oconiot 1001 100115

LUUSRtn) LB
. L N

1 10100001 01 oo) | oo -
M . LTI 10010

Mastering Python
Forensics

Master the art of digital forensics and analysis with Python

Mastering Python Forensics

Master the art of digital forensics and analysis
with Python

Dr. Michael Spreitzenbarth

Dr. Johann Uhrmann

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Mastering Python Forensics

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015
Production reference: 1261015

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-804-4

www . packtpub.com

Credits

Authors Project Coordinator
Dr. Michael Spreitzenbarth Shipra Chawhan
Dr. Johann Uhrmann

Proofreader

Reviewers Safis Editing
Richard Marsden
Puneet Narula Indexer

Yves Vandermeer Mariammal Chettiyar

Commissioning Editor Production Coordinator

Kartikey Pandey Arvindkumar Gupta

Acquisition Editor Cover Work

Sonali Vernekar Arvindkumar Gupta

Content Development Editor
Shweta Pant

Technical Editor
Pranil Pathare

Copy Editor
Vibha Shukla

About the Authors

Dr. Michael Spreitzenbarth holds a degree of doctor of engineering in IT security
from the University of Erlangen-Nuremberg and is a CISSP as well as a GMOB. He
has been an IT security consultant at a worldwide operating CERT for more than
three years and has worked as a freelancer in the field of mobile phone forensics,
malware analysis, and IT security consultancy for more than six years. Since the last
four years, he has been giving talks and lectures in the fields of forensics and mobile
security at various universities and in the private sector.

I would like to thank everyone who has encouraged me while
writing this book, especially my wife for her great support. I would
also like to thank all the authors of the used open source tools —
without your help, this book wouldn't have been possible.

Dr. Johann Uhrmann holds a degree in computer science from the University of
Applied Sciences Landshut and a doctor of engineering from the University of the
German Federal Armed Forces. He has more than ten years of experience in software
development, which includes working for start-ups, institutional research, and
corporate environment. Johann has several years of experience in incident handling
and IT governance, focusing on Linux and Cloud environments.

First of all, I would like to thank my wife, Daniela, for her moral
support and willingness to give up on some family time while I
was writing. I also would like to thank my coauthor and colleague,
Dr. Michael Spreitzenbarth, for talking me into writing this book
and handling a great deal of the organizational overhead of such

a project. Furthermore, the great people working on all the open
source software projects that we used and mentioned in this book
deserve credit. You are the guys who keep the IT world spinning.

About the Reviewers

Richard Marsden has over twenty years of professional experience in software
development. After starting in the fields of geophysics and oil exploration, he
has spent the last twelve years running the Winwaed Software Technology LLC,
an independent software vendor. Winwaed specializes in geospatial tools and
applications, which include web applications, and operates the http: //www.
mapping-tools.com website for tools and add-ins for geospatial products,

such as Caliper's Maptitude and Microsoft's MapPoint.

Richard was also a technical reviewer for Python Geospatial Development, and Python
Geospatial Analysis Essentials, both written by Erik Westra, Packt Publishing.

Puneet Narula is currently working as PPC Data Analyst with Hostelworld.

com Ltd (http://www.hostelworld. com/), Dublin, Ireland, where he analyzes
massive clickstream data from direct and affiliate sources and provides insight to
the digital marketing team. He uses RapidMiner, R, and Python for the exploratory
and predictive analysis. His areas of expertise are programming in Python and R,
machine learning, data analysis and Tableau.

He started his career in banking and finance and then moved to the ever growing
domain of data and analytics.

He earned MSc in computing (data analytics) from Dublin Institute of Technology,
Dublin, Ireland. He has reviewed the books: Python Data Analysis, by Ivan Idris, Packt
Publishing and Python Geospatial Analysis Essentials, by Erik Westra, Packt Publishing.

http://www.mapping-tools.com
http://www.mapping-tools.com

Yves Vandermeer is a police officer working for the Belgian Federal Police.

He has been involved in major investigations since 1997, where he contributed to
recovering digital evidence. Owning a MSc in computer forensics, Yves is also a
trainer on several topics such as filesystems and network forensics for several law
enforcement agencies.

Chairing the European Cybercrime Training and Education Group, E.C.T.E.G.,
since 2013, Yves supports the creation of training materials that are focused on
the understanding of the concepts applied in practical exercises.

Using his experience, he developed forensic software tools for law enforcement and
contributed to several advisory groups related to IT crime and IT forensics.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface \'
Chapter 1: Setting Up the Lab and Introduction to Python ctypes 1
Setting up the Lab 2
Ubuntu 2
Python virtual environment (virtualenv) 3
Introduction to Python ctypes 4
Working with Dynamic Link Libraries 5

C data types 6
Defining Unions and Structures 8
Summary 10
Chapter 2: Forensic Algorithms 11
Algorithms 1"
MD5 12
SHA256 13
SSDEEP 13
Supporting the chain of custody 15
Creating hash sums of full disk images 15
Creating hash sums of directory trees 17
Real-world scenarios 19
Mobile Malware 20
NSRLquery 23
Downloading and installing nsrlsvr 24
Writing a client for nsrisvr in Python 25
Summary 27
Chapter 3: Using Python for Windows and Linux Forensics 29
Analyzing the Windows Event Log 30
The Windows Event Log 30
Interesting Events 32

[il

Table of Contents

Parsing the Event Log for IOC 34
The python-evix parser 34
The plaso and log2timeline tools 37
Analyzing the Windows Registry 38
Windows Registry Structure 38
Parsing the Registry for IOC 40
Connected USB Devices 40
User histories 41
Startup programs 42
System Information 42
Shim Cache Parser 43
Implementing Linux specific checks 44
Checking the integrity of local user credentials 45
Analyzing file meta information 50
Understanding inode 51
Reading basic file metadata with Python 53
Evaluating POSIX ACLs with Python 57
Reading file capabilities with Python 62
Clustering file information 66
Creating histograms 66
Advanced histogram techniques 71
Summary 76
Chapter 4: Using Python for Network Forensics 77
Using Dshell during an investigation 77
Using Scapy during an investigation 81
Summary 84
Chapter 5: Using Python for Virtualization Forensics 85
Considering virtualization as a new attack surface 85
Virtualization as an additional layer of abstraction 86
Creation of rogue machines 88
Cloning of systems 91
Searching for misuse of virtual resources 96
Detecting rogue network interfaces 96
Detecting direct hardware access 101
Using virtualization as a source of evidence 105
Creating forensic copies of RAM content 105
Using snapshots as disk images 107
Capturing network traffic 108
Summary 109
Chapter 6: Using Python for Mobile Forensics 111
The investigative model for smartphones 112

Android 115

Lii]

Table of Contents

Manual Examination 115
Automated Examination with the help of ADEL 126
Idea behind the system 126
Implementation and system workflow 127
Working with ADEL 128
Movement profiles 132
Apple iOS 133
Getting the Keychain from a jailbroken iDevice 134
Manual Examination with libimobiledevice 136
Summary 138
Chapter 7: Using Python for Memory Forensics 139
Understanding Volatility basics 139
Using Volatility on Android 141
LiIME and the recovery image 141
Volatility for Android 146
Reconstructing data for Android 147
Call history 147
Keyboard cache 151
Using Volatility on Linux 153
Memory acquisition 153
Volatility for Linux 154
Reconstructing data for Linux 156
Analyzing processes and modules 156
Analyzing networking information 157
Malware hunting with the help of YARA 159
Summary 163
Where to go from here 164
Index 165

[iii]

Preface

Today, information technology is a part of almost everything that surrounds us.
These are the systems that we wear and that support us in building and running
cities, companies, our personal online shopping tours, and our friendships. These
systems are attractive to use —and abuse. Consequently, all criminal fields such
as theft, fraud, blackmailing, and so on expanded to the IT. Nowadays, this is a
multi-billion, criminal, global shadow industry.

Can a single person spot traces of criminal or suspicious activity conducted by

a multi-billion, criminal, global shadow industry? Well, sometimes you can.

To analyze the modern crime, you do not need magnifying glasses and lifting
fingerprints off wine bottles. Instead, we will see how to apply your Python skills
to get a close look at the most promising spots on a file system and take digital
fingerprints from the traces left behind by hackers.

As authors, we believe in the strength of examples over dusty theory. This is why
we provide samples for forensic tooling and scripts, which are short enough to be
understood by the average Python programmer, yet usable tools and building blocks
for real-world IT forensics.

Are you ready to turn suspicion into hard facts?

What this book covers

Chapter 1, Setting Up the Lab and Introduction to Python ctypes, covers how to set up
your environment to follow the examples that are provided in this book. We will
take a look at the various Python modules that support our forensic analyses. With
ctypes, we provide the means to go beyond Python modules and leverage the
capabilities of native system libraries.

[v]

Preface

Chapter 2, Forensic Algorithms, provides you with the digital equivalent of taking
fingerprints. Just like in the case of classic fingerprints, we will show you how to
compare the digital fingerprints with a huge registry of the known good and bad
samples. This will support you in focusing your analysis and providing a proof of
forensical soundness.

Chapter 3, Using Python for Windows and Linux Forensics, is the first step on your
journey to understanding digital evidence. We will provide examples to detect signs
of compromise on Windows and Linux systems. We will conclude the chapter with
an example on how to use machine learning algorithms in the forensic analysis.

Chapter 4, Using Python for Network Forensics, is all about capturing and analyzing
network traffic. With the provided tools, you can search and analyze the network
traffic for signs of exfiltration or signature of malware communication.

Chapter 5, Using Python for Virtualization Forensics, explains how modern virtualization
concepts can be used by the attacker and forensic analyst. Consequently, we will
show how to find traces of malicious behavior on the hypervisor level and utilize the
virtualization layer as a reliable source of forensic data.

Chapter 6, Using Python for Mobile Forensics, will give you an insight on how to
retrieve and analyze forensic data from mobile devices. The examples will include
analyzing Android devices as well as Apple iOS devices.

Chapter 7, Using Python for Memory Forensics, demonstrates how to retrieve memory
snapshots and analyze these RAM images forensically with Linux and Android.
With the help of tools such as LIME and Volatility, we will demonstrate how to
extract information from the system memory.

What you need for this book

All you need for this book is a Linux workstation with a Python 2.7 environment and
a working Internet connection. Chapter 1, Setting Up the Lab and Introduction to Python
ctypes, will guide you through the installation of the additional Python modules and
tools. All of our used tools are freely available from the Internet. The source code of
our samples is available from Packt Publishing.

To follow the examples of Chapter 5, Using Python for Virtualization Forensics, you may
want to set up a virtualization environment with VMware vSphere. The required
software is available from VMware as time-limited trial version without any
functional constraints.

[vil

Preface

While not strictly required, we recommend trying some of the examples of
Chapter 6, Using Python for Mobile Forensics, on discarded mobile devices. For your
first experiments, please refrain from using personal or business phones that are
actually in use.

Who this book is for

This book is for IT administrators, IT operations, and analysts who want to gain
profound skills in the collection and analysis of digital evidence. If you are already
a forensic expert, this book will help you to expand your knowledge in new areas
such as virtualization or mobile devices.

To get the most out of this book, you should have decent skills in Python and
understand at least some inner workings of your forensic targets. For example,
some file system details.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Note that in the case of Windows, msvert is the MS standard C library containing
most of the standard C functions and uses the cdec1 calling convention (on Linux
systems, the similar library would be 1ibc.so.6)."

A block of code is set as follows:

def multi hash(filename) :
"""Calculates the md5 and sha256 hashes
of the specified file and returns a list
containing the hash sums as hex strings."""

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/
event'"><System><Provider Name="Microsoft-Windows-Security-Auditing"
Guid="54849625-5478-4994-a5ba-3e3b0328¢c30d"></Provider>

<EventID Qualifiers="">4724</EventID>

<Version>0</Versions>

<Level>0</Level>

<Task>13824</Task>

[vii]

Preface

Any command-line input or output is written as follows:

user@lab:~$ virtualenv labenv
New python executable in labenv/bin/python
Installing setuptools, pip...done.

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "When
asked to Select System Logs, ensure that all log types are selected."

“ Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub. com/support
and register to have the files e-mailed directly to you.

[viii]

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[ix]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Setting Up the Lab and
Introduction to Python ctypes

Cyber Security and Digital Forensics are two topics of increasing importance.
Digital forensics especially, is getting more and more important, not only during

law enforcement investigations, but also in the field of incident response. During all
of the previously mentioned investigations, it's fundamental to get to know the root
cause of a security breach, malfunction of a system, or a crime. Digital forensics plays
a major role in overcoming these challenges.

In this book, we will teach you how to build your own lab and perform profound
digital forensic investigations, which originate from a large range of platforms and
systems, with the help of Python. We will start with common Windows and Linux
desktop machines, then move forward to cloud and virtualization platforms, and end
up with mobile phones. We will not only show you how to examine the data at rest or
in transit, but also take a deeper look at the volatile memory.

Python provides an excellent development platform to build your own investigative
tools because of its decreased complexity, increased efficiency, large number of third-
party libraries, and it's also easy to read and write. During the journey of reading
this book, you will not only learn how to use the most common Python libraries

and extensions to analyze the evidence, but also how to write your own scripts and
helper tools to work faster on the cases or incidents with a huge amount of evidence
that has to be analyzed.

Let's begin our journey of mastering Python forensics by setting up our lab
environment, followed by a brief introduction of the Python ctypes.

If you have already worked with Python ctypes and have a working lab environment,
feel free to skip the first chapter and start directly with one of the other chapters. After
the first chapter, the other chapters are fairly independent of each other and can be
read in any order.

[11]

Setting Up the Lab and Introduction to Python ctypes

Setting up the Lab

As a base for our scripts and investigations, we need a comprehensive and powerful
lab environment that is able to handle a large number of different file types and
structures as well as connections to mobile devices. To achieve this goal, we will use
the latest Ubuntu LTS version 14.04.2 and install it in a virtual machine (VM). Within
the following sections, we will explain the setup of the VM and introduce Python
virtualenv, which we will use to establish our working environment.

Ubuntu

To work in a similar lab environment, we suggest you to download a copy

of the latest Ubuntu LTS Desktop Distribution from http://www.ubuntu.com/
download/desktop/, preferably the 32-bit version. The distribution provides

a simple-to-use Ul and already has the Python 2.7.6 environment installed and
preconfigured. Throughout the book, we will use Python 2.7.x and not the newer

3.x versions. Several examples and case studies in this book will rely on the tools or
libraries that are already a part of the Ubuntu distribution. When a chapter or section
of the book requires a third-party package or library, we will provide the additional
information on how to install it in the virtualenv (the setup of this environment will
be explained in the next section) or on Ubuntu in general.

For better performance of the system, we recommend that the virtual machine that is
used for the lab has at least 4 GB of volatile memory and about 40 GB of storage.

") world.py - fhome/mspreitz/Documents - Atom

world.py

B world.py

Figure 1: The Atom editor

[2]

Chapter 1

To write your first Python script, you can use a simple editor such as vi or a powerful
but cluttered IDE such as eclipse. As a really powerful alternative, we would suggest
you to use atom, a very clean but highly customizable editor that can be freely
downloaded from https://atom.io/.

Python virtual environment (virtualenv)

According to the official Python documentation, Virtual Environment is a tool to
keep the dependencies required by different projects in separate places by creating
virtual Python environments for them. It solves the "Project X depends on version
1.x, but Project Y needs 4.x" dilemma and keeps your global site-packages directory
clean and manageable.

This is also what we will use in the following chapters to keep a common environment
for all the readers of the book and not run into any compatibility issues. First of all, we
have to install the virtualenv package. This is done by the following command:

user@lab:~$ pip install virtualenv

We will now create a folder in the users' home directory for our virtual Python
environment. This directory will contain the executable Python files and a copy of the
pip library, which can be used to install other packages in the environment. The name
of the virtual environment (in our case, it is called labenv) can be of your choice. Our
virtual lab environment can be created by executing the following command:

user@lab:~$ virtualenv labenv

New python executable in labenv/bin/python
Installing setuptools, pip...done.

To start working with the new lab environment, it first needs to be activated.
This can be done through:

user@lab:~$ source labenv/bin/activate

(labenv)user@lab:~$

Now, you can see that the command prompt starts with the name of the virtual
environment that we activated. From now on, any package that you install using
pip will be placed in the labenv folder, isolated from the global Python installation
in the underlying Ubuntu.

Throughout the book, we will use this virtual python environment and install
new packages and libraries in it from time to time. So, every time you try to recap
a shown example remember or challenge to change into the labenv environment
before running your scripts.

[31]

Setting Up the Lab and Introduction to Python ctypes

If you are done working in the virtual environment for the moment and you want
to return to your "normal" Python environment, you can deactivate the virtual
environment by executing the following command:

(labenv)user@lab:~$ deactivate

user@lab:~$

This puts you back in the system's default Python interpreter with all its installed
libraries and dependencies.

If you are using more than one virtual or physical machine for the investigations,
the virtual environments can help you to keep your libraries and packages synced
with all these workplaces. In order to ensure that your environments are consistent,
it's a good idea to "freeze" the current state of environment packages. To do this,
just run:

(labenv)user@lab:~$ pip freeze > requirenments.txt

This will create a requirements. txt file, which contains a simple list of all the
packages in the current environment and their respective versions. If you want
to now install the same packages using the same version on a different machine,
just copy the requirements. txt file to the desired machine, create the labenv
environment as described earlier and execute the following command:

(labenv)user@lab:~$ pip install -r requirements.txt

Now, you will have consistent Python environments on all the machines and don't
need to worry about different library versions or other dependencies.

After we have created the Ubuntu virtual machine with our dedicated lab
environment, we are nearly ready to start our first forensic analysis. But before that, we
need more knowledge of the helpful Python libraries and backgrounds. Therefore, we
will start with an introduction to the Python ctypes in the following section.

Introduction to Python ctypes

According to the official Python documentation, ctypes is a foreign function library
that provides C compatible data types and allows calling functions in DLLs or shared
libraries. A foreign function library means that the Python code can call C functions
using only Python, without requiring special or custom-made extensions.

[4]

Chapter 1

This module is one of the most powerful libraries available to the Python developer.
The ctypes library enables you to not only call functions in dynamically linked libraries
(as described earlier), but can also be used for low-level memory manipulation. It is
important that you understand the basics of how to use the ctypes library as it will be
used for many examples and real-world cases throughout the book.

In the following sections, we will introduce some basic features of Python ctypes and
how to use them.

Working with Dynamic Link Libraries

Python ctypes export the cd11l and on Windows wind11 or respectively oledll
objects, to load the requested dynamic link libraries. A dynamically linked library

is a compiled binary that is linked at runtime to the executable main process. On
Windows platforms, these binaries are called Dynamic Link Libraries (DLL) and
on Linux, they are called shared objects (SO). You can load these linked libraries by
accessing them as the attributes of the cd11, wind11 or oledll objects. Now, we will
demonstrate a very brief example for Windows and Linux to get the current time
directly out of the time function in 1ibc (this library defines the system calls and
other basic facilities such as open, printf, or exit).

Note that in the case of Windows, msvert is the MS standard C library containing
most of the standard C functions and uses the cdec1 calling convention (on Linux
systems, the similar library would be 1ibc.so.6):

C:\Users\Admin>python

>>> from ctypes import *
>>> libec = cdll.msvcrt
>>> print libc.time (None)

1428180920

Windows appends the usual .d11 file suffix automatically. On Linux, it is required
to specify the filename, including the extension, to load the chosen library. Either the
LoadLibrary () method of the DLL loaders should be used or you should load the
library by creating an instance of cDLL by calling the constructor, as shown in the
following code:

(labenv)user@lab:~$ python

>>> from ctypes import *
>>> libc = CDLL("libc.so.6")
>>> print libc.time (None)
1428180920

[51]

Setting Up the Lab and Introduction to Python ctypes

As shown in these two examples, it is very easy to be able to call to a dynamic library
and use a function that is exported. You will be using this technique many times
throughout the book, so it is important that you understand how it works.

C data types

When looking at the two examples from the earlier section in detail, you can see

that we use None as one of the parameters for a dynamically linked C library. This

is possible because None, integers, longs, byte strings,and unicode strings
are the native Python objects that can be directly used as the parameters in these
function calls. None is passed as a C, NULL pointer, byte strings, and unicode
strings are passed as pointers to the memory block that contains their data (char

* or wchar_t *). Python integers and Python longs are passed as the platform's
default C int type, their value is masked to fit into the C type. A complete overview
of the Python types and their corresponding ctype types can be seen in Table 1:

ctypes type C type Python type
c_bool (https://docs.python.org/2/ _Bool bool (1)
library/ctypes.html#ctypes.c bool)

c_char (https://docs.python.org/2/ char 1-character string
library/ctypes.html#ctypes.c_char)

c_wchar (https://docs.python.org/2/ wchar_t 1-character
library/ctypes.html#ctypes.c_ unicode string
wchar)

c_byte (https://docs.python.org/2/ char int/long
library/ctypes.html#ctypes.c byte)

c_ubyte (https://docs.python.org/2/ unsigned char int/long
library/ctypes.htmlfctypes.c_

ubyte)

c_short (https://docs.python.org/2/ short int/long
library/ctypes.htmlfctypes.c_

short)

c_ushort (https://docs.python.org/2/ | unsigned short int/long
library/ctypes.htmlfctypes.c_

ushort)

c_int (https://docs.python.org/2/ int int/long
library/ctypes.html#ctypes.c_int)

c_uint (https://docs.python.org/2/ unsigned int int/long
library/ctypes.html#ictypes.c_uint)

c_long (https://docs.python.org/2/ long int/long
library/ctypes.html#ctypes.c_long)

[6]

https://docs.python.org/2/library/ctypes.html#ctypes.c_bool
https://docs.python.org/2/library/ctypes.html#ctypes.c_bool
https://docs.python.org/2/library/ctypes.html#ctypes.c_char
https://docs.python.org/2/library/ctypes.html#ctypes.c_char
https://docs.python.org/2/library/ctypes.html#ctypes.c_wchar
https://docs.python.org/2/library/ctypes.html#ctypes.c_wchar
https://docs.python.org/2/library/ctypes.html#ctypes.c_wchar
https://docs.python.org/2/library/ctypes.html#ctypes.c_byte
https://docs.python.org/2/library/ctypes.html#ctypes.c_byte
https://docs.python.org/2/library/ctypes.html#ctypes.c_ubyte
https://docs.python.org/2/library/ctypes.html#ctypes.c_ubyte
https://docs.python.org/2/library/ctypes.html#ctypes.c_ubyte
https://docs.python.org/2/library/ctypes.html#ctypes.c_short
https://docs.python.org/2/library/ctypes.html#ctypes.c_short
https://docs.python.org/2/library/ctypes.html#ctypes.c_short
https://docs.python.org/2/library/ctypes.html#ctypes.c_ushort
https://docs.python.org/2/library/ctypes.html#ctypes.c_ushort
https://docs.python.org/2/library/ctypes.html#ctypes.c_ushort
https://docs.python.org/2/library/ctypes.html#ctypes.c_int
https://docs.python.org/2/library/ctypes.html#ctypes.c_int
https://docs.python.org/2/library/ctypes.html#ctypes.c_uint
https://docs.python.org/2/library/ctypes.html#ctypes.c_uint
https://docs.python.org/2/library/ctypes.html#ctypes.c_long
https://docs.python.org/2/library/ctypes.html#ctypes.c_long

Chapter 1

ctypes type C type Python type
c_ulong (https://docs.python.org/2/ unsigned long int/long
library/ctypes.html#ictypes.c_

ulong)

c_longlong (https://docs. __int64 or long long | int/long
python.org/2/library/ctypes.

html#ctypes.c longlong)

c_ulonglong (https://docs. unsigned __int64 or | int/long
python.org/2/library/ctypes. unsigned long long
html#ctypes.c_ulonglong)

c_float (https://docs.python.org/2/ float float
library/ctypes.html#ctypes.c_

float)

c_double (https://docs.python.org/2/ | double float
library/ctypes.html#ictypes.c_

double)

c_longdouble (https://docs. long double float
python.org/2/library/ctypes.

html#ctypes.c longdouble)

c_char_p (https://docs.python.org/2/ | char* (NUL string or None
library/ctypes.html#fctypes.c_ terminated)

char p)

c_wchar_p (https://docs.

wchar_t * (NUL

unicode or None

python.org/2/library/ctypes. terminated)
html#ctypes.c_wchar p)
c_void_p (https://docs.python.org/2/ | void* int/long or None

library/ctypes.html#ctypes.c_
void p)

Table 1: Fundamental Data Types

This table is very helpful because all the Python types except integers, strings,
and unicode strings have to be wrapped in their corresponding ctypes type so
that they can be converted to the required C data type in the linked library and not

throw the TypeError exceptions, as shown in the following code:

(labenv)user@lab:~$ python
>>> from ctypes import *

>>> libc = CDLL("libc.so.6")
>>> printf = libc.printf

>>> printf ("An int %d,

a double %f\n",

4711, 47.11)

[71

https://docs.python.org/2/library/ctypes.html#ctypes.c_ulong
https://docs.python.org/2/library/ctypes.html#ctypes.c_ulong
https://docs.python.org/2/library/ctypes.html#ctypes.c_ulong
https://docs.python.org/2/library/ctypes.html#ctypes.c_longlong
https://docs.python.org/2/library/ctypes.html#ctypes.c_longlong
https://docs.python.org/2/library/ctypes.html#ctypes.c_longlong
https://docs.python.org/2/library/ctypes.html#ctypes.c_ulonglong
https://docs.python.org/2/library/ctypes.html#ctypes.c_ulonglong
https://docs.python.org/2/library/ctypes.html#ctypes.c_ulonglong
https://docs.python.org/2/library/ctypes.html#ctypes.c_float
https://docs.python.org/2/library/ctypes.html#ctypes.c_float
https://docs.python.org/2/library/ctypes.html#ctypes.c_float
https://docs.python.org/2/library/ctypes.html#ctypes.c_double
https://docs.python.org/2/library/ctypes.html#ctypes.c_double
https://docs.python.org/2/library/ctypes.html#ctypes.c_double
https://docs.python.org/2/library/ctypes.html#ctypes.c_longdouble
https://docs.python.org/2/library/ctypes.html#ctypes.c_longdouble
https://docs.python.org/2/library/ctypes.html#ctypes.c_longdouble
https://docs.python.org/2/library/ctypes.html#ctypes.c_char_p
https://docs.python.org/2/library/ctypes.html#ctypes.c_char_p
https://docs.python.org/2/library/ctypes.html#ctypes.c_char_p
https://docs.python.org/2/library/ctypes.html#ctypes.c_wchar_p
https://docs.python.org/2/library/ctypes.html#ctypes.c_wchar_p
https://docs.python.org/2/library/ctypes.html#ctypes.c_wchar_p
https://docs.python.org/2/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/2/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/2/library/ctypes.html#ctypes.c_void_p

Setting Up the Lab and Introduction to Python ctypes

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ctypes.ArgumentError: argument 3: <type 'exceptions.TypeError'>: Don't
know how to convert parameter 3

>>> printf ("An int %d, a double %f\n", 4711, c double(47.11))
An int 4711, a double 47.110000

Defining Unions and Structures

Unions and Structures are important data types because they are frequently used
throughout the 1ibc on Linux and also in the Microsoft Win32 API.

Unions are simply a group of variables, which can be of the same or different data
types, where all of its members share the same memory location. By storing variables
in this way, unions allow you to specify the same value in different types. For the
upcoming example, we will change from the interactive Python shell to the atom
editor on our Ubuntu lab environment. You just need to open atom editor, type in
the following code, and save it under the name new_evidence.py:

from ctypes import *

class case(Union) :
_fields = [
("evidence int", c_int),
("evidence long", c_long),
("evidence char", c_char * 4)

]

value = raw_input ("Enter new evidence number:")
new evidence = case(int(value))

)

print "Evidence number as a int: %i" % new_evidence.evidence int

)

print "Evidence number as a long: %1d" % new evidence.evidence long

)

print "Evidence number as a char: %s" % new evidence.evidence char

[8]

Chapter 1

If you assign the evidence union's member variable evidence_int a value of 42,
you can then use the evidence_char member to display the character representation
of that number, as shown in the following example:

(labenv)user@lab:~$ python new evidence.py
Enter new evidence number:42

Evidence number as a long: 42
Evidence number as a int: 42

Evidence number as a char: *

As you can see in the preceding example, by assigning the union a single value, you
get three different representations of that value. For int and long, the displayed
output is obvious but for the evidence_char variable, it could be a bit confusing.
In this case, ' = ' is the ASCII character with the value of the equivalent of decimal
42. The evidence_char member variable is a good example of how to define an
array in ctypes. In ctypes, an array is defined by multiplying a type by the number
of elements that you want to allocate in the array. In this example, a four-element
character array was defined for the member variable evidence_char.

A structure is very similar to unions, but the members do not share the same
memory location. You can access any of the member variables in the structure using
dot notation, such as case.name. This would access the name variable contained

in the case structure. The following is a very brief example of how to create a
structure (or struct, as they are often called) with three members: name, number,
and investigator_name so that all can be accessed by the dot notation:

from ctypes import *

class case (Structure) :
_fields = [
("name", c_char * 16),
("number", c_int),
("investigator name", c_char * 8)

Downloading the example code

You can download the example code files from your account at

~ http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you

can visit http: //www.packtpub.com/support and register to

have the files e-mailed directly to you.

[o]

http://www.packtpub.com
http://www.packtpub.com/support

Setting Up the Lab and Introduction to Python ctypes

Summary

In the first chapter, we created our lab environment: a virtual machine running
Ubuntu 14.04.2 LTS. This step is really important as you can now create snapshots
before working on real evidence and are able to roll back to a clean machine state
after finishing the investigation. This can be helpful, especially, when working with
compromised system backups, where you want to be sure that your system is clean
when working on a different case afterwards.

In the second part of this chapter, we demonstrated how to work with Python's
virtual environments (virtualenv) that will be used and extended throughout
the book.

In the last section of this chapter, we introduced the Python ctypes to you,
which is a very powerful library available to the Python developer. With those
ctypes, you are not only able to call functions in the dynamically linked libraries
(available Microsoft Win32 APIs or common Linux shared objects), but they can
also be used for low-level memory manipulation.

After completing this chapter, you will have a basic environment created to be used
for the rest of the book, and you will also understand the fundamentals of Python
ctypes that will be helpful in some of the following chapters.

[10]

Forensic Algorithms

Forensic algorithms are the building blocks for a forensic investigator. Independent
from any specific implementation, these algorithms describe the details of the
forensic procedures. In the first section of this chapter, we will introduce the different
algorithms that are used in forensic investigations, including their advantages

and disadvantages.

Algorithms

In this section, we describe the main differences between MD5, SHA256, and
SSDEEP — the most common algorithms used in the forensic investigations. We

will explain the use cases as well as the limitations and threats behind these three
algorithms. This should help you understand why using SHA256 is better than using
MD?5 and in which cases SSDEEP can help you in the investigation.

Before we dive into the different hash functions, we will give a short summary of
what a cryptographic hash function is.

A hash function is a function that maps an arbitrarily large amount of data to a value
of a fixed length. The hash function ensures that the same input always results in the
same output, called the hash sum. Consequently, a hash sum is a characteristic of a
specific piece of data.

A cryptographic hash function is a hash function that is considered practically
impossible to invert. This means that it is not possible to create the input data
while having a pre-defined hash sum value by any other means than trying all
the possible input values, that is brute force. Therefore, this class of algorithms is
known as one-way cryptographic algorithm.

[11]

Forensic Algorithms

The ideal cryptographic hash function has four main properties, as follows:

1. It must be easy to compute the hash value for any given input.

2. It must be infeasible to generate the original input from its hash.

3. It must be infeasible to modify the input without changing the hash.
4

It must be infeasible to find two different inputs with the same hash
(collision-resistant).

In the ideal case, if you create a hash of the given input and change only one bit of
this input, the newly calculated hash will look totally different, as follows:

user@lab:~$ echo -n This is a test message | md5sum

fafb00£5732ab283681e124b£f8747edl

user@lab:~$ echo -n This is A test message | md5sum

aafb38820e0a3788eb41e9£5805e088e

If all of the previously mentioned properties are fulfilled, the algorithm is a
cryptographically correct hash function and can be used to compare, for example,
files with each other to prove that they haven't been tampered with during analysis
or by an attacker.

MDS

The MD5 message-digest algorithm was the most commonly used (and is still a
widely used) cryptographic hash function that produces a 128-bit (16-byte) hash
value, typically expressed in the text format as a 32-digit hexadecimal number (as
shown in the previous example). This message digest has been utilized in a wide
variety of cryptographic applications and is commonly used to verify data integrity
in forensic investigations. This algorithm was designed by Ronald Rivest in 1991 and
has been heavily used since then.

A big advantage of MD5 is that it calculates faster and produces small hashes. The
small hashes are a major point of interest when you need to store thousands of these
hashes in a forensic investigation. Just imagine how many files a common PC will
have on its hard drive. If you need to calculate a hash of each of these files and store
them in a database, it would make a huge difference if each of the calculated hash
has 16 byte or 32 byte of size.

[12]

Chapter 2

Nowadays, the major disadvantage of MD5 is the fact that it is no longer considered

to be collision-resistant. This means that it is possible to calculate the same hash from
two different inputs. Keeping this in mind, it is not possible anymore to guarantee

that a file hasn't been modified just by comparing its MD5 hash at two different stages
of an investigation. At the moment it is possible to create a collision very fast, (refer
tohttp://www.win.tue.nl/hashclash/On%20Collisions%20for%20MD5%20-%20
M.M.J.%20Stevens.pdf) but it is still difficult to modify a file in a way, which is now a
malicious version of that benign file, and keep the MD5 hash of the original file.

The very famous cryptographer, Bruce Schneier, once wrote that (https://www.
schneier.com/blog/archives/2008/12/forging ssl cer. html):

"We already knew that MD5 is a broken hash function" and that "no one should be
using MDb5 anymore".

We would not go that far (especially because a lot of tools and services still use
MD5), but you should try switching to SHA256 or at least double-check your results
with the help of different hash functions in cases where it is critical. Whenever the
chain of custody is crucial, we recommend using multiple hash algorithms to prove
the integrity of your data.

