<packh

Mastering
Python Design Patterns

Craft essential Python patterns by following
core design principles

KAMON AYEVA | SAKIS KASAMPALIS

Mastering Python Design Patterns

Craft essential Python patterns by following core
design principles

Kamon Ayeva

Sakis Kasampalis

<packd

Mastering Python Design Patterns

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kunal Sawant

Publishing Product Manager: Samriddhi Murarka
Book Project Manager: Manisha Singh

Senior Editor: Nithya Sadanandan

Technical Editor: Vidhisha Patidar

Copy Editor: Safis Editing

Proofreader: Nithya Sadanandan

Indexer: Tejal Soni

Production Designer: Nilesh Mohite

DevRel Marketing Coordinator: Shrinidhi Manoharan

First published: January 2015
Second edition: August 2018
Third edition: May 2024

Production reference: 1230524

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 IRB, UK

ISBN 978-1-83763-961-8

www . packtpub. com

http://www.packtpub.com

I would like to thank my parents for their love and support.

- Kamon Ayeva

Contributors

About the authors

Kamon Ayeva is a seasoned Python expert with over two decades of experience in the technology
sector. As the founder of Content Gardening Studio, a consulting and custom development services
firm, he specializes in web development, data, and Al, delivering top-notch Python solutions to clients
globally. A trusted educator, Kamon has trained numerous developers, solidifying his reputation as
an authority in the Python community. He is also the co-author of the previous edition of Mastering
Python Design Patterns. On social media, you can find him on Twitter under the handle @kamon,
where he continues to share invaluable insights and trends in Python and software design.

Sakis Kasampalis is a software architect living in the Netherlands. He is not dogmatic about particular
programming languages and tools; his principle is that the right tool should be used for the right job.
One of his favorite tools is Python because he finds it very productive. Sakis was also the technical
reviewer of Mastering Object-oriented Python and Learning Python Design Patterns, published by
Packt Publishing.

About the reviewers

Fréjus L. O. Adjé is a software engineer with more than 10 years of industry experience. Holding a degree
in Computer Network and Internet Engineering, he is highly regarded for his proficiency in creating
dynamic web applications. With nearly 7 years of focused expertise in Python, he has successfully
led teams and delivered innovative solutions. Committed to lifelong learning, he actively seeks to
stay ahead in the rapidly evolving technology landscape while sharing his expertise by mentoring
new developers. Off-duty, Fréjus enjoys chess, design, and football, dedicating his free time to chess
matches, exploring trends, and playing or watching football, which broadens his global perspective
and enriches his software development approach.

Encolpe DEGOUT has been a developer and an open-source advocate since 1998. He started using
Python and Zope in 2002 and then became involved in Nuxeo CPS and Plone CMS. He promotes the
open-source ecosystem by organizing conferences and giving courses. Besides these involvements,
he participates in automating data integration in a search engine specialized in European media and
worldwide press.

Gianguglielmo Calvi is a computer scientist and knowledge manager, founder of Heuristica, and
co-founder of EnQu Ideation. With a strong background in programming in C/C++ and Python, he
has over two decades of experience in international projects. He currently serves as a Senior Knowledge
Management Systems Expert consultant at the Green Growth Knowledge Partnership. His career
includes roles as a researcher in Cognitive Science and Al at ISTC-CNR and as a knowledge manager
at the International Labour Organization, UN/CEFACT, UNDSS, WHO EUROPE, and Voolinks.
Gianguglielmo holds a master’s degree in computer science from the University of Pisa, a Knowledge
Management certification from the IKF Institute, and various international certifications.

Table of Contents

Preface

Part 1: Start with Principles

1

Foundational Design Principles 3
Technical requirements 4 Following the Program to Interfaces,
Following the Encapsulate What Not Implementations principle 12
Varies principle 4 What does it mean? 12
What does it mean? 4 Benefits 12
Benefits 4 Techniques for interfaces 12
Techniques for achieving encapsulation 5 An example - different types of logger 14
An example - encapsulating using An example - different types of logger,
polymorphism 6 now using Protocols 16
An example - encapsulating using a Following the Loose Coupling

property 7 principle 18
Following the Favor Composition What does it mean? 18
Over Inheritance principle 9 Benefits 18
What does it mean? Techniques for loose coupling 18
Benefits 10 An example - a message service 19
Techniques for composition 10 Summary 21
An example - compose a car using

the engine 10

viii

Table of Contents

2

SOLID Principles 23
Technical requirements 23 An example of design following the LSP 30
SRP 23 ISP 33
An example of software design following An example of design following the ISP 33
the SRP 24

DIP 36
ocp 26 An example of design following the ISP 37
An example of design following the OCP 27

Summary 39
LSP 30
Part 2: From the Gang of Four
Creational Design Patterns 43
Technical requirements 44 Implementing the prototype pattern 65
The factory pattern 44 The singleton pattern 69
The factory method 44 Real-world examples 69
The abstract factory pattern 53 Use cases for the singleton pattern 70
The builder pattern 58 Implementing the singleton pattern 70
Real-world examples 59 Should you use the singleton pattern? 73
Comparison with the factory pattern 59 The object pool pattern 73
Use cases for the builder pattern 59 Real-world examples 73
Implementing the builder pattern 59 Use cases for the object pool pattern 74
The prototype pattern 64 Implementing the object pool pattern 74
Real-world examples 64 Summary 76
Use cases for the prototype pattern 65
Structural Design Patterns 77
The adapter pattern 77 Use cases for the adapter pattern 78
Real-world examples 78

Table of Contents

Implementing the adapter pattern - adapt a The flyweight pattern 98
legacy class 78 Real-world examples 98
Implementing the adapter pattern - adapt Use cases for the flyweight pattern 99
several classes into a unified interface 80 Implementing the flyweight pattern 99
The decorator pattern 83 The proxy pattern 103
Real-world examples 84 Real-world examples 103
Use cases for the decorator pattern 84 Use cases for the proxy pattern 104
Implementing the decorator pattern 85 Implementing the proxy pattern - a virtual
The bridge pattern 89 proxy 104
Real-world examples 920 Implementing the proxy pattern - a .
tecti

Use cases for the bridge pattern 920 fro lec o p rox;rl
Implementing the bridge pattern 90 mplementing the proxy pattern - a remote

proxy 109
The facade pattern 93 Implementing the proxy pattern - a smart
Real-world examples 93 proxy 11
Use cases for the facade pattern 94 Summary 114
Implementing the facade pattern 94
Behavioral Design Patterns 117
Technical requirements 118 Real-world examples 133
The Chain of Responsibility Use cases for the State pattern 134
pattern 118 Implementing the State pattern 134
Real-world examples 118 The Interpreter pattern 140
Use cases for the Chain of Responsibility Real-world examples 140
pattern 119 Use cases for the Interpreter pattern 140
Implementing the Chain of Responsibility Implementing the Interpreter pattern 141
pattern 119

The Strategy pattern 144
The Command pattern 123 gy P
Real ” . 123 Real-world examples 145

eal-worlc examp'es Use cases for the Strategy pattern 145

Use cases for the Command pattern 124 .

Implementing the Strategy pattern 145
Implementing the Command pattern 124

The Memento pattern 149
The Observer pattern 128 P
Real ” | - Real-world examples 149

cal-Worl(exatmp'es Use cases for the Memento pattern 150

Use cases for the Observer pattern 129 .

Implementing the Memento pattern 150
Implementing the Observer pattern 129

The Iterator pattern 153
The State pattern 132

Use cases for the Iterator pattern 153

Table of Contents

Implementing the Iterator pattern 154 Implementing the Template pattern 157
The Template pattern 156 Other behavioral design patterns 159
Real-world examples 156 Summary 159
Use cases for the Template pattern 156
Part 3: Beyond the Gang of Four
Architectural Design Patterns 163
Technical requirements 163 Real-world examples 177
The MVC pattern 164 Use cases for the Serverless pattern 178
Real-world examples 165 Implementing the Serverless pattern 178
Use cases for the MVC pattern 166 The Event Sourcing pattern 180
Implementing the MVC pattern 167 Real-world examples 180
The Microservices pattern 169 Use cases for the Event Sourcing pattern 180
Real-world examples 170 Implementing the event sourcing
. . pattern - the manual way 181
Use cases for the Microservices pattern 171
. . . Implementing the Event Sourcing
Implementing the microservices . .
. . pattern - using a library 183
pattern - a payment service using gRPC 171
Implementing the microservices Other architectural design
pattern - an LLM service patterns 185
using Lanarky 174 Summary 185
The Serverless pattern 177
Concurrency and Asynchronous Patterns 187
Technical requirements 187 Real-world examples 191
The Thread Pool pattern 188 Use cases for the Worker Model pattern 191
Real-world examples 188 Implementing the Worker Model pattern 192
Use cases for the Thread Pool pattern 189 The Future and Promise pattern 194
Implementing the Thread Pool pattern 189 Real-world examples 194
The Worker Model pattern 191 Use cases for the Future and Promise
pattern 195

Table of Contents

Implementing the Future and Promise

Use cases for the Observer pattern in

pattern - using concurrent.futures 196 reactive programming 200
Implementing the Future and Promise Implementing the Observer pattern in
pattern — using asyncio 197 reactive programming 200
The Observer pattern in reactive Other concurrency and
programming 199 asynchronous patterns 203
Real-world examples 199 Summary 204
Performance Patterns 205
Technical requirements 205 Implementing the memoization pattern 213
T]le CaChe*ASide Pattern 206 The Lazy Loading pattern 215
Real-world examples 206 Real-world examples 215
Use cases for the cache-aside pattern 206 Use cases for the lazy loading pattern 215
Implementing the cache-aside pattern 206 Implementing the lazy loading
The Memoization pattern 212 pattern - lazy attribute loading 216

Implementing the lazy loading
Real-world examples 213 i i

pattern - using caching 217
Use cases for the memoization pattern 213

Summary 219
Distributed Systems Patterns 221
Technical requirements 221 The Circuit Breaker pattern 229
The Throttling pattern 222 Real-world examples 229
Real-world examples 222 Use cases for the Circuit Breaker
Use cases for the Throttling pattern 223 pattern 230
Implementing the Throttling pattern 223 Implementing the Circuit Breaker

pattern 230
The Retry pattern 226 Lo

Other distributed systems
Real-world examples 226

patterns 232
Use cases for the Retry pattern 227
Implementing the Retry pattern 227 Summary 232

Xi

xii

Table of Contents

10

Patterns for Testing 235
Technical requirements 235 Real-world examples 239
The Mock Object pattern 235 Use cases for the Dependency Injection

pattern 239
Real-world examples 236

. Implementing the Dependency Injection

Use cases for the Mock Object pattern 236 . .
Implementing the Mock Object pattern 237 pattern - using a mock object 0
mple g Jectp Implementing the Dependency Injection
The Dependency Injection pattern - using a decorator 242
pattern 239 Summary 246
Python Anti-Patterns 247
Technical requirements 247 Accessing a protected member from
Code style violations 247 Outsideaclass 254
Tools for fixing coding style Maintainability anti-patterns 255
violations 248 Using a wildcard import 256
Indentation 248 LBYL versus EAFP 256
Maximum line length and blank lines 248 Overusing inheritance and tight
Imports 249 coupling 257
Naming conventions 249 Using global variables for sharing data
Comments 250 between functions 258
Whitespace in expressions and Performance anti-patterns 259
statements 250 Not using .join() to concatenate strings
Correctness anti-patterns 251 inaloop 259
Using the type() function for comparing Using global variables for caching 260
types 251 Summary 262
Mutable default argument 252
Index 265
Other Books You May Enjoy 274

Preface

Explore the world of design principles and design patterns in the context of the Python programming
language with this comprehensive guide. Learn about classic and modern design patterns and how to
use them to solve problems you encounter daily as a Python developer or software architect.

With code examples, real-world case studies, and detailed solution implementations, this book is a
must-read for Python developers looking to elevate their coding skills. Co-authored by a Python expert
with over two decades of experience, this new edition expands the scope to cover more design pattern
categories. Gain insights into creational, structural, behavioral, architectural, and other important patterns
for modern software design, such as concurrency, asynchronous, and performance patterns. Learn
how to apply these patterns in various domains like event handling systems, concurrency, distributed
systems, and testing. The book also presents Python anti-patterns, helping you avoid common pitfalls.

Whether you're developing user interfaces, web applications, APIs, data pipelines, or Al models, this
book equips you with the knowledge to build robust and maintainable software.

This book adopts a hands-on approach, providing code examples for each design pattern. Each chapter
includes step-by-step instructions to test the code, making it an interactive learning experience. Where
applicable, for each design principle or pattern, the book presents at least one real-world example,
which may or may not be Python-based, and at least one Python-based example.

Who this book is for

This book is for Python developers looking to deepen their understanding of design patterns and how
they can be applied to various types of projects. With a focus on intermediate and advanced Python
programmers, the book also includes introductory chapters that make it accessible for those who are
relatively new to the language. Whether you’re a web developer, data engineer, or Al specialist, this
book offers valuable insights into the best practices for software design, backed by real-world examples
and decades of experience. It’s also an excellent resource for software architects and team leaders who
want to improve code quality and maintainability across their projects.

What this book covers

Chapter 1, Foundational Design Principles, covers principles of encapsulation, composition, programming
to interfaces, and loose coupling to help you create more adaptable and maintainable systems.

Chapter 2, SOLID Principles, Provides guidelines for designing robust, maintainable, and scalable
software. Each of these principles contributes to creating clean and adaptable code.

Chapter 3, Creational Design Patterns, explores patterns that help manage object creation by controlling
which classes to instantiate.

Xiv

Preface

Chapter 4, Structural Design Patterns, provides insights into patterns that facilitate the design process
by identifying simple ways to establish relationships between entities. This chapter delves into six
essential structural patterns, providing you with the skills to structure your code efficiently and elegantly.

Chapter 5, Behavioral Design Patterns, shares patterns that focus on the interactions and responsibilities
of objects, promoting effective communication and flexible assignment of responsibilities. This chapter
explores key patterns such as Strategy, Observer, and Command, demonstrating how they streamline
object collaboration and enhance the adaptability of code.

Chapter 6, Architectural Design Patterns, delves into patterns that provide templates for solving common
architectural problems, facilitating the development of scalable, maintainable, and reusable systems.

Chapter 7, Concurrency and Asynchronous Patterns, explores patterns that help you develop applications
that are both fast and user-friendly, particularly in environments with heavy I/O operations or
significant computational work.

Chapter 8, Performance Patterns, provides guidance on patterns that address common bottlenecks and
optimization challenges, offering proven methodologies to improve execution time, reduce memory
usage, and scale effectively.

Chapter 9, Distributed Systems Patterns, shows patterns that empower developers to architect robust
distributed systems, from managing communication between nodes to ensuring fault tolerance
and consistency.

Chapter 10, Patterns for Testing, presents patterns that help in isolating components, making tests
more reliable, and promoting code reusability.

Chapter 11, Python Anti-Patterns, explores common programming practices that, while not necessarily
wrong, often lead to less efficient, less readable, and/or less maintainable code. You will learn to
understand and avoid these pitfalls.

To get the most out of this book

Use a machine with a recent version of Windows, Linux, or macOS.

Install Python 3.12. It is also useful to create a virtual environment from your Python installation so
that when you add third-party modules required for following some of the chapters, you do not end
up polluting your global Python. This is a fundamental best practice for productivity with Python,
and you will find many resources on the Internet that explain how to do this.

Install and use Docker on your machine. This will help with the requirement of some external software
services or tools, such as LocalStack (used in Chapter 6) and the Redis server (used in Chapter 8).

Preface

Software/hardware covered in the book Operating system requirements

Python 3.12 Windows, macQOS, or Linux
MyPy 1.10.0
Docker
Redis-server 6.2.6
LocalStack 3.4.0

If you are using the digital version of this book, we advise you to type the code yourself or access the
code from the booK’s GitHub repository (a link is available in the next section). Doing so will help
you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Mastering-Python-Design-Patterns-Third-Edition.If
there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used and formatting specificities throughout this book.

Most of the code has been automatically formatted

The formatting has been done using the Black tool, as is commonly done by Python developers for
productivity reasons. So it might not look exactly like the code you would write yourself. But it is valid;
itis a PEP 8-compliant code. The goal is to improve the readability of the code snippets.

So, some code snippets in the code files as well as in the book’s pages may look like the following:

State = Enum/(

"State",

"NEW RUNNING SLEEPING RESTART ZOMBIE",
)

Another example might be the following:

msg = (
fr'trying to create process '{name}' "
f"for user '{user}'"

XV

https://github.com/PacktPublishing/Mastering-Python-Design-Patterns-Third-Edition
https://github.com/PacktPublishing/Mastering-Python-Design-Patterns-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

XVi

Preface

)
print (msg)

The code snippets in the book’s pages may be shortened

To improve readability, when there is a documentation string (docstring) for a function or class, and
it is too long, we remove it from the code snippet in the book.

When some code (class or function) is too long to display on the chapter’s pages, we may shorten it,
and refer the reader to the complete code in the file.

Note

In case of an issue with long commands, which are spread across several lines (with the */’
character as separator), you can reformat the long command text, removing the ‘/’ character,
to make sure that the command is correctly interpreted in the terminal.

Other conventions

Code in text:Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Define
the Logger interface with a 1og method”

A block of code is set as follows:

class MyInterface (ABC) :
@abstractmethod
def do_something(self, param: str):
pass

Any command-line input or output is written as follows:
python3.12 -m pip install --user mypy

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “It is one of the core concepts in object-
oriented programming OOP that enables a single interface to represent different types.”

Tips or important notes

Appear like this.

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyrighte@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

Share your thoughts

Once you've read Mastering Python Design Patterns, wed love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're delivering
excellent quality content.

XVii

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1837639612
https://packt.link/r/1837639612

Xviii

Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837639618

2. Submit your proof of purchase

3. That's it! We'll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781837639618

Part 1:
Start with Principles

This first part introduces you to the foundational software design principles and the S.O.L.1.D. principles
that build upon them. This part includes the following chapters:

o Chapter 1, Foundational Design Principles
o Chapter 2, SOLID Principles

1

Foundational Design Principles

Design principles form the foundation of any well-architected software. They serve as the guiding
light that helps developers navigate the path of creating maintainable, scalable, and robust applications
while avoiding the pitfalls of bad design.

In this chapter, we will explore the core design principles that all developers should know and apply
in their projects. We will explore four foundational principles. The first one, Encapsulate What
Varies, teaches you how to isolate the parts of your code that are subject to change, making it easier
to modify and extend your applications. Next, Favor Composition, makes you understand why it’s
often better to assemble complex objects from simple ones rather than inheriting functionalities. The
third one, Program to Interfaces, shows the power of coding to an interface rather than to a concrete
class, enhancing flexibility and maintainability. Finally, with the Loose Coupling principle, you will
grasp the importance of reducing dependencies between components, making your code easier to
refactor and test.

In this chapter, we're going to cover the following main topics:

« Following the “Encapsulate What Varies” principle
» Following the “Favor Composition Over Inheritance” principle
» Following the “Program to Interfaces, Not Implementations” principle

o Following the “Loose Coupling” principle

By the end of this chapter, you'll have a solid understanding of these principles and how to implement
them in Python, setting the foundation for the rest of the book.

Foundational Design Principles

Technical requirements

For the chapters in this book, you will need a running Python 3.12 environment, or for some exceptional
cases in some chapters, 3.11.

In addition, install the Mypy static type checker (https://www.mypy-lang.org) by running
the following:

python3.12 -m pip install --user mypy

The examples are available in the GitHub repository here: https://github.com/
PacktPublishing/Mastering-Python-Design-Patterns-Third-Edition

About the Python executable

Throughout the book, we will reference the Python executable for executing code examples as
python3.12 or python. Adapt that to your specific environment, practice and/or workflow.

Following the Encapsulate What Varies principle

One of the most common challenges in software development is dealing with change. Requirements
evolve, technologies advance, and user needs also change. Therefore, it is crucial to write code that
can adapt without causing a ripple effect of modifications throughout your program or application.
This is where the principle of Encapsulate What Varies comes into play.

What does it mean?

The idea behind this principle is straightforward: isolate the parts of your code that are most likely to
change and encapsulate them. By doing so, you create a protective barrier that shields the rest of your
code from these elements that are subject to change. This encapsulation allows you to make changes
to one part of your system without affecting others.

Benefits
Encapsulating what varies provides several benefits, mainly the following:

o Ease of maintenance: When changes are needed, you must only modify the encapsulated parts,
reducing the risk of introducing bugs elsewhere

o Enhanced flexibility: Encapsulated components can be easily swapped or extended, providing
a more adaptable architecture

o Improved readability: By isolating varying elements, your code becomes more organized and
easier to understand

https://www.mypy-lang.org
https://github.com/PacktPublishing/Mastering-Python-Design-Patterns-Third-Edition
https://github.com/PacktPublishing/Mastering-Python-Design-Patterns-Third-Edition

Following the Encapsulate What Varies principle

Techniques for achieving encapsulation

As we introduced, encapsulation helps in data hiding and exposing only the necessary functionalities.
Here, we will present key techniques that enhance encapsulation in Python: polymorphism and the
getters and setters techniques.

Polymorphism

In programming, polymorphism allows objects of different classes to be treated as objects of a common
superclass. It is one of the core concepts in object-oriented programming OOP that enables a single
interface to represent different types. Polymorphism allows for implementing elegant software design
patterns, such as the strategy pattern, and it’s a way to implement clean, maintainable code in Python.

Getters and Setters

These are special methods in a class that enable controlled access to attribute values. getters allow
reading the values of attributes and setters enable modifying them. By using these methods, you can
add validation logic or side effects such as logging, thus adhering to the principles of encapsulation.
They provide a way to control and protect the state of an object and are particularly useful when you
want to encapsulate complex attributes that are derived from other instance variables.

And there is more. To complement the getters and setters technique, Python offers a more elegant
approach known as the property technique. This is a built-in feature of Python that allows you to
convert attribute access into method calls seamlessly. With properties, you can ensure that an object
retains its internal state against incorrect or harmful manipulation without having to explicitly define
getter and setter methods.

The @property decorator allows you to define a method that is automatically invoked when an
attribute is accessed, effectively serving as a getter. Similarly, the @attribute name.setter
decorator allows you to define a method that acts as a setter, invoked when you attempt to change
the value of an attribute. This way, you can embed validation or other actions directly within these
methods, making the code more clean.

By using the property technique, you can achieve the same level of data encapsulation and validation as
with traditional Getters and Setters but in a way that is more aligned with Python’s design philosophy.
It allows you to write code that is not just functional but also clean and easy to read, enhancing both
encapsulation and the overall quality of your Python programs.

Next, we will better understand these techniques through examples.

Foundational Design Principles

An example - encapsulating using polymorphism

Polymorphism is a powerful way to achieve encapsulation of varying behavior. Let’s see that with an
example of a payment processing system where the payment method option can vary. In such a case,
you might encapsulate each method of payment in its own class:

1. You would first define the base class for payment methods, providing a process_payment ()
method that each specific payment method will implement. This is where we encapsulate what
varies—the payment processing logic. That part of the code will be as follows:

class PaymentBase:
def init (self, amount: int):
self.amount: int = amount

def process payment (self) :
pass

2. Next, we introduce the CreditCard and PayPal classes, inheriting from PaymentBase,
each providing their own implementation of process_payment. This is a classic way of
polymorphism, as you can treat CreditCard and PayPal objects as instances of their
common superclass. The code is as follows:

class CreditCard (PaymentBase) :
def process payment (self) :
msg = f"Credit card payment: {self.amount}"
print (msg)

class PayPal (PaymentBase) :
def process payment (self) :
msg = f"PayPal payment: {self.amount}"
print (msg)

3. To make it possible to test the classes we just created, let’s add some code, calling process__
payment () for each object. The beauty of polymorphism is evident when you use these
classes, as follows:

if __name_ == "_main_ ":
payments = [CreditCard(100), PayPal (200)]
for payment in payments:
payment .process payment ()

The complete code for this example (ch01/encapsulate.py) is as follows:

class PaymentBase:
def init (self, amount: int):

Following the Encapsulate What Varies principle

self.amount: int = amount

def process payment (self) :
pass

class CreditCard (PaymentBase) :
def process payment (self) :
msg = f"Credit card payment: {self.amount}"
print (msg)

class PayPal (PaymentBase) :
def process_ payment (self) :
msg = f"PayPal payment: {self.amount}"
print (msg)

if name == " main ":
payments = [CreditCard(100), PayPal (200)]
for payment in payments:
payment .process_ payment ()

To test the code, run the following command:

python3.12 ch0l/encapsulate.py

You should get the following output:

Credit card payment: 100
PayPal payment: 200

As you can see, when the payment method changes, the program adapts to produce the expected outcome.
By encapsulating what varies—here, the payment method—you can easily add new options or modify
existing ones without affecting the core payment processing logic.

An example - encapsulating using a property

Let’s define a Circle class and show how to use Python’s @property technique to create a getter
and a setter for its radius attribute.

Note that the underlying attribute would actually be called radius, but it is hidden/protected
behind the property called radius.

8

Foundational Design Principles

Let’s write the code step by step:

1. We start by defining the Circle class with its initialization method, where we initialize the
_radius attribute as follows:

class Circle:
def init (self, radius: int):
self. radius: int = radius

2. Weadd the radius property: a radius () method where we return the value from the underlying
attribute, decorated using the @property decorator, as follows:

@property
def radius (self) :
return self. radius

3. We add the radius setter part: another radius () method where we do the actual job of
modifying the underlying attribute, after a validation check, since we do not want to allow
a negative value for the radius; this method is decorated by the special @radius.setter
decorator. This part of the code is as follows:

@radius.setter
def radius(self, value: int):
if value < 0:
raise ValueError ("Radius cannot be negative!")
self. radius = value

4. Finally, we add some lines that will help us test the class, as follows:

if name == " main ":
circle = Circle(10)
print (f"Initial radius: {circle.radius}")

circle.radius = 15
print (£"New radius: {circle.radius}")

The complete code for this example (ch01/encapsulate bis.py) is as follows:

class Circle:

def init (self, radius: int):
self. radius: int = radius
@property

def radius(self):
return self. radius

Following the Favor Composition Over Inheritance principle

@radius.setter
def radius(self, value: int):
if value < 0:
raise ValueError ("Radius cannot be negative!")
self. radius = value

if name == " main ":
circle = Circle(10)
print (f"Initial radius: {circle.radius}")

circle.radius = 15
print (£"New radius: {circle.radius}")

To test the example, run the following command:
python3.12 chOl/encapsulate bis.py
You should get the following output:

Initial radius: 10
New radius: 15

In this second example, we saw how we can encapsulate the circle’s radius component so that we can
change the technical aspects if needed, without breaking the class. For example, the validation code
for the setter can evolve. We can even change the underlying attribute, radius, and the behavior
for the user of our code will remain unchanged.

Following the Favor Composition Over Inheritance
principle

In OOP, it’s tempting to create complex hierarchies of classes through inheritance. While inheritance
has its merits, it can lead to tightly coupled code that is hard to maintain and extend. This is where
the principle of Favor Composition Over Inheritance comes into the picture.

What does it mean?

This principle advises that you should prefer composing objects from simpler parts to inheriting
functionalities from a base class. In other words, build complex objects by combining simpler ones.

10

Foundational Design Principles

Benefits
Choosing composition over inheritance offers several advantages:

o Flexibility: Composition allows you to change objects’ behavior at runtime, making your code
more adaptable

o Reusability: Smaller, simpler objects can be reused across different parts of your application,
promoting code reusability

o Ease of maintenance: With composition, you can easily swap out or update individual
components without affecting the overall system, avoiding border effects

Techniques for composition

In Python, composition is often achieved through OOP by including instances of other classes within
a class. This is sometimes referred to as a “has-a” relationship between the class that is being composed
and the classes that are being included. Python makes it particularly easy to use composition by not
requiring explicit type declarations. You can include other objects by simply instantiating them in the
class’'s init method or by passing them as parameters.

An example - compose a car using the engine

In Python, you can use composition by including instances of other classes within your class. For
example, consider a Car class that includes an instance of an Engine class:

1. Lets first define the Engine class as follows, with its start method:

class Engine:
def start (self):
print ("Engine started")

2. 'Then, let’s define the Car class as follows:

class Car:
def init (self):
self.engine = Engine ()

def start (self):
self.engine.start ()
print ("Car started")

Following the Favor Composition Over Inheritance principle 11

3. Finally, add the following lines of code to create an instance of the Car class and call the start
method on that instance, when this program is executed:

if name == " main ":
my car = Car ()
my car.start ()

The complete code for this example (ch01/composition.py) is as follows:

class Engine:
def start(self):
print ("Engine started")

class Car:
def init (self):
self.engine = Engine ()

def start (self):
self.engine.start ()
print ("Car started")

if name == " main ":
my car = Car()
my car.start ()

To test the code, run the following command:

python3.12 chO0l/composition.py

You should get the following output:

Engine started
Car started

As you can see in this example, the Car class is composed of an Engine object, thanks to the self.
engine = Engine () line, allowing you to easily swap out the engine for another type without
altering the Car class itself.

12

Foundational Design Principles

Following the Program to Interfaces, Not Implementations
principle

In software design, it’s easy to get caught up in the specifics of how a feature is implemented. However,
focusing too much on implementation details can lead to code that is tightly coupled and difficult to
modify. The principle of Program to Interfaces, Not Implementations offers a solution to this problem.

What does it mean?

An interface defines a contract for classes, specifying a set of methods that must be implemented.

This principle encourages you to code against an interface rather than a concrete class. By doing so,
you untie your code from the specific classes that provide the required behavior, making it easier to
swap or extend implementations without affecting the rest of the system.

Benefits
Programming to interfaces offers several benefits:

o Flexibility: You can easily switch between different implementations without altering the code
that uses them

o Maintainability: Losing your code from specific implementations makes it easier to update
or replace components

o Testability: Interfaces make it simpler to write unit tests, as you can easily mock the interface
during testing
Techniques for interfaces

In Python, interfaces can be implemented using two primary techniques: abstract base classes (ABCs)
and protocols.

Abstract base classes

ABCs, provided by the abc module, allow you to define abstract methods that must be implemented
by any concrete (i.e., non-abstract) subclass.

Let’s understand this concept with an example, where we will define an abstract class (for an interface)
and then use it:

1. First, we need to import the ABC class and the abst ractmethod decorator function as follows:

from abc import ABC, abstractmethod

Following the Program to Interfaces, Not Implementations principle

2. Then, we define the interface class as follows:

class MyInterface (ABC) :
@abstractmethod
def do_something(self, param: str):
pass

3. Now, define a concrete class for that interface; it inherits from the interface class and provides
an implementation for the do_something method as follows:

class MyClass (MyInterface) :
def do something(self, param: str):
print (f"Doing something with: '{param}'")

4. Add the following lines for testing purposes:

if _name == "_main_ ":
MyClass () .do_something ("some param")

The complete code (ch01/abstractclass.py) is as follows:

from abc import ABC, abstractmethod

class MyInterface (ABC) :
@abstractmethod
def do something(self, param: str):
pass

class MyClass (MyInterface) :
def do something(self, param: str):
print (£"Doing something with: '{param}'")

if __name == "_main_ ":
MyClass () .do_something ("some param")

To test the code, run the following command:
python3.12 chOl/abstractclass.py
You should get the following output:

Doing something with: 'some param'

13

14

Foundational Design Principles

Now you know how to define an interface and a concrete class implementing that interface in Python.
Protocols

Introduced in Python 3.8 via the t yping module, Protocols offer a more flexible approach than
ABCs, known as structural duck typing, where an object is considered valid if it has certain attributes
or methods, regardless of its actual inheritance.

Unlike traditional duck typing, where type compatibility is determined at runtime, structural duck typing
allows for type checking at compile time. This means that you can catch type errors before your code
even runs (while in your IDE, for example), making your programs more robust and easier to debug.

The key advantage of using Protocols is that they focus on what an object can do, rather than what it is.
In other words, if an object walks like a duck and quacks like a duck, it’s a duck, regardless of its actual
inheritance hierarchy. This is particularly useful in a dynamically typed language such as Python,
where an object’s behavior is more important than its actual type.

For example, you can define a Drawable protocol that requires a draw () method. Any class that
implements this method would implicitly satisfy the protocol without having to explicitly inherit from it.

Here’s a quick example to illustrate the concept. Let’s say you need a Protocol named Flyer that
requires a £1y () method. You can define it as follows:

from typing import Protocol

class Flyer (Protocol) :
def fly(self) -> None:

And that’s it! Now, any class that hasa £1y () method would be considered F1lyer, whether it explicitly
inherits from the Flyer class or not. This is a powerful feature that allows you to write more generic
and reusable code and adheres to the principle of composition over inheritance, a principle that we
previously discussed in the Following the “Favor Composition Over Inheritance” principle section.

In a later example, we will see a practical use of Protocols.

An example - different types of logger

Using ABCs, let’s create a logging interface that allows for different types of logging mechanisms.
Here’s how you could implement that:

1. Import what is needed from abc:

from abc import ABC, abstractmethod

Following the Program to Interfaces, Not Implementations principle

2. Define the Logger interface with a 1Log method:

class Logger (ABC) :
@abstractmethod
def log(self, message: str):
pass

3. Then, define two concrete classes that implement the Logger interface for two different types
of Logger:

class ConsolelLogger (Logger) :
def log(self, message: str):
print (f"Console: {message}")

class FileLogger (Logger) :
def log(self, message: str):
with open("log.txt", "a") as f:
f.write(f"File: {message}\n")

4. Next, to use each type of logger, define a function as follows:

def log message(logger: Logger, message: Str):
logger.log (message)

Notice that the function takes as its first argument an object of type Logger, meaning an
instance of a concrete class that implements the Logger interface (i.e., ConsoleLogger
or FileLogger).

5. Finally, add the lines needed to test the code, calling the 1og_message function as follows:

if _name == "_main_ ":
log message (ConsoleLogger (), "A console log.")
log message (FileLogger (), "A file log.")

The complete code for this example (ch01/interfaces.py) is as follows:

from abc import ABC, abstractmethod

class Logger (ABC) :
@abstractmethod
def log(self, message: str):
pass

class ConsolelLogger (Logger) :
def log(self, message: str):

16 Foundational Design Principles

print (£"Console: {message}")

class FileLogger (Logger) :
def log(self, message: str):
with open("log.txt", "a") as f:
f.write(f"File: {message}\n")

def log message(logger: Logger, message: str):
logger.log (message)

if name == " main ":
log message (ConsoleLogger (), "A console log.")
log message (FileLogger (), "A file log.")

To test the code, run the following command:

python3.12 chO0l/interfaces.py
You should get the following output:
Console: A console log.

In addition to that output, looking in the folder from which you run the command, you will find that
a file called 1og. txt has been created, containing the following line:

File: A file log.

As you just saw with the 1og message function, you can easily switch between different logging
mechanisms without changing the function itself.

An example - different types of logger, now using Protocols
Let’s revisit the previous example with the Protocols way of defining interfaces:

1. First, we need to import the Protocol class as follows:

from typing import Protocol

Following the Program to Interfaces, Not Implementations principle 17

2. 'Then, defining the Logger interface is done by inheriting from the Protocol class as follows:

class Logger (Protocol) :
def log(self, message: str):

And the rest of the code stays unchanged.

So, the complete code (ch01/interfaces bis.py) is as follows:

from typing import Protocol

class Logger (Protocol) :
def log(self, message: str):

class Consolelogger:
def log(self, message: str):
print (f"Console: {message}")

class FileLogger:
def log(self, message: str):
with open("log.txt", "a") as f:
f.write(f"File: {message}\n")

def log message (logger: Logger, message: Str):
logger.log (message)

if name == " main ":
log message (ConsoleLogger (), "A console log.")
log message (FileLogger (), "A file log.")

To check the static typing of the code based on the protocol we defined, run the following command:
mypy chOl/interfaces bis.py
You should get the following output:

Success: no issues found in 1 source file

18

Foundational Design Principles

To test the code, run the following command:

python3.12 ch0l/interfaces bis.py

You should get the same result as when running the previous version—in other words, the 1og. txt
file created and the following output in the shell:

Console: A console log.

This is normal since the only thing we changed is the way we define the interface. And, the effect of
the interface (the protocol) is not enforced at runtime, meaning it does not change the actual result
of the code execution.

Following the Loose Coupling principle

As software grows in complexity, the relationships between its components can become tangled,
leading to a system that is hard to understand, maintain, and extend. The principle of Loose Coupling
aims to mitigate this issue.

What does it mean?

Loose coupling refers to minimizing the dependencies between different parts of a program. In a loosely
coupled system, components are independent and interact through well-defined interfaces, making
it easier to make changes to one part without affecting others.

Benefits
Loose coupling offers several advantages:

o Maintainability: With fewer dependencies, it’s easier to update or replace individual components

« Extensibility: A loosely coupled system can be more easily extended with new features
or components

o Testability: Independent components are easier to test in isolation, improving the overall
quality of your software

Techniques for loose coupling

Two primary techniques for achieving loose coupling are dependency injection and the observer
pattern. Dependency injection allows a component to receive its dependencies from an external
source rather than creating them, making it easier to swap or mock these dependencies. The observer
pattern, on the other hand, allows an object to publish changes to its state so that other objects can
react accordingly, without being tightly bound to each other.

Following the Loose Coupling principle

Both techniques aim to reduce the interdependencies between components, making the system you
are building more modular and easier to manage.

We will discuss the observer pattern in detail in Chapter 5, Behavioral Design Patterns. For now, let’s
study an example to understand how to use the dependency injection technique.

An example - a message service

In Python, you can achieve loose coupling by using dependency injection. Let’s see a simple example
involving a MessageService class:

1. First, we define the MessageService class as follows:

class MessageService:
def init (self, sender):
self.sender = sender

def send message (self, message) :
self.sender.send (message)

As you can see, the class will be initialized by passing a sender object to it; that object has a
send method to allow sending messages.

2. Second, let’s define an EmailSender class:

class EmailSender:
def send(self, message) :
print (f"Sending email: {message}")

3. 'Third, let’s define an SMSSender class:

class SMSSender:
def send(self, message) :
print (f"Sending SMS: {message}")

4. Now we can instantiate MessageService using an EmailSender object and use it to
send a message. We can also instantiate MessageService using an SMSSender object
instead. We add code to test both actions as follows:

if name == " main ":

email service = MessageService (EmailSender())
email service.send message ("Hello via Email")

sms_service = MessageService (SMSSender ())
sms_service.send message ("Hello via SMS")

20 Foundational Design Principles

The complete code for this example, saved in the ch01/loose coupling.py file, is as follows:

class MessageService:
def init (self, sender):
self.sender = sender

def send message (self, message: str):
self.sender.send (message)

class EmailSender:
def send(self, message: str):
print (f"Sending email: {message}")

class SMSSender:
def send(self, message: str):
print (f"Sending SMS: {message}")

if name == " main ":
email service = MessageService (EmailSender ())
email service.send message("Hello via Email™")

sms_service = MessageService (SMSSender ())
sms_service.send message ("Hello via SMS")

To test the code, run the following command:

python3.12 ch0l/loose coupling.py

You should get the following output:

Sending email: Hello via Email
Sending SMS: Hello via SMS

In this example, MessageService is loosely coupled with EmailSender and SMSSender
through dependency injection. This allows you to easily switch between different sending mechanisms
without modifying the MessageService class.

Summary

Summary

We began the book with the foundational design principles that developers should follow for writing
maintainable, flexible, and robust software. From encapsulating what varies to favoring composition,
programming to interfaces, and aiming for loose coupling, these principles provide a strong foundation
for any Python developer.

As you've seen, these principles are not just theoretical constructs but practical guidelines that can
significantly improve the quality of your code. They set the stage for what comes next: diving deeper
into more specialized sets of principles that guide object-oriented design.

In the next chapter, we will delve into the SOLID principles, a set of five design principles aimed at
making software designs more understandable, flexible, and maintainable.

21

2
SOLID Principles

In the world of software engineering, principles and best practices are the backbone of a robust,
maintainable, and efficient code base. In the previous chapter, we introduced the foundational principles
every developer needs to follow.

In this chapter, we continue exploring design principles, focusing on SOLID, an acronym coined by
Robert C. Martin, representing a set of five design principles he proposed, aimed at making software
more understandable, flexible, and maintainable.

In this chapter, we're going to cover the following main topics:
o Single responsibility principle (SRP)
o Open-closed principle (OCP)
« Liskov substitution principle (LSP)
o Interface segregation principle (ISP)
o Dependency inversion principle (DIP)
By the end of this chapter, you’ll have an understanding of these five additional design principles and

how to apply them in Python.

Technical requirements

See the requirements presented in Chapter 1.

SRP

The SRP is a fundamental concept in software design. It advocates that when defining a class to provide
functionality, that class should have only one reason to exist and should be responsible for only one
aspect of the functionality. In simpler terms, it promotes the idea that each class should have one job
or responsibility, and that job should be encapsulated within that class.

24

SOLID Principles

Thus by adhering to the SRP, you are essentially striving for classes that are focused, cohesive, and
specialized in their functionality. This approach plays a crucial role in enhancing the maintainability
and comprehensibility of your code base. When each class has a well-defined and single purpose, it
becomes easier to manage, understand, and extend your code.

Of course, there is no obligation for you to follow the SRP. But knowing about the principle and
thinking about your code with that in mind will improve your code base over time.

In practice, applying the SRP often leads to smaller, more focused classes, which can be combined and
composed to create complex systems while maintaining a clear and organized structure.

Note

The SRP is not about minimizing the number of lines of code in a class but rather about ensuring
that a class has a single reason to change, reducing the likelihood of unintended side effects
when making modifications.

Let’s go through a small example to make things more clear.

An example of software design following the SRP

Let’s imagine some code that you could have in many different types of applications such as content or
document management tools or a specialized web app, which includes functionality to generate a PDF
file and save it to disk. To help understand the SRP, let’s consider an initial version where the code does
not follow this principle. In such a version, the developer would probably define a class dealing with
reports, called Report, and would implement it in a way that makes it responsible for generating a
report and also saving it to a file. The typical code for this class would look like the following:

class Report:
def init (self, content):
self.content = content

def generate(self) :
print (f"Report content: {self.content}")

def save to file(self, filename) :
with open(filename, 'w') as file:
file.write(self.content)

Asyou can see, the Report class has two responsibilities. First, generating a report, and then, saving
the report’s content to a file.

Of course, that is fine. But design principles encourage us to think about improving things for the
future, as the requirements evolve and the code grows to handle complexity and change. Here, the

SRP

SRP teaches us to separate things. To adhere to the SRP, we can refactor that code to use two different
classes that would each have one responsibility, as follows:

1. Create the first class, responsible for generating the report’s content:

class Report:
def init (self, content: str):
self.content: str = content

def generate (self) :
print (E"Report content: {self.content}")

2. Create a second class to deal with the need to save the report to a file:

class ReportSaver:
def init (self, report: Report) :
self.report: Report = report

def save to file(self, filename: str):
with open(filename, 'w') as file:
file.write(self.report.content)

3. To confirm that our refactored version works, let’s add the following code to make it possible
to immediately test things:

if name == " main ":
report_content = "This is the content."
report = Report (report content)

report.generate ()

report saver = ReportSaver (report)
report saver.save to file("report.txt")

To recapitulate, here is the complete code, saved in the ch02/srp . py file:

class Report:
def _ init (self, content: str):
self.content: str = content

def generate (self) :

print (f"Report content: {self.content}")

class ReportSaver:
def init_ (self, report: Report):

25

26

SOLID Principles

self.report: Report = report

def save to file(self, filename: str):
with open(filename, "w") as file:
file.write(self.report.content)

if name == " main_ ":
report_content = "This is the content."
report = Report (report content)

report.generate ()

report saver = ReportSaver (report)
report saver.save to file("report.txt")

To see the result of the code, run the following command:

python ch02/srp.py

You will get the following output:

Report content: This is the content.

In addition to that output, you will notice that a report . txt file has been created. So, everything
works as expected.

As you can see, by following the SRP, you can achieve cleaner, more maintainable, and adaptable code,
which contributes to the overall quality and longevity of your software projects.

oCP

The OCP is another fundamental principle in software design. It emphasizes that software entities,
such as classes and modules, should be open for extension but closed for modification. What does
that mean? It means that once a software entity is defined and implemented, it should not be changed
to add new functionality. Instead, the entity should be extended through inheritance or interfaces to
accommodate new requirements and behaviors.

When thinking about this principle and if you have some experience writing code for non-trivial
programs, you can see how it makes sense, since modifying an entity introduces a risk of breaking
some other part of the code base relying on it.

