (scipy.io)

	Summary

	Chapter 6: Applying Python for
Symbolic Computing
	Symbols, expressions, and basic arithmetic
	Equation solving
	Functions for rational numbers, exponentials, and logarithms
	Polynomials
	Trigonometry and complex numbers
	Linear algebra
	Calculus
	Vectors
	The physics module
	Hydrogen wave functions
	Matrices and Pauli algebra
	The quantum harmonic oscillator in 1-D and 3-D
	Second quantization
	High-energy physics
	Mechanics

	Pretty printing
	LaTeX Printing

	The cryptography module
	Parsing input
	The logic module
	The geometry module
	Symbolic integrals
	Polynomial manipulation
	Sets
	The simplify and collect operations
	Summary

	Chapter 7: Data Analysis and Visualization
	Matplotlib
	The architecture of matplotlib
	The scripting layer (pyplot)
	The artist layer
	The backend layer

	Graphics with matplotlib
	Output generation

	The pandas library
	Series
	DataFrame
	Panel
	The common functionality among the data structures
	Time series and date functions
	Handling missing data

	I/O operations
	Working on CSV files
	Ready-to-eat datasets
	The pandas plotting

	IPython
	The IPython console and system shell
	The operating system interface
	Nonblocking plotting
	Debugging

	IPython Notebook

	Summary

	Chapter 8: Parallel and Large-scale Scientific Computing
	Parallel computing using IPython
	The architecture of IPython parallel computing
	The components of parallel computing
	The IPython engine
	The IPython controller
	IPython view and interfaces
	The IPython client

	Example of performing parallel computing
	A parallel decorator
	IPython's magic functions
	Activating specific views
	Engines and QtConsole

	Advanced features of IPython
	Fault-tolerant execution
	Dynamic load balancing
	Pushing and pulling objects between clients and engines
	Database support for storing the requests
and results
	Using MPI in IPython
	Managing dependencies among tasks
	Functional dependency
	Graph dependency
	Impossible dependencies
	The DAG dependency and the NetworkX library

	Using IPython on an Amazon EC2 cluster with StarCluster

	A note on security of IPython
	Well-known parallel programming styles
	Issues in parallel programming
	Parallel programming
	Concurrent programming
	Distributed programming
	Multiprocessing in Python
	Multithreading in Python

	Hadoop-based MapReduce in Python
	Spark in Python

	Summary

	Chapter 9: Revisiting Real-life
Case Studies
	Scientific computing applications developed in Python
	The one Laptop per Child project used Python for their user interface
	ExpEYES – eyes for science
	A weather prediction application in Python
	An aircraft conceptual designing tool and API in Python
	OpenQuake Engine
	SMS Siemag AG Application for energy efficiency
	Automated code generator for analysis of high-energy physics data
	Python for computational chemistry applications

	Python for developing a Blind Audio Tactile Mapping System
	TAPTools for air traffic control
	Energy-efficient lights with an embedded system

	Scientific computing libraries developed in Python
	A maritime designing API by Tribon
	Molecular Modeling Toolkit
	Standard Python packages

	Summary

	Chapter 10: Best Practices for
Scientific Computing
	The best practices for designing
	The implementation of best practices
	The best practices for data management and application deployment
	The best practices to achieving high performance
	The best practices for data privacy and security
	Testing and maintenance best practices
	General Python best practices
	Summary

	Index