SHA256

SHA-2 is a set of cryptographic hash functions designed by the NSA (U.S. National
Security Agency) and stands for Secure Hash Algorithm 2nd Generation. It has been
published in 2001 by the NIST as a U.S. federal standard (FIPS). The SHA-2 family
consists of several hash functions with digests (hash values) that are between 224 bits
and 512 bits. The cryptographic functions SHA256 and SHA512 are the most common
versions of SHA-2 hash functions computed with 32-bit and 64-bit words.

Despite the fact that these algorithms calculate slower and that the calculated hashes
are larger in size (compared to MD5), they should be the preferred algorithms that
are used for integrity checks during the forensic investigations. Nowadays, SHA256
is a widely used cryptographic hash function that is still collision-resistant and
entirely trustworthy.

SSDEEP

The biggest difference between MD5, SHA256, and SSDEEP is the fact that SSDEEP
is not considered to be a cryptographic hash function as it only changes slightly
when the input is changed by one bit. For example:

user@lab:~$ echo -n This is a test message | ssdeep

ssdeep,1l.1--blocksize:hash:hash, filename

[13]

http://www.win.tue.nl/hashclash/On%20Collisions%20for%20MD5%20-%20M.M.J.%20Stevens.pdf
http://www.win.tue.nl/hashclash/On%20Collisions%20for%20MD5%20-%20M.M.J.%20Stevens.pdf
https://www.schneier.com/blog/archives/2008/12/forging_ssl_cer.html
https://www.schneier.com/blog/archives/2008/12/forging_ssl_cer.html

Forensic Algorithms

3:hMCEpFzA:hurs, "stdin"

user@lab:~$ echo -n This is A test message | ssdeep
ssdeep,l.1l--blocksize:hash:hash, filename

3:hMCkrzA:hOrs, "stdin"

The SSDEEP packages can be downloaded and installed as described in the
following URL: http://ssdeep.sourceforge.net/usage.html#install

This behavior is not a weakness of SSDEEP, it is a major advantage of this function.
In reality, SSDEEP is a program to compute and match the Context Triggered
Piecewise Hashing (CTPH) values. CTPH is a technique that is also known as
Fuzzy Hashing and is able to match inputs that have homologies. Inputs with
homologies have sequences of identical bytes in a given order with totally different
bytes in between. These bytes in between can differ in content and length. CTPH,
originally based on the work of Dr. Andrew Tridgell, was adapted by Jesse Kornblum
and published at the DFRWS conference in 2006 in a paper called Identifying Almost
Identical Files Using Context Triggered Piecewise Hashing; refer to http://dfrws.
org/2006/proceedings/12-Kornblum.pdf

SSDEEP can be used to check how similar the two files are and in which part of the file
the difference is located. This feature is often used to check if two different applications
on the mobile devices have a common code base, as shown in the following;:

user@lab:~$ ssdeep -b malware-sampleOl.apk > signature.txt

user@lab:~$ cat signature.txt
Ssdeep,l.1--blocksize:hash:hash, filename

49152 :FTgSf4xGvFowvIxThCwSoVpzPb03++4z1pBFrnInZWk:JqSU41dVVpDIcz3BFr8Z27,"
malware-sampleOl.apk"

user@lab:~$ ssdeep -mb signature.txt malware-sample02.apk

malware-sample02.apk matches malware-sampleOl.apk (75)

In the previous example, you can see that the second sample matches the first one
with a very high likelihood. These matches indicate the potential source code reuse or
at least a large number of files inside the apk file are identical. A manual examination
of the files in question is required to tell exactly which parts of the code or files are
identical; however, we now know that both the files are similar to each other.

[14]

http://ssdeep.sourceforge.net/usage.html#install
http://dfrws.org/2006/proceedings/12-Kornblum.pdf
http://dfrws.org/2006/proceedings/12-Kornblum.pdf

Chapter 2

Supporting the chain of custody

The outcomes of forensic investigations can have a severe impact on organizations
and individuals. Depending on your field of work, your investigation can become
evidence in the court.

Consequently, the integrity of forensic evidence has to be ensured not just when
collecting the evidence, but also throughout the entire handling and analysis.
Usually, the very first step in a forensic investigation is gathering the evidence.
Normally, this is done using a bitwise copy of the original media. All the subsequent
analysis is performed on this forensic copy.

Creating hash sums of full disk images

To ensure that a forensic copy is actually identical to the original media, hash sums
of the media and from the forensic copy are made. These hash sums must match

to prove that the copy is exactly like the original data. Nowadays, it has become
common to use at least two different cryptographic hash algorithms to minimize the
risk of hash collisions and harden the overall process against hash collision attacks.

With Linux, one can easily create MD5 and SHA256 hashes from a drive or multiple
files. In the following example, we will calculate MD5 sums and SHA256 sums for
two files to provide a proof of identical content:

user@lab:~$ md5sum /path/to/originalfile /path/to/forensic copy of sdb.
img

user@lab:~$ sha256sum /path/to/originalfile /path/to/forensic copy of
sdb.img

This proof of identical content is required to support the chain of custody, that is, to
show that the analyzed data is identical to the raw data on the disk. The term sdb
refers to a drive attached to the forensic workstation (in Linux, the second hard drive
is called sdb). To further support the chain of custody, it is highly recommended to
use a write-block device between the evidence and forensic workstation to avoid any
accidental change of the evidence. The second argument represents the location of a
bitwise copy of the evidence. The commands output the hash sums for the original
drive and the copy. The copy can be considered forensically sound if both the MD5
sums match and both the SHA256 sums match.

While the method shown in the previous example works, it has a big disadvantage,
the evidence and its copy have to be read twice to calculate the hash sums. If the disk
is a 1 TB hard drive, it can slow down the overall process by several hours.

[15]

Forensic Algorithms

The following Python code reads the data only once and feeds it into two hash
calculations. Therefore, this Python script is almost twice as fast as running md5sum
followed by sha256sum and produces exactly the same hash sums as these tools:

#!/usr/bin/env python

import hashlib
import sys

def multi hash(filename) :
""imCalculates the md5 and sha256 hashes
of the specified file and returns a list
containing the hash sums as hex strings."""

md5 = hashlib.mds ()
sha256 = hashlib.sha256 ()

with open(filename, 'rb') as f:
while True:
buf = f.read(2**20)
if not buf:
break
md5 .update (buf)
sha256.update (buf)

return [md5.hexdigest (), sha256.hexdigest()]

if name == '_ main ':

hashes = []
print '---------- MD5 sums ---------- !
for filename in sys.argv[l:]:

h = multi hash(filename)

hashes.append (h)

print '$s %s' % (h[0], filename)
print '---------- SHA256 sums ---------- !
for i in range(len (hashes)) :

print '$s %s' % (hashes[i] [1], sys.argv[i+1])

[16]

Chapter 2

In the following call of the script, we calculate the hash sums of some of the common

Linux tools:

user@lab:~$ python multihash.py /bin/{bash,1ls,sh}

d79a947d06958e7826d15a5c78bfaal05 /bin/bash
fa97c59cc414e42d4e0e853ddf5b4745 /bin/ls
c01lbc66da867d3e84081l4ec96al37aef /bin/sh
—————————— SHA256 sums ----------

cdbcb2ef76ae464ed0b22be346977355¢c650c5ccf61fef638308b8da60780bdd
bash

846ac0d6c40d942300de825dbb5d517130d8a0803d22115561dcd85efee9¢c26b
e9a7elfd86£5aadc23¢c459¢cb05067£49cd43038£06da0c1ld9£f67fbcd627d622¢c

/bin/

/bin/1ls
/bin/sh

It is crucial to document the hash sums of the original data and the forensic copy in
the forensic report. An independent party can then read the same piece of evidence
and confirm that the data that you analyzed is exactly the data of the evidence.

Creating hash sums of directory trees

Once the full image is copied, its contents should be indexed and the hash

sums should be created for every file. With the support of the previously defined
multi_hash function and Python standard libraries, a report template containing a
list of all file names, sizes, and hash values can be created, as shown in the following;:

#!/usr/bin/env python

from datetime import datetime
import os

from os.path import join, getsize
import sys

from multihash import multi hash

def dir report (base path, reportfilename) :
"""Creates a report containing file integrity information.

base path -- The directory with the files to index
reportfilename -- The file to write the output to"""

with open(reportfilename, 'w') as out:
out.write("File integrity information\n\n")

°

out.write ("Base path: $s\n" % base path)

[17]

Forensic Algorithms

out.write ("Report created: %$s\n\n" % datetime.now() .
isoformat ())

out.write('"SHA-256","MD5","FileName", "FileSize"")
out.write ("\n")

for root, dirs, files in os.walk(base path):
write dir stats(out, root, files)

out.write ("\n\n--- END OF REPORT ---\n")

def write dir stats(out, directory, files):
"""Writes status information on all specified files to the report.

out -- open file handle of the report file
directory -- the currently analyzed directory
files -- list of files in that directory"""

for name in files:
fullname = join(directory, name)
hashes = multi hash(fullname)
size = getsize (fullname)

out.write('"%s","%s","%s",%d' % (hashes[1l], hashes[0],
fullname, size))

out.write ("\n")

if name == ' main ':
if len(sys.argv) < 3:
print "Usage: %s reportfile basepath\n" % sys.argv[0]
sys.exit (1)

dir report(sys.argv([2], sys.argv[1l])

This Python script is all it takes to generate the integrity information of a directory
tree that includes file sizes, file names, and hash sums (SHA256, MD5). The following
is an example call on our scripting directory:

user@lab: /home/user/dirhash $§ python dirhash.py report.txt

user@lab: /home/user/dirhash $§ cat report.txt

File integrity information

Base path:

[18]

Chapter 2

Report created: 2015-08-23T21:50:45.460940

"SHA-256","MD5","FileName", "FileSize"

"al4f7e644d76e2e232e94£fd720d35e59707a2543£f01af4123abc46e8c10330cd", "9c0dl
£f70££fe5¢c59a7700b2b9bfd50cc",". /multihash.py", 879

"a4168e4cc7£8db611b339f4£8a949fbb57ad893£02b9%9a65759c793d2c8b9b4aa", "bef5a
41a403bb45974dd0ee331blalaa","./dirhash.py", 1494

"e3b0c44298fclcl49afbf4c8996£fb92427ae41e4649b934ca495991b7852b855","d41d8
cd98£f00b204e9800998ecf8427e","./report.txt",0

"03047d8a202b03dfc5a310a81£fd8358£37c8ba97e2ff£f8a0e7822cf7£36b5c83","41669
9861031e0b0d7b6d24b3de946ef",". /multihash.pyc",1131

--- END OF REPORT ---

However, the resulting report file itself does not have any integrity protection. It is
recommended to sign the resulting report, for example, using GnuPG, as shown in
the following:

user@lab:~$ gpg --clearsign report.txt

If you have never used gpg before, you need to generate a private key before you can
sign the documents. This can be done with the gpg --gen-key command. Consult
https://www.gnupg.org/documentation for more details about GnuPG and its
use. This creates an additional report . txt.asc file containing the original report
and a digital signature. Any subsequent modification of that file invalidates the
digital signature.

. The techniques described here are merely the examples of how to
& support the chain of custody. If the forensic analysis is to be used in
e the court, it is highly recommended to seek legal advice about the
chain-of-custody requirements in your legislation.

Real-world scenarios

This section will demonstrate some use cases where the preceding algorithms and
techniques are used to support the investigator. For this chapter, we use two very
common and interesting examples, Mobile Malware and the National Software
Reference Library (NSRL).

[19]

https://www.gnupg.org/documentation

Forensic Algorithms

Mobile Malware

In this example, we will check the installed applications on an Android smartphone
against an online analysis system, Mobile-Sandbox. Mobile-Sandbox is a website
that provides free Android files checking for viruses or suspicious behavior,
http://www.mobilesandbox.org. It is connected to VirusTotal, which uses up

to 56 different antivirus products and scan engines to check for viruses that the
user's antivirus solution may have missed or verify against any false positives.
Additionally, Mobile-Sandbox uses custom techniques to detect applications that
act potentially malicious. Antivirus software vendors, developers, and researchers
behind Mobile-Sandbox can receive copies of the files to help in improving their
software and techniques.

In the example, we will use two steps to successfully compare the installed
applications with the already tested apps on the Mobile-Sandbox web service.

The first step is to get the hash sums of the installed applications on the device.

This is very important as these values can help to identify the apps and check them
against the online services. For this example, we will use an application from Google
Play, AppExtract (https:/ /play.google.com/store/apps/ details?id=de.mspreitz.
appextract). The forensically more correct way of getting these values can be found
in Chapter 6, Using Python for Mobile Forensics.

W AppExtract

INSTALLED

Send report to analyst

Chapter 2

AppExtract for Android generates a list of installed and running apps with a large
amount of metadata that can help in identifying unwanted or even malicious
applications. This metadata contains the SHA256 hash sum of the application
packages, an indicator whether the app has been installed by the user or the system
itself, and a lot of additional data that can help in identifying if the app is benign or
not. These lists can be transferred via your favorite email app for further analysis.
Once you receive the plain-text email with the generated lists, you just need to copy
the list that contains all the installed applications to a CSV file. This file can be used
for an automated analysis or opened with LibreOffice Calc in the lab environment.
You can see the metadata of the current version of the Chrome Browser for Android
in the following;:

Type;App Name;md5;TargetSdkVersion;Package Name;Process Name;APK
Location;Version Code;Version Name;Certificate Info;Certificate
SN;InstallTime;LastModified

SystemApp; Chrome;4e4c56a8a7d8d6blec3e0149b3918656;21;com.android.
chrome;com.android.chrome; /data/app/com.android.chrome-2.apk;2311109;
42.0.2311.109;CN=Android, OU=Android, O=Google Inc., L=Mountain View,
ST=California, C=US;14042372374541250701;unknown;unknown

The second step is to compare the hash sums from the device (third column in our
CSYV file) with the Mobile-Sandbox database. This can be done with the help of the
following script that we will save as get_infos_mobilesandbox.py:

#!/usr/bin/env python
import sys, requests

Authentication Parameters

1if you need an API key and user name please contact @m spreitz
API FORMAT = 'json'

API USER = '

API KEY = ''

parsing input parameters
if (len(sys.argv) < 3):

print "Get infos to a specific Android app from the Mobile-
Sandbox."

print "Usage: %s requests [type (md5,sha256)] [valuel" % sys.
argv [0]

sys.exit (0)

building the payload
payload = {'format':API_ FORMAT,

[21]

Forensic Algorithms

'username' :API_USER,

'api key':API KEY,

'searchType' :str(sys.argv[1l]), # has to be md5 or sha256
'searchvValue':str(sys.argv[2]) }

submitting sample hash and getting meta data

print M------mm e "

r = requests.get ("http://mobilesandbox.org/api/bot/queue/get info/",
params=payload)

printing result and writing report file to disk
if not r.status code == requests.codes.ok:
print "query result: \033[91m" + r.text + "\033[0m"
else:
for key, value in r.json() .iteritems() :
print key + ": \033[94m" + str(value) + "\033[0m"

The script can be used as shown in the following;:

(labenv)user@lab:~$./get infos mobilesandbox.py md5
4e4c56a8a7d8d6éblec3e0149b3918656

status: done

min sdk version: 0

package name: com.android.chrome
apk name: Chrome.apk

AV _detection rate: 0 / 56

drebin score: benign (1.38173)
sample origin: user upload
android build version: Android 1.0

ssdeep: 196608:ddkkKqgfC+ca8eE/jXQewwn5uxlaDn9PpvPBic6aQmAHQXPOo :dBKZaJYXQ
E5u3ajtpvpeaQml

sha256: 79deldc6af66e6830960d6£991cc3e416£fd3ce63£fb786db6954a3ccaa7£7323¢c
malware family: ---

md5: 4e4c56a8a7d8d6blec3e0149b3918656

[22]

Chapter 2

With the help of these three tools, it is possible to quickly check if an application

on a mobile device is potentially infected (see the highlighted parts in the response)
or at least where to start with the manual investigation if an application hasn't been
tested before.

NSRLquery

To increase efficiency in the forensic analysis, it is crucial to sort out any files that
belong to known software and have not been modified. The National Software
Reference Library (NSRL) maintains multiple lists of hash sums for the known
content. NSRL is a project of the U.S. Department of Homeland Security, further
details are available on http://www.nsrl.nist.gov/. It is important to understand
that these lists of hash sums merely indicate that a file was not modified as compared
to the version that was submitted to the NSRL. Consequently, it is normal that a

lot of files, which are to be analysed during a forensic investigation, are not listed

in NSRL. On the other hand, even the listed files can be used and deployed by an
attacker as a tool. For example, a tool such as psexec. exe is a program provided by
Microsoft for remote administration and listed in NSRL. Nevertheless, an attacker
may have deployed it for his malicious purposes.

. Which NSRL list should be used?
N

Ny NSRL consists of several hash sets. It is highly recommended to begin
with the minimal set. This set only contains one hash sum per file,
which means only one file version is known.

The minimal set is offered free of charge to download on the NIST homepage. The
download consists of a single ZIP file with the hash list and a list of supported
software products as the most prominent contents.

The hashes are stored in the NSRLFile. txt file that holds one file hash per line,
for example:

"3CACD2048DB88F4F2E863B6DE3B1FD197922B3F2", "0BEA3F79A36B1F67B2CEOF5955
24C77C","C39B9F35", "TWAIN.DLL", 94784 ,14965, "358",""

The fields of this record are as follows:

* The hash sum of the file that is calculated with SHA-1, a predecessor to the
SHA-256 algorithm described earlier.

¢ The hash sum of the file that is calculated with MD5.

¢ The CRC32 checksum of the file.

¢ The file name.

[23]

http://www.nsrl.nist.gov/

Forensic Algorithms

* The file size in bytes.

* A product code denoting the software product this file belongs to. The
NSRLProd. txt file contains a list of all products and can be used to look up
the product code. In the previous example, the code 14965 denotes Microsoft
Picture It!.

* The operating system where this file is to be expected. The list of operating
system codes can be found in NSRLOS . txt.

* Anindicator whether this file is to be considered normal (""), a malicious file
("N"), or special ("S"). While this flag is part of the specification, all the files of
the current NSRL minimal set are set to be normal.

More details about the file specifications can be found at http://www.nsrl.nist.
gov/Documents/Data-Formats-of-the-NSRL-Reference-Data-Set-16.pdf.

Downloading and installing nsrisvr

Currently, the NSRL database contains more than 40 million distinct hashes in
the minimal set. A text-based search would take minutes, even on an up-to-date
workstation. Therefore, it is important to make efficient lookups to that database.
Rob Hanson's tool nsrlsvr provides a server that supports efficient lookups. It is
available at https://rjhansen.github.io/nsrlsvr/.

. There are also public NSRL servers on the Internet that you can use. These
% are usually provided on an as is basis. However, to test smaller sets of
<" hashes, you may use Robert Hanson's public server nsrllookup.com
and continue reading with the next section.

To compile the software on a Linux system, the automake, autoconf, and c++
compiler tools must be installed. The detailed installation instructions including
all the requirements are provided in the INSTALL file.

Installing nsrlsvr in a non-default directory

M The installation directory of nsrlsvr can be changed by calling the
configure script with the - -prefix parameter. The parameter
Q value denotes the target directory. If a user-writable directory is
specified, the installation does not require root privileges and can
be completely removed by removing the installation directory.

[24]

http://www.nsrl.nist.gov/Documents/Data-Formats-of-the-NSRL-Reference-Data-Set-16.pdf
http://www.nsrl.nist.gov/Documents/Data-Formats-of-the-NSRL-Reference-Data-Set-16.pdf
https://rjhansen.github.io/nsrlsvr/

Chapter 2

The nsrlsrv maintains its own copy of all the MD5 hash sums of the NSRL database.
Therefore, it is required to initialize the hash database. The required nsrlupdate tool
is provided with nsrlsrv.

user@lab:~$ nsrlupdate your/path/to/NSRLFile.txt

After the database is fully populated, the server can be started by simply calling:

user@lab:~$ nsrlsvr

If everything is installed correctly, this command returns without providing any
output and the server starts listening to the TCP port 9120 for requests.

Writing a client for nsrisvr in Python

There is also a client tool for using nsrlsvr called nsrllookup. The client is written
in C++ and available at https://rjhansen.github.io/nsrllookup/. However, a
client for interacting with nsrlsvr can easily be implemented in native Python. This
section explains the protocol and shows a sample implementation of such a client.

The nsrlsvr implements a text-oriented protocol on its network port 9120. Every
command consists of one line of text followed by a newline (CR LF). The following
commands are supported:

* version: 2.0: The version command is used for the initial handshake between
the nsrl client and nsrlsvr. The client is supposed to provide its version after
the colon. The server will always respond with ok followed by a line break.

* query 5CB360EF546633691912089DB24A82EE
908A54EB629F410C647 A573F91E80775
BFDD76C4DD6F8C0C2474215AD5E193CF: The query command is used for
actually querying the NSRL database from the server. The keyword query is
followed by one or multiple MD5 hash sums. The server will respond with
ok followed by a sequence of zeroes and ones. A 1 indicates that the MD5
hash sum was found in the database and a 0 indicates that there was
no match. For example, the query shown previously would lead to the
following answer:

OK 101

This means that the first and the last MD5 hashes were found in NSRL, but
the middle hash sum could not be found.

* BYE: The bye command terminates the connection to the nsrlsvr.

[25]

https://rjhansen.github.io/nsrllookup/

Forensic Algorithms

Consequently, the following Python routine is sufficient to efficiently query the
NSRL database:

#!/usr/bin/env python
import socket

NSRL,_SERVER='127.0.0.1"
NSRL_PORT=9120

def nsrlquery(mdShashes) :
"""ouery the NSRL server and return a list of booleans.

Arguments:
md5hashes -- The list of MD5 hashes for the query.

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.connect ((NSRL_SERVER, NSRL_PORT))

try:
f = s.makefile('r"')
s.sendall ("version: 2.0\r\n")
response = f.readline();
if response.strip() != 'OK':
raise RuntimeError ('NSRL handshake error')

query = 'query ' + ' '.join(mdShashes) + "\r\n"
s.sendall (query)

response = f.readline() ;

if response[:2] != 'OK':

raise RuntimeError ('NSRL query error')

return [c=='1l' for ¢ in response[3:].strip()]
finally:
s.close()

Using this module is as easy as shown here:

import nsrlquery

hashes = ['86d3d86902b09d963afc08ea0002a746"',
'3dcfe9688ca733a76£82d03d7ef4a21f",
'976fe1fe512945e390bal0f6964565bf ']

nsrlquery.nsrlquery (hashes)

[26]

Chapter 2

This code queries the NSRL server and returns a list of booleans, each indicating
whether the corresponding MD5 hash has been found in the NSRL file list.

Summary

This chapter provided an overview of the domains of the forensic and

example algorithms for each of these domains. We also showed you how to
compare applications installed on an Android device with web services such as
Mobile-Sandbox. In the second real-world example, we demonstrated how to sort
out benign and known files from a Windows system to reduce the amount of data
that is to be analyzed manually. With NSRLquery, the forensic investigations can
focus on new or modified content and do not need to waste time on the widely
known content of standard applications.

In the following chapters, these algorithms will be applied to a selection of device
types, operating systems, and applications for use during forensic investigation.

[27]

Using Python for Windows
and Linux Forensics

In this chapter, we will focus on the parts of the forensic investigation that are
specific to the operating systems. We chose the most widely used operating
systems on the desktop and server systems —Microsoft Windows and Linux.

For both operating systems, we selected examples of interesting evidence and how
to automate its analysis using Python. Consequently, in this chapter, you will learn
the following:

* Analyzing the foundations of the Windows event log, selecting interesting
parts, and automatically parsing them

* Organizing the Windows Registry and efficiently searching for Indicators of
Compromise (I0C)

* Searching Linux local account information for IOC

* Understanding, using, and parsing Linux file metadata with POSIX ACL
and file based capabilities as the most prominent extensions to the standard
metadata

[29]

Using Python for Windows and Linux Forensics

Analyzing the Windows Event Log

Windows includes many monitoring and logging capabilities and traces data

and events for a large amount and variety of activities occurring in the operating
system. The vast number of events, which can be logged, does neither make it easy
for an administrator to identify the specific important events nor helps a forensic
investigator to find Indicators of Compromise. Therefore, we will start this section
with a small introduction to the Windows Event Log and the changes in its format
over time, followed by a description of the important event types that should help an
investigator to quickly find suspicious actions in the large amount of other events. In
the last section of this chapter, we will demonstrate how to parse the Event Log and
automatically find the potential IOCs (e.g., user logons, service creation, and so on).

The Windows Event Log

According to Microsoft, Windows Event Log files are special files that record
significant events, such as when a user logs on to the computer or when a program
encounters an error, (refer to http://windows .microsoft.com/en-us/windows/
what-information-event-logs-event-viewer#l1TC=windows-7). Whenever these
types of events occur, Windows records the event in an event log that can be read
using Event Viewer or similar tools.

With the release of Windows 7 and Windows Server 2008, Microsoft has performed
a major change in their Event Log technique. They changed from the classical
Windows Event Log (EVT) to the newer Windows XML Event Log (EVTX). In the
following paragraphs, we will explain some of the main differences between these
two log file types.

Due to the fact that Microsoft no longer supports Windows XP and Server 2003 is in
the extended support stage at present (meaning that it will go out of support very
soon), there are XP and 2003 systems still out there. Thus, some investigators are still
going to need to know the difference between the older EVT and the new EVTX and
the possible problems arising during analysis of these files.

Besides the binary differences in the records and the Event Log files themselves, the
amount of these log files differs too. On a Windows XP/2003 system, there were
three main Event Log files: System, Application, and Security. They are stored in
the c:\Windows\system32\config directory. The server versions of the OS may
maintain additional Event Logs (DNS Server, Directory Service, File Replication
Service, and so on) depending upon the functionality of the server. On a current
Windows 7 system, you can find more than 143 files full of event logs. This gets even
more if you compare it to the newer server versions of Microsoft Windows.

[30]

http://windows.microsoft.com/en-us/windows/what-information-event-logs-event-viewer#1TC=windows-7
http://windows.microsoft.com/en-us/windows/what-information-event-logs-event-viewer#1TC=windows-7

Chapter 3

The EVT log records only contain a very small amount of human-readable content
and are made human readable through tools such as the event viewer at analysis
time. These tools combine the predefined log templates that are commonly stored
in the system's DLL or EXE files with the data stored in the EVT file itself. When
one of the various log viewing tools displays log records, it has to determine which
DLL files will store the message templates. This meta-information is stored in the
Windows Registry and is specific to each type of the previously mentioned three
main Event Log files (System, Application, and Security).

All of the earlier mentioned details follow the fact that the EVT files aren't really
useful without their corresponding metafiles, which store the core meaning of the
log. This creates two major analysis problems:

* First, an attacker could modify DLL files or the Windows Registry in order to
change the meaning of event logs without having to touch the EVT file.

* Second, when the software is uninstalled on a system, it could result in the
EVT records losing their context.

As an investigator, one must carefully keep these issues in mind when analyzing
EVT logs and also when writing those logs to remote systems for later analysis. An
even more detailed analysis of the EVT records can be found in the ForensicsWiki,
http://forensicswiki.org/wiki/Windows Event Log (EVT).

In comparison to EVT, the EVTX files are stored as a binary XML file format. On the
newer Windows systems, the event logs can be viewed and analyzed with either the
Event Viewer or a vast number of other programs and tools (in the following sections,
we will describe some Python scripts that can be used too). When using the Event
Viewer, one has to bear in mind that this program can represent the EVTX files in two
different formats: general and detailed. The general (sometimes called formatted) view
can hide significant event data that is stored in the event record and can only be seen in
the detailed view. Thus, if you are planning to use the Event Viewer for analyzing the
EVTX files, always use the detailed option to display the files.

If you are interested in a more detailed analysis of the EVTX file format, you should
take a look at the ForensicsWiki, http://forensicswiki.org/wiki/Windows
XML_Event_Log_ (EVTX). Another great explanation of the deeper EVTX file format
details has been presented by Andreas Schuster at DFRWS 2007, refer to http: //www.
dfrws.org/2007/proceedings/p65-schuster_pres.pdf. This presentation can be
very helpful if you want to understand the details of the binary XML format or write
your own parsers of EVTX files.

[31]

http://forensicswiki.org/wiki/Windows_Event_Log_(EVT)
http://forensicswiki.org/wiki/Windows_XML_Event_Log_(EVTX)
http://forensicswiki.org/wiki/Windows_XML_Event_Log_(EVTX)
http://www.dfrws.org/2007/proceedings/p65-schuster_pres.pdf
http://www.dfrws.org/2007/proceedings/p65-schuster_pres.pdf

Using Python for Windows and Linux Forensics

If you need to open the EVT files on a Windows 7 or newer system, it's best to
convert the older EVT file to the EVTX syntax before opening it. This can be done

in several ways as described in a technet.com blog post, http://blogs. technet.
com/b/askperf/archive/2007/10/12/windows-vista-and-exported-event-

log-files.aspx.

Interesting Events

A full list of Windows events on the newer system can be found in a knowledge base
article of Microsoft at, https://support.microsoft.com/en-us/kb/947226. As the
number of these events is getting bigger with every new version of the system and
every newly installed application, you can easily find more than several hundreds

of different event types on a single Windows system. Due to this fact, we tried to

sort out some interesting event types that can be helpful when analyzing a system or
reconstructing user events (a more detailed explanation of which Event Logs can be
helpful under what conditions can also be found in TSA-13-1004-SG, https: //www.
nsa.gov/ia/ files/app/spotting the adversary with windows event log
monitoring.pdf):

* EMET (1, 2): If the organization is actively using the Microsoft Enhanced
Mitigation Experience Toolkit (EMET), then these logs can be very helpful
during investigation.

* Windows-Update-Failure (20, 24, 25, 31, 34, 35): The failure to update issues
should be addressed to avoid prolonging the existence of an application issue
or vulnerability in the operating system or an application. Sometimes, this
also helps in identifying infections of a system.

* Microsoft-Windows-Eventlog (104, 1102): It is unlikely that event log data
would be cleared during normal operations and it is more likely that a
malicious attacker may try to cover their tracks by clearing an event log.
When an event log gets cleared, it is suspicious.

* Microsoft-Windows-TaskScheduler (106): It displays newly registered
Scheduled Tasks. This can be very helpful if you are searching for signs of
malware infections.

* McAfee-Log-Event (257): McAfee malware detection —McAfee AntiVirus
may detect malware behaviors without actually detecting the EXE file itself.
This can be very valuable in determining how the malware got into a system.
In general, the event logs of the installed AV solution are very valuable logs
when starting an analysis of a potentially compromised system. Therefore,
you should remind yourself where to find those logs in the Event Log.

[32]

http://blogs.technet.com/b/askperf/archive/2007/10/12/windows-vista-and-exported-event-log-files.aspx
http://blogs.technet.com/b/askperf/archive/2007/10/12/windows-vista-and-exported-event-log-files.aspx
http://blogs.technet.com/b/askperf/archive/2007/10/12/windows-vista-and-exported-event-log-files.aspx
https://support.microsoft.com/en-us/kb/947226
https://www.nsa.gov/ia/_files/app/spotting_the_adversary_with_windows_event_log_monitoring.pdf
https://www.nsa.gov/ia/_files/app/spotting_the_adversary_with_windows_event_log_monitoring.pdf
https://www.nsa.gov/ia/_files/app/spotting_the_adversary_with_windows_event_log_monitoring.pdf

Chapter 3

* Microsoft-Windows-DNS-Client (1014): DNS name resolution timeout; this
event type can also be very helpful when searching for malware or when
trying to find out whether a user has tried to connect to a specific website
or service.

* Firewall-Rule-Add/Change/Delete (2004, 2005, 2006, 2033): If the client
workstations are taking advantage of the built-in host-based Windows
Firewall, then there is value in collecting events to track the firewall status.
Normal users should not be modifying the firewall rules of their local machine.

* Microsoft-Windows-Windows Defender (3004): Windows Defender
malware detection logs.

* Microsoft-Windows-Security-Auditing (4720, 4724, 4725, 4728, 4732, 4635,
4740, 4748, 4756): In these logs, you can find information such as remote
desktop logins and users that have been added to privileged groups, and
account lockouts can also be tracked. User accounts that are being promoted
to the privileged groups should be audited very closely to ensure that
the users are, in fact, supposed to be in a privileged group. Unauthorized
membership of the privileged groups is a strong indicator that a malicious
activity has occurred.

* Service-Control-Manager (7030, 7045): It monitors whether a service
is configured to interact with the desktop or has been installed on the
system in general.

* App-Locker-Block/Warning (8003, 8004, 8006, 8007): Application
whitelisting events should be collected to look for the applications that have
been blocked from execution. Any blocked application could be malware or
the users trying to run an unapproved software.

Harlan Carvey stated in one of his blog posts (http://windowsir.blogspot.
de/2014/10/windows-event-logs.html) that beyond individual event records
(source/ID pairs), one of the aspects of the newer versions of Windows (in
particular, Windows 7) is that there are a lot of events that are being recorded by
default across multiple Event Log files. Thus, when some events occur, multiple
event records are stored in different Event Log types and often across different Event
Log files. For example, when a user logs in to a system on the console, there will be
an event recorded in the security event log, a couple of events will be recorded in
the Microsoft-Windows-TerminalServices-LocalSessionManager/Operational
log, and a couple of events will also be recorded in the Microsoft-windows-
TaskScheduler/Operational log.

[33]

http://windowsir.blogspot.de/2014/10/windows-event-logs.html
http://windowsir.blogspot.de/2014/10/windows-event-logs.html

Using Python for Windows and Linux Forensics

The Event Log can also be used to detect whether an attacker has used some kind

of anti-forensic techniques. One of those techniques would be to change the system
time in order to mislead an investigator. To detect this kind of modification, an
investigator has to list all the available Event Log records by the sequence number
and generated time. If the system time has been rolled back, there would be a point
where the time an event has been generated was before the previous event. Some
more examples of detecting anti-forensic techniques with the help of Windows Event
Log can be found in a blog post by Harlan Carvey, at http://windowsir.blogspot.
de/2013/07/howto-determinedetect-use-of-anti.html.