OCP

The OCP provides a robust foundation for building flexible and maintainable software systems. It
allows developers to introduce new features or behaviors without altering the existing code base. By
adhering to the OCP, you can minimize the risk of introducing bugs or unintended side effects when
making changes to your software.

An example of design following the OCP

Consider a Rectangle class defined for rectangle shapes. Let’s say we add a way to calculate the
area of different shapes, maybe by using a function. The hypothetical code for the definition of both
the class and the function could look like the following:

class Rectangle:
def _ init_ (self, width:float, height: float):
self.width: float = width
self.height: float = height

def calculate area(shape) -> float:
if isinstance (shape, Rectangle) :
return shape.width * shape.height

Note

This code is not in the example code files. It is a hypothetical idea to start with in our thinking,
and not the code you would end up using. Keep reading.

Given that code, if we want to add more shapes, we have to modify the calculate_area function.
That is not ideal as we will keep coming back to change that code and that means more time testing
things to avoid bugs.

As we aim to become good at writing maintainable code, let’s see how we could improve that code
by adhering to the OCP, while extending it to support another type of shape, the circle (using a
Circle class):

1. Start by importing what we will need:

import math
from typing import Protocol

2. Define a Shape protocol for an interface providing a method for the shape’s area:

class Shape (Protocol) :
def area(self) -> float:

27

28 SOLID Principles

Note

Refer to Chapter 1, Foundational Design Principles, to understand Python’s Protocol concept
and technique.

3. Define the Rectangle class, which conforms to the Shape protocol:

class Rectangle:
def init (self, width: float, height: float) :
self.width: float = width
self .height: float = height

def area(self) -> float:
return self.width * self.height

4. Also define the Circle class, which also conforms to the Shape protocol:

class Circle:
def _ init_ (self, radius: float):
self.radius: float = radius

def area(self) -> float:
return math.pi * (self.radius**2)

5. Implement the calculate area function in such a way that adding a new shape won’t
require us to modify it:

def calculate area(shape: Shape) -> float:
return shape.area()

6. Add some code for testing the calculate_area function on the two types of shape objects:

if __name_ == "_main_ ":
rect = Rectangle (12, 8)
rect area = calculate area(rect)
print (f"Rectangle area: {rect area}")

circ = Circle(6.5)
circ_area = calculate area(circ)
print (£"Circle area: {circ area:.2£f}")

The following is the complete code for this example, saved in the ch02/ocp . py file:

import math
from typing import Protocol

class Shape (Protocol) :

OCP

def area(self) -> float:

class Rectangle:

def _ init_ (self, width: float, height:

self.width: float = width
self.height: float = height

def area(self) -> float:
return self.width * self.height

class Circle:
def init (self, radius: float):
self.radius: float = radius

def area(self) -> float:
return math.pi * (self.radius**2)

def calculate area(shape: Shape) -> float:
return shape.area()

if __name == "_main_ ":
rect = Rectangle(12, 8)
rect area = calculate area(rect)
print (f"Rectangle area: {rect area}")

circ = Circle(6.5)
circ_area = calculate area(circ)
print (£"Circle area: {circ area:.2f}")

To see the result of this code, run the following command:
python ch02/ocp.py

You should get the following output:

Rectangle area: 96
Circle area: 132.73

float) :

29

30

SOLID Principles

Things work fine! The main win is that we were able to define a new shape without modifying the
calculate_ area function. The new design is elegant and allows ease of maintenance thanks to
following the OCP.

So, you have now discovered another principle you should be using daily, which promotes designs
both adaptable to evolving requirements and stable for their existing functionalities.

LSP

The LSP is another fundamental concept in object-oriented programming. It dictates how subclasses
should relate to their superclasses. According to the LSP, if a program uses objects of a superclass,
then the substitution of these objects with objects of a subclass should not change the correctness and
expected behavior of the program.

Following this principle is important for maintaining the robustness of a software system. It ensures
that, when using inheritance, subclasses extend their parent classes without altering their external
behavior. For example, if a function works correctly with an object of a superclass, it should also work
correctly with objects of any subclass of this superclass.

The LSP allows developers to introduce new subclass types without the risk of breaking existing
functionality. This is particularly important in large-scale systems where changes in one part can have
effects on other parts of the system. By following the LSP, developers can safely modify and extend
classes, knowing that their new subclasses will integrate seamlessly with the established hierarchy
and functionality.

An example of design following the LSP

Let’s consider a Bird class and a Penguin class that subclasses it:

class Bird:
def fly(self):
print ("I can fly")

class Penguin (Bird) :
def fly(self):
print ("I can't fly")

Then, for the needs of a hypothetical program that makes birds fly, we add amake bird fly function:

def make bird fly(bird):
bird.fly ()

LSP

With the current code, we can see that if we pass an instance of the Bird class to the function, we get
the expected behavior (the bird will £1y), whereas if we pass an instance of the Penguin
class, we will get another behavior (1t will not £1y). You can analyze the code representing
this first design provided in the ch02/1sp violation.py file and run it to test this result. This
shows us or at least gives us the intuition of what the LSP wants to help us avoid. So now, how could
we improve the design by following the LSP?

To adhere to the LSP, we can refactor the code and introduce new classes to ensure that the behavior
remains consistent:

1. We keep the Bird class, but we use a better method to represent the behavior we want; let’s
call it move (). The class will now look as follows:

class Bird:
def move (self) :
print ("I'm moving")

2. Then, we introduce a FlyingBird class and a FlightlessBird class, both inheriting
from the Bird class:

class FlyingBird(Bird) :
def move (self) :
print ("I'm flying")

class FlightlessBird (Bird) :
def move (self) :
print ("I'm walking")

3. Now, themake bird move function can be defined as follows:

def make bird move (bird) :
bird.move ()

4. Asusual, we add some code necessary to test the design:

if name == " main ":
generic bird = Bird()
eagle = FlyingBird()
penguin = FlightlessBird()

make bird move (generic_bird)
make_bird move (eagle)
make bird move (penguin)

32 SOLID Principles

The complete code for this new design, saved in the ch02/1sp . py file, is as follows:

class Bird:
def move (self) :

print ("I'm moving")

class FlyingBird(Bird) :
def move (self) :
print ("I'm flying")

class FlightlessBird (Bird) :
def move (self) :
print ("I'm walking")

def make bird move (bird) :
bird.move ()

if name == " main ":
generic bird = Bird()
eagle = FlyingBird()
penguin = FlightlessBird()

make bird move (generic_bird)
make bird move (eagle)
make bird move (penguin)

To test the example, run the following command:

python ch02/1lsp.py

You should get the following output:

I'm moving
I'm flying
I'm walking

This output confirms the result we wanted to get in terms of design, which is maintaining the program’s
correctness when substituting a generic Bird class with a Penguin class or with an Eagle class;
that is, each object moves whether it is an instance of a Bird class or an instance of a subclass. And
that result was possible thanks to following the LSP.

ISP

This example demonstrates that all subclasses (F1lyingBird and FlightlessBird) can be used
in place of their superclass (Bird) without disrupting the expected behavior of the program. This
conforms to the LSP.

ISP

The ISP advocates for designing smaller, more specific interfaces rather than broad, general-purpose
ones. This principle states that a class should not be forced to implement interfaces it does not use. In
the context of Python, this implies that a class shouldn’t be forced to inherit and implement methods
that are irrelevant to its purpose.

The ISP suggests that when designing software, one should avoid creating large, monolithic interfaces.
Instead, the focus should be on creating smaller, more focused interfaces. This allows classes to only inherit
or implement what they need, ensuring that each class only contains relevant and necessary methods.

Following this principle helps us build software with modularity, code readability and maintainability
qualities, reduced side effects, and software that benefits from easier refactoring and testing, among
other things.

An example of design following the ISP

Let’s consider an A11InOnePrinter class that implements functionalities for printing, scanning,
and faxing documents. The definition for that class would look like the following:

class AllInOnePrinter:
def print document (self) :

print ("Printing")

def scan_document (self) :
print ("Scanning")

def fax document (self) :
print ("Faxing")

If we wanted to introduce a specialized SimplePrinter class that only prints, it would have to
implement or inherit the scan_document and fax document methods (even though it only
prints). That is not ideal.

To adhere to the ISP, we can create a separate interface for each functionality so that each class
implements only the interfaces it needs.

33

34

SOLID Principles

Note about interfaces

Refer to the presentation in Chapter 1, Foundational Design Principles, of the program to
interfaces, not implementations principle, to understand the importance of interfaces and
the techniques we use in Python to define them (abstract base classes, protocols, etc.). In
particular, here is the situation where protocols are the natural answer, that is, they help define
small interfaces where each interface is created for doing only one thing.

L.

2.

3.

Let’s start by defining the three interfaces:

from typing import Protocol

class Printer (Protocol) :
def print document (self) :

class Scanner (Protocol) :
def scan_document (self) :

class Fax (Protocol) :
def fax document (self) :

Then, we keep the A11InOnePrinter class, which already implements the interfaces:

class AllInOnePrinter:
def print document (self) :
print ("Printing")

def scan_document (self) :

print ("Scanning")

def fax document (self) :
print ("Faxing")

We add the SimplePrinter class, implementing the Printer interface, as follows:

class SimplePrinter:
def print document (self) :
print ("Simply Printing")

ISP

4. We also add a function that, when passed an object that implements the Printer interface,
calls the right method on it to do the printing:

def do_the print (printer: Printer):
printer.print document ()

5. Finally, we add code for testing the classes and the implemented interfaces:

if name == " main ":
all in one = AllInOnePrinter()
all in one.scan document ()
all in one.fax document ()
do the print(all in one)

simple = SimplePrinter ()
do the print (simple)

Here is the complete code for this new design (ch02/isp.py):

from typing import Protocol

class Printer (Protocol) :
def print document (self) :

class Scanner (Protocol) :
def scan document (self) :

class Fax (Protocol) :
def fax document (self) :

class AllInOnePrinter:
def print document (self) :
print ("Printing")

def scan_document (self) :

print ("Scanning")

def fax document (self) :

35

36 SOLID Principles

print ("Faxing")

class SimplePrinter:
def print document (self) :
print ("Simply Printing")

def do_the_print (printer: Printer) :
printer.print document ()

if name == "_ main ":
all in one = AllInOnePrinter()
all in one.scan document ()
all_in_one.fax document ()
do the print(all in one)

simple = SimplePrinter ()
do the print (simple)

To test this code, run the following command:

python ch02/isp.py

You will get the following output:

Scanning

Faxing

Printing

Simply Printing

Because of the new design, each class only needs to implement the methods relevant to its behavior.
This illustrates the ISP.

DIP

The DIP advocates that high-level modules should not depend directly on low-level modules. Instead,
both should depend on abstractions or interfaces. By doing so, you decouple the high-level components
from the details of the low-level components.

This principle allows for the reduction of the coupling between different parts of the system you are
building, making it more maintainable and extendable, as we will see in an example.

Following the DIP brings loose coupling within a system because it encourages the use of interfaces as
intermediaries between different parts of the system. When high-level modules depend on interfaces,

DIP

they remain isolated from the specific implementations of low-level modules. This separation of
concerns enhances maintainability and extensibility.

In essence, the DIP is closely linked to the loose coupling principle, which was covered in Chapter 1,
Foundational Design Principles, by promoting a design where components interact through interfaces
rather than concrete implementations. This reduces the interdependencies between modules, making
it easier to modify or extend one part of the system without affecting others.

An example of design following the ISP

Consider a Notification class responsible for sending notifications via email, using an Email
class. The code for both classes would look like the following:

class Email:
def send email (self, message):
print (f"Sending email: {message}")

class Notification:
def init (self):
self.email = Email ()

def send(self, message) :
self.email.send email (message)

Note about the code

This is not yet the final version of the example.

Currently, the high-level Not ification class is dependent on the low-level Email class, and
that is not ideal. To adhere to the DIP, we can introduce an abstraction, with a new code, as follows:

1. Define a MessageSender interface:

from typing import Protocol

class MessageSender (Protocol) :
def send(self, message: str):

2. Define the Email class, which implements the MessageSender interface, as follows:

class Email:
def send(self, message: str):
print (f"Sending email: {message}")

37

38 SOLID Principles

3. Define the Notification class, which also implements the MessageSender interface,
and has an object that implements MessageSender stored in its sender attribute, for
handling the actual message sending. The code for that definition is as follows:

class Notification:
def _ init_(self, sender: MessageSender) :
self.sender: MessageSender = sender

def send(self, message: str):
self.sender.send (message)

4. Finally, add some code for testing the design:

if name == " main ":
email = Email ()
notif = Notification (sender=email)
notif.send(message="This is the message.")

The complete code for the implementation we just proposed is as follows (ch02/dip . py):

from typing import Protocol

class MessageSender (Protocol) :
def send(self, message: str):

class Email:
def send(self, message: str):
print (f"Sending email: {message}")

class Notification:
def init (self, sender: MessageSender) :
self.sender = sender

def send(self, message: str):
self.sender.send (message)

if _name_ == "_main_ ":
email = Email ()
notif = Notification (sender=email)
notif.send(message="This is the message.")

Summary

To test the code, run the following command:

python ch02/dip.py

You should get the following output:

Sending email: This is the message.

As you see, with the updated design, both Notification and Email are based on the
MessageSender abstraction, so this design adheres to the DIP.

Summary

In this chapter, we explored additional principles to the ones presented in Chapter 1, Foundational
Design Principles. Understanding and applying SOLID is crucial for writing maintainable, robust,
and scalable Python code. These principles provide a strong foundation for good software design,
making it easier to manage complexity, reduce errors, and improve the overall quality of your code.

In the next chapter, we will start exploring design patterns in Python, another essential topic for
Python developers aiming for excellence.

39

Part 2:
From the Gang of Four

This part explores the classic design patterns from the Gang of Four (GoF), which are used to solve
everyday problems, and how to apply them as a Python developer. This part includes the following chapters:

o Chapter 3, Creational Design Patterns
o Chapter 4, Structural Design Patterns

o Chapter 5, Behavioral Design Patterns

3

Creational Design Patterns

Design patterns are reusable programming solutions that have been used in various real-world contexts
and have proved to produce expected results. They are shared among programmers and continue to be
improved over time. This topic is popular thanks to the book by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, titled Design Patterns: Elements of Reusable Object-Oriented Software.

Here is a quote about design patterns from the Gang of Four book:

A design pattern systematically names, motivates, and explains a general design that addresses a recurring
design problem in object-oriented systems. It describes the problem, the solution, when to apply the
solution, and its consequences. It also gives implementation hints and examples. The solution is a general
arrangement of objects and classes that solve the problem. The solution is customized and implemented
to solve the problem in a particular context.

There are several categories of design patterns used in object-oriented programming (OOP),
depending on the type of problem they address and/or the types of solutions they help us build.
In their book, the Gang of Four presents 23 design patterns, split into three categories: creational,
structural, and behavioral.

Creational design patterns are the first category we will cover throughout this chapter. These
patterns deal with different aspects of object creation. Their goal is to provide better alternatives for
situations where direct object creation, which in Python happens within the _init () function,
is not convenient.

In this chapter, were going to cover the following main topics:

o 'The factory pattern
o 'The builder pattern
o 'The prototype pattern
o 'The singleton pattern

o The object pool pattern

By the end of the chapter, you will have a solid understanding of creational design patterns, whether
they are useful or not in Python, and how to use them when they are useful.

a4

Creational Design Patterns

Technical requirements

See the requirements presented in Chapter 1.

The factory pattern

We will start with the first creational design pattern from the Gang of Four book: the factory design
pattern. In the factory design pattern, a client (meaning client code) asks for an object without knowing
where the object is coming from (that is, which class is used to generate it). The idea behind a factory
is to simplify the object creation process. It is easier to track which objects are created if this is done
through a central function, compared to letting a client create objects using a direct class instantiation.
A factory reduces the complexity of maintaining an application by decoupling the code that creates
an object from the code that uses it.

Factories typically come in two forms—the factory method, which is a method (or simply a function
for a Python developer) that returns a different object per input parameter, and the abstract factory,
which is a group of factory methods used to create a family of related objects.

Let’s discuss the two forms of factory pattern, starting with the factory method.

The factory method

The factory method is based on a single function written to handle our object creation task. We
execute it, passing a parameter that provides information about what we want, and, as a result, the
wanted object is created.

Interestingly, when using the factory method, we are not required to know any details about how the
resulting object is implemented and where it is coming from.

Real-world examples

We can find the factory method pattern used in real life in the context of a plastic toy construction Kkit.
The molding material used to construct plastic toys is the same, but different toys (different figures or
shapes) can be produced using the right plastic molds. This is like having a factory method in which
the input is the name of the toy that we want (for example, a duck or car) and the output (after the
molding) is the plastic toy that was requested.

In the software world, the Django web framework uses the factory method pattern for creating the
fields of a web form. The forms module included in Django (https://github.com/django/
django/blob/main/django/forms/forms . py) supports the creation of different kinds of
fields (for example, CharField, EmailField, and so on). Parts of their behavior can be customized
using attributes such as max_length and required.

https://github.com/django/django/blob/main/django/forms/forms.py
https://github.com/django/django/blob/main/django/forms/forms.py

The factory pattern

Use cases for the factory method pattern

If you realize that you cannot track the objects created by your application because the code that
creates them is in many different places instead of in a single function/method, you should consider
using the factory method pattern. The factory method centralizes object creation and tracking your
objects becomes much easier. Note that it is fine to create more than one factory method, and this
is how it is typically done in practice. Each factory method logically groups the creation of objects
that have similarities. For example, one factory method might be responsible for connecting you to
different databases (MySQL, SQLite); another factory method might be responsible for creating the
geometrical object that you request (circle, triangle); and so on.

The factory method is also useful when you want to decouple object creation from object usage. We
are not coupled to a specific class when creating an object; we just provide partial information about
what we want by calling a function. This means that introducing changes to the function is easy and
does not require any changes to the code that uses it.

Another use case worth mentioning is related to improving the performance and memory usage of an
application. A factory method can improve performance and memory usage by creating new objects
only if it is necessary. When we create objects using a direct class instantiation, extra memory is allocated
every time a new object is created (unless the class uses caching internally, which is usually not the
case). We can see that in practice in the following code (ch03/factory/id.py), which creates
two instances of the same class, MyClass, and uses the 1d () function to compare their memory
addresses. The addresses are also printed in the output so that we can inspect them. The fact that the
memory addresses are different means that two distinct objects are created. The code is as follows:

class MyClass:
pass

if name == " main ":
a = MyClass()
b = MyClass ()

print (id(a) == id(b))
print (id(a))
print (id (b))

Executing the code (ch03/factory/id.py) on my computer results in the following output:

False
4330224656
4331646704

45

46

Creational Design Patterns

(R
Note

The addresses that you see if you execute the file, where the 1d () function is called, are not the
same as the ones I see because they depend on the current memory layout and allocation. But
the result must be the same—the two addresses should be different. There’s one exception that
happens if you write and execute the code in the Python Read-Eval-Print Loop (REPL)—or,
simply put, the interactive prompt—but that’s a REPL-specific optimization that does not
happen normally.

- J

Implementing the factory method pattern

Data comes in many forms. There are two main file categories for storing/retrieving data: human-
readable files and binary files. Examples of human-readable files are XML, RSS/Atom, YAML, and
JSON. Examples of binary files are the . sg3 file format used by SQLite and the . mp3 audio file
format used to listen to music.

In this example, we will focus on two popular human-readable formats—XML and JSON. Although
human-readable files are generally slower to parse than binary files, they make data exchange,
inspection, and modification much easier. For this reason, it is advised that you work with human-
readable files unless there are other restrictions that do not allow it (mainly unacceptable performance
or proprietary binary formats).

In this case, we have some input data stored in an XML and a JSON file, and we want to parse them
and retrieve some information. At the same time, we want to centralize the client’s connection to those
(and all future) external services. We will use the factory method to solve this problem. The example
focuses only on XML and JSON, but adding support for more services should be straightforward.

First, let’s look at the data files.

The JSON file, movies. json, is a sample of a dataset containing information about American
movies (title, year, director name, genre, and so on):

[

{
"title": "After Dark in Central Park",
"year": 1900,
"director": null,
"cast": null,
"genre": null
b
{

"title": "Boarding School Girls' Pajama Parade",
"year": 1900,

"director": null,

"cast": null,

The factory pattern

"genre": null

"title": "Buffalo Bill's Wild West Parad",
"year": 1900,

"director": null,

"cast": null,

"genre": null

"title": "Caught",

"year": 1900,

"director": null,

"cast": null,

"genre": null

"title": "Clowns Spinning Hats",
"year": 1900,

"director": null,

"cast": null,

"genre": null

"title": "Capture of Boer Battery by British",
"year": 1900,

"director": "James H. White",
"cast": null,

"genre": "Short documentary"
"title": "The Enchanted Drawing",
"year": 1900,

"director": "J. Stuart Blackton",
"cast": null,

"genre": null

"title": "Family Troubles",
"year": 1900,

"director": null,

"cast": null,

"genre": null

47

48 Creational Design Patterns

¥

{
"title": "Feeding Sea Lions",
"year": 1900,
"director": null,
"cast": "Paul Boyton",
"genre": null

The XML file, person . xml, contains information about individuals (firstName, lastName,
gender, and so on), as follows:

1. We start with the enclosing tag of the persons XML container:

<persons>

2. Then, an XML element representing a person’s data code is presented as follows:

<person>
<firstName>John</firstName>
<lastName>Smith</lastName>
<age>25</age>
<address>
<streetAddress>21 2nd Street</streetAddress>
<city>New York</city>
<state>NY</state>
<postalCode>10021</postalCode>
</address>
<phoneNumbers>
<number type="home">212 555-1234</number>
<number type="fax">646 555-4567</number>
</phoneNumbers >
<genders>
<type>male</type>
</genders>
</person>

3. An XML element representing another person’s data is shown by the following code:

<person>
<firstName>Jimy</firstName>
<lastName>Liar</lastName>
<age>19</age>
<address>

The factory pattern

<streetAddress>18 2nd Street</streetAddress>
<city>New York</citys>
<state>NY</state>
<postalCode>10021</postalCodes>

</address>

<phoneNumbers>
<number type="home">212 555-1234</numbers>

</phoneNumbers>

<genders>
<types>male</type>

</gender>

</person>

4. An XML element representing a third person’s data is shown by the following code:

<persons>
<firstName>Patty</firstName>
<lastName>Liar</lastName>
<age>20</age>
<address>
<streetAddress>18 2nd Street</streetAddress>
<city>New York</city>
<state>NY</state>
<postalCode>10021</postalCodes>
</address>
<phoneNumbers>
<number type="home">212 555-1234</number>
<number type="mobile">001 452-8819</numbers>
</phoneNumbers>
<gender>
<type>female</type>
</gender>
</person>

5. Finally, we close the XML container:

</persons>

We will use two libraries that are part of the Python distribution for working with JSON and XML.:
jsonand xml .etree.ElementTree.

49

50 Creational Design Patterns

We start by importing what we need for the various manipulations (json, ElementTree, and
pathlib), and we define a JSONDataExtractor class, loading the data from the file and using
the parsed_data property to get it. That part of the code is as follows:

import json
import xml.etree.ElementTree as ET
from pathlib import Path

class JSONDataExtractor:
def init (self, filepath: Path):
self.data = {}
with open(filepath) as f:
self.data = json.load(f)

@property
def parsed data(self) :
return self.data

We also define an XMLDataExtractor class, loading the data in the file via Element Tree’s
parser, and using the parsed_data property to get the result, as follows:

class XMLDataExtractor:
def init (self, filepath: Path):
self.tree = ET.parse(filepath)

@property
def parsed data(self) :
return self.tree

Now, we provide the factory function that helps select the right data extractor class depending on the
target file’s extension (or raise an exception if it is not supported), as follows:

def extract factory(filepath: Path):
ext = filepath.name.split(".") [-1]
if ext == "json":
return JSONDataExtractor (filepath)
elif ext == "xml":
return XMLDataExtractor (filepath)
else:
raise ValueError ("Cannot extract data")

The factory pattern

Next, we define the main function of our program, extract (); in the first part of the function, the

code handles the JSON case, as follows:

def extract(case: str):
dir path = Path(file) .parent

if case == "json":
path = dir path / Path("movies.json")
factory = extract factory(path)
data = factory.parsed data

for movie in data:
print (f"- {movie['title']l}™")
director = movie["director"]
if director:
print (£" Director: {director}")
genre = movie["genre"]
if genre:

print (£" Genre: {genre}")

We add the final part of the extract () function, working with the XML file using the factory
method. XPath is used to find all person elements that have the last name Liar. For each matched
person, the basic name and phone number information are shown. The code is as follows:

elif case == "xml":
path = dir path / Path("person.xml")
factory = extract factory(path)
data = factory.parsed data

search xpath = ".//person[lastName='Liar']"
items = data.findall (search xpath)
for item in items:
first = item.find("firstName") .text
last = item.find("lastName") .text
print (f"- {first} {last}")
for pn in item.find("phoneNumbers") :
pn_type = pn.attrib["type"]
pn val = pn.text
phone = £"{pn type}: {pn val}"
print (£" {phone} ")

51

52

Creational Design Patterns

Finally, we add some testing code:

if name == " main ":

print ("* JSON case *")
extract (case="json")
print ("* XML case *")

extract (case="xml")

Here is a summary of the implementation (in the ch03 /factory/factory method.py file):

L.

After importing the modules we need, we start by defining a JSON data extractor class
(JSONDataExtractor) and an XML data extractor class (XMLDataExtractor).

We add a factory function, extract factory (), to get the right data extractor class
to instantiate.

We also add our wrapper and main function, extract ().

Finally, we add testing code, where we extract data from a JSON file and an XML file and parse
the resulting text.

To test the example, run the following command:

python ch03/factory/factory method.py

You should get the following output:

*

JSON case *
After Dark in Central Park
Boarding School Girls' Pajama Parade
Buffalo Bill's Wild West Parad
Caught

Clowns Spinning Hats

Capture of Boer Battery by British
Director: James H. White

Genre: Short documentary

The Enchanted Drawing

Director: J. Stuart Blackton
Family Troubles

Feeding Sea Lions

XML case *

Jimy Liar

home: 212 555-1234

Patty Liar

home: 212 555-1234

mobile: 001 452-8819

The factory pattern

Notice that although JSONDataExtractor and XMLDataExtractor have the same interfaces,
what is returned by parsed_data () is not handled in a uniform way; in one case we have a list,
and in the other, we have a tree. Different Python code must be used to work with each data extractor.
Although it would be nice to be able to use the same code for all extractors, this is not realistic for
the most part unless we use some kind of common mapping for the data, which is often provided by
external data providers. Assuming that you can use the same code for handling the XML and JSON
files, what changes are required to support a third format—for example, SQLite? Find an SQLite file
or create your own and try it.

Should you use the factory method pattern?

The main critique that veteran Python developers often express toward the factory method pattern
is that it can be considered over-engineered or unnecessarily complex for many use cases. Python’s
dynamic typing and first-class functions often allow for simpler, more straightforward solutions to
problems that the factory method aims to solve. In Python, you can often use simple functions or
class methods to create objects directly without needing to create separate factory classes or functions.
This keeps the code more readable and Pythonic, adhering to the language’s philosophy of Simple is
better than complex.

Also, Python’s support for default arguments, keyword arguments, and other language features often
makes it easier to extend constructors in a backward-compatible way, reducing the need for separate
factory methods. So, while the factory method pattern is a well-established design pattern in statically
typed languages such as Java or C++, it is often seen as too cumbersome or verbose for Python’s more
flexible and dynamic nature.

To show how one could deal with simple use cases without the factory method pattern, an alternative
implementation has been provided in the ch03 /factory/factory method not needed.
py file. As you can see, there is no more factory. And the following extract from the code shows
what we mean when we say that in Python, you just create objects where you need them, without an
intermediary function or class, which makes your code more Pythonic:

if case == "json":
path = dir path / Path("movies.json")
data JSONDataExtractor (path) .parsed data

The abstract factory pattern

The abstract factory pattern is a generalization of the factory method idea. Basically, an abstract factory
is a (logical) group of factory methods, where each factory method is responsible for generating a
different kind of object.

We are going to discuss some examples, use cases, and a possible implementation.

53

54

Creational Design Patterns

Real-world examples

The abstract factory is used in car manufacturing. The same machinery is used for stamping the parts
(doors, panels, hoods, fenders, and mirrors) of different car models. The model that is assembled by
the machinery is configurable and easy to change at any time.

In the software category, the factory boy package (https://github.com/FactoryBoy/
factory boy) provides an abstract factory implementation for creating Django models in tests.
An alternative tool is model bakery (https://github.com/model-bakers/model
bakery). Both packages are used for creating instances of models that support test-specific attributes.
This is important because, this way, the readability of your tests is improved, and you avoid sharing
unnecessary code.

Note

Django models are special classes used by the framework to help store and interact with data in
the database (tables). See the Django documentation (https://docs.djangoproject.
com) for more details.

Use cases for the abstract factory pattern

Since the abstract factory pattern is a generalization of the factory method pattern, it offers the same
benefits: it makes tracking an object creation easier, it decouples object creation from object usage,
and it gives us the potential to improve the memory usage and performance of our application.

Implementing the abstract factory pattern

To demonstrate the abstract factory pattern, I will reuse one of my favorite examples, included in the
book Python 3 Patterns, Recipes and Idioms, by Bruce Eckel. Imagine that we are creating a game or we
want to include a mini-game as part of our application to entertain our users. We want to include at
least two games, one for children and one for adults. We will decide which game to create and launch
at runtime, based on user input. An abstract factory takes care of the game creation part.

Let’s start with the kids’ game. It is called FrogWorld. The main hero is a frog who enjoys eating
bugs. Every hero needs a good name, and in our case, the name is given by the user at runtime. The
interact with () method is used to describe the interaction of the frog with an obstacle (for
example, a bug, puzzle, and other frogs) as follows:

class Frog:
def init (self, name):
self.name = name

def str (self):
return self.name

https://github.com/FactoryBoy/factory_boy
https://github.com/FactoryBoy/factory_boy
https://github.com/model-bakers/model_bakery
https://github.com/model-bakers/model_bakery
https://docs.djangoproject.com
https://docs.djangoproject.com
https://docs.djangoproject.com

The factory pattern

def interact with(self, obstacle):
act = obstacle.action()
msg = f£"{self} the Frog encounters {obstacle} and {act}!"
print (msg)

There can be many kinds of obstacles, but for our example, an obstacle can only be a bug. When the
frog encounters a bug, only one action is supported. It eats it:

class Bug:
def str (self):

return "a bug"

def action(self) :
return "eats it"

The FrogWorld class is an abstract factory. Its main responsibilities are creating the main character
and the obstacle(s) in the game. Keeping the creation methods separate and their names generic (for
example, make character () andmake_obstacle ()) allows us to change the active factory
(and, therefore, the active game) dynamically without any code changes. The code is as follows:

class FrogWorld:
def init (self, name):
print (self)
self.player name = name

def str (self):

return "\n\n\t------ Frog World ------- "

def make character (self):
return Frog(self.player name)

def make obstacle(self):
return Bug ()

The WizardWorld game is similar. The only difference is that the wizard battles against monsters
such as orks instead of eating bugs!

Here is the definition of the Wi zard class, which is similar to the Frog one:

class Wizard:
def init (self, name):
self.name = name

def str (self):

return self.name

55

56 Creational Design Patterns

def interact with(self, obstacle):
act = obstacle.action()
msg = f"{self} the Wizard battles against {obstacle} and
{act}im
print (msg)

Then, the definition of the Ork class is as follows:

class Ork:
def str (self):
return "an evil ork"

def action (self) :
return "kills it"

We also need to define a WizardWorld class, similar to the FrogWorld one that we have discussed;
the obstacle, in this case, is an Ork instance:

class WizardWorld:
def init (self, name):
print (self)
self.player name = name

def str (self):
return "\n\n\t------ Wizard World ------- n

def make character (self) :
return Wizard(self.player name)

def make obstacle(self):
return Ork ()

The GameEnvironment class is the main entry point of our game. It accepts the factory as an input
and uses it to create the world of the game. The play () method initiates the interaction between
the created hero and the obstacle, as follows:

class GameEnvironment:
def init (self, factory):
self .hero = factory.make character ()
self.obstacle = factory.make obstacle()

def play(self):
self . hero.interact with(self.obstacle)

The factory pattern 57

The validate_ age () function prompts the user to give a valid age. If the age is not valid, it
returns a tuple with the first element set to False. If the age is fine, the first element of the tuple is
set to True, and that’s the case where we care about the second element of the tuple, which is the age
given by the user, as follows:

def validate age (name) :
age = None
try:
age input = input (
f'"Welcome {name}. How old are you? "
)
age = int (age input)
except ValueError:
print (
f'Age {age} is invalid, please try again..."
)
return False, age

return True, age

Finally comes themain () function definition, followed by calling it. It asks for the user’s name and
age and decides which game should be played, given the age of the user, as follows:

def main() :

name = input ("Hello. What's your name? ")
valid input = False
while not valid input:

valid input, age = validate age (name)
game = FrogWorld if age < 18 else WizardWorld
environment = GameEnvironment (game (name))
environment.play ()

if __name == "_main_ ":

main ()

The summary for the implementation we just discussed (see the complete code in the ch03 /factory/
abstract factory.py file) is as follows:
1. We define Frog and Bug classes for the FrogWorld game.
We add a FrogWor1d class, where we use our Frog and Bug classes.
We define Wizard and Ork classes for the WizardWorld game.

We add a WizardWorld class, where we use our Wizard and Ork classes.

AN

We define a GameEnvironment class.

58

Creational Design Patterns

6. Weaddavalidate age () function.

7. Finally, we have the main () function, followed by the conventional trick for calling it. The
following are the aspects of this function:

* We get the user’s input for name and age.
* We decide which game class to use based on the user’s age.
* We instantiate the right game class, and then the GameEnvironment class.

* Wecall .play () onthe environment object to play the game.

Let’s call this program using the python ch03/factory/abstract factory.py command
and see some sample output.

The sample output for a teenager is as follows:

Hello. What's your name? Arthur
Welcome Arthur. How old are you? 13

—————— Frog World -------
Arthur the Frog encounters a bug and eats it!

The sample output for an adult is as follows:

Hello. What's your name? Tom
Welcome Tom. How old are you? 34

—————— Wizard World -------
Tom the Wizard battles against an evil ork and kills it!

Try extending the game to make it more complete. You can go as far as you want; create many obstacles,
many enemies, and whatever else you like.

The builder pattern

We just covered the first two creational patterns, the factory method and the abstract factory, which
both offer approaches to improve the way we create objects in nontrivial cases.

Now, imagine that we want to create an object that is composed of multiple parts, and the composition
needs to be done step by step. The object is not complete unless all its parts are fully created. That’s
where the builder design pattern can help us. The builder pattern separates the construction of a
complex object from its representation. By keeping the construction separate from the representation,
the same construction can be used to create several different representations.

The builder pattern

Real-world examples

In our everyday life, the builder design pattern is used in fast-food restaurants. The same procedure is
always used to prepare a burger and the packaging (box and paper bag), even if there are many kinds
of burgers (classic, cheeseburger, and more) and different packages (small-sized box, medium-sized
box, and so forth). The difference between a classic burger and a cheeseburger is in the representation
and not in the construction procedure. In this case, the director is the cashier who gives instructions
about what needs to be prepared to the crew, and the builder is the person from the crew who takes
care of the specific order.

In software, we can think of the django-query-builder library (https://github.com/
ambitioninc/django-query-builder), a third-party Django library that relies on the builder
pattern. This library can be used for building SQL queries dynamically, allowing you to control all
aspects of a query and create a different range of queries, from simple to very complex ones.

Comparison with the factory pattern

At this point, the distinction between the builder pattern and the factory pattern might not be very
clear. The main difference is that a factory pattern creates an object in a single step, whereas a builder
pattern creates an object in multiple steps and almost always uses a director.

Another difference is that while the factory pattern returns a created object immediately, in the builder
pattern, the client code explicitly asks the director to return the final object when it needs it.

Use cases for the builder pattern

The builder pattern is particularly useful when an object needs to be constructed with numerous
possible configurations. A typical case is a situation where a class has multiple constructors with a
varying number of parameters, often leading to confusion or error-prone code.

The pattern is also beneficial when the object’s construction process is more complex than simply
setting initial values. For example, if an object’s full creation involves multiple steps, such as parameter
validation, setting up data structures, or even making calls to external services, the builder pattern
can encapsulate this complexity.

Implementing the builder pattern

Let’s see how we can use the builder design pattern to make a pizza-ordering application. This example
is particularly interesting because a pizza is prepared in steps that should follow a specific order. To
add the sauce, you first need to prepare the dough. To add the topping, you first need to add the
sauce. And you can't start baking the pizza unless both the sauce and the topping are placed on the
dough. Moreover, each pizza usually requires a different baking time, depending on the thickness of
its dough and the topping used.

59

https://github.com/ambitioninc/django-query-builder
https://github.com/ambitioninc/django-query-builder
https://github.com/ambitioninc/django-query-builder

60

Creational Design Patterns

We start by importing the required modules and declaring a few Enum parameters plus a constant
that is used many times in the application. The STEP_DELAY constant is used to add a time delay
between the different steps of preparing a pizza (prepare the dough, add the sauce, and so on) as follows:

import time
from enum import Enum

PizzaProgress = Enum(

"PizzaProgress", "queued preparation baking ready"
)
PizzaDough = Enum("PizzaDough", "thin thick")
PizzaSauce = Enum("PizzaSauce", "tomato creme fraiche")

PizzaTopping = Enum/(
"PizzaTopping",

"mozzarella double mozzarella bacon ham mushrooms red_onion
oregano",

)
Delay in seconds
STEP_DELAY = 3

Our end product is a pizza, which is described by the Pizza class. When using the builder pattern,
the end product does not have many responsibilities, since it is not supposed to be instantiated directly.
A builder creates an instance of the end product and makes sure that it is properly prepared. That’s
why the Pizza class is so minimal. It basically initializes all data to sane default values. An exception
is the prepare dough () method.

The prepare dough () method is defined in the Pizza class instead of a builder for two reasons.
First, to clarify the fact that the end product is typically minimal, which does not mean that you should
never assign it any responsibilities. Second, to promote code reuse through composition.

So, we define our Pizza class as follows:

class Pizza:
def init_ (self, name):
self.name = name
None

self.dough
self.sauce = None
self.topping = []

def str (self):
return self.name

def prepare dough(self, dough) :
self.dough = dough
print (

The builder pattern

f'preparing the {self.dough.name} dough of your {self}..."
)
time.sleep (STEP_DELAY)
print (f"done with the {self.dough.name} dough")

There are two builders: one for creating a margarita pizza (MargaritaBuilder) and another for
creating a creamy bacon pizza (CreamyBaconBuilder). Each builder creates a Pizza instance and
contains methods that follow the pizza-making procedure: prepare dough (), add sauce (),
add_topping (), and bake (). To be precise, prepare_dough () is just a wrapper to the
prepare dough () method of the Pizza class.

Notice how each builder takes care of all the pizza-specific details. For example, the topping of the
margarita pizza is double mozzarella and oregano, while the topping of the creamy bacon pizza is
mozzarella, bacon, ham, mushrooms, red onion, and oregano.

An extract of the code of the MargaritaBuilder class is as follows (see the ch03 /builder.
py file for the whole code):

class MargaritaBuilder:
def init (self):
self.pizza = Pizza("margarita")
self .progress = PizzaProgress.queued
self.baking time = 5

def prepare dough(self) :
self .progress = PizzaProgress.preparation
self.pizza.prepare dough (PizzaDough.thin)

An extract of the code of the CreamyBaconBuilder class is as follows:

class CreamyBaconBuilder:
def init (self):
self.pizza = Pizza("creamy bacon")
self .progress = PizzaProgress.queued
self .baking time = 7

def prepare dough(self) :
self .progress = PizzaProgress.preparation
self.pizza.prepare dough (PizzaDough.thick)

61

62

Creational Design Patterns

The director in this example is the waiter. The core of the Waiter class is the construct pizza ()

method, which accepts a builder as a parameter and executes all the pizza-preparation steps in the
right order. Choosing the appropriate builder, which can even be done at runtime, gives us the ability
to create different pizza styles without modifying any of the code of the director (Waiter). The
Waiter class also contains the pizza () method, which returns the end product (prepared pizza)
as a variable to the caller. The code for that class is as follows:

class Waiter:
def init (self):
self.builder = None

def construct pizza(self, builder) :

self.builder = builder

steps = (
builder.prepare dough,
builder.add sauce,
builder.add topping,
builder.bake,

)

[step() for step in steps]

@property
def pizza(self):
return self.builder.pizza

Thevalidate style () methodissimilar to the validate age () function, as described in
the section titled The factory pattern earlier in this chapter. It is used to make sure that the user gives
valid input, which in this case is a character that is mapped to a pizza builder. The m character uses
the MargaritaBuilder class, and the ¢ character uses the CreamyBaconBuilder class. These
mappings are in the builder parameter. A tuple is returned, with the first element set to True if
the input is valid or False if it is invalid, as follows:

def validate style (builders) :
try:
input msg = "What pizza would you like, [m]argarita or [c]
reamy bacon? "

pizza style = input (input msg)
builder = builders([pizza style] ()
valid input = True

except KeyError:

error msg = "Sorry, only margarita (key m) and creamy bacon
(key c) are available"

print (error msg)

The builder pattern

return (False, None)
return (True, builder)

The last part is themain () function. The main () function contains code for instantiating a pizza

builder. The pizza builder is then used by the Waiter director to prepare the pizza. The created pizza
can be delivered to the client at any later point:

def main() :

builders = dict (m=MargaritaBuilder, c=CreamyBaconBuilder)
valid_input = False
while not valid input:
valid input, builder = validate style(builders)
print ()
walter = Waiter()
waiter.construct pizza(builder)
pizza = waiter.pizza
print ()
print (f"Enjoy your {pizza}!")

Here is a summary of the implementation (in the ch03 /builder . py file):

NS oW

We start with a couple of imports we need, for the standard Enum class and t ime module.

We declare variables for a few constants: PizzaProgress, PizzaDough, PizzaSauce,
PizzaTopping, and STEP DELAY.

We define our Pizza class.

We define classes for two builders, MargaritaBuilder and CreamyBaconBuilder.

We define our Waiter class.

Weaddavalidate style () function to improve things regarding exception handling.

Finally, we have the main () function, followed by a snippet for calling it when the program

is run. In the main () function, the following happens:

* We make it possible to choose the pizza builder based on the user’s input, after validation
viathe validate style () function.

* The pizza builder is used by the waiter for preparing the pizza.

* The created pizza is then delivered.

63

64

Creational Design Patterns

Here is the output produced by calling the python ch03/builder.py command to execute
this example program:

What pizza would you like, [m]largarita or [c]reamy bacon? c

preparing the thick dough of your creamy bacon...
done with the thick dough

adding the créme fraiche sauce to your creamy bacon
done with the créme fraiche sauce

adding the topping (mozzarella, bacon, ham, mushrooms, red onion,
oregano) to your creamy bacon

done with the topping (mozzarella, bacon, ham, mushrooms, red onion,
oregano)

baking your creamy bacon for 7 seconds
your creamy bacon is ready

Enjoy your creamy bacon!

That was a nice result.

But... supporting only two pizza types is a shame. Feel like getting a Hawaiian pizza builder? Consider
using inheritance after thinking about the advantages and disadvantages. Or composition, which has
its advantages, as we have seen in Chapter 1, Foundational Design Principles.

The prototype pattern

The prototype pattern allows you to create new objects by copying existing ones, rather than creating
them from scratch. This pattern is particularly useful when the cost of initializing an object is more
expensive or complex than copying an existing one. In essence, the prototype pattern enables you to
create a new instance of a class by duplicating an existing instance, thereby avoiding the overhead of
initializing a new object.

In its simplest version, this pattern is just a clone () function that accepts an object as an input

parameter and returns a clone of it. In Python, this can be done using the copy . deepcopy () function.

Real-world examples

Cloning a plant by taking a cutting is a real-world example of the prototype pattern. Using this
approach, you don't grow the plant from a seed; you create a new plant that’s a copy of an existing one.

Many Python applications make use of the prototype pattern, but it is rarely referred to as prototype
since cloning objects is a built-in feature of the Python language.

The prototype pattern

Use cases for the prototype pattern

The prototype pattern is useful when we have an existing object that needs to stay untouched and we
want to create an exact copy of it, allowing changes in some parts of the copy.

There is also the frequent need for duplicating an object that is populated from a database and has
references to other database-based objects. It is costly (multiple queries to a database) to clone such
a complex object, so a prototype is a convenient way to solve the problem.

Implementing the prototype pattern

Nowadays, some organizations, even of small size, deal with many websites and apps via their
infrastructure/DevOps teams, hosting providers, or cloud service providers (CSPs).