Parsing the Event Log for IOC

When talking about Event Logs and analyzing these logs with Python, there

is no way to get around python-evtx. These scripts (https://github.com/
williballenthin/python-evtx) have been developed using the 2.7+ tags of the
Python programming language. As it is purely Python, the module works equally
well across the platforms. The code does not depend on any modules that require
separate compilation and operates on the event log files from the Windows operating
systems that are newer than Windows Vista that is EVTX.

The second tool that we want to bring to your attention is plaso, (refer to
http://plaso.kiddaland.net/). This tool set has evolved from log2timeline and
is now build in Python. With the help of this tool set, you can create meaningful
timelines of the system events and other log files (for example, Apache). There is
also a very good cheat sheet, http://digital-forensics.sans.org/media/
log2timeline_cheatsheet.pdf, for log2timeline that demonstrates the real power
of this tool. One of the big advantages of this tool set is the fact that you can even
run it on a full image of a system to generate a timeline of all actions that the users
performed on that system before creating the image.

In the following sections, we will show some examples of how to use python-evtx to
find IOC in the Windows Event Log and how plaso will help you identify more IOCs
and display them in a nicely formatted timeline.

The python-evtx parser

First of all, we want to start with a basic conversion of the binary XML format
of EVTX files to the readable XML files. This can be done using evtxdump. py,
https://github.com/williballenthin/python-evtx, which will also be
the basis of our following scripts:

#!/usr/bin/env python
import mmap

import contextlib

[34]

http://windowsir.blogspot.de/2013/07/howto-determinedetect-use-of-anti.html
http://windowsir.blogspot.de/2013/07/howto-determinedetect-use-of-anti.html
https://github.com/williballenthin/python-evtx
https://github.com/williballenthin/python-evtx
http://plaso.kiddaland.net/
http://digital-forensics.sans.org/media/log2timeline_cheatsheet.pdf
http://digital-forensics.sans.org/media/log2timeline_cheatsheet.pdf
https://github.com/williballenthin/python-evtx

Chapter 3

import argparse

from Evtx.Evtx import FileHeader
from Evtx.Views import evtx file xml view

def main() :

parser = argparse.ArgumentParser (description="Dump a binary EVTX
file into XML.")

parser.add argument ("--cleanup", action="store true",
help="Cleanup unused XML entities (slower)"),

parser.add argument ("evtx", type=str, help="Path to the Windows
EVTX event log file")

args = parser.parse_args()

with open(args.evtx, 'r') as f:
with contextlib.closing (mmap.mmap (f.fileno(), 0, access=mmap.
ACCESS READ)) as buf:

fh = FileHeader (buf, 0x0)
print "<?xml version=\"1.0\" encoding=\"utf-8\"
standalone=\"yes\" ?>"
print "<Events>"
for xml, record in evtx file xml view(fh):
print xml
print "</Events>"

if name == " main ":

main ()

When dumping a logon event (event id 4724) with the help of the previously
mentioned script, the result will look similar to the following:

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/
event"><System><Provider Name="Microsoft-Windows-Security-Auditing"
Guid="54849625-5478-4994-a5ba-3e3b0328¢c30d"></Providers>

<EventID Qualifiers="">4724</EventID>

<Version>0</Version>

<Level>0</Level>

<Task>13824</Task>

<Opcode>0</Opcode>

<Keywords>0x8020000000000000</Keywords>

<TimeCreated SystemTime="2013-11-21 10:40:51.552799"></TimeCreated>
<EventRecordID>115</EventRecordID>

<Correlation ActivityID="" RelatedActivityID=""></Correlations>
<Execution ProcessID="452" ThreadID="1776"></Execution>
<Channel>Security</Channels>

[35]

Using Python for Windows and Linux Forensics

<Computer>windows</Computer>

<Security UserID=""></Security>

</System>

<EventData><Data Name="TargetUserName">mspreitz</Data>
<Data Name="TargetDomainName">windows</Data>

<Data Name="TargetSid"
>S5-1-5-21-3147386740-1191307685-1965871575-1000</Data>

<Data Name="SubjectUserSid">S-1-5-18</Data>

<Data Name="SubjectUserName">WIN—PC9VCSAQBOH$</Data>
<Data Name="SubjectDomainName">WORKGROUP</Datax>

<Data Name="SubjectLogonId">0x00000000000003e7</Data>
</EventDatas>

</Event>

When using evtxdump .py, https://github.com/williballenthin/python-evtx,

with a large Windows Event Log file, the output will be very large as you will find
all the recorded logs in the generated XML file. For an analyst, it is often important
to perform a fast triage or search for specific events quickly. Due to this, we modify
the script in a way that it is possible to extract only specific events, as shown in
the following:

#!/usr/bin/env python
import mmap

import contextlib

import argparse

from xml.dom import minidom

from Evtx.Evtx import FileHeader
from Evtx.Views import evtx file xml view

def main() :

parser = argparse.ArgumentParser (description="Dump specific event

ids from a binary EVTX file into XML.")

parser.add argument ("--cleanup", action="store true",
help="Cleanup unused XML entities (slower)"),

parser.add argument ("evtx", type=str, help="Path to the Windows
EVTX event log file")

parser.add argument ("out", type=str, help="Path and name of the
output file")

parser.add argument ("--eventID", type=int, help="Event id that
should be extracted")

args = parser.parse_args()

outFile = open(args.out, 'a+')
with open(args.evtx, 'r') as f:

[36]

https://github.com/williballenthin/python-evtx

Chapter 3

with contextlib.closing (mmap.mmap (f.fileno(), 0, access=mmap.
ACCESS READ)) as buf:

fh = FileHeader (buf, 0x0)

outFile.write ("<?xml version=\"1.0\" encoding=\"utf-8\"
standalone=\"yes\" ?>")

outFile.write ("<Events>")
for xml, record in evtx file xml view(fh):
xmldoc = minidom.parseString (xml)

event id = xmldoc.getElementsByTagName ('EventID') [0].
childNodes [0] .nodeValue

if event id == str(args.eventID) :
outFile.write (xml)

else:
continue

outFile.write ("</Events>")

if name == " main ":

main ()

If you now want to extract all logon events from the security event log of a Windows
system in a given XML file, you just have to execute the script as follows:

user@lab:~$./evtxdump.py security.evtx logon events.xml -eventID 4724

The plaso and log2timeline tools

In this section, we will demonstrate how to find logon and logoff events on a
Terminal Server. The Terminal Services logon and logoff events can be tagged using
plasm and filtered using psort to get a quick overview of which users have been
logging in to a machine and when and where from. This information can be very
helpful when searching for compromises. To start with plaso, you first need to tag all
your data. Tagging with plaso is as easy as shown in the following:

user@lab:~$./plasm.py tag --tagfile=tag windows.txt storage file

After successful tagging, you can search the storage file for tags with the
following command:

user@lab:~$./psort.py storage file "tag contains 'Session logon
succeeded'"

The result of this command execution will show you all the successful logon events
on a given system. Similar commands can be executed when searching for the
services that are started or EMET failures.

[37]

Using Python for Windows and Linux Forensics

Now, that you have seen the kind of data that you are able to extract from Windows
Event Log, we will show you a second component of Microsoft Windows that is really
helpful when searching for IOC or when trying to reconstruct the user behavior.

Analyzing the Windows Registry

The Windows Registry is one of the essential components of the current Microsoft
Windows operating systems and thus also a very important point in a forensic
investigation. It performs two critical tasks for the Windows operating system. First,
it is the repository of settings for the Windows operating system and the applications
that are installed on the system. Second, it is the database of the configuration of all
installed hardware. Microsoft defines the registry as follows:

"A central hierarchical database used in Microsoft Windows 98, Windows CE,
Windows NT, and Windows 2000 used to store information that is necessary to
configure the system for one or more users, applications and hardware devices."
(Microsoft Computer Dictionary)

In the following sections, we will explain several elements of the Windows Registry
that may be important to a forensics investigator and that help in understanding
where to find the most valuable indicators. We will start with an overview of the
structure to help you find your way through the large amount of data in the registry.
Afterwards, we will demonstrate some helpful scripts to extract indicators of
compromise (IOC).

Windows Registry Structure

In the Windows operating system, the Windows Registry is organized logically in
a number of root keys. There are five logical root keys in the Windows Registry of
a Windows 7 system, as shown in the following:

@
23

@ Registrierungs-Editor =
Datei Bearbeiten Ansicht Favoriten 7
4 /8 Computer Name Typ Daten
HKEY_CLASSES_ROOT
HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
HKEY_USERS
HKEY_CURRENT_CONFIG

Computer

[38]

Chapter 3

The previous figure shows the five root keys of the Registry in a Windows 7 system
that are displayed by the Windows Registry Editor (one of the most common tools to
view and examine the Windows Registry).

There are two kinds of root keys: volatile and nonvolatile. There are only two root
keys that are stored on the hard disk of the system and are nonvolatile data held
in the main memory: HKEY_LOCAL_MACHINE and HKEY_USERS. The other
root keys are either the subsets of these keys or are the volatile keys that can only
be examined during the runtime or when dumping the memory of a system before
starting the analysis of its image.

The Windows operating system organizes the Registry in a number of hive files.
According to Microsoft, (refer to https://msdn.microsoft.com/en-us/library/
windows/desktop/ms724877%28v=vs.85%29.aspx), the hive is defined as follows:

A hive is a logical group of keys, sub keys, and values in the registry that has a set
of supporting files containing backups of its data.

If a new user logs on a Windows machine, a User Profile Hive is created. This
hive contains specific registry information (for example, application settings,
desktop environment, network connections, and printers) and is located in
the HKEY_USERS key.

Each hive has additional supporting files that are stored in the $SystemRoot%\
System32\Config directory. These files are updated each time a user logs on
and the filename extensions of the files in these directories indicate the type of
data that they contain. Refer to the following table for more details (reference
taken from https://msdn.microsoft.com/en-us/library/windows/desktop/
ms724877%28v=vs.85%29.aspx):

Extension Description

none A complete copy of the hive data.

.alt A backup copy of the critical HKEY LOCAL_ MACHINE\System hive. Only
the System key has an . alt file.

.log A transaction log of changes to the keys and value entries in the hive.

.sav A backup copy of a hive.

In the following section, we will discuss where to find interesting hives and how to
analyze them with the help of the Python tools.

[39]

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724877%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724877%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724877%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724877%28v=vs.85%29.aspx

Using Python for Windows and Linux Forensics

Parsing the Registry for I0C

In this section, we will discuss which registry hives are important when searching for
IOC. These subsections include the following topics:

* Connected USB Devices: This section will show which devices had been
connected to a system and when. This helps in identifying the possible ways
of data leakage or exfiltration through a system user.

e User Histories: This section will show where to find histories of the
opened files.

* Startup Programs: This section will show which programs will be executed
on system start. This can be very helpful when trying to identify the infected
systems.

* System Information: This section will show where to find important
information of the system in question (for example, usernames).

* Shim Cache Parser: This section will show how to get important IOC with
the help of common Python tools such as Mandiant's Shim Cache Parser,
refer to https://www.mandiant .com/blog/leveraging-application-
compatibility-cache-forensic-investigations/.

Connected USB Devices

One of the most common questions that an incident response person has to answer
is whether a user has exfiltrated confidential data from a system or whether a system
compromise has been initiated by a rogue USB device that a user connected to the
system. To answer this question, the Windows Registry is a good point to start.

Any time a new USB device is connected to the system, it will leave information in
the registry. This information can uniquely identify each USB device that has been
connected to the system. The registry stores the vendor ID, product ID, revision
and serial numbers of each connected USB device. This information can be found in
the HKEY LOCAL MACHINE\SYSTEM\ControlSet001\Enum\USBSTOR registry hive,
Windows Forensic Analysis, Harlan Carvey, Dave Kleiman, Syngress Publishing, which is
also shown in the following screenshot:

[40]

https://www.mandiant.com/blog/leveraging-application-compatibility-cache-forensic-investigations/
https://www.mandiant.com/blog/leveraging-application-compatibility-cache-forensic-investigations/

Chapter 3

| gt Registrierungs-Editor
use

USBPRINT
USBSTOR

ties

Disk&Ven_letFlash&Prod Trarscend BGB&Re 100
Disk&Ven_KingstonBiProd_DataTraveles G38iRev 100
- 001CCOECI0FFCI0BSELI3(O80
Device rieters

A&Prod_Disk&Re: 10
Disk&Ven_SanDiskEProd U3_Cruzer Micro&Res B02

e

FEG_SZ

FEG_DWORD

FEG SZ DiskDrive

REG.SZ (435587 #3251 ce-bie] LBNTbe10318)

s REG_MULTLSZ USBSTORDisk LISSSTORRAW
FEG_DWORD))

FEG_SZ

FEG.SZ

FEG ST

REG_SZ

REG_MULTISZ

FEG_SZ

FEG_SZ

User histories

On a Windows system, there are several lists in the Registry that help in
identifying the recent user activity (for example, recently visited web pages or
recently opened Microsoft Word files). The following table shows some of these
lists with the corresponding Windows Registry subkeys, for all lists and their
Windows Registry subkeys refer to http://ro.ecu.edu.au/cgi/viewcontent.
cgi?article=1071&context=adf:

History list

Related windows registry sub key

Typed URLs in Microsoft
Internet Explorer

HKEY_USERS\ S-1-5-21-[User Identifier] \ Software\
Microsoft\ Internet Explorer\ TypedURLs

Most recently used
Microsoft Office files

HKEY_USERS\ S-1-5-21-[User Identifier] \ Software \
Microsoft\ Office\ 12.0\ Office_App_Name\ File MRU

Most recently mapped
network drives

HKEY_USERS\ S-1-5-21-[User Identifier] \ Software \
Microsoft\ Windows\ CurrentVersion\ Explorer\ Map Network
Drive MRU

Most recently typed
command on the RUN
dialog

HKEY_USERS\ S-1-5-21-[User Identifier] \ Software \
Microsoft\ Windows\ CurrentVersion\ Explorer\ RunMRU

Recent folders

HKEY_USERS\ S-1-5-21-[User Identifier] \ Software\
Microsoft\ Windows\ CurrentVersion\ Explorer\ RecentDocs\
Folder

[41]

http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1071&context=adf
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1071&context=adf

Using Python for Windows and Linux Forensics

Startup programs

During some investigations, it is important to find out which software was
automatically run at startup and which software was manually started by a user. To
help answer this question, the Windows Registry HKEY LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run can help again. The list of startup
programs is shown in the following figure and is listed within the Windows Register
hive, which is taken from A Windows Registry Quick Reference, Farmer, D. J:

| ar Registrienungs-Editar

Computer HEEY LOCAL MACHINESOFTWAREMicreserft Windows! CurrentVersion Run

System Information
In this section, we will see some registry hives that can be important when analyzing
a system. First of all, there is a large amount of information about the user account
that is stored in the registry, as follows:

* Alist of user accounts

* Lastlogin time of each account

* Whether the account requires a password

* Whether a specific account is disabled or enabled

* The hash technique that is used for calculating the password hash
All of this information is held in the following registry key:
HKEY LOCAL_ MACHINE\SAM\Domains\Account\Users

There is a lot more interesting data in the Windows Registry; however, one type of
information can be very helpful during a forensic investigation: the time of the last
shutdown of the system. This information is stored in the ShutdownTime value in the
following hive:

HKEY LOCAL MACHINE\SYSTEM\ControlSet001l\Control\Windows

[42]

Chapter 3

This information is often interesting on server systems as it could be a hint as to
when the last updates had been applied or whether there had been any unplanned
reboots of a system, which also could have been caused by an attacker.

Shim Cache Parser

The Windows Registry contains application compatibility issues and a large
amount of metadata (such as file size, file's last modified time, and last execution
time depending on the operating system version) that could be important for the
application runtime in Application Compatibility Shim Cache.

Compatibility Shim Cache can vary per operating system.
Thus, check your findings thoroughly.

~\lQ The implementation and structure of the Application
Data about application compatibility and runtime issues can be very useful during
an incident response or any other kind of forensic investigation in order to identify
the potentially infected systems and to create a timeline of when the potential
infection took place. Mandiant has released a tool to extract this kind of evidence:
Shim Cache Parser, (for more information refer to https://github.com/mandiant/
ShimCacheParser)

Shim Cache Parser will automatically determine the format of the cached data and
output their contents. It supports a number of inputs including system registry
hives, raw binary, or the current system's registry.

The tool can be used against an exported registry hive or against the running system.
When using it against a running system, you just need to execute the following
command:

C:\tools\mandiant> python ShimCacheParser.py -1 -o out.csv

[+] Dumping Shim Cache data from the current system...
[+] Found 64bit Windows 7/2k8-R2 Shim Cache data...
[+] Found 64bit Windows 7/2k8-R2 Shim Cache data...
[+] Found 64bit Windows 7/2k8-R2 Shim Cache data...

[+] Writing output to out.csv...

[43]

https://github.com/mandiant/ShimCacheParser
https://github.com/mandiant/ShimCacheParser

Using Python for Windows and Linux Forensics

When looking at the generated CSV output, you can find installed applications and
first runtime of these files, as follows:

Last Modified,Last Update,Path,File Size,Exec Flag

05/04/11 05:19:28,N/A,C:\Windows\system32\SearchFilterHost.exe,N/A, True
05/24/15 16:44:45,N/A,C:\Program Files (x86)\Avira\AntivVir Desktop\avwsc.
exe,N/A, True

11/21/10 03:24:15,N/A,C:\Windows\system32\wbem\wniprvse.exe,N/A, True
05/30/14 08:07:49,N/A,C:\Windows\TEMP\40F00A21-D2E7-47A3-AE16-
OAFBSE6C1F87\dismhost.exe,N/A, True

07/14/09 01:39:02,N/A,C:\Windows\system32\DeviceDisplayObjectProvider.
exe,N/A, True

07/26/13 02:24:56,N/A,C:\Windows\System32\shdocvw.dll,N/A,False
05/24/15 16:46:22,N/A,C:\Program Files (x86)\Google\Update\1.3.27.5\
GoogleCrashHandler.exe,N/A, True

05/07/15 21:42:59,N/A,C:\Windows\system32\GWX\GWX.exe,N/A, True

03/26/15 20:57:08,N/A,C:\Program Files (x86)\Parallels\Parallels Tools\
prl_cc.exe,N/A,True

10/07/14 16:29:54,N/A,C:\Program Files (x86)\KeePass Password Safe 2\
KeePass.exe,N/A, True

10/07/14 16:44:13,N/A,C:\ProgramData\Avira\Antivirus\TEMP\SELFUPDATE\
updrgui.exe,N/A, True

04/17/15 21:03:48,N/A,C:\Program Files (x86)\Avira\AntiVir Desktop\
avwebg7.exe,N/A, True

Looking at the previous data, one can see that the user installed or updated Avira
AntiVir on 2015-05-24 and KeePass on 2014-07-10. Also, you can find some hints that
the system seems to be a virtual system as you can see the hints of Parallels, a Mac
OS X virtualization platform.

If one considers the tools that have been described previously and the information
that the Windows Event Log and Windows Registry contain, it is clear that in

a forensic investigation, not all questions concerning a system can be answered
without these sources of information.

Implementing Linux specific checks

In this section, we will describe how to implement some integrity checks
to support the finding signs of system manipulation in Linux and similar
(for example, BSD) systems.

[44]

Chapter 3

These checks include the following;:

* Searching for anomalies in the local user management

* Understanding and analyzing file metadata for special permissions
and privileges

* Using clustering algorithms on file metadata to get indicators on where to
look deeper

Checking the integrity of local user
credentials

The information about local users in Linux is mostly stored in two files: /etc/passwd
and /etc/shadow. The latter is optional and all the information about local users —
including the hashed password —was originally stored in /etc/passwd. Soon, it was
considered a security issue to store the password information in a file that is readable
by every user. Therefore, the password hashes in /etc/passwd were replaced by

a single x denoting that the corresponding password hash has to be looked up in
/etc/shadow.

The side effect of this evolutionary process is that the password hashes in
/etc/passwd are still supported and all the settings in /etc/passwd may
override the credentials in /etc/shadow.

Both files are text files with one entry per line. An entry consists of multiple fields
separated by colons.

The format of /etc/passwd is as follows:

* username: This field contains the human-readable username. It is not
required for the username to be unique. However, most user management
tools enforce unique usernames.

* password hash: This field contains the password in an encoded form
according to the Posix crypt () function. If this field is empty, then the
corresponding user does not require a password to log on to the system. If
this field contains a value that cannot be generated by the hash algorithm, for
example, an exclamation mark, then the user cannot log on using a password.
However, this condition does not render the account useless. A user with a
locked password can still log on using other authentication mechanisms, for
example, SSH keys.

As mentioned earlier, the special value x means that the password hash has
to be found in the shadow file.

[45]

Using Python for Windows and Linux Forensics

Starting with the system library glibc2, the crypt () function supports
multiple hash algorithms. In that case, the password hash has the
following format:

idsalt$encrypted

The ID designates the hash algorithm that has been used to encode the
password, for example, 1 for md5, 5 for sha256, and 6 for sha512. The salt

is a randomly generated string in order to modify the hash algorithm.
Consequently, even identical passwords result in different hash sums. The
subfield "encrypted" holds the actual hash of the password (modified by the
influence of the salt).

numerical user ID: This field denotes the ID of the user. Internally, the

Linux kernel uses only this numerical ID. The special ID 0 is assigned to
the administrative root user. Per default, user ID 0 is granted unlimited
privileges on the system.

numerical group ID: This field refers to the primary group of the user.

comment field: This field can contain the arbitrary information about the
user and is mostly used to hold the full name of the user. Sometimes, it also
contains a comma-separated list of the full username, phone number, and
so on

user home directory: The user home directory is a directory on the system's
file system. After logging on, new processes are started with this directory as
the working directory.

default command shell: This optional field denotes the default shell that is to
be started after a successful logon.

The format of /etc/shadow is as follows:

The username field links the entry to the passwd entry with the same username.

The password hash field contains the encoded password in the same format
as described for the passwd file.

The next five fields contain the information about the password aging, such
as the date of the last password change, minimum password age, maximum
password age, password warning period, and password inactivity period.

If the account expiration date field is nonempty, it will be interpreted
as the account expiration date. This date is expressed in days since
January 1st, 1970.

[46]

Chapter 3

With this format description, a small Python routine is sufficient to parse the file into
a list of entries, each containing a list of fields as shown in the following;:

def read passwd(filename) :
"""Reads entries from shadow or passwd files and
returns the content as list of entries.
Every entry is a list of fields."""

content = []
with open(filename, 'r') as f:
for line in f:
entry = line.strip() .split(':"')
content .append (entry)

return content
On using this routine, typical manipulations in these files may be detected.

The first manipulation technique that we want to describe is the creation of multiple
users who share the same numerical id. This technique can be used by attackers to plant
a backdoor into the system. By creating an additional user for an existing ID, an
attacker can create an alias with a separate password. The legitimate account owner
would not be aware that there is an additional combination of username/password
to log in to the account.

A small Python routine can detect this kind of manipulation, as follows:

def detect_aliases(passwd) :
"""prints users who share a user id on the console

Arguments:
passwd -- contents of /etc/passwd as read by read passwd"""

id2user = {}
for entry in passwd:
username = entry[0]
uid = entryl[2]
if uid in id2user:
print 'User "%s" is an alias for "%s" with uid=%s' %
(username, id2user [uid], uid)
else:
id2user[uid] = username

[47]

Using Python for Windows and Linux Forensics

During normal operation, the information in /etc/passwd and /etc/shadow is
synced, that is, every user should appear in both the files. If there are users appearing in
only one of these files, it is an indicator that the user management of the operating system
has been bypassed. A manipulation like this can be detected with a similar script:

def detect missing users(passwd, shadow) :
""rprints users of /etc/passwd missing in /etc/shadow

and vice versa.

Arguments:
passwd -- contents of /etc/passwd as read by read passwd
shadow -- contents of /etc/shadow as read by read passwd"""

passwd users = set([e[0] for e in passwd])
shadow_users = set([e[0] for e in shadow])

missing_in_passwd = shadow_users - passwd_users
if len(missing_in passwd) > 0:
print 'Users missing in passwd: %s' % ', '.join(missing in
passwd)

missing_in_shadow = passwd _users - shadow_users
if len(missing_in_shadow) > 0:
print 'Users missing in shadow: %s' % ', '.join(missing in
shadow)

Just like the first function, this function should not produce any output on a normal
system. If there is an output similar to Users missing in shadow: backdoor then
there is a user account "backdoor" in the system without a record in the shadow file.

Users without a password should not exist in a normal system. Furthermore, all
the password hashes should reside in the shadow file and all entries in the passwd
file should refer to the corresponding shadow entry. The following script detects
deviations from this rule:

def detect unshadowed (passwd, shadow) :
"""Prints users who are not using shadowing or have no password

set
Arguments:
passwd -- contents of /etc/passwd as read by read passwd
shadow -- contents of /etc/shadow as read by read passwd"""
nopass = [e[0] for e in passwd if e[l]=='"']

[48]

Chapter 3

nopass.extend([e[0] for e in shadow if e[l]l==''])
if len(nopass) > 0:
print 'Users without password: %s' % ', '.join(nopass)

unshadowed = [e[0] for e in passwd if e[1l] != 'x' and e[l] != '']
if len(unshadowed) > 0:
print 'Users not using password-shadowing: %s' % \
', '.join (unshadowed)

Our last example of bypassing the operating system in the creation and manipulation
of user accounts is the detection of non-standard hash algorithms and reusing salts for
multiple user accounts. While a Linux system allows specifying the hash algorithm

for every entry in the shadow file, normally all user passwords are hashed using the
same algorithm. A deviating algorithm is a signal for an entry being written to the
shadow file without using the operating system tools, meaning, system manipulation.
If a salt is reused across multiple password hashes, then the salt is either hardcoded
into a manipulation tool or the cryptographic routines of the system have been
compromised, for example, by manipulating the entropy source of the salt generation.

The following Python script is capable of detecting this kind of manipulation:

import re
def detect deviating hashing(shadow) :
"""Prints users with non-standard hash methods for passwords

Arguments:
shadow -- contents of /etc/shadow as read by read passwd"""

noalgo = set ()
salt2user = {}
algorithms = set()
for entry in shadow:
pwhash = entry[1]
if len(pwhash) < 3:
continue

m = re.search(r'"\$([*$1{1,2)\$([*$]1+)\$', pwhash)
if not m:

noalgo.add (entry[0])

continue

algo
salt

m.group (1)

m.group (2)

if salt in salt2user:

[49]

Using Python for Windows and Linux Forensics

print 'Users "%s" and "%s" share same password salt "&s"!'
5\
(salt2user[salt], entry[0], salt)
else:
salt2user[salt] = entry[0]

algorithms.add (algo)

if len(algorithms) > 1:
print 'Multiple hashing algorithms found: %s' % ',
'.join(algorithms)

if len(noalgo) > 0:
print 'Users without hash algorithm spec. found: %s' % \
', '.join(noalgo)

Regular expressions

The last example uses the re module for regular expression matching

to extract the algorithm specification and salt from the password hash.
A\l Regular expressions provide a fast and powerful way of text searching,

~

matching, splitting, and replacing. Therefore, we highly recommend
Q getting familiar with regular expressions. The documentation of the

re module is available online at https://docs.python.org/2/

library/re.html. The book Mastering Python Regular Expressions,

Felix Lopez and Victor Romero, Packt Publishing provides further insights

and examples on how to use regular expressions.

All of the detection methods in this section are examples of anomaly detection
methods. Depending on the system environment, more specific anomaly detections
can be used and implemented by following the schema of the examples. For
example, on a server system, the number of users having a password set should be
small. Therefore, counting all the users with passwords can be a reasonable step in
the analysis of such systems.

Analyzing file meta information

In this section, we will discuss file meta information and provide examples on how it
can be used in forensic analysis.

[50]

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html

Chapter 3

Understanding inode

Linux systems store file meta information in structures called inodes (index nodes).
In a Linux filesystem, every object is represented by an inode. The data stored per
inode depends on the actual filesystem type. Typical contents of an inode are

as follows:

The index number is the identifier of an inode. The index number is unique
per file system. If two files share the same index number, then these files are
hard-linked. Consequently, hard-linked files only differ in their filename and
always have the same contents as well as the same meta information.

The file owner is defined by the numerical ID of the user (UID). There can
be only one owner per file. The user IDs should correspond to the entries in
/etc/passwd. However, it is not guaranteed that there are only files with
existing entries in /etc/passwd. Files can be transferred to the nonexisting
users with administrative privileges. Furthermore, the owner of the file may
have been removed from the system, making the file orphaned. For files

on transportable media, for example, USB drives, there is no mechanism

of mapping the user ID from one system to another. Consequently, the file
owner seems to change when a USB drive is attached to a new system with
different /etc/passwd. Furthermore, this can also lead to orphaned files if a
UID does not exist on the system where the USB drive is attached.

The file group is defined by the numerical ID of the corresponding group
(GID). A file is always assigned to exactly one group. All groups of a system
should be defined in /etc/groups. However, files with group IDs that are
not listed in /etc/groups may exist. This indicates that the corresponding
group has been deleted from the system, the medium has been transferred
from another system where that group exists, or a user with administrative
privileges reassigned the file to a nonexisting group.

The file mode (also known as "protection bits") defines a simple form of
access rights to the corresponding file. It is a bit mask defining the access
rights for the file owner, for users belonging to the group that the file is
assigned to, and for all other users. For each of these cases, the following
bits are defined:

° read (r): If this bit is set on a regular file, the affected user is allowed
to read the file contents. If the bit is set on a directory, the affected
user is allowed to list the names of the contents of the directory. The
read access does not include the meta-information, which is the inode
data of the directory entries. Consequently, the read permission to a
directory is not sufficient to read files in that directory as this would
require access to the file's inode data.

[51]

Using Python for Windows and Linux Forensics

[e]

write (w): If this bit is set on a regular file, the affected user is

allowed to modify the contents of the file in arbitrary ways including
manipulation and deletion of the content. If this bit is set on a directory
entry, then the affected user is allowed to create, remove, and rename
the entries in that directory. The existing files in the directory have
their own protection bits that define their access rights.

execute (x): For regular files, this allows the affected user to start
the file as a program. If the file is a compiled binary, for example, in
the ELF format, then the execute privileges are sufficient to run the
program. If the file is a script that has to be interpreted, then read
permission (r) is also required to run the script. The reason is that
the Linux kernel determines how to load the program. If it detects
that the file contains a script, it loads the script interpreter with the
current user's privileges. For directories, this flag grants permission
to read the meta-information of the directory contents, except the
names of the entries. Therefore, this allows the affected user to
change the working directory to this directory.

sticky (t): This bit exists only once per inode. When it is set on
directories, it limits the right to delete and rename entries to the user
owning the entry. On regular files, this flag is ignored or has a file
system specific effect. When set on executables, this flag is used to
prevent the resulting process from being swapped out from RAM.
However, this purpose of the sticky bit is deprecated and Linux
systems do not obey the sticky bit on executables.

set id on execution (s): This bit exists for the user and for the

group. When set for the user (SUID bit) on an executable file, the
corresponding file is always run with its owner as the effective user.
Therefore, the program is run with the privileges of the user owning
the executable that is independent from the user that is actually
starting the program. If the file is owned by the root user (UID 0),
then the executable always runs with unlimited privileges. When the
bit is set for the group (SGID bit), the executable is always started
with the group of the file as effective group.

* The size of the file in bytes.
¢ The number of blocks that are allocated for that file.

* A timestamp denoting the last change of the file content (mtime).

[52]

Chapter 3

* A timestamp denoting the last read access to the file content (atime).

Access time stamp tracking can be disabled by the mount option noatime to
limit write access to the media (for example, to extend the lifetime of the SD
cards). Furthermore, read-only access (mount option ro) to the file system
prevents atime tracking. Therefore, before analysis of atime information, it
should be checked whether atime tracking was enabled for that file system.
The corresponding initial mount options can be found in /etc/fstab.

* A timestamp denoting the last change of the inode data (ctime).

Notable extensions to these standard entries are POSIX Access Control Lists (POSIX
ACLs). These access control lists are supported by the major Linux file systems and
allow specifying additional access entries besides the three classes (user, group, and
others). These entries allow defining the additional access rights (the previously
listed bits r, w and x) for additional users and groups. Evaluating POSIX ACLs will
be discussed in detail in a separate section.

Another extension consists of the specification of capability flags to an executable.
This is used for a more granular specification of privileges than using the SUID bit.
Instead of giving an executable owned by the root user the SUID bit and allowing it
unlimited privileges, a set of required privileges can be specified. Capabilities will
also be handled in detail in a separate section.

Reading basic file metadata with Python

Python provides built-in functionality to read the file status information with the

os module. The standard function to retrieve metadata from a file that is specified
by its name is os.1stat (). In contrast to the more commonly used os. stat (), this
function does not evaluate the targets of symbolic links but retrieves the information
about the link itself. Therefore, it is not prone to run into infinite loops that are
caused by circular symbolic links. Furthermore, it does not cause any errors on links
that lack the link target.

The resulting object is platform dependent; however, the following information

is always available: st_mode (protection bits), st_ino (inode number), st_dev
(identifier of the device containing the file system object), st_nlink (number of hard
links), st_uid (user ID of owner), st_gid (group ID of owner), st_size (file size

in bytes), st_mtime (last modification), st_atime (last read access), st_ctime (last
inode change). This information corresponds to the inode data that is described in
the previous section.

[53]

Using Python for Windows and Linux Forensics

A detailed description about os.stat () and os.1lstat ()
is available at https://docs.python.org/2/1library/
os.html#os.stat. This also includes the examples of
platform-dependent attributes.