When you have to manage multiple websites, there is a point where it becomes difficult to follow. You
need to access information quickly, such as IP addresses that are involved, domain names and their
expiration dates, and maybe details about DNS parameters. So, you need a kind of inventory tool.

Let’s imagine how these teams deal with this type of data for daily activities, and touch on the
implementation of a piece of software that helps consolidate and maintain the data (other than in
Excel spreadsheets).

First, we need to import Python’s standard copy module, as follows:

import copy

At the heart of this system, we will have a Website class for holding all useful information such
as the name, the domain name, a description, the author of a website we are managing, and so on.

Inthe init () method of the class, only some parameters are fixed: name, domain, and
description. But we also want flexibility, and client code can pass more parameters in the form
of keywords (name=value) using the kwargs variable-length collection (each pair becomes an
item of the kwargs Python dictionary).

Additional information

There is a Python idiom that helps to set an arbitrary attribute named at tr with a val value
on an obj object, using the setattr () built-in function: setattr (obj, attr, val).

So we are defining a Website class and initializing its objects, using the setattr technique for
optional attributes, as follows:

class Website:
def init (
self,

name: str,

65

66

Creational Design Patterns

domain: str,
description: str,
**kwargs,

self.name = name
self.domain = domain
self .description = description

for key in kwargs:
setattr(self, key, kwargslkeyl)

That’s not all. To improve the usability of the class, we also add its string representation method
(__str__ ()). We extract the values of all instance attributes, using the vars () trick, and inject
those values into the string that the method returns. Also, since we plan to clone objects, we include
the object’s memory address using the 1d () function. The code is as follows:

def str (self) -> str:

summary = [
f"- {self.name} (ID: {id(self)})\n",

infos = vars(self) .items ()
ordered_infos = sorted(infos)
for attr, val in ordered infos:
if attr == "name":
continue

summary.append (f"{attr}: {val}\n")

return "".join (summary)

-

Additional information

The vars () function in Python returnsthe dict attribute of an object. The dict
attribute is a dictionary containing the object’s attributes (both data attributes and methods).
This function is useful for debugging, as it allows you to inspect the attributes and methods of
an object or the local variables within a function. But note that not all objects havea dict
attribute. For example, built-in types such as lists and dictionaries do not have this attribute.

J

Next, we add a Prototype class that implements the prototype design pattern. At the heart of
this class, we have the clone () method, which is in charge of cloning the object using the copy .
deepcopy () function.

The prototype pattern 67

Note

When we clone an object using copy . deepcopy (), the memory address of the clone must
be different from the memory address of the original object.

Since cloning means that we allow setting values for optional attributes, notice how we use the

setattr technique here with the at trs dictionary. Also, for more convenience, the Prototype

class contains the register () and unregister () methods, which can be used to keep track of

the cloned objects in a registry (a dictionary). The code of that class is as follows:

class Prototype:

def

def

def

def

_ _init_ (self):

self.registry = {}

register (self, identifier: int, obj: object) :
self.registry[identifier] = obj

unregister(self, identifier: int):
del self.registryl[identifier]

clone (self, identifier: int, **attrs) -> object:
found = self.registry.get(identifier)
if not found:
raise ValueError (
fr"Incorrect object identifier: {identifier}"
)
obj = copy.deepcopy (found)
for key in attrs:
setattr (obj, key, attrslkeyl])

return obj

In the main () function, which we define next, we complete the program: we clone a first Website

instance, sitel, to get a second object site2. Basically, we instantiate the Prototype class and
we use its . clone () method. Then, we display the result. The code for that function is as follows:

def main() :

keywords = (

"python",
"programming",
"scripting",
"data" ,

"automation",

68 Creational Design Patterns

sitel = Website(
"Python",
domain="python.org",
description="Programming language and ecosystem",
category="Open Source Software",
keywords=keywords,

proto = Prototype ()
proto.register ("python-001", sitel)

site2 = proto.clone (
"python-001",
name="Python Package Index",
domain="pypi.org",
description="Repository for published packages",
category="Open Source Software",

for site in (sitel, site2):
print (site)

Finally, we call themain () function, as follows:

if _name_ == "_main_ ":
main ()

Here is a summary of what we do in the code (ch03 /prototype.py):

1. We start by importing the copy module.

2. We define a Website class, with its initialization method (__init__ ()) and its string
representation method (__str_ ()).

3. We define our Prototype class as shown earlier.

4. 'Then, we have themain () function, where we do the following:

* We define a keywords list we need.
= We create an instance of the Website class, called sitel (we use the keywords list here).

* We create a Prototype object and we use its register () method to register sitel
with its identifier (this helps us keep track of the cloned objects in a dictionary).

* We clone the sitel object to get site2.

* We display the result (both Website objects).

The singleton pattern

A sample output when I execute the python ch03/prototype.py command on my computer
is as follows:

- Python (ID: 4369628560)

category: Open Source Software

description: Programming language and ecosystem

domain: python.org

keywords: ('python', 'programming', 'scripting', 'data', 'automation')

- Python Package Index (ID: 4369627552)

category: Open Source Software

description: Repository site for Python's published packages

domain: pypi.org

keywords: ('python', 'programming', 'scripting', 'data', 'automation')

Indeed, Prototype works as expected. We can see information about the original Website object

and its clone.

And looking at the ID value for each Website object, we can see that the two addresses are different.

The singleton pattern

One of the original design patterns for OOP, the singleton pattern restricts the instantiation of a class
to one object, which is useful when you need one object to coordinate actions for the system.

The basic idea is that only one instance of a particular class, doing a job, is created for the needs of the
program. To ensure that this works, we need mechanisms that prevent the instantiation of the class
more than once and also prevent cloning.

In the Python programmer community, the singleton pattern is actually considered an anti-pattern.
Let’s explore the pattern first, and later we will discuss the alternative approaches we are encouraged
to use in Python.

Real-world examples

In a real-life scenario, we can think of the captain of a ship or a boat. On the ship, they are the ones in
charge. They are responsible for important decisions, and a number of requests are directed to them
because of this responsibility.

Another example is the printer spooler, in an office environment, which ensures that print jobs are
coordinated through a single point, avoiding conflicts and ensuring orderly printing.

69

70

Creational Design Patterns

Use cases for the singleton pattern

The singleton design pattern is useful when you need to create only one object or you need some sort
of object capable of maintaining a global state for your program.

Other possible use cases are the following:

o Controlling concurrent access to a shared resource—for example, the class managing the
connection to a database

o A service or resource that is transversal in the sense that it can be accessed from different parts
of the application or by different users and do its work—for example, the class at the core of a
logging system or utility

Implementing the singleton pattern

As discussed, the singleton pattern ensures that a class has only one instance and provides a global
point to access it. In this example, we'll create a URLFetcher class that fetches content from web
pages. We want to ensure that only one instance of this class exists to keep track of all fetched URLs.

Imagine you have multiple fetchers in different parts of your program, but you want to keep track of all
URLs that have been fetched. This is a classic case for a singleton pattern. By ensuring that all parts of
your program use the same fetcher instance, you can easily keep track of all fetched URLSs in one place.

Initially, we create a naive version of the URLFetcher class. This class hasa fetch () method that
fetches the web page content and stores the URL in a list:

import urllib.request

class URLFetcher:
def init (self):
self.urls = []

def fetch(self, url):
req = urllib.request.Request (url)
with urllib.request.urlopen(req) as response:

if response.code == 200:
page content = response.read()
with open ("content.html", "a") as f:

f.write(page_content + "\n")
self.urls.append (url)

The singleton pattern

To check if our class is a singleton, we can compare two instances of the class using the is operator.
If they are the same, then it’s a singleton:

if name == " main ":
print (URLFetcher () is URLFetcher())

If you run this code (ch03/singleton/before singleton.py), you'll see that the output
is the following:

False

This output shows that the class in this version does not yet respect the singleton pattern. To make it
a singleton, we'll use the metaclass technique.

Additional information

A metaclass in Python is a class of a class that defines how a class behaves.

We'll create a SingletonType metaclass that ensures that only one instance of URLFetcher
exists, as follows:

import urllib.request

class SingletonType (type) :
_instances = {}
def call (cls, *args, **kwargs):
if cls not in cls. instances:
obj = super(SingletonType, cls). call (*args, **kwargs)
cls. instances[cls] = obj
return cls. instances/[cls]

Now, we modify our URLFetcher class to use this metaclass, as follows:

class URLFetcher (metaclass=SingletonType) :
def init (self):
self.urls = []

def fetch(self, url):
req = urllib.request.Request (url)
with urllib.request.urlopen(req) as response:
if response.code == 200:
page content = response.read ()
with open ("content.html", "a") as f:

71

72 Creational Design Patterns

f.write(str(page content))
self.urls.append (url)

Finally, we create amain () function and call it to test our singleton, with the following code:

def main() :

my urls = [
"http://python.org",
"https://planetpython.org/",
"https://www.djangoproject.com/",

print (URLFetcher () is URLFetcher())
fetcher = URLFetcher ()
for url in my urls:

fetcher.fetch (url)

print (£"Done URLs: {fetcher.urls}")

if name == " main ":

main ()

Here is a summary of what we do in the code (ch03/singleton/singleton.py):

4.

We start with our needed module imports (urllib.request).
We define a SingletonType class, with its special _call () method.

We define URLFetcher, the class implementing the fetcher for the web pages, initializing it
with the urls attribute; as discussed, we add its fetch () method.

Lastly, we add our main () function, and we add Python’s conventional snippet used to call it.

To test the implementation, run the python ch03/singleton/singleton.py command.
You should get the following output:

True

Done URLs: ['http://python.org', 'https://planetpython.org/',
'https://www.djangoproject.com/"']

In addition, you will find that a file called content . html has been created, with the HTML text
that comes from the different URLs added to it.

So, the program did its job as expected. This is a demonstration of how the singleton pattern may be used.

The object pool pattern

Should you use the singleton pattern?

While the singleton pattern has its merits, it may not always be the most Pythonic approach to managing
global states or resources. Our implementation example worked, but if we stop a minute to analyze
the code again, we notice the following:

o The techniques used for the implementation are rather advanced and not easy to explain to
a beginner

o Byreading the SingletonType class definition, it is not easy to immediately see that it
provides a metaclass for a singleton if the name does not suggest it

In Python, developers often prefer a simpler alternative to singleton: using a module-level global object.

Note

Python modules act as natural namespaces that can contain variables, functions, and classes,
making them ideal for organizing and sharing global resources.

By adopting the global object technique, as explained by Brandon Rhodes in what he calls the Global
Object Pattern (https://python-patterns.guide/python/module-globals/),
you can achieve the same result as the singleton pattern without the need for complex instantiation
processes or forcing a class to only have one instance.

As an exercise, you can re-write the implementation of our example using a global object. For
reference, the equivalent code, defining a global object, is provided in the ch03/singleton/
instead _of singleton/example.py file; for its use, check the ch03/singleton/
instead of singleton/use_ example.py file.

The object pool pattern

The object pool pattern is a creational design pattern that allows you to reuse existing objects instead
of creating new ones when they are needed. This pattern is particularly useful when the cost, in terms
of system resources, time, and so on of initializing a new object is high.

Real-world examples

Consider a car rental service. When a customer rents a car, the service doesn’t manufacture a new car
for them. Instead, it provides one from a pool of available cars. Once the customer returns the car, it
goes back into the pool, ready to be used by the next customer.

Another example would be a public swimming pool. Rather than filling the pool with water every
time someone wants to swim, the water is treated and reused for multiple swimmers. This saves both
time and resources.

73

https://python-patterns.guide/python/module-globals/

74

Creational Design Patterns

Use cases for the object pool pattern

The object pool pattern is especially useful in scenarios where resource initialization is costly or time-
consuming. This could be in terms of CPU cycles, memory usage, or even network bandwidth. For
example, in a shooting video game, you might use this pattern to manage bullet objects. Creating a
new bullet every time a gun is fired could be resource-intensive. Instead, you could have a pool of
bullet objects that are reused.

Implementing the object pool pattern

Let’s implement a pool of reusable car objects, for a car rental application, to avoid creating and
destroying them repeatedly.

First, we need to define a Car class, as follows:

class Car:
def init (self, make: str, model: str):
self .make = make
self.model = model
self.in _use = False

Then, we start defining a CarPool class with its initialization, as follows:

class CarPool:
def init (self):
self. available = []
self. in use = []

We need to express what happens when a client acquires a car. For that, we define a method on the
class doing the following: if no car is available, we instantiate one and add it to the list of available cars
in the pool; else, we return an available car object, while doing the following:

o Settingthe in use attribute of the car object to True

o Adding the car object to the list of “in use” cars (stored in the _in use attribute of the
pool object)

We add the code of that method to the class as follows:

def acquire car(self) -> Car:
if len(self. available) == 0:
new car = Car ("BMW", "M3")
self. available.append(new car)
car = self. available.pop ()
self. in use.append (car)

The object pool pattern

car.in use = True
return car

We then add a method that handles things when a client releases a car, as follows:

def release car(self, car: Car) -> None:
car.in use = False
self. in use.remove (car)
self. available.append (car)

Finally, we add some code for testing the result of the implementation, as follows:

if name == " main ":
pool = CarPool ()
car _name = "Car 1"

print (£"Acquire {car name}")
carl = pool.acquire car ()
print (£"{car name} in use: {carl.in use}")

print (£"Now release {car name}")
pool.release car(carl)
print (£"{car name} in use: {carl.in use}")

Here is a summary of what we do in the code (in file ch03 /object pool.py):

1. We define a Car class.

2. We define a CarPool class with the acquire car () and release car () methods,
as shown earlier.

3. We add code for testing the result of the implementation, as shown earlier.
To test the program, run the following command:

python ch03/object pool.py
You should get the following output:

Acquire Car 1

Car 1 in use: True
Now release Car 1
Car 1 in use: False

Well done! This output shows that our object pool pattern implementation works as intended.

75

76

Creational Design Patterns

Summary

In this chapter, we have seen creational design patterns, which are essential for crafting flexible,
maintainable, and modular code. We kicked off the chapter by examining two variations of the factory
pattern, each offering unique advantages for object creation. Next, we navigated through the builder
pattern, which provides a more readable and maintainable way to construct complex objects. The
prototype pattern followed, introducing a method to clone objects efficiently. Finally, we rounded
out the chapter by discussing the singleton and object pool patterns, both of which are geared toward
optimizing resource management and ensuring consistent state across the application.

Now, equipped with these foundational patterns for object creation, we are well prepared for the next
chapter, where we will discover structural design patterns.

4

Structural Design Patterns

In the previous chapter, we covered creational patterns and object-oriented programming patterns
that help us with object-creation procedures. The next category of pattern we want to present is
structural design patterns. A structural design pattern proposes a way of composing objects to provide
new functionality.

In this chapter, were going to cover the following main topics:

o 'The adapter pattern

o The decorator pattern
o 'The bridge pattern

o The facade pattern

o The flyweight pattern
o 'The proxy pattern

At the end of this chapter, you will be equipped with the skills to structure your code efficiently and
elegantly using structural design patterns.

Technical requirements

See the requirements presented in Chapter 1.

The adapter pattern

The adapter pattern is a structural design pattern that helps us make two incompatible interfaces
compatible. What does that really mean? If we have an old component and we want to use it in a new
system, or a new component that we want to use in an old system, the two can rarely communicate
without requiring any code changes. But changing the code is not always possible, either because
we don’t have access to it, or because it is impractical. In such cases, we can write an extra layer that
makes all the required modifications for enabling communication between the two interfaces. This
layer is called an adapter.

78

Structural Design Patterns

In general, if you want to use an interface that expects function_a (), but you only have
function b (), you can use an adapter to convert (adapt) function b () to function a().

Real-world examples

When you are traveling from most European countries to the UK or the USA, or the other way
around, you need to use a plug adapter for charging your laptop. The same kind of adapter is needed
for connecting some devices to your computer: the USB adapter.

In the software category, the zope . interface package (https://pypi.org/project/
zope.interface/), part of the Zope Toolkit (ZTK), provides tools that help define interfaces
and perform interface adaptation. These tools are used in the core of several Python web framework
projects (including Pyramid and Plone).

(1

Note

zope . interface was the solution for working with interfaces in Python, proposed by
the team (https://zope.dev/) behind the Zope application server and the ZTK before
Python introduced built-in mechanisms, with abstract base classes (also called ABCs) first
and protocols later.

Use cases for the adapter pattern

Usually, one of the two incompatible interfaces is either foreign or old/legacy. If the interface is foreign,
it means that we have no access to the source code. If it is old, it is usually impractical to refactor it.

Using an adapter to make things work after they have been implemented is a good approach because it
does not require access to the source code of the foreign interface. It is also often a pragmatic solution
if we have to reuse some legacy code. That being said, be aware that it can introduce side effects that
are hard to debug. So, use it with caution.

Implementing the adapter pattern — adapt a legacy class

Let’s consider an example where we have a legacy payment system and a new payment gateway. The
adapter pattern can make them work together without changing the existing code, as we are going to see.

The legacy payment system is implemented using a class, with amake payment () method doing
the core of the payment job, as follows:

class OldPaymentSystem:
def init (self, currency):
self.currency = currency

def make payment (self, amount) :
print (

https://pypi.org/project/zope.interface/
https://pypi.org/project/zope.interface/
https://zope.dev/

The adapter pattern

£" [OLD] Pay {amount} {self.currency}"

The new payment system is implemented using the following class, providing an execute
payment () method:

class NewPaymentGateway:
def init (self, currency):
self.currency = currency

def execute payment (self, amount) :
print (
f"Execute payment of {amount} {self.currency}"

Now, we are going to add a class that will provide the adaptation. Our adapter class has an attribute
system to store the object representing the payment system we need to adapt, which we call the adaptee.
It also has a make payment () method, where we call the execute payment () method on
the adaptee object to get the payment done. The code is as follows:

class PaymentAdapter:
def init_ (self, system):
self.system = system

def make payment (self, amount) :
self.system.execute payment (amount)

This is how the PaymentAdapter class adapts the interface of NewPaymentGateway to match
that of 0O1dPaymentSystem.

Let’s see the result of this adaptation by adding a main () function with testing code, as follows:

def main() :
old system = OldPaymentSystem("euro")
print (old system)
new_system = NewPaymentGateway ("euro")
print (new_system)

adapter = PaymentAdapter (new system)
adapter.make payment (100)

Let’s recapitulate the complete code (see the ch04 /adapter/adapt legacy.py file) of
the implementation:

1. We have some code for the legacy payment system, represented by the O1dPaymentSystem
class, providing a make payment () method.

79

80

Structural Design Patterns

2. We introduce the new payment system, with the NewPaymentGateway class, providing an
execute payment () method.

3. We add a class for the adapter, PaymentAdapter, which has an attribute to store the
payment system object and a make_payment () method; in that method, we call the
execute_ payment () method on the payment system object (via self.system.
execute payment (amount)).

4. We add code for testing our interface adaptation design (and call it within the usual i1
name == " main_ " block).

Executing the code, using python cho04/adapter/adapt legacy.py, should give the
following output:

< main .OldPaymentSystem object at 0x10ee58£d0>
< main .NewPaymentGateway object at 0x10ee58£70>
Execute payment of 100 euro

You now get the idea. This adaptation technique allows us to use the new payment gateway with
existing code that expects the old interface.

Implementing the adapter pattern - adapt several classes into a
unified interface

Let’s look at another application to illustrate adaptation: a club’s activities. Our club has two main activities:

o Hire talented artists to perform in the club

« Organize performances and events to entertain its clients

At the core, we have a C1ub class that represents the club where hired artists perform some evenings.
The organize performance () method is the main action that the club can perform. The code
is as follows:

class Club:
def init (self, name):
self.name = name

def str (self):

return f'"the club {self.name}"

def organize event (self) :
return "hires an artist to perform"

Most of the time, our club hires a DJ to perform, but our application should make it possible to organize
a diversity of performances: by a musician or music band, by a dancer, a one-man or one-woman
show, and so on.

The adapter pattern

Via our research to try and reuse existing code, we find an open source contributed library that brings
us two interesting classes: Musician and Dancer. In the Musician class, the main action is
performed by the play () method. In the Dancer class, it is performed by the dance () method.

In our example, to indicate that these two classes are external, we place them in a separate module

(in the ch04 /adapter/external . py file). The code includes two classes, Musician and
Dancer, as follows:

class Musician:
def init (self, name):
self.name = name

def str (self):

return f"the musician {self.name}"

def play(self):
return "plays music"

class Dancer:
def init (self, name):
self.name = name

def str (self):

return f"the dancer {self.name}"

def dance(self) :
return "does a dance performance"

The code we are writing, to use these two classes from the external library, only knows how to call the
organize performance () method (on the Club class); it has no idea about the play () or
dance () methods (on the respective classes).

How can we make the code work without changing the Musician and Dancer classes?

Adapters to the rescue! We create a generic Adapter class that allows us to adapt a number of objects
with different interfaces into one unified interface. The obj argument of the _init () method
is the object that we want to adapt, and adapted_methods is a dictionary containing key/value
pairs matching the method the client calls and the method that should be called. The code for that
class is as follows:

class Adapter:
def _ init_(self, obj, adapted methods) :
self.obj = obj

81

82 Structural Design Patterns

self. dict_ .update(adapted methods)

def str (self):
return str(self.obj)

When dealing with the instances of the different classes, we have two cases:

o The compatible object that belongs to the C1ub class needs no adaptation. We can treat it as is.

o The incompatible objects need to be adapted first, using the Adapter class.

The result is that the client code can continue using the known organize performance ()
method on all objects without the need to be aware of any interface differences. Consider the following
main () function code to prove that the design works as expected:

def main() :
objects = [
Club ("Jazz Cafe"),
Musician ("Roy Ayers"),
Dancer ("Shane Sparks"),

for obj in objects:

if hasattr(obj, "play") or hasattr(
obj, "dance"

if hasattr(obj, "play"):
adapted methods = dict(
organize event=obj.play
)
elif hasattr (obj, "dance"):
adapted methods = dict(

organize event=obj.dance

obj = Adapter (obj, adapted methods)
print (£"{obj} {obj.organize event () }")

Let’s recapitulate the complete code of our adapter pattern implementation (in the ch04 /adapter/
adapt _to unified interface.py file):

1. Weimport the Musician and Dancer classes from the external module.

2. We have the C1lub class.

The decorator pattern

3. We define the Adapter class.

4. Weaddthemain () function, which we call within the usual 1if = name == "
main__ " block.

Here is the output when executing the python cho04/adapter/adapt to unified
interface.py command:

the club Jazz Cafe hires an artist to perform
the musician Roy Ayers plays music
the dancer Shane Sparks does a dance performance

As you can see, we managed to make the Musician and Dancer classes compatible with the interface
expected by the client code without changing the source code of these external classes.

The decorator pattern

A second interesting structural pattern to learn about is the decorator pattern, which allows a
programmer to add responsibilities to an object dynamically, and in a transparent manner (without
affecting other objects).

There is another reason why this pattern is interesting to us, as you will see in a minute.

As Python developers, we can write decorators in a Pythonic way (meaning using the language’s
features), thanks to the built-in decorator feature.

(N
Note
A Python decorator is a callable (function, method, or class) that gets a func_in function object

as input and returns another function object, func_out. It is a commonly used technique
for extending the behavior of a function, method, or class.

For more details on Python’s decorator feature, see the official documentation: https://
docs.python.org/3/reference/compound stmts.html#function
N\ J

But this feature should not be completely new to you. We have already encountered commonly used
decorators in previous chapters (@abstractmethod, @property) and there are several other
useful built-in decorators in Python. Now, we are going to learn how to implement and use our
own decorators.

Note that there is no one-to-one relationship between the decorator pattern and Python’s decorator
feature. Python decorators can actually do much more than the decorator pattern. One of the things
they can be used for is to implement the decorator pattern.

83

https://docs.python.org/3/reference/compound_stmts.html#function
https://docs.python.org/3/reference/compound_stmts.html#function

84

Structural Design Patterns

Real-world examples

The decorator pattern is generally used for extending the functionality of an object. In everyday life,
examples of such extensions are adding a silencer to a gun, using different camera lenses, and so on.

In web frameworks such as Django, which uses decorators a lot, we have decorators that can be used
for the following:

Restricting access to views (or HTTP-request-handling functions) based on the request
Controlling the caching behavior on specific views

Controlling compression on a per-view basis

Controlling caching based on specific HTTP request headers

Registering a function as an event subscriber

Protecting a function with a specific permission

Use cases for the decorator pattern

The decorator pattern shines when used for implementing cross-cutting concerns, such as the following:

Data validation
Caching
Logging
Monitoring
Debugging
Business rules

Encryption

In general, all parts of an application that are generic and can be applied to many other parts of it are
considered to be cross-cutting concerns.

Another popular example of using the decorator pattern is in graphical user interface (GUI) toolKkits.
In a GUI toolkit, we want to be able to add features such as borders, shadows, colors, and scrolling
to individual components/widgets.

The decorator pattern

Implementing the decorator pattern

Python decorators are generic and very powerful. In this section, we will see how we can implement
a memoization decorator. All recursive functions can benefit from memoization, so let’s try a
number sum () function that returns the sum of the first n numbers. Note that this function is
already available in the math module as £sum (), but let’s pretend it is not.

First, let’s look at the naive implementation (in the ch04 /decorator/number sum naive.
py file):

def number sum(n) :
if n ==
return 0
else:
return n + number sum(n - 1)

if name == " main ":

from timeit import Timer

t = Timer (

"number sum(50)",

"from main import number sum",
)

print ("Time: ", t.timeit())

A sample execution of this example shows how slow this implementation is. On my computer, it takes
more than 7 seconds to calculate the sum of the first 50 numbers. We get the following output when
executing the python ch04/decorator/number sum naive.py command:

Time: 7.286800935980864

Let’s see whether using memoization can help us improve the performance number. In the following
code, we use dict for caching the already computed sums. We also change the parameter passed
to the number sum () function. We want to calculate the sum of the first 300 numbers instead of
only the first 50.

Here is the new version of the code (in the ch04 /decorator/number sum.py file),
using memoization:

sum_cache = {0: 0}

def number sum(n) :
if n in sum_cache:
return sum_cache [n]

85

Structural Design Patterns

res = n + number sum(n - 1)
Add the value to the cache
sum_cache [n] = res

return res

if name == " main ":

from timeit import Timer

t = Timer (
"number sum(300)",
"from main import number sum",

)

print ("Time: ", t.timeit())

Executing the memoization-based code shows that performance improves dramatically, and is
acceptable even for computing large values.

A sample execution, using python ch04/decorator/number sum.py, is as follows:

Time: 0.1288748119986849

But there are a few problems with this approach. First, while the performance is not an issue any
longer, the code is not as clean as it is when not using memoization. And what happens if we decide
to extend the code with more math functions and turn it into a module? We can think of several
functions that would be useful for our module, for problems such as Pascal’s triangle or the Fibonacci
numbers suite algorithm.

So, if we wanted a function in the same module as number sum () for the Fibonacci numbers suite,
using the same memoization technique, we would add code as follows (see the version in the ch04 /
decorator/number sum and fibonacci.py file):

fib cache = {0: 0, 1: 1}

def fibonacci (n):
if n in fib cache:
return fib cache [n]

res = fibonacci(n - 1) + fibonacci(n - 2)
fib_cache[n] = res
return res

Do you notice the problem? We ended up with a new dictionary called £ib_cache that acts as our
cache for the fibonacci () function, and a function that is more complex than it would be without
using memoization. Our module is becoming unnecessarily complex.

The decorator pattern

Is it possible to write these functions while keeping them as simple as the naive versions, but achieving
a performance similar to the performance of the functions that use memoization?

Fortunately, it is, and the solution is to use the decorator pattern.

First, we create a memoize () decorator as shown in the following example. Our decorator accepts the
func function, which needs to be memoized, as an input. It uses dict named cache as the cached
data container. The functools.wraps () function is used for convenience when creating decorators.
It is not mandatory but it’s a good practice to use it, since it makes sure that the documentation and
the signature of the function that is decorated are preserved. The *args argument list is required
in this case because the functions that we want to decorate accept input arguments (such as the n
argument for our two functions):

import functools

def memoize (func) :
cache = {}

@functools.wraps (func)
def memoizer (*args) :
if args not in cache:
cache [args] = func(*args)
return cache [args]

return memoizer

Now we can use our memoize () decorator with the naive version of our functions. This has the
benefit of readable code without performance impact. We apply a decorator using what is known as
decoration (or a decoration line). A decoration uses the @name syntax, where name is the name of
the decorator that we want to use. It is nothing more than syntactic sugar for simplifying the usage
of decorators. We can even bypass this syntax and execute our decorator manually, but that is left as
an exercise for you.

So, the memoize () decorator can be used with our recursive functions as follows:

@memoize
def number sum(n) :
if n ==
return 0
else:
return n + number sum(n - 1)

@memoize

87

88

Structural Design Patterns

def fibonacci (n) :
if n in (0, 1):

return n

else:

In the last part of the code, via the main () function, we show how to use the decorated functions
and measure their performance. The to_execute variable is used to hold a list of tuples containing
the reference to each function and the corresponding timeit . Timer () call (to execute it while
measuring the time spent), thus avoiding code repetition. Note how the name and doc
method attributes show the proper function names and documentation values, respectively. Try
removing the @functools.wraps (func) decoration from memoize () and see whether this

return fibonacci(n - 1) + fibonacci(n - 2)

is still the case.

Here is the last part of the code:

def main() :

from timeit import Timer

to execute = [

for

(
number sum,
Timer (
"number sum(300)",

"from main import number sum",

)

fibonacci,
Timer (
"fibonacci (100) ",

"from main import fibonacci",

) I

item in to execute:
func = item[0]
print (

f'Function "{func. name }":

)

t = item[1]

print (£"Time: {t.timeit()}")
print ()

{func. doc_ }'

The bridge pattern

Let’s recapitulate how we write the complete code of our math module (the ch04 /decorator/
decorate math.py file):

1. After the import of Python’s functools module that we will be using, we define the
memoize () decorator function.

2. Then, we define the number sum() function, decorated using memoize ().

3. Next, we define the fibonacci () function, decorated the same way.

4. Finally, we add the main () function, as shown earlier, and the usual trick to call it.

Here is a sample output when executing the python ch04/decorator/decorate math.
py command:

Function "number sum": Returns the sum of the first n numbers
Time: 0.2148694

Function "fibonacci": Returns the suite of Fibonacci numbers
Time: 0.202763251

Note

The execution times might differ in your case. Also, regardless of the time spent, we can see
that the decorator-based implementation is a win because the code is more maintainable.

Nice! We ended up with readable code and acceptable performance. Now, you might argue that this
is not the decorator pattern, since we don’t apply it at runtime. The truth is that a decorated function
cannot be undecorated, but you can still decide at runtime whether the decorator will be executed
or not. That’s an interesting exercise left for you. Hint for the exercise: use a decorator that acts as a
wrapper, which decides whether or not the real decorator is executed based on some condition.

The bridge pattern

A third structural pattern to look at is the bridge pattern. We can actually compare the bridge and
the adapter patterns, looking at the way both work. While the adapter pattern is used later to make
unrelated classes work together, as we saw in the implementation example we discussed earlier in the
section on The adapter pattern, the bridge pattern is designed up-front to decouple an implementation
from its abstraction, as we are going to see.

89

920

Structural Design Patterns

Real-world examples

In our modern, everyday lives, an example of the bridge pattern I can think of is from the digital
economy: information products. Nowadays, the information product or infoproduct is part of the
resources one can find online for training, self-improvement, or one’s ideas and business development.
The purpose of an information product that you find on certain marketplaces, or the website of the
provider, is to deliver information on a given topic in such a way that it is easy to access and consume.
The provided material can be a PDF document or ebook, an ebook series, a video, a video series, an
online course, a subscription-based newsletter, or a combination of all those formats.

In the software realm, we can find two examples:

o Device drivers: Developers of an OS define the interface for device (such as printers) vendors
to implement it

« Payment gateways: Different payment gateways can have different implementations, but the
checkout process remains consistent

Use cases for the bridge pattern

Using the bridge pattern is a good idea when you want to share an implementation among multiple
objects. Basically, instead of implementing several specialized classes, and defining all that is required
within each class, you can define the following special components:

o An abstraction that applies to all the classes

o A separate interface for the different objects involved

An implementation example we are about to see will illustrate this approach.

Implementing the bridge pattern

Let’s assume we are building an application where the user is going to manage and deliver content
after fetching it from diverse sources, which could be the following:

o A web page (based on its URL)
e A resource accessed on an FTP server
A file on the local filesystem

o A database server

So, here is the idea: instead of implementing several content classes, each holding the methods
responsible for getting the content pieces, assembling them, and showing them inside the application,
we can define an abstraction for the Resource Content and a separate interface for the objects that are
responsible for fetching the content. Let’s try it!

The bridge pattern

We begin with the interface for the implementation classes that help fetch content - that is, the
ResourceContentFetcher class. This concept is called the Implementor. Let’s use Python’s
protocols feature, as follows:

class ResourceContentFetcher (Protocol) :

def fetch(self, path: str) -> str:

Then, we define the class for our Resource Content abstraction, called ResourceContent. The first
trick we use here is that, via an attribute (_imp) on the ResourceContent class, we maintain a
reference to the object that represents the Implementor (fulfilling the ResourceContentFetcher
interface). The code is as follows:

class ResourceContent:

def _ init_ (self, imp: ResourceContentFetcher) :
self. imp = imp

def get content (self, path):
return self. imp.fetch(path)

Now we can add an implementation class to fetch content from a web page or resource:

class URLFetcher:

def fetch(self, path):
res = ""
req = urllib.request.Request (path)
with urllib.request.urlopen (

reqg
) as response:
if response.code == 200:
res = response.read()

return res

We can also add an implementation class to fetch content from a file on the local filesystem:

class LocalFileFetcher:

def fetch(self, path):
with open(path) as f:
res = f.read()
return res

91

92 Structural Design Patterns

Based on that, a main function with some testing code to show content using both content fetchers
could look like the following:

def main () :

url fetcher = URLFetcher ()
rc = ResourceContent (url fetcher)
res = rc.get_ content ("http://python.org")
print (
f'"Fetched content with {len(res)} characters"

localfs fetcher = LocalFileFetcher ()
rc = ResourceContent (localfs fetcher)
pathname = os.path.abspath(file)
dir path = os.path.split (pathname) [0]
path = os.path.join(dir path, "file.txt")
res = rc.get content (path)
print (
f"Fetched content with {len(res)} characters"

Let’s see a summary of the complete code of our example (the ch04 /bridge/bridge. py file):

L.

5.

We import the modules we need for the program (os, urllib.request, and typing.
Protocol).

We define the ResourceContentFetcher interface, using protocols, for the Implementor.
We define the ResourceContent class for the interface of the abstraction.

We define two implementation classes:

* URLFetcher for fetching content from a URL

* LocalFileFetcher for fetching content from the local filesystem

Finally, we add themain () function, as shown earlier, and the usual trick to call it.

Here is a sample output when executing the python ch04/bridge/bridge.py command:

Fetched content with 51265 characters
Fetched content with 1327 characters

This is a basic illustration of how using the bridge pattern in your design, you can extract content from
different sources and integrate the results in the same data manipulation system or user interface.

The facade pattern

The facade pattern

As systems evolve, they can get very complex. It is not unusual to end up with a very large (and
sometimes confusing) collection of classes and interactions. In many cases, we don’t want to expose
this complexity to the client. This is where our next structural pattern comes to the rescue: facade.

The facade design pattern helps us hide the internal complexity of our systems and expose only what
is necessary to the client through a simplified interface. In essence, facade is an abstraction layer
implemented over an existing complex system.

Let’s take the example of the computer to illustrate things. A computer is a complex machine that
depends on several parts to be fully functional. To keep things simple, the word “computer;” in this
case, refers to an IBM derivative that uses a von Neumann architecture. Booting a computer is a
particularly complex procedure. The CPU, main memory, and hard disk need to be up and running,
the boot loader must be loaded from the hard disk to the main memory, the CPU must boot the
operating system kernel, and so forth. Instead of exposing all this complexity to the client, we create a
facade that encapsulates the whole procedure, making sure that all steps are executed in the right order.

In terms of object design and programming, we should have several classes, but only the Computer
class needs to be exposed to the client code. The client will only have to execute the start () method
of the Computer class, for example, and all the other complex parts are taken care of by the facade
Computer class.

Real-world examples

The facade pattern is quite common in life. When you call a bank or a company, you are usually first
connected to the customer service department. The customer service employee acts as a facade between
you and the actual department (billing, technical support, general assistance, and so on), where an
employee will help you with your specific problem.

As another example, a key used to turn on a car or motorcycle can also be considered a facade. It is
a simple way of activating a system that is very complex internally. And, of course, the same is true
for other complex electronic devices that we can activate with a single button, such as computers.

In software, the django-oscar-datacash module is a Django third-party module that integrates
with the DataCash payment gateway. The module has a gateway class that provides fine-grained
access to the various DataCash APIs. On top of that, it also offers a facade class that provides a less
granular API (for those who don’t want to mess with the details), and the ability to save transactions
for auditing purposes.

The Requests library is another great example of the facade pattern. It simplifies sending HT TP
requests and handling responses, abstracting the complexities of the HT'TP protocol. Developers
can easily make HTTP requests without dealing with the intricacies of sockets or the underlying
HTTP methods.

93

94

Structural Design Patterns

Use cases for the facade pattern

The most usual reason to use the facade pattern is to provide a single, simple entry point to a complex
system. By introducing facade, the client code can use a system by simply calling a single method/
function. At the same time, the internal system does not lose any functionality, it just encapsulates it.

Not exposing the internal functionality of a system to the client code gives us an extra benefit: we
can introduce changes to the system, but the client code remains unaware of and unaffected by the
changes. No modifications are required to the client code.

Facade is also useful if you have more than one layer in your system. You can introduce one facade
entry point per layer and let all layers communicate with each other through their facades. That
promotes loose coupling and keeps the layers as independent as possible.

Implementing the facade pattern

Assume that we want to create an operating system using a multi-server approach, similar to how it
is done in MINIX 3 or GNU Hurd. A multi-server operating system has a minimal kernel, called the
microkernel, which runs in privileged mode. All the other services of the system are following a server
architecture (driver server, process server, file server, and so forth). Each server belongs to a different
memory address space and runs on top of the microkernel in user mode. The pros of this approach
are that the operating system can become more fault-tolerant, reliable, and secure. For example,
since all drivers are running in user mode on a driver server, a bug in a driver cannot crash the whole
system, nor can it affect the other servers. The cons of this approach are the performance overhead
and the complexity of system programming, because the communication between a server and the
microkernel, as well as between the independent servers, happens using message passing. Message
passing is more complex than the shared memory model used in monolithic kernels such as Linux.

We begin with a Server interface. Also, an Enum parameter describes the different possible states of
a server. We use the ABC technique to forbid direct instantiation of the Server interface and make
the fundamental boot () and kill () methods mandatory, assuming that different actions are
needed to be taken for booting, killing, and restarting each server. Here is the code for these elements,
the first important bits to support our implementation:

State = Enum/(

"State",

"NEW RUNNING SLEEPING RESTART ZOMBIE",
)
#
class Server (ABC) :

@abstractmethod

def init (self):

pass

The facade pattern

def str (self):

return self.name

@abstractmethod
def boot (self) :
pass

@abstractmethod
def kill(self, restart=True):
pass

A modular operating system can have a great number of interesting servers: a file server, a process
server, an authentication server, a network server, a graphical/window server, and so forth. The
following example includes two stub servers: FileServer and ProcessServer. Apart from the
boot () andkill () methods all servers have, FileServer hasacreate file () method for
creating files, and ProcessServer hasa create process () method for creating processes.

The FileServer class is as follows:

class FileServer (Server) :
def init (self):
self .name = "FileServer"
self.state = State.NEW

def boot (self) :
print (f"booting the {self}")
self.state = State.RUNNING

def kill (self, restart=True) :
print (£"Killing {self}")
self.state = (
State.RESTART if restart else State.ZOMBIE

def create file(self, user, name, perms):
msg = (
fr'trying to create file '{name}' "
f'"for user '{user}' "
fr'with permissions {perms}"
)
print (msg)

95

96 Structural Design Patterns

The ProcessServer class is as follows:

class ProcessServer (Server) :
def init (self):
self.name = "ProcessServer"
self.state = State.NEW

def boot (self) :
print (f"booting the {self}")
self.state = State.RUNNING

def kill (self, restart=True):
print (£"Killing {self}")
self.state = (
State.RESTART if restart else State.ZOMBIE

def create process(self, user, name) :
msg = (
f'"trying to create process '{name}' "
f'"for user '{user}'"
)

print (msg)

The OperatingSystemclassisafacade.Inits _init (), all the necessary server instances
are created. The start () method, used by the client code, is the entry point to the system. More
wrapper methods can be added, if necessary, as access points to the services of the servers, such as
the wrappers, create file () and create process (). From the clients point of view, all
those services are provided by the OperatingSystem class. The client should not be confused by
unnecessary details such as the existence of servers and the responsibility of each server.

The code for the OperatingSystem class is as follows:

class OperatingSystem:
mmnn The Facade nmn

def init (self):
self.fs = FileServer()

self.ps = ProcessServer ()

def start (self) :
[i.boot () for i in (self.fs, self.ps)]

def create file(self, user, name, perms):

The facade pattern

return self.fs.create file(user, name, perms)

def create process(self, user, name):
return self.ps.create process(user, name)

As you are going to see in a minute, when we present a summary of the example, there are many
dummy classes and servers. They are there to give you an idea about the required abstractions (User,
Process, File, and so forth) and servers (WindowServer, NetworkServer, and so forth)
for making the system functional.

Finally, we add our main code for testing the design, as follows:

def main() :
os = OperatingSystem()
os.start ()
os.create file("foo", "hello.txt", "-rw-r-r")
os.create process ("bar", "ls /tmp")

We are going to recapitulate the details of our implementation example; the full code is in the ch04 /
facade.py file:

1. We start with the imports we need.

2. We define the State constant using Enum, as shown earlier.

3. We then add the User, Process, and File classes, which do nothing in this minimal but
functional example.

4. We define the abstract Server class, as shown earlier.

5. We then define the FileServer class and the ProcessServer class, which are both
subclasses of Server.

6. We add two other dummy classes, WindowServer and NetworkServer.
7. 'Then we define our facade class, OperatingSystem, as shown earlier.
8. Finally, we add the main part of the code, where we use the facade we have defined.

As you can see, executing the python ch04/facade.py command shows the messages produced
by our two stub servers:

booting the FileServer
booting the ProcessServer

trying to create file 'hello.txt' for user 'foo' with permissions -rw-
r-r

trying to create process 'ls /tmp' for user 'bar’

97

98

Structural Design Patterns

The facade OperatingSystem class does a good job. The client code can create files and processes
without needing to know internal details about the operating system, such as the existence of multiple
servers. To be precise, the client code can call the methods for creating files and processes, but they are
currently dummy. As an interesting exercise, you can implement one of the two methods, or even both.

The flyweight pattern

Whenever we create a new object, extra memory needs to be allocated. Although virtual memory
provides us, theoretically, with unlimited memory, the reality is different. If all the physical memory
of a system gets exhausted, it will start swapping pages with the secondary storage, usually a hard disk
drive (HDD), which, in most cases, is unacceptable due to the performance differences between the
main memory and HDD. Solid-state drives (SSDs) generally have better performance than HDDs, but
not everybody is expected to use SSDs. So, SSDs are not going to totally replace HDDs anytime soon.

Apart from memory usage, performance is also a consideration. Graphics software, including computer
games, should be able to render 3-D information (for example, a forest with thousands of trees, a
village full of soldiers, or an urban area with a lot of cars) extremely quickly. If each object in a 3-D
terrain is created individually and no data sharing is used, the performance will be prohibitive.

As software engineers, we should solve software problems by writing better software, instead of forcing
the customer to buy extra or better hardware. The flyweight design pattern is a technique used to
minimize memory usage and improve performance by introducing data sharing between similar
objects. A flyweight is a shared object that contains state-independent, immutable (also known as
intrinsic) data. The state-dependent, mutable (also known as extrinsic) data should not be part of
flyweight because this is information that cannot be shared, since it differs per object. If flyweight
needs extrinsic data, it should be provided explicitly by the client code.

An example might help to clarify how the flyweight pattern can be used practically. Let’s assume
that we are creating a performance-critical game - for example, a first-person shooter (FPS). In
FPS games, the players (soldiers) share some states, such as representation and behavior. In Counter-
Strike, for instance, all soldiers on the same team (counter-terrorists versus terrorists) look the same
(representation). In the same game, all soldiers (on both teams) have some common actions, such as
jump, duck, and so forth (behavior). This means that we can create a flyweight that will contain all of
the common data. Of course, the soldiers also have a lot of data that is different per soldier and will
not be a part of the flyweight, such as weapons, health, location, and so on.

Real-world examples

Flyweight is an optimization design pattern; therefore, it is not easy to find a good non-computing
example of it. We can think of flyweight as caching in real life. For example, many bookstores have
dedicated shelves with the newest and most popular publications. This is a cache. First, you can take
alook at the dedicated shelves for the book you are looking for, and if you cannot find it, you can ask
the bookseller to assist you.

The flyweight pattern

The Exaile music player uses flyweight to reuse objects (in this case, music tracks) that are identified
by the same URL. There’s no point in creating a new object if it has the same URL as an existing object,
so the same object is reused to save resources.

Use cases for the flyweight pattern

Flyweight is all about improving performance and memory usage. All embedded systems (phones,
tablets, games consoles, microcontrollers, and so forth) and performance-critical applications (games,
3-D graphics processing, real-time systems, and so forth) can benefit from it.

The Gang of Four (GoF) book lists the following requirements that need to be satisfied to effectively
use the flyweight pattern:

o 'The application needs to use a large number of objects.

« There are so many objects that it’s too expensive to store/render them. Once the mutable state
is removed (because if it is required, it should be passed explicitly to flyweight by the client
code), many groups of distinct objects can be replaced by relatively few shared objects.

o Object identity is not important for the application. We cannot rely on object identity because
object sharing causes identity comparisons to fail (objects that appear different to the client
code end up having the same identity).

Implementing the flyweight pattern

Let’s see how we can implement an example featuring cars in an area. We will create a small car park
to illustrate the idea, making sure that the whole output is readable in a single terminal page. However,
no matter how large you make the car park, the memory allocation stays the same.

(7
Memoization versus the flyweight pattern

Memoization is an optimization technique that uses a cache to avoid recomputing results that
were already computed in an earlier execution step. Memoization does not focus on a specific
programming paradigm such as object-oriented programming (OOP). In Python, memoization
can be applied to both class methods and simple functions.

Flyweight is an OOP-specific optimization design pattern that focuses on sharing object data.
. J

Let’s get started with the code for this example.
First, we need an Enum parameter that describes the three different types of car that are in the car park:

CarType = Enum(
"CarType", "SUBCOMPACT COMPACT SUV"

929

100

Structural Design Patterns

Then, we will define the class at the core of our implementation: Car. The pool variable is the object
pool (in other words, our cache). Notice that pool is a class attribute (a variable shared by all instances).

Usingthe new () special method, which is called before _init (), we are converting the
Car class to a metaclass that supports self-references. This means that c1s references the Car class.
When the client code creates an instance of Car, they pass the type of the car as car type. The type
of the car is used to check whether a car of the same type has already been created. If that’s the case, the
previously created object is returned; otherwise, the new car type is added to the pool and returned:

class Car:
pool = dict ()

def new (cls, car type):
obj = cls.pool.get (car_ type, None)
if not obj:
obj = object. new (cls)
cls.pool [car type] = obj
obj.car type = car type
return obj

The render () method is what will be used to render a car on the screen. Notice how all the mutable
information not known by flyweight needs to be explicitly passed by the client code. In this case,
random color and the coordinates of a location (of form x, y) are used for each car.

Also, note that to make render () more useful, it is necessary to ensure that no cars are rendered
on top of each other. Consider this as an exercise. If you want to make rendering more fun, you can
use a graphics toolkit such as Tkinter, Pygame, or Kivy.

The render () method is defined as follows:

def render(self, color, x, y):
type = self.car_ type
msg = f"render a {color} {type.name} car at ({x}, {y})"
print (msg)

Themain () function shows how we can use the flyweight pattern. The color of a car is a random value
from a predefined list of colors. The coordinates use random values between 1 and 100. Although 18
cars are rendered, memory is allocated only for 3. The last line of the output proves that when using
flyweight, we cannot rely on object identity. The 1d () function returns the memory address of an object.
This is not the default behavior in Python because, by default, 1d () returns a unique ID (actually the
memory address of an object as an integer) for each object. In our case, even if two objects appear to
be different, they actually have the same identity if they belong to the same flyweight family (in this
case, the family is defined by car type). Of course, different identity comparisons can still be used
for objects of different families, but that is possible only if the client knows the implementation details.

The flyweight pattern

Our example main () function’s code is as follows:

def main() :

rnd

= random.Random ()

colors = [

]

min_ |

car_

for _

for

for _

"white",
"black",
"silver",
"gray",
"red",
"blue",
"brown",
"beige",
"vellow",

"green",

point, max point = 0, 100
counter = 0

in range(10) :

cl = Car (CarType.SUBCOMPACT)
cl.render (

random.choice (colors) ,

rnd.randint (min point, max point),
rnd.randint (min_point, max point),

car_counter += 1

in range (3) :

c2 = Car (CarType.COMPACT)
c2.render (

random.choice (colors),

rnd.randint (min point, max point),

rnd.randint (min point, max point),

)

car_counter += 1

in range (5) :

c3 = Car (CarType.SUV)
c3.render (

random.choice (colors) ,

rnd.randint (min point, max point),

rnd.randint (min point, max point),

101

102

Structural Design Patterns

car_ counter += 1

print (f"cars rendered: {car counter}")
print (
f'cars actually created: {len(Car.pool) }"

c4 = Car (CarType.SUBCOMPACT)
c5 = Car (CarType.SUBCOMPACT)
c6 = Car (CarType.SUV)

print (

fr{id(c4)} == {id(c5)}? {id(c4) == id(c5)}"
)
print (

fr{id(c5)} == {id(c6)}? {id(c5) == id(c6)}"

Here is the recapitulation of the full code listing (the ch04 / f1yweight . py file) to show you how
the flyweight pattern is implemented and used:

1.

N e

We need a couple of imports: random and Enum (from the enum module).

We define Enum for the types of cars.

Then we have the Car class, with its pool attribute and the new () and render () methods.
In the first part of the main function, we define some variables and render a set of subcompact cars.
The second part of the main function.

The third part of the main function.

Finally, we add the fourth part of the main function.

The execution of the python cho04/flyweight.py command shows the type, random color,
and coordinates of the rendered objects, as well as the identity comparison results between flyweight
objects of the same/different families:

render
render
render
render

render

render
render
render
render

gray SUBCOMPACT car at (25, 79)
black SUBCOMPACT car at (31, 99)
brown SUBCOMPACT car at (16, 74)
green SUBCOMPACT car at (10, 1)
gray SUBCOMPACT car at (55, 38)

brown SUBCOMPACT car at (17, 78)
gray SUBCOMPACT car at (14, 21)
gray SUBCOMPACT car at (7, 28)
gray SUBCOMPACT car at (22, 50)

a
a
a
a
a
render a red SUBCOMPACT car at (30, 45)
a
a
a
a

The proxy pattern

brown COMPACT car at (75, 26)
red COMPACT car at (22, 61)
render white COMPACT car at (67, 87)

render a
a
a

render a beige SUV car at (23, 93)
a
a
a

render

render white SUV car at (37, 100)
red SUV car at (33, 98)
black SUV car at (77, 22)

render a green SUV car at (16, 51)

render
render

cars rendered: 18

cars actually created: 3
4493672400 == 4493672400? True
4493672400 == 44934574887 False

Do not expect to see the same output since the colors and coordinates are random, and the object
identities depend on the memory map.

The proxy pattern

The proxy design pattern gets its name from the proxy (also known as surrogate) object used to
perform an important action before accessing the actual object. There are four well-known types of
proxy. They are as follows:

1. A virtual proxy, which uses lazy initialization to defer the creation of a computationally
expensive object until the moment it is actually needed.
2. A protection/protective proxy, which controls access to a sensitive object.

3. A remote proxy, which acts as the local representation of an object that really exists in a different
address space (for example, a network server).

4. A smart (reference) proxy, which performs extra actions when an object is accessed. Examples
of such actions are reference counting and thread-safety checks.

Real-world examples

Chip cards offer a good example of how a protective proxy is used in real life. The debit/credit card
contains a chip that first needs to be read by the ATM or card reader. After the chip is verified, a
password (PIN) is required to complete the transaction. This means that you cannot make any
transactions without physically presenting the card and knowing the PIN.

A bank check that is used instead of cash to make purchases and deals is an example of a remote proxy.
The check gives access to a bank account.

103

104

Structural Design Patterns

In software, the weakref module of Python contains a proxy () method that accepts an input
object and returns a smart proxy to it. Weak references are the recommended way to add reference-
counting support to an object.

Use cases for the proxy pattern

Since there are at least four common proxy types, the proxy design pattern has many use cases.

This pattern is used when creating a distributed system using either a private network or the cloud. In
a distributed system, some objects exist in the local memory and some objects exist in the memory
of remote computers. If we don’t want the client code to be aware of such differences, we can create a
remote proxy that hides/encapsulates them, making the distributed nature of the application transparent.

The proxy pattern is also handy when our application is suffering from performance issues due to the
early creation of expensive objects. Introducing lazy initialization using a virtual proxy to create the
objects only when they are required can give us significant performance improvements.

As a third case, this pattern is used to check whether a user has sufficient privileges to access a piece
of information. If our application handles sensitive information (for example, medical data), we want
to ensure that the user trying to access/modify it can do so. A protection/protective proxy can handle
all security-related actions.

This pattern is used when our application (or library, toolkit, framework, and so forth) uses multiple
threads and we want to move the burden of thread safety from the client code to the application. In
this case, we can create a smart proxy to hide the thread-safety complexities from the client.

An object-relational mapping (ORM) API is also an example of how to use a remote proxy. Many
popular web frameworks (Django, Flask, FastAPI...) use an ORM to provide OOP-like access to a
relational database. An ORM acts as a proxy to a relational database that can be located anywhere,
either at a local or remote server.

Implementing the proxy pattern — a virtual proxy

There are many ways to create a virtual proxy in Python, but I always like focusing on the idiomatic/
Pythonic implementations. The code shown here is based on the great answer by Cyclone, a user
of the stackoverflow. comsite, to the question about "Python memoising/deferred lookup
property decorator.”

Note
In this section, the terms property, variable, and attribute are used interchangeably.

http://stackoverflow.com

The proxy pattern

First, we create a LazyProperty class that can be used as a decorator. When it decorates a property,
LazyProperty loads the property lazily (on the first use) instead of instantly. The _init ()

method creates two variables that are used as aliases to the method that initializes a property: method
is an alias to the actual method, and method name is an alias to the method’s name. To get a better
understanding of how the two aliases are used, print their value to the output (uncomment the two
commented lines in that part of the code):

class LazyProperty:
def init (self, method) :
self.method = method
self .method name = method._ name
print (f"function overriden: {self.method}")
print (£"function's name: {self.method name}")

The LazyProperty class is actually a descriptor. Descriptors are the recommended mechanisms
to use in Python to override the default behavior of its attribute access methods: __get (),
set (),and delete ().TheLazyProperty classoverridesonly set () because
that is the only access method it needs to override. In other words, we don’t have to override all access
methods. The get () method accesses the value of the property the underlying method wants
to assign, and uses setattr () to do the assignment manually. What _get () _ actually does is
very neat: it replaces the method with the value! This means that not only is the property lazily loaded,
but it can also be set only once. We will see what this means in a moment.

def get (self, obj, cls):
if not obj:
return None
value = self.method (obj)
print (£'value {value}')
setattr (obj, self.method name, value)

return value

Again, uncomment the commented line in that part of the code to get some extra information.

Then, the Test class shows how we can use the LazyProperty class. There are three attributes:
x,y,and resource. We want the resource variable to be loaded lazily; thus, we initialize it
to None as shown in the following code:

class Test:
def init (self):
self.x = "foo"
self.y = "bar"
self. resource = None

105

106

Structural Design Patterns

The resource () method is decorated with the LazyProperty class. For demonstration purposes,
the LazyProperty class initializes the resource attribute as a tuple, as shown in the following
code. Normally, this would be a slow/expensive initialization (database, graphics, and so on):

@LazyProperty

def resource (self):
print ("initializing self. resource...")
print (f"... which is: {self. resource}")
self. resource = tuple(range (5))
return self. resource

The main () function, as follows, shows how lazy initialization behaves:

def main() :
t = Test()
print (t.x)
print (t.y)
do more work...
print (t.resource)
print (t.resource)

Notice how overriding the _get () _ access method makes it possible to treat the resource ()
method as a simple attribute (we can use t . resource instead of t . resource ()).

Let’s recapitulate the example code (in ch04 /proxy/proxy lazy.py):

1. We define the LazyProperty class.
2. We define the Test class with a resource () method that we decorate using LazyProperty.

3. We add the main function for testing our design example.

If you can execute the example in its original version (where the added lines for better understanding
are kept commented), using the python ch04/proxy/proxy lazy.py command, you will
get the following output:

foo

bar

initializing self. resource...
. which is: None

(o, 1, 2, 3, 4)

(0, 1, 2, 3, 4)

Based on this output, we can see the following:

o The resource variable is indeed initialized not by the time the t instance is created, but
the first time that we use t . resource.

The proxy pattern

« The second time t . resource is used, the variable is not initialized again. That’s why the
initialization string initializing self. resource is shown only once.

Additional information

There are two basic kinds of lazy initialization in OOP. They are as follows:

- At the instance level: This means that an object’s property is initialized lazily, but the property
has an object scope. Each instance (object) of the same class has its own (different) copy of
the property.

- At the class or module level: In this case, we do not want a different copy per instance, but
all the instances share the same property, which is lazily initialized. This case is not covered in

this chapter. If you find it interesting, consider it as an exercise.
- J

Since there are so many possible cases for using the proxy pattern, let’s see another example.

Implementing the proxy pattern - a protection proxy

As a second example, let’s implement a simple protection proxy to view and add users. The service
provides two options:

o Viewing the list of users: This operation does not require special privileges

o Adding a new user: This operation requires the client to provide a special secret message

The SensitiveInfo class contains the information that we want to protect. The users variable
is the list of existing users. The read () method prints the list of the users. The add () method adds
a new user to the list. The code for that class is as follows:

class SensitiveInfo:
def init (self):
self.users = ["nick", "tom", "ben", "mike"]

def read(self):
nb = len(self.users)
print (f"There are {nb} users: {' '.join(self.users)}")

def add(self, user):
self .users.append (user)
print (£"Added user {user}")

The Info class is a protection proxy of SensitiveInfo. The secret variable is the message required
to be known/provided by the client code to add a new user.

107

108 Structural Design Patterns

Note that this is just an example. In reality, you should never do the following:

o Store passwords in the source code
o Store passwords in clear-text form

o Use a weak (for example, MD5) or custom form of encryption

In the Info class, as we can see next, the read () method is a wrapper to SensitiveInfo.
read () and the add () method ensures that a new user can be added only if the client code knows
the secret message:

class Info:
def init (self):
self .protected = SensitiveInfo ()
self.secret = "Oxdeadbeef"

def read(self) :
self .protected.read()

def add(self, user):
sec = input ("what is the secret? ")
if sec == self.secret:
self .protected.add (user)
else:
print ("That's wrong!")

Themain () function shows how the proxy pattern can be used by the client code. The client code
creates an instance of the Info class and uses the displayed menu to read the list, add a new user, or
exit the application. Let’s consider the following code:

def main() :
info = Info()
while True:

print ("1. read list |==| 2. add user |==| 3. quit")
key = input ("choose option: ")
if key == "1":
info.read()
elif key == "2":
name = input ("choose username: ")
info.add (name)
elif key == "3":
exit ()
else:

print (f"unknown option: {key}")

The proxy pattern

Let’s recapitulate the full code (ch04 /proxy/proxy protection.py):

1. First, we define the SensitiveInfo class.

2. 'Then, we have the code for the Info class.

3. Finally, we add the main function with our testing code.

We can see in the following a sample output of the program when executing the python cho04/

proxy/proxy protection.py command:

1. read list |==| 2.
choose option: 1

There are 4 users: nick tom ben mike

1. read list |==| 2.
choose option: 2

add user |==

choose username: tom

what is the secret? Oxdeadbeef
Added user tom

1. read list |==| 2.
choose option: 3

add user |==| 3.

add user |==| 3.

quit

quit

quit

Have you already spotted flaws or missing features that can be addressed to improve our protection

proxy example? Here are a few suggestions:

o This example has a very big security flaw. Nothing prevents the client code from bypassing the
security of the application by creating an instance of SensitiveInfo directly. Improve the

example to prevent this situation. One way is to use the abc module to forbid direct instantiation
of SensitiveInfo. What other code changes are required in this case?

o A basic security rule is that we should never store clear-text passwords. Storing a password
safely is not very hard as long as we know which libraries to use. If you have an interest in

security, try to implement a secure way to store the secret message externally (for example, in

a file or database).

« The application only supports adding new users, but what about removing an existing user?

Add a remove () method.

Implementing the proxy pattern — a remote proxy

Imagine we are building a file management system where clients can perform operations on files

stored on a remote server. The operations might include reading a file, writing to a file, and deleting

a file. The remote proxy hides the complexity of network requests from the client.

We start by creating an interface that defines the operations that can be performed on the remote
server, RemoteServiceInterface, and the class that implements it to provide the actual

service, RemoteService.

109

110 Structural Design Patterns

The interface is defined as follows:

from abc import ABC, abstractmethod

class RemoteServiceInterface (ABC) :
@abstractmethod
def read file(self, file name):
pass

@abstractmethod
def write_file(self, file _name, contents):
pass

@abstractmethod
def delete file(self, file name):
pass

The RemoteService class is defined as follows (the methods just return a string, for the sake of
simplicity, but normally, you would have specific code for the file handling on the remote service):

class RemoteService (RemoteServiceInterface) :
def read file(self, file name) :
Implementation for reading a file from the server
return "Reading file from remote server"

def write file(self, file name, contents):
Implementation for writing to a file on the server
return "Writing to file on remote server"

def delete file(self, file name) :
Implementation for deleting a file from the server
return "Deleting file from remote server"

Then, we define ProxyService for the proxy. It implements the RemoteServiceInterface
interface and acts as a surrogate for RemoteService, which handles communication with the latter:

class ProxyService (RemoteServiceInterface) :
def init (self):
self.remote service = RemoteService ()

def read file(self, file name):
print ("Proxy: Forwarding read request to RemoteService")
return self.remote service.read file(file name)

The proxy pattern

def write file(self, file name, contents):
print ("Proxy: Forwarding write request to RemoteService")
return self.remote service.write file(file name, contents)

def delete file(self, file name):
print ("Proxy: Forwarding delete request to RemoteService")
return self.remote service.delete file(file name)

Clients interact with the ProxyService component as if it were the RemoteService one,
unaware of the remote nature of the actual service. The proxy handles the communication with the
remote service, potentially adding logging, access control, or caching. To test things, we can add the
following code, based on creating an instance of ProxyService:

if name == " main ":
proxy = ProxyService ()
print (proxy.read file("example.txt"))

Let’s recapitulate the implementation (the full code is in ch04 /proxy/proxy remote.py):
1. We start by defining the interface, RemoteServiceInterface, and a class that implements

it, RemoteService.

2. Then, we define the ProxyService class, which also implements the RemoteService
Interface interface.

3. Finally, we add some code for testing the proxy object.

Let’s see the result of the example by running python ch04/proxy/proxy remote.py:

Proxy: Forwarding read request to RemoteService
Reading file from remote server

It worked. This lightweight example was effective in showing how to implement the remote proxy
use case.

Implementing the proxy pattern — a smart proxy

Let’s consider a scenario where you have a shared resource in your application, such as a database
connection. Every time an object accesses this resource, you want to keep track of how many references
to the resource exist. Once there are no more references, the resource can be safely released or closed.
A smart proxy will help manage the reference counting for this database connection, ensuring it’s only
closed once all references to it are released.

As in the previous example, we will need an interface, DBConnect ionInterface, defining operations
for accessing the database, and a class that represents the actual database connection, DBConnection.

111

112 Structural Design Patterns

For the interface, let’s use Protocol (to change from the ABC way):

from typing import Protocol

class DBConnectionInterface (Protocol) :
def exec query(self, query):

The class for the database connection is as follows:

class DBConnection:
def init (self):
print ("DB connection created")

def exec query(self, query):
return f"Executing query: {query}"

def close(self):
print ("DB connection closed")

Then, we define the SmartProxy class; it also implements the DBConnectionInterface
interface (see the exec query () method). We use this class to manage reference counting and
access to the DBConnection object. It ensures that the DBConnection object is created on
demand when the first query is executed and is only closed when there are no more references to it.
The code is as follows:

class SmartProxy:
def init (self):
self.cnx = None
self.ref count = 0

def access_resource (self) :
if self.cnx is None:
self.cnx = DBConnection()
self.ref count += 1
print (£"DB connection now has {self.ref count} references.")

def exec query(self, query):
if self.cnx is None:
Ensure the connection is created
if not already
self.access resource ()

The proxy pattern

result = self.cnx.exec query (query)
print (result)

Decrement reference count after
executing query
self.release resource ()

return result

def release resource (self) :
if self.ref count > O0:
self.ref count -=1
print ("Reference released...")
print (f"{self.ref count} remaining refs.")

if self.ref count == 0 and self.cnx is not None:
self.cnx.close()
self.cnx = None

Now, we can add some code to test the implementation:

if name == " main ":
proxy = SmartProxy ()
proxy.exec_query ("SELECT * FROM users")

proxy.exec_query ("UPDATE users SET name = 'John Doe' WHERE id =
lll)

Let’s recapitulate the implementation (the full code is in ch04 /proxy/proxy smart.py):

1. We start by defining the interface, DBConnect ionInterface, and a class that implements
it and represents the database connection, DBConnect ion.

2. Then, we define the SmartProxy class, which also implements DBConnectionInterface.

3. Finally, we add some code for testing the proxy object.

Let’s see the result of the example by running python ch04/proxy/proxy smart.py:

DB connection created

DB connection now has 1 references.
Executing query: SELECT * FROM users
Reference released...

0 remaining refs.

DB connection closed

DB connection created

113

114

Structural Design Patterns

DB connection now has 1 references.

Executing query: UPDATE users SET name = 'John Doe' WHERE id = 1
Reference released...

0 remaining refs.

DB connection closed

This was another demonstration of the proxy pattern. Here, it helped us implement an improved
solution for scenarios where database connections are shared across different parts of an application
and need to be managed carefully to avoid exhausting database resources or leaking connections.

Summary

Structural patterns are invaluable for creating clean, maintainable, and scalable code. They provide
solutions for many of the challenges you’ll face in daily coding.

First, the adapter pattern serves as a flexible solution for harmonizing mismatched interfaces. We
can use this pattern to bridge the gap between outdated legacy systems and modern interfaces, thus
promoting more cohesive and manageable software systems.

Then, we discussed the decorator pattern that we use as a convenient way of extending the behavior of
an object without using inheritance. Python, with its built-in decorator feature, extends the decorator
concept even more by allowing us to extend the behavior of any callable without using inheritance
or composition. The decorator pattern is a great solution for implementing cross-cutting concerns
because they are generic and do not fit well into the OOP paradigm. We mentioned several categories
of cross-cutting concerns in the Use cases for the decorator pattern section. We saw how decorators
can help us to keep our functions clean without sacrificing performance.

Sharing similarities with the adapter pattern, the bridge pattern is different from it in the sense that it
is used up-front to define an abstraction and its implementation in a decoupled way so that both can
vary independently. The bridge pattern is useful when writing software for problem domains such as
operation systems and device drivers, GUIs, and website builders where we have multiple themes and
we need to change the theme of a website based on certain properties. We discussed an example in
the domain of content extraction and management, where we defined an interface for the abstraction,
an interface for the implementor, and two implementations.

The facade pattern is ideal for providing a simple interface to client code that wants to use a complex
system but does not need to be aware of the system’s complexity. A computer is a facade, since all we
need to do to use it is press a single button to turn it on. All the rest of the hardware complexity is
handled transparently by the BIOS, the boot loader, and the other components of the system software.
There are more real-life examples of facade, such as when we are connected to the customer service
department of a bank or a company, and the keys that we use to turn a vehicle on. We covered an
implementation of the interface used by a multi-server operating system.

Summary

In general, we use the flyweight pattern when an application needs to create a large number of
computationally expensive objects that share many properties. The important point is to separate the
immutable (shared) properties from the mutable ones. We saw how to implement a car renderer that
supports three different car families. By providing the mutable color and x, y properties explicitly to
the render () method, we managed to create only 3 different objects instead of 18. Although that
might not seem like a big win, imagine if the cars were 2,000 instead of 18.

We ended with the proxy pattern. We discussed several use cases of the proxy pattern, including
performance, security, and how to offer simple APIs to users. We saw an implementation example for
each of the four types of proxy you generally need: virtual proxy, protective proxy, proxy to a remote
service, and smart proxy.

In the next chapter, we will explore behavioral design patterns, patterns that deal with object
interconnection and algorithms.

115

5

Behavioral Design Patterns

In the previous chapter, we covered structural patterns and object-oriented programming (OOP)
patterns that help us create clean, maintainable, and scalable code. The next category of design patterns
is behavioral design patterns. Behavioral patterns deal with object interconnection and algorithms.

In this chapter, we're going to cover the following main topics:

o The Chain of Responsibility pattern
o The Command pattern

o The Observer pattern

o The State pattern

o 'The Interpreter pattern

o The Strategy pattern

o The Memento pattern

o 'The Iterator pattern

o The Template pattern

o Other behavioral design patterns

At the end of this chapter, you will know how to improve your software project designs using
behavioral patterns.

118

Behavioral Design Patterns

Technical requirements

See the requirements presented in Chapter 1. The additional technical requirements for the code
discussed in this chapter are the following:

o For the State pattern section, install the state_machine module, using the command:
python -m pip install state machine.

o For the Interpreter pattern section, install the pyparsing module, using the command:
python -m pip install pyparsing.

o For the Template pattern section, install the cowpy module, using the command: python
-m pip install cowpy.

The Chain of Responsibility pattern

The Chain of Responsibility pattern offers an elegant way to handle requests by passing them through
a chain of handlers. Each handler in the chain has the autonomy to decide whether it can process
the request or if it should delegate it further along the chain. This pattern shines when dealing with
operations that involve multiple handlers but don’t necessarily require all of them to be involved.

In practice, this pattern encourages us to focus on objects and the flow of a request within an application.
Notably, the client code remains blissfully unaware of the entire chain of handlers. Instead, it only
interacts with the first processing element in the chain. Similarly, each processing element knows
only about its immediate successor, forming a one-way relationship similar to a singly linked list.
This structure is purposefully designed to achieve decoupling between the sender (client) and the
receivers (processing elements).

Real-world examples

ATMs and, in general, any kind of machine that accepts/returns banknotes or coins (for example, a
snack-vending machine) use the Chain of Responsibility pattern. There is always a single slot for all
banknotes, as shown in the following diagram, courtesy of www . sourcemaking. com:

Figure 5.1 — Chain of Responsibility example: the ATM

http://www.sourcemaking.com

The Chain of Responsibility pattern

When a banknote is dropped, it is routed to the appropriate receptacle. When it is returned, it is
taken from the appropriate receptacle. We can think of the single slot as the shared communication
medium and the different receptacles as the processing elements. The result contains cash from one
or more receptacles. For example, in the preceding diagram, we see what happens when we request
$175 from the ATM.

In some web frameworks, filters or middleware are pieces of code that are executed before an HTTP
request arrives at a target. There is a chain of filters. Each filter performs a different action (user
authentication, logging, data compression, and so forth), and either forwards the request to the
next filter until the chain is exhausted, or it breaks the flow if there is an error—for example, the
authentication failed three consecutive times.

Use cases for the Chain of Responsibility pattern

By using the Chain of Responsibility pattern, we provide a chance for a number of different objects to
satisty a specific request. This is useful when we don’t know in advance which object should satisfy a
given request. An example of this is a purchase system. In purchase systems, there are many approval
authorities. One approval authority might be able to approve orders up to a certain value, let’s say
$100. If the order is for more than $100, the order is sent to the next approval authority in the chain,
which can approve orders up to $200, and so forth.

Another case where the Chain of Responsibility is useful is when we know that more than one object
might need to process a single request. This is what happens in event-based programming. A single
event, such as a left-mouse click, can be caught by more than one listener.

It is important to note that the Chain of Responsibility pattern is not very useful if all the requests can
be taken care of by a single processing element unless we really don’t know which element that is. The
value of this pattern is the decoupling that it offers, as we have seen in the Loose coupling section of
Chapter 1, Foundational Design Principles. Instead of having a many-to-many relationship between a
client and all processing elements (and the same is true regarding the relationship between a processing
element and all other processing elements), a client only needs to know how to communicate with
the start (head) of the chain.

Implementing the Chain of Responsibility pattern

There are many ways to implement a Chain of Responsibility in Python, but my favorite implementation
is the one by Vespe Savikko (https://legacy.python.org/workshops/1997-10/
proceedings/savikko.html). Vespe's implementation uses dynamic dispatching in a Pythonic
style to handle requests.

119

https://legacy.python.org/workshops/1997-10/proceedings/savikko.html
https://legacy.python.org/workshops/1997-10/proceedings/savikko.html

120 Behavioral Design Patterns

Lets implement a simple, event-based system using Vespe’s implementation as a guide. The following
is the UML class diagram of the system:

arent

Event Widget

A

N

MainWindow| | MsgText| | SendDialog

Figure 5.2 — UML class diagram of an event-based window system

The Event class describes an event. We'll keep it simple, so, in our case, an event has only name:

class Event:
def init (self, name):
self.name = name

def str (self):

return self.name

The Widget class is the core class of the application. The parent aggregation shown in the UML
diagram indicates that each widget can have a reference to a parent object, which, by convention, we
assume is a Widget instance. Note, however, that according to the rules of inheritance, an instance
of any of the subclasses of Widget (for example, an instance of MsgText) is also an instance of
Widget. The class has a handle () method, which uses dynamic dispatching through hasattzr ()
and getattr () to decide who the handler of a specific request (event) is. If the widget that is asked
to handle an event does not support it, there are two fallback mechanisms. If the widget has a parent,
then the handle () method of the parent is executed. If the widget has no parent but a handle
default () method, handle default () is executed. The code is as follows:

class Widget:
def init (self, parent=None) :
self.parent = parent

def handle(self, event):
handler = f"handle {event}"
if hasattr(self, handler):
method = getattr(self, handler)
method (event)
elif self.parent is not None:

The Chain of Responsibility pattern 121

self .parent.handle (event)
elif hasattr(self, "handle default"):
self.handle default (event)

At this point, you might have realized why the Widget and Event classes are only associated (no
aggregation or composition relationships) in the UML class diagram. The association is used to show
that the Widget class knows about the Event class but does not have any strict reference to it, since
an event needs to be passed only as a parameter to handle ().

MainWIndow, MsgText, and SendDialog are all widgets with different behaviors. Not all these
three widgets are expected to be able to handle the same events, and even if they can handle the same
event, they might behave differently. MainWindow can handle only the close and default events:

class MainWindow (Widget) :
def handle close(self, event):
print (f"MainWindow: {event}")

def handle default (self, event):
print (f"MainWindow Default: {event}")

SendDialog can handle only the paint event:

class SendDialog (Widget) :
def handle paint (self, event):
print (f"SendDialog: {event}")

Finally, MsgText can handle only the down event:

class MsgText (Widget) :
def handle down (self, event) :
print (£"MsgText: {event}")

Themain () function shows how we can create a few widgets and events, and how the widgets react to
those events. All events are sent to all the widgets. Note the parent relationship of each widget—the sd
object (an instance of SendDialog) has as its parent the mw object (an instance of MainWindow).
However, not all objects need to have a parent that is an instance of MainWindow. For example, the
msg object (an instance of MsgText) has the sd object as a parent:

def main() :
mw = MainWindow ()
sd = SendDialog (mw)
msg = MsgText (sd)

for e in ("down", "paint", "unhandled", "close"):
evt = Event (e)

122 Behavioral Design Patterns

print (£"Sending event -{evt}- to MainWindow")
mw.handle (evt)

print (f"Sending event -{evt}- to SendDialog")
sd.handle (evt)

print (f"Sending event -{evt}- to MsgText")
msg.handle (evt)

Let’s recapitulate the complete code (see file ch05/chain. py) of the implementation:

1. We define the Event class, followed by the Widget class.
2. We define the specialized widget classes, MainWindow, SendDialog, and MsgText.

3. Finally, we add the code for themain () function; we make sure it can be called thanks to the
usual trick at the end.

Executing the python ch05/chain.py command gives us the following output:

Sending event -down- to MainWindow
MainWindow Default: down

Sending event -down- to SendDialog
MainWindow Default: down

Sending event -down- to MsgText
MsgText: down

Sending event -paint- to MainWindow
MainWindow Default: paint

Sending event -paint- to SendDialog
SendDialog: paint

Sending event -paint- to MsgText
SendDialog: paint

Sending event -unhandled- to MainWindow
MainWindow Default: unhandled
Sending event -unhandled- to SendDialog
MainWindow Default: unhandled
Sending event -unhandled- to MsgText
MainWindow Default: unhandled
Sending event -close- to MainWindow
MainWindow: close

Sending event -close- to SendDialog
MainWindow: close

Sending event -close- to MsgText
MainWindow: close

The Command pattern

The Command pattern

Most applications nowadays have an undo operation. It is hard to imagine, but undo did not exist in
any software for many years. Undo was introduced in 1974, but Fortran and Lisp, two programming
languages that are still widely used, were created in 1957 and 1958, respectively! I wouldn’t like to
have been an application user during those years. Making a mistake meant that the user had no easy
way to fix it.

Enough with the history. We want to know how we can implement the undo functionality in our
applications. Since you have read the title of this chapter, you already know which design pattern is
recommended to implement undo: the Command pattern.

The Command design pattern helps us encapsulate an operation (undo, redo, copy, paste, and so
forth) as an object. What this simply means is that we create a class that contains all the logic and the
methods required to implement the operation. The advantages of doing this are as follows:

o We don't have to execute a command directly. It can be executed at will.

o The object that invokes the command is decoupled from the object that knows how to perform
it. The invoker does not need to know any implementation details about the command.

o Ifit makes sense, multiple commands can be grouped to allow the invoker to execute them in
order. This is useful, for instance, when implementing a multilevel undo command.

Real-world examples

When we go to a restaurant for dinner, we give the order to the waiter. The check (usually paper) that
they use to write the order is an example of a command. After writing the order, the waiter places it in
the check queue that is executed by the cook. Each check is independent and can be used to execute
many different commands, for example, one command for each item that will be cooked.

As you would expect, we also have several examples in the software. Here are two I can think of:

o PyQt is the Python binding of the QT toolkit. PyQt contains a QAct ion class that models
an action as a command. Extra optional information is supported for every action, such as
description, tooltip, and shortcut.

o Git Cola, a Git GUI written in Python, uses the command pattern to modify the model, amend
a commit, apply a different election, check out, and so forth.

123

124

Behavioral Design Patterns

Use cases for the Command pattern

Many developers use the undo example as the only use case of the Command pattern. The truth is
that undo is the killer feature of the Command pattern. However, the Command pattern can actually
do much more:

o GUI buttons and menu items: The PyQt example that was already mentioned uses the Command
pattern to implement actions on buttons and menu items.

o Other operations: Apart from undo, commands can be used to implement any operation. A
few examples are cut, copy, paste, redo, and capitalize text.

o Transactional behavior and logging: Transactional behavior and logging are important to
keep a persistent log of changes. They are used by operating systems to recover from system
crashes, relational databases to implement transactions, filesystems to implement snapshots,
and installers (wizards) to revert canceled installations.

o Macros: By macros, in this case, we mean a sequence of actions that can be recorded and executed
on demand at any point in time. Popular editors such as Emacs and Vim support macros.

Implementing the Command pattern
Let’s use the Command pattern to implement the following basic file utilities:

o Creating a file and, optionally, adding text to it
o Reading the contents of a file

o Renaming a file

We are not going to implement these utilities from scratch since Python already offers good
implementations for them in the os module. What we want to do is to add an extra abstraction level
on top of them so that they can be treated as commands. By doing this, we get all the advantages
offered by commands.

Each command has two parts:

o 'The initialization part: It is taken care of by the init () method and contains all the
information required by the command to be able to do something useful (the path of a file, the
contents that will be written to the file, and so forth).

o The execution part: It is taken care of by the execute () method. We call that method when
we want to run a command. This is not necessarily right after initializing it.

The Command pattern

Let’s start with the rename utility, which we implement using the RenameFile class. The class is
initialized using the source and destination file paths. We add the execute () method, which does
the actual renaming using os . rename () . To provide support for the undo operation, we add the
undo () method, where we use os . rename () again to revert the name of the file to its original
value. Note that we also use logging to improve the output.

The beginning of the code, the imports we need, and the RenameFile class, are as follows:

import logging
import os

logging.basicConfig(level=1ogging.DEBUG)

class RenameFile:
def init (self, src, dest):
self.src = src
self.dest = dest

def execute (self) :
logging.info (
f" [renaming '{self.src}' to '{self.dest}']™
)

os.rename (gself.src, self.dest)

def undo (self) :
logging.info (
f£" [renaming '{self.dest}' back to '{self.src}']"
)

os.rename (self.dest, self.src)

Next, we add a CreateFile class for the command used to create a file. The initialization method
for that class accepts the familiar path parameter and a txt parameter for the content that will be
written to the file. If nothing is passed as content, the default “hello world” text is written to the file.
Normally, the sane default behavior is to create an empty file, but for the needs of this example, I decided
to write a default string in it. Then, we add an execute () method, in which we use Python’s open ()
function to open the file in write mode, and the write () function to write the txt string to it.

The undo for the operation of creating a file is to delete that file. Thus, the undo () method is added
to the class, where we use the os . remove () function to do the job.

125

126 Behavioral Design Patterns

The definition for the CreateFile class is as follows:

class CreateFile:
def init (self, path, txt="hello world\n"):
self.path = path
self.txt = txt

def execute (self) :
logging.info (f" [creating file '{self.path}'l™")
with open (
self.path, "w", encoding="utf-8"
) as out_file:
out file.write(self.txt)

def undo(self) :
logging.info(f"deleting file {self.path}")
os.remove (self .path)

The last utility gives us the ability to read the contents of a file. The execute () method of the
ReadFile class uses open () again, this time in read mode, and just prints the content of the file.

The ReadFile class is defined as follows:

class ReadFile:
def init (self, path):
self.path = path

def execute(self) :
logging.info (f" [reading file '{self.path}'l™")
with open (
self.path, "r", encoding="utf-8"
) as in file:
print (in file.read(), end="")

Themain () function makes use of the utilities we have defined. The orig name and new_name
parameters are the original and new name of the file that is created and renamed. A commands list
is used to add (and configure) all the commands that we want to execute at a later point. The code
is as follows:

def main() :
orig name, new name = "filel", "file2"
commands = (

CreateFile (orig name),

The Command pattern

ReadFile (orig name),
RenameFile (orig name, new name),

for ¢ in commands:
c.execute ()

Then, we ask the users whether they want to undo the executed commands or not. The user selects
whether the commands will be undone or not. If they choose to undo them, undo () is executed
for all commands in the commands list. However, since not all commands support undo, exception
handling is used to catch (and log) the Att ributeError exception generated when the undo ()
method is missing. That part of the code would look like the following:

answer = input ("reverse the executed commands? [y/n] ")

if answer not in "yY":
print (f"the result is {new name}")
exit ()

for ¢ in reversed (commands) :
try:
c.undo ()
except AttributeError as e:
logging.error (str(e))

Let’s recapitulate the complete code (in the ch05/command . py file) of the implementation:

1. Weimport logging and os modules.
We do the usual logging configuration.
We define the RenameFile class.

We define the CreateFile class.

We define the ReadFile class.

AN

We add amain () function, and call it as usual, to test our design.

Executing the python ch05/command . py command gives us the following output, if we accept
to reverse the commands:

INFO:root: [creating file 'filel']
INFO:root: [reading file 'filel']

hello world

INFO:root: [renaming 'filel' to 'file2']
reverse the executed commands? [y/n] y

127

128

Behavioral Design Patterns

INFO:root: [renaming 'file2' back to 'filel']
ERROR:root:'ReadFile' object has no attribute 'undo'
INFO:root:deleting file filel

However, if we do not accept to reverse the commands, the output is as follows:

INFO:root: [creating file 'filel']
INFO:root: [reading file 'filel']

hello world

INFO:root: [renaming 'filel' to 'file2']
reverse the executed commands? [y/n] n
the result is file2

These outputs are as expected. However, note that ERROR, in the first case, is normal for this context.

The Observer pattern

The Observer pattern describes a publish-subscribe relationship between a single object, the publisher,
which is also known as the subject or observable, and one or more objects, the subscribers, also
known as observers. So, the subject notifies the subscribers of any state changes, typically by calling
one of their methods.

The ideas behind the Observer pattern are the same as those behind the separation of concerns
principle, that is, to increase decoupling between the publisher and subscribers, and to make it easy
to add/remove subscribers at runtime.

Real-world examples

Dynamics in an auction are similar to the behavior of the Observer pattern. Every auction bidder has
a number paddle that is raised whenever they want to place a bid. Whenever the paddle is raised by
a bidder, the auctioneer acts as the subject by updating the price of the bid and broadcasting the new
price to all bidders (subscribers).

In software, we can cite at least two examples:

« Kivy, the Python framework for developing user interfaces (Uls), has a module called Properties,
which implements the Observer pattern. Using this technique, you can specify what should
happen when a property’s value changes.

o The RabbitMQ library provides an implementation of an Advanced Message Queuing Protocol
(AMQP) messaging broker. It is possible to construct a Python application that interacts with
RabbitMQ in such a way that it subscribes to messages and publishes them to queues, which
is essentially the Observer design pattern.

The Observer pattern

Use cases for the Observer pattern

We generally use the Observer pattern when we want to inform/update one or more objects (observers/
subscribers) about a change that happened on a given object (subject/publisher/observable). The
number of observers, as well as who those observers are, may vary and can be changed dynamically.

We can think of many cases where Observer can be useful. One such use case is news feeds. With
RSS, Atom, or other related formats, you follow a feed, and every time it is updated, you receive a
notification about the update.

The same concept exists in social networking applications. If you are connected to another person
using a social networking service, and your connection updates something, you are notified about it.

Event-driven systems are another example where Observer is usually used. In such systems, you have
listeners that listen for specific events. The listeners are triggered when an event they are listening
to is created. This can be typing a specific key (on the keyboard), moving the mouse, and more. The
event plays the role of the publisher, and the listeners play the role of the observers. The key point in
this case is that multiple listeners (observers) can be attached to a single event (publisher).

Implementing the Observer pattern

As an example, let’s implement a weather monitoring system. In such a system, you have a weather
station that collects weather-related data (temperature, humidity, and atmospheric pressure). Our
system needs to allow different devices and applications to receive real-time updates whenever there
is a change in the weather data.

We can apply the Observer pattern using the following elements:

« Subject (weather station): Create a WeatherStation class that acts as the subject. This class
will maintain a list of observers (devices or applications) interested in receiving weather updates.

o Observers (devices and applications): Implement various observer classes, representing
devices such as smartphones, tablets, weather apps, and even a display screen in a local store.
Each observer will subscribe to receive updates from the weather station.

« Registration and notification: The weather station provides methods for observers to register
(subscribe) and unregister (unsubscribe) themselves. When there is a change in weather
data (e.g., a new temperature reading), the weather station notifies all registered observers.

o Update mechanism: Each observer defines an update () method that the weather station
calls when notifying about changes. For instance, a smartphone observer may update its weather
app with the latest data, while a local store display may update its digital sign.

Let’s get started.

129

130

Behavioral Design Patterns

First, we define the Observer interface, which holds an update method that observers must
implement. Observers are expected to update themselves when the subject’s state changes:

class Observer:
def update(self, temperature, humidity, pressure) :
pass

Next, we define the WeatherStat ion subject class. It maintains a list of observers and provides
methods to add and remove observers. The set _weather data method is used to simulate changes
in weather data. When the weather data changes, it notifies all registered observers by calling their
update methods. The code is as follows:

class WeatherStation:
def init (self):
self.observers = []

def add observer (self, observer):
self .observers.append (observer)

def remove observer (self, observer):
self .observers.remove (observer)

def set weather data(self, temperature, humidity, pressure) :
for observer in self.observers:
observer.update (temperature, humidity, pressure)

Let’s now define the DisplayDevice observer class. Its update method prints weather information
when called:

class DisplayDevice (Observer) :
def init (self, name):
self.name = name

def update(self, temperature, humidity, pressure) :
print (f"{self.name} Display")
print (
f" - Temperature: {temperature}°C, Humidity: {humidity}$%,
Pressure: {pressure}hPa"

)

The Observer pattern 131

Similarly, we define another observer class, WeatherApp, which prints weather information in a
different format when its update method is called:

class WeatherApp (Observer) :
def init (self, name):
self.name = name

def update (self, temperature, humidity, pressure):
print (£"{self.name} App - Weather Update")
print (

f" - Temperature: {temperature}°C, Humidity: {humidity}$%,
Pressure: {pressure}hPa"

)
Now, in the main () function, we do several things:

o We create an instance of the WeatherStation class, which acts as the subject.

o We create instances of DisplayDevice and WeatherApp, representing different types
of observers.

o We register these observers with weather station using the add observer method.

o We simulate changes in weather data by calling the set _weather data method of
weather station. This triggers updates to all registered observers.