The st_mtime, st_atime, and st_ctime time stamps are specified in the Unix
timestamp format, that is, the number of seconds since January 1st 1970. With the
datetime module, this time format can be converted into a human readable form,
using the following script:

from datetime import datetime as dt
from os import lstat

stat_info lstat ('/etc/passwd')

atime = dt.utcfromtimestamp (stat_info.st atime)

mtime = dt.utcfromtimestamp (stat info.st mtime)

ctime = dt.utcfromtimestamp (stat_info.st ctime)

print 'File mode bits: %s' % oct(stat_info.st mode)
print 'Inode number: %d' % stat_info.st_ ino
print '# of hard links: %d' % stat_info.st nlink
print 'Owner UID: %d' % stat_info.st uid
print 'Group GID: %d' % stat_info.st gid
print 'File size (bytes) %d' % stat_info.st size
print 'Last read (atime) $s' % atime.isoformat (' ')
print 'Last write (mtime) $s' % mtime.isoformat (' ')
print 'Inode change (ctime) %s' % ctime.isoformat (' ')

This code listing outputs the common return values of the 1stat call. A typical

output looks similar to the following:

File mode bits: 0100644

Inode number: 1054080

of hard links: 1

Owner UID: 0

Group GID: 0

File size (bytes) 2272

Last read (atime) 2015-05-15 09:25:15.991190

Last write (mtime)

Inode change (ctime)

2014-09-20 10:40:46.389162
2014-09-20 10:40:46.393162

[54]

https://docs.python.org/2/library/os.html#os.stat
https://docs.python.org/2/library/os.html#os.stat

Chapter 3

This sample output denotes that on the lab system, /etc/passwd is a regular file with
read permission for all users. This information is derived from the st_mode member of
the result. On using Python's oct () function, it is converted in its octal representation,
that is, one decimal digit of the output represents exactly three bits of the protection bits. The
leading zero in the output is a common indicator for the octal representation.

The lower three digits (644 in the example output) always denote the access rights
for the owner of the file (6 in the example), for users belonging to the group of the
file (left 4 in the example), and all other users (last digit).

How to interpret the file mode bits?

represent the access rights for the owner, group, and other users (last
digit). For every digit, the read access (r) has bit value 4, write access (w)
has bit value 2, and execution (x) has bit value 1.

é‘Q In its octal form, the bit values of the three least significant digits

Therefore, in our example, the digit ¢ denotes read and write access (4 + 2) for
the owner of the file. Members of the group 0 and all other users only have read
access (4).

The next digit from the right denotes the sticky bit (value 1), the SGID bit (value 2),
and the SUID bit (value 4).

The stat module defines the constants for all bits of st _mode. Its
documentation is available at https://docs.python.org/2/
library/stat.html.

These constants can be used as a bit mask to retrieve information from st_mode.
The earlier example could be extended to detect SGID, SUID, and sticky mode,
as follows:

import stat

if stat.S ISUID & stat info.st mode:
print 'SUID mode set!'

if stat.S ISGID & stat info.st mode:
print 'SGID mode set!'

if stat.S ISVTX & stat info.st mode:
print 'Sticky mode set!'

[55]

https://docs.python.org/2/library/stat.html
https://docs.python.org/2/library/stat.html

Using Python for Windows and Linux Forensics

For testing the code, you may use the example to evaluate the mode of /etc/passwd,
/tmp, and /usr/bin/sudo on a standard Linux system. Typically, /tmp has the
sticky flag set, /usr/bin/sudo has SUID set, and /etc/password has none of the
special bits set.

The remaining bits denote the type of the file. The following file types may appear on
a standard Linux filesystem:

File type Check function Description
in module stat

regular S_ISREG() This is used to store arbitrary data

directory S_ISDIR() This is used to store lists of other files

soft link S_ISLNK() This references one destination file via name

character device | S_ISCHR() This is the interface in the filesystem to access
the character-oriented hardware, for example,
terminals

block device S_ISBLK() This is the interface in the filesystem to access
the block-oriented hardware, for example, disk
partitions

fifo S_ISFIFO() This is the representation of a named,
unidirectional interprocess interface in the
filesystem

socket S_ISSOCK() This is the representation of a named, bidirectional
interprocess interface in the filesystem

Hard links are not represented by a special file type but are merely multiple
directory entries in the same filesystem sharing the same inode.

Unlike the tests for SGID, SUID, and sticky bit, the file type checks are implemented
as functions of the stat module. These functions require the file mode bits as the
parameter, for example:

from os import readlink,lstat
import stat

path = '/etc/rc5.d4/S99rc.local’
stat_info = lstat (path)

if stat.S_ISREG(stat_info.st_mode) :
print 'File type: regular file'

if stat.S_ISDIR(stat_info.st_mode) :

[56]

Chapter 3

print 'File type: directory!'

if stat.S ISLNK(stat info.st mode) :
print 'File type: symbolic link pointing to ',
print readlink (path)

In this example, the os.readlink () function is used to extract the target filename

if a symbolic link is encountered. Symbolic links may refer to an absolute path

or a relative path starting from the location of the symbolic link in the filesystem.
Absolute symbolic links have a target starting with the character /, that is, the target
is to be searched starting with the root directory of the system.

. If you mount your copy of the evidence in your lab environment for
& analysis, the absolute symbolic links are either broken or they point to a
s file in your lab workstation! The relative symbolic links remain intact as
long as their destination resides in the same partition as the link.

A possible output of the previous example code could be - File type: symbolic
link pointing to ../init.d/rc.local - , which is an example of a relative
link.

Evaluating POSIX ACLs with Python

The file mode bits, which are defined in the file's inode, only allow three addressees for
permissions: the file owner, the users belonging to the file's group, and everybody else.

If a more granular set of permissions is required, the traditional solution will be to
create a group that consists of all the users who should have access and transfer the
file to that group. However, the creation of such groups has major disadvantages.
First, the list of groups can become unnecessarily large. Second, the creation of such
groups requires administrative privileges and therefore, breaks the Linux/Unix
concept of discretionary access control.

. Discretionary access control is the concept of allowing the owner of the
information, that is, the file owner, to decide who should be allowed the
e access. In discretionary access control, ownership is the sole requirement
for being allowed to grant or revoke access to a resource.

Last but not least, file owners may just open up files and directories for everyone on
the system if there is no group that is matching to the list of the users to authorize.
This breaks the concept of least privilege, that is, not granting more permissions on a
system than required for its operation.

[57]

Using Python for Windows and Linux Forensics

To maintain the discretionary access control as well as the concept of least privilege,
an optional extension to the file access mode was specified, that is, POSIX ACL.
Besides allowing read, write, and execute permissions for the file owner, group,
and others, POSIX ACLs allow to specify the following;:

* Specific read, write, and execute permissions for arbitrary users
* Specific read, write, and execute permissions for arbitrary groups

* Every privilege that is not set in the access mask is not granted. Only the
permissions of the file owner and others are not affected by the access mask.

On the command line, the get facl and setfacl tools can be used to read and
modify the POSIX ACL entries respectively:

user@lab:~$ touch /tmp/mytest

user@lab:~$ getfacl /tmp/mytest

getfacl: Removing leading '/' from absolute path names

file: tmp/mytest

owner: user

group: user

user: :rw-

group::r--

other::r--

This example also shows that the standard permission set is reflected in the POSIX
ACL. Consequently, if POSIX ACLs are supported on a filesystem, then the complete
permission set is contained in POSIX ACLs.

Let's revoke the read access to other users and add read/write access to the user
games, as shown here:

user@lab:~$ setfacl -m o0::0 -m u:games:rw /tmp/mytest
user@lab:~$ getfacl /tmp/mytest

getfacl: Removing leading '/' from absolute path names
file: tmp/mytest

owner: user

group: user

user: :rw-

user:games:rw-

group: :r--

mask: :rw-

[58]

Chapter 3

user@lab:~$ ls -1 /tmp/mytest
-rw-rw----+ 1 user user 0 May 16 16:59 /tmp/mytest

The -m o::0 parameter removes all the privileges from other users while

-m u:games:rw grants read/write access to the user games. The subsequent call
to getfacls shows the additional entry for user:games and the changed entry for
other. Furthermore, a mask entry is automatically created to limit the access from
all the listed groups and users (except the file owner) to read/write.

The output of the 1s command shows a plus sign + to indicate the existence of

the additional ACL entries. As also indicated by the output of 1s, tools that only
evaluate the mode bits of a file are unaware of the additional permissions, for
example, the additional access privileges for the user games do not show up in the
standard output of 1s or other file management applications.

. Forensic tools that do not look for and interpret POSIX
% ACL entries may miss the additional access rights that are
=" introduced by the ACL entries! Consequently, the investigator
may get a false impression of strict, effective privileges.

Fortunately, the Python library pylibacl can be used to read and evaluate POSIX
ACLs and hence, avoid that pitfall. The library introduces the posix1le module,

that is, a reference to the initial draft first mentioning POSIX ACLs. The detailed
documentation about this library is available at http://pylibacl.k1024.0rg/.

The following script is an example of how to look for files with the additional
ACL entries:

#!/usr/bin/env python

import os

from os.path import join
import posixle

import re

import stat

import sys

def acls from file(filename, include standard = False):
""r"Returns the extended ACL entries from the given
file as list of the text representation.

Arguments:
filename -- the file name to get the ACLs from

[59]

http://pylibacl.k1024.org/

Using Python for Windows and Linux Forensics

include standard -- if True, ACL entries representing
standard Linux permissions will be
included"""
result = []
try:

acl = posixle.ACL(file=filename)
except:

print 'Error getting ACLs from %s' % filename
return []

text = acl.to_any text (options=posixle.TEXT ABBREVIATE | posixle.
TEXT NUMERIC IDS)

for entry in text.split("\n"):
if not include_standard and \
re.search(r'”*[ugo]l::', entry) != None:
continue
result.append (entry)

return result

def get acl list (basepath, include standard = False):
"mrCollects all POSIX ACL entries of a directory tree.

Arguments:
basepath -- directory to start from
include standard -- if True, ACL entries representing

standard Linux permissions will be
included" "
result = {}

for root, dirs, files in os.walk(basepath):
for £ in dirs + files:
fullname = join(root, £f)

skip symbolic links (target ACL applies)
if stat.S ISLNK(os.lstat(fullname).st mode):
continue

acls = acls from file(fullname, include standard)
if len(acls) > 0:

[60]

Chapter 3

result [fullname] = acls
return result

if name == ' main ':
if len(sys.argv) < 2:

print 'Usage %s root directory' % sys.argv[0]
sys.exit (1)

acl list = get acl list(sys.argv[l], False)

for filename, acls in acl list.iteritems():

)

print "%s: %s" % (filename, ','.join(acls))

The posixle.ACL class represents all the permissions set on a specific object on the
filesystem. When its constructor is called with a filename as the file parameter, it
represents ACL of that file. In the acls_from file () function, a regular expression
is used to detect and optionally filter out the standard permissions from the text
representation of the ACL set.

The os.walk () function is used to iterate over a subtree of the filesystem. If you
iterate over os.walk () like in the example, you get a triple in each iteration denoting
the following:

* The currently visited directory
* Alist with all of its subdirectories (relative to the currently visited directory)

* Alist with all of its nondirectory entries, for example, files and soft links
(relative to the currently visited directory)

The check in the last highlighted line of the script is an example of the evaluating file
type information as described in the previous section. It is used to detect and skip
symbolic links. The symbolic links always use ACLs of their target and consequently,
POSIX ACLs on symbolic links are not supported.

When invoked with /tmp as the parameter on our lab machine, it generates the
following output:

/tmp/mytest: u:5:rw-,m: :rw-

This output shows that the script detected the leftovers from our first tests with
POSIX ACLs: An additional read/write permission for user (u) ID 5 (that is, user
games on the lab machine) and a mask (m) entry that limits the effective privileges
to read/write. The script outputs the numerical user IDs because pylibacl would
otherwise use your workstation's /etc/passwd to look up the usernames.

[61]

Using Python for Windows and Linux Forensics

If you run this script on a copy of the filesystem that contains your evidence,
it will list every filesystem object with permissions beyond the Linux standard
permission set.

Most standard Linux systems and their applications do not use
POSIX ACLs. Therefore, if you encounter any additional POSIX ACL

entries during your investigation, it is a good idea to thoroughly
"~ check whether these POSIX ACLs were the result of a legitimate and

benign system operation.

Reading file capabilities with Python

Traditionally, in Linux, there are two types of administrative privileges: root and
non-root. If a process is granted the root privileges, that is, it runs with UID 0, then
it may bypass every security restriction of the Linux kernel. On the other hand, if a
process does not run with these root privileges, then all security restrictions of the
kernel apply.

In order to replace this all or nothing mechanism with a more fine-grained system,
the Linux capabilities were introduced. The corresponding man page describes it as
the following:

For the purpose of performing permission checks, traditional UNIX
implementations distinguish two categories of processes: privileged processes
(whose effective user ID is 0, referred to as superuser or root), and unprivileged
processes (whose effective UID is nonzero).

Privileged processes bypass all kernel permission checks, while unprivileged
processes are subject to full permission checking based on the process's credentials
(usually: effective UID, effective GID, and supplementary group list).

Starting with kernel 2.2, Linux divides the privileges traditionally associated with
superuser into distinct units, known as capabilities, which can be independently
enabled and disabled. Capabilities are a per-thread attribute.

What capabilities exist?

The list of Linux capabilities can be found in the /usr/include/
~ linux/capability.h file on a standard Linux system. A more
Q human-readable form is provided in the capabilities man page. It
can be viewed viaman 7 capabilities. The Linux capabilities
include every special permission granted to the root user, for example,
overriding file permissions, using raw network connections, and so on.

[62]

Chapter 3

Capabilities can be assigned to the threads of processes during the execution
and to the executables on the filesystem. In either case, there are always three
sets of capabilities:

permitted set (p): The permitted set contains all capabilities that a thread
may request. If an executable is started, its permitted set is used to initialize
the permitted set of the process.

inheritable set (i): The inheritable set of an execution set defines the
capabilities that may be forwarded from the thread to a child process.
However, only capabilities that are defined in the inheritable set of the
executable file of the child process are forwarded to the child process.
Therefore, a capability is only inherited if it is in the inheritable set of the
parent process and in the file attribute of the child executable.

effective set (e): This is the set of capabilities that the Linux kernel actually
checks when a privileged operation is requested from an execution thread.
By calling cap_set_proc (), a process can disable or enable the capabilities.
Only capabilities in the permitted set (p) may be enabled. On the filesystem,
the effective set is represented by only one bit. If this bit is set, the executable
is started with all of its permitted capabilities also being effective. If the bit is
not set, the new process starts without the effective capabilities.

Capabilities grant administrative privileges to executables without
%j%‘\ requiring the SUID bit in the file mode. Therefore, during a forensic
g investigation, all the file capabilities should be documented.

Using Python's ctypes, the shared 1ibcap. so. 2 library can be utilized to retrieve all
the file capabilities from a directory tree, as follows:

#!/usr/bin/env python

import ctypes

import os

from os.path import join

import sys

load shared library

libcap2 = ctypes.cdll.LoadLibrary('libcap.so.2"')

class cap2 smart char p(ctypes.c_char p):

"""Tmplements a smart pointer to a string allocated
by libcap2.so.2"""
def del (self) :

[63]

Using Python for Windows and Linux Forensics

libcap2.cap free(self)

note to ctypes: cap to text() returns a pointer
that needs automatic deallocation
libcap2.cap to text.restype = cap2 smart char p

def caps from file(filename) :
"""Returns the capabilities of the given file as text"""

cap t = libcap2.cap get file(filename)
if cap t == 0:
return ''
return libcap2.cap to text (cap t, None).value

def get caps list (basepath):
"m"nCollects file capabilities of a directory tree.

Arguments:
basepath -- directory to start from"""

result = {}
for root, dirs, files in os.walk (basepath) :
for £ in files:

fullname = join(root, £f)
caps = caps_from file(fullname)
if caps != '':

result [fullname] = caps

return result

if mname == ' main ':
if len(sys.argv) < 2:

print 'Usage %s root directory' % sys.argv[0]
sys.exit (1)

capabilities = get caps list(sys.argv([1])

for filename, caps in capabilities.iteritems() :

)

print "%s: %s" % (filename, caps)

[64]

Chapter 3

The first highlighted line loads the 1ibcap.so. 2 library for direct use in Python.
As the memory for the text representation of the capabilities is allocated in this
library, it is the responsibility of the caller, that is, our script, to deallocate this
memory after usage. The solution for this task, which was chosen here, is to extend
the ctype default representation of pointer to character, that is, ctype.c_char_p.
The resulting cap2_smart_char_p class is a simple version of the so-called smart
pointer: If the Python representation of objects of this class is being destroyed, the
objects will automatically call cap_free () to free the corresponding resources that
are previously allocated by 1ibcap.so.2.

With the cap_get_file ()library function, the capabilities of a file can be retrieved.
The subsequent call to cap_to_text () transforms this internal representation into
human-readable text.

If the script is saved to chap03_capabilities.py, then it can be called on the lab
machine as shown in the following;:

user@lab:~$ python chap03 capabilities.py /usr

Of course, the output is highly dependent on the Linux version and distribution. It
may look similar to the following;:

/usr/bin/gnome-keyring-daemon: = cap_ ipc lock+ep

This output means that only one executable in /usr has the special capabilities
set: /usr/bin/gnome-keyring-daemon. The name of the capability is given by the
constant cap_ipc_lock, this capability is in the permitted set and is immediately
effective on starting this program as denoted by +ep.

To resolve the meaning of cap_ipc_lock, we will call the following;:

user@lab:~$ man 7 capabilities

Then we will search for CAP_IPC_LOCK. This reveals that the capability grants the
right to lock the parts or all of a process memory in RAM and prevent the swapping
of that process. As gnome-keyring-daemon stores user credentials in RAM, having
the privilege to prevent these credentials from being written to the swap is highly
advisable from a security perspective.

. Currently, most of the standard Linux distributions make little use of
the file capability feature. Therefore, the discovered file capabilities —
s especially those that are not required for normal operation —may be
the first indicator of system manipulation.

[65]

Using Python for Windows and Linux Forensics

Clustering file information

In the previous section, we showed you how to retrieve and collect file metadata
from the Linux/Unix filesystem. In this section, we will provide examples to
locate the changes in the filesystem metadata, which may be interesting for further
inspection by the investigator.

Creating histograms

Creating histograms is the process of clustering the data in bins of equal size and
drawing the size of these bins. With Python, plotting these histograms can be easily
achieved using the Python matplotlib module. A detailed documentation including the
use cases, examples, and Python source code is available at http: //matplotlib.org/.

The following Python script can be used to generate and display the histograms of
file access times and file modification times of a directory tree:

#!/usr/bin/env python

from datetime import datetime

from matplotlib.dates import DateFormatter
import matplotlib.pyplot as plt

import os

from os.path import join

import sys

max. number of bars on the histogram
NUM_BINS = 200

def gen filestats(basepath) :
""nCollects metadata about a directory tree.

Arguments:
basepath -- root directory to start from

Returns:
Tuple with list of file names and list of
stat results."""

filenames = []
filestats []

for root, dirs, files in os.walk (basepath) :
for £ in files:

[66]

http://matplotlib.org/

Chapter 3

def

fullname = join(root, £f)

filenames.append (fullname)

filestats.append(os.lstat (fullname))
return (filenames, filestats)

show _date histogram(times, heading='', block=False):

"""Draws and displays a histogram over the given timestamps.
Arguments:

times -- array of time stamps as seconds since 1970-01-01
heading -- heading to write to the drawing

block --- if True, the graph window waits for user interaction"""

fig, ax = plt.subplots()

times = map(lambda x: datetime.fromtimestamp (x) .toordinal(),

times)

ax.hist (times, NUM BINS)
plt.xlabel ('Date')
plt.ylabel ('# of files')
plt.title (heading)

ax.autoscale view()

ax.xaxls.set major formatter (DateFormatter('%Y-%tm-%d'))
fig.autofmt xdate ()

fig.show ()
if block:
plt.show ()

if name == ' main ':

if len(sys.argv) < 2:

)

print 'Usage %s base directory' % sys.argv[0]
sys.exit (1)

path = sys.argv[1l]
(names, stats) = gen filestats(path)

extract time stamps
mtimes = map(lambda x: x.st mtime, stats)

[67]

Using Python for Windows and Linux Forensics

atimes = map(lambda x: x.st_atime, stats)

show date histogram(mtimes, 'mtimes of ' + path)
show date histogram(atimes, 'atimes of ' + path, True)

The gen_filestats () function iterates the directory tree and collects all inode data.
The show_date_histogram() function is used to generate and display the data as
a histogram.

In the first highlighted line of the code, the encoding of the timestamp is changed.
This is required because the inode data gives us the timestamps as number of
seconds since 1970-01-01. This format is what datetime.fromtimestamp () expects.
However, Matplotlib needs timestamps in number of days since 0001-01-01 of the
Gregorian calendar. Fortunately, the datetime class can provide this representation
with its toordinal () method.

The next highlighted line is the actual generation and drawing of the histogram in
the following figure. All the other statements of show_date_histogram() merely
serve the purpose of adding labels and formatting to the drawing.

The following is a sample result of the /sbin directory on a standard Linux
desktop system:

mtimes of /sbin
30 . . .
25+ |
20+ |
wn
@
= 15- i
(=]
H
10+ |
5 |- -
A |
5 02 t 22 v) ,°
o A0 AN N N 46®
of
,-J_Q 10 ’LQ Q Q ,-J_Q
Date

[68]

Chapter 3

Here, the dates of the major system updates are clearly visible. An investigator
should be aware that the file metadata and these histograms do not contain historic
file information. Therefore, from the previous histogram, one cannot derive that there
were little or no security updates before December 2011. It is more likely that most
of the files that were patched before December 2011 have been modified later on,
therefore, masking older patches in the histogram.

Let's take a look at the access time distribution of this directory:

atimes of /sbin
90 . . .
80 1
70+ 1
60 1
950t .
—
s 401 1
30+ 1
20 1
10+ 1
0 ! 1 L 1 ! 1 N | 1 TP N 1
A 6 b A W
o oo 0‘5'06 ®” \}ﬁ 0‘»’01 N ab"."l oo ®
NS NS NS NS AN N3 Ny el A5
20 70 70 70 70 720 20 70 70
Date

This histogram provides some insight about the access pattern of this directory. First,
the atime timestamp tracking is enabled on the systems. Otherwise, no current access
timestamps would be visible in the histogram. About half of the files have been read
recently. This information can be used to verify the information about the time when
the evidence was acquired or when the system operator claimed to have taken the
system offline.

Furthermore, the contents of this directory were very likely not scanned regularly
for viruses and were not recently packed into an archive. Both the actions usually
update the atime timestamp.

[69]

Using Python for Windows and Linux Forensics

If the following command is issued on the system, then /sbin is scanned for viruses.
Of course, the scanner has to read every file in that directory to scan its contents:

user@lab:~$ clamscan -i /sbin

The atime diagram of /sbin reflects the changes, as follows:

atimes of /sbin

160 T

140]

120 b

100} 1

80 8

of files

40]

20 8

The changes are obvious: Most of the bars have collapsed in one at the current
time, that is, the time of the virus scan. The timescale is stretched to a single day.
Consequently, the bar on the left can also be considered to be a result of the virus scan.

. If there is a directory having all the at ime timestamps on a single
% date, then this directory was recently copied, scanned for viruses,
e or packed in an archive. Of course, with sufficient access rights, the
timestamps could have been manually set as well.

[70]

Chapter 3

Advanced histogram techniques

In the previous section, the histograms were used to learn about the filesystem
metadata. However, these histograms have a number of disadvantages, as follows:

All histogram bars are of equal width

The bars are not placed according to the actual clustering of the data, for
example, a cluster may be distributed over two bars

The outliers disappear, that is, the low bars are easily confused with the
empty bars

Therefore, this section presents an example of how to use simple machine learning
algorithms for a smarter clustering of the data. A widely used machine learning
library for Python is scikit-learn. Among other domains, it provides several
algorithms for clustering the input data. We recommend visiting http://scikit-
learn.org for an overview of all the algorithms and examples of their use. The
following Python script uses the DBSCAN algorithm from scikit-learn to generate
clusters of a given width (in days):

#!/usr/bin/python

from datetime import date

import numpy as np

import os

from os.path import join

from sklearn.cluster import DBSCAN

import sys

def gen filestats(basepath):

"mnCcollects metadata about a directory tree.

Arguments:
basepath -- root directory to start from

Returns:
Tuple with list of file names and list of
stat results."""

filenames = []
filestats = []

for root, dirs, files in os.walk (basepath) :
for £ in files:

[71]

http://scikit-learn.org
http://scikit-learn.org

Using Python for Windows and Linux Forensics

def

def

def

def

fullname = join(root, £f)

filenames.append (fullname)

filestats.append(os.lstat (fullname))
return (filenames, filestats)

_calc_clusters(data, eps, minsamples) :

samples = np.array (data)

db = DBSCAN(eps=eps, min samples=minsamples) .fit (samples)
return (db.labels , db.core sample indices)

calc_atime clusters(stats, days=1, mincluster=5):
"mrnclusters files regarding to their 'last access' date.

Arguments:

stats -- file metadata as returned as 2nd element by gen filestats
days -- approx. size of a cluster (default: accessed on same day)
mincluster -- min. number of files to make a new cluster

Returns:
Tuple with array denoting cluster membership
and indexes of representatives of cluster cores"""

atimes = map(lambda x: [x.st atime], stats)
return calc clusters(atimes, days * 24 * 3600, mincluster)

calc mtime clusters(stats, days=1, mincluster=5):
"mrclusters files regarding to their 'last modified' date.

Arguments:

stats -- file metadata as returned as 2nd element by gen filestats
days -- approx. size of a cluster (default: accessed on same day)
mincluster -- min. number of files to make a new cluster

Returns:

Tuple with array denoting cluster membership

and indexes of representatives of cluster cores"""
mtimes = map(lambda x: [x.st mtime], stats)

return calc clusters(mtimes, days * 24 * 3600, mincluster)

calc_histogram(labels, core indexes, timestamps) :

[72]

Chapter 3

reserve space for outliers (label -1), even if there are none

num_entries = len(set(labels)) if -1 in labels else
len(set (labels))+1

counters = [0] * num entries
coredates = [0] * num entries

for ¢ in core indexes:
i = int(c)
coredates[int (labels[i])+1] = timestamps[i]

for 1 in labels:
counters [int (1) +1] += 1

return zip(coredates, counters)

def print histogram(histogram) :
sort histogram by core time stamps
sort _histo = sorted(histogram, cmp=lambda x,y: cmp(x[0],y[0]))

print '[date around] [number of files]'
for h in sort histo:
if h[0] == O:
print '<outlierss>',

else:
t = date.fromtimestamp (h[0]) .isoformat ()
print t,
print $6d' % h[1l]
if name == ' main ':

if len(sys.argv) < 2:
print 'Usage %s base directory [number of days in one

)

cluster]' % sys.argv[0]
sys.exit (1)

days = 1
if len(sys.argv) > 2:

days = int (sys.argv[2])

names, stats = gen filestats(sys.argv[1])

print '%d files to analyze...' % len(names)

[73]

Using Python for Windows and Linux Forensics

atime labels, atime cores = calc_atime clusters(stats, days)
mtime labels, mtime cores = calc mtime clusters(stats, days)

atimes = map(lambda x: x.st_atime, stats)
mtimes = map(lambda x: x.st mtime, stats)

ahisto = calc histogram(atime labels, atime cores, atimes)
mhisto = calc_histogram(mtime labels, mtime cores, mtimes)

print "\n=== Access time histogram ==="
print histogram(ahisto)

print "\n=== Modification time histogram ==="
print histogram(mhisto)

The gen_filestats () function is identical to the version used for the basic
histograms in the previous section. The calc_atime_clusters() and calc_mtime_
clusters () functions extract the access and modification time of the collected
information and pass it on to the cluster generation in _calc_clusters. The DBSCAN
is initialized with two parameters: the size of a cluster (eps, in seconds) and the
minimum number of sample data that can make a cluster (min_samples). After the
parameters of the algorithm are set, the data is fed in for the purpose of clustering
via the fit () method.

The result of this clustering is a tuple that consists of labels and a list of indices per
label. A label correlates to a cluster that is found in the input data. Its value is the
center, that is, the average date, of all dates of the cluster. The special label -1 acts
as a container for all the outliers, that is, all the data that could not be assigned

to a cluster.

The calc histogram() function counts the size of each cluster and returns the
histogram, that is, the labels and the number of entries as two-dimensional array.

We can run this Python script on the /sbin directory, as follows:
user@lab:~$ python timecluster.py /sbin
The output may look similar to the following;:

202 files to analyze...

=== Access time histogram ===

[74]

Chapter 3

[date around] [number of files]
<outliers> 0

2015-05-24 202

=== Modification time histogram ===

[date around] [number of files]

<outliers> 64
2011-11-20 9
2012-02-09 5
2012-03-02 6
2012-03-31 11
2012-07-26 6
2012-09-11 10
2013-01-18 15
2013-01-26 6
2013-03-07 8
2014-06-18 29
2014-11-20 7
2015-02-16 19
2015-05-01 7

Here, the access time histogram shows only one entry, reflecting our previous scan of
the directory. Furthermore, all the major system updates in the recent past are shown
in the modification time histogram.

With this tool, the investigator is able to cluster the filesystem information in order
to detect the scanning or extraction of the directories as well as the neglected security
patches. Furthermore, the special cluster -1 can be analyzed to get the names of the
files, which were modified outside of the major system updates.

[75]

Using Python for Windows and Linux Forensics

Summary

In this chapter, we saw prominent examples of the special properties of Microsoft
Windows and Linux (and Linux-like) systems. You are now able to extract
information from the Windows event log, the Windows registry, Linux files, and
the Linux filesystem. Using Python, all of this information can be automatically and
semiautomatically analyzed for the Indicators of Compromise, reconstructing the
recent system activity, and signs of exfiltration.

Furthermore, reading the filesystem capabilities shows us how to use ctype to load
the native libraries to assist the filesystem analysis.

In the clustering of file information, we provided the first example on how to use the
basic machine learning algorithms to support the forensic analysis.

Now that we took a look at the local systems, we will go to the next chapter and take
a look at the network traffic and how to search for the Indicators of Compromise
(IOC) there.

[76]

Using Python for
Network Forensics

In this chapter, we will focus on the parts of the forensic investigation that are
specific to the network layer. We will choose one of the most widely used Python
packages for the purpose of manipulating and analyzing network traffic (Scapy)
as well as a newly released open source framework by the U.S. Army Research
Laboratory (Dshell). For both the toolkits, we have selected the examples of
interesting evidence. This chapter will teach you the following;:

e How to search for IOC in network traffic
* How to extract files for further analysis
* How to monitor accessed files through Server Message Block (SMB)

* How to build your own port scanner

Using Dshell during an investigation

Dshell is a Python-based network forensic analysis toolkit that is developed by the
U.S. Army Research Laboratory and released as open source at the end of 2014. It can
help in making the forensic investigations on the network layer a little easier. The
toolkit comes with a large number of decoders that can be used out of the box and
are very helpful. Some of these decoders are as follows:

* dns: Extracts and summarizes DNS queries/responses
* reservedips: Identifies the DNS resolutions that fall in the reserved IP space

* large-flows: Displays the netflows that have at least transferred 1MB

[77]

Using Python for Network Forensics

* rip-http: Extracts the files from the HTTP traffic
* protocols: Identifies non-standard protocols
* synrst: Detects failed attempts to connect (SYN followed by a RST/ACK)

Dshell can be installed in our lab environment by cloning the sources from GitHub at,
https://github.com/USArmyResearchLab/Dshellandrunnhq;install—ubuntu.
py. This script will automatically download the missing packages and build the
executables that we will need afterwards. Dshell can be used against the pcap files that
have been recorded during the incidents or as a result of an IDS alert. A packet capture
(pcap) file is either created by libpcap (on Linux) or WinPcap (on Windows).

In the following section, we will explain how an investigator can make use of Dshell
by demonstrating the toolkit with real-world scenarios that are gathered from
http://malware-traffic-analysis.net

The first example is a malicious ZIP file that a user has encountered through an email
link. The user logged in to Gmail and clicked the download link in the mail. This can
easily be seen with the web decoder of Dshell, as follows:

user@lab:~$ source labenv/bin/activate

(labenv)user@lab:~$./dshell
(labenv)user@lab:~$ Dshell> decode -d web infected email.pcap

web 2015-05-29 16:23:44 10.3.162.105:62588 -> 74.125.226.181:80
** GET mail.google.com/ HTTP/1.1
// 200 OK 2015-05-29 14:23:40 *=*

web 2015-05-29 16:24:15 10.3.162.105:62612 <- 149.3.144.218:80
** GET sciclubtermeeuganee.it/wp-content/plugins/feedweb data/pdf efax
message 3537462.zip HTTP/1.1

// 200 OK 2015-05-28 14:00:22 *=*

[78]

https://github.com/USArmyResearchLab/Dshell
http://malware-traffic-analysis.net

Chapter 4

When looking at the previous traffic extract, the ZIP file could be the first Indicator
of Compromise. Therefore, we should take a deeper look at it. The easiest way to do
this is to rip the ZIP file out of the pcap file and compare its md5 hash against the
VirusTotal database:

(labenv)user@lab:~$ Dshell> decode -d rip-http --bpf "tcp and port 62612"
infected email.pcap

rip-http 2015-05-29 16:24:15 10.3.162.105:62612 <-
149.3.144.218:80 ** New file: pdf efax message 3537462.zip
(sciclubtermeeuganee.it/wp-content/plugins/feedweb data/pdf efax
message 3537462.zip) **

--> Range: 0 - 132565

rip-http 2015-05-29 16:24:15 10.3.162.105:62612 <-
149.3.144.218:80 ** File done: ./pdf efax message 3537462.zip
(sciclubtermeeuganee.it/wp-content/plugins/feedweb data/pdf efax
message 3537462.zip) **

(labenv)user@lab:~$ Dshell> md5sum pdf efax message 3537462.zip
9cda66cba36af799c564b8b33c390bf4 pdf efax message 3537462.zip

In this simple case, our first guess was right as the downloaded ZIP file
contains another executable that part of an infostealer malware kit, as seen
in the following screenshot:

2 total

SHA256: 78dD0fd080B5eb2c435347 4e5063056dadbdai 67 d7 5i3cedc2Bb826480e0d 1089
Dateiname: pdi_sefax_message_3537462.zip :‘\z-
Erkennungsrate: 40/ 57 .r 2) O

Analyse-Datum: 2015-06-11 07:22:15 UTC | vor 4 Tage, 13 Stunden }

™ Analyse @, File detail ¢ Refationships 0 Zusitzliche Informationen # Kommentare o £ Bewertungen
Antivirus Ergebnis Aktualisierung
AlLYac Trojan.GenericKD. 2447672 201506811

AMG Ganeric36.BNIU 20150611
AVware Lookslike.Win32.Crowti.anlag (v) 20150611
Ad-Aware Trojan.GenerickKD, 2447672 20150811

[79]

Using Python for Network Forensics

Another really good example is searching for the accessed files on a network share
via the SMB protocol. This can be very helpful when trying to find out whether an
attacker was able to access or even exfiltrate the data and —if successful —which data
has been potentially leaked:

(labenv)user@lab:~$ Dshell> decode -d smbfiles exfiltration.pcap

smbfiles 2005-11-19 04:31:58 192.168.114.1:52704 ->
192.168.114.129:445 **% VNET3\administrator \\192.168.114.129\TEST\
torture gfileinfo.txt (W) **

smbfiles 2005-11-19 04:31:58 192.168.114.1:52704 ->
192.168.114.129:445 *% VNET3\administrator \\192.168.114.129\
TESTTORTUR~1.TXT (-) **

smbfiles 2005-11-19 04:31:58 192.168.114.1:52705 ->
192.168.114.129:445 ** VNET3\administrator \\192.168.114.129\TEST\
testsfileinfo\fname test 18.txt (W) **

With the help of the rip-smb-uploads decoder, Dshell is also able to automatically

extract all the uploaded files of the recorded pcap file. Another interesting example
is searching for the IOC with the help of the snort rules, which can also be done by
Dshell, as follows:

(labenv)user@lab:~$ Dshell> decode -d snort malicious-word-document.
pcap --snort rule 'alert tcp any 443 -> any any (msg:"ET CURRENT EVENTS
Tor2Web .onion Proxy Service SSL Cert (1)"; content:"|55 04 03|";
content:"*.tor2web.";)' -snort_alert

snort 2015-02-03 01:58:26 38.229.70.4:443 --
192.168.120.154:50195 ** ET CURRENT_EVENTS Tor2Web .onion Proxy Service
SSL Cert (1) =**

snort 2015-02-03 01:58:29 38.229.70.4:443 --
192.168.120.154:50202 ** ET CURRENT_EVENTS Tor2Web .onion Proxy Service
SSL Cert (1) =*=*

snort 2015-02-03 01:58:32 38.229.70.4:443 --
192.168.120.154:50204 ** ET CURRENT_EVENTS Tor2Web .onion Proxy Service
SSL Cert (1) =*=*

In this example we opened a potentially malicious Word document that we

have received within a spam email. The Word document is trying to download

the Vawtrak malware and thereby communicating over the Tor network. The

snort rule we are using originates from Emerging Threats, (refer to http://www.
emergingthreats.net/), and is searching for known SSL certificates for the
Tor2Web service (a service to let users access Tor Onion Services without using the
Tor Browser). Similar checks can be done using all available snort rules and can be
very helpful if you are searching for a specific attack within the network.