The code of the main () function is as follows:

def main() :
Create the WeatherStation
weather station = WeatherStation()

Create and register observers
displayl = DisplayDevice ("Living Room")
display2 = DisplayDevice ("Bedroom")
appl = WeatherApp ("Mobile App")

weather station.add observer (displayl)
weather station.add observer (display2)
weather station.add observer (appl)

Simulate weather data changes
weather station.set weather data(25.5, 60, 1013.2)
weather station.set weather data(26.0, 58, 1012.8)

132 Behavioral Design Patterns

Let’s recapitulate the complete code (in the ch05/observer. py file) of the implementation:

1. We define the Observer interface.

2. We define the WeatherStation subject class.

3. We define two observer classes, Di splayDevice and WeatherApp.
4

We add amain () function where we test our design.

Executing the python ch05/observer.py command gives us the following output:

Living Room Display

- Temperature: 25.5°C, Humidity: 60%, Pressure: 1013.2hPa
Bedroom Display

- Temperature: 25.5°C, Humidity: 60%, Pressure: 1013.2hPa
Mobile App App - Weather Update

- Temperature: 25.5°C, Humidity: 60%, Pressure: 1013.2hPa
Living Room Display

- Temperature: 26.0°C, Humidity: 58%, Pressure: 1012.8hPa
Bedroom Display

- Temperature: 26.0°C, Humidity: 58%, Pressure: 1012.8hPa
Mobile App App - Weather Update

- Temperature: 26.0°C, Humidity: 58%, Pressure: 1012.8hPa

As you can see, this example demonstrates the Observer pattern, where the subject notifies its observers
about changes in its state. Observers are loosely coupled with the subject and can be added or removed
dynamically, providing flexibility and decoupling in the system.

As an exercise, you can see that when unregistering an observer, using the remove_observer ()
method, and then simulating additional weather data changes, only the remaining registered observers
receive updates. As a helper, to test this, here are 2 lines of code to add at the end of the main () function:

weather station.remove observer (display?2)
weather station.set weather data(27.2, 55, 1012.5)

Next, we will discuss the State pattern.

The State pattern

In the previous chapter, we covered the Observer pattern, which is useful in a program to notify other
objects when the state of a given object changes. Let’s continue discovering those patterns proposed
by the Gang of Four.

OOP focuses on maintaining the states of objects that interact with each other. A very handy tool to
model state transitions when solving many problems is known as a finite-state machine (commonly
called a state machine).

The State pattern

What's a state machine? A state machine is an abstract machine that has two key components, that
is, states and transitions. A state is the current (active) status of a system. For example, if we have a
radio receiver, two possible states for it are to be tuned to FM or AM. Another possible state is for it
to be switching from one FM/AM radio station to another. A transition is a switch from one state to
another. A transition is initiated by a triggering event or condition. Usually, an action or set of actions
is executed before or after a transition occurs. Assuming that our radio receiver is tuned to the 107 FM
station, an example of a transition is for the button to be pressed by the listener to switch it to 107.5 FM.

A nice feature of state machines is that they can be represented as graphs (called state diagrams),
where each state is a node, and each transition is an edge between two nodes.

State machines can be used to solve many kinds of problems, both non-computational and computational.
Non-computational examples include vending machines, elevators, traffic lights, combination locks,
parking meters, and automated gas pumps. Computational examples include game programming
and other categories of computer programming, hardware design, protocol design, and programming
language parsing.

Now, we have an idea of what state machines are! But how are state machines related to the State
design pattern? It turns out that the State pattern is nothing more than a state machine applied to a
particular software engineering problem (Gang of Four-95, page 342), (Python 3 Patterns, Recipes and
Idioms by Bruce Eckel ¢ Friends, page 151).

Real-world examples

A snack vending machine is an example of the State pattern in everyday life. Vending machines have
different states and react differently depending on the amount of money that we insert. Depending
on our selection and the money we insert, the machine can do the following:

o Reject our selection because the product we requested is out of stock.
o Reject our selection because the amount of money we inserted was not sufficient.
o Deliver the product and give no change because we inserted the exact amount.

o Deliver the product and return the change.
There are, for sure, more possible states, but you get the point.
Other examples of the state pattern in real life are as follows:

o Traffic lights
» Game states in a video game
In software, the state pattern is commonly used. Python and its ecosystem offer several packages/

modules one can use to implement state machines. We will see how to use one of them in the
implementation section.

133

134

Behavioral Design Patterns

Use cases for the State pattern

The State pattern is applicable to many problems. All the problems that can be solved using state
machines are good use cases for using the State pattern. An example we have already seen is the
process model for an operating/embedded system.

Programming language compiler implementation is another good example. Lexical and syntactic
analysis can use states to build abstract syntax trees.

Event-driven systems are yet another example. In an event-driven system, the transition from one
state to another triggers an event/message. Many computer games use this technique. For example,
a monster might move from the guard state to the attack state when the main hero approaches it.

To quote Thomas Jaeger, in his article, The State Design Pattern vs. State Machine (https://
thomasjaeger.wordpress.com/2012/12/13/the-state-design-pattern-vs-
state-machine-2/):

The state design pattern allows for full encapsulation of an unlimited number of states on a context for
easy maintenance and flexibility.

Implementing the State pattern

Let’s write code that demonstrates how to create a state machine based on the state diagram shown
earlier in this chapter. Our state machine should cover the different states of a process and the
transitions between them.

The State design pattern is usually implemented using a parent State class that contains the common
functionality of all the states, and several concrete classes derived from State, where each derived
class contains only the state-specific required functionality. The State pattern focuses on implementing
a state machine. The core parts of a state machine are the states and transitions between the states. It
doesn’t matter how those parts are implemented.

To avoid reinventing the wheel, we can make use of existing Python modules that not only help us create
state machines but also do it in a Pythonic way. A module that I find very useful is state _machine.

The state machine module is simple enough that no special introduction is required. We will
cover most aspects of it while going through the code of the example.

Let’s start with the Process class. Each created process has its own state machine. The first step to
creating a state machine using the state_machine module is to use the @acts_as_state
machine decorator. Then, we define the states of our state machine. This is a one-to-one mapping
of what we see in the state diagram. The only difference is that we should give a hint about the initial
state of the state machine. We do that by setting the initial attribute value to True:

@acts_as state machine
class Process:

https://thomasjaeger.wordpress.com/2012/12/13/the-state-design-pattern-vs-state-machine-2/
https://thomasjaeger.wordpress.com/2012/12/13/the-state-design-pattern-vs-state-machine-2/
https://thomasjaeger.wordpress.com/2012/12/13/the-state-design-pattern-vs-state-machine-2/

The State pattern 135

created = State(initial=True)
waiting = State()
running = State ()
terminated = State()
blocked = State ()
swapped out waiting State ()
swapped out blocked = State()

Next, we are going to define the transitions. In the state machine module, a transition is an
instance of the Event class. We define the possible transitions using the from states and
to_state arguments:

wait = Event (
from states=(
created,
running,
blocked,
swapped out waiting,
),
to state=waiting,
)
run = Event (
from states=waiting, to_state=running
)
terminate = Event (
from states=running, to state=terminated
)
block = Event (
from states=(
running,
swapped out blocked,
),
to_state=blocked,
)
swap_wait = Event (
from states=waiting,
to state=swapped out waiting,
)
swap_ block = Event (
from states=blocked,
to_state=swapped out blocked,

Also, as you may have noticed that from states can be either a single state or a group of states (tuple).

136

Behavioral Design Patterns

Each process has a name. Officially, a process needs to have much more information to be useful
(for example, ID, priority, status, and so forth) but let’s keep it simple to focus on the pattern:

def init (self, name):
self.name = name

Transitions are not very useful if nothing happens when they occur. The state machine module
provides us with the @before and @after decorators that can be used to execute actions before
or after a transition occurs, respectively. You can imagine updating some objects within the system
or sending an email or a notification to someone. For this example, the actions are limited to printing
information about the state change of the process, as follows:

@after ("wait")
def wait info(self) :
print (£"{self.name} entered waiting mode")

@after ("run")
def run info(self):
print (f"{self.name} is running")

@before ("terminate")
def terminate info(self):
print (f"{self.name} terminated")

@after ("block™)
def block info(self):
print (£"{self.name} is blocked")

@after ("swap wait")
def swap wait info(self):
print (
f"{self.name} is swapped out and waiting"

@after ("swap _block")
def swap block info(self):
print (
f"{self.name} is swapped out and blocked"

The State pattern

Next, we need the transition () function, which accepts three arguments:

e process, which is an instance of Process
e event, which is an instance of Event (wait, run, terminate, and so forth)

« event name, which is the name of the event

The name of the event is printed if something goes wrong when trying to execute event. Here is
the code for the function:

def transition(proc, event, event name) :
try:
event ()
except InvalidStateTransition:
msg = (
f"Transition of {proc.name} from {proc.current state} "
f'to {event name} failed"
)
print (msg)

The state_info () function shows some basic information about the current (active) state of
the process:

def state info(proc):
print (
f'state of {proc.name}: {proc.current state}"

At the beginning of the main () function, we define some string constants, which are passed
asevent name:

def main() :

RUNNING = "running"
WAITING = "waiting"
BLOCKED = "blocked"
TERMINATED = "terminated"

Next, we create two Process instances and display information about their initial state:

pl, p2 = Process ("processl"), Process (
"process2"

)

[state info(p) for p in (pl, p2)]

137

138 Behavioral Design Patterns

The rest of the function experiments with different transitions. Recall the state diagram we covered
in this chapter. The allowed transitions should be with respect to the state diagram. For example, it
should be possible to switch from a running state to a blocked state, but it shouldn't be possible to
switch from a blocked state to a running state:

print ()

transition(pl, pl.wait, WAITING)
transition(p2, p2.terminate, TERMINATED)
[state info(p) for p in (pl, p2)]

print ()

transition(pl, pl.run, RUNNING)
transition(p2, p2.wait, WAITING)
[state info(p) for p in (pl, p2)]

print ()
transition (p2, p2.run, RUNNING)
[state _info(p) for p in (pl, p2)]

print ()

[
transition(p, p.block, BLOCKED)
for p in (pl, p2)

]

[state info(p) for p in (pl, p2)]

print ()

[
transition(p, p.terminate, TERMINATED)
for p in (pl, p2)

1

[state info(p) for p in (pl, p2)]

Here is the recapitulation of the full implementation example (the ch05/state.py file):

1. We begin by importing what we need from state _machine.

We define the Process class with its simple attributes.

We add the Process class’s initialization method.

We also need to define, in the Process class, the methods to provide its states.
We define the transition () function.

Next, we define the state _info () function.

N e w

Finally, we add the main function of the program.

The State pattern

Here’s what we get when executing the Python ch05/state . py command:

state of
state of

processl

Transition of process2 from created to terminated failed

state of
state of

processl
process2
state of
state of

process2
state of
state of

processl
process2
state of
state of

Transition of processl from blocked to terminated failed
Transition of process2 from blocked to terminated failed

state of
state of

Indeed, the output shows that illegal transitions such as created > terminated and blocked > terminated
fail gracefully. We don’t want the application to crash when an illegal transition is requested, and this

processl: created
process2: created

entered waiting mode

processl: waiting
process2: created

is running

entered waiting mode
processl: running
process2: waiting

is running
processl: running
process2: running

is blocked
is blocked
processl: blocked
process2: blocked

processl: blocked
process2: blocked

is handled properly by the except block.

Notice how using a good module such as state machine eliminates conditional logic. There’s no
need to use long and error-prone if...else statements that check for each and every state transition

and react to them.

To get a better feeling for the state pattern and state machines, I strongly recommend you implement
your own example. This can be anything: a simple video game (you can use state machines to handle
the states of the main hero and the enemies), an elevator, a parser, or any other system that can be

modeled using state machines.

139

140

Behavioral Design Patterns

The Interpreter pattern

Often, we need to create a domain-specific language (DSL). A DSL is a computer language of limited
expressiveness targeting a particular domain. DSLs are used for different things, such as combat
simulation, billing, visualization, configuration, and communication protocols. DSLs are divided into
internal DSLs and external DSLs.

Internal DSLs are built on top of a host programming language. An example of an internal DSL is a
language that solves linear equations using Python. The advantages of using an internal DSL are that
we don’t have to worry about creating, compiling, and parsing grammar because these are already
taken care of by the host language. The disadvantage is that we are constrained by the features of the
host language. It is very challenging to create an expressive, concise, and fluent internal DSL if the
host language does not have these features.

External DSLs do not depend on host languages. The creator of the DSL can decide all aspects of
the language (grammar, syntax, and so forth). They are also responsible for creating a parser and
compiler for it.

The Interpreter pattern is related only to internal DSLs. Therefore, the goal is to create a simple but
useful language using the features provided by the host programming language, which in this case
is Python. Note that Interpreter does not address parsing at all. It assumes that we already have the
parsed data in some convenient form. This can be an abstract syntax tree (AST) or any other handy
data structure [Gang of Four-95, page 276].

Real-world examples

A musician is an example of the Interpreter pattern. Musical notation represents the pitch and duration
of a sound graphically. The musician can reproduce a sound precisely based on its notation. In a
sense, musical notation is the language of music, and the musician is the interpreter of that language.

We can also cite software examples:

o Inthe C++ world, boost : : spirit is considered an internal DSL for implementing parsers.

o Anexample in Python is PyT, an internal DSL used to generate XHTML/HTML. PyT focuses
on performance and claims to have comparable speed with Jinja2. Of course, we should not
assume that the Interpreter pattern is necessarily used in PyT. However, since it is an internal
DSL, the Interpreter is a very good candidate for it.

Use cases for the Interpreter pattern

The Interpreter pattern is used when we want to offer a simple language to domain experts and advanced
users to solve their problems. The first thing we should stress is that the Interpreter pattern should
only be used to implement simple languages. If the language has the requirements of an external DSL,
there are better tools to create languages from scratch (Yacc and Lex, Bison, ANTLR, and so on).

The Interpreter pattern

Our goal is to offer the right programming abstractions to the specialist, who is often not a programmer,
to make them productive. Ideally, they shouldn’t know advanced Python to use our DSL, but knowing
even a little bit of Python is a plus since that’s what we eventually get at the end. Advanced Python
concepts should not be a requirement. Moreover, the performance of the DSL is usually not an important
concern. The focus is on offering a language that hides the peculiarities of the host language and offers
a more human-readable syntax. Admittedly, Python is already a very readable language with far less
peculiar syntax than many other programming languages.

Implementing the Interpreter pattern

Let’s create an internal DSL to control a smart house. This example fits well into the internet of things
(IoT) era, which is getting more and more attention nowadays. The user can control their home
using a very simple event notation. An event has the form of command -> receiver -> arguments.
The arguments part is optional.

Not all events require arguments. An example of an event that does not require any arguments is
shown here:

open -> gate
An example of an event that requires arguments is shown here:

increase -> boiler temperature -> 3 degrees

The - > symbol is used to mark the end of one part of an event and state the beginning of the next
one. There are many ways to implement an internal DSL. We can use plain old regular expressions,
string processing, a combination of operator overloading, and metaprogramming, or a library/tool
that can do the hard work for us. Although, officially, the Interpreter pattern does not address parsing,
I feel that a practical example needs to cover parsing as well. For this reason, I decided to use a tool to
take care of the parsing part. The tool is called pyparsing and, to find out more about it, check out the
mini-book Getting Started with Pyparsing by Paul McGuire (https://www.oreilly.com/
library/view/getting-started-with/9780596514235/).

Before getting into coding, it is a good practice to define a simple grammar for our language. We can
define the grammar using the Backus-Naur Form (BNF) notation:

event ::= command token receiver token arguments

command ::= word+

word ::= a collection of one or more alphanumeric characters
token ::= ->

receiver ::= word+

arguments ::= word+

141

https://www.oreilly.com/library/view/getting-started-with/9780596514235/
https://www.oreilly.com/library/view/getting-started-with/9780596514235/

142

Behavioral Design Patterns

What the grammar basically tells us is that an event has the form of command -> receiver -> arguments,
and that commands, receivers, and arguments have the same form: a group of one or more alphanumeric
characters. If you are wondering about the necessity of the numeric part, it is included to allow us to
pass arguments, such as three degrees at the increase -> boiler temperature -> 3 degrees command.

Now that we have defined the grammar, we can move on to converting it to actual code. Here’s what
the code looks like:

word = Word (alphanums)

command = Group (OneOrMore (word))

token = Suppre"s ("->")

device = Group (OneOrMore (word))

argument = Group (OneOrMore (word))

event = command + token + device + Optional (token + argument)

The basic difference between the code and grammar definition is that the code needs to be written
in the bottom-up approach. For instance, we cannot use a word without first assigning it a value.
Suppress is used to state that we want the - > symbol to be skipped from the parsed results.

The full code of the final implementation example (see the ch05/interpreter/interpreter.
py file) uses many placeholder classes, but to keep you focused, I will first show a minimal version
featuring only one class. Let’s look at the Boiler class. A boiler has a default temperature of 83°
Celsius. There are also two methods to increase and decrease the current temperature:

class Boiler:
def init (self):
self.temperature = 83 # in celsius

def str (self) :

return f"boiler temperature: {self.temperature}"

def increase temperature(self, amount) :

print (f"increasing the boiler's temperature by {amount}
degrees")

self.temperature += amount

def decrease temperature(self, amount) :

print (f"decreasing the boiler's temperature by {amount}
degrees")

self.temperature -= amount

The next step is to add the grammar, which we already covered. We will also create a boiler instance
and print its default state:

word = Word (alphanums)
command = Group (OneOrMore (word))

The Interpreter pattern

token = Suppress("->")
device = Group (OneOrMore (word))
argument = Group (OneOrMore (word))

event = command + token + device + Optional (token + argument)
boiler = Boiler ()

The simplest way to retrieve the parsed output of pyparsing is by using the parseString () method.
The result is a ParseResults instance, which is a parse tree that can be treated as a nested list. For
example, executing print (event .parseStri'g('increase -> boiler temperature
-> 3 degr'es')) wouldgive'[['incre'se']' ['boi'er', 'temperat're'l]'
'131', 'degr'es']] asaresult.

So, in this case, we know that the first sublist is the command (increase), the second sublist is the receiver
(boiler temperature), and the third sublist is the argument (3°). We can unpack the ParseResults
instance, which gives us direct access to these three parts of the event. Having direct access means
that we can match patterns to find out which method should be executed:

test = "increase -> boiler temperature -> 3 degrees"
cmd, dev, arg = event.parseString(test)

cmd _str = " ".join(cmd)

dev_str = " ".join(dev)

if "increase" in cmd_str and "boiler" in dev_str:

boiler.increase temperature (int (arg[0]))
print (boiler)

Executing the preceding code snippet (using python ch05/interpreter/boiler.py) gives
the following output:

increasing the boiler's temperature by 3 degrees
boiler temperature: 86

The full code for our implementation (in the ch05/interpreter/interpreter.py file) is
not very different from what I just described. It is just extended to support more events and devices.
Let’s summarize the steps here:

1. First, we import all we need from pyparsing.

2. We define the following classes: Gate, Aircondition, Heating, Boiler (already
presented), and Fridge.

143

144

Behavioral Design Patterns

3. Next, we have our main function:

A. We prepare the parameters for the tests we will be performing, using the following variables:
tests,open_actions,and close actions.

B. We execute the test actions.

Executing the python choO5/interpreter/interpreter.py command gives the
following output:

opening the gate

closing the garage

turning on the air condition

turning off the heating

increasing the boiler's temperature by 5 degrees
decreasing the fridge's temperature by 2 degrees

If you want to experiment more with this example, I have a few suggestions for you. The first change
that will make it much more interesting is to make it interactive. Currently, all the events are hardcoded
in the tests tuple. However, the user wants to be able to activate events using an interactive prompt.
Do not forget to check how sensitive pyparsing is regarding spaces, tabs, or unexpected input. For
example, what happens if the user types turn off -> heating 377

The Strategy pattern

Several solutions often exist for the same problem. Consider the task of sorting, which involves arranging
the elements of a list in a particular sequence. For example, a variety of sorting algorithms are available
for the task of sorting. Generally, no single algorithm outperforms all others in every situation.

Selecting a sorting algorithm depends on various factors, tailored to the specifics of each case. Some
key considerations include the following:

o The number of elements to be sorted, known as the input size: While most sorting algorithms
perform adequately with a small input size, only a select few maintain efficiency with larger datasets.

o The best/average/worst time complexity of the algorithm: Time complexity is (roughly) the
amount of time the algorithm takes to complete, excluding coeflicients and lower-order terms.
This is often the most usual criterion to pick an algorithm, although it is not always sufficient.

o The space complexity of the algorithm: Space complexity is (again roughly) the amount of
physical memory needed to fully execute an algorithm. This is very important when we are
working with big data or embedded systems, which usually have limited memory.

« Stability of the algorithm: An algorithm is considered stable when it maintains the relative
order of elements with equal values after it is executed.

o Code complexity of the algorithm: If two algorithms have the same time/space complexity
and are both stable, it is important to know which algorithm is easier to code and maintain.

The Strategy pattern

Other factors might also influence the choice of a sorting algorithm. The key consideration is whether
a single algorithm must be applied universally. The answer is, unsurprisingly, no. It is more practical
to have access to various sorting algorithms and choose the most suitable one for a given situation,
based on the criteria. That's what the Strategy pattern is about.

The Strategy pattern promotes using multiple algorithms to solve a problem. Its killer feature is that
it makes it possible to switch algorithms at runtime transparently (the client code is unaware of the
change). So, if you have two algorithms and you know that one works better with small input sizes,
while the other works better with large input sizes, you can use Strategy to decide which algorithm
to use based on the input data at runtime.

Real-world examples
Reaching an airport to catch a flight is a good real-life Strategy example:

« If we want to save money and we leave early, we can go by bus/train
o If we don’'t mind paying for a parking place and have our own car, we can go by car

o If we don't have a car but we are in a hurry, we can take a taxi

There are trade-offs between cost, time, convenience, and so forth.

In software, Pythons sorted () and 1ist.sort () functions are examples of the Strategy pattern.
Both functions accept a named parameter key, which is basically the name of the function that implements
a sorting strategy (Python 3 Patterns, Recipes, and Idioms, by Bruce Eckel & Friends, page 202).

Use cases for the Strategy pattern

Strategy is a very generic design pattern with many use cases. In general, whenever we want to be able
to apply different algorithms dynamically and transparently, Strategy is the way to go. By different
algorithms, I mean different implementations of the same algorithm. This means that the result
should be the same, but each implementation has a different performance and code complexity (as
an example, think of sequential search versus binary search).

Apart from its usage for sorting algorithms as we mentioned, the Strategy pattern is used to create
different formatting representations, either to achieve portability (for example, line-breaking differences
between platforms) or dynamically change the representation of data.

Implementing the Strategy pattern

There is not much to be said about implementing the Strategy pattern. In languages where functions
are not first-class citizens, each Strategy should be implemented in a different class. In Python,
functions are objects (we can use variables to reference and manipulate them) and this simplifies the
implementation of Strategy.

145

146

Behavioral Design Patterns

Assume that we are asked to implement an algorithm to check whether all characters in a string are
unique. For example, the algorithm should return true if we enter the dream string because none of
the characters are repeated. If we enter the pizza string, it should return false because the letter “z”
exists two times. Note that the repeated characters do not need to be consecutive, and the string does
not need to be a valid word. The algorithm should also return false for the 1r2a3ae string because the

letter “a” appears twice.

After thinking about the problem carefully, we come up with an implementation that sorts the string
and compares all characters pair by pair. First, we implement the pairs () function, which returns
all neighbors pairs of a sequence, seq:

def pairs(seq) :
n = len(seq)
for i in range(n) :
yield seq[i], seql(i + 1) % n]

Next, we implement the al1UniqueSort () function, which accepts a string, s, and returns True
if all characters in the string are unique; otherwise, it returns False. To demonstrate the Strategy
pattern, we will simplify by assuming that this algorithm fails to scale. We assume that it works fine
for strings that are up to five characters. For longer strings, we simulate a slowdown by inserting a
sleep statement:

SLOW = 3 # in seconds
LIMIT = 5 # in characters
WARNING"= "too bad, you picked the slow algorithm": ("

def allUniqueSort (s) :
if len(s) > LIMIT:
print (WARNING)
time.sleep (SLOW)
srtStr = sorted(s)
for cl, c2 in pairs(srtStr):
if cl == c2:
return False
return True

We are not happy with the performance of al1UniqueSort (), and we are trying to think of ways to
improve it. After some time, we come up with a new algorithm, al1UniqueSet (), that eliminates
the need to sort. In this case, we use a set. If the character in check has already been inserted in the
set, it means that not all characters in the string are unique:

def allUniqueSet (s) :
if len(s) < LIMIT:
print (WARNING)

The Strategy pattern

time.sleep (SLOW)

return True if len(set(s)) == len(s) else False

Unfortunately, while al1UniqueSet () has no scaling problems, for some strange reason, it
performs worse than allUniqueSort () when checking short strings. What can we do in this
case? Well, we can keep both algorithms and use the one that fits best, depending on the length of
the string that we want to check.

The allUnique () function accepts an input string, s, and a strategy function, st rategy, which,
in this case, is one of al1UniqueSort () and allUniqueSet (). The allUnique () function
executes the input strategy and returns its result to the caller.

Then, themain () function lets the user perform the following actions:

« Enter the word to be checked for character uniqueness

o Choose the pattern that will be used
It also does some basic error handling and gives the ability to the user to quit gracefully:

def main() :

WORD_IN DESC = "Insert word (type quit to exit)s> "
STRAT IN DESC = "Choose strategy: [1] Use a set, [2] Sort and
pair> "

while True:
word = None
while not word:
word = input (WORD_IN_DESC)

if word == "quit":
print ("bye")
return

strategy picked = None

strategies = {"1": allUnigueSet, "2": allUniqueSort}

while strategy picked not in strategies.keys():
strategy picked = input (STRAT IN DESC)

try:
strategy = strategies|[strategy picked]
result = allUnique (word, strategy)
print (£"allUnique ({word}): {result}")
except KeyError:
print (£"Incorrect option: {strategy picked}")

147

148 Behavioral Design Patterns

Here’s a summary of the complete code for our implementation example (the ch05/strategy.
py file):

1. We import the t ime module.

We define the pairs () function.
We define the values for the SLOW, LIMIT, and WARNING constants.

2

3

4. We define the function for the first algorithm, al1lUniqueSort ().
5. We define the function for the second algorithm, allUniqueSet ().
6

Next, we define the al1lUnique () function that helps call a chosen algorithm by passing the
corresponding strategy function.

7. Finally, we add the main () function.
Let’s see the output of a sample execution using the python ch05/strategy.py command:

Insert word (type quit to exit)> balloon

Choose strategy: [1l] Use a set, [2] Sort and pair> 1
allUnique (balloon): False

Insert word (type quit to exit)> balloon

Choose strategy: [1l] Use a set, [2] Sort and pair> 2
too bad, you picked the slow algorithm : (

allUnique (balloon): False

Insert word (type quit to exit)> bye

Choose strategy: [1l] Use a set, [2] Sort and pair> 1
too bad, you picked the slow algorithm : (

allUnique (bye) : True

Insert word (type quit to exit)> bye

Choose strategy: [1l] Use a set, [2] Sort and pair> 2
allUnique (bye) : True

Insert word (type quit to exit)>

The first word, balloon, has more than five characters and not all of them are unique. In this case,
both algorithms return the correct result, False, but allUniqueSort () is slower and the user
is warned.

The second word, bye, has less than five characters and all characters are unique. Again, both
algorithms return the expected result, True, but this time, al1lUniqueSet () is slower and the
user is warned once more.

Normally, the strategy that we want to use should not be picked by the user. The point of the strategy
pattern is that it makes it possible to use different algorithms transparently. Change the code so that
the faster algorithm is always picked.

The Memento pattern

There are two usual users of our code. One is the end user, who should be unaware of what’s happening
in the code, and to achieve that we can follow the tips given in the previous paragraph. Another
possible category of users is the other developers. Assume that we want to create an API that will
be used by the other developers. How can we keep them unaware of the Strategy pattern? A tip is to
think of encapsulating the two functions in a common class, for example, A11Unique. In this case,
the other developers will just need to create an instance of that class and execute a single method, for
instance, test (). What needs to be done in this method?

The Memento pattern

In many situations, we need a way to easily take a snapshot of the internal state of an object, so that we
can restore the object with it when needed. Memento is a design pattern that can help us implement
a solution for such situations.

The Memento design pattern has three key components:

« Memento: A simple object that contains basic state storage and retrieval capabilities
« Originator: An object that gets and sets values of Memento instances

o Caretaker: An object that can store and retrieve all previously created Memento instances

Memento shares many similarities with the Command pattern.

Real-world examples

The Memento pattern can be seen in many situations in real life.

An example could be found in the dictionary we use for a language, such as English or French. The
dictionary is regularly updated through the work of academic experts, with new words being added
and other words becoming obsolete. Spoken and written languages evolve, and the official dictionary
has to reflect that. From time to time, we revisit a previous edition to get an understanding of how the
language was used at some point in the past. This could also be needed simply because information
can be lost after a long period of time, and to find it, you may need to look into old editions. This can
be useful for understanding something in a particular field. Someone doing research could use an old
dictionary or go to the archives to find information about some words and expressions.

This example can be extended to other written material, such as books and newspapers.

Zope (http://www.zope.org), with its integrated object database called Zope Object Database
(ZODB), offers a good software example of the Memento pattern. It is famous for its Through-The-
Web object management interface, with undo support, for website administrators. ZODB is an object
database for Python and is in heavy use in the Pyramid and Plone stacks among others.

149

http://www.zope.org

150 Behavioral Design Patterns

Use cases for the Memento pattern

Memento is usually used when you need to provide some sort of undo and redo capability for your users.

Another usage is the implementation of a UI dialog with OK/Cancel buttons, where we would store
the state of the object on load, and if the user chooses to cancel, we would restore the initial state of
the object.

Implementing the Memento pattern

We will approach the implementation of Memento, in a simplified way, and by doing things in a natural
way for the Python language. This means we do not necessarily need several classes.

One thing we will use is Python’s pickle module. What is pickle used for? According to the
module’s documentation (https://docs.python.org/3/library/pickle.html), the
pickle module can transform a complex object into a byte stream, and it can transform the byte
stream into an object with the same internal structure.

Warning

The pickle module is used here for the sake of our demonstration, but you should know
that it is not secure for generic usage.

Let’s take a Quote class, with the text and author attributes. To create memento, we will use a
method on that class, save state (), which as the name suggests will dump the state of the object,
using the pickle.dumps () function. This creates memento:

class Quote:
def init (self, text, author):
self.text = text
self.author = author

def save state(self):
current state = pickle.dumps(self. dict)

return current_state

That state can be restored later. For that, we add the restore_state () method, making use of
the pickle.loads () function:

def restore state(self, memento) :
previous state = pickle.loads (memento)

self. dict .clear()
self. dict .update(previous_state)

https://docs.python.org/3/library/pickle.html

The Memento pattern 151

Letsalsoadd the str method:

def str (self):

return f£"{self.text}\n- By {self.author}."

Then, in the main function, we can take care of things and test our implementation, as usual:

def main() :

print ("** Quote 1 **")

gl = Quote(
"A room without books is like a body without a soul.",
"Unknown author",

)

print (£"\nOriginal version:\n{gl}")

gl mem = gl.save state()

Now, we found the author's name
gl.author = "Marcus Tullius Cicero"
print (£"\nWe found the author, and did an updated:\n{gl}")

Restoring previous state (Undo)
gl.restore state (gl mem)
print (£"\nWe had to restore the previous version:\n{gl}")

print ()

print ("** Quote 2 **")

text = (
"To be you in a world that is constantly \n"
"trying to make you be something else is \n"
"the greatest accomplishment."

g2 = Quote (
text,
"Ralph Waldo Emerson",
)
print (£"\nOriginal version:\n{g2}")
= g2.save_state()

changes to the text

g2.text = (
"To be yourself in a world that is constantly \n"
"trying to make you something else is the greatest \n"
"accomplishment."

152 Behavioral Design Patterns

print (£"\nWe fixed the text:\n{g2}")
g2 _mem2 = g2.save state()

g2.text = (
"To be yourself when the world is constantly \n"
"trying to make you something else is the greatest \n"
"accomplishment."

)

print (£"\nWe fixed the text again:\n{g2}")

Restoring previous state (Undo)
g2.restore state (g2 mem2)
print (E"\nWe restored the 2nd version, the correct one:\n{qZ}")

Here’s the recapitulation of the steps in the example (the ch05/memento . py file):

1. We import the pickle module.
2. We define the Quote class.

3. Finally, we add the main function where we test the implementation.

Let’s view a sample execution using the python ch05/memento.py command:

** Quote 1 **

Original version:
A room without books is like a body without a soul.
- By Unknown author.

We found the author, and did an updated:
A room without books is like a body without a soul.
- By Marcus Tullius Cicero.

We had to restore the previous version:
A room without books is like a body without a soul.
- By Unknown author.

** Quote 2 *¥*

Original version:

To be you in a world that is constantly
trying to make you be something else is
the greatest accomplishment.

- By Ralph Waldo Emerson.

The Iterator pattern

We fixed the text:

To be yourself in a world that is constantly
trying to make you something else is the greatest
accomplishment.

- By Ralph Waldo Emerson.

We fixed the text again:

To be yourself when the world is constantly
trying to make you something else is the greatest
accomplishment.

- By Ralph Waldo Emerson.

We restored the 2nd wversion, the correct one:

To be yourself in a world that is constantly
trying to make you something else is the greatest
accomplishment.

- By Ralph Waldo Emerson.

The output shows the program does what we expected: we can restore a
previous state for each of our Quote objects.

The Iterator pattern

In programming, we use sequences or collections of objects a lot, particularly in algorithms and when
writing programs that manipulate data. One can think of automation scripts, APIs, data-driven apps,
and other domains. In this chapter, we are going to see a pattern that is useful whenever we must
handle collections of objects: the Iterator pattern.

Note, according to the definition given by Wikipedia

Iterator is a design pattern in which an iterator is used to traverse a container and access the
container’s elements. The iterator pattern decouples algorithms from containers; in some cases,
algorithms are necessarily container-specific and thus cannot be decoupled.

The Iterator pattern is extensively used in the Python context. As we will see, this translates into Iterator
being a language feature. It is so useful that the language developers decided to make it a feature.

Use cases for the Iterator pattern
It is a good idea to use the Iterator pattern whenever you want one or several of the following behaviors:

o Make it easy to navigate through a collection
o Get the next object in the collection at any point

o Stop when you are done traversing through the collection

153

154

Behavioral Design Patterns

Implementing the Iterator pattern

Iterator is implemented in Python for us, within for loops, list comprehensions, and so on. Iterator
in Python is simply an object that can be iterated upon; an object that will return data, one element
at a time.

We can do our own implementation for special cases, using the Iterator protocol, meaning that our
iterator object must implement two special methods: _iter () and next ().

An object is called iterable if we can get an iterator from it. Most of the built-in containers in Python (list,
tuple, set, string, and so on) are iterable. The iter () function (whichin turncallsthe iter ()
method) returns an iterator from them.

Let’s consider a football team we want to implement with the help of the FootballTeam class. If we
want to make an iterator out of it, we have to implement the Iterator protocol, since it is not a built-in
container type such as the list type. Basically, built-in iter () and next () functions would not
work on it unless they are added to the implementation.

First, we define the class of the iterator, FootballTeamIterator, that will be used to iterate
through the football team object. The members attribute allows us to initialize the iterator object with
our container object (which will be a FootballTeaminstance). Weadda iter () method to
it, which would return the object itself, anda next () method to return the next person from
the team at each call until we reach the last person. These will allow looping over the members of the
football team via the iterator. The whole code for the FootballTeamIterator class is as follows:

class FootballTeamIterator:
def init (self, members) :
self .members = members
self.index = 0

def iter (self):
return self

def next (self):
if self.index < len(self.members) :
val = self.members[self.index]
self.index += 1
return val
else:
raise StopIteration()

The Iterator pattern

So, now for the FootballTeam class itself; the next thing todoisadda _iter () methodtoit,
which will initialize the iterator object that it needs (thus using FootballTeamIterator (self.
members)) and return it:

class FootballTeam:
def init (self, members):
self .members = members

def iter (self):
return FootballTeamIterator (self.members)

We add a small main function to test our implementation. Once we have a FootballTeam instance,
we call the itexr () function on it to create the iterator, and we loop through it using a while loop:

def main() :

members = [f"player{str(x)]}" for x in range (1, 23)]
members = members + ["coachl", "coach2", "coach3"]
team = FootballTeam (members)

team it = iter(team)

try:

while True:
print (next (team it))
except StopIteration:
print (" (End) ")

Here is a recap of the steps in our example (the ch05/iterator.py file):

1. We define the class for the iterator.
2. We define the container class.

3. We define our main function followed by the snippet to call it.

Here is the output we get when executing the python ch05/iterator.py command:

playerl
player2
player3
player4
player5
player22
coachl
coach2

coach3
(End)

155

156

Behavioral Design Patterns

We got the expected output. Also, we can see that an exception was raised when we reached the end
of the iteration, but it was caught, printing the (End) string instead.

The Template pattern

A key ingredient in writing good code is avoiding redundancy. In OOP, methods and functions are
important tools that we can use to avoid writing redundant code.

Remember the sorted () example we saw when discussing the Strategy pattern. That function
is generic enough that it can be used to sort more than one data structure (lists, tuples, and named
tuples) using arbitrary keys. That’s the definition of a good function.

Functions such as sorted () demonstrate the ideal case. However, we cannot always write 100%
generic code.

In the process of writing code that handles algorithms in the real world, we often end up writing
redundant code. That’s the problem solved by the Template design pattern. This pattern focuses
on eliminating code redundancy. The idea is that we should be able to redefine certain parts of an
algorithm without changing its structure.

Real-world examples

The daily routine of a worker, especially for workers of the same company, is very close to the Template
design pattern. All workers follow the same routine, but specific parts of the routine are very different.

In software, Python uses the Template pattern in the cmd module, which is used to build line-oriented
command interpreters. Specifically, cmd. Cmd. cmdloop () implements an algorithm that reads
input commands continuously and dispatches them to action methods. What is done before the loop,
after the loop, and at the command parsing part is always the same. This is also called the invariant
part of an algorithm. The elements that change are the actual action methods (the variant part).

Use cases for the Template pattern

The Template design pattern focuses on eliminating code repetition. If we notice that there is
repeatable code in algorithms that have structural similarities, we can keep the invariant (common)
parts of the algorithms in a Template method/function and move the variant (different) parts in
action/hook methods/functions.

Pagination is a good use case to use Template. A pagination algorithm can be split into an abstract
(invariant) part and a concrete (variant) part. The invariant part takes care of things such as the
maximum number of lines/pages. The variant part contains functionality to show the header and
footer of a specific page that is paginated.

The Template pattern

All application frameworks make use of some form of the Template pattern. When we use a framework
to create a graphical application, we usually inherit from a class and implement our custom behavior.
However, before this, a Template method is usually called, which implements the part of the application
that is always the same, which is drawing the screen, handling the event loop, resizing and centralizing
the window, and so on (Python 3 Patterns, Recipes and Idioms, by Bruce Eckel & Friends, page 133).

Implementing the Template pattern

In this example, we will implement a banner generator. The idea is rather simple. We want to send
some text to a function, and the function should generate a banner containing the text. Banners have
some sort of style, for example, dots or dashes surrounding the text. The banner generator has a default
style, but we should be able to provide our own style.

The generate banner () function is our Template function. It accepts, as an input, the text (msg)
that we want our banner to contain, and the style (style) that we want to use. The generate
banner () function wraps the styled text with a simple header and footer. The header and footer
can be much more complex, but nothing forbids us from calling functions that can do the header and
footer generations instead of just printing simple strings:

def generate banner (msg, style):
print ("-- start of banner --")
print (style (msg))
print ("-- end of banner --nn")

The dots_style () function simply capitalizes msg and prints 10 dots before and after it:

def dots style(msg) :
msg = msg.capitalize ()
ten dots = "." * 10
msg = f£"{ten dots}{msg}{ten dots}"
return msg

Another style that is supported by the generator is admire style (). This style shows the text in
uppercase and puts an exclamation mark between each character of the text:

def admire style(msg) :
msg = msg.upper ()
return "!".join (msg)

The next style is by far my favorite. The cow_style () style executes themilk random cow ()
method of cowpy, which is used to generate a random ASCII art character every time cow_style ()
is executed. Here is the cow_style () function:

def cow style (msg) :
msg = cow.milk random cow (msg)
return msg

157

158

Behavioral Design Patterns

Themain () function sends the "happy coding" text to the banner and prints it to the standard
output using all the available styles:

def main () :
styles = (dots style, admire style, cow_style)
msg = "happy coding"
[generate banner (msg, style) for style in styles]

Here is the recap of the full code of the example (the ch05/template.py file):

1. We import the cow function from cowpy.

We define the generate banner () function.

2

3. We define the dots_style () function.

4. Next, we define the admire style () and cow_style () functions.
5

We finish with the main function and the snippet to call it.

Let’s look at a sample output by executing python ch05/template.py (note that your cow
style () output might be different due to the randomness of cowpy):

—— start of banner ——
Happy coding
—— end of banner --nn
—-— start of banner ——
H!A!P!P!Y! IC!IOI!D!IINIG
—— end of banner —-nn
—— start of banner —

—— end of banner --nn

Figure 5.3 - Sample art output of the ch05/template.py program
Do you like the art generated by cowpy? I certainly do. As an exercise, you can create your own style
and add it to the banner generator.

Another good exercise is to try implementing your own Template example. Find some existing
redundant code that you wrote and see whether this pattern is applicable.

Other behavioral design patterns

Other behavioral design patterns

What about the other behavioral design patterns from the Gang of Four’s catalog? We also have the
Mediator pattern and the Visitor pattern:

o The Mediator pattern promotes loose coupling between objects by encapsulating how they
interact and communicate with each other. In this pattern, objects don’t communicate directly
with each other; instead, they communicate through a mediator object. This mediator object
acts as a central hub that coordinates communication between the objects. The Mediator pattern
stands out as a solution for promoting loose coupling and managing complex interactions
between objects.

« For complex use cases, the Visitor pattern provides a solution for separating algorithms from
the objects on which they operate. By allowing new operations to be defined without modifying
the classes of the elements on which they operate, the Visitor pattern promotes flexibility and
extensibility in object-oriented systems.

We are not going to discuss these two patterns, since they are not commonly used by Python developers.
Python offers built-in features and libraries that can help achieve loose coupling and/or extensibility goals
without the need to implement these patterns. For example, one can use event-driven programming
with a library such as asyncio instead of communication between objects through a mediator object.
Additionally, using functions as first-class citizens, decorators, or context managers can provide ways
to encapsulate algorithms and operations without the need for explicit visitor objects.

Summary

In this chapter, we discussed the behavioral design patterns.

First, we covered the Chain of Responsibility pattern, which simplifies the management of complex
processing flows, making it a valuable tool for enhancing flexibility and maintainability in software design.

Second, we went over the Command pattern, which encapsulates a request as an object, thereby
allowing us to parameterize clients with queues, requests, and operations. It also allows us to support
undoable operations. Although the most advertised feature of command by far is undo, it has more
uses. In general, any operation that can be executed at the user’s will at runtime is a good candidate
for using the Command pattern.

We looked at the Observer pattern, which helps with the separation of concerns, increasing decoupling
between the publisher and subscribers. We have seen that observers are loosely coupled with the
subject and can be added or removed dynamically.

Then, we went over the State pattern, which is an implementation of one or more state machines used
to solve a particular software engineering problem. A state machine can have only one active state at
any point in time. A transition is a switch from the current state to a new state. It is normal to execute
one or more actions before or after a transition occurs. State machines can be represented visually

159

160

Behavioral Design Patterns

using state diagrams. State machines are used to solve many computational and non-computational
problems. We saw how to implement a state machine for a computer system process using the
state machine module. The state machine module simplifies the creation of a state machine
and the definition of actions before/after transitions.

Afterward, we looked at the Interpreter pattern, which is used to offer a programming-like framework
to advanced users and domain experts, without exposing the complexities of a programming language.
This is achieved by implementing a DSL, a computer language that has limited expressiveness and
targets a specific domain. The interpreter is related to what are called internal DSLs. Although parsing
is generally not addressed by the Interpreter pattern, as an implementation example, we used pyparsing
to create a DSL that controls a smart house and saw that using a good parsing tool makes interpreting
the results using pattern matching simple.

Then, we looked at the Strategy design pattern, which is generally used when we want to be able to
use multiple solutions for the same problem, transparently. There is no perfect algorithm for all input
data and all cases, and by using Strategy, we can dynamically decide which algorithm to use in each
case. We saw how Python, with its first-class functions, simplifies the implementation of Strategy by
implementing two different algorithms that check whether all of the characters in a word are unique.

Next, we looked at the Memento pattern, which is used to store the state of an object when needed.
Memento provides an efficient solution when implementing some sort of undo capability for your
users. Another usage is the implementation of a UI dialog with OK/Cancel buttons, where, if the
user chooses to cancel, we will restore the initial state of the object. We used an example to get a feel
for how Memento, in a simplified form and using the pickle module from the standard library,
can be used in an implementation where we want to be able to restore previous states of data objects.

We then looked at the Iterator pattern, which gives a nice and efficient way to iterate through sequences
and collections of objects. In real life, whenever you have a collection of things and you are getting to
those things one by one, you are using a form of the Iterator pattern. In Python, Iterator is a language
feature. We can use it immediately on built-in containers such as lists and dictionaries, and we can
define new iterable and iterator classes, to solve our problem, by using the Python iterator protocol.
We saw that with an example of implementing a football team.

Then, we saw how we can use the Template pattern to eliminate redundant code when implementing
algorithms with structural similarities. We saw how the daily routine of a worker resembles the
Template pattern. We also mentioned two examples of how Python uses Template in its libraries.
General use cases of when to use Template were also mentioned. We concluded by implementing a
banner generator, which uses a Template function to implement custom text styles.

There are other structural design patterns: Mediator and Visitor. They are not commonly used by
Python developers; therefore, we have not discussed them.

In the next chapter, we will explore architectural design patterns, which are patterns that help in
solving common architectural problems.

Part 3:
Beyond the Gang of Four

This part goes beyond the classic design patterns to help you address special software design needs
such as microservices, cloud-based applications, and performance optimization. It also discusses
patterns for testing and specific Python anti-patterns

Chapter 6, Architectural Design Patterns

Chapter 7, Concurrency and Asynchronous Patterns
Chapter 8, Performance Patterns

Chapter 9, Distributed Systems Patterns

Chapter 10, Patterns for Testing

Chapter 11, Python Anti-Patterns

6

Architectural Design Patterns

In the previous chapter, we covered behavioral patterns, patterns that help with object interconnection
and algorithms. The next category of design patterns is architectural design patterns. These patterns
provide a template for solving common architectural problems, facilitating the development of scalable,
maintainable, and reusable systems.

In this chapter, were going to cover the following main topics:

o 'The Model-View-Controller (MVC) pattern
o 'The Microservices pattern

o 'The Serverless pattern

« The Event Sourcing pattern

« Other architectural design patterns

At the end of this chapter, you will understand how to build robust and flexible software using popular
architectural design patterns.

Technical requirements

See the requirements presented in Chapter 1. The additional technical requirements for the code
discussed in this chapter are the following:

o For the Microservices pattern section, install the following:

gRPC, using the following command: python -m pip install grpcio
gRPC-tools, using the following command: python -m pip install grpcio-tools

Lanarky and its dependencies, using the following command: python -m pip install
"lanarky [openai] "==0.8.6 uvicorn==0.29.0 (Note that this is not compatible
with Python 3.12, at the time of writing. In this case, you may reproduce the related example
using Python 3.11 instead.)

164

Architectural Design Patterns

o For the Serverless pattern section, install the following:

= Docker

= LocalStack, for testing AWS Lambda locally, using the following command: python -m
pip install localstack (Note that this is not compatible with Python 3.12, at the
time of writing. You may use Python 3.11 instead for this case.)

= awscli-local, using the command: python -m pip install awscli-local

* awscli, using the command: python -m pip install awscli
o For the Event Sourcing section, install the following:

* eventsourcing, using the command: python -m pip install eventsourcing

The MVC pattern

The MVC pattern is another application of the loose coupling principle. The name of the pattern
comes from the three main components used to split a software application: the model, the view, and
the controller.

Even if we will never have to implement it from scratch, we need to be familiar with it because all
common frameworks use MVC or a slightly different version of it (more on this later).

The model is the core component. It represents knowledge. It contains and manages the (business) logic,
data, state, and rules of an application. The view is a visual representation of the model. Examples of
views are a computer GUI, the text output of a computer terminal, a smartphone’s application GUI, a
PDF document, a pie chart, a bar chart, and so forth. The view only displays the data; it doesn’t handle
it. The controller is the link/glue between the model and the view. All communication between the
model and the view happens through a controller.

A typical use of an application that uses MVC, after the initial screen is rendered to the user, is as follows:

1. The user triggers a view by clicking (typing, touching, and so on) a button.
2. 'The view informs the controller of the user’s action.

3. The controller processes user input and interacts with the model.

4

The model performs all the necessary validation and state changes and informs the controller
about what should be done.

5. The controller instructs the view to update and display the output appropriately, following the
model’s instructions.

The MVC pattern

triggers

informs updates

Controller

processes input validates & updates

Model

interacts with

Figure 6.1 - The MVC pattern

But is the controller part necessary? Can't we just skip it? We could, but then we would lose a big benefit
that MVC provides: the ability to use more than one view (even at the same time, if that's what we
want) without modifying the model. To achieve decoupling between the model and its representation,
every view typically needs its own controller. If the model communicated directly with a specific view,
we wouldn't be able to use multiple views (or, at least, not in a clean and modular way).

Real-world examples

MVC is an application of the separation of concern principle. Separation of concern is used a lot in
real life. For example, if you build a new house, you usually assign different professionals to 1) install
the plumbing and electricity; and, 2) paint the house.

Another example is a restaurant. In a restaurant, the waiters receive orders and serve dishes to the
customers, but the meals are cooked by the chefs.

In web development, several frameworks use the MVC idea, for example:

o 'The Web2py framework is a lightweight Python framework that embraces the MVC pattern.
There are many examples that demonstrate how MVC can be used in Web2py on the project’s
site (http://web2py.com/) and in the GitHub repository.

165

http://web2py.com/

166

Architectural Design Patterns

Django (https://www.djangoproject .com/) is also an MVC framework, although
it uses different naming conventions. The controller is called view, and the view is called
template. Django uses the name Model-View Template (MVT). According to the designers
of Django, the view describes what data is seen by the user, and therefore, it uses the name
view as the Python callback function for a particular URL. The term “template” in Django is
used to separate content from representation. It describes how the data is seen by the user, not
which data is seen.

Use cases for the MVC pattern

MVC s a very generic and useful design pattern. In fact, all popular web frameworks (Django, Rails,
Symfony, and Yii) and application frameworks (iPhone SDK, Android, and QT) make use of MVC or
a variation of it (model-view-adapter (MVA), model-view-presenter (MVP), or MVT, for example).
However, even if we don’t use any of these frameworks, it makes sense to implement the pattern on
our own because of the benefits it provides, which are as follows:

The separation between the view and model allows graphics designers to focus on the user
interface (UI) part and programmers to focus on development, without interfering with
each other.

Because of the loose coupling between the view and model, each part can be modified/extended
without affecting the other. For example, adding a new view is trivial. Just implement a new
controller for it.

Maintaining each part is easier because the responsibilities are clear.

When implementing MVC from scratch, be sure that you create smart models, thin controllers, and
dumb views.

A model is considered smart because it does the following:

It contains all the validation/business rules/logic
It handles the state of the application
It has access to application data (database, cloud, and so on)

It does not depend on the UI

A controller is considered thin because it does the following:

It updates the model when the user interacts with the view
It updates the view when the model changes
It processes the data before delivering it to the model/view, if necessary

It does not display the data

https://www.djangoproject.com/

The MVC pattern

It does not access the application data directly

It does not contain validation/business rules/logic

A view is considered dumb because it does the following:

It displays the data
It allows the user to interact with it

It does only minimal processing, usually provided by a template language (for example, using
simple variables and loop controls)

It does not store any data
It does not access the application data directly

It does not contain validation/business rules/logic

If you are implementing MVC from scratch and want to find out whether you did it right, you can
try answering some key questions:

If your application has a GUI, is it skinnable? How easily can you change the skin/look and feel
of it? Can you give the user the ability to change the skin of your application during runtime?
If this is not simple, it means that something is going wrong with your MVC implementation.

If your application has no GUI (for instance, if it's a terminal application), how hard is it to add
GUI support? Or, if adding a GUT is irrelevant, is it easy to add views to display the results in
a chart (pie chart, bar chart, and so on) or a document (PDEF, spreadsheet, and so on)? If these
changes are not trivial (a matter of creating a new controller with a view attached to it, without
modifying the model), MVC is not implemented properly.

If you make sure that these conditions are satisfied, your application will be more flexible and
maintainable compared to an application that does not use MVC.

Implementing the MVC pattern

I could use any of the common frameworks to demonstrate how to use MVC, but I feel that the picture
will be incomplete. So, I decided to show you how to implement MVC from scratch, using a very
simple example: a quote printer. The idea is extremely simple. The user enters a number and sees the
quote related to that number. The quotes are stored in a quotes tuple. This is the data that normally
exists in a database, file, and so on, and only the model has direct access to it.

Let’s consider this example for the quotes tuple:

quotes = (

"A man is not complete until he is married. Then he is finished.",
"As I said before, I never repeat myself.",

167

168 Architectural Design Patterns

"Behind a successful man is an exhausted woman.",
"Black holes really suck...",
"Facts are stubborn things.",

The model is minimalistic; it only has a get _quote () method that returns the quote (string) of
the quotes tuple based on its index, n. The model class is as follows:

class QuoteModel:
def get quote(self, n):
try:
value = quotes [n]
except IndexError as err:
value = "Not found!"
return value

The view has three methods: show (), which is used to print a quote (or the Not found! message) on
the screen; error (), which is used to print an error message on the screen; and select quote (),
which reads the user’s selection. This can be seen in the following code:

class QuoteTerminalView:
def show(self, quote) :
print (f'And the quote is: "{quote}"')

def error(self, msg):
print (f"Error: {msg}")

def select quote (self) :
return input ("Which quote number would you like to see? ")

The controller does the coordination. The _init () method initializes the model and view.
The run () method validates the quoted index given by the user, gets the quote from the model, and
passes it back to the view to be displayed, as shown in the following code:

class QuoteTerminalController:
def init (self):
self .model = QuoteModel ()
self.view = QuoteTerminalView ()

def run(self):
valid_input = False
while not valid input:
try:
n = self.view.select quote()
n = int(n)

The Microservices pattern

valid_input = True
except ValueError as err:
self.view.error (f"Incorrect index '{n}'")
quote = self.model.get quote(n)
self.view.show (quote)

Finally, the main () function initializes and fires the controller, as shown in the following code:

def main() :
controller = QuoteTerminalController ()
while True:
controller.run/()

Here is a recap of our example (the full code is in ch06 /mvc . py file):

1. We start by defining a variable for the list of quotes.
We define the model class, QuoteModel.
We define the view class, QuoteTerminalView.

We define the controller class, QuoteTerminalController.

AN

Finally, we add the main () function to test the different classes, followed by the usual trick
to call it.

A sample execution of the python ch06/mvc.py command shows how the program prints
quotes to the user:

Which quote number would you like to see? 3

And the quote is: "Black holes really suck..."

Which quote number would you like to see? 2

And the quote is: "Behind a successful man is an exhausted woman."
Which quote number would you like to see? 6

And the quote is: "Not found!"

Which quote number would you like to see? 4

And the quote is: "Facts are stubborn things."

Which quote number would you like to see? 3

And the quote is: "Black holes really suck..."

Which quote number would you like to see? 1

And the quote is: "As I said before, I never repeat myself."

The Microservices pattern

Traditionally, developers working on building a server-side application have been using a single code
base and implementing all or most functionalities right there, using common development practices
such as functions and classes, and design patterns such as the ones we have covered in this book so far.

169

170

Architectural Design Patterns

However, with the evolution of the IT industry, economic factors, and pressure for fast times to market
and returns on investment, there is a constant need to improve the practices of engineering teams
and ensure more reactivity and scalability with servers, service delivery, and operations. We need to
learn about other useful patterns, not only object-oriented programming ones.

User

y

Load Balancer

—

Service A Service B Service C
1 P o
Read/Write Read from™ Read/Write Write to
Database A Database B

Figure 6.2 — The Microservices pattern

One of the main additions to the catalog of patterns for engineers in recent years has been the
Microservice Architecture pattern or Microservices. The idea is that we can build an application as
a set of loosely coupled, collaborating services. In this architectural style, an application might consist
of services such as the order management service, the customer management service, and so on. These
services are loosely coupled, independently deployable, and communicate via well-defined APIs.

Real-world examples
We can cite several examples, such as the following:

o Netflix: One of the pioneers in adopting microservices to handle millions of content
streams simultaneously

o Uber: The company uses microservices to handle different aspects such as billing, notifications,
and ride tracking

o Amazon: They transitioned from a monolithic architecture to microservices to support their
ever-growing scale

The Microservices pattern

Use cases for the Microservices pattern

We can think of several use cases where Microservices offer a clever answer. We can use a Microservices
architecture-based design every time we are building an application that has at least one of the
following characteristics:

o 'There is a requirement to support different clients, including desktop and mobile
o 'There is an API for third parties to consume
o We must communicate with other applications using messaging

o We serve requests by accessing a database, communicating with other systems, and returning
the right type of response (JSON, XML, HTML, or even PDF)

o 'There are logical components corresponding to different functional areas of the application

Implementing the microservices pattern - a payment service
using gRPC

Let’s briefly talk about software installation and application deployment in the Microservices world.
Switching from deploying a single application to deploying many small services means that the
number of things that need to be handled increases exponentially. While you might have been fine
with a single application server and a few runtime dependencies, when moving to Microservices,
the number of dependencies will increase drastically. For example, one service could benefit from
the relational database while the other would need ElasticSearch. You may need a service that uses
MySQL and another one that uses the Redis server. So, using the Microservices approach also means
you will need to use containers.

Thanks to Docker, things have become easier, since we can run those services as containers. The idea
is that your application server, dependencies and runtime libraries, compiled code, configurations,
and so on, are inside those containers. Then, all you must do is run services packed as containers and
make sure that they can communicate with each other.

You can implement the Microservices pattern, for a web app or an API, by directly using Django,
Flask, or FastAPI. However, to quickly show a working example, we are going to use gRPC, a high-
performance universal RPC framework that uses Protocol Buffers (protobuf) as its interface description
language, making it an ideal candidate for microservices communication due to its efficiency and
cross-language support.

Imagine a scenario where your application architecture includes a microservice dedicated to handling
payment processing. This microservice (let’s call it Payment Service), is responsible for processing
payments and interacts with other services such as OrderService and AccountService. We
are going to focus on the implementation of such a service using gRPC.

171

172 Architectural Design Patterns

First, we define the service and its methods using protobuf, in the ch06 /microservices/grpc/
payment . proto file. This includes specifying request and response message formats:

syntax = "proto3";
package payment;

// The payment service definition.
service PaymentService ({
// Processes a payment
rpc ProcessPayment (PaymentRequest) returns (PaymentResponse) {}

// The request message containing payment details.
message PaymentRequest {

string order id = 1;

double amount = 2;

string currency = 3;

string user id = 4;

// The response message containing the result of the payment process.
message PaymentResponse {

string payment id = 1;

string status = 2; // e.g., "SUCCESS", "FAILED"

}

Then, you must compile the payment . proto file into Python code using the protobuf compiler
(protoc). For that, you need to use a specific command line that invokes protoc with the appropriate
plugins and options for Python.

Here is the general form of the command line for compiling . proto files for use with gRPC in Python:

python -m grpc tools.protoc -I<PROTO DIR> --python out=<OUTPUT DIR>
--grpc_python out=<OUTPUT DIR> <PROTO FILES>

In this case, we make sure we change the directory to be under the right path (for example, by doing
cd ch06/microservices/grpc), and then we run the following command:

python -m grpc tools.protoc -I. --python out=. --grpc python out=.
payment.proto

This will generate two files in the current directory: payment pb2.py and payment pb2 grpc.
py. Those files are not to be manually edited.

The Microservices pattern

Next, we provide, in a payment service.py file, the service logic for the payment processing, extending
what has been provided in the generated . py files. In the module, we define the PaymentServiceImpl
class, inheriting from the payment pb2 grpc.PaymentServiceServicer class, and we
override the ProcessPayment () method that will do what is needed to process the payment (e.g.,
calling external APIs, doing database updates, etc.) Note that here, we have a simplified example, but
you would have more complex logic. The code is as follows:

from concurrent.futures import ThreadPoolExecutor
import grpc

import payment pb2

import payment pb2 grpc

class PaymentServiceImpl (payment pb2 grpc.PaymentServiceServicer) :
def ProcessPayment (self, request, context):

return payment pb2.PaymentResponse (payment id="12345",
status="SUCCESS")

Then, we have the main () function, with the code needed to start the processing service, created
by calling grpc. server (ThreadPoolExecutor (max workers=10)). The code of the
function is as follows:

def main() :
print ("Payment Processing Service ready!")
server = grpc.server (ThreadPoolExecutor (max workers=10))

payment pb2 grpc.add PaymentServiceServicer to
server (PaymentServiceImpl (), server)

server.add insecure port ("[::]:50051")
server.start ()
server.wait for termination ()

With that, the service is done and ready to be tested. We need a client to be able to test it. We can
write a test client with code that calls the service using gRPC, with the following code (in the ch06/
microservices/grpc/client.py file):

import grpc
import payment pb2
import payment pb2 grpc

with grpc.insecure channel ("localhost:50051") as chan:
stub = payment pb2 grpc.PaymentServiceStub (chan)
resp = stub.ProcessPayment (
payment pb2.PaymentRequest (
order id="orderl23",

173

174

Architectural Design Patterns

amount=99.99,
currency="USD",
user id="user456",

)
print ("Payment Service responded.")
print (f"Response status: {resp.status}")

To start the service (in the ch06 /microservices/grpc/payment service.py file), you
can run the following command:

python ch06/microservices/grpc/payment service.py

You will get the following output, showing that the service has started as expected:

Payment Processing Service ready!

Now, open another terminal to run the client (in the ch06 /microservices/grpc/client.
py file):

python chO06/microservices/grpc/client.py

In the terminal where you have run the client code, you should get the following output:

Payment Service responded.
Response status: SUCCESS

This output is what is expected.

Note that while gRPC is a powerful choice for Microservices communication, other approaches such
as REST over HTTP can also be used, especially when human readability or web integration is a
priority. However, gRPC provides advantages in terms of performance and support for streaming
requests and responses, and it was interesting to introduce it with this example.

Implementing the microservices pattern - an LLM service
using Lanarky

Lanarky is a web framework that builds upon the FastAPI framework, to provide batteries for building
Microservices that use large language models (LLMs).

We will follow the Getting started instructions from the website (https://lanarky.ajndkr.
com) to showcase a microservice backed by Lanarky. To be able to test the example, you need to set
the OPENAI API KEY environment variable to use OpenAl. Visit https://openai.comand
follow the instructions to get your API key.

https://lanarky.ajndkr.com
https://lanarky.ajndkr.com
https://openai.com

The Microservices pattern

The LLM service code starts by importing the modules we need:

import os

import uvicorn

from lanarky import Lanarky

from lanarky.adapters.openai.resources import ChatCompletionResource
from lanarky.adapters.openai.routing import OpenAIAPIRouter

Before starting the actual application code, you need to pass the OpenAl API key, which is used by
Lanarky’s code via the os . environ object. For example, pass the value of the secret key via this line:

os.environ ["OPENAI API KEY"] = "Your OpenAI API key here"

Security practice

It is recommended that you pass secret keys to the code, by setting an environment variable
in your shell.

Then, we create an app object, an instance of the Lanarky class, and the router object that will
be used for the definition of the service’s routes, as is conventional with FastAPI. This router is an
instance of the OpenAPIRouter class provided by the Lanarky framework:

app = Lanarky ()
router = OpenAIAPIRouter ()

Next, we provide a chat () function for the /chat route, when there is a POST request, as follows:

@router.post ("/chat")

def chat (stream: bool = True) -> ChatCompletionResource:
system = "Here is your assistant"
return ChatCompletionResource (stream=stream, system=system)

Finally, we associate the router to the FastAPI application (standard FastAPI convention) and we run
the FastAPI application (our service) using uvicorn.run (), as follows:

if name == " main ":
app.include router (router)
uvicorn.run (app)

To finalize this demonstration implementation, we can write client code to interact with the service.
The code for that part is as follows:

import click
import sys

175

176

Architectural Design Patterns

from lanarky.clients import StreamingClient

args = sys.argv[l:]
if len(args) ==
message = args[0]

client = StreamingClient ()

for event in client.stream response (

"POST",
"/chat",

params={"stream": "false"},

json:{"messages": [dict (role="user", content:message)]},

print (f"{event.event}: {event.data}")
else:
print ("You need to pass a message!")

To test the example, similarly to the previous one (where we tested a gRPC-based microservice),
open a terminal, and run the LLM service code (in the ch06 /microservices/lanarky/
1lm_service.py file) using the following command:

python ch06/microservices/lanarky/l1lm service.py

You should get an output like the following:

INFO: Started server process [18617]

INFO: Waiting for application startup.

INFO: Application startup complete.

INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to

quit)

Then, open a second terminal to run the client program, using the following command:
python chO6/microservices/lanarky/client.py "Hello"

You should get the following output:

completion: Hello! How can I assist you today?

Now, you can continue sending messages via the client program, and wait for the service to come
back with the completion, as you would do via the ChatGPT interface.

The Serverless pattern

For example, see the following code:

python chO06/microservices/lanarky/client.py "What is the capital of
Switzerland?"

completion: The capital of Switzerland is Bern.

The Serverless pattern

The Serverless pattern abstracts server management, allowing developers to focus solely on code.
Cloud providers handle the scaling and execution based on event triggers, such as HTTP requests,
file uploads, or database modifications.

User
v
API Gateway
/ ‘
Function A Function B Function C
Interacts with Reads from Writes to

External Service

Figure 6.3 - The Serverless pattern

The Serverless pattern is particularly useful for Microservices, APIs, and event-driven architectures.

Real-world examples
There are several examples we can think of for the Serverless pattern. Here are some of them:

o Automated data backups: Serverless functions can be scheduled to automatically back up
important data to cloud storage

o Image processing: Whenever a user uploads an image, a serverless function can automatically
resize, compress, or apply filters to the image

o PDF generation for E-commerce receipts: After a purchase is made, a serverless function
generates a PDF receipt and emails it to the customer

177

178

Architectural Design Patterns

Use cases for the Serverless pattern

There are two types of use cases the Serverless pattern can be used for.

First, Serverless is useful for handling event-driven architectures where specific functions need to be executed
in response to events, such as doing image processing (cropping, resizing) or dynamic PDF generation.

The second type of architecture where Serverless can be used is Microservices. Each microservice
can be a serverless function, making it easier to manage and scale.

Since we have already discussed the Microservices pattern in the previous section, we are going to
focus on how to implement the first use case.

Implementing the Serverless pattern

Let’s see a simple example using AWS Lambda to create a function that squares a number. AWS Lambda
is Amazon’s serverless compute service, which runs code in response to triggers such as changes in
data, shifts in system state, or actions by users.

There is no need to add more complexity since there’s already enough to get right with the Serverless
architecture itself and AWS Lambda’s deployment details.

First, we need to write the Python code for the function. We create a Lambda_handler () function,
which takes two parameters, event and context. In our case, the input number is accessed as a
value of the “number” key in the event dictionary. We take the square of that value and we returna a
string containing the expected result. The code is as follows:

import json

def lambda handler (event, context):
number = event ["number"]
squared = number * number
return f£"The square of {number} is {squared}."

Once we have the Python function, we need to deploy it so that it can be invoked as an AWS Lambda
function. For our learning, instead of going through the procedure of deploying to AWS infrastructure,
we can use a method that consists of testing things locally. This is what the LocalStack Python
package allows us to do. Once it is installed, from your environment, you can start LocalStack inside a
Docker container by running the available executable in your Python environment, using the command:

localstack start -d

The Serverless pattern

Then, we compress our Python code file (ch06/1lambda_function square.py)toa ZIP file,
for example, by using the ZIP program as follows:

zip lambda.zip lambda function square.py

The other tool we are going to use here is the awslocal tool (a Python module we need to install).
Once installed, we can use this program to deploy the Lambda function into the “local stack” AWS
infrastructure. This is done, in our case, using the following command:

awslocal lambda create-function \
--function-name lambda function square \
--runtime python3.11 \
--zip-file fileb://lambda.zip \
--handler lambda function square.lambda handler \
--role arn:aws:iam::000000000000:role/lambda-role

Adapt to your Python version

At the time of writing, this was tested with Python 3.11. You must adapt this command to
your Python version.

You can test the Lambda function, providing an input using the payload. json file, using the command:

awslocal lambda invoke --function-name lambda function square \
--payload file://payload.json output.txt

You can then check the result by looking into the output . txt file’s content. You should see the text:

The square of 6 is 36.

Okay, this was a preliminary test, but we can go further. We can create a URL for the Lambda function.
Again, thanks to awslocal, running the following command:

awslocal lambda create-function-url-config \
--function-name lambda function square \
--auth-type NONE

This will generate a URL that can be used to invoke the Lambda function. The URL will be in
the http://<XXXXXXXX>.lambda-url.us-east-1.localhost.localstack.
cloud:4566 format.

Now, for example, we can trigger the Lambda function URL using cUr1:

curl -X POST \

'http://iu4sl87onrloabg50dbvm77bk6r5sunk.lambda-url.us-east-1.
localhost.localstack.cloud:4566/' \

179

180

Architectural Design Patterns

-H 'Content-Type: application/json' \
-d '{"number": 6}’

For up-to-date and detailed guides related to AWS Lambda, consult the documentation at https://
docs.aws.amazon.com/lambda/.

This was a minimal example. Another example of a serverless application could be a function that
generates PDF receipts for a business. This would allow the business to not worry about server
management and only pay for the computing time that is consumed.

The Event Sourcing pattern

The Event Sourcing pattern stores state changes as a sequence of events, allowing the reconstruction
of past states and providing an audit trail. This pattern is particularly useful in systems where the state
is complex and the business rules for transitions are complex.

As we will see in implementation examples later, the Event Sourcing pattern emphasizes the importance
of capturing all changes to an application state as a sequence of events. An outcome of this is that the
application state can be reconstructed at any point in time by replaying these events.

Real-world examples
There are several real-world examples in the software category:

o Audit trails: Keeping a record of all changes made to a database for compliance
o Collaborative editing: Allowing multiple users to edit a document simultaneously

o Undo/redo features: Providing the ability to undo or redo actions in an application

Use cases for the Event Sourcing pattern
There are several use cases for the Event Sourcing pattern. Let’s consider the following three:

« Financial transactions: Event Sourcing can be used to record every change to an account’s
balance as a chronological series of immutable events. This method ensures that every deposit,
withdrawal, or transfer is captured as a distinct event. This way, we can provide a transparent,
auditable, and secure ledger of all financial activities.

o Inventory management: Within inventory management contexts, Event Sourcing helps in
tracking each items life cycle by logging all changes as events. This enables businesses to maintain
accurate and up-to-date records of stock levels, identify patterns in item usage or sales, and
predict future inventory needs. It also facilitates tracing the history of any item, aiding in recall
processes or quality assurance investigations.

https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/

The Event Sourcing pattern

« Customer behavior tracking: Event Sourcing plays a critical role in capturing and storing every
interaction a customer has with a platform, from browsing history and cart modifications to
purchases and returns. This wealth of data, structured as a series of events, becomes a valuable
resource for analyzing customer behavior, personalizing marketing strategies, enhancing user
experience, and improving product recommendations.

Let’s now see how we can implement this pattern.

Implementing the event sourcing pattern - the manual way

Let’s start with some definitions. The components of the Event Sourcing pattern implementation are
as follows:

o Event: A representation of a state change, typically containing the type of event and the data
associated with that event. Once an event is created and applied, it cannot be changed.

o Aggregate: An object (or group of objects) that represents a single unit of business logic or data.
It keeps track of things, and every time something changes (an event), it makes a record of it.

« Event store: A collection of all the events that have occurred.

By handling state changes through events, the business logic becomes more flexible and easier to
extend. For example, adding new types of events or modifying the handling of existing events can be
done with minimal impact on the rest of the system.

In this first example, for the bank account use case, we will see how to implement the event sourcing
pattern in a manual way. In such an implementation, you would typically define your event classes
and manually write the logic to apply these events to your aggregates. Let’s see that.

We start by defining an Account class representing a bank account with a balance and a list of events
attached to it, for the operations on the account. This class acts as the aggregate. Its events attribute
represents the event store. Here, an event will be represented by a dictionary containing the type of
operation (“deposited” or “withdrawn”) and the amount value.

We then add the apply event () method taking an event as the input. Depending on
event ["type"], we increment or decrement the account balance by the event’s amount, and we
add the event to the events list, effectively storing the event:

class Account:
def init (self):
self.balance = 0
self.events = []

def apply event (self, event):
if event["type"] == "deposited":
self .balance += event ["amount"]

181

182 Architectural Design Patterns

elif event["type"] == "withdrawn":
self.balance -= event ["amount"]
self.events.append (event)

Then, we add a deposit () method and a withdraw () method, which both call the apply
event () method, as follows:

def deposit(self, amount) :
event = {"type": "deposited", "amount": amount}
self.apply event (event)

def withdraw(self, amount) :
event = {"type": "withdrawn", "amount": amount}
self.apply event (event)

Finally, we add the main () function, as follows:

def main() :
account = Account ()
account .deposit (100)
account .deposit (50)
account .withdraw (30)
account .deposit (30)

for evt in account.events:
print (evt)
print (£"Balance: {account.balance}")

Running the code, using the python ch06/ event sourcing/bankaccount .py command,
gives the following output:

{'type': 'deposited', ‘'amount': 100}
{'type': 'deposited', ‘'amount': 50}
{'type': 'withdrawn', ‘'amount': 30}
{'type': 'deposited', ‘'amount': 30}
Balance: 150

This example provided a first understanding of Event Sourcing through a simple, manual implementation.
For more complex systems, frameworks and libraries designed for Event Sourcing can help manage
some of this complexity, providing utilities for event storage, querying, and processing. We will test
such a library next.

The Event Sourcing pattern

Implementing the Event Sourcing pattern - using a library

In this second example, we will use the event sourcing library to implement the Event Sourcing
pattern. Let’s consider an inventory management system where we track the quantity of items.

We start by importing what we need, as follows:

from eventsourcing.domain import Aggregate, event
from eventsourcing.application import Application

Then, we define the class for the aggregate object, InventoryItem, by inheriting from the
Aggregate class. The class has an increase quantity () and adecrease quantity
method, each decorated with the @event decorator. The code for this class is as follows:

class InventoryItem(Aggregate) :
@event ("ItemCreated")
def init (self, name, quantity=0):
self .name = name
self.quantity = quantity

@event ("QuantityIncreased")
def increase quantity(self, amount) :
self.quantity += amount

@event ("QuantityDecreased")
def decrease quantity(self, amount) :
self.quantity -= amount

Next, we create our inventory application’s class, InventoryApp, inheriting from the event sourcing
library’s Application class. The first method handles the creation of an item, taking an instance of
the InventoryItemclass (item) and calling the save () method on the InventoryApp object
using the item. But what exactly does the save () method do? It collects pending events from given
aggregates and puts them in the application’s event store. The definition of the class starts as follows:

class InventoryApp (Application) :
def create item(self, name, quantity):
item = InventoryItem(name, quantity)
self.save (item)

return item.id

183

184 Architectural Design Patterns

Next, similarly to what we did in the previous example, we add an increase_item quantity ()
method, which handles the increase of the item’s quantity (for the aggregate object) and then saves the
aggregate object on the application, followed by the corresponding decrease item quantity ()
method, for the decreasing action, as follows:

def increase item quantity(self, item id, amount) :
item = self.repository.get (item id)
item.increase quantity (amount)

self.save (item)

def decrease item quantity(self, item id, amount) :
item = self.repository.get (item id)
item.decrease quantity (amount)
self.save(item)

Finally, we add the main () function, with some code to test our design, as follows:

def main() :
app = InventoryApp ()

Create a new item

item id = app.create item("Laptop", 10)
Increase quantity
app.increase item quantity(item id, 5)
Decrease quantity
app.decrease item quantity(item id, 3)

notifs

app.notification log.select (start=1, limit=5)

notifs [notif.state for notif in notifs]

for notif in notifs:
print (notif.decode())

Running the code, using the python ch06/ event sourcing/inventory.py command,
gives the following output:

{"timestamp":{" type ":"datetime iso"," data ":"2024-
03-18T08:05:10.583875+00:00"}, "originator topic":"
main__:InventoryItem","name":"Laptop","quantity":10}
"timestamp":{" type ":"datetime iso"," data ":" -03-
i . N d ime i ~d . 2024-03
18T08:05:10.584818+00:00"}, "amount":5}
"timestamp":{" type ":"datetime iso"," data ":" -03-
i . N d ime i ~d . 2024-03
18T08:05:10.585128+00:00"}, "amount":3}

Other architectural design patterns

Nice work! This example and the previous one helped introduce the way to design an event-sourced
application. For an ambitious project, we can leverage the event sourcing library, which makes
it easier to implement this type of application.

Other architectural design patterns
You may encounter documentation about other architectural design patterns. Here are three other patterns:

o Event-Driven Architecture (EDA): This pattern emphasizes the production, detection,
consumption of, and reaction to events. EDA is highly adaptable and scalable, making it suitable
for environments where systems need to react to significant events in real time.

o Command Query Responsibility Segregation (CQRS): This pattern separates the models for
reading and writing data, allowing for more scalable and maintainable architectures, especially
when there are clear distinctions between operations that mutate data and those that only
read data.

o Clean Architecture: This pattern proposes a way to organize code such that it encapsulates
the business logic but keeps it separate from the interfaces through which the application is
exposed to users or other systems. It emphasizes the use of dependency inversion to drive the
decoupling of software components.

Summary

In this chapter, we explored several foundational architectural design patterns that are pivotal in
modern software development, each useful for different requirements and solving unique challenges.

We first covered the MVC pattern, which promotes the separation of concerns by dividing the application
into three interconnected components. This separation allows for more manageable, scalable, and
testable code by isolating the UI, the data, and the logic that connects the two.

Then, we looked at the Microservices pattern, which takes a different approach by structuring an
application as a collection of small, independent services, each responsible for a specific business
function. This pattern enhances scalability, flexibility, and ease of deployment, making it an ideal
choice for complex, evolving applications that need to rapidly adapt to changing business requirements.

Next, we looked at the Serverless pattern, which shifts the focus from server management to pure
business logic by leveraging cloud services to execute code snippets in response to events. This pattern
offers significant cost savings, scalability, and productivity benefits by abstracting the underlying
infrastructure, allowing developers to concentrate on writing code that adds direct value.

Afterward, we went over the Event Sourcing pattern, which offers another way to handle data changes
in an application by storing each change as a sequence of events. This not only provides a robust audit
trail and enables complex business functionalities but also allows the system to reconstruct past states,
offering invaluable insights into the data life cycle and changes over time.

185

186

Architectural Design Patterns

Lastly, we touched upon other architectural design patterns, such as CQRS and Clean Architecture.
Each offers unique advantages and addresses different aspects of software design and architecture. Even
if we could not dive deep into these patterns, they complement the developer’s toolkit for building
well-structured and maintainable systems.

In the next chapter, we will discuss concurrency and asynchronous patterns and techniques to help
our program manage multiple operations simultaneously or move on to other tasks while waiting for
operations to complete.

7

Concurrency and
Asynchronous Patterns

In the previous chapter, we covered architectural design patterns: patterns that help with solving
some unique challenges that come with complex projects. Next, we need to discuss concurrency and
asynchronous patterns, another important category in our solutions catalog.

Concurrency allows your program to manage multiple operations simultaneously, leveraging the
full power of modern processors. It’s akin to a chef preparing multiple dishes in parallel, each step
orchestrated so that all dishes are ready at the same time. Asynchronous programming, on the other
hand, lets your application move on to other tasks while waiting for operations to complete, such as
sending a food order to the kitchen and serving other customers until the order is ready.

In this chapter, were going to cover the following main topics:
o The Thread Pool pattern
o The Worker Model pattern
o The Future and Promise pattern
« The Observer pattern in reactive programming

o Other concurrency and asynchronous patterns

Technical requirements

See the requirements presented in Chapter 1. The additional technical requirements for the code
discussed in this chapter are the following:

o Faker,usingpip install faker

o ReactiveX, usingpip install reactivex

188

Concurrency and Asynchronous Patterns

The Thread Pool pattern

First, it’s important to understand what a thread is. In computing, a thread is the smallest unit of
processing that can be scheduled by an operating system.

Threads are like tracks of execution that can run on a computer at the same time, which enables
many activities to be done simultaneously and thus improve performance. They are particularly
important in applications that need multitasking, such as serving multiple web requests or carrying
out multiple computations.

Now, onto the Thread Pool pattern itself. Imagine you have many tasks to complete but starting each
task (which means in this case, creating a thread) can be expensive in terms of resources and time.
It’s like hiring a new employee every time you have a job to do and then letting them go when the job
is done. This process can be inefficient and costly. By maintaining a collection, or a pool, of worker
threads that can be created for once and then reused upon several jobs, the Thread Pool pattern helps
reduce this inefficiency. When one thread finishes a task, it does not terminate but goes back to the
pool, awaiting another task that it can be used again for.

What are worker threads?

A worker thread is a thread of execution of a particular task or set of tasks. Worker threads are
used to oftload processing tasks from the main thread, helping to keep applications responsive
by performing time-consuming or resource-intensive tasks asynchronously.

In addition to faster application performance, there are two benefits:

o Reduced overhead: By reusing threads, the application avoids the overhead of creating and
destroying threads for each task

o Better resource management: The thread pool limits the number of threads, preventing
resource exhaustion that could occur if too many threads were created

Real-world examples

In real life, imagine a small restaurant with a limited number of chefs (threads) who cook meals
(tasks) for customers. The restaurant can only accommodate a certain number of chefs working at
once due to kitchen space (system resources). When a new order comes in, if all chefs are busy, the
order waits in a queue until there is an available chef. This way, the restaurant efficiently manages the
flow of orders with its available chefs, ensuring all are utilized effectively without overwhelming the
kitchen or needing to hire more staft for each new order.

The Thread Pool pattern

There are also many examples in software:
o Web servers often use thread pools to handle incoming client requests. This allows them to serve
multiple clients simultaneously without the overhead of creating a new thread for each request.

o Databases use thread pools to manage connections, ensuring that a pool of connections is
always available for incoming queries.

o Task schedulers use thread pools to execute scheduled tasks such as cron jobs, backups, or updates.

Use cases for the Thread Pool pattern
There are three use cases where the Thread Pool pattern helps:

« Batch processing: When you have many tasks that can be performed in parallel, a thread pool
can distribute them among its worker threads

o Load balancing: Thread pools can be used to distribute workload evenly among worker threads,
ensuring that no single thread takes on too much work

o Resource optimization: By reusing threads, the thread pool minimizes system resource usage,
such as memory and CPU time

Implementing the Thread Pool pattern
First, let’s stop to break down how a thread pool, for a given application, works:

1. When the application starts, the thread pool creates a certain number of worker threads. This
is the initialization. This number of threads can be fixed or dynamically adjusted based on the
application’s needs.

2. 'Then, we have the task submission step. When there’s a task to be done, it’s submitted to the
pool rather than directly creating a new thread. The task can be anything that needs to be
executed, such as processing user input, handling network requests, or performing calculations.

3. The following step is the task execution. The pool assigns the task to one of the available worker
threads. If all threads are busy, the task might wait in a queue until a thread becomes available.

4. Once a thread completes its task, it doesn’t die. Instead, it returns to the pool, ready to be
assigned a new task.

For our example, let’s see some code where we create a thread pool with five worker threads to handle
a set of tasks. We are going to use the ThreadPoolExecutor class from the concurrent.
futures module.

189

190

Concurrency and Asynchronous Patterns

We start by importing what we need for the example, as follows:

from concurrent.futures import ThreadPoolExecutor
import time

Then, we create a function to simulate the tasks, by simply using time.sleep (1) in this case:

def task(n):
print (£"Executing task {n}")
time.sleep (1)
print (£"Task {n} completed")

Then, we use an instance of the ThreadPoolExecutor class, created with a maximum number of
worker threads of 5, and we submit 10 tasks to the thread pool. So, the worker threads pick up these
tasks and execute them. Once a worker thread completes a task, it picks up another from the queue.
The code is as follows:

with ThreadPoolExecutor (max workers=5) as executor:
for i in range(10) :
executor.submit (task, i)

When running the example code, using the ch07/thread pool.py Python command, you
should get the following output:

Executing task
Executing task
Executing task
Executing task

B W N R o

Executing task
Task 0 completed
Task 4 completed
Task 3 completed
Task 1 completed
Executing task 6
Executing task 7
Executing task 8
Task 2 completed
Executing task 5
Executing task 9
Task 8 completed

Task 6 completed
Task 9 completed
Task 5 completed
Task 7 completed

The Worker Model pattern

We see that the tasks were completed in an order different from the order of submission. This shows
that they were executed concurrently using the threads available in the thread pool.

The Worker Model pattern

The idea behind the Worker Model pattern is to divide a large task or many tasks into smaller, manageable
units of work, called workers, that can be processed in parallel. This approach to concurrency and
parallel processing not only accelerates processing time but also enhances the application’s performance.

The workers could be threads within a single application (as we have just seen in the Thread Pool
pattern), separate processes on the same machine, or even different machines in a distributed system.

The benefits of the Worker Model pattern are the following:

o Scalability: Easily scales with the addition of more workers, which can be particularly beneficial
in distributed systems where tasks can be processed on multiple machines

« Efficiency: By distributing tasks across multiple workers, the system can make better use of
available computing resources, processing tasks in parallel

o Flexibility: The Worker Model pattern can accommodate a range of processing strategies,
from simple thread-based workers to complex distributed systems spanning multiple servers

Real-world examples

Consider a delivery service where packages (tasks) are delivered by a team of couriers (workers).
Each courier picks up a package from the distribution center (task queue) and delivers it. The number
of couriers can vary depending on demand; more couriers can be added during busy periods and
reduced when it’s quieter.

In big data processing, the Worker Model pattern is often employed where each worker is responsible
for mapping or reducing a part of the data.

In systems such as RabbitMQ or Kafka, the Worker Model pattern is used to process messages from
a queue concurrently.

We can also cite image processing services. Services that need to process multiple images simultaneously
often use the Worker Model pattern to distribute the load among multiple workers.

Use cases for the Worker Model pattern

One use case for the Worker Model pattern is data transformation. When you have a large dataset that
needs to be transformed, you can distribute the work among multiple workers.

Another one is task parallelism. In applications where different tasks are independent of each other,
the Worker Model pattern can be very effective.

191

192

Concurrency and Asynchronous Patterns

A third use case is distributed computing, where the Worker Model pattern can be extended to multiple
machines, making it suitable for distributed computing environments.

Implementing the Worker Model pattern

Before discussing an implementation example, let’s understand how the Worker Model pattern works.
Three components are involved in the Worker Model pattern: workers, a task queue, and, optionally,
a dispatcher:

o The workers: The primary actors in this model. Each worker can perform a piece of the task
independently of the others. Depending on the implementation, a worker might process one
task at a time or handle multiple tasks concurrently.

o The task queue: A central component where tasks are stored awaiting processing. Workers
typically pull tasks from this queue, ensuring that tasks are distributed efficiently among them.
The queue acts as a buffer, decoupling task submission from task processing.

o The dispatcher: In some implementations, a dispatcher component assigns tasks to workers based
on availability, load, or priority. This can help optimize task distribution and resource utilization.