[80]

http://www.emergingthreats.net/
http://www.emergingthreats.net/

Chapter 4

As an alternative to the shown pcap files, all the demonstrated examples can also be
run against an active network connection with the help of the -i interface_name
flag as shown in the following:

(labenv)user@lab:~$ Dshell> decode -d netflow -i ethO

2015-05-15 21:35:31.843922 192.168.161.131 -> 85.239.127.88 (None
-> None) TCP 52007 80 0 0 0 0 5.1671s
2015-05-15 21:35:31.815329 192.168.161.131 -> 85.239.127.84 (None
-> None) TCP 46664 80 0 0 0 0 5.1976s
2015-05-15 21:35:32.026244 192.168.161.131 -> 208.91.198.88 (Nomne
-> None) TCP 40595 80 9 25 4797 169277 6.5642s
2015-05-15 21:35:33.562660 192.168.161.131 -> 208.91.198.88 (Nomne
-> None) TCP 40599 80 9 19 4740 85732 5.2030s
2015-05-15 21:35:32.026409 192.168.161.131 -> 208.91.198.88 (None
-> None) TCP 40596 80 7 8 3843 121616 6.7580s
2015-05-15 21:35:33.559826 192.168.161.131 -> 208.91.198.88 (None
-> None) TCP 40597 80 5 56 2564 229836 5.2732s

In this example, we are generating the netflow data of an active connection.
Dshell is purely written in Python, which makes it highly adaptable to all the
needs of the forensic investigators and can also be used in a chain with other
tools or predefined processes.

If you want to test this, you can download the sample files from
http://www.emergingthreats.net/.

Using Scapy during an investigation

Another great Python-based tool to analyze and manipulate the network traffic is
Scapy. According to the developer website, http://www.secdev.org/projects/

scapy/:

"Scapy is a powerful interactive packet manipulation program. It is able to forge or
decode packets of a wide number of protocols, send them on the wire, capture them,
match requests and replies, and much more."

Scapy differs from the standard tools (and also from Dshell) by providing an
investigator with the ability to write small Python scripts that can manipulate or
analyze the network traffic —either in a recorded form or in real-time. Furthermore,
Scapy has the ability to perform deep packet dissection, passive OS fingerprinting,
or plotting via third-party tools, such as GnuPlot, as built-in features are already
available.

[81]

http://www.emergingthreats.net/
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/

Using Python for Network Forensics

The following Python script, which is taken from Grow Your Own Forensic Tools:
A Taxonomy of Python Libraries Helpful for Forensic Analysis, SANS Institute InfoSec
Reading Room, is a very brief example of how powerful Scapy is:

import scapy, GeoIP
from scapy import *

geolp = GeoIP.new(GeoIP.GEOIP_ MEMORY CACHE)
def locatePackage (pkg) :
src=pkg.getlayer (IP) .src
dst=pkg.getlayer (IP) .dst
srcCountry = geolp.country code by addr(src)
dstCountry = geolp.country code by addr (dst)

print src+" ("+srcCountry+") >> "+dst+" ("+dstCountry+")\n"

try:
while True:

sniff (filter="ip", prn=locatePackage, store=0)

except KeyboardInterrupt:
print "\n" + "Scan Aborted!"

This script records the statistics about the geolocation of the IP address source and the
destination of an ongoing network connection. After importing the Scapy package
into our Python script, we call the sniff function and use a filter to detect only the IP
packets. The last parameter in the sniff function is very important if you plan to run
Scapy scripts for a long time. With the help of the store parameter, you can tell Scapy
to not cache all the packages in RAM during the runtime and thus make the script
faster and resource saving. The subsequent function looks up the geolocation of the
source and destination IP address that is extracted from each packet.

In the next example, we will illustrate how to build a very simple port scanner with

the help of Scapy, as follows:

#!/usr/bin/env python

import sys
from scapy.all import *

targetRange = sys.argv[1]
targetPort = sys.argv[2]
conf .verb=0

p=IP (dst=targetRange) /TCP (dport=int (targetPort),
ans,unans=sr (p, timeout=9)

for answers in ans:
if answers[1l].flags ==
print answers[1

flags="8")

Chapter 4

This small script is able to scan whole IP ranges for a given open port. If you are
searching the web servers that are listening on port 80, you can use the script,
as follows:

(labenv)user@lab:~$./scanner.py 192.168.161.1/24 80

WARNING: No route found for IPv6 destination :: (no default route?)

192.168.161.12

192.168.161.34
192.168.161.111

We can also use the Address Resolution Protocol (ARP) for a reconnaissance of the

whole network range that our system is connected to. With the help of the following
script, we get a nicely printed table with all the IP addresses that are online and also

their corresponding MAC addresses:

#! /usr/bin/env python

import sys
from scapy.all import srp,Ether,ARP,conf

if len(sys.argv) != 2:

print "Usage: arp ping <net> (e.g.,: arp ping 192.168.1.0/24)"

sys.exit (1)

conf .verb=0
ans,unans=srp (Ether (dst="ff:ff:ff:ff:£ff:ff") /ARP (pdst=sys.argv[1l]),
timeout=9)

print r"+-------------—----- e It
print r"| MAC Ip "
print r"+------------------ e It
for snd,rcv in ans:
print rcv.sprintf (r" %Ether.src% | %ARP.psrc%")
print r"+------------------ e It

When executing the script, we will receive something similar to this:

(labenv)user@lab:~$./arp ping.py 192.168.161.131/24

WARNING: No route found for IPv6 destination :: (no default route?)

[83]

Using Python for Network Forensics

192.168.161.1
192.168.161.2
192.168.161.254

00:50:56:c0:00:08
00:50:56:£5:d3:83
00:50:56:£1:2d4:28

Scripts such as these two can be very useful if no port scanner is available on the
system or if you want to chain a port scanner with the other Python-based scripts
for your investigation.

Summary

This chapter provided an overview of the domains of network-based forensic
investigations and the examples with Dshell and Scapy. We have demonstrated
how to search for suspicious HTTP connections (such as file downloads) or how to
search for leaked data through the SMB protocol with Dshell. In the second section,
we created our own port scanner with the help of Scapy and used it to gather more
information about the potentially compromised systems.

After we discussed the areas of forensic algorithms, Windows and Unix systems, as
well as the network layer, the following chapter will deal with virtualized systems
and hypervisors that are becoming an important part of every company.

[84]

Using Python for
Virtualization Forensics

Currently, virtualization is one of the most trending concepts of modern IT. For
forensic analysis, it introduces new challenges as well as new techniques.

In this chapter, we will show how virtualization introduces the following:

* New attack vectors
* New chances of gathering evidence
* New targets for forensic analysis such as the virtualization layer

e New sources for forensic data

Considering virtualization as a new
attack surface

Before we start with a forensic analysis, it is important to understand what to
look for. With virtualization, there are new attack vectors and scenarios that are
introduced. In the following sections, we will describe some of the scenarios and
how to look for the corresponding evidence.

[85]

Using Python for Virtualization Forensics

Virtualization as an additional layer of
abstraction

Virtualization is the technique of emulating IT systems such as servers, workstations,
networks, and storages. The component that is responsible for the emulation of
virtual hardware is defined as hypervisor. The following figure depicts the two main
types of system virtualization that are used today:

app
application 0s | 0s 0S..
operatingsystem | OS | OS | OS.. native apps hypervisor
hypervisor operating system
hardware hardware

The architecture on the left-hand side is called bare-metal hypervisor architecture
and is also known as a Type 1 hypervisor. In this architecture, the hypervisor
replaces the operating system and runs directly on the bare metal hardware.
Examples of Type I hypervisors are VMware ESXi and Microsoft Hyper-V.

The right-hand side of the image depicts an architecture that is usually referred

to as desktop virtualization or a Type 2 hypervisor. In this architecture, there is a
standard operating system that is running on the hardware, for example, a standard
Windows 8 or Linux Desktop system. The hypervisor runs among other native
applications directly on this operating system. Some functionality of the hypervisor
may directly interact with the underlying hardware, for example, by providing
special drivers. For Type 2 hypervisors, the operating system that is running directly
on the hardware is called host OS, while the operating system running on a virtual
machine is called guest OS. Examples of Type 2 hypervisor architectures are Oracle
VirtualBox and VMware Workstation. These hypervisors can be installed just like
any other application on an existing operating system.

While Hyper-V seems like Type 2, it actually converts the
& host OS into just another guest OS during the installation
A . .
and establishes a Type 1 architecture.

[86]

Chapter 5

A common feature of almost all virtualization environments is the ability to create
snapshots. A snapshot of a virtual system contains a frozen-in-time state of the
system. All changes to the system that are happening after the snapshot creation
can be undone by the hypervisor to roll back to the point in time when the snapshot
was taken. Furthermore, most systems allow having multiple snapshots of a

single system and rolling back and forward to arbitrary snapshots. Snapshots can
be utilized as a source of forensic data, which we will demonstrate in the Using
virtualization as source of evidence section.

For forensics, snapshots are to be treated like independent machines!

If a virtual system is subject to forensic analysis, always check whether

this system is a virtual system and whether there are snapshots. If

~ snapshots exist, the forensic analysis has to be repeated for every single

Q snapshot as if this were an independent virtual machine. The rationale

behind this requirement is that it is most likely unknown when the
system was compromised, when the attacker tried to destroy evidence,
and most importantly, what version of the machine was running during
the attack.

Most virtualization environments consist of more than one hypervisor. To ease the
management of multiple hypervisors and to enable additional features; for example,
moving machines between hypervisors for fail over, load balancing, and save power;
these environments provide a central management for all of hypervisors. In the

case of VMware vSphere, this management component is called vCenter Server,

as follows:

VM

ESXi (hypervisor)

vCenter Server ESXi (hypervisor) VM

ESXi (hypervisor)

If vCenter Server is used, then all administrative tasks are supposed to be handled
via this vCenter Server instance.

How does this new hypervisor layer influence attack scenarios and forensics?

[87]

Using Python for Virtualization Forensics

The introduction of the new hypervisor layer also introduces a new layer that can be
used to manipulate virtual systems without detection and adds another new layer
that can be subject to the attacks. In the following sections, we will provide some
sample scenarios for attacks that are committed through the hypervisor.

Creation of rogue machines

If an attacker can get access to the hypervisor, he may just create new virtual
resources. These resources can act as a bridgehead in the network or just steal
memory and compute resources from the environment. Therefore, it is crucial to
extract the creation and disposal of virtual resources during a forensic analysis
of the hypervisor environment.

Fortunately, every widespread virtualization environment offers APIs and language
bindings to enumerate the virtual machines and other virtual resources of the
environment. In this chapter, we chose to use VMware vSphere as the prominent
example of a virtualization environment.

VMware vSphere is one of the most used virtualization environments
for on-premise virtualization. Its basic structure consists of one central
management instance called vCenter Server and one or multiple systems
%@“ that are actually hosting the virtual environment (hypervisors), called
’ ESXi servers. To programmatically control a vSphere environment with
Python, pyVmomi is used. This Python SDK is available on Github at
https://github.com/vmware/pyvmomi.

In the following, we will use pyVmomi to create a list of all virtual machines. It is
recommended to run such inventory scan at regular intervals to compare the list
of existing virtual assets with your local inventory database.

We recommend to install pyVmomi using pip:

user@lab:~$ pip install --upgrade pyVmomi

. Sample code for pyVmomi
Y
‘Q There is a project on GitHub about a community-provided sample code

for pyVmomi. More information about these samples is available on
https://vmware.github.io/pyvmomi-community-samples/.

[88]

https://github.com/vmware/pyvmomi
https://vmware.github.io/pyvmomi-community-samples/

Chapter 5

Then, a script as shown in the following may be used to enumerate all systems of the
vSphere environment:

#!/usr/bin/env python

from pyVim import connect
from pyVmomi import wvmodl
import sys

def print vm info(vm) :
mnn
Print the information for the given virtual machine.
If vm is a folder, recurse into that folder.

check if this a folder...
if hasattr(vm, 'childEntity'):
vmms = vm.childEntity
for child in wvms:
print_vm info(child)

vm_info = vm.summary
print 'Name: ', vm_info.config.name
print 'State: ', vm_info.runtime.powerState
print 'Path: ', vm_info.config.vmPathName
print 'Guest: ', vm_info.config.guestFullName
print 'UUID: ', vm_info.config.instanceUuid
print 'Bios UUID: ', vm_info.config.uuid
print "---------- \n"

if name == ' main ':

if len(sys.argv) < 5:

print 'Usage: %s host user password port' % sys.argv[0]
sys.exit (1)

service = connect.SmartConnect (host=sys.argv[1l],
user=sys.argv[2],
pwd=sys.argv[3],
port=int (sys.argv[4]))

access the inventory
content = service.RetrieveContent ()

[89]

Using Python for Virtualization Forensics

children = content.rootFolder.childEntity

iterate over inventory
for child in children:
if hasattr (child, 'vmFolder'):
dc = child
else:
no folder containing virtual machines -> ignore
continue

vm_folder = dc.vmFolder

vm_list = vm folder.childEntity

for vm in vm list:
print _vm info (vm)

This script creates a connection to the vCenter Server platform. However, it can also
be used to connect to a single ESXi hypervisor instance. This is possible because the
API offered to the script is identical for both management variants.

The API used by pyVmomi is the vSphere Web Service API. A
detailed description is available in the vSphere Web Services SDK via
https://www.vmware .com/support/developer/vc-sdk/.

The highlighted lines show that the script uses recursion to enumerate all virtual
machines. This is necessary because in VMware vSphere, virtual machines can be
put into nested groups.

Here is a sample call of this script with the output of a single virtual machine:

user@lab:~$ python enumerateVMs.py 192.168.167.26 'readonly' 'mypwd' 443

Name: vCenterServer

State: poweredOff

Path: [datastorel] vCenterServer/vCenterServer.vmx
Guest: Microsoft Windows Server 2012 (64-bit)

UUID: 522b9%6ec-7987-a974-98f1-ee8c4199dda4

Bios UUID: 564d8ec9-1b42-d235-a67c-d978c5107179

The output lists the name of the virtual machine, its current state, the path of its
configuration file, a hint for the guest operating system, and the unique IDs for the
instance and the BIOS configuration. The path information is valuable, especially,
because it shows where to find all the virtual machine's configuration and data file.

[90]

Chapter 5

Cloning of systems

In the previous section, we used the API of the hypervisor to get the forensic data. In
this section, we will look for traces of abuse of this API. Therefore, we will analyse
the log information of the vSphere installation.

Collect log information on a central log system

In this section, we will assume that the log information is stored with
. the default settings of the vSphere installation. However, when setting
% up a system, we recommend to store the log information on a dedicated
> logging system. This makes it more difficult for an attacker to manipulate
system logs as he requires access to not only his target system, but also to
the central log collection system. Another advantage of many central log
collection systems is the built-in log analysis function.

While a copy of all system logs is highly recommended for a forensically sound
analysis, single events can also be reviewed using the event browser of VMware
vSphere, as follows:

vmware* vSphere Web Client = U | Administrator@VSPHERELOCAL » | He
Navigator X | [T Event Console
D] Q Filt -
m Home Description Type Date Time Task
- @J User VSPHERE.LOCALVrea... | @ Information 07/05/2015 10:30:15 AM
el L ? | & Clone of vCenterServer com... | @) Information 07/05/2015 10:30:03 AM
[Hosts and Clusters 2| & Cloning vCenterServer onho... | () Information 07/05/2015 10:30:02 AM
|&] vMs and Templates bl - s
E storage > 100 items Previous Next B [sp
€) Networking >
LB P°|'C'e_5 2dHREEs > Date Time: 07/05/2015 10:30:02 AM Target: & vCenterServer
O vRealize Orchestrator i User: VSPHERE.LOCAL\Administrator Type: Information
Administration > Description:
[z] Tasks QJ 07/05/2015 10:30:02 AM Cloning vCenterServer on host 192.168.167.23 in Datacenter to
|5 Log Browser SomeClone on host 192.168.167.23
ICEEE | :.co oo ooscripion

The vSphere environment offers collecting and storing all log files in an archive.
Perform the following steps to get an archive of all the available log data:

* Use the Windows version of vSphere Web Client and log in to the
vCenter Server.

* In the Administration menu, select Export System Logs.

[91]

Using Python for Virtualization Forensics

* Select one or multiple vCenter Servers to export the logs, as shown in
the following:

@ Export System Logs

Source
Specify where system logs should be gathered from.

Source —System Logs

Select System Logs You may download system logs for vCenter Server and any of the hosts below:
Download Location

Ready to Complete = @ 192.168.167.26

= Datacentsr
D 192.168.167.23

¥ Indude information from vCenter Server and vSphere Client

[92]

Chapter 5

* When asked to Select System Logs, ensure that all log types are selected,

as follows:

Select System Logs

Source
Select System Logs

Export System Logs

System Logs

Specify which system logs are to be exported and whether performance data should be induded.

FaultTolerance
System
Storage
VirtualMachines
Userword

+ [FH H

[+

Core

[+

Configuration
Logs
hostProfiles

+ [

[+#]
IHNERRREREE

Performance

[Gather performance data

3.:..;.:| |se-:c-nu:|:s} J
5:' |se-:c-nu:|:s} J

Duration: |

Interval: |

L

gselect all

< Back

I Mext = I

Cancel |

The log files are saved as compressed archives. One archive represents the log
information of one system, that is, vCenter Server or ESXi host.

First, we will extract the collected log file using tar with a command as follows:

user@lab:~$ tar xfz 192.168.167.26-vcsupport-2015-07-05@11-21-54.tgz

The filename of this archive follows the format Host/IP —vcsupport (for vCenter
Server) — timestamp. The directory in this archive follows the vc-Hostname-Timestamp
naming scheme, for example, vc-winserver-2015-07-05--02.19. The timestamps of
the archive name and the contained directory usually do not match. This can be caused
due to the clock drift and the time required to transmit and compress the logs.

[93]

Using Python for Virtualization Forensics

In the following, we will use the vCenter Server logs to reconstruct events indicating
the cloning of virtual machines. In this example, we will use the redundancy of the
logs and use the log data from one of the core services of vCenter Server: vpxd, that
is, the core vCenter daemon:

#!/usr/bin/env python

import gzip

import os

from os.path import join
import re

import sys

used to map session IDs to users and source IPs

session2user ip = {}

def logopen(filename) :
"""Helper to provide transparent decompressing of compressed logs,
if indicated by the file name.

nnn

if re.match(r'.*\.gz', filename) :
return gzip.open(filename, 'r')
return open(filename, 'r')

def collect session data(vpxlogdir) :
"""Uses vpx performance logs to map the session ID to
source user name and IpP"""
extract = re.compile(r'SessionStats/SessionPool/Session/
Id=\" (["\'1+)\'/Username=\"' (["\'1+)\'/ClientIP=\" (["\']1+)\"'")

logfiles = os.listdir (vpxlogdir)
logfiles = filter(lambda x: 'vpxd-profiler-' in x, logfiles)
for fname in logfiles:

fpath = join(vpxlogdir, fname)

f = logopen (fpath)

for line in f:
m = extract.search(line)

if m:

[94]

Chapter 5

session2user ip[m.group(l)] = (m.group(2), m.group(3))
f.close()

def print cloning hints (basedir) :
"""Print timestamp, user, and IP address for VM cloning without
by reconstructing from vpxd logs instead of accessing
the 'official' event logs"""
vpxlogdir = join(basedir, 'ProgramData’,
'vCenterServer',
'logs',
'vmware-vpx')
collect session data(vpxlogdir)

extract = re.compile(r'”([" 1+).*BEGIN task-.*?vim\.
VirtualMachine\.clone -- ([0-9a-f-]+).*")

logfiles = os.listdir (vpxlogdir)

logfiles = filter(lambda x: re.match('vpxd-[0-9]1+.log(.gz)?', x),
logfiles)

logfiles.sort ()

for fname in logfiles:
fpath = join(vpxlogdir, fname)
f = logopen (fpath)

for line in f:
m = extract.match(line)
if m == None:
continue

timestamp = m.group (1)
session = m.group(2)

(user, ip) = session2user ip.get (session,
(' **FUNKNOWN*** 1, 1 %%+ UNKNOWN*** 1))

print 'Hint for cloning at %s by %s from %s' % (timestamp,
user, ip)
if name == ' main ':

if len(sys.argv) < 2:

print 'Usage: %s vCenterLogDirectory' % sys.argv[0]
sys.exit (1)

print cloning hints(sys.argv([1])

[95]

Using Python for Virtualization Forensics

First, this script reads the so-called performance log of vpxd. This log contains data
about client sessions and we use it to extract a mapping from the unique session
identifier to the client username and the IP address that the client is connecting from.
In the second step, the main log of vpxd is searched for the start of tasks of vim.
VirtualMachine.clone type, that is, the cloning of virtual machines on the server
side. The session information is then looked up in the mapping that is harvested from
the performance log to retrieve the data about possible cloning events, as follows:

user@lab:~$ python extractCloning.py vc-winserver-2015-07-05--02.19/

Hint for cloning at 2015-07-05T01:30:01.071-07:00 by VSPHERE.LOCAL\
Administrator from 192.168.167.26

In the example, the script revealed that the Administrator account was used to
clone a virtual machine. This hint can be correlated with the event log of vCenter
Server and it will show up there as well. If it does not, then this is a strong indicator
of a compromised environment.

_ Depending on your system environment, operations such as cloning
& and exporting virtual machines may be a part of daily operations.

= In that case, the previous script or its variants may be used to detect
unusual users or source IPs that are performing these operations.

Similar searches and correlations can be used for other events of interest. Copying of
files of the datastore or exporting virtual machines are promising candidates.

Searching for misuse of virtual resources

It is not just the motivated attacker that we are looking for. With virtualization,
there is also the legitimate administrator of the virtual infrastructure who makes his
life easier by bending some rules. Additionally, an attacker may use the power of
virtualization to reshape the topology of the infrastructure according to his needs. In
the following sections, we will show some scenarios and detection methods.

Detecting rogue network interfaces

Network virtualization allows operations to create almost arbitrary network
infrastructures in a static, physical network. This capability is sometimes referred to
as Data center as a Service (DCaaS). DCaaS allows the customers to utilize a defined
portion of a physical data center to define virtual data centers in software.

Due to malicious access to this capability or human error, the resulting network
configuration may expose internal resources to the internet, bypass firewalls, or
allow access to malicious services.

[96]

Chapter 5

Therefore, we will show a simple way to programmatically get the network
configuration of a vSphere environment using Python.

Visualize virtual networks
\ Most virtualization environments have built-in capabilities to
5 visualize the virtual network setup. For example, VMware vSphere
Q can create an image of the network topology. In a forensic analysis,
this may serve as the starting point and support focusing the next
step on the most promising assets.

0

DieveloperBox

$ & 5

Janes Box dvinternalMeteark Firewsll
ey
e, h
3 $
BvesMachine DM

0

dmz Biooc

This image was generated with the Windows client software for VMware vCenter
Server and it depicts our test setup. Obviously, EvesMachine is not connected
properly, that is, it can bypass the Firewall.

[97]

Using Python for Virtualization Forensics

The community sample scripts for pyvmomi already provide a script for iterating
over all network interfaces, https://github.com/vmware/pyvmomi-community-
samples/blob/master/samples/getvnicinfo.py, and displaying the connections
of virtual machines. Therefore, we modified this script to display only those virtual
machines that have multiple network connections, as follows:

#!/usr/bin/env python

from pyVim import connect
from pyVmomi import vmodl
from pyVmomi import wvim
import sys

def generate portgroup info(content) :
""rEnumerates all hypervisors to get
network infrastructure information"""
host view = content.viewManager.CreateContainerView (content.

rootFolder,
[vim.HostSystem] ,
True)
hostlist = [host for host in host view.view]

host_view.Destroy ()

hostPgDict = {}

for host in hostlist:
pgs = host.config.network.portgroup
hostPgDict [host] = pgs

return (hostlist, hostPgDict)

def get wvms (content, min nics=1):
vm_view = content.viewManager.CreateContainerView (content.
rootFolder,
[vim.VirtualMachine],
True)
vms = [vm for vm in vm view.view]
vm_view.Destroy ()

vm_with nics = []
for vm in vms:
num nics = 0
for dev in vm.config.hardware.device:
ignore non-network devices
if not isinstance(dev, vim.vm.device.VirtualEthernetCard) :

[98]

https://github.com/vmware/pyvmomi-community-samples/blob/master/samples/getvnicinfo.py
https://github.com/vmware/pyvmomi-community-samples/blob/master/samples/getvnicinfo.py

Chapter 5

continue

num nics = num nics + 1

if num nics >= min nics:
vm_with nics.append (vm)
break

return vm with nics

def print vm info(vm, hosts, host2portgroup, content):

)

print "\n=== %s ===" % vm.name

for dev in vm.config.hardware.device:
if not isinstance(dev, vim.vm.device.VirtualEthernetCard) :
continue

dev_backing = dev.backing

if hasattr(dev_backing, 'port'):
NIC is connected to distributed vSwitch
portGroupKey = dev.backing.port.portgroupKey
dvsUuid = dev.backing.port.switchUuid

try:

dvs = content.dvSwitchManager.QueryDvsByUuid (dvsUuid)
except:

portGroup = 'ERROR: DVS not found!'

vlanId = 'N/A"
vSwitch = 'N/A
else:

pg0bj = dvs.LookupDvPortGroup (portGroupKey)

portGroup = pgObj.config.name

v10bj = pgObj.config.defaultPortConfig.vlan

if hasattr(v1lObj, 'pvlanId'):
vlanId = str(pgObj.config.defaultPortConfig.vlan.

pvlanId)

else:

vlanId

str (pgObj.config.defaultPortConfig.vlan.
vlanId)
vSwitch = str(dvs.name)
else:
NIC is connected to simple vSwitch
portGroup = dev.backing.network.name
vmHost = vm.runtime.host

look up the port group from the

[99]

Using Python for Virtualization Forensics

matching host

host pos = hosts.index (vmHost)
viewHost = hosts[host pos]

pgs = host2portgroup [viewHost]

for p in pgs:
if portgroup in p.key:
vlanId = str(p.spec.vlanId)
vSwitch = str(p.spec.vswitchName)

if portGroup is None:

portGroup = 'N/A!
print '%$s -> %s @ %s -> %s (VLAN %s)' % (dev.devicelInfo.label,
dev.macAddress,
vSwitch,
portGroup,
vlanId)

def print dual homed vms(service) :
"wnTists all virtual machines with multiple
NICs to different networks"""

content = service.RetrieveContent ()
hosts, host2portgroup = generate portgroup info (content)
vms = get vms(content, min nics=2)
for vm in vms:
print vm info(vm, hosts, host2portgroup, content)

if name == ' main ':
if len(sys.argv) < 5:

print 'Usage: %s host user password port' % sys.argv[0]
sys.exit (1)

service = connect.SmartConnect (host=sys.argv[1l],
user=sys.argv[2],
pwd=sys.argv[3],
port=int (sys.argv[4]))
print dual homed vms (service)

[100]

Chapter 5

First, this script iterates over all (hypervisor) hosts to collect information about the
virtual switches that are present on each ESXi system. Then, it iterates over all virtual
machines to collect those with more than one network card. Then the information
about virtual network cards is combined with the information about virtual switches
to derive the information about the connectivity.

Here is the sample output from our lab environment as depicted previously:

user@lab:~$ python listDualHomed.py 192.168.167.26 readonly 'mypwd' 443
=== EvesMachine ===

Network adapter 1 -> 00:50:56:ab:04:38 @ dvSwitch -> dvInternalNetwork
(VLAN 8)

Network adapter 2 -> 00:50:56:ab:23:50 @ dvSwitch -> dvDMZ (VLAN 0)

=== Firewall ===
Network adapter 1 -> 00:50:56:ab:12:e6 @ dvSwitch -> dvInternalNetwork
(VLAN 8)

Network adapter 2 -> 00:50:56:ab:4b:62 @ dvSwitch -> dvDMZ (VLAN 0)

Our script correctly identified the two systems, EvesMachine and Firewall, being
simultaneously connected to different networks. In this particular case, both the systems
can be used to connect VLAN 0 with VLAN 8 on the same virtual switch, dvSwitch.

Detecting direct hardware access

It may sound like an oxymoron, but most virtualization techniques allow direct
hardware access. The legitimate reasons to allow virtual systems to directly access a
piece of hardware without having to use the services of the hypervisor are as follows:

* Special hardware supposed to be connected to a virtual machine: Special
hardware such as radio clocks for virtual time servers or dongles being part
of a copy protection mechanism.

* Temporary use of physical media on a virtual system: Sometimes, this
capability is used to access media from physical systems from a virtual
environment, for example, to restore backups from a physical media to a
virtual system. In general, the network attached storage systems should be
preferred over attaching physical media to a virtual system.

* Permanent use of drives of a hypervisor from a virtual machine: This can be
useful if the virtual system uses software that is provided on physical media
and therefore, needs access to a real physical drive for installation and updates
of the software. However, one should consider using downloaded versions or
ISO images instead of granting direct access to the hardware of the hypervisor.

[101]

Using Python for Virtualization Forensics

As you may guess, according to this list, direct hardware access is more the exception
than the rule in a modern virtualized data center. Furthermore, direct access to the
hypervisor hardware breaks one fundamental principle of virtualization.

Direct hardware access bypasses the security mechanism of the
+ virtualization environment, that is, all the virtual hardware is
%i‘ controlled by the hypervisor. Consequently, direct hardware
’ access always poses the risk of manipulation of hypervisor
resources, data leakage, and system instabilities.

The following are some examples of the directly attached hardware that are most
likely malicious:

* Network devices (create network connections that are invisible to the
hypervisor)

* Keyboard, mouse, and so on (create console access that are invisible to
the hypervisor)

* Hypervisor disk partitions

The latter is especially dangerous. If a virtual machine manages to get the raw disk
access to the hypervisor, it can manipulate the virtualization environment. The
consequences include the complete control over the virtualization environment along
with the access to all virtual machines, all virtual networks, the capability to create
new rogue resources and reshape the overall network topology.

. For VMware vSphere, the direct hardware access is stored in the
% configuration of the virtual machines. Consequently, importing
s a virtual machine from an unknown or untrusted source (in the
native format of vSphere) can create rogue hardware access.

The following script connects to a VMware vSphere instance and lists all virtual
machines with direct hardware access:

#!/usr/bin/env python

from pyVim import connect
from pyVmomi import vmodl
from pyVmomi import wvim
import re

import sys

def get wvms (content) :

[102]

Chapter 5

""mReturns a list of all virtual machines."""

vm_view = content.viewManager.CreateContainerView (content.
rootFolder,

[vim.
VirtualMachine],
True)
vms = [vm for vm in vm view.view]
vm_view.Destroy ()
return vms
def print vm hardware access(vm) :
findings = []
for dev in vm.config.hardware.device:
if isinstance(dev, vim.vm.device.VirtualUSB) :
findings.append ('USB access to host device ' + dev.

backing.deviceName)
elif isinstance(dev, vim.vm.device.VirtualSerialPort) :
findings.append('Serial port access')
elif isinstance(dev, vim.vm.device.VirtualCdrom) :
if not dev.backing is None:
if 'vmfs/devices/cdrom' in dev.backing.deviceName:
findings.append ('Access to CD/DVD drive')
elif isinstance(dev, vim.vm.device.VirtualDisk) :
if dev.backing is None or \
dev.backing.fileName is None or \
re.match(r'.*\.vmdk', dev.backing.fileName) is None:
findings.append ('Suspicious HDD configuration')

if len(findings) > O0:
print '=== %s hardware configuration findings ===' % vm.name
for 1 in findings:
print 1
print "\n"

def print direct hardware access (content) :
vms = get vms(content)
for vm in vms:

print vm hardware access (vm)

if name == ' main ':
if len(sys.argv) < 5:
print 'Usage: %s host user password port' % sys.argv[0]

[103]

Using Python for Virtualization Forensics

sys.exit (1)

service = connect.SmartConnect (host=sys.argv[1l],
user=sys.argv[2],
pwd=sys.argv[3],
port=int (sys.argv[4]))

access the inventory
content = service.RetrieveContent ()
print direct hardware access (content)

This script is very eager, that is, it does not check whether the device is actually
in a connected state or whether there is media accessible through the device.
Nevertheless, an output similar to the following calls for deeper inspection:

user@lab:~$ python listHardwareAccess.py 192.168.167.26 readonly pwd 443
=== EvesMachine hardware configuration findings ===

Access to CD/DVD drive

Serial port access

USB access to host device path:2/0 version:2

=== DeveloperBox hardware configuration findings ===

Access to CD/DVD drive

=== dmzBox hardware configuration findings ===

Access to CD/DVD drive

EvesMachine appears to have direct access to a USB device attached to its hypervisor
system. Moreover, there seems to be a direct link to the serial port of the hypervisor.
Access to CD/DVD drive of the hypervisor should not be granted in general.
However, for a lot of installations, people tend to use the optical drive of the
hypervisor to install or update a software.

Extract hardware configuration from the VMX file

Using a script such as the previous one requires access to the
~ virtual environment. Therefore, the main purpose of such scripts
Q is to narrow the focus of the forensic investigation. For permanent
evidence and record, the directory of the virtual machines should
be copied from the datastore. There, the VMX file contains all VM
specific configuration settings including the hardware access.

[104]

Chapter 5

In this and the previous sections, virtualization is considered as an additional attack
surface. In the following section, we will outline how virtualization techniques can
actually support a forensic investigation.

Using virtualization as a source of
evidence

Virtualization is not just dangerous and challenging when it comes to forensic
investigations, there is also the potential to use virtualization as a tool for gathering
forensic evidence. In the following sections, you will see various sources which can
lead to the evidence.

Creating forensic copies of RAM content

Normally, creating a copy of a system's RAM contents requires access to the target
system, a logon, installing the required tools, and copying away the RAM dump to
an external media. All of these steps are intrusive, that is, changing the state of the
system and being subject to detection by the attacker or his malware. Furthermore,
an attacker with administrative privileges may hide portions of the system memory
from the memory dumps, for example, by manipulating the memory allocation and
protection algorithms.

To overcome the disadvantages of this method, the hypervisor layer can be utilized
to get a complete, non-tampered copy of the memory of a virtual system. The
following script can be used to create a snapshot including the RAM content of a
virtual machine:

#!/usr/bin/env python

from pyVim import connect
from pyVmomi import vim

from datetime import datetime
import sys

def make snapshot (service, vmname) :
""nCreates a snapshot of all virtual machines with the given

name"""

snap name = 'Memory Snapshot'

[105]

Using Python for Virtualization Forensics

snap_desc = 'Snapshot for investigation taken at ' + datetime.
now () .isoformat ()

content = service.RetrieveContent ()
vm_view = content.viewManager.CreateContainerView (content.
rootFolder,
[vim.
VirtualMachine],
True)
vms = [vm for vm in vm view.view if vm.name==vmname]

vm_view.Destroy ()

for vm in vms:
print 'Taking snapshot from VM UUID=%s' % vm.summary.config.

uuid
vm.CreateSnapshot Task (name = snap name,
description = snap desc,
memory = True,
quiesce=False)
print "Done.\n"
if name == ' main ':

if len(sys.argv) < 6:

print 'Usage: %s host user password port vmname' % sys.argv[0]
sys.exit (1)

service = connect.SmartConnect (host=sys.argv[1l],
user=sys.argv[2],
pwd=sys.argv[3],
port=int (sys.argv[4]))

make snapshot (service, sys.argv([5])

This script searches for virtual machines with the specified name and creates a
snapshot. The highlighted parameter causes vSphere to write the RAM contents
of the virtual machine to the datastore along with the other snapshot data files.

These RAM dumps reside in the directory of the virtual machine. The enumeration
script in this chapter shows the path to this directory. Additionally, the vSphere
Client allows browsing and downloading the datastore of the virtual machine.

The RAM contents are stored in a file with the . vmem extension, for example,
EvesMachine-Snapshot2.vmemn.

[106]

Chapter 5

Using snapshots as disk images

For physical systems, creating a forensic disk image usually incorporates taking the
system offline, shutting it down, removing the hard drive, and copying it. Obviously,
the system is not operational during this procedure and as a consequence, business
owners are very reluctant in granting these downtimes due to a vague suspicion of a
possible compromise.

On the other hand, the creation of a snapshot of a virtual machine results in basically
no downtime but the result is a forensically sound disk image of the virtual asset.

. Always check whether a system is virtual!

S

Ny As the creation of forensic data is much easier for virtual systems
than for physical systems, one of the very first steps in a forensic

investigation should be checking whether the target system is virtual.

The creation of the snapshot is identical to the script in the previous section. For
VMware vSphere 5, all the files have to be copied from the datastore directory of the
hypervisor to get a complete dump of the hard drives. If the virtual system is still
running, some files may not get copied as the hypervisor will not allow read access
while these files are in use. Typically, this is not a problem as these files are only
needed by the snapshot, that is, all the changes since the creation of the snapshot are
stored in special snapshot files.

In VMware vSphere 6, the snapshot mechanism has been changed. Instead of writing
disk changes in the snapshot files, the changes made after snapshot creation are
directly written to the files that represent the virtual hard drives. The snapshot files
are used to preserve the original contents of the disk drives (copy-on-write behavior).

Therefore, the files that are to be copied from a VMware vSphere 6 environment will
contain all entries of the directory of the virtual machine.

For the forensic analysis, the captured disk images can be connected to a virtual
forensic workstation. There, these images can be treated like any other physical

hard drive. Of course, the original copies must remain intact in order to provide
forensic soundness.

[107]

Using Python for Virtualization Forensics

Capturing network traffic

The virtualization environment not only represents virtual machines and Network
Interfaces Card (NIC), but also the virtual network devices that are needed to
interconnect these systems. This combination can be used to collect all the network
traffic of a virtual network by adding a monitoring port to the virtual switch and
connecting a system to it, which can capture all the network traffic.

If a virtual system in VMware vSphere is allowed to switch a NIC

into a promiscuous mode, then this will automatically turn the
’ corresponding switch port into the monitoring mode.

Furthermore, the enterprise editions of VMware vSphere provide an advanced
version of a virtual switch called vSphere Distributed Switch (VDS). This switch
can act more like a physical switch and provide mirroring of selected ports to

a defined port for the traffic analysis. In addition, this switch is also capable of
providing NetFlow logs to a defined port.

For the standard virtual switch, the following steps are required in order to monitor
the network traffic:

* Create a new port group on this switch to monitor. While this is not strictly
required, it is highly recommended. Without a dedicated port group to
monitor, all virtual systems on the switch would be allowed to monitor all
the traffic of the switch.

* Modify the Security settings of this port group and change the Promiscuous
mode to Accept.

* Configure the network card of the virtual capture system to the new port
group. This system can now capture all the network traffic of this switch.

The exact steps may differ between virtual switch types and their versions.
Nevertheless, the core message is that virtualization environments can ease this
task of network traffic capturing. Moreover, physical and virtual switches do have
different behaviors, for example, they can react to configuration changes of the
connected network cards.

In the next chapter, we will see how to generate and analyze this captured
network traffic.

[108]

Chapter 5

Summary

In this chapter, we outlined how virtualization changes the landscape not just for IT
operations, but also for the attacker and forensic specialist. Systems can be created,
reshaped, and copied for good and bad reasons.

We provided examples of how to detect possibly malicious behavior or configuration
on the vSphere virtualization environment. Moreover, we demonstrated how
virtualization can be beneficial in getting untampered RAM dumps from the systems
that should be analyzed. In the next chapter, you will see examples on how to
analyze these RAM dumps.

With this knowledge, you are now prepared to analyze and utilize virtual
environments in your forensic analyses.

[109]

Using Python for
Mobile Forensics

While forensic analysis of standard computer hardware —such as hard disks —has
developed into a stable discipline with a lot of reference work such as the book

File System Forensic Analysis, by Brian Carrier, Addison-Wesley Professional and our
previous chapters, there is still much debate on the techniques to analyze non-
standard hardware or transient evidence. Despite their increasing role in digital
investigations, smartphones are still to be considered non-standard because of their
heterogeneity. In all the investigations, it is necessary to follow the basic forensic
principles. The two main principles of forensic investigations are as follows:

* Great care must be taken so that the evidence is manipulated or changed as
little as possible.

* The course of a digital investigation must be understandable and open to
scrutiny. At best, the results of the investigation must be reproducible by
independent investigators.

The first principle, especially, is a challenge in in case of smartphones as most of
them employ specific operating systems and hardware protection methods that
prevent unrestricted access to the data on the system.

[111]

Using Python for Mobile Forensics

The preservation of data from hard disks is, in most cases, a simple and well-known
procedure. An investigator removes the hard disk from the computer or notebook,
connects it to his workstation with the help of a write blocker (for example, Tableau
TK35) and starts analyzing it with well-known and certified software solutions.
When comparing this to the smartphone world, it becomes clear that there is no such
procedure. Nearly every smartphone has its own way to build its storage in and
ongoing with this, for each smartphone, the investigator needs their own way to get
the dump of the storage. While it is very hard to get the data from a smartphone,

one can get much more data with reference to the diversity of the data. Smartphones
store, besides the usual data (for example, pictures and documents), the data such as
GPS coordinates and the position of a mobile cell that the smartphone was connected
to before it was switched off.

Considering the resulting opportunities, it turns out that it is worth the extra expense
for an investigator.

In this chapter, we will cover the following topics:

* The investigative model from Eoghan Casey adopted by smartphones

* The analysis of Android smartphones (manual as well as automated through
Android Data Extractor Lite (ADEL))

* The analysis of iOS smartphones

The investigative model for smartphones

The Investigative Process Model by Eoghan Casey, which is also known as the
Staircase Model, provides a practical and methodical step-by-step guide to conduct
an effective digital investigation. This model is depicted as a sequence of ascending
stairs that begin at the incident alert or accusation and end at the testimony. The
steps are meant to be as generic as possible. This model tries to merge police

duties and tasks of forensic experts. The following points explain each step of the
Investigative Process Model and the difference between dealing with smartphones
and computers:

* Incident Alerts or Accusation: The accusation is the start signal for the
whole process. In this phase, the sources are evaluated and detailed
inquiries are requested.

[112]

Chapter 6

Assessment of worth: In the scope of the assessment of worth, the interest

of prosecution is compared to the costs that would be incurred to prosecute
the criminal action. For companies, this often results in a decision against
prosecution (for smaller incidents, at least). The advantages of a prosecution

lie in the possible compensation, improvement of one's own security as well as
certain effect of deterrence. The disadvantages of a prosecution are the need of
resources, possible downtime during which the investigated systems cannot be
used productively, and most of the time a negative public scatter effect.

Incident or crime scene protocols: In classic criminalistics, it is often
demanded that the crime scene is spaciously closed. Eoghan Casey
expresses this as the following:

"Freeze" the evidence in place and provide "ground truth for all
activities that follow".

For different kinds of digital traces, it has to be checked on an individual
basis how the process of freezing is exactly defined. Altogether, it holds
true that the risk of changing traces has to be minimized. For smartphones,
this means that they have to be put in a Faraday bag that is connected to an
external power supply.

Identification or seizure: During a traditional impoundment, all objects and
subjects that could act as evidence are picked up. Here, it is important that no
changes are made to the evidence. In addition, the environment of evidence
might be of great relevance. Simultaneous to the impoundment, the chain of
custody starts. A recommended paper about the impoundment is the brochure,
Electronic Crime Scene Investigation: A Guide to First Responders, published by The
United States Department of Justice. This brochure provides accurate and detailed
tips for nontechnical staff. Another good source is the document, Searching and
Seizing Computers and Obtaining Electronic Evidence in Criminal Investigations,
also published by The United States Department of Justice.

Preservation: When securing the evidence, it has to be ensured that these are
not modified. This is why all the evidence is documented, photographed,
sealed, and afterwards locked away. In the case of digital evidence, this
means that copies of evidence are created first; further investigation is

done only on the copies. To prove the authenticity of copies of evidence,
cryptographic hash functions are used. Most often, this is the hardest part

in mobile phone forensics due to the fact that creating one-to-one copies is
not possible for some type of phones. We will show, in the following section,
how to create backups that can be used during the investigation.

[113]

Using Python for Mobile Forensics

Recovery: Eoghan Casey describes the retrieval as throwing out a large net. In
particular, this phase includes the retrieval of evidence that has been deleted,
hidden, masked, or made inaccessible in any other way. It is recommended
that you make use of synergies with other evidence. For example, it is
reasonable to test whether a note with passwords has been found at the crime
scene in case the encrypted data needs to be read.

Harvesting: During the analysis of evidence, a well-structured organization
with a huge amount of data that is needed. For this reason, one should first
investigate metadata instead of the real data. For example, the data can be
grouped according to the file type or access time. This directly leads to the
next phase, the reduction.

Reduction: The task of reduction lies in eliminating irrelevant data. One
can use metadata for this reason, too. For example, data can be reduced
according to the data type. A suitable scenario would be to reduce all the
data to image data, only if the accusation allows for this proceeding. The
result of this phase is— according to Eoghan Casey:

The smallest set of digital information that has the highest potential
for containing data of probative value.

This means finding the smallest amount of data that has the highest
probability of being relevant and evidential. In this context, hash databases of
known files, such as The National Software Reference Library (NIST), are
helpful to exclude already known files (we have described using this library
in Chapter 2, Forensic Algorithms).

Organization and search: The aspects of organization are structuring

and enabling data for scanning. Therefore, indices and overviews are often
created or their type sorts the files in meaningful directories. This simplifies
the referencing of the data in the following steps.

Analysis: This phase includes the detailed analysis regarding the file content.
Among others, connections between data and persons have to be drawn

in order to determine the responsible person. Moreover, the evaluation

of the content and context is made according to the means, motivation,

and opportunity. In this step, experiments are helpful to determine
undocumented behavior and develop new methods. All results need to be
tested and should be testable with scientific methodology.

Reporting: The report is not only to present results but also demonstrate
how one has arrived to the stated results. For this, all considered rules and
standards should be documented. In addition, all drawn conclusions need to
be justified and alternative explanation models need to be discussed.

[114]

Chapter 6

* Persuasion and Testimony: Finally, it comes to the testimony of an authority
on the subject at court. The most important aspect is the trustworthiness
of the authority. A technology averse audience or difficult analogies, for
example from the defense lawyer, can be problematic.

By looking at the previously described process, one can see only little changes
when dealing with smartphones unlike other types of evidence. However, it is very
important for an investigator to understand at what steps he has to take special care.

Android

The first mobile operating system that we will examine with the help of Python is
Android. In the first subsection, we will demonstrate how to manually examine the
smartphone, followed by an automatic approach using ADEL. Last but not least, we
will demonstrate how to merge data from the analysis to create movement profiles.

Manual Examination

The first step is getting root access to the smartphone. This is required to circumvent
internal system protections and get access to all data. Getting root access is different
for most of the phones and strongly dependent on the OS version. The best way

is creating your own recovery image and booting the phone through the built-in
recovery mode.

After getting the root access, the next step is trying to get the screen lock in plain text
as this secret is often used for different protections (for example, the screen lock can
be used as an application password for an app on the phone). Breaking the screen
lock for a PIN or password can be done with the following script:

import os, sys, subprocess, binascii, struct
import sglite3 as lite

def get shalhash(backup dir):

dumping the password/pin from the device
print "Dumping PIN/Password hash ..."

password = subprocess.Popen(['adb', 'pull',6 '/data/system/
password.key', backup dir],

stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)

password.wait ()

cutting the HASH within password.key

[115]

Using Python for Mobile Forensics

shalhash = open(backup dir + '/password.key',6 'r').readline() [:40]
print "HASH: \033[0;32m" + shalhash + "\033[m"

return shalhash
def get salt (backup dir):

dumping the system DB containing the SALT
print "Dumping locksettings.db ..."
saltdb = subprocess.Popen(['adb', 'pull', '/data/system/
locksettings.db', backup dir],
stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)
saltdb.wait ()
saltdb2 = subprocess.Popen(['adb', 'pull',6 '/data/system/
locksettings.db-wal', backup dir],
stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)
saltdb2.wait ()
saltdb3 = subprocess.Popen(['adb', 'pull',6 '/data/system/
locksettings.db-shm', backup dir],
stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)
saltdb3.wait ()

extract the SALT

con = lite.connect (backup dir + '/locksettings.db')

cur = con.cursor ()

cur.execute ("SELECT value FROM locksettings WHERE
name="'lockscreen.password salt'")

salt = cur.fetchone () [0]

con.close ()

convert SALT to Hex
returnedsalt = Dbinascii.hexlify(struct.pack('>qg', int(salt)))

print "SALT: \033[0;32m" + returnedsalt + "\033[m"

return returnedsalt

def write crack(salt, shalhash, backup dir):
crack = open(backup dir + '/crack.hash', ‘'a+')

write HASH and SALT to cracking file

[116]

Chapter 6

hash salt = shalhash + ':' + salt
crack.write (hash salt)
crack.close ()

if name == ' main ':

check if device is connected and adb is running as root
if subprocess.Popen(['adb', 'get-state']l, stdout=subprocess.PIPE).
communicate (0) [0] .split ("\n") [0] == "unknown":
print "no device connected - exiting..."
sys.exit (2)

starting to create the output directory and the crack file used
for hashcat

backup dir = sys.argv[1l]

try:

os.stat (backup dir)
except:

os.mkdir (backup dir)

shalhash = get shalhash (backup dir)
salt = get salt(backup dir)
write crack(salt, shalhash, backup dir)

This script generates a file called crack.hash that can be used to feed hashcat to
brute force the screen lock. If the smartphone owner has used a 4-digit PIN, the
command to execute hashcat is as follows:

user@lab:~$./hashcat -a 3 -m 110 out/crack.hash -1 ?d 21?1?1721

Initializing hashcat v0.50 with 4 threads and 32mb segment-size...

Added hashes from file crack.hash: 1 (1 salts)

Activating quick-digest mode for single-hash with salt
c87226£ed37977772be870d722c449£915844922:256c05b54b73308b:0420
All hashes have been recovered

Input.Mode: Mask (?1?1?121) [4]
Index.....: 0/1 (segment), 10000 (words), 0 (bytes)

[117]

Using Python for Mobile Forensics

Recovered.: 1/1 hashes, 1/1 salts

Speed/sec.: - plains, 7.71k words
Progress..: 7744/10000 (77.44%)
Running...: 00:00:00:01
Estimated.: --:--:--:--

Started: Sat Jul 20 17:14:52 2015
Stopped: Sat Jul 20 17:14:53 2015

By looking at the marked line in the output, you can see the sha256 hash followed by
the salt and the brute forced PIN that is used to unlock the screen.

If the smartphone user has used a gesture to unlock the smartphone, you can use a
pre-generated rainbow table and the following script:

import hashlib, sqglite3, array, datetime
from binascii import hexlify

SQLITE DB = "GestureRainbowTable.db"
def crack (backup dir):

dumping the system file containing the hash
print "Dumping gesture.key ..."

saltdb = subprocess.Popen(['adb', 'pull', '/data/system/gesture.
key', backup dir],
stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)

gesturehash = open(backup dir + "/gesture.key", "rb").readline()
lookuphash = hexlify(gesturehash) .decode ()
print "HASH: \033[0;32m" + lookuphash + "\033[m"

conn = sglite3.connect (SQLITE DB)

cur = conn.cursor ()

cur.execute ("SELECT pattern FROM RainbowTable WHERE hash = ?",
(lookuphash,))

gesture = cur.fetchone () [0]

return gesture
if name == ' main ':

check if device is connected and adb is running as root

[118]

Chapter 6

if subprocess.Popen(['adb', 'get-state']l, stdout=subprocess.PIPE).
communicate (0) [0] .split ("\n") [0] == "unknown":
print "no device connected - exiting..."
sys.exit (2)

starting to create the output directory and the crack file used
for hashcat

backup dir = sys.argv[1l]

try:

os.stat (backup dir)
except:

os.mkdir (backup dir)

gesture = crack (backup dir)

print "screenlock gesture: \033[0;32m" + gesture + "\033[m""

The next thing that could be very important when looking for potentially infected
devices is a list of installed apps and their hashes to check them against AndroTotal
or Mobile-Sandbox. This can be done with the following script:

import os, sys, subprocess, hashlib

def get apps() :

dumping the list of installed apps from the device
print "Dumping apps meta data ..."

meta = subprocess.Popen(['adb', 'shell', 'ls', '-1', '/data/app'l,
stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)
meta.wait ()

apps = []
while True:
line = meta.stdout.readline()

if line != '':
name = line.split(' ') [-1].rstrip()
date = line.split (' ') [-3]
time = line.split (' ') [-2]
if name.split('.'")[-1] == 'apk':
app = [name, date, time]
else:

[119]

Using Python for Mobile Forensics

continue
else:
break

apps . append (app)

return apps

def dump_ apps (apps, backup dir):

dumping the apps from the device
print "Dumping the apps ..."

for app in apps:
app = appl0]
subprocess.Popen(['adb', 'pull', '/data/app/' + app, backup
dir],
stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)

def get hashes (apps, backup dir):

calculating the hashes
print "Calculating the sha256 hashes ..."

meta = []
for app in apps:
sha256 = hashlib.sha256 (open (backup dir + '/' + appl[0], 'rb').
read()) .hexdigest ()
app . append (sha256)
meta.append (app)

return meta

if name == ' main ':

check if device is connected and adb is running as root
if subprocess.Popen(['adb', 'get-state']l, stdout=subprocess.PIPE).
communicate (0) [0] .split ("\n") [0] == "unknown":
print "no device connected - exiting..."
sys.exit (2)

starting to create the output directory

[120]

Chapter 6

backup dir = sys.argv[1l]

try:

os.stat (backup dir)
except:

os.mkdir (backup dir)

apps = get apps ()
dump_ apps (apps, backup dir)
meta = get hashes (apps, backup dir)

printing the list of installed apps
print 'Installed apps:'
for app in meta:
print "\033[0;32m" + ' '.join(app) + "\033[m"

After executing the preceding printed script, you get the following output including
important metadata:

user@lab:~$./get installed apps.py out

Dumping apps meta data
Dumping the apps
Calculating the sha256 hashes

Installed apps:

com.android.SSLTrustKiller-1l.apk 2015-05-18 17:11
52b4d6al888a6514b62£f6607cebf8c2c2aa4e4857319ec67b24be601db5243fb

com.android.chrome-2.apk 2015-06-16 20:50
191cd720626df38eaedf3301826e72330493cdeb8c45da4e309939cfe5633d61

com.android.vending-1l.apk 2015-07-25 12:05
7be9f8f99e8clabc3beledb01d84abal4619e3c67cl4856755523413ba8e2d98

com.google.android.GoogleCamera-2.apk 2015-06-16 20:49
6936£3c17948c767550c206£f0ae0f44f1f4da0fcb85125da722e0c709787894

com.google.android.apps.authenticator2-1.apk 2015-06-05 10:14
11lbcfcflc853bleb567c9453507c3413b09al1d70£d3085013£4a091719560ab6

[121]

Using Python for Mobile Forensics

With the help of this information, you can check the apps against online services

to know whether they are safe to use or potentially malicious. If you don't want to
submit them, then you can use the apk_analyzer.py script in combination with
Androguard to perform a quick analysis that often can reveal important information.

After getting a list of all installed apps and checking them for malicious behavior, it
can also be really helpful to get information about all partitions and mount points of
the device. This can be achieved with the following script:

import sys, subprocess

def get partition info():

dumping the list of installed apps from the device

print "Dumping partition information L

partitions = subprocess.Popen(['adb', 'shell', 'mount'],
stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)
partitions.wait ()

while True:

line = partitions.stdout.readline() .rstrip()
if line != '':
print "\033[0;32m" + line + "\033[m"
else:
break
if name == ' main ':

check if device is connected and adb is running as root
if subprocess.Popen(['adb', 'get-state'], stdout=subprocess.PIPE).
communicate (0) [0] .split ("\n") [0] == "unknown":
print "no device connected - exiting..."
sys.exit (2)

get partition info()

[122]

Chapter 6

The output of a rooted phone could look like this:

user@lab:~$./get partitions.py

Dumping partition information

rootfs / rootfs rw,relatime 0 0

tmpfs /dev tmpfs rw,seclabel,nosuid,relatime,mode=755 0 0

devpts /dev/pts devpts rw,seclabel,relatime,mode=600 0 0

proc /proc proc rw,relatime 0 0

sysfs /sys sysfs rw,seclabel,relatime 0 0

selinuxfs /sys/fs/selinux selinuxfs rw,relatime 0 0

debugfs /sys/kernel/debug debugfs rw,relatime 0 0

none /acct cgroup rw,relatime,cpuacct 0 0

none /sys/fs/cgroup tmpfs rw,seclabel,relatime,mode=750,gid=1000 0 0
tmpfs /mnt/asec tmpfs rw,seclabel,relatime,mode=755,gid=1000 0 0
tmpfs /mnt/obb tmpfs rw,seclabel,relatime,mode=755,gid=1000 0 0
none /dev/cpuctl cgroup rw,relatime,cpu 0 0

/dev/block/platform/msm sdcc.l/by-name/system /system ext4 ro,seclabel,re
latime,data=ordered 0 0

/dev/block/platform/msm sdcc.l/by-name/userdata /data ext4 rw
,seclabel,nosuid, nodev,noatime,nomblk io submit,noauto da
alloc,errors=panic,data=ordered 0 0

/dev/block/platform/msm sdcc.l/by-name/cache /cache ext4 rw
,seclabel,nosuid, nodev,noatime,nomblk io submit,noauto da
alloc,errors=panic,data=ordered 0 0

/dev/block/platform/msm sdcc.l/by-name/persist /persist ext4 rw,seclabel,
nosuid,nodev, relatime,nomblk io submit,nodelalloc,errors=panic,data=order
ed 00

/dev/block/platform/msm sdcc.l/by-name/modem /firmware vfat ro,relatime,u
id=1000,gid=1000, fmask=0337,dmask=0227, codepage=cp437,iocharset=is08859-
1, shortname=lower, errors=remount-ro 0 0

/dev/fuse /mnt/shell/emulated fuse rw,nosuid,nodev,relatime,user_
id=1023,group id=1023,default permissions,allow other 0 0

[123]

Using Python for Mobile Forensics

At the end of this section, we will show you how to gather more details about the
usage of the android-based smartphone. In the following example, we will use the
contacts database that also stores the phone call history. This example can easily be
adopted to get calendar entries or content from any other database of an app that is
installed on the device:

import os, sys, subprocess
import sglite3 as lite
from prettytable import from db cursor

def dump_ database (backup dir) :

dumping the password/pin from the device
print "Dumping contacts database ..."

contactsDB = subprocess.Popen(['adb', 'pull', '/data/data/com.
android.providers.contacts/databases/contacts2.db’',
backup dir], stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)
contactsDB.wait ()

def get content (backup dir) :

getting the content from the contacts database

con = lite.connect (backup dir + '/contacts2.db')

cur = con.cursor ()

cur.execute ("SELECT contacts. id AS _id, contacts.custom ringtone
AS custom_ringtone, name raw_contact.display name source AS display
name_ source, name_raw_contact.display name AS display name, name
raw_contact.display name alt AS display name_alt, name raw_contact.
phonetic _name AS phonetic name, name raw contact.phonetic name style
AS phonetic name style, name raw_contact.sort key AS sort key, name
raw_contact.phonebook label AS phonebook label, name raw_ contact.
phonebook bucket AS phonebook bucket, name raw contact.sort key alt
AS sort key alt, name raw contact.phonebook label alt AS phonebook
label alt, name raw_ contact.phonebook bucket alt AS phonebook
bucket alt, has phone number, name raw contact id, lookup, photo id,
photo file id, CAST(EXISTS (SELECT _id FROM visible contacts WHERE
contacts. id=visible contacts. id) AS INTEGER) AS in visible group,
status_update id, contacts.contact last updated timestamp, contacts.
last time contacted AS last time contacted, contacts.send to voicemail
AS send to voicemail, contacts.starred AS starred, contacts.pinned
AS pinned, contacts.times contacted AS times contacted, (CASE WHEN
photo file id IS NULL THEN (CASE WHEN photo id IS NULL OR photo_ id=0
THEN NULL ELSE 'content://com.android.contacts/contacts/'||contacts.

[124]

Chapter 6

id|| '/photo' END) ELSE 'content://com.android.contacts/display
photo/'| |photo_file id END) AS photo uri, (CASE WHEN photo_id IS
NULL OR photo_id=0 THEN NULL ELSE 'content://com.android.contacts/
contacts/'||contacts. id|| '/photo' END) AS photo_thumb uri, 0 AS
is user profile FROM contacts JOIN raw contacts AS name raw contact
ON (name_raw_contact id=name raw contact. id)")

pt = from db_ cursor (cur)

con.close()

print pt

if name == ' main ':

check if device is connected and adb is running as root
if subprocess.Popen(['adb', 'get-state']l, stdout=subprocess.PIPE).
communicate (0) [0] .split ("\n") [0] == "unknown":
print "no device connected - exiting..."
sys.exit (2)

starting to create the output directory
backup dir = sys.argv[1l]

try:

os.stat (backup dir)
except:

os.mkdir (backup dir)

dump_ database (backup dir)
get content (backup dir)

After you have seen how to manually perform an analysis of a smartphone, we
will show you, in the upcoming section, how to perform the same actions that are
automated with the help of ADEL.

[125]

Using Python for Mobile Forensics

Automated Examination with the help of ADEL

We have developed a tool named ADEL. It was initially developed for versions 2.x
of Android but was updated to fit the needs of analysing Android 4.x smartphones.
This tool is able to automatically dump the selected SQLite database files from
Android devices and extract the contents that are stored in the dumped files. As

a further option, ADEL is able to analyse databases that were dumped manually
beforehand. This option was implemented to support smartphones where ADEL

is not able to access the filesystem of the device due to security features like locked
bootloaders. In the following sections, we describe the main tasks of ADEL and what
steps the tool actually performs.

Idea behind the system

During the development of ADEL, we primarily took into account the following
design guidelines:

* Forensic principles: ADEL is intended to treat data in a forensically correct
way. This goal is achieved by the fact that activities are not conducted
directly on the phone but on a copy of the databases. This procedure
assures that the data is not modified either by the users of ADEL or by
a compromised operating system. In order to providing the proof of the
forensic correctness of ADEL, hash values are calculated before and after
each analysis to guarantee that the dumped data was not modified during
the analysis.

* Extendibility: ADEL has been modularly built and contains two separate
modules: the analysis and the report module. Predefined interfaces exist
between these modules and both of them can be easily amended with the
help of additional functions. The modular structure allows you to dump and
analyse further databases of smartphones without great effort and facilitates
updates of the system in the future.

* Usability: The use of ADEL is intended to be as simple as possible to allow
its use by both, qualified persons and non-experts. At best, the analysis of the
mobile phone is conducted in an autonomous way so that the user does not
receive any notification of internal processes. Moreover, the report module
creates a detailed report in a readable form including all the decoded data.
During the execution, ADEL optionally writes an extensive log file where all
the important steps that were executed are traced.

[126]

Chapter 6

Implementation and system workflow
A flow chart showing the structure of ADEL is depicted in the following figure:

ANDROID DATA EXTRACTOR LITE

Dump Databases |eg— — — — — — — adh —— — — — = — .

ﬂﬂﬂﬂﬂ (n]E]
Analyze Databases | ParseDatabases |a————" read databases _w .

- - - ¥ = |
Create Repont fo—™ Google-Maps-API > ’ng; 3

ADEL makes use of Android Software Development Kit (Android SDK) to dump
database files in the investigator's machine. To extract contents that are contained

in a SQLite database file, ADEL parses the low-level data structures. After having
opened the database file that is to be parsed in the read-only mode, ADEL reads the
database header (the first 100 bytes of the file) and extracts the values for each of the
header fields. Not all, but some of the values in header fields are necessary in order
to parse the rest of the database file. An important value is the size of the pages in
the database file, which is required for parsing the B-tree structures (pagewise).
After having read the database header fields, ADEL parses the B-tree that contains
the sqlite_master table for which the first page of the database is always the

root page. The SQL CREATE statement and the page number of the B-tree root
page are extracted for each of the database tables. Additionally, the SQL CREATE
statement is further analyzed to extract the name and data type of each column of the
corresponding table.

[127]

Using Python for Mobile Forensics

Finally, the complete B-tree structure is parsed for each table, beginning at the B-tree
root page, which was extracted from the sqlite master table. By following the
pointers of all of the interior pages, you can identify every leaf page of the B-tree.
Finally the row contents of each table are extracted from the cells that are found in
any leaf page that belongs to the same table B-tree.

In the following sections, we will address the report module and its functionalities.
In the current development state, the following databases are forensically treated
and parsed:

* Telephone and SIM-card information (for example International Mobile
Subscriber Identity (IMSI) and serial number)

* Telephone book and call lists
* Calendar entries

* SMS messages

* Google-Maps

Data retrieved in this way is written to an XML file by the report module in order

to ease the further use and depiction of the data. Similar to the analysis module,

it can be easily updated regarding possible changes in future Android versions or

in underlying database schemes. Therefore, we have created different tuple — for
example, [table, row, column] —to define the data that is exchanged between both
modules. If the database design changes in the future, only the tuple has to be
adapted. The report module automatically creates XML files for each data type that
is previously listed. In addition, a report is created that contains all the data extracted
from analyzed databases. With the help of an XSL file the report will be graphically
refurbished. All files created by ADEL are stored in a subfolder of the current project.

To get access to the necessary databases and system folders on the smartphone,
ADEL needs root access on the device.

Working with ADEL

After we have described what ADEL is and how it works, we will now go to the
practical part of this section and start using it. You can download ADEL from the
following URL: https://mspreitz.github.io/ADEL

[128]

https://mspreitz.github.io/ADEL

Chapter 6

All you need to do is check whether the device in question is already included in
the configuration profile of ADEL that is located in /xml/phone_config.xml. If the
device is missing, there are two options on how to proceed:

1. Choose a different device with the same Android version (this will generate a
warning but it works in most of the cases).