Let’s now see an example where we execute a function in parallel.
We start by importing what we need for the example, as follows:

from multiprocessing import Process, Queue
import time

Then, we create a worker () function that we are going to run tasks with. It takes as a parameter the
task_gueue object that contains the tasks to execute. The code is as follows:

def worker (task queue) :
while not task queue.empty() :
task = task queue.get ()
print (£"Worker {task} is processing")
time.sleep (1)
print (f"Worker {task} completed")

Inthemain () function, we start by creating a queue of tasks, an instance of multiprocessing.
Queue. Then, we create 10 tasks and add them to the queue:

def main() :
task queue = Queue ()

for i in range(10) :
task queue.put (i)

The Worker Model pattern 193

Five worker processes are then created, using the multiprocessing.Process class, and started.
Each worker picks up a task from the queue, to execute it, and then picks up another until the queue
is empty. Then, we start each worker process (using p. start ()) in a loop, which means that the
associated task will get executed concurrently. After that, we create another loop where we use the
process’ . join () method so that the program waits for those processes to complete their work.
That part of the code is as follows:

processes = [
Process (target=worker, args=(task queue,))
for in range(5)

Start the worker processes
for p in processes:
p.start ()

Wait for all worker processes to finish
for p in processes:
p.-join()

print ("All tasks completed.")

When running the example code, using the ch07/worker model.py Python command, you
should get the following output, where you can see that the 5 workers process tasks from the task
queue in a concurrent way until all 10 tasks are completed:

Worker is processing
Worker is processing
Worker is processing
Worker is processing
Worker is processing
Worker completed

Worker is processing

Worker completed

Worker completed

Worker is processing

Worker completed

Worker is processing

Worker completed

Worker is processing

Worker completed

0
1
2
3
4
0
5
1
Worker 6 is processing
2
7
3
8
4
9
5
Worker 6 completed
Worker 7 completed

194

Concurrency and Asynchronous Patterns

Worker 8 completed
Worker 9 completed
All tasks completed.

This demonstrates our implementation of the Worker Model pattern. This pattern is particularly useful
for scenarios where tasks are independent and can be processed in parallel.

The Future and Promise pattern

In the asynchronous programming paradigm, a Future represents a value that is not yet known but
will be provided eventually. When a function initiates an asynchronous operation, instead of blocking
until the operation completes and a result is available, it immediately returns a Future. This Future
object acts as a placeholder for the actual result available later.

Futures are commonly used for I/O operations, network requests, and other time-consuming tasks
that run asynchronously. They allow the program to continue executing other tasks rather than waiting
for the operation to be completed. That property is referred to as non-blocking.

Once the Future is fulfilled, the result can be accessed through the Future, often via callbacks, polling,
or blocking until the result is available.

A Promise is the writable, controlling counterpart to a Future. It represents the producer side of
the asynchronous operation, which will eventually provide a result to its associated Future. When
the operation completes, the Promise is fulfilled with a value or rejected with an error, which then
resolves the Future.

Promises can be chained, allowing a sequence of asynchronous operations to be performed clearly
and concisely.

By allowing a program to continue execution without waiting for asynchronous operations, applications
become more responsive. Another benefit is composability: multiple asynchronous operations can be
combined, sequenced, or executed in parallel in a clean and manageable way.

Real-world examples

Ordering a custom dining table from a carpenter provides a tangible example of the Future and
Promise pattern. When you place the order, you receive an estimated completion date and design
sketch (Future), representing the carpenter’s promise to deliver the table. As the carpenter works, this
promise moves toward fulfillment. The delivery of the completed table resolves the Future, marking
the fulfillment of the carpenter’s promise to you.

The Future and Promise pattern

We can also find several examples in the digital realm, such as the following:

Online shopping order tracking: When you place an order online, the website immediately
provides you with an order confirmation and a tracking number (Future). As your order is
processed, shipped, and delivered, status updates (Promise fulfillment) are reflected in real
time on the tracking page, eventually resolving to a final delivery status.

Food delivery apps: Upon ordering your meal through a food delivery app, you're given
an estimated delivery time (Future). The app continuously updates the order status—from
preparation through pickup and delivery (Promise being fulfilled)—until the food arrives at
your door, at which point the Future is resolved with the completion of your order.

Customer support tickets: When you submit a support ticket on a website, you immediately
receive a ticket number and a message stating that someone will get back to you (Future).
Behind the scenes, the support team addresses tickets based on priority or in the order they
were received. Once your ticket is addressed, you receive a response, fulfilling the Promise
made when you first submitted the ticket.

Use cases for the Future and Promise pattern

There are at least four use cases where the Future and Promise pattern is reccommended:

1.

Data pipelines: In data processing pipelines, data is often transformed through multiple stages
before reaching its final form. By representing each stage with a Future, you can effectively
manage the asynchronous flow of data. For example, the output of one stage can serve as the
input for the next, but because each stage returns a Future, subsequent stages don’'t have to
block while waiting for the previous ones to complete.

Task scheduling: Task scheduling systems, such as those in an operating system or a high-level
application, can use Futures to represent tasks that are scheduled to run at a future time. When
a task is scheduled, a Future is returned to represent the eventual completion of that task. This
allows the system or the application to keep track of the task’s state without blocking execution.

Complex database queries or transactions: Executing database queries asynchronously is
crucial for maintaining application responsiveness, particularly in web applications where user
experience is paramount. By using Futures to represent the outcome of database operations,
applications can initiate a query and immediately return control to the user interface or the
calling function. The Future will eventually resolve with the query result, allowing the application
to update the UT or process the data without having frozen or become unresponsive while
waiting for the database response.

195

196

Concurrency and Asynchronous Patterns

4. File I/O operations: File I/O operations can significantly impact application performance,
particularly if executed synchronously on the main thread. By applying the Future and Promise
pattern, file I/O operations are offloaded to a background process, with a Future returned to
represent the completion of the operation. This approach allows the application to continue
running other tasks or responding to user interactions while the file is being read from or
written to. Once the I/O operation completes, the Future resolves, and the application can
process or display the file data.

In each of these use cases, the Future and Promise pattern facilitates asynchronous operation, allowing
applications to remain responsive and efficient by not blocking the main thread with long-running tasks.

Implementing the Future and Promise pattern - using concurrent.
futures

To understand how to implement the Future and Promise pattern, you must first understand the three
steps of its mechanism. Let’s break those down next:

1. Initiation: The initiation step involves starting an asynchronous operation using a function where,
instead of waiting for the operation to complete, the function immediately returns a “Future”
object. This object acts as a placeholder for the result that will be available later. Internally, the
asynchronous function creates a “Promise” object. This object is responsible for handling the
outcome of the asynchronous operation. The Promise is linked to the Future, meaning the state
of the Promise (whether it’s fulfilled or rejected) will directly affect the Future.

2. Execution: During the execution step, the operation proceeds independently of the main
program flow. This allows the program to remain responsive and continue with other tasks.
Once the asynchronous task completes, its result needs to be communicated back to the part
of the program that initiated the operation. The outcome of the operation (be it a successful
result or an error) is passed to the previously created Promise.

3. Resolution: If the operation is successful, the Promise is “fulfilled” with the result. If the
operation fails, the Promise is “rejected” with an error. The fulfillment or rejection of the
Promise resolves the Future. Using the result is often done through a callback or continuation
function, which is a piece of code that specifies what to do with the result. The Future provides
mechanisms (for example, methods or operators) to specify these callbacks, which will execute
once the Future is resolved.

In our example, we use an instance of the ThreadPoolExecutor class to execute tasks asynchronously.
The submit method returns a Future object that will eventually contain the result of the computation.
We start by importing what we need, as follows:

from concurrent.futures import ThreadPoolExecutor, as completed

The Future and Promise pattern

Then, we define a function for the task to be executed:

def square (x) :
return x * x

We submit tasks and get Future objects, then we collect the completed Futures. The as_completed
function allows us to iterate over completed Future objects and retrieve their results:

with ThreadPoolExecutor () as executor:

futurel = executor.submit (square, 2)
future2 = executor.submit (square, 3)
future3 = executor.submit (square, 4)
futures = [futurel, future2, future3]

for future in as_completed (futures) :
print (f"Result: {future.result()}")

When running the example, using the ch07/future_and promise/future.py Python
command, you should get the following output:

Result: 16
Result: 4
Result: 9

This demonstrates our implementation.

Implementing the Future and Promise pattern - using asyncio

Pythons asyncio library provides another way to execute tasks using asynchronous programming.
It is particularly useful for I/O-bound tasks. Let’s see a second example using this technique.

(N
What is asyncio?
The asyncio library provides support for asynchronous I/0, event loops, coroutines, and
other concurrency-related tasks. So, using asyncio, developers can write code that efficiently
handles I/O-bound operations.

Coroutines and async/await

A coroutine is a special kind of function that can pause and resume its execution at certain points,
allowing other coroutines to run in the meantime. Coroutines are declared with the async
keyword. Also, a coroutine can be awaited from other coroutines, using the awa it keyword.

197

198

Concurrency and Asynchronous Patterns

We import the asyncio module, which contains everything we need:
import asyncio

Then, we create a function for the task of computing and returning the square of a number. We also
want an I/O-bound operation, so we use asyncio.sleep (). Notice that in the asyncio style
of programming, such a function is defined using the combined keywords async def -itisa
coroutine. The asyncio.sleep () function itself is a coroutine, so we make sure to use the await
keyword when calling it:

async def square(x):
Simulate some IO-bound operation
await asyncio.sleep(1)

return x * X

Then, we move to creating our main () function. We use the asyncio.ensure future ()
function to create the Future objects we want, passing it square (x), with x being the number
to square. We create three Future objects, futurel, future2, and future3. Then, we use the
asyncio.gather () coroutine to wait for our Futures to complete and gather the results. The code
for themain () function is as follows:

async def main() :

futl = asyncio.ensure future (square(2))
fut2 = asyncio.ensure future (square(3))
fut3 = asyncio.ensure future (square (4))
results = await asyncio.gather (futl, fut2, fut3)

for result in results:
print (f"Result: {result}")

At the end of our code file, we have theusual if = name == " main_": block. Whatis
new here, since we are writing asyncio-based code, is that we need to run asyncio’s event loop,
by calling asyncio.run (main()):

if name == " main ":

asyncio.run (main())

To test the example, run the ch07/future and promise/async.py Python command. You
should get an output like the following:

Result: 4
Result: 9
Result: 16

The Observer pattern in reactive programming

The order of the results may vary, depending on who is running the program and when. In fact, it is
not predictable. You may have noticed similar behavior in our previous examples. This is generally
the case with concurrency or asynchronous code.

This simple example shows that asyncio is a suitable choice for the Future and Promise pattern
when we need to efficiently handle I/O-bound tasks (in scenarios such as web scraping or API calls).

The Observer pattern in reactive programming

The Observer pattern (covered in Chapter 5, Behavioral Design Patterns) is useful for notifying an
object or a group of objects when the state of a given object changes. This type of traditional Observer
allows us to react to some object change events. It provides a nice solution for many cases, but in a
situation where we must deal with many events, some depending on each other, the traditional way
could lead to complicated, difficult-to-maintain code. That is where another paradigm called reactive
programming gives us an interesting option. In simple terms, the concept of reactive programming
is to react to many events (streams of events) while keeping our code clean.

Let’s focus on ReactiveX (http://reactivex. io), which is a part of reactive programming. At
the heart of ReactiveX is a concept known as an Observable. According to its official website, ReactiveX
is about providing an API for asynchronous programming with what are called observable streams.
This concept is added to the idea of the Observer, which we already discussed.

Imagine an Observable like a river that flows data or events down to an Observer. This Observable
sends out items one after another. These items travel through a path made up of different steps or
operations until they reach an Observer, who takes them in or consumes them.

Real-world examples

An airport’s flight information display system is analogous to an Observable in reactive programming.
Such a system continuously streams updates about flight statuses, including arrivals, departures, delays,
and cancellations. This analogy illustrates how observers (travelers, airline staff, and airport services
subscribed to receive updates) subscribe to an Observable (the flight display system) and react to a
continuous stream of updates, allowing for dynamic responses to real-time information.

A spreadsheet application can also be seen as an example of reactive programming, based on its
internal behavior. In virtually all spreadsheet applications, interactively changing any one cell in the
sheet will result in immediately reevaluating all formulas that directly or indirectly depend on that
cell and updating the display to reflect these reevaluations.

The ReactiveX idea is implemented in a variety of languages, including Java (RxJava), Python (RxPY),
and JavaScript (RxJS). The Angular framework uses Rx]JS to implement the Observable pattern.

199

http://reactivex.io

200

Concurrency and Asynchronous Patterns

Use cases for the Observer pattern in reactive programming

One use case is the idea of a collection pipeline, discussed by Martin Fowler on his blog (https: //
martinfowler.com/articles/collection-pipeline).

Collection pipeline, described by Martin Fowler

Collection pipelines are a programming pattern where you organize some computation as a
sequence of operations that compose by taking a collection as the output of one operation and
feeding it into the next.

We can also use an Observable to do operations such as “map and reduce” or “groupby” on sequences
of objects when processing data.

Finally, Observables can be created for diverse functions such as button events, requests, and Twitter feeds.

Implementing the Observer pattern in reactive programming

For this example, we decided to build a stream of a list of (fake) people’s names (in the ch07/
observer rx/people.txt) text file, and an observable based on it.

(R
Note

A first example text file containing fake names of people is provided (ch07/observer rx/
people. txt) as part of the booK’s example files. But a new one can be generated whenever
needed using a helper script (ch07/observer rx/peoplelist.py), which will be
presented in a minute.

- J

An example of such a list of names will look like this:

Peter Brown, Gabriel Hunt, Gary Martinez, Heather Fernandez, Juan
White, Alan George, Travis Davidson, David Adams, Christopher Morris,
Brittany Thomas, Brian Allen, Stefanie Lutz, Craig West, William
Phillips, Kirsten Michael, Daniel Brennan, Derrick West, Amy Vazquez,
Carol Howard, Taylor Abbott,

Back to our implementation. We start by importing what we need:

from pathlib import Path
import reactivex as rx

from reactivex import operators as ops

We define a function, firstnames_from_ db (), which returns an Observable from the text file
(reading the content of the file) containing the names, with transformations (as we have already seen)

https://martinfowler.com/articles/collection-pipeline
https://martinfowler.com/articles/collection-pipeline

The Observer pattern in reactive programming

using flat map (), filter (), and map () methods, and a new operation, group by (), to
emit items from another sequence—the first name found in the file, with its number of occurrence:

def firstnames from db(path: Path):
file = path.open()

collect and push stored people firstnames
return rx.from iterable(file) .pipe(
ops.flat map(
lambda content: rx.from iterable (
content.split (", ")

ops.filter (lambda name: name != ""),
ops.map (lambda name: name.split () [0]),
ops.group by (lambda firstname: firstname),
ops.flat map (
lambda grp: grp.pipe (
ops.count (),
ops.map (lambda ct: (grp.key, ct)),

) ’

Then, in themain () function, we define an Observable that emits data every 5 seconds, merging its
emission with what is returned from firstnames from db(db_file), after settingdb file
to the people names text file, as follows:

def main() :
db path = Path(_ file) .parent / Path("people.txt")

Emit data every 5 seconds
rx.interval (5.0) .pipe (

ops.flat map(lambda i: firstnames from db(db path))
) .subscribe (lambda val: print (str(val)))

Keep alive until user presses any key
input ("Starting... Press any key and ENTER, to quit\n")

Here is a recap of the example (complete code in the ch07/observer rx/rx peoplelist.py file):

1. We import the modules and classes we need.

2. Wedefinea firstnames_ from db () function, which returns an Observable from the text
file that is the source of the data. We collect and push the stored people’s first names from that file.

201

202 Concurrency and Asynchronous Patterns

3. Finally,inthemain () function, we define an Observable that emits data every 5 seconds, merging
its emission with what is returned from calling the firstnames from db () function.

To test the example, run the ch07/observer rx/rx peoplelist.py Python command.
You should get an output like the following (only an extract is shown here):

Starting... Press any key and ENTER, to quit
('Peter', 1)
('Gabriel', 1)
('Gary', 1)
('Heather', 1)
('Juan', 1)
('Alan', 1)
('Travis', 1)
('David', 1)
('Christopher', 1)
('"Brittany', 1)
('Brian', 1)
('Stefanie', 1)
('Craig', 1)
('William', 1)
('"Kirsten', 1)
('Daniel', 1)
('Derrick', 1)

Once you press a key and press Enter on the keyboard, the emission is interrupted, and the program stops.
Handling new streams of data

Our test worked, but in a sense, it was static; the stream of data was limited to what is currently in
the text file. What we need now is to generate several streams of data. The technique we can use to
generate the type of fake data in the text file is based on a third-party module called Faker (https://
pypi.org/project/Faker). The code that produces the data is provided to you, for free (in the
ch07/observer rx/peoplelist.py file), as follows:

from faker import Faker
import sys

fake Faker ()

args = sys.argv[l:]
if len(args) ==
output filename = args([0]

https://pypi.org/project/Faker
https://pypi.org/project/Faker

Other concurrency and asynchronous patterns 203

persons = []
for in range (0, 20):

p = {"firstname": fake.first name(), "lastname": fake.last
name () }

persons.append (p)
persons = iter (persons)

data
data = ", ".join(data) + ", "

[f"{p['firstname']} {p['lastname']}" for p in persons]

with open(output filename, "a") as f:
f.write(data)
else:
print ("You need to pass the output filepath!")

Now, let’s see what happens when we execute both programs (ch07/observer rx/peoplelist.
py and ch07/observer rx/rx peoplelis.py):

o From one command-line window or terminal, you can generate people’s names, passing the
right file path to the script; you would execute the following command: python ch07/
observer rx/peoplelist.py ch07/observer rx/people.txt.

o From a second shell window, you can run the program that implements the Observable via the
python ch07/observer rx/rx peoplelist.py command.

So, what is the output from both commands?

A new version of the people. txt file is created (with the random names in it, separated by a
comma), to replace the existing file. And, each time you rerun that command (python ch07/
observer rx/peoplelist.py),anew setof names is added to the file.

The second command gives an output like the one you got with the first execution; the difference is
that now it is not the same set of data that is emitted repeatedly. Now, new data can be generated in
the source and emitted.

Other concurrency and asynchronous patterns

There are some other concurrency and asynchronous patterns developers may use. We can cite
the following:

o The Actor model: A conceptual model to deal with concurrent computation. It defines some
rules for how actor instances should behave: an actor can make local decisions, create more
actors, send more messages, and determine how to respond to the next message received.

204

Concurrency and Asynchronous Patterns

« Coroutines: General control structures where flow control is cooperatively passed between
two different routines without returning. Coroutines facilitate asynchronous programming
by allowing execution to be suspended and resumed. As we have seen in one of our examples,
Python has coroutines built in (via the asyncio library).

o Message passing: Used in parallel computing, object-oriented programming (OOP), and
inter-process communication (IPC), where software entities communicate and coordinate
their actions by passing messages to each other.

o Backpressure: A mechanism to manage the flow of data through software systems and prevent
overwhelming components. It allows systems to gracefully handle overload by signaling the
producer to slow down until the consumer can catch up.

Each of these patterns has its use cases and trade-offs. It is interesting to know they exist, but we cannot
discuss all the available patterns and techniques.

Summary

In this chapter, we discussed concurrency and asynchronous patterns, patterns useful for writing
efficient, responsive software that can handle multiple tasks at once.

The Thread Pool pattern is a powerful tool in concurrent programming, offering a way to manage
resources efficiently and improve application performance. It helps us improve application performance
but also reduces overhead and better manages resources because the thread pool limits the number
of threads.

While the Thread Pool pattern focuses on reusing a fixed number of threads to execute tasks, the
Worker Model pattern is more about the dynamic distribution of tasks across potentially scalable and
flexible worker entities. This pattern is particularly useful for scenarios where tasks are independent
and can be processed in parallel.

The Future and Promise pattern facilitates asynchronous operation, allowing applications to remain
responsive and eflicient by not blocking the main thread with long-running tasks.

We also discussed the Observer pattern in reactive programming. The core idea of this pattern is to
react to a stream of data and events, as with the streams of water we see in nature. We have lots of
examples of this idea in the computing world. We have discussed an example of ReactiveX, which
serves as an introduction for the reader to approach this programming paradigm and continue their
own research via the ReactiveX official documentation.

Lastly, we touched upon the fact that there are other concurrency and asynchronous patterns. Each
of these patterns has its use cases and trade-offs, but we cannot cover them all in a single book.

In the next chapter, we will discuss performance design patterns.

8

Performance Patterns

In the previous chapter, we covered concurrency and asynchronous patterns, useful for writing efficient
software that can handle multiple tasks at once. Next, we are going to discuss specific performance
patterns that help enhance the speed and resource utilization of applications.

Performance patterns address common bottlenecks and optimization challenges, providing developers
with proven methodologies to improve execution time, reduce memory usage, and scale effectively.

In this chapter, were going to cover the following main topics:

o The Cache-Aside pattern
o The Memoization pattern

o 'The Lazy Loading pattern

Technical requirements

See the requirements presented in Chapter 1. The additional technical requirements for the code
discussed in this chapter are the following:

o Add the Faker module to your Python environment using the following command: python
-m pip install faker

o Add the Redis module to your Python environment using the following command: python
-m pip install redis

o Install the Redis server and run it using Docker: docker run --name myredis -p
6379:6379 redis

If needed, follow the documentation at https://redis.io/docs/latest/

https://redis.io/docs/latest/
https://redis.io/docs

206

Performance Patterns

The Cache-Aside pattern

In situations where data is more frequently read than updated, applications use a cache to optimize
repeated access to information stored in a database or data store. In some systems, that type of caching
mechanism is built in and works automatically. When this is not the case, we must implement it in the
application ourselves, using a caching strategy that is suitable for the particular use case.

One such strategy is called Cache-Aside, where, to improve performance, we store frequently accessed
data in a cache, reducing the need to fetch data from the data store repeatedly.

Real-world examples
We can cite the following examples in the software realm:

o Memcached is commonly used as a cache server. It is a popular in-memory key-value store
for small chunks of data from the results of database calls, API calls, or HTML page content.

o Redis is another server solution that is used for cache. Nowadays, it is my go-to server for
caching or application in-memory storage use cases where it shines.

o Amazon’s ElastiCache, according to the documentation site (https://docs.aws.amazon.
com/elasticache/),is a web service that makes it easy to set up, manage, and scale a
distributed in-memory data store or cache environment in the cloud.

Use cases for the cache-aside pattern

The cache-aside pattern is useful when we need to reduce the database load in our application. By
caching frequently accessed data, fewer queries are sent to the database. It also helps improve application
responsiveness, since cached data can be retrieved faster.

Note that this pattern works for data that doesn’t change often and for data storage that doesn’t depend
on the consistency of a set of entries in the storage (multiple keys). For example, it might work for
certain kinds of document stores or databases where keys are never updated and occasionally data
entries are deleted but there is no strong requirement to continue to serve them for some time (until
the cache is refreshed).

Implementing the cache-aside pattern

We can summarize the steps needed when implementing the Cache-Aside pattern, involving a database
and a cache, as follows:

o Case 1 - When we want to fetch a data item: Return the item from the cache if found in it.
If not found in the cache, read the data from the database. Put the item we got in the cache
and return it.

https://docs.aws.amazon.com/elasticache/
https://docs.aws.amazon.com/elasticache/

The Cache-Aside pattern

o Case 2 - When we want to update a data item: Write the item in the database and remove the
corresponding entry from the cache.

Let’s try a simple implementation with a database of quotes from which the user can ask to retrieve
some quotes via an application. Our focus here will be implementing the Case I part.

Here are our choices for the additional software dependencies we need to install on the machine for
this implementation:

« An SQLite database, since we can query an SQLite database using Python’s standard
module, sgqlite3

o A Redis server and the redis-py Python module

We will use a script (in the ch08/cache _aside/populate db.py file) to handle the creation
of a database and a quotes table and add example data to it. For practical reasons, we also use the
Faker module there to generate fake quotes that are used when populating the database.

Our code starts with the imports we need, followed by the creation of the Faker instance that we will
use to generate fake quotes, as well as some constants or module-level variables:

import sglite3
from pathlib import Path
from random import randint

import redis
from faker import Faker

fake = Faker()

DB_PATH = Path(_ file) .parent / Path("quotes.sglite3")

cache = redis.StrictRedis (host="localhost", port=6379, decode
responses=True)

Then, we write a function to take care of the database setup part, as follows:

def setup db() :
try:
with sglite3.connect (DB _PATH) as db:
cursor = db.cursor ()
cursor.execute (

CREATE TABLE quotes (id INTEGER PRIMARY KEY, text TEXT)

)

207

208 Performance Patterns

db.commit ()
print ("Table 'quotes' created")
except Exception as e:
print (e)

Then, we define a central function that takes care of adding a set of new quotes based on a list of
sentences or text snippets. Among different things, we associate a quote identifier to the quote, for
the 1d column in the database table. To make things easier, we just pick a number randomly using
quote_id = randint (1, 100).Theadd quotes () function is defined as follows:

def add quotes(quotes list):
added = []
try:
with sglite3.connect (DB _PATH) as db:
cursor = db.cursor ()

for quote text in quotes list:
quote id = randint (1, 100) # nosec
quote = (quote id, quote text)

cursor.execute (

""rTINSERT OR IGNORE INTO quotes (id,
VALUES (?, ?)""", quote

)
added. append (quote)

db.commit ()
except Exception as e:

print (e)

return added

text)

Next, weaddamain () function, which in fact will have several parts; we want to use command-line

argument parsing. Note the following:

o If we pass the init argument, we call the setup db () function

o If we pass the update all argument, we inject the quotes into the database and add them

to the cache

o If we pass the update db_only argument, we only inject the quotes into the database

The Cache-Aside pattern

The code of themain () function, called when running the Python script, is as follows:

def main() :

msg = "Choose your mode! Enter 'init' or 'update_db_only' or
'update all': "
mode = input (msg)
if mode.lower () == "init":
setup db()
elif mode.lower () == "update all":
quotes list = [fake.sentence() for _ in range(1l, 11)]

added = add quotes (quotes list)
if added:
print ("New (fake) quotes added to the database:")
for g in added:
print (£"Added to DB: {g}")
print (" - Also adding to the cache")
cache.set (str(g[0]), gll], ex=60)

elif mode.lower () == "update db only":
quotes_list = [fake.sentence() for _ in range (1, 11)]
added = add quotes (quotes list)
if added:
print ("New (fake) quotes added to the database ONLY:")
for g in added:
print (£"Added to DB: {g}")

That part is done. Now, we will create another module and script for the cache-aside-related operations
themselves (in the ch08/cache aside/cache aside.py file).

We have a few imports needed here too, followed by constants:

import sqglite3
from pathlib import Path

import redis

CACHE_KEY PREFIX = "quote"
DB _PATH = Path(_ file) .parent / Path("quotes.sglite3")

cache = redis.StrictRedis (host="localhost", port=6379, decode
responses=True)

209

210 Performance Patterns

Next, we define a get _quote () function to fetch a quote by its identifier. If we do not find the

quote in the cache, we query the database to get it and we put the result in the cache before returning
it. The function is defined as follows:

def get quote (quote id: str) -> str:
out = []
quote = cache.get (£"{CACHE KEY PREFIX}.{quote id}")

if quote is None:
Get from the database
query fmt = "SELECT text FROM quotes WHERE id = {}"
try:
with sglite3.connect (DB _PATH) as db:
cursor = db.cursor ()

res = cursor.execute (query fmt.format (quote id)) .
fetchone ()

if not res:

return "There was no quote stored matching that
id!

quote = res|[0]
out .append (£"Got '{quote}' FROM DB")
except Exception as e:
print (e)
quote = ""

Add to the cache
if quote:
key = £"{CACHE KEY PREFIX}.{quote id}"
cache.set (key, quote, ex=60)
out.append (£"Added TO CACHE, with key '{key}'")
else:
out .append (f"Got '{quote}' FROM CACHE")

if out:
return " - ".join (out)
else:

return ""

Finally, in the main part of the script, we ask for user input of a quote identifier, and we call get _
quote () to fetch the quote. The code is as follows:

def main() :
while True:
quote id = input ("Enter the ID of the quote: ")

The Cache-Aside pattern

if quote id.isdigit():
out = get quote (quote id)
print (out)
else:
print ("You must enter a number. Please retry.")

Now is the time to test our scripts, using the following steps.

First, by calling python ch08/cache _aside/populate db.py,and choosing "init" for
the mode option, we can see that a quotes. sqlite3 fileis created (in the ch08/cache aside/
folder), so we can conclude the database has been created and a quotes table created in it.

Then, we call python ch08/cache aside/populate db.py and passthe update all
mode; we get the following output:

Choose your mode! Enter 'init' or 'update db only' or 'update all':
update_ all

New (fake) quotes added to the database:

Added to DB: (62, 'Instead not here public.')

- Also adding to the cache

Added to DB: (26, 'Training degree crime serious beyond management
and.')

- Also adding to the cache

Added to DB: (25, 'Agree hour example cover game bed.')

- Also adding to the cache

Added to DB: (23, 'Dark team exactly really wind.')

- Also adding to the cache

Added to DB: (46, 'Only loss simple born remain.')

- Also adding to the cache

Added to DB: (13, 'Clearly statement mean growth executive mean.')
- Also adding to the cache

Added to DB: (88, 'West policy a human job structure bed.')
- Also adding to the cache

Added to DB: (25, 'Work maybe back play.')

- Also adding to the cache

Added to DB: (18, 'Here certain require consumer strategy.')
- Also adding to the cache

Added to DB: (48, 'Discover method many by hotel.')

- Also adding to the cache

We can also call python ch08/cache aside/populate db.py and choose the update
db_only mode. In that case, we get the following output:

Choose your mode! Enter 'init' or 'update db only' or 'update all':
update db only
New (fake) quotes added to the database ONLY:

211

212

Performance Patterns

Added to DB: (73, 'Whose determine group what site.!')

Added to DB: (77, 'Standard much career either will when chance.')
Added to DB: (5, 'Nature when event appear yeah.')

Added to DB: (81, 'By himself in treat.')

Added to DB: (88, 'Establish deal sometimes stage college everybody
close thank.')

Added to DB: (99, 'Room recently authority station relationship our
knowledge occur.')

Added to DB: (63, 'Price who a crime garden doctor eat.')

Added to DB: (43, 'Significant hot those think heart shake ago.')
Added to DB: (80, 'Understand and view happy.')

Added to DB: (54, 'Happen some family human involve.')

Next, we call the python ch08/cache aside/cache aside.py command, and we are
asked for an input to try to fetch the matching quote. Here are the different outputs I got depending
on the values I provided:

Enter the ID of the quote: 23

Got 'Dark team exactly really wind.' FROM DB - Added TO CACHE, with
key 'quote.23'

Enter the ID of the quote: 12
There was no quote stored matching that id!
Enter the ID of the quote: 43

Got 'Significant hot those think heart shake ago.' FROM DB - Added TO
CACHE, with key 'quote.43'

Enter the ID of the quote: 45
There was no quote stored matching that id!
Enter the ID of the quote: 77

Got 'Standard much career either will when chance.' FROM DB - Added TO
CACHE, with key 'quote.77'

So, each time I entered an identifier number that matched a quote stored only in the database (as shown
by the previous output), the specific output showed that the data was obtained from the database first,
before being returned from the cache (where it was immediately added).

We can see that things work as expected. The update part of the cache-aside implementation (to write
the item in the database and remove the corresponding entry from the cache) is left to you to try.
You could add an update quote () function used to update a quote when you pass quote id
to it and call it using the right command line (such as python cache aside.py update).

The Memoization pattern

The Memoization pattern is a crucial optimization technique in software development that improves
the efficiency of programs by caching the results of expensive function calls. This approach ensures that
if a function is called with the same inputs more than once, the cached result is returned, eliminating
the need for repetitive and costly computations.

The Memoization pattern

Real-world examples

We can think of calculating Fibonacci numbers as a classic example of the memoization pattern. By
storing previously computed values of the sequence, the algorithm avoids recalculating them, which
drastically speeds up the computation of higher numbers in the sequence.

Another example is a text search algorithm. In applications dealing with large volumes of text, such
as search engines or document analysis tools, caching the results of previous searches means that
identical queries can return instant results, significantly improving user experience.

Use cases for the memoization pattern
The memoization pattern can be useful for the following use cases:

1. Speeding up recursive algorithms: Memoization transforms recursive algorithms from having
a high time complexity. This is particularly beneficial for algorithms such as those calculating
Fibonacci numbers.

2. Reducing computational overhead: Memoization conserves CPU resources by avoiding
unnecessary recalculations. This is crucial in resource-constrained environments or when
dealing with high-volume data processing.

3. Improving application performance: The direct result of memoization is a noticeable
improvement in application performance, making applications feel more responsive and
efficient from the user’s perspective.

Implementing the memoization pattern

Let’s discuss an implementation of the memoization pattern using Python’s functools.lru_ cache
decorator. This tool is particularly effective for functions with expensive computations that are called
repeatedly with the same arguments. By caching the results, subsequent calls with the same arguments
retrieve the result from the cache, significantly reducing execution time.

For our example, we will apply memoization to a classic problem where a recursive algorithm is used:
calculating Fibonacci numbers.

We start with the import statements we need:

from datetime import timedelta
from functools import lru cache

Second, we create a fibonacci funcl function that does the Fibonacci numbers computation
using recursion (without any caching involved). We will use this for comparison:

def fibonacci funcl(n) :
if n < 2:

213

214

Performance Patterns

return n
return fibonacci funcl(n - 1) + fibonacci funcl(n - 2)

Third, we definea fibonacci func2 function, with the same code, but this one is decorated with
lru_cache, to enable memoization. What happens here is that the results of the function calls are
stored in a cache in memory, and repeated calls with the same arguments fetch results directly from
the cache rather than executing the function’s code. The code is as follows:

@lru cache (maxsize=None)
def fibonacci func2(n) :
if n < 2:
return n
return fibonacci func2(n - 1) + fibonacci_ func2(n - 2)

Finally, we create amain () function to test calling both functions using n=30 as input and measuring
the time spent for each execution. The testing code is as follows:

def main() :
import time

n = 30

start time = time.time()

result = fibonacci funcl (n)

duration = timedelta(time.time() - start_time)

print (f"Fibonacci funcl ({n}) = {result}, calculated in
{duration}™")

start _time = time.time ()

result = fibonacci func2(n)

duration = timedelta(time.time() - start time)

print (f"Fibonacci func2 ({n}) = {result}, calculated in
{duration}")

To test the implementation, run the following command: python ch08/memoization.py. You
should get an output like the following one:

Fibonacci_ funcl(30) 832040, calculated in 7:38:53.090973
Fibonacci func2(30) = 832040, calculated in 0:00:02.760315

Of course, the durations you get would probably be different than mine, but the duration for the second
function, the one using caching, should be less than the one for the function without caching. Also,
the difference between both durations should be important.

The Lazy Loading pattern

This was a demonstration that memoization reduces the number of recursive calls needed to calculate
Fibonacci numbers, especially for large n values. By reducing the computational overhead, memoization
not only speeds up calculations but also conserves system resources, leading to a more efficient and
responsive application.

The Lazy Loading pattern

The Lazy Loading pattern is a critical design approach in software engineering, particularly useful
in optimizing performance and resource management. The idea with lazy loading is to defer the
initialization or loading of resources to the moment they are really needed. This way, applications
can achieve more efficient resource utilization, reduce initial load times, and enhance the overall
user experience.

Real-world examples

Browsing an online art gallery provides a first example. Instead of waiting for hundreds of high-
resolution images to load upfront, the website loads only images currently in view. As you scroll,
additional images load seamlessly, enhancing your browsing experience without overwhelming your
device’s memory or network bandwidth.

Another example is an on-demand video streaming service, such as Netflix or YouTube. Such a
platform offers an uninterrupted viewing experience by loading videos in chunks. This approach not
only minimizes buffering times at the start but also adapts to changing network conditions, ensuring
consistent video quality with minimal interruptions.

In applications such as Microsoft Excel or Google Sheets, working with large datasets can be resource-
intensive. Lazy loading allows these applications to load only data relevant to your current view or
operation, such as a particular sheet or a range of cells. This significantly speeds up operations and
reduces memory usage.

Use cases for the lazy loading pattern
We can think of the following performance-related use cases for the lazy loading pattern:
1. Reducing initial load time: This is particularly beneficial in web development, where a shorter

load time can translate into improved user engagement and retention rates.

2. Conserving system resources: In an era of diverse devices, from high-end desktops to entry-
level smartphones, optimizing resource usage is crucial for delivering a uniform user experience
across all platforms.

3. Enhancing user experience: Users expect fast, responsive interactions with software. Lazy loading
contributes to this by minimizing waiting times and making applications feel more responsive.

215

216

Performance Patterns

Implementing the lazy loading pattern - lazy attribute loading

Consider an application that performs complex data analysis or generates sophisticated visualizations
based on user input. The computation behind this is resource-intensive and time-consuming.
Implementing lazy loading, in this case, can drastically improve performance. But for demonstration
purposes, we will be less ambitious than the complex data analysis application scenario. We will use a
function that simulates an expensive computation and returns a value used for an attribute on a class.

For this lazy loading example, the idea is to have a class that initializes an attribute only when it’s
accessed for the first time. This approach is commonly used in scenarios where initializing an attribute
is resource-intensive, and you want to postpone this process until it’s necessary.

We start with the initialization part of the LazyLoadedData class, where we set the _data attribute
to None. Here, the expensive data hasn't been loaded yet:

class LazyLoadedData:
def init (self):
self. data = None

We add a data () method, decorated with @oroperty, making it act like an attribute (a property)
with the added logic for lazy loading. Here, we check if data is None. If it is, we call the 1load
data () method:

@property
def data(self):
if self. data is None:
self. data = self.load data()
return self. data

We add the 1oad_data () method simulating an expensive operation, using sum (i * i for
i in range (100000)).In areal-world scenario, this could involve fetching data from a remote
database, performing a complex calculation, or other resource-intensive tasks:

def load data(self):
print ("Loading expensive data...")
return sum(i * i for i1 in range(100000))

We then add amain () function to test the implementation. We create an instance of the
LazyLoadedData class and access the _data attribute twice:

def main() :
obj = LazyLoadedData ()
print ("Object created, expensive attribute not loaded yet.")

print ("Accessing expensive attribute:")
print (obj.data)

The Lazy Loading pattern

print ("Accessing expensive attribute again, no reloading occurs:")
print (obj.data)

To test the implementation, run the python cho08/lazy loading/lazy attribute
loading.py command. You should get the following output:

Object created, expensive attribute not loaded yet.
Accessing expensive attribute:

Loading expensive data...

333328333350000

Accessing expensive attribute again, no reloading occurs:
333328333350000

As we can see, on the first access, the expensive data is loaded and stored in _data. On subsequent
accesses, the data stored is retrieved (from the attribute) without re-performing the expensive operation.

The lazy loading pattern, applied this way, is very useful for improving performance in applications
where certain data or computations are needed from time to time but are expensive to produce.

Implementing the lazy loading pattern - using caching

In this second example, we consider a function that calculates the factorial of a number using recursion,
which can become quite expensive computationally as the input number grows. While Python’s math
module provides a built-in function for calculating factorials efficiently, implementing it recursively
serves as a good example of an expensive computation that could benefit from caching. We will use
caching with 1ru_cache, as in the previous section, but this time for the purpose of lazy loading.

We start with importing the modules and functions we need:

import time
from datetime import timedelta
from functools import lru cache

Then, we create a recursive factorial () function that calculates the factorial of a number
n recursively:

def recursive factorial(n):
"m"nCalculate factorial (expensive for large n)"""
if n ==
return 1
else:
return n * recursive factorial(n - 1)

217

218

Performance Patterns

Third, we create a cached_factorial () function that returns the result of calling recursive
factorial () and is decorated with @1lru_cache. This way, if the function is called again with
the same arguments, the result is retrieved from the cache instead of being recalculated, significantly
reducing computation time:

@lru cache (maxsize=128)
def cached factorial (n):

return recursive_factorial (n)

We create amain () function as usual for testing the functions. We call the non-cached function,
and then we call the cached factorial function twice, showing the computation time for each
case. The code is as follows:

def main() :
Testing the performance
n = 20

Without caching

start _time = time.time()

print (f"Recursive factorial of {n}: {recursive factorial (n)}")
duration = timedelta(time.time() - start time)

print (£"Calculation time without caching: {duration}.")

With caching

start time = time.time ()

print (f"Cached factorial of {n}: {cached factorial(n)}")
duration = timedelta(time.time() - start_time)

print (f"Calculation time with caching: {duration}.")

start time = time.time()
print (f"Cached factorial of {n}, repeated: {cached factorial(m)}")
duration = timedelta(time.time() - start_time)

print (f"Second calculation time with caching: {duration}.")

To test the implementation, run the python ch08/lazy loading/lazy loading with
caching.py command. You should get the following output:

Recursive factorial of 20: 2432902008176640000
Calculation time without caching: 0:00:04.840851
Cached factorial of 20: 2432902008176640000
Calculation time with caching: 0:00:00.865173

Cached factorial of 20, repeated: 2432902008176640000
Second calculation time with caching: 0:00:00.350189

Summary

You will notice the time taken for the initial calculation of the factorial without caching, then the time
with caching, and finally, the time for a repeated calculation with caching.

Also, Lru_cache is inherently a memoization tool, but it can be adapted and used in cases where,
for example, there are expensive initialization processes that need to be executed only when required
and not make the application slow. In our example, we used factorial computation to simulate such
expensive processes.

If you are asking yourself what is the difference from memoization, the answer is that the context in
which caching is used here is for managing resource initialization.

Summary

Throughout this chapter, we have explored patterns that developers can use to enhance the efficiency
and scalability of applications.

The cache-aside pattern teaches us how to manage cache effectively, ensuring data is fetched and
stored in a manner that optimizes performance and consistency, particularly in environments with
dynamic data sources.

The memoization pattern demonstrates the power of caching function results to speed up applications
by avoiding redundant computations. This pattern is beneficial for expensive, repeatable operations
and can dramatically improve the performance of recursive algorithms and complex calculations.

Finally, the lazy loading pattern emphasizes delaying the initialization of resources until they are
needed. This approach not only improves the startup time of applications but also reduces memory
overhead, making it ideal for resource-intensive operations that may not always be necessary for the
user’s interactions.

In the next chapter, we are going to discuss patterns that govern distributed systems.

219

9
Distributed Systems Patterns

As technology evolves and the demand for scalable and resilient systems increases, understanding the
fundamental patterns that govern distributed systems becomes paramount.

From managing communication between nodes to ensuring fault tolerance (FT) and consistency,
this chapter explores essential design patterns that empower developers to architect robust distributed
systems. Whether you're building microservices or implementing cloud-native applications, mastering
these patterns will equip you with the tools to tackle the complexities of distributed computing effectively.

In this chapter, we're going to cover the following main topics:
o 'The Throttling pattern
o The Retry pattern
o 'The Circuit Breaker pattern

o Other distributed systems patterns

Technical requirements

See the requirements presented in Chapter 1.The additional technical requirements for the code
discussed in this chapter are the following:

o Install Flask and Flask-Limiter, using python -m pip install flask flask-limiter

o Install PyBreaker, using python -m pip install pybreaker

https://github.com/PacktPublishing/Mastering-Python-Design-Patterns-Third-Edition/tree/main/ch09

222

Distributed Systems Patterns

The Throttling pattern

Throttling is an important pattern we may need to use in today’s applications and APIs. In this context,
throttling means controlling the rate of requests a user (or a client service) can send to a given service
or API in a given amount of time, to protect the resources of the service from being overused. For
example, we may limit the number of user requests for an API to 1,000 per day. Once that limit is
reached, the next request is handled by sending an error message with the 429 HTTP status code to
the user with a message saying that there are too many requests.

There are many things to understand about throttling, including which limiting strategy and algorithm
one may use and measuring how the service is used. You can find technical details about the Throttling
pattern in the catalog of cloud design patterns by Microsoft (https://learn.microsoft.
com/en-us/azure/architecture/patterns/throttling).