2. Generate a new device configuration that matches the device type and
Android version of the device in question.

If you choose the second option, you can copy the configuration of an already
working device and adopt the numbers in the XML file. These numbers represent
the tables and columns of the noted database. To be a bit more precise, if you try
to adopt the SMS database, you have to check the numbers for the following tables
and columns:

<sms>
<db_name>mmssms.db</db_name>
<table num>10</table_num>
<sms_entry positions>
<i1d>0</1id>
<thread id>1l</thread_ids>
<address>2</address>
<persons>3</persons>
<dates>4</date>
<read>7</read>
<type>9</type>
<subject>11l</subject>
<body>12</body>
</sms_entry positionss
</sms>

The number for the table_num tag has to be set to the number that corresponds to
the table called sms. The following numbers have to be adopted corresponding to the
columns in the sms table that are named identically. The preceding printed example
works with a Nexus 5 and Android 4.4.4. The same has to be done for all other
databases too.

[129]

Using Python for Mobile Forensics

Running ADEL against a rooted Nexus 5 with Android 4.4.4 —filled with test data—
generates the following output:

user@lab:~$./adel.py -d nexus5 -1 4

/ _ \\ A\ /] |

/ 7\ O\ | |\) |
/ | \| S\ \| |
AN / /1 \
\/ \/ \/ \/

Android Data Extractor Lite v3.0

ADEL MAIN: ----> starting script....

ADEL MAIN: ----> Trying to connect to smartphone or emulator....
dumpDBs : ----> opening connection to device: 031c6277f0a6all’
dumpDBs : ----> evidence directory 2015-07-20_ 22-53-22_ 031c6277f0a

6all7 created

ADEL MAIN:
adel.log created

----> log file 2015-07-20_22-53-22 031c6277f0a6all7/log/

ADEL MAIN: ----> log level: 4

dumpDBs : ----> device is running Android OS 4.4.4

dumpDBs : ----> dumping all SQLite databases....

dumpDBs : ----> auto dict doesn't exist!

dumpDBs : ----> weather database doesn't exist!

dumpDBs : ----> weather widget doesn't exist!

dumpDBs : ----> Google-Maps navigation history doesn't exist!
dumpDBs : ----> Facebook database doesn't exist!

dumpDBs : ----> Cached geopositions within browser don't exist!
dumpDBs : ----> dumping pictures (internal sdcard)....
dumpDBs : ----> dumping pictures (external sdcard)....
dumpDBs : ----> dumping screen captures (internal sdcard)....
dumpDBs : ----> dumping screen captures (internal sdcard)....
dumpDBs : ----> all SQLite databases dumped

Screenlock: ----> Screenlock Hash:

6a062b9b3452e36640718lalbf92ea73e9ed4c48

[130]

Chapter 6

Screenlock: ----> Screenlock Gesture: [0, 1, 2, 4, 6, 7, 8]
LocationInfo: ----> Location map 2015-07-20_ 22-53-22 031c6277f0a6all7/
map.html created

analyzeDBs: ----> starting to parse and analyze the databases....
parseDBs: ----> starting to parse smartphone info

parseDBs: ----> starting to parse calendar entries

parseDBs: ----> starting to parse SMS messages

parseDBs: ----> starting to parse call logs

parseDBs: ----> starting to parse address book entries

analyzeDBs: ----> all databases parsed and analyzed....
createReport: ----> creating report....

ADEL MAIN: ----> report 2015-07-20_ 22-53-22 031c6277£f0a6all7/xml/
report.xml created

compareHash: ----> starting to compare calculated hash values

ADEL MAIN: ----> stopping script....

(c) m.spreitzenbarth & s.schmitt 2015

In this output, you can see the name of the folder where all the data is dumped
and where the generated report can be found. Additionally, you can also see the
gesture of the screen lock that was automatically extracted and compared with
a pre-generated rainbow table, as follows:

[131]

Using Python for Mobile Forensics

Movement profiles

In addition to data about individual communications, the EU directive from 2006
also requires certain location data to be retained by network operators. Specially,
the directive requires that the following data is retained for at least six months:

* Identity and exact GPS coordinates of the radio cell where the user started a
phone call

* Identity and coordinates of the radio cell that was active at the beginning of a
GPRS data transmission

* Time stamps corresponding to this data

This information can help investigators to create movement profiles of suspects.
Also, the information may be used to locate and monitor suspects.

Many EU member countries have implemented this directive in national laws.
However, in some countries, there has been an intensive public debate about the laws,
especially in relation to the threats to privacy. In Germany, the discussions were fueled
by a dataset provided by the German politician Malte Spitz. The dataset contained
location data over a period of six months that was preserved by his mobile network
operator under the data retention law. A German newspaper created a graphical
interface that enabled users to visually replay Spitz's detailed movements.

Overall, it is argued that retaining large amounts of data creates new risks of abuse.
Also, the requirement to store data pertaining to millions of innocent people is

out of proportion to the small number of cases in which the data is used by law
enforcement. As a result, in 2011, the German Constitutional Court dismissed the
original legislation requiring data retention. Meanwhile, the search for less invasive
techniques to analyze the movements of criminals continues.

In the recent years, many new types of mobile phones (smartphones) have flooded
the market. As they are essentially small personal computers, they offer much more
than the possibility to make phone calls and surf the Internet. An increasing number
of subscribers are using apps (mostly third-party applications that are directly
installed on their phones) and communicating with friends and family via social
networks such as Facebook, Google+, and Twitter.

[132]

Chapter 6

For performance and other reasons, mobile devices persistently store location data in
the local memory. In April 2011, it was reported that Android and iOS store sensitive
geographical data. This data, which is maintained in system cache files, is regularly
sent to platform developers. However, generating geographical data is not restricted
to the operating system —many apps that provide location-based services also create
and store such data. For example, Benford has shown that pictures taken by an iPhone
contain the GPS coordinates of the location where the pictures were taken. Such data
is sensitive because it can be used to create movement profiles as seen in the following
figure. Unlike the location data that is retained by network operators, location data
stored on smartphones can be accessed by law enforcement via an open seizure.

Wang Fabkem Schmendwald m
Im Holz Schwendi Brienzerst =
Halte Hubehwald s | and h
Balkemaos @
3
Bort Schreielberg @u
Stumpe AR m Ursishalm ;
Isetwald it Uf der Flue
Blatti P Isch
Roniwald Louberi E
Am Hubel Schwe * 4 9
Bettlisberg e
s .
Jald S run
(s | UE opitzewald Gstd
label 4 Ramsera
&
Nﬁ"’ Stafel
- Schwand
i Chapf Aherni
e

Banigen B8i = Pl i
e Interlaken Oberteil Autosirad - Ochsenbergli

4 i P Alpiglen

g Spicheregg ~Oberberg

Alti Matt iy
A& Underi Rti Bannwald Ségistal
Ufen
Bémbergen

Apple iOS

After we have seen how to examine an Android-based smartphone, we now want
to show you how to perform similar investigations on iOS-based devices. In the first
section, we are using a Secure Shell (SSH) connection to the device and will show
you how to get stored data from the keychain of a jailbroken iOS device.

[133]

Using Python for Mobile Forensics

In the second part of this section, we will use libimobiledevice. This library is a
cross-platform library that uses the protocols to support iOS-based devices and
allows you to easily access the device's filesystem, retrieve information about the
device and it's internals, backup/restore the device, manage installed applications,
retrieve PIM data as well as bookmarks, and so on. The most important fact is that
the iOS-based device does not have to be jailbroken in order to be used — when
dealing with libimobiledevice.

Getting the Keychain from a jailbroken
iDevice
In many cases, it can be very helpful to get usernames and passwords of accounts

that the user of the iDevice was using. This kind of data is located in the iOS
keychain and can be pulled from iDevice with the help of the following script:

import os, sys, subprocess

def get kc(ip, backup dir):

dumping the keychain
print "Dumping the keychain ..."

kc = subprocess.Popen(['scp', 'roote@' + ip + ':/private/var/
Keychains/keychain-2.db', backup dirl,
stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)
kc.communicate ()

def push kcd(ip) :

dumping the keychain
print "Pushing the Keychain Dumper to the device ..."

kcd = subprocess.Popen(['scp', 'keychain dumper' 'root@' + ip +
IEEVAN M
stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)
kecd.communicate ()

def exec_kcd(ip, backup dir):

[134]

Chapter 6

pretty print keychain

kcc = subprocess.Popen(['ssh', 'roote@' + ip, './keychain dumper'],

stdout=subprocess.PIPE, stdin=subprocess.PIPE,
stderr=subprocess.PIPE)
kcc.communicate ()
kcc.stdout

if name == ' main ':

starting to create the output directory
backup dir = sys.argv[1l]

try:

os.stat (backup dir)
except:

os.mkdir (backup dir)

get the IP of the iDevice from user input
ip = sys.argv[2]

get kc(ip, backup dir)
push_kecd (ip)
exec_kcd(ip, backup dir)

In the output of the preceding script, you can also find the password of the Apple
account that the device is registered to:

Generic Password

Service: com.apple.account.AppleAccount.password
Account: 437C2D8F-*% k% _kkkk_khkkk_hhkhhkhhhhhhkkkh
Entitlement Group: apple

Label: (null)

Generic Field: (null)

Keychain Data: ***kkkkkkkkkhkkkhhkhhkhhhhhdk

[135]

Using Python for Mobile Forensics

Manual Examination with libimobiledevice

This library uses common iOS protocols for communication between the
investigator's machine and the connected iDevice. In order to work properly, the
device has to be unlocked and paired because, otherwise a large amount of data on
the device is still encrypted, and thus, protected.

With the help of the following script, you can create a full backup of the device
(similar to an iTunes backup). Afterwards, the script will unpack the backup and
print a hierarchical list of all files and folders in the backup. Dependent on the
size of the iDevice this script can run for several minutes.

import os, sys, subprocess

def get device info():

getting the udid of the connected device

udid = subprocess.Popen(['idevice id', '-1']l, stdout=subprocess.
PIPE) .stdout.readline () .rstrip()

print "connected device: \033[0;32m" + udid + "\033[m"

return udid

def create backup (backup dir) :

creating a backup of the connected device
print "creating backup (this can take some time) ..."

backup = subprocess.Popen(['idevicebackup2', 'backup', backup
dir], stdout=subprocess.PIPE)

backup.communicate ()

print "backup successfully created in ./" + backup dir + "/"

def unback backup (udid, backup dir):

unpacking the backup
print "unpacking the backup ..."

backup = subprocess.Popen(['idevicebackup2', '-u', udid, 'unback'
backup dir], stdout=subprocess.PIPE)

[136]

Chapter 6

backup.communicate ()

print "backup successfully unpacked and ready for analysis"

def get content (backup dir) :

printing content of the created backup

content = subprocess.Popen(['tree', backup dir + '/ unback /'],
stdout=subprocess.PIPE) .stdout.read ()
f = open(backup dir + '/filelist.txt',6 'a+')

f.write (content)
f.close

print "list of all files and folders of the backup are stored in
./" + backup dir + "/filelist.txt"

if name == ' main ':

check if device is connected
if subprocess.Popen(['idevice id', '-1'], stdout=subprocess.PIPE).
communicate (0) [0] .split ("\n") [0] == "":
print "no device connected - exiting..."
sys.exit (2)

starting to create the output directory
backup dir = sys.argv[1l]

try:

os.stat (backup dir)
except:

os.mkdir (backup dir)

udid = get device info()

create backup (backup dir)
unback backup (udid, backup dir)
get content (backup dir)

[137]

Using Python for Mobile Forensics

The final output of this script will look like the following extract:

user@lab:~$./create ios backup.py out

connected device: 460683e351la265a7b9%eal84b2802cf4fcd02526d
creating backup (this can take some time)

backup successfully created in ./out

unpacking the backup ...

backup successfully unpacked and ready for analysis

list of all files and folders of the backup are stored in ./out/filelist.
txt

With the help of the list of files and folders, you can start the analysis of the backup
with common tools such as a plist file viewer or a SQLite browser. Searching

for Cydia App Store in this generated file can also help to identify whether the
smartphone has been jailbroken by the user or an attacker.

Summary

In this chapter, we covered the investigative process model from Eoghan Casey
and adopted it to the case of smartphones. Later, we performed an analysis of
Android smartphones in manual as well as automated ways with the help of
Python scripts and the ADEL framework. In the last section, we covered the
analysis of iOS-based smartphones.

After handling the forensic investigation of smartphones, we finished the physical
and virtual acquisition and analysis and will shift the investigation to the volatile
area of the devices in the next chapter.

[138]

Using Python for
Memory Forensics

Now that you have performed investigations in the infrastructure (refer to Chapter 4,
Using Python for Network Forensics), common IT equipment (refer to Chapter 3, Using
Python for Windows and Linux Forensics), and even in the virtualized (refer to Chapter 5,
Using Python for Virtualization Forensics) and mobile worlds (refer to Chapter 6, Using
Python for Mobile Forensics), in this chapter, we will show you how to investigate in
volatile memory with the help of Volatility, a Python-based forensics framework, on
the following platforms:

* Android

e Linux
After showing you some basic Volatility plugins for Android and Linux and how to
get the required RAM dump for analysis, we will go hunting for malware in RAM.

Therefore, we will use YARA rules —based on pattern matching —and combine them
with the power of Volatility.

Understanding Volatility basics

In general, memory forensics follow the same pattern as other forensic investigations:

1. Selecting the target of the investigation.
2. Acquiring forensic data.
3. Forensic analysis.
In the previous chapters, we already presented various technologies on how to select

the target of an investigation, for example, starting from the system with unusual
settings in the virtualization layer.

[139]

Using Python for Memory Forensics

The acquisition of forensic data for memory analysis is highly dependent on the
environment and we will discuss it in the Using Volatility on Linux and Using
Volatility on Android sections of this chapter.

Always consider the virtualization layer as data source

Acquisition of memory from a running operating system always requires
~\l administrative access to this system and it is an intrusive process, that
is, the process of data acquisition changes the memory data. Moreover,
Q advanced malware is capable of manipulating the memory management
of the operation system to prevent its acquisition. Therefore, always check
and try to acquire the memory on the hypervisor layer as described in
Chapter 5, Using Python for Virtualization Forensics.

The, by far, most prominent tool for the analysis of memory data
is Volatility. Volatility is available at the Volatility Foundation on
http://www.volatilityfoundation.org/.

The tool is written in Python and can be used free of charge under the terms of the
GNU General Public License (GPL) version 2. Volatility is able to read memory
dumps in various file formats, for example, hibernation files, raw memory dumps,
VMware memory snapshot files, and the Linux Memory Extractor (LiME) format
produced by the LiME module, which will be discussed later in this chapter.

The most important terms in the Volatility world are as follows:

* Profile: A profile helps Volatility in interpreting the memory offsets and
structures of memory. The profile is dependent on the operating system,
especially the OS kernel, machine, and CPU architecture. Volatility contains
a variety of profiles for the most common use cases. In the Using Volatility on
Linux section of this chapter, we will describe how to create your profiles.

* Plugin: Plugins are used to perform actions on the memory dump. Every
Volatility command that you use calls a plugin to perform the corresponding
action. For example, to get a list of all the processes that were running during
the memory dump of a Linux system, the 1inux_pslist plugin is used.

Volatility provides a comprehensive documentation and we recommend that you get
familiar with all the module descriptions to get the most usage out of Volatility.

[140]

http://www.volatilityfoundation.org/

Chapter 7

Using Volatility on Android

To analyze volatile memory from Android devices, you will first need LiME. LiME

is a Loadable Kernel Module (LKM) that gives access to the whole RAM of the
device and can dump it to a physical SD card or network. After acquiring the volatile
memory dump with LiME, we will show you how to install and configure Volatility
to parse the RAM dump. In the last section, we will demonstrate how to get specific
information out of the RAM dump.

LiME and the recovery image

LiME is a Loadable Kernel Module (LKM) that allows for volatile memory
acquisition from Linux and Linux-based devices, such as Android. This makes LiIME
unique, as it is the first tool that allows for full memory captures on Android devices.
It also minimizes its interaction between user and kernel space processes during
acquisition, which allows it to produce memory captures that are more forensically
sound than those of other tools designed for Linux memory acquisition.

In order to use LiME on Android, it has to be cross-compiled for the used kernel
on the device in question. In the following sections, we will see how these steps
are performed for a Nexus 4 with Android 4.4.4 (however, this approach can be
adapted to every Android-based device for which the kernel —or at least the kernel
configuration —is available as open source).

First of all, we have to install some additional packages on our lab system, as follows:

user@lab:~$ sudo apt-get install bison g++-multilib git gperf libxml2-
utils make python-networkx zliblg-dev:i386 zip openjdk-7-jdk

After installing all the required packages, we now need to configure the access to
USB devices. Under GNU/ Linux systems, regular users directly can't access USB
devices by default. The system needs to be configured to allow such access. This is
done by creating a file named /etc/udev/rules.d/51-android.rules (as the root
user) and inserting the following lines in it:

adb protocol on passion (Nexus One)

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4el2",
MODE="0600", OWNER="user"

fastboot protocol on passion (Nexus One)

SUBSYSTEM=="usb", ATTR{idVendor}=="0bb4", ATTR{idProduct}=="0fff",
MODE="0600", OWNER="user"

adb protocol on crespo/crespod4g (Nexus S)

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e22",
MODE="0600", OWNER="user"

fastboot protocol on crespo/crespodg (Nexus S)

[141]

Using Python for Memory Forensics

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e20",
MODE="0600", OWNER="user"

adb protocol on stingray/wingray (Xoom)

SUBSYSTEM=="usb", ATTR{idVendor}=="22b8", ATTR{idProduct}=="70a9",
MODE="0600", OWNER="user"

fastboot protocol on stingray/wingray (Xoom)

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="708c",
MODE="0600", OWNER="user"

adb protocol on maguro/toro (Galaxy Nexus)

SUBSYSTEM=="usb", ATTR{idVendor}=="04e8", ATTR{idProduct}=="6860",
MODE="0600", OWNER="user"

fastboot protocol on maguro/toro (Galaxy Nexus)
SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e30",
MODE="0600", OWNER="user"

adb protocol on panda (PandaBoard)

SUBSYSTEM=="usb", ATTR{idVendor}=="0451", ATTR{idProduct}=="d101",
MODE="0600", OWNER="user"

adb protocol on panda (PandaBoard ES)

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="d002",
MODE="0600", OWNER="user"

fastboot protocol on panda (PandaBoard)

SUBSYSTEM=="usb", ATTR{idVendor}=="0451", ATTR{idProduct}=="d022",
MODE="0600", OWNER="user"

usbboot protocol on panda (PandaBoard)

SUBSYSTEM=="usb", ATTR{idVendor}=="0451", ATTR{idProduct}=="d00f",
MODE="0600", OWNER="user"

usbboot protocol on panda (PandaBoard ES)

SUBSYSTEM=="usb", ATTR{idVendor}=="0451", ATTR{idProduct}=="d010",
MODE="0600", OWNER="user"

adb protocol on grouper/tilapia (Nexus 7)

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e42",
MODE="0600", OWNER="user"

fastboot protocol on grouper/tilapia (Nexus 7)

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e40",
MODE="0600", OWNER="user"

adb protocol on manta (Nexus 10)

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4ee2",
MODE="0600", OWNER="user"

fastboot protocol on manta (Nexus 10)

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4ee0",
MODE="0600", OWNER="user"

[142]

Chapter 7

Now the most time consuming part is coming — checking the source code of the
Android version that is used. Depending on the speed of the hard drive and Internet
connection, this step can take several hours so plan it in advance. Furthermore, keep
it in mind that the source code is pretty big so use a second partition with at least

40 GB of free space. We install the source code for Android 4.4.4 as follows:

user@lab:~$ mkdir ~/bin
user@lab:~$ PATH=~/bin:$PATH

user@lab:~$ curl https://storage.googleapis.com/git-repo-downloads/repo >
~/bin/repo

user@lab:~$ chmod a+x ~/bin/repo

user@lab:~$ repo init -u https://android.googlesource.com/platform/
manifest -b android-4.4.4 rl

user@lab:~$ repo sync

After we have installed the source code for Android 4.4.4, we now need the
sources for the kernel running on the device in question. For the Nexus 4 that we
are using here, the right kernel is the mako kernel. A list of all available kernels for
Google phones can be found at http://source.android.com/source/building-
kernels.html.

user@lab:~$ git clone https://android.googlesource.com/device/lge/mako-
kernel/kernel
user@lab:~$ git clone https://android.googlesource.com/kernel/msm.git

Now that we have all the sources needed to cross-compile LiME, it is time to get
LiME itself:

user@lab:~$ git clone https://github.com/504ensicsLabs/LiME.git

After cloning the git repository to our lab machine, now we have to set some
environmental variables that are needed during the build process:

user@lab:~$ export SDK PATH=/path/to/android-sdk-linux/

user@lab:~$ export NDK PATH=/path/to/android-ndk/

[143]

http://source.android.com/source/building-kernels.html
http://source.android.com/source/building-kernels.html

Using Python for Memory Forensics

user@lab:~$ export KSRC PATH=/path/to/kernel-source/

user@lab:~$ export CC PATH=$NDK PATH/toolchains/arm-linux-
androideabi-4.9/prebuilt/linux-x86/bin/

user@lab:~$ export LIME SRC=/path/to/lime/src

Next, we need to get the current kernel configuration from the device in question
and copy it to the correct location in the LiME source. On our Nexus 4, this is
possible by entering the following command:

user@lab:~$ adb pull /proc/config.gz
user@lab:~$ gunzip ./config.gz
user@lab:~$ cp config $KSRC PATH/.config
user@lab:~$ cd $KSRC PATH

user@lab:~$ make ARCH=arm CROSS COMPILE=$CC PATH/arm-eabi-modules prepare

Before we can build the LiME kernel module, we need to write our customized
Makefile:

obj-m := lime.o

lime-objs := main.o tcp.o disk.o

KDIR := /path/to/kernel-source

PWD := $(shell pwd)

CCPATH := /path/to/android-ndk/toolchains/arm-linux-androideabi-4.4.4/
prebuilt/linux-x86/bin/

default:

$ (MAKE) ARCH=arm CROSS_COMPILE:$ (CCPATH) /arm-eabi- -C $(KDIR)
M=$ (PWD) modules

With the help of this Makefile, we can build the kernel module that is needed to get the
volatile memory from an Android device. Entering make can start this process.

In the following example, we will demonstrate how to push our newly generated
kernel module to the device in question and dump the whole volatile memory to
our lab environment through TCP.

[144]

Chapter 7

If you have a device on which the kernel doesn't allow loading modules on the fly,
you should consider creating your own recovery image (for example, a custom
version of TWRP or CWM), include the LiME kernel module and flash it to the
device in question. If you are fast enough during the flashing operation, there is
nearly no data lost (for more information, refer to https://wwwl.informatik.uni-
erlangen.de/frost).

The LiME module offers three different image formats that can be used to save a
captured memory image on the disk: raw, padded, and lime. The third format—lime —
is discussed in detail as it is our format of choice. The lime format has been especially
developed to be used in conjunction with Volatility. It is supposed to allow easy
analysis with Volatility and a special address space has been added to deal with this
format. Every memory dump that is based on the lime format has a fixed size header,
containing specific address space information for each memory range. This eliminates
the need to have additional paddings just to fill up unmapped or memory mapped
I/O regions. The LiME header specification is listed in the following;:

typedef struct ({

unsigned int magic; // Always 0x4C694D45 (LiME)

unsigned int version; // Header version number

unsigned long long s_addr; // Starting address of physical RAM
unsigned long long e addr; // Ending address of physical RAM
unsigned char reserved[8]; // Currently all zeros

} __attribute ((__packed)) lime mem range header;

To get such a dump from the Android device in question, connect to the Android
device through adb and enter the following commands:

user@lab:~$ adb push lime.ko /sdcard/lime.ko
user@lab:~$ adb forward tcp:4444 tcp:4444
user@lab:~$ adb shell

nexus4:~$ su

nexus4:~$ insmod /sdcard/lime.ko "path=tcp:4444 format=lime"

On the lab machine, enter the following command to accept the data sent through
TCP port 4444 from the Android device to the local lab machine:

user@lab:~$ nc localhost 4444 > nexus4 ram.lime

If the preceding commands are executed successfully, you will now have a
RAM dump that can be further analyzed with the help of Volatility or other
tools (refer to the next section).

[145]

Using Python for Memory Forensics

Volatility for Android

After acquiring a dump file that represents the physical memory of the target system
with the tools that we created in the previous section, we intend to extract data
artifacts from it. Without an in-depth analysis of Android's memory structures,

we would only be able to extract known file formats such as JPEG, or just the

JPEG headers with the EXIF data (with tools such as PhotoRec) or simple ASCII
strings, which are stored in a contiguous fashion (with common Linux tools such as
strings) that could be used to brute force passwords on the devices in question. This
approach is very limited as it can be used for any disk or memory dump but does
not focus on OS and application-specific structures. As we intend to extract whole
data objects from the Android system, we will make use of the popular forensic
investigation framework for volatile memory: Volatility.

In this section, we will use a version of Volatility with ARM support (you need
version 2.3 at least). Given a memory image, Volatility can extract running processes,
open network sockets, memory maps for each process, and kernel modules.

Before a memory image can be analyzed, a Volatility profile must
> be created that is passed to the Volatility framework as a command
% line parameter. Such Volatility profile is a set of vtype definitions
s . -
and optional symbol addresses that Volatility uses to locate
sensitive information and parse it.

Basically, a profile is a compressed archive that contains two files, as follows:

* The system.map file contains symbol names and addresses of static data
structures in the Linux kernel. In case of Android, this file is found in the
kernel source tree after the kernel compilation.

* Themodule.dwarf file emerges on compiling a module against the target
kernel and extracting the DWARF debugging information from: it.

In order to create a module.dwarf file, a utility called dwarfdump is required. The
Volatility source tree contains the tools/linux directory. If you run make in this
directory, the command compiles the module and produces the desired DWAREF file.
Creating the actual profile is done by simply running the following command:

user@lab $ zip Nexus4.zip module.dwarf System.map

The resulting ZIP file needs to be copied to volatility/plugins/overlays/linux.
After successfully copying the file, the profile shows up in the profiles section of the
Volatility help output.

[146]

Chapter 7

Although the support of Android in Volatility is quite new, there is a large amount
of Linux plugins that are working perfectly on Android too. For example:

* linux_pslist: It enumerates all running processes of a system similar to the
Linux ps command

* linux_ifconfig: This plugin simulates the Linux ifconfig command

* linux_route_cache: It reads and prints the route cache that stores the
recently used routing entries in a hash table

* linux_proc_maps: This plugin acquires memory mappings of each
individual process

If you are interested in how to write custom Volatility plugins and parse unknown
structures in Dalvik Virtual Machine (DVM), please take a look at the following
paper written by me and my colleagues: Post-Mortem Memory Analysis of Cold-Booted
Android Devices (refer to https://wwwl.informatik.uni-erlangen.de/filepool/
publications/android.ram.analysis.pdf).

In the next section, we will exemplarily show how to reconstruct the specific
application data with the help of LiME and Volatility.

Reconstructing data for Android

Now, we will see how to reconstruct application data with the help of Volatility

and custom made plugins. Therefore, we have chosen the call history and keyboard
cache. If you are investigating on a common Linux or Windows system, there is
already a large amount of plugins that are available, as you will see in the last section
of this chapter. Unfortunately, on Android, you have to write your own plugins.

Call history

One of our goals is to recover the list of recent incoming and outgoing phone

calls from an Android memory dump. This list is loaded when the phone app is
opened. The responsible process for the phone app and call history is com.android.
contacts. This process loads the PhoneClassDetails.java class file that models
the data of all telephone calls in a history structure. One instance of this class is

in memory per history entry. The data fields for each instance are typical meta
information of a call, as follows:

* Type (incoming, outgoing, or missed)
* Duration

¢ Date and time

[147]

https://www1.informatik.uni-erlangen.de/filepool/publications/android.ram.analysis.pdf
https://www1.informatik.uni-erlangen.de/filepool/publications/android.ram.analysis.pdf

Using Python for Memory Forensics

* Telephone number
* Contact name
* Assigned photo of the contact

To automatically extract and display this metadata, we provide a Volatility plugin
called dalvik_app calllog, which is shown as follows:

class dalvik app calllog(linux_ common.AbstractLinuxCommand) :

def init (self, config, *args, **kwargs):
linux_common.AbstractLinuxCommand. init (self, config,
*args, **kwargs)
dalvik.register option PID(self. config)
dalvik.register option GDVM OFFSET (self. config)

self. config.add option('CLASS OFFSET', short option = 'c',
default = None,

help = 'This is the offset (in hex) of system class
PhoneCallDetails.java', action = 'store', type = 'str')

def calculate (self) :
1if no gDvm object offset was specified, use this one
if not self. config.GDVM OFFSET:
self. config.GDVM OFFSET = str (hex(0x41bo0))

use linux pslist plugin to find process address space and
ID if not specified

proc_as = None

tasks = linux pslist.linux pslist(self. config).calculate()
for task in tasks:
if str(task.comm) == "ndroid.contacts":
proc_as = task.get process address_space ()

if not self. config.PID:
self. config.PID = str(task.pid)
break

use dalvik loaded classes plugin to find class offset if
not specified

if not self. config.CLASS OFFSET:

classes = dalvik loaded classes.dalvik loaded
classes(self. config).calculate()

for task, clazz in classes:

[148]

Chapter 7

if (dalvik.getString(clazz.sourceFile)+"" ==
"PhoneCallDetails.java") :

self. config.CLASS OFFSET = str(hex(clazz.
obj_offset))
break

use dalvik_find class_instance plugin to find a list of
possible class instances
instances = dalvik find class instance.dalvik find class_
instance (self. config) .calculate()
for sysClass, inst in instances:
callDetailsObj = obj.Object ('PhoneCallDetails', offset
= inst, vm = proc_as)
access type ID field for sanity check
typeID = int (callDetailsObj.callTypes.contents0)
valid type ID must be 1,2 or 3
if (typeID == 1 or typeID == 2 or typelD == 3):
yield callDetailsObj

def render text (self, outfd, data):

self.table header (outfd, [("InstanceClass", "13"),
("Date", "19"),
("Contact", "20"),
("Number", "15"),
("Duration", "13"),
("Iso", "3"),
("Geocode", "15"),
("Type", "8")

1)
for callDetailsObj in data:
convert epoch time to human readable date and time
rawDate = callDetailsObj.date / 1000

date = str(time.gmtime (rawDate) .tm _mday) + "." + \
str(time.gmtime (rawDate) .tm _mon) + "." + \
str(time.gmtime (rawDate) .tm_year) + " " + \
str(time.gmtime (rawDate) .tm_hour) + ":" + \
str(time.gmtime (rawDate) .tm _min) + ":" + \
str(time.gmtime (rawDate) .tm sec)

convert duration from seconds to hh:mm:ss format
duration = str(callDetailsObj.duration / 3600) + "h
||+\

[149]

Using Python for Memory Forensics

60) + "min " + \

str((callDetailsObj.duration % 3600) /

)

str(callDetailsObj.duration % 60) + "s"

replace call type ID by string

callType = int(callDetailsObj.callTypes.contents0)

if callType == 1:
callType = "incoming"
elif callType == 2:
callType = "outgoing"
elif callType == 3:
callType = "missed"
else:
callType = "unknown"
self.table row(outfd,
hex (callDetailsObj.obj offset),
date,

dalvik.parseJavalangString(callDeta

ilsObj.name.dereference as('StringObject')),

dalvik.parseJavalangString(callDeta

ilsObj . formattedNumber.dereference as('StringObject')),

duration,
dalvik.parseJavalangString(callDeta

i1lsObj.countryIso.dereference as('StringObject')),

dalvik.parseJavalangString(callDeta

1i1sObj.geoCode.dereference as('StringObject')),

callType)

This plugin accepts the following command line parameters:

* -o:For an offset to the gDvm object

* -p: For a process ID (PID)

e _c: For an offset to the PhoneClassDetails class

If some of these parameters are known and passed on to the plugin, the runtime of
the plugin reduces significantly. Otherwise, the plugin has to search for these values

in RAM itself.

[150]

Chapter 7

Keyboard cache

Now, we want to have a look at the cache of the default keyboard application.
Assuming that no further inputs were given after unlocking the screen and the
smartphone is protected by a PIN, this PIN is equal to the last user input, which
can be found in an Android memory dump as a UTF-16 Unicode string. The
Unicode string of the last user input is created by the RichInputConnection class
in the com.android. inputmethod.latin process and is stored in a variable called
mCommittedTextBeforeComposingText. This variable is like a keyboard buffer,
that is, it stores the last typed and confirmed key strokes of the on-screen keyboard.
To recover the last user input, we provide a Volatility plugin called dalvik_app_
lastInput, as follows:

class dalvik app lastInput (linux common.AbstractLinuxCommand) :

def init (self, config, *args, **kwargs):
linux common.AbstractLinuxCommand. init (self, config,
*args, **kwargs)
dalvik.register option PID(self. config)
dalvik.register option GDVM OFFSET (self. config)

self. config.add option('CLASS OFFSET', short option = 'c',
default = None,

help = 'This is the offset (in hex) of system class
RichInputConnection.java', action = 'store', type = 'str')

def calculate(self) :

if no gbvm object offset was specified, use this one
if not self. config.GDVM OFFSET:
self. config.GDVM OFFSET = str (0x41b0)

use linux pslist plugin to find process address space and
ID if not specified
proc_as = None
tasks = linux pslist.linux pslist(self. config).calculate()
for task in tasks:
if str(task.comm) == "putmethod.latin":

proc_as = task.get process address_ space ()

self. config.PID = str(task.pid)

break

use dalvik_loaded_classes plugin to find class offset if
not specified
if not self. config.CLASS OFFSET:

[151]

Using Python for Memory Forensics

classes = dalvik loaded classes.dalvik loaded
classes (self. config).calculate()

for task, clazz in classes:

if (dalvik.getString(clazz.sourceFile)+"" ==
"RichInputConnection.java") :

self. config.CLASS OFFSET = str(hex(clazz.
obj offset))
break

use dalvik_find class_instance plugin to find a list of
possible class instances

instance = dalvik find class instance.dalvik find class_
instance (self. config) .calculate()

for sysClass, inst in instance:
get stringBuilder object

stringBuilder = inst.clazz.getJValuebyName (inst,
"mCommittedTextBeforeComposingText") .Object.dereference as('Object')

get superclass object

abstractStringBuilder = stringBuilder.clazz.super.
dereference as('ClassObject"')

array object of super class
charArray = abstractStringBuilder.
getJValuebyName (stringBuilder, "value") .Object.dereference
as ('ArrayObject')
get length of array object
count = charArray.length
create string object with content of the array object
text = obj.Object ('String', offset = charArray.
contents0.obj offset,

vm = abstractStringBuilder.obj vm, length = count*2,
encoding = "utfle")

yield inst, text

def render text (self, outfd, data):
self.table header(outfd, [("InstanceClass", "13"),
("lastInput", "20")
1)

for inst, text in data:

self.table row(outfd,
hex (inst.obj offset),
text)

[152]

Chapter 7

Actually, this plugin not only recovers PINs but also arbitrary user inputs that were
given last; this might be an interesting artifact of digital evidence in many cases.
Similar to the preceding plugin, it accepts the same three command line parameters:
gbvm offset, PID,and class file offset. If none, or only some, of these
parameters are given, the plugin can also automatically determine the missing values.

Using Volatility on Linux

In the following section, we will describe memory acquisition techniques and sample
use cases to use Volatility for Linux memory forensics.

Memory acquisition
If the system is not virtualized and therefore, there is no way of getting the memory
directly from the hypervisor layer; then even for Linux, our tool of choice is LIME.

However, unlike in Android, the tool installation and operation is a lot easier
because we generate and run LiME directly on Linux system; however, many steps
are quite similar as you will notice in the following paragraphs.

First, determine the exact kernel version, which is running on the system, that is to
be analyzed. If there is no sufficient documentation available, then you may run the
following command to get the kernel version:

user@forensic-target $ uname -a

Linux forensic-target 3.2.0-88-generic #126-Ubuntu SMP Mon Jul 6 21:33:03
UTC 2015 x86 64 x86 64 x86 64 GNU/Linux

_— L
Use the configuration management in enterprise environments

Enterprise environments often run configuration management systems
) that show you the kernel version and Linux distribution of your target
Q system. Asking your customer to provide you with this data or even a
system with an identical kernel version and software environment can
help you in reducing the risk of incompatibilities between the LiME
module and your forensic target.

In your lab environment, prepare the LIME kernel module for memory acquisition.
To compile the module, make sure you have the correct kernel source code version
available for your target and then issue the following build command in the src
directory of LiME:

user@lab src $ make -C /usr/src/linux-headers-3.2.0-88-generic M=$PWD

[153]

Using Python for Memory Forensics

This should create the 1ime.ko module in the current directory.

On the target system, this kernel module can be used to dump the memory to disk,
as follows:

user@forensic-target $ sudo insmod lime.ko path=/path/to/dump.lime
format=1ime

We recommend choosing a path on the network to write the image

to. This way, the changes made to the local system are minimal.
/— Transferring the image over network is also an option. Just follow

the description in the Using Volatility on Android section.

Volatility for Linux

Volatility comes with a wide range of profiles. These profiles are used by Volatility
to interpret the memory dump. Unfortunately, the wide variety of Linux kernels,
system architectures, and kernel configurations make it impossible to ship the
profiles to all versions of Linux kernels.

M Listing all the profiles of Volatility

Q The list of all available profiles can be retrieved with the
vol.py --info command.

Consequently, it may be necessary to create your own profile as an ideal match to the
forensic target. The Volatility framework supports this step by providing a dummy
module that must be compiled against the kernel headers of the target system. This
module is available in the Volatility distribution in the tools/1linux subdirectory.
Compile it— similar to LIME — but with debug settings enabled:

user@lab src $ make -C /usr/src/linux-headers-3.2.0-88-generic CONFIG
DEBUG_INFO=y M=$PWD

This creates module.ko. There is no need to load this module; all we need is its
debug information. We use the dwarfdump tool, which is available as an installation
package in most Linux distributions, to extract this debug information:

user@lab $ dwarfdump -di module.ko > module.dwarf

[154]

Chapter 7

The next step in the creation of our profile is to acquire the System.map file of the
target system or a system with identical architecture, kernel version, and kernel
configuration. The System.map file may be found in the /boot directory. Often, the
kernel version is included in the filename, therefore be sure to select the System.map
file for the running kernel of the forensic target system.

Put module.dwarf and System.map into a zip archive, which will become our
Volatility profile, as shown in the following;:

user@lab $ zip Ubuntu3.2.0-88.zip module.dwarf System.map

As shown in the example, the name of the ZIP file should reflect the distribution and
kernel version.

Make sure that you do not add additional path information

to the zip archive. Otherwise, Volatility may fail to load the
"~ profile data.

Copy the new profile to the Linux profile directory of Volatility, as follows:

user@lab $ sudo cp Ubuntu3.2.0-88.zip /usr/local/lib/python2.7/dist-
packages/volatility-2.4-py2.7.egg/volatility/plugins/overlays/linux/

Instead of using the system-wide profile directory, you may also choose a new one and
add the --plugins=/path/to/profiles option to your Volatility command line.

Finally, you need to get the name of your new profile for further use. Therefore, use
the following call:

user@lab $ vol.py --info

The output should contain one additional line showing the new profile, as shown in
the following:

Profiles

LinuxUbuntu3_2 0-88x64 - A Profile for Linux Ubuntu3.2.0-88 x64

To use this profile, add --profile=LinuxUbuntu3_2_0-88x64 as the command line
argument for all subsequent calls to vol.py.

[155]

Using Python for Memory Forensics

Reconstructing data for Linux

All plugins that analyze Linux memory dumps have the 1inux_ prefix. Therefore,
you should use the Linux version of the plugins. Otherwise, you may get an error
message notifying that the module is not supported in the selected profile.

Analyzing processes and modules

A typical first step in the analysis of a memory dump is to list all running processes
and loaded kernel modules.

The following is how to carve out all running processes from a memory dump

with Volatility:

user@lab § vol.py --profile=LinuxUbuntu3 2 0-88x64 --file=memDump.lime
linux pslist

Volatility Foundation Volatility Framework 2.4

Offset Name Pid Uuid
Gid DTB Start Time

Oxffff8802320e8000 init 1 0
0x000000022£6c0000 2015-08-16 09:51:21 UTC+0000
Oxfff£f8802320e9700 kthreadd 2 0

------------------ 2015-08-16 09:51:21 UTC+0000

0xff££88022fbc0000 cron 2500 0
0x000000022cd38000 2015-08-16 09:51:25 UTC+0000
0xf£££88022fbcl700 atd 2501 0
0x000000022£e28000 2015-08-16 09:51:25 UTC+0000
0xff££f88022£012e00 irgbalance 2520 0
0x000000022d£39000 2015-08-16 09:51:25 UTC+0000
0xff££8802314b5c00 whoopsie 2524 105
114 0x000000022£1b0000 2015-08-16 09:51:25 UTC+0000
0xff££88022c5c0000 freshclam 2598 119

131 0x0000000231£a7000 2015-08-16 09:51:25 UTC+0000

[156]

Chapter 7

As shown in the output, the 1inux_pslist plugin iterates the kernel structure by
describing active processes, that is, it starts from the init_task symbol and iterates
the task_struct->tasks linked list. The plugin gets a list of all running processes,
including their offset address in the memory, process name, process ID (PID),
numerical ID of the user and group of the process (UID, and GID), and start time.
The Directory Table Base (DTB) can be used in the further analysis to translate
physical into virtual addresses. Empty DTB entries relate, most likely, to a kernel
thread. For example, kthreadd in our example output.

Analyzing networking information

The memory dump contains various information about the network activity of our
forensic target system. The following examples show how to utilize Volatility to
derive the information about the recent network activity.

The Address Resolution Protocol (ARP) cache of the Linux kernel maps MAC
addresses to IP addresses. Before a network communication on the local network is
established, the Linux kernel sends an ARP request to get the information about
the corresponding MAC address for a given destination IP address. The response
is cached in memory for re-use to further communicate with this IP address on the
local network. Consequently, ARP cache entries indicate the systems on the local
network that the forensic target was communicating with.

To read the ARP cache from a Linux memory dump, use the following command:

user@lab $ vol.py --profile=LinuxUbuntu3 2 0-88x64 --file=memDump.lime
linux arp

[192.168.167.22] at 00:00:00:00:00:00 on
etho
[192.168.167.20] at b8:27:eb:01:c2:8f on
etho

This extract from the output shows that the system had a cache entry for the
192.168.167.20 destination address with b8:27:eb:01:c2:8f being the
corresponding MAC address. The first entry is most likely a cache entry that
results from an unsuccessful communication attempt, that is, the 192.168.167.22
communication partner did not send a response to an ARP request that was
transmitted from the system and therefore, the corresponding ARP cache entry
remained at its initial value of 00:00:00:00:00:00. Either the communication
partner was not reachable or it is simply nonexistent.

[157]

Using Python for Memory Forensics

. If large parts of your local subnet show up in the ARP cache with
multiple entries having a MAC address of 00:00:00:00:00:00, then
i this is an indicator of the scanning activity, that is, the system
has tried to detect other systems on the local network.

For further network analysis, it might be worth checking the list of MAC addresses
that are retrieved from the ARP cache against the systems that are supposed to be on
the local subnet. While this technique is not bulletproof (as MAC addresses can be
forged), it might help in discovering rogue network devices.

Looking up the hardware vendor for a MAC address

The prefix of a MAC address reveals the hardware vendor of the
%‘/%‘\ corresponding network hardware. Sites such as http://www.
/ macvendorlookup . com provide an indication of the hardware
vendor of a network card.

If we look up the hardware vendor for the bg8:27:eb:01:c2:8f MAC address

from our example, it shows that this device was manufactured by the Raspberry Pi
Foundation. In a standard office or data center environment, these embedded devices
are rarely used and it is definitely worth checking whether this device is benign.

To get an overview of the network activity at the time the memory dump was
created, Volatility provides the means to emulate the 1inux netstat command,
as follows:

user@lab $ vol.py --profile=LinuxUbuntu3 2 0-88x64 --file=memDump.lime
linux netstat

TCP 192.168.167.21 :55622 109.234.207.112 : 143 ESTABLISHED
thunderbird/3746

UNIX 25129 thunderbird/3746

TCP 0.0.0.0 : 7802 0.0.0.0 : 0 LISTEN
skype/3833

These three lines are only a small excerpt from the typical output of this command.
The first line shows that the thunderbird process with the 3746 PID has an active
ESTABLISHED network connection to the IMAP server (TCP port 143) with the
109.234.207.112 IP address. The second line merely shows a socket of UNIX type
that is used for Inter-Process Communication (IPC). The last entry shows that skype
with the 3833 PID is a waiting LISTEN for incoming connections on TCP port 7802.

[158]

http://www.macvendorlookup.com
http://www.macvendorlookup.com

Chapter 7

Volatility can also be used to narrow down the list of processes to those with raw
network access. Typically, this kind of access is only required for Dynamic Host
Configuration Protocol (DHCP) clients, network diagnostics, and, of course,
malware in order to construct arbitrary packets on the network interface, for
example, conduct a so-called ARP cache poisoning attack. The following shows how
to list the processes with raw network sockets:

user@lab § vol.py --profile=LinuxUbuntu3 2 0-88x64 --file=memDump.lime
linux list_raw

Process PID File Descriptor Inode

dhclient 2817 5 15831

Here, only the DHCP client is detected to have the raw network access.

Rootkit detection modules

Volatility provides a variety of mechanisms in order to detect typical
M rootkit behavior, for example, interrupt hooking, manipulations of the
Q network stack, and hidden kernel modules. We recommend getting
familiar with these modules as they can speed up your analysis.
Furthermore, check for module updates on a regular basis to leverage
new malware detection mechanisms being built in to Volatility.

Some generic methods and heuristics for malware detection are combined in
the 1inux_malfind module. This module looks for suspicious process memory
mappings and produces a list of possibly malicious processes.

Malware hunting with the help of YARA

YARA itself is a tool that is able to match a given pattern in arbitrary files and
datasets. The corresponding rules —also known as signatures —are a great way
to search for known malicious files in dumps of hard drives or memory.

In this section, we want to demonstrate how to search for given malware in an
acquired memory dump of a Linux machine. Therefore, you can use two different
procedures that we will discuss in the following:

* Searching the memory dump directly with the help of YARA

* Using linux_yarascan and Volatility

[159]

Using Python for Memory Forensics

The first option has one big disadvantage; as we already know, memory dumps
contain fragmented data that is normally contiguous. This fact makes it prone
to failure if you are searching this dump for known signatures as they are not
necessarily in the order you are searching them.

The second option—using linux_yarascan—is more fail-safe as it uses Volatility
and knows the structure of the acquired memory dump. With the help of this
knowledge, it is able to resolve the fragmentation and search reliable for known
signatures. Although, we are using 1inux_yarascan on Linux, this module is also
available for Windows (yarascan) and Mac OS X (mac_yarascan).

The main capabilities of this module are as follows:

* Scan given processes in the memory dump for a given YARA signature
* Scan the complete range of kernel memory

* Extract the memory areas to disk that contain positive results to the given
YARA rules

The full list of possible command line options can be seen on entering vol.py
linux yarascan -h

Basically, you can search in many different ways. The simplest way of using this
module is by searching for a given URL in the memory dump. This can be done by
entering the following command:

user@lab $ vol.py --profile=LinuxUbuntu3 2 0-88x64 --file=memDump.lime
linux yarascan --yara-rules="microsoft.com" --wide

Task: skype pid 3833 rule rl addr Oxe2be751f

Oxe2be751f 64 00 69 00 63 00 72 00 6£f 00 73 00 6£f 00 66 00
m.i.c.r.o.s.0.f.

Oxe2be752f 74 00 2e 00 63 00 6f 00 6d 00 2f 00 74 00 79 00
t...c.o.m./.t.y.
Oxe2be753f 70 00 6f 00 67 00 72 00 61 00 70 00 68 00 79 00
p.o.g.r.a.p.h.y.

Oxe2be754f 2f 00 66 00 6f 00 6e 00 74 00 73 00 2f 00 59 00
/.f.o.n.t.s./.Y.

Oxe2be755f 6£f 00 75 00 20 00 64 00 61 00 79 00 20 00 75 00
o.u...m.a.y...u.

Oxe2be756f 73 00 65 00 20 00 74 00 68 00 69 00 73 00 20 00
s.e...t.h.i.s...

0xe2be757f 66 00 6f 00 6e 00 74 00 20 00 61 00 73 00 20 0O
f.o.n.t...a.s...

[160]

Chapter 7

0xe2be758f 70 00
p.e.r.m.i.t.t.e.
0xe2be759f 64 00
d...b.y...t.h.e.
Oxe2be75af 20 00
..E.U.L.A...f.0.
0xe2be75bf 72 00
r...t.h.e...p.r.
Oxe2be75cf 6£f 00
o.d.u.c.t...i.n.
Oxe2be75df 20 00
..w.h.i.c.h...t.
Oxe2be75ef 68 00
h.i.s...f.o.n.t.
Oxe2be75ff 20 00
..i.s...iun.c. 1.
0xe2be760f 75 00

u.d.e.d...t.o...

65

20

45

20

64

77

69

69

64

Task: skype pid 3833

Oxedfel267 64 00
m.i.c.r.o.s.0.£f.
Oxedfel277 74 00
t...c.o.m./.t.y.
Oxedfel287 70 00
p.o.g.r.a.p.h.y.
Oxedfel297 2£f 00
/.f.o.n.t.s./.Y.
Oxedfel2a7 6£f 00
o.u...m.a.y...u.
Oxedfel2b7 73 00
s.e...t.h.i.s...
Oxedfel2c7 66 00
f.o.n.t...a.s...
Oxedfel2d7 70 00
p.e.r.m.i.t.t.e.
Oxedfel2e7 64 00
d...b.y...t.h.e.
Oxedfel2f7 20 00
..E.U.L.A...f.0.
Oxedfel307 72 00

r...t.h.e...p.r.

69

2e

6f

66

75

65

6f

65

20

45

20

00

00

00

00

00

00

00

00

72

62

55

74

75

68

73

73

00

00

00

00

00

00

00

00

00 65 00

6d

79

4c

68

63

69

20

20

64

00 69

00 20

00 41

00 65

00 74

00 63

00 66

00 69

00 20

00

00

00

00

00

00

00

00

00

74

74

20

20

20

68

6f

6e

74

rule rl addr Oxedfel267
00 63 00 72 00 6f 00 73

00

00

00

00

00

00

00

00

00

00

63

67

6f

20

20

6e

72

62

55

74

00

00

00

00

00

00

00

00

00

00

6f

72

6e

6d

74

74

6d

79

4c

68

00 64

00 61

00 74

00 61

00 68

00 20

00 69

00 20

00 41

00 65

00

00

00

00

00

00

00

00

00

00

2f

70

73

79

69

61

74

74

20

20

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

74

68

66

70

69

20

6e

63

6f

6f

74

68

2f

20

73

73

74

68

66

70

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

65

65

6f

72

6e

74

74

6c

20

66

79

79

59

75

20

20

65

65

6f

72

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

[161]

Using Python for Memory Forensics

Oxedfel3l7 6£f 00 64 00 75 00 63 00 74 00 20 00 69 00 6e 00
o.d.u.c.t...i.n.

Oxedfel327 20 00 77 00 68 00 69 00 63 00 68 00 20 00 74 00
..w.h.i.c.h...t.

Oxedfel337 68 00 69 00 73 00 20 00 66 00 6f 00 6e 00 74 00
h.i.s...f.o.n.t.

Oxedfel347 20 00 69 00 73 00 20 00 69 00 6e 00 63 00 6¢c 00
..i.s...i.n.c. 1.

Oxedfel357 75 00 64 00 65 00 64 00 20 00 74 00 6f 00 20 00
u.d.e.d...t.o...

A more complex but also a more realistic way is to search for a given YARA rule. The
following YARA rule was made to identify whether a system has been infected with
the Derusbi malware family:

rule APT Derusbi_Gen

{

meta:
author = "ThreatConnect Intelligence Research Team"
strings:
$2 = "273ce6-b29f-90d618c0" wide ascii
SA = "Acel23dx" fullword wide ascii
SA1l = "Acel23dxl!" fullword wide ascii
SA2 = "Acel23dx!e@#x" fullword wide ascii
$C = "/Catelog/loginl.asp" wide ascii
SDF = "~DFTMPS$$$$S.1" wide ascii
$G = "GET /Query.asp?loginid=" wide ascii
SL = "LoadConfigFromReg failded" wide ascii
SL1 = "LoadConfigFromBuildin success" wide ascii
$Sph = "/photoe/photo.asp HTTP" wide ascii
$SPO = "POST /photos/photo.asp" wide ascii
$PC = "PCC_IDENT" wide ascii
condition:

any of them

}

If we save this rule as apt_derusbi_gen.rule, we can search for it in the acquired
memory dump by entering the following command:

user@lab $ vol.py --profile=LinuxUbuntu3 2 0-88x64 --file=memDump.lime
linux yarascan --yara-file=apt derusbi gen.rule --wide

The result will only show us a short preview that can be enlarged by using the
--size option.

[162]

Chapter 7

If you are investigating a predefined scenario (for example, if you already know
that the system has been attacked by a known group), you can copy all your rules
in one single rule file and search the memory dump for all the rules in the file at
once. Volatility and 1inux_yarascan will display every hit and its corresponding
rule number. This makes it much faster to scan for known malicious behavior in a
memory dump.

There is a vast number of sources for YARA signatures that are available in the wild
and we will only mention some of the most important ones here to help you, starting
with the malware hunt as shown in the following:

* The YARA signature exchange group on Google Groups: http://www.
deependresearch.org/

* Signatures from AlienVault Labs: https://github.com/Alienvault-Labs/
AlienVaultLabs/tree/master/malware analysis

* Antivirus signatures that can be built with the help of ClamAV and recipe
3-3 out of the Malware Analyst's Cookbook: https://code.google. com/p/
malwarecookbook/source/browse/trunk/3/3/clamav_to_yara.py

Summary

In this chapter, we provided an overview of memory forensics using the Volatility
framework. In the examples, we demonstrated memory acquisition techniques for
Android and Linux systems and saw how to use LiME on both systems. We used
Volatility to get information about running processes, loaded modules, possibly
malicious activity, and recent network activity. The latter is useful to trace the
activities of an attacker through the network.

In the last example in this chapter, we demonstrated how to search for a given
malware signature or other highly flexible pattern-based rules in such a memory
dump. These YARA signatures or rules help in identifying suspicious activities or
files really fast.

Furthermore, we demonstrated how to get the keyboard cache as well as call history
from an Android device.

[163]

https://github.com/AlienVault-Labs/AlienVaultLabs/tree/master/malware_analysis
https://github.com/AlienVault-Labs/AlienVaultLabs/tree/master/malware_analysis
https://code.google.com/p/malwarecookbook/source/browse/trunk/3/3/clamav_to_yara.py
https://code.google.com/p/malwarecookbook/source/browse/trunk/3/3/clamav_to_yara.py

Using Python for Memory Forensics

Where to go from here

If you like to test the tools and knowledge gained from this book, we have the
following two tips for you:

Create a lab with two virtual machines —Metasploit and Metasploitable.
Try to hack into your Metasploitable system and perform a forensic
analysis afterwards. Are you able to reconstruct the attack and gather

all the Indicators of Compromise?

Get some old hard drives, which are no longer used but have been used
regularly in the past. Perform a forensic analysis on these drives and try to
reconstruct as much data as possible. Are you able to reconstruct former
operations on these drives?

If you like to enhance your knowledge on some of the topics that were covered in
this book, the following books are a really good choice:

Practical Mobile Forensics by Satish Bommisetty, Rohit Tamma, Heather Mahalik,
Packt Publishing

The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux,
and Mac Memory by Michael Hale Ligh, Andrew Case, Jamie Levy and AAron
Walters, Wiley India

Handbook of Digital Forensics and Investigation by Eoghan Casey, Academic Press

[164]

A

Address Resolution Protocol (ARP) 83,157
algorithms
about 11,12
MD5 12,13
SHA256 13
SSDEEP 13, 14
Android
automated examination, with ADEL 126
examining 115
manual examination 115-125
movement profiles, creating 132, 133
Android Data Extractor Lite (ADEL)
about 112
design guidelines 126
implementation 127, 128
system workflow 127,128
URL 128
working with 128-131
Android Software Development Kit
(Android SDK) 127
AndroTotal 119
AppExtract
about 20
URL 20
Apple iOS
about 134
keychain, obtaining from jailbroken
iDevice 134, 135
manual examination, with
libimobiledevice 136-138
Application Compatibility Shim Cache 43

Index

atom
about 3
URL 3

B

bare-metal hypervisor 86

C

capability flags 53
C data types 6,7
central log system
log information, collecting 91
clustering, file information
about 66
histograms, creating 66-70
Context Triggered Piecewise Hashing
(CTPH) 14
cryptographic hash function
about 11
properties 12
ctypes
about 1, 4,5
C data types 6,7
Dynamic Link Libraries (DLL) 5
Structures, defining 8, 9
Unions, defining 8, 9
Cyber Security 1
Cydia App Store 138

D

Dalvik Virtual Machine (DVM) 147
Data center as a Service (DCaaS) 96

[165]

decoders

dns 77

large-flows 77

protocols 78

reservedips 77

rip-http 78

synrst 78
desktop virtualization 86
Digital Forensics 1
direct hardware access

detecting 101-104
Directory Table Base (DTB) 157
directory trees

hash sums, creating 17-19
discretionary access control 57
disk images

snapshots, using as 107
Dshell

about 77

URL 78

using 77-81
Dynamic Host Configuration Protocol

(DHCP) 159

Dynamic Link Libraries (DLL) 5

E

eclipse 3

Emerging Threats
URL 80

ESXi servers 88

F

file capabilities
effective set (e) 63
inheritable set (i) 63
permitted set (p) 63
reading, with Python 62-65
file meta information
analyzing 50
basic file metadata, reading with
Python 53-57

file capabilities, reading with Python 62-65

inode 51, 52

POSIX ACLs, evaluating with Python 57-62

file mode, inode (index node)
execute (x) 52
read (r) 51
set id on execution (s) 52
sticky (t) 52
write (w) 52

Firewall 97

forensic copy
hash sums, creating of directory trees 17-19
hash sums, creating of full

disk images 15-17

investigating 15

Fuzzy Hashing 14

G

General Public License (GPL) 140
GnuPG
URL 19
using 19
GnuPlot 81
guest OS 86

H

hash function 11
hash sums
creating, of directory trees 17-19
creating, of full disk images 15-17
histograms
advanced techniques 71-75
creating 66-70
disadvantages 71
host OS 86
hypervisor 86

Indicators of Compromise (IOC)
about 29
Windows Event Log (EVT), parsing for 34
Windows Registry, parsing for 40
inode (index node)
about 51
file group 51
file mode 51
file owner 51
index number 51

[166]

International Mobile Subscriber
Identity (IMSI) 128
Inter-Process Communication (IPC) 158
Investigative Process Model
for smartphones 112
steps 112-114

J

jailbroken iDevice
iOS keychain, obtaining 134, 135

L

lab environment (labenv)
about 3
setting up 2
Ubuntu 2,3
virtualenv 3, 4
libimobiledevice
about 134
used, for manual examination of
Apple iOS 136-138
LibreOffice Calc 21
Linux Memory Extractor (LiME) format
about 140, 141
using 141-145
Linux specific checks
file information, clustering 66
file meta information, analyzing 50
implementing 44
integrity of local user credentials,
checking 45-50
Loadable Kernel Module (LKM) 141
log2timeline 37

machine learning algorithms 71
mako kernel
about 143
reference link 143
matplotlib module
about 66
URL 66
MD5 11-13

Mobile Malware
about 19
example 20-23

Mobile-Sandbox
about 20, 119
URL 20

N

National Software Reference Library
(NSRL)
about 19, 23
URL 23
Network Interfaces Card (NIC) 108
network traffic
capturing 108
nsrllookup
about 25
URL 25
NSRLquery
example 23
nsrlsvr, downloading 24
nsrlsvr, installing 24
nsrlsvr
client, writing 25, 26
commands 25
installing, in non-default directory 24
URL 24

P

packet capture (pcap) file 78
PhotoRec 146
plaso

about 37

URL 34
POSIX Access Control Lists

(POSIX ACLs)

about 53

evaluating, with Python 57-61
pylibacl library

about 59

URL 59
python-evtx

about 34-37

URL 34

[167]

Python virtual environment. See virtualenv

pyVmomi
about 88
sample code 88
URL 88

R

RAM content

forensic copies, creating 105, 106
real-world scenarios

Mobile Malware 19

NSRLquery 19, 23
recovery image

creating 141-145
regular expression

about 50

re module 50
rip-smb-uploads decoder 80
rogue machines

creating 88-90
rogue network interfaces

detecting 96-101

S

Scapy
about 77

URL 81
using 81-83
scikit-learn
about 71
URL 71
sdb 15
Secure Shell (SSH) 133
Server Message Block (SMB) 77
SHA256 11-13
shared objects (SO) 5
Shim Cache Parser
about 40, 43, 44
reference link 40
URL 43
smartphones
Investigative Process Model 112
smart pointer 65

snapshots

about 87
using, as disk images 107

SSDEEP

about 11-14
URL 14

stat module

reference link 55

strings 146
Structures

defining 8,9

T

Tor2Web service 80
Tor network 80

Tor Onion Services 80
Type 1 hypervisor 86
Type 2 hypervisor 86

U

Ubuntu

setting up 2,3
URL 2

Unions

defining 8,9

\'

Vawtrak malware 80
vCenter Server 87
virtualenv

about 2,3
installing 3
setting up 3,4

virtualization

as additional layer of abstraction 86-88

as new attack surface 85
forensic copies, creating of

RAM content 105, 106
network traffic, capturing 108
rogue machines, creating 88-90
snapshots, using as disk images 107
systems, cloning 91-96
used, as source of evidence 105

[168]

virtual networks
visualizing 97
virtual resources
direct hardware access, detecting 101-104
misuse, searching 96
rogue network interfaces, detecting 96-101
VirusTotal 20
VMware vSphere 88
VMX file
hardware configuration, extracting 104
Volatility
about 139
malware, searching with YARA 159-163
plugins 140
profile 140
URL 140
Volatility, on Android
call history, obtaining 147-150
data, reconstructing 147
keyboard cache 151-153
LiIME 141-145
recovery image, creating 141-145
using 141
using, with ARM support 146, 147
Volatility, on Linux
data, reconstructing 156
memory acquisition 153
modules, analyzing 156, 157
networking information, analyzing 157-159
processes, analyzing 156, 157
profiles, using 154, 155
using 153
vSphere Distributed Switch (VDS) 108

vSphere Web Service API
about 90
reference link 90

vtype 146

w

Windows Event Log (EVT)
about 30, 31
analyzing 30
files 30
log2timeline 37
parsing, for IOC 34
plaso 37
python-evtx 34-37
reference link 31
types 32,33
Windows Registry
analyzing 38
Connected USB Devices 40
parsing, for IOC 40
Shim Cache Parser 43, 44
Startup Programs 40-42
structure 38, 39
subkeys 41
System Information 40-42
User Histories 40, 41
Windows XML Event Log (EVTX) 30

Y

YARA
references 163
used, for searching malware 159-163

[169]

open source

community experience distilled

PUBLISHING

Thank you for buying
Mastering Python Forensics

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

community experience distilled

[open source

PUBLISHING

Big Data Forensics — Learning
Hadoop Investigations
ISBN: 978-1-78528-810-4 Paperback: 264 pages

Perform forensic investigations on Hadoop clusters
with cutting-edge tools and techniques

1. Identify, collect, and analyze Hadoop
evidence forensically.

Big Data Forensics — Learning
Hadoop Investigations

2. Learn about Hadoop's internals and Big Data
file storage concepts.

3. A step-by-step guide to help you perform
forensic analysis using freely available tools.

Python for Secret Agents
ISBN: 978-1-78398-042-0 Paperback: 216 pages

Analyze, encrypt, and uncover intelligence data using
Python, the essential tool for all aspiring secret agents

1. Build a toolbox of Python gadgets for
password recovery, currency conversion,
and civic data hacking.

Python for 2. Usg steganography to hide secret messages
Secret Agents 10 Images.

3. Get to grips with geocoding to find villains
secret lairs.

Please check www.PacktPub.com for information on our titles

community experience distilled

[open source

PUBLISHING

Practical Mobile Forensics
ISBN: 978-1-78328-831-1 Paperback: 328 pages

Dive into mobile forensics on iOS, Android, Windows,
and BlackBerry devices with this action-packed,
practical guide

1. Clear and concise explanations for forensic
examinations of mobile devices.

2. Master the art of extracting data, recovering
deleted data, bypassing screen locks, and
much more.

3. The first and only guide covering practical
mobile forensics on multiple platforms.

Learning Python Data
Visualization
ISBN: 978-1-78355-333-4 Paperback: 212 pages

Master how to build dynamic HTML5-ready SVG
charts using Python and the pygal library

1. A practical guide that helps you break into the
world of data visualization with Python.

Learni ng Python 2. Understand the fundamentals of building

Data Visualization charts in Python.

3. Packed with easy-to-understand tutorials for

developers who are new to Python or charting
in Python.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up the Lab and Introduction to Python ctypes
	Setting up the Lab
	Ubuntu
	Python virtual environment (virtualenv)

	Introduction to Python ctypes
	Working with Dynamic Link Libraries
	C data types
	Defining Unions and Structures

	Summary

	Chapter 2: Forensic Algorithms
	Algorithms
	MD5
	SHA256
	SSDEEP

	Supporting the chain of custody
	Creating hash sums of full disk images
	Creating hash sums of directory trees

	Real-world scenarios
	Mobile Malware
	NSRLquery
	Downloading and installing nsrlsvr
	Writing a client for nsrlsvr in Python

	Summary

	Chapter 3: Using Python for Windows and Linux Forensics
	Analyzing the Windows Event Log
	The Windows Event Log
	Interesting Events
	Parsing the Event Log for IOC
	The python-evtx parser
	The plaso and log2timeline tools

	Analyzing the Windows Registry
	Windows Registry Structure
	Parsing the Registry for IOC
	Connected USB Devices
	User histories
	Startup programs
	System Information
	Shim Cache Parser

	Implementing Linux specific checks
	Checking the integrity of local user credentials
	Analyzing file meta information
	Understanding inode
	Reading basic file metadata with Python
	Evaluating POSIX ACLs with Python
	Reading file capabilities with Python

	Clustering file information
	Creating histograms
	Advanced histogram techniques

	Summary

	Chapter 4: Using Python for
Network Forensics
	Using Dshell during an investigation
	Using Scapy during an investigation
	Summary

	Chapter 5: Using Python for Virtualization Forensics
	Considering virtualization as a new attack surface
	Virtualization as an additional layer of abstraction
	Creation of rogue machines
	Cloning of systems

	Searching for misuse of virtual resources
	Detecting rogue network interfaces
	Detecting direct hardware access

	Using virtualization as a source of evidence
	Creating forensic copies of RAM content
	Using snapshots as disk images
	Capturing network traffic

	Summary

	Chapter 6: Using Python for
Mobile Forensics
	The investigative model for smartphones
	Android
	Manual Examination
	Automated Examination with the help of ADEL
	Idea behind the system
	Implementation and system workflow
	Working with ADEL

	Movement profiles

	Apple iOS
	Getting the Keychain from a jailbroken iDevice
	Manual Examination with libimobiledevice

	Summary

	Chapter 7: Using Python for
Memory Forensics
	Understanding Volatility basics
	Using Volatility on Android
	LiME and the recovery image
	Volatility for Android
	Reconstructing data for Android
	Call history
	Keyboard cache

	Using Volatility on Linux
	Memory acquisition
	Volatility for Linux
	Reconstructing data for Linux
	Analyzing processes and modules
	Analyzing networking information
	Malware hunting with the help of YARA

	Summary
	Where to go from here

	Index