Real-world examples
There are a lot of examples of throttling in real life, such as the following:

o Highway traffic management: Traffic lights or speed limits regulate the flow of vehicles on
a highway

o Water faucet: Adjusting the flow of water from a faucet

o Concert ticket sales: When tickets for a popular concert go on sale, the website may limit the
number of tickets each user can purchase at once to prevent the server from crashing due to
a sudden surge in demand

o Electricity usage: Some utility companies offer plans where customers pay different rates based
on their electricity usage during peak and oft-peak hours

« Buffet line: In a buffet, customers may be limited to taking only one plate of food at a time to
ensure that everyone has a fair chance to eat and to prevent food wastage

We also have examples of pieces of software that help implement throttling:

¢ django-throttle-requests (https://github.com/sobotklp/django-
throttle-requests) is a framework for implementing application-specific rate-limiting
middleware for Django projects

o Flask-Limiter (https://flask-limiter.readthedocs.io/en/stable/) provides
rate-limiting features to Flask routes

https://learn.microsoft.com/en-us/azure/architecture/patterns/throttling
https://learn.microsoft.com/en-us/azure/architecture/patterns/throttling
https://github.com/sobotklp/django-throttle-requests
https://github.com/sobotklp/django-throttle-requests
https://flask-limiter.readthedocs.io/en/stable/

The Throttling pattern

Use cases for the Throttling pattern

This pattern is recommended when you need to ensure your system continuously delivers the service
as expected, when you need to optimize the cost of usage of the service, or when you need to handle
bursts in activity.

In practice, you may implement the following rules:

« Limit the number of total requests to an API as N/day (for example, N=1000)

o Limit the number of requests to an API as N/day from a given IP address, or from a given
country or region

o Limit the number of reads or writes for authenticated users

In addition to the rate-limiting cases, it can be used for resource allocation, ensuring fair distribution
of resources among multiple clients.

Implementing the Throttling pattern

Before diving into an implementation example, you need to know that there are several types of
throttling, among which are Rate-Limit, IP-level Limit (based on a list of whitelisted IP addresses,
for example), and Concurrent Connections Limit, to only cite those three. The first two are relatively
easy to experiment with. We will focus on the first one here.

Let’s see an example of rate-limit-type throttling using a minimal web application developed using
Flask and its Flask-Limiter extension.

We start with the imports we need for the example:

from flask import Flask
from flask_limiter import Limiter
from flask limiter.util import get remote address

As is usual with Flask, we set up the Flask application with the following two lines:

app = Flask(name)

We then define the Limiter instance; we create it by passing a key function, get _remote address
(which we imported), the application object, the default limits values, and other parameters, as follows:

limiter = Limiter(
get remote address,
app=app,
default limits=["100 per day", "10 per hour"],
storage_uri:"memory://",

223

224

Distributed Systems Patterns

strategy="fixed-window",

Based on that, we can define a route for the /1imited path, which will be rate-limited using the
default limits, as follows:

@app.route ("/limited")
def limited api():
return "Welcome to our API!"

We also add the definition for a route for the /more 1limited path. In this case, we decorate the
function with@limiter.limit ("2/minute") to ensure a rate limit of two requests per minute.
The code is as follows:

@app.route ("/more limited")
@limiter.limit ("2/minute")
def more limited api():
return "Welcome to our expensive, thus very limited, API!"

Finally, we add the snippet that is conventional for Flask applications:

if name == " main ":

app.run (debug=True)

To test this example, run the file (ch09/throttling flaskapp.py) using the python ch09/
throttling flaskapp.py command. You would get the usual output for a Flask application
that is starting:

* Serving Flask app 'throttling_flaskapp'
* Debug mode: on

* Running on http://127.0.0.1:5000

Press CTRL+C to quit

* Restarting with stat

* Debugger is active!

* Debugger PIN: 619-166-428

Figure 9.1 - throttling_flaskapp: Flask application example startup

Then, if you point your browser to http://127.0.0.1:5000/1imited, you will see the
welcome content displayed on the page, as follows:

< C ® 127.0.0.1:5000/limited

Welcome to our API!

Figure 9.2 - Response to the /limited endpoint in the browser

The Throttling pattern

It gets interesting if you keep hitting the Refresh button. The 10th time, the page content will change
and show you a Too Many Requests error message, as shown in the following screenshot:

€« G @ 127.0.0.1:5000/limited

Too Many Requests

10 per 1 hour
Figure 9.3 — Too many requests on the /limited endpoint
Let’s not stop here. Remember - there is a second route in the code, /more limited, with
a specific limit of two requests per minute. To test that second route, point your browser to

http://127.0.0.1:5000/more_limited. You will see new welcome content displayed on
the page, as follows:

< c @® 127.0.0.1:5000/more_limited
Welcome to our expensive, thus very limited, API!

Figure 9.4 — Response to the /more_limited endpoint in the browser

If we hit the Refresh button and do it more than twice in a window of 1 minute, we get another Two
Many Requests message, as shown in the following screenshot:

<« Cc ® 127.0.0.1:5000/more_limited

Too Many Requests

2 per 1 minute

Figure 9.5 - Too many requests on the /more_limited endpoint

Also, looking at the console where the Flask server is running, you will notice the mention of each
HTTP request received and the status code of the response the application sent. It should look like
the following screenshot:

225

226

Distributed Systems Patterns

[23/Apr/2024 $23: /limited HTTP/1.1" 200
[23/Apr/2024 1261 /limited HTTP/1.1" 200
[23/Apr/2024 126 /limited HTTP/1.1" 200
[23/Apr/2024 126 /limited HTTP/1.1" 200
[23/Apr/2024 1262 /limited HTTP/1.1" 200
[23/Apr/2024 1262 /1limited HTTP/1.1" 200
[23/Apr/2024 18:26: /limited HTTP/1.1" 200
[23/Apr/2024 18:26: /limited HTTP/1.1" 200
[23/Apr/2024 $26: /1limited HTTP/1.1" 200
[23/Apr/2024 :26: /limited HTTP/1.1" 200
[23/Apr/2024 :26: " 429 -
[23/Apr/2024 :16: /more_limited HTTP/1.1" 200 -
[23/Apr/2024 :16: /more_limited HTTP/1.1" 200 -
[23/Apr/2024 :16: " 429 -

.0.
.0.
.0.
.0.
.0.
.0.
.0.
.0.
.0.
.0.
.0.
.0.
.0.
.0.

PP PO OPPPPOPP®O®E®®®
PRRPRRPRRRRRRRPRRRR

Figure 9.6 — Flask server console: Responses to the HTTP requests

There are many possibilities for rate-limit-type throttling in a Flask application using the Flask-
Limiter extension, as you can see on the documentation page of the module. The reader can find more
information on the documentation page on how to use different strategies and storage backends such
as Redis for a specific implementation.

The Retry pattern

Retrying is an approach that is increasingly needed in the context of distributed systems. Think about
microservices or cloud-based infrastructures where components collaborate with each other but are
not developed or deployed/operated by the same teams and parties.

In its daily operation, parts of a cloud-native application may experience what are called transient
faults or failures, meaning some mini-issues that can look like bugs but are not due to your application
itself; rather, they are due to some constraints outside of your control such as the networking or the
external server/service performance. As a result, your application may malfunction (at least, that could
be the perception of your users) or even hang in some places. The answer to the risk of such failures is
to put in place some retry logic so that we pass through the issue by calling the service again, maybe
immediately or after some wait time (such as a few seconds).

Real-world examples
There are examples of the Retry pattern (or analogies) in our daily life, such as the following:

o Making a phone call: Imagine you're trying to reach a friend on the phone, but the call doesn't
go through because their line is busy or there’s a network issue. Instead of giving up immediately,
you retry dialing their number after a short delay.

» Withdrawing money from an ATM: Imagine you go to an ATM to withdraw cash, but due to
a temporary issue such as network congestion or connectivity problems, the transaction fails,
and the machine displays an error message. Instead of giving up on getting cash, you wait a

The Retry pattern

moment and try the transaction again. This time, the transaction may go through successfully,
allowing you to withdraw the money you need.

There are also many tools or techniques that we can consider as examples in the software realm since
they help implement the Retry pattern, such as the following:

o In Python, the Retrying library (https://github.com/rholder/retrying)is
available to simplify the task of adding retry behavior to our functions

o The Pester library (https://github.com/sethgrid/pester) for Go developers

Use cases for the Retry pattern

This pattern is recommended to alleviate the impact of identified transient failures while communicating
with an external component or service, due to network failure or server overload.

Note that the retrying approach is not recommended for handling failures such as internal exceptions
caused by errors in the application logic itself. Also, we must analyze the response from the external
service. If the application experiences frequent busy faults, it’s often a sign that the service being
accessed has a scaling issue that should be addressed.

We can relate retrying to the microservices architecture, where services often communicate over the
network. The Retry pattern ensures that transient failures don't cause the entire system to fail.

Another type of use case is data synchronization. When syncing data between two systems, retries

can handle the temporary unavailability of one system.

Implementing the Retry pattern

In this example, we'll implement the Retry pattern for a database connection. We'll use a decorator
to handle the retry mechanism.

We start with the import statements for the example, as follows:

import logging
import random
import time

We then add configuration for logging, which will help for observability when using the code:
logging.basicConfig(level=1ogging.DEBUG)

We add our function that will support the decorator to automatically retry the execution of the
decorated function up to the number of attempts specified, as follows:

def retry(attempts) :
def decorator (func) :

227

https://github.com/rholder/retrying
https://github.com/sethgrid/pester

228 Distributed Systems Patterns

def wrapper (*args, **kwargs) :
for in range(attempts) :
try:
logging.info ("Retry happening")
return func(*args, **kwargs)
except Exception as e:
time.sleep (1)
logging.debug(e)
return "Failure after all attempts"
return wrapper

return decorator

Then, we add the connect to_database () function, which simulates a database connection. It
is decorated by the @retry decorator. We want the decorator to automatically retry the connection
up to three times if it fails:

@retry (attempts=3)
def connect to database() :
if random.randint (0, 1):
raise Exception ("Temporary Database Error")
return "Connected to Database"

Finally, to make it convenient to test our implementation, we add the following testing code:

if name == " main ":
for i in range(1l, 6):
logging.info (f"Connection attempt #{i}")
print (f"--> {connect to database() }")

To test the example, run the following command:

python ch09/retry/retry database connection.py

You should get an output like the following:

INFO:root:Connection attempt #1
INFO:root:Retry happening

--> Connected to Database
INFO:root:Connection attempt #2
INFO:root:Retry happening

DEBUG: root:Temporary Database Error
INFO:root:Retry happening

The Circuit Breaker pattern

DEBUG:root:Temporary Database Error
INFO:root:Retry happening
DEBUG:root:Temporary Database Error
--> Failure after all attempts
INFO:root:Connection attempt #3
INFO:root:Retry happening

--> Connected to Database
INFO:root:Connection attempt #4
INFO:root:Retry happening

--> Connected to Database
INFO:root:Connection attempt #5
INFO:root:Retry happening
DEBUG:root:Temporary Database Error
INFO:root:Retry happening
DEBUG:root:Temporary Database Error
INFO:root:Retry happening
DEBUG:root:Temporary Database Error
--> Failure after all attempts

So, when a temporary database error occurs, a retry happens. Several retry attempts may occur, until
three. Once three unsuccessful retry attempts have occurred, the outcome is the failure of the operation.

Overall, the Retry pattern is a viable way to handle this type of use case involved with distributed systems,
and a few errors (four database errors in our example) may mean that there is a more permanent or
problematic bug that should be fixed.

The Circuit Breaker pattern

One approach to FT involves retries, as we have just seen. But, when a failure due to communication
with an external component is likely to be long-lasting, using a retry mechanism can affect the
responsiveness of the application. We might be wasting time and resources trying to repeat a request
that’s likely to fail. This is where another pattern can be useful: the Circuit Breaker pattern.

With the Circuit Breaker pattern, you wrap a fragile function call, or an integration point with an
external service, in a special (circuit breaker) object, which monitors for failures. Once the failures
reach a certain threshold, the circuit breaker trips and all subsequent calls to the circuit breaker return
with an error, without the protected call being made at all.

Real-world examples

In life, we can think of a water or electricity distribution circuit where a circuit breaker plays an
important role.

229

230 Distributed Systems Patterns

In software, a circuit breaker is used in the following examples:

o E-commerce checkout: If the payment gateway is down, the circuit breaker can halt further
payment attempts, preventing system overload

o Rate-limited APIs: When an API has reached its rate limit, a circuit breaker can stop additional
requests to avoid penalties

Use cases for the Circuit Breaker pattern

As already said, the Circuit Breaker pattern is recommended when you need a component from your
system to be fault-tolerant to long-lasting failures when communicating with an external component,
service, or resource. Next, we will understand how it addresses such use cases.

Implementing the Circuit Breaker pattern

Let’s say you want to use a circuit breaker on a flaky function, a function that is fragile, for example,
due to the networking environment it depends on. We are going to use the pybreaker library
(https://pypi.org/project/pybreaker/) to show an example of implementing the
Circuit Breaker pattern.

Our implementation is an adaptation of a nice script I found in this repository: https://github.
com/veltra/pybreaker-playground. Let’s go through the code.

We start with our imports, as follows:

import pybreaker

from datetime import datetime
import random

from time import sleep

Let’s define our circuit breaker to automatically open the circuit after five consecutive failures in that
function. We need to create an instance of the pybreaker.CircuitBreaker class, as follows:

breaker = pybreaker.CircuitBreaker (fail max=2, reset timeout=5)

Then, we create our version of the function to simulate fragile calls. We use the decorator syntax to
protect things, so the new function is as follows:

@breaker
def fragile function() :
if not random.choice([True, False]):
print (" / OK", end="")
else:
print (" / FAIL", end="")
raise Exception("This is a sample Exception")

https://pypi.org/project/pybreaker/
https://github.com/veltra/pybreaker-playground
https://github.com/veltra/pybreaker-playground

The Circuit Breaker pattern 231

Finally, here’s the main part of the code, with the main () function:

def main() :
while True:
print (datetime.now() .strftime ("$Y-%m-%d %$H:%M:%S"), end="")

try:

fragile function ()
except Exception as e:

print (" / {} {}".format (type(e), e), end="")
finally:

print("")

sleep (1)

Calling this script by running the python ch09/circuit_breaker.py command produces
the following output:

0K

FAIL / <class 'Exception'> This is a sample Exception

0K

FAIL / <class 'Exception'> This is a sample Exception

FAIL / <class 'pybreaker.CircuitBreakerError'> Fallures threshold reached, circuit breaker opened

<class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open

<class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open

<class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open

<class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open

FAIL / <class 'pybreaker.CircuitBreakerError'> Trial call failed, circuit breaker opened
2024—-04-23 H <class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open
2024—04—23 3 <class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open
20248423 E <class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open
2024-84-23 3 <class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open
2024-04—-23 i 0K

FAIL / <class 'Exception'> This is a sample Exception

0K
2024—-04-23 22:49:11 / OK
2024-04-23 22:49:12 FAIL / <class 'Exception'> This is a sample Exception
2024—04-23 22:49:13 FAIL / <class 'pybreaker.CircuitBreakerError's> Failures threshold reached, circuit breaker opened
2024-84-23 22:49:14 /[<class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open
2024-04-23 22:49:15 <class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open
2024—04-23 22:49:16 <class 'pybreaker.CircuitBreakerError'> Timeout not elapsed yet, circuit breaker still open

Figure 9.7 — Output of our program using a circuit breaker

By closely looking at the output, we can see that the circuit breaker does its job as expected: when it is open,
all fragile function () calls fail immediately (since they raise the CircuitBreakerError
exception) without any attempt to execute the intended operation. And, after a timeout of 5 seconds,
the circuit breaker will allow the next call to go through. If that call succeeds, the circuit is closed; if
it fails, the circuit is opened again until another timeout elapses.

232

Distributed Systems Patterns

Other distributed systems patterns

There are many more distributed systems patterns than the ones we covered here. Among the other
patterns developers and architects can use are the following:

« Command and Query Responsibility Segregation (CQRS): This pattern separates the
responsibilities for reading and writing data, allowing for optimized data access and scalability
by tailoring data models and operations to specific use cases

o Two-Phase Commit: This distributed transaction protocol ensures atomicity and consistency
across multiple participating resources by coordinating a two-phase commit process, involving
a prepare phase followed by a commit phase

o Saga: A saga is a sequence of local transactions that together form a distributed transaction,
providing a compensating mechanism to maintain consistency in the face of partial failures
or aborted transactions

« Sidecar: The Sidecar pattern involves deploying additional helper services alongside primary
services to enhance functionality, such as adding monitoring, logging, or security features
without directly modifying the main application

o Service Registry: This pattern centralizes the management and discovery of services within a
distributed system, allowing services to dynamically register and discover each other, facilitating
communication and scalability

o Bulkhead: Inspired by ship design, the Bulkhead pattern partitions resources or components
within a system to isolate failures and prevent cascading failures from impacting other parts
of the system, thereby enhancing FT and resilience

Each of these patterns addresses specific challenges inherent in distributed systems, offering strategies
and best practices for architects and developers to design robust and scalable solutions capable of
operating in dynamic and unpredictable environments.

Summary

In this chapter, we delved into the intricacies of distributed systems patterns, focusing on the Throttling,
Retry, and Circuit Breaker patterns. These patterns are essential for building robust, fault-tolerant,
and efficient distributed systems.

The skills you've acquired in this chapter will significantly contribute to your ability to design and
implement distributed systems that can handle transient failures, service interruptions, and high loads.

The section about the Throttling pattern equipped you with the tools to manage service load and
resource allocation effectively.

By understanding how to implement the Retry pattern, you've gained the skills to make your operations
more reliable.

Summary

And, finally, the Circuit Breaker pattern taught you how to build fault-tolerant systems that can
gracefully handle failures.

As we wrap up this chapter, it’s crucial to remember that these patterns are not isolated solutions but
pieces of a larger puzzle. They often work best when combined and tailored to fit the specific needs
and constraints of your system. The key takeaway is to understand the underlying principles so that
you can adapt them to create a resilient and efficient distributed system.

Lastly, we briefly presented some other distributed systems patterns, which we cannot cover in this book.

In the next chapter, we will focus on patterns for testing.

233

10

Patterns for Testing

In the previous chapters, we covered architectural patterns and patterns for specific use cases such as
concurrency or performance.

In this chapter, we will explore design patterns that are particularly useful for testing. These patterns
help in isolating components, making tests more reliable, and promoting code reusability.

In this chapter, we're going to cover the following main topics:

o The Mock Object pattern

o The Dependency Injection pattern

Technical requirements

See the requirements presented in Chapter 1.

The Mock Object pattern

The Mock Object pattern is a powerful tool for isolating components during testing by simulating
their behavior. Mock objects help create controlled testing environments and verify interactions
between components.

The Mock Object pattern provides three features:
1. Isolation: Mocks isolate the unit of code being tested, ensuring that tests run in a controlled
environment where dependencies are predictable and do not have external side effects.

2. Behavior verification: By using mock objects, you can verify that certain behaviors happen
during a test, such as method calls or property accesses.

3. Simplification: They simplify the setup of tests by replacing complex real objects that might
require significant setup of their own.

236

Patterns for Testing

Comparison with stubs

Stubs also replace real implementations but are used only to provide indirect input to the
code under test. Mocks, by contrast, can also verify interactions, making them more flexible
in many testing scenarios.

Real-world examples
We can think of the following analog concepts or tools in the real world:

« A flight simulator, which is a tool designed to replicate the experience of flying an actual
airplane. It allows pilots to learn how to handle various flight scenarios in a controlled and
safe environment.

o A cardiopulmonary resuscitation (CPR) dummy, which is used to teach students how to
perform CPR effectively. It simulates the human body to provide a realistic yet controlled
setting for learning.

o A crash test dummy, which is used by car manufacturers to simulate human reactions to vehicle
collisions. It provides valuable data on the impacts and safety features of a car without putting
actual human lives at risk.

Use cases for the Mock Object pattern

In unit testing, mock objects are used to replace complex, unreliable, or unavailable dependencies of
the code being tested. This allows developers to focus solely on the unit itself rather than its interactions
with external systems. For example, when testing a service that fetches data from an API, a mock
object can simulate the API by returning predefined responses, ensuring that the service can handle
various data scenarios or errors without needing to interact with the actual APIL

While similar to unit testing, integration testing with mock objects focuses on the interaction between
components rather than individual units. Mocks can be used to simulate components that have not been
developed yet or are too costly to involve in every test. For example, in a microservices architecture,
amock can represent a service that is under development or temporarily unavailable, allowing other
services to be tested in terms of how they integrate and communicate with it.

The Mock Object pattern is also useful for behavior verification. This use case involves verifying
that certain interactions between objects occur as expected. Mock objects can be programmed to
expect specific calls, arguments, and even order of interactions, which makes them powerful tools
for behavioral testing; for example, testing whether a controller, in a Model View Controller (MVC)
architecture, correctly calls authentication and logging services before processing a user request. Mocks
can verify that the controller makes the right calls in the right order, such as checking credentials
before attempting to log the request.

The Mock Object pattern

Implementing the Mock Object pattern

Imagine we have a function that logs messages to a file. We can mock the file-writing mechanism to
ensure our logging function writes the expected content to the log without writing to a file. Let’s see
how this can be implemented using Python’s unittest module.

First, we import what we need for the example:

import unittest
from unittest.mock import mock open, patch

Then, we create a class representing a simple logger that writes messages to a file specified
during initialization:

class Logger:
def init_ (self, filepath):
self.filepath = filepath

def log(self, message) :
with open(self.filepath, "a") as file:
file.write (f"{message}\n")

Next, we create a test case class that inherits from the unittest . TestCase class, as usual. In this
class, we need the test_log () method to test the logger’s 1og () method, as follows:

class TestLogger (unittest.TestCase) :
def test log(self):
msg = "Hello, logging world!"

Next, we are going to mock the Python built-in open () function directly within the test scope.
Mocking the function is done using unittest .mock.patch (), which temporarily replaces the
target object, builtins . open, with a mock object (the result of calling mock open ()). With
the context manager we get from calling the unittest .mock.patch () function, we create a
Logger object and call its . 1og () method, which should trigger the open () function:

m_open = mock open/()

with patch("builtins.open", m open) :
logger = Logger ("dummy.log")
logger.log (msg)

About builtins

According to Python documentation, the builtins module provides direct access to all
built-in identifiers of Python; for example, builtins. open is the full name for the open ()
built-in function. See https://docs.python.org/3/library/builtins.html.

237

https://docs.python.org/3/library/builtins.html

238

Patterns for Testing

(7
About mock_open

When you call mock _open (), it returns a Mock object that is configured to behave like the
built-in open () function. This mock is set up to simulate file operations such as reading
and writing.

About unittest.mock.patch

It is used to replace objects with mocks during testing. Its arguments include target to specify
the object to replace, and optional arguments: new for an optional replacement object, spec
and autospec to limit the mock to the real object’s attributes for accuracy, spec_set fora
stricter attribute specification, side_effect to define conditional behavior or exceptions,
return_ value for setting a fixed response, and wraps to allow the original object’s
behavior while modifying certain aspects. These options enable precise control and flexibility

in testing scenarios.

. J

Now, we check that the log file was opened correctly, which we do using two verifications. For the
first one, we use the assert called once with () method on the mock object, to check that
the open () function was called with the expected parameters. For the second one, we need more
tricks from unittest .mock.mock open;our m_open mock object, which was obtained by
calling the mock open () function, is also a callable object that behaves like a factory for creating
new mock file handles each time it’s called. We use that to obtain a new file handle, and then we use
assert called once with() onthewrite () method call on that file handle, which helps
us check if the write () method was called with the correct message. This part of the test function
is as follows:

m_open.assert called once with(
n dummy . 1og n , n a n
)

m open() .write.assert called once with(
£ {msg}\n"
)

Finally, we callunitest .main ():

if name == " main ":

unittest.main ()

To execute the example (in the ch10/mock_object . py file), as usual, run the following command:

python chl0/mock object.py

You should get an output like the following:

The Dependency Injection pattern

Ran 1 test in 0.012s

OK

That was a quick demonstration of using mocking to simulate parts of a system within a unit test.
We can see that this approach isolates side effects (that is, file I/O), ensuring that the unit tests do not
create or require actual files. It allows testing the internal behavior of the class without altering the
class structure for testing purposes.

The Dependency Injection pattern

The Dependency Injection pattern involves passing the dependencies of a class as external entities
rather than creating them within the class. This promotes loose coupling, modularity, and testability.

Real-world examples
We come across the following examples in real life:

o Electrical appliances and power outlets: Various electrical appliances can be plugged into
different power outlets to use electricity without needing direct and permanent wiring

o Lenses on cameras: A photographer can change lenses on a camera to suit different environments
and needs without changing the camera itself

o Modular train systems: In a modular train system, individual cars (such as sleeper, diner, or
baggage cars) can be added or removed depending on the needs of each journey

Use cases for the Dependency Injection pattern

In web applications, injecting database connection objects into components such as repositories or
services enhances modularity and maintainability. This practice allows for an easy switch between
different database engines or configurations without the need to alter the component’s code directly.
It also significantly simplifies the process of unit testing by enabling the injection of mock database
connections, thereby testing various data scenarios without affecting the live databases.

Another type of use case is managing configuration settings across various environments (development,
testing, production, and so on). By dynamically injecting settings into modules, dependency injection
(DI) reduces coupling between the modules and their configuration sources. This flexibility makes it
easier to manage and switch environments without needing extensive reconfiguration. In unit testing,
this means you can inject specific settings to test how modules perform under different configurations,
ensuring robustness and functionality.

239

240 Patterns for Testing

Implementing the Dependency Injection pattern — using a mock
object

In this first example, we'll create a simple scenario where a WeatherService class depends on a
WeatherApiClient interface to fetch weather data. For the example’s unit test code, we will inject
a mock version of this API client.

We start by defining the interface any weather API client implementation should conform to, using
Pythons Protocol feature:

from typing import Protocol

class WeatherApiClient (Protocol) :
def fetch weather(self, location):
""r"Fetch weather data for a given location"""

Then, we add a RealWeatherApiClient class that implements that interface and that would
interact with our weather service. In a real scenario, in the provided fetch weather () method,
we would perform a call to a weather service, but we want to keep the example simple and focus on the
main concepts of this chapter; so, we provide a simulation, simply returning a string that represents
the weather data result. The code is as follows:

class RealWeatherApiClient:
def fetch weather(self, location):
return f"Real weather data for {location}"

Next, we create a weather service, which uses an object that implements the WeatherApiClient
interface to fetch weather data:

class WeatherService:
def init (self, weather api: WeatherApiClient) :
self .weather api = weather api

def get_weather(self, location):
return self.weather api.fetch weather (location)

Finally, we are ready to inject the API client’s dependency through the WeatherService constructor.
We add code that helps manually test the example, using the real service, as follows:

if name == " main ":
ws = WeatherService (RealWeatherApiClient ())
print (ws.get weather ("Paris"))

The Dependency Injection pattern 241

This part of our example (in the ch10/dependency injection/di_with mock.py file)
can be manually tested by using the following command:

python chl0/dependency injection/di with mock.py

You should get the following output:

Real weather data for Paris

Since the interesting part of our example is about unit testing, let’s add that part (in a second file, ch10/
dependency injection/test di with mock.py).

First, we import the unittest module, as well as the WeatherService class (from our di__
with mock module), as follows:

import unittest
from di with mock import WeatherService

Then, we create a mock version of the weather API client implementation that will be useful for unit
testing, simulating responses without making real API calls:

class MockWeatherApiClient:
def fetch weather(self, location):
return f"Mock weather data for {location}"

Next, we write the test case class, with a test function. In that function, we inject the mock API client
instead of the real API client, passing it to the WeatherService constructor, as follows:

class TestWeatherService (unittest.TestCase) :
def test get weather(self):
mock_api = MockWeatherApiClient ()
weather service = WeatherService (mock api)
self.assertEqual (
weather service.get weather ("Anywhere"),
"Mock weather data for Anywhere",

We finish by adding the usual lines for executing unit tests when the file is interpreted by Python:

if _name == "_main_ ":
unittest.main ()

Executing this part of the example (in the ch10/dependency injection/test di with
mock . py file), using the python ch10/dependency injection/test di with mock.
py command, gives the following output:

242 Patterns for Testing

Ran 1 test in 0.000s

OK

The test with the dependency injected using a mock object succeeded.

Through this example, we were able to see that the WeatherService class doesn't need to know
whether it’s using a real or a mock API client, making the system more modular and easier to test.

Implementing the Dependency Injection pattern — using a
decorator

It is also possible to use decorators for DI, which simplifies the injection process. Let’s see a simple
example demonstrating how to do that, where we'll create a notification system that can send notifications
through different channels (for example, email or SMS). The first part of the example will show the
result based on manual testing, and the second part will provide unit tests.

First, we define a NotificationSender interface, outlining the methods any notification sender
should have:

from typing import Protocol

class NotificationSender (Protocol) :
def send(self, message: str):
""m"Send a notification with the given message"""

Then, we implement two specific notification senders: the EmailSender class implements sending
a notification using email, and the SMSSender class implements sending using SMS. This part of
the code is as follows:

class EmailSender:
def send(self, message: str):
print (f"Sending Email: {message}")

class SMSSender:
def send(self, message: str):
print (f"Sending SMS: {message}")

We also define a notification service class, Not ificationService, with a class attribute sender
and a .notify () method, which takes in a message and calls . send () on the provided sender
object to send the message, as follows:

class NotificationService:
sender: NotificationSender = None

The Dependency Injection pattern

def notify(self, message) :
self.sender.send (message)

What is missing is the decorator that will operate the DI, to provide the specific sender object to be
used. We create our decorator to decorate the NotificationService class for injecting the
sender. It will be used by calling @inject_sender (EmailSender) if we want to inject the
email sender, or @inject sender (SMSSender) if we want to inject the SMS sender. The code
for the decorator is as follows:

def inject sender (sender cls):
def decorator(cls):
cls.sender = sender cls()
return cls

return decorator

Now, if we come back to the notification service’s class, the code would be as follows:

@inject_sender (EmailSender)
class NotificationService:
sender: NotificationSender = None

def notify(self, message) :
self.sender.send (message)

Finally, we can instantiate the Not ificationService class in our application and notify a message
for testing the implementation, as follows:

if name == " main ":
service = NotificationService ()
service.notify("Hello, this is a test notification!")

That first part of our example (in the ch10/dependency injection/di with decorator.
py file) can be manually tested by using the following command:

python chl0/dependency injection/di with decorator.py
You should get the following output:

Sending Email: Hello, this is a test notification!

If you change the decorating line, replace the EmailSender class with SMSSender, and rerun
that command, you will get the following output:

Sending SMS: Hello, this is a test notification!

243

244 Patterns for Testing

That shows the DI is effective.

Next, we want to write unit tests for that implementation. We could use the mocking technique, but
to see other ways, we are going to use the stub classes approach. The stubs manually implement the
dependency interfaces and include additional mechanisms to verify that methods have been called
correctly. Let’s start by importing what we need:

import unittest

from di_with decorator import (
NotificationSender,
NotificationService,

inject sender,

Then, we create stub classes that implement the NotificationSender interface. These classes
will help record calls to their send () method, using the messages_sent attribute on their
instances, allowing us to check whether the correct methods were called during the test. Both stub
classes are as follows:

class EmailSenderStub:
def init (self):
self .messages sent = []

def send(self, message: str):
self .messages sent.append (message)

class SMSSenderStub:
def init (self):
self .messages sent = []

def send(self, message: str):
self.messages sent.append (message)

Next, we are going to use both stubs in our test case to verify the functionality of NotificationService.
In the test function, test notify with email, we create an instance of EmailSenderStub,
inject that stub into the service, send a notification message, and then verify that the message was sent
by the email stub. That part of the code is as follows:

class TestNotifService (unittest.TestCase) :
def test notify with email (self) :
email stub = EmailSenderStub ()

service = NotificationService ()

The Dependency Injection pattern

service.sender = email stub
service.notify ("Test Email Message")

self.assertIn(
"Test Email Message",
email_ stub.messages_sent,

We need another function for the notification with SMS functionality, test _notify with sms.
Similarly to the previous case, we create an instance of SMSSenderStub. Then, we need to inject that
stub into the notification service. But, for that, in the scope of the test, we define a custom notification
service class, and decorate it with @inject sender (SMSSenderStub), as follows:

@inject sender (SMSSenderStub)
class CustomNotificationService:
sender: NotificationSender = None

def notify(self, message) :
self.sender.send (message)

Based on that, we inject the SMS sender stub into the custom service, send a notification message,
and then verify that the message was sent by the SMS stub. The complete code for the second unit
test is as follows:

def test notify with sms(self):
sms_stub = SMSSenderStub ()

@inject sender (SMSSenderStub)
class CustomNotificationService:
sender: NotificationSender = None

def notify(self, message):
self.sender.send (message)

service = CustomNotificationService ()
service.sender = sms_stub
service.notify ("Test SMS Message")

self.assertIn(
"Test SMS Message", sms_stub.messages_sent

245

246

Patterns for Testing

Finally, we should not forget to add the lines needed for executing unit tests when the file is interpreted
by Python:

if name == " main ":
unittest.main ()

Executing the unit test code (in the ch10/dependency injection/test di with
decorator.py file), using the python chl10/dependency injection/test di with
decorator.py command, gives the following output:

Ran 2 tests in 0.000s

OK

This is what was expected.

So, this example showed how using a decorator to manage dependencies allows for easy changes without
modifying the class internals, which not only keeps the application flexible but also encapsulates the
dependency management outside of the core business logic of your application. In addition, we saw
how DI can be tested with unit tests using the stubs technique, ensuring the application’s components
work as expected in isolation.

Summary

In this chapter, we've explored two pivotal patterns essential for writing clean code and enhancing our
testing strategies: the Mock Object pattern and the Dependency Injection pattern.

The Mock Object pattern is crucial for ensuring test isolation, which helps avoid unwanted side
effects. It also facilitates behavior verification and simplifies test setup. We discussed how mocking,
particularly through the unittest . mock module, allows us to simulate components within a unit
test, demonstrating this with a practical example.

The Dependency Injection pattern, on the other hand, offers a robust framework for managing
dependencies in a way that enhances flexibility, testability, and maintainability. It’s applicable not
only in testing scenarios but also in general software design. We illustrated this pattern with an initial
example that integrates mocking for either unit or integration tests. Subsequently, we explored a more
advanced implementation using a decorator to streamline dependency management across both the
application and its tests.

As we conclude this chapter and prepare to enter the final one, we'll shift our focus slightly to discuss
Python anti-patterns, identifying common pitfalls, and learning how to avoid them.

11
Python Anti-Patterns

In this final chapter, we will explore Python anti-patterns. These are common programming practices
that, while not necessarily wrong, often lead to less efficient, less readable, and less maintainable code.
By understanding these pitfalls, you can write cleaner, more efficient code for your Python applications.

In this chapter, we're going to cover the following main topics:

o Code style violations
 Correctness anti-patterns
o Maintainability anti-patterns

o Performance anti-patterns

Technical requirements

See the requirements presented in Chapter 1.

Code style violations

The Python style guide, also known as Python Enhancement Proposal no 8 (PEP 8), provides
recommendations for readability and consistency in your code, making it easier for developers to
collaborate and maintain projects over time. You can find the style guide details on its official page
here: https://peps.python.org/pep-0008. In this section, we are going to present some
of the recommendations of the style guide so that you can avoid them when writing your application’s
or library’s code.

https://peps.python.org/pep-0008

248

Python Anti-Patterns

Tools for fixing coding style violations

Note that we have formatting tools such as Black (https://black.readthedocs.io/en/
stable/), isort (https://pycga.github.io/isort/), and/or Ruff (https://docs.
astral.sh/ruff/) that can help you fix code that does not follow the style guide recommendations.
We are not going to spend time on how to use these tools here since you can find all the needed
documentation on their official documentation pages and start using them in a matter of minutes.

Now, let’s explore our selected code style recommendations.

Indentation

You should use four spaces per indentation level, and you should avoid mixing tabs and spaces.

Maximum line length and blank lines

The style guide recommends limiting all lines of code to a maximum of 79 characters, for better readability.

Also, there are rules related to blank lines. First, you should surround top-level function and class
definitions with two blank lines. Second, method definitions inside a class should be surrounded by
a single blank line.

For example, the formatting with the following code snippet is incorrect:

class MyClass:
def methodl (self) :
pass
def method2 (self) :
pass
def top level function() :
pass

The right formatting is as follows:

class MyClass:

def methodl (self) :
pass

def method2 (self) :

pass

def top level function() :
pass

https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://pycqa.github.io/isort/
https://docs.astral.sh/ruff/
https://docs.astral.sh/ruff/

Tools for fixing coding style violations

Imports

The way you write, organize, and order your import lines is also important. According to the style
guide, imports should be on separate lines and grouped into three categories in this order: standard
library imports, related third-party imports, and local-specific imports within the application’s or
library’s code base. Also, each group should be separated by a blank line.

For example, the following is not compliant with the style guide:

import os, sys
import numpy as np
from mymodule import myfunction

The best practice for the same imports is the following:

import os
import sys

import numpy as np

from mymodule import myfunction

Naming conventions

You should use descriptive names for variables, functions, classes, and modules. The following are
specific naming conventions for different types of cases:

o Name for function and variable (including class attributes and methods): Use lower

case _with underscores
o Name for class: Use CapWords

o Name for constant: Use ALL. CAPS WITH UNDERSCORES

For example, the following is not good practice:

def calculateSum(a, Db):
return a + b

class my class:
pass

maxValue = 100

The best practice is the following:

def calculate sum(a, b):
return a + b

249

250

Python Anti-Patterns

class MyClass:
pass

MAX VALUE = 100

Comments

Comments should be complete sentences, with the first word capitalized, and should be clear and
concise. We have specific recommendations for two cases of comments—block comments and
inline comments:

o Block comments generally apply to some (or all) code that follows them and are indented to
the same level as that code. Each line of a block comment starts with # and a single space.

o Inline comments should be used sparingly. An inline comment is placed on the same line as a
statement, separated by at least two spaces from the statement.

For example, in the following, we have a bad comment style:

#This is a poorly formatted block comment.
def foo(): #This is a poorly formatted inline comment.
pass

Here is the equivalent code, with the style fixed:

This is a block comment.
It spans multiple lines.
def fool() :
pass # This is an inline comment.

Whitespace in expressions and statements
You should avoid extraneous whitespace in the following situations:

o Immediately inside parentheses, brackets, or braces
o Immediately before a comma, semicolon, or colon

o More than one space around an assignment operator to align it with another

This ends our review of the most common code style violations to pay attention to. As previously
said, there are tools to detect and fix such violations in your code in a productive way, and they are
generally included in the developer workflow (for example, via git commit hooks and/or in the
project’s CI/CD processes).

Correctness anti-patterns

Correctness anti-patterns

These anti-patterns can lead to bugs or unintended behavior if not addressed. We are going to discuss
the most common of these anti-patterns and alternative, recommended ways and approaches. We are
going to focus on the following anti-patterns:

o Using the type () function for comparing types
o Mutable default argument

o Accessing a protected member from outside a class

Note that using IDEs such as Visual Studio Code or PyCharm or command-line tools such as Flake8
will help you spot such bad practices in your code, but it is important to know the recommendations
and the reason behind each one.

Using the type() function for comparing types

Sometimes, we need to identify the type of a value through comparison, for our algorithm. The
common technique one may think of for that is to use the type () function. But using type () to
compare object types does not account for subclassing and is not as flexible as the alternative which
is based on using the isinstance () function.

Imagine we have two classes, CustomListA and CustomListB, that are subclasses of the
UserList class, which is the recommended class one should inherit from when defining a class for
a custom list, as follows:

from collections import UserList

class CustomListA (UserList) :
pass

class CustomListB (UserList) :
pass

If we wanted to check if an object is of one of the custom list types, using the first approach, we would
test the type (obj) in (CustomListA, CustomListB) condition.

Alternatively, we would simply test isinstance (obj, UserList), and that would be enough
since CustomListA and CustomListB are subclasses of UserList.

251

252

Python Anti-Patterns

As a demonstration, we write a compare () function that uses the first approach, as follows:

def compare (obj) :
if type(obj) in (CustomListA, CustomListB) :
print ("It's a custom list!")
else:
print ("It's a something elsel!")

Then, we write abetter compare () function to do the equivalent using the alternative approach,
as follows:

def better compare (obj) :
if isinstance(obj, UserList) :
print ("It's a custom list!")
else:
print ("It's a something elsel!")

The following lines of code can help test both functions:

objl = CustomListA([1, 2, 3])
obj2 = CustomListB(["a", "b", "c"])

compare (objl)
compare (obj2)
better compare (objl)
better compare (obj2)

The complete demonstration code is in the ch11/compare types.py file. Running the python
chll/compare types.py command should give the following output:

It's a custom list!
It's a custom list!
It's a custom list!
It's a custom list!

This shows that both functions can produce the expected result. But the function using the recommended
technique, isinstance (), is simpler to write and more flexible since it takes subclasses into account.

Mutable default argument

When you define a function with a parameter that expects a mutable value, such as a list or a dictionary,
you may be tempted to provide a default argument ([] or { } respectively). But such a function retains
changes between calls, which will lead to unexpected behaviors.

Correctness anti-patterns 253

The recommended practice is to use a default value of None and set it to a mutable data structure
within the function if needed.

Let’s create a function called manipulate () whose mylist parameter has a default value of [].
The function appends the "test" string to the mylist list and then returns it, as follows:

def manipulate (mylist=[]):
mylist.append("test")
return mylist

In another function called better manipulate () whose mylist parameter has a default
value of None, we start by settingmylist to [] if it is None, then we append the "test" string
to mylist before returning it, as follows:

def better manipulate (mylist=None) :
if not mylist:
mylist = []

mylist.append("test")
return mylist

The following lines help us test each function by calling it several times with the default argument:

if name == " main ":
print ("function manipulate()")
print (manipulate ())
print (manipulate())
print (manipulate())

print ("function better manipulate()")
print (better manipulate())
print (better manipulate())

Running the python chll/mutable default argument.py command should give the
following output:

function manipulate()
['test']

['test', 'test']

['test', 'test', 'test']
function better manipulate()
['test']

['test']

254

Python Anti-Patterns

As you can see, with the non-recommended way of doing this, we end up with the "test " string
several times in the list returned; the string is accumulating because each subsequent time the function
has been called, the my1list argument kept its previous value instead of being reset to the empty
list. But, with the recommended solution, we see with the result that we get the expected behavior.

Accessing a protected member from outside a class

Accessing a protected member (an attribute prefixed with) of a class from outside that class usually
calls for trouble since the creator of that class did not intend this member to be exposed. Someone
maintaining the code could change or rename that attribute later down the road, and parts of the code
accessing it could result in unexpected behavior.

If you have code that accesses a protected member that way, the recommended practice is to refactor
that code so that it is part of the public interface of the class.

To demonstrate this, let’s define a Book class with two protected attributes, title and author,
as follows:

class Book:
def init (self, title, author):
self. title = title
self. author = author

Now, let’s create another class, Bet terBook, with the same attributes and a presentation
line () method that accesses the title and author attributes and returns a concatenated
string based on them. The class definition is as follows:

class BetterBook:
def init (self, title, author):
self. title = title
self. author = author

def presentation line(self):
return f£"{self. title} by {self. author}"

Finally, in the code for testing both classes, we get and print the presentation line for an instance
of each class, accessing the protected members for the first one (instance of Book) and calling the
presentation_ line () method for the second one (instance of Bet terBook), as follows:

if name == " main ":
bl = Book(
"Mastering Object-Oriented Python",
"Steven F. Lott",

Maintainability anti-patterns

print (
"Bad practice: Direct access of protected members"

)
print (f"{bl. title} by {bl. author}")

b2 = BetterBook (
"Python Algorithms",
"Magnus Lie Hetland",
)
print (
"Recommended: Access via the public interface"
)

print (b2.presentation line())

The complete code is in the ch11l/ protected member of class.py file. Running the
python chll/ protected member of class.py command gives the following output:

Bad practice: Direct access of protected members
Mastering Object-Oriented Python by Steven F. Lott
Recommended: Access via the public interface
Python Algorithms by Magnus Lie Hetland

This shows that we get the same result, without any error, in both cases, but using the presentation
line () method, as done in the case of the second class, is the best practice. The title and
_author attributes are protected, so it is not recommended to call them directly. The developer
could change those attributes in the future. That is why they must be encapsulated in a public method.

Also, it is good practice to provide an attribute that encapsulates each protected member of the class
using the @property decorator, as we have seen in the Techniques for achieving encapsulation section
of Chapter 1, Foundational Design Principles.

Maintainability anti-patterns

These anti-patterns make your code difficult to understand or maintain over time. We are going to
discuss several anti-patterns that should be avoided for better quality in your Python application or
library’s code base. We will focus on the following points:

o Using a wildcard import
o Look Before You Leap (LBYL) versus Easier to Ask for Forgiveness than Permission (EAFP)
o Overusing inheritance and tight coupling

o Using global variables for sharing data between functions

255

256

Python Anti-Patterns

As mentioned for the previous category of anti-patterns, using tools such as Flake8 as part of your
developer workflow can be handy to help find some of those potential issues when they are already
present in your code.

Using a wildcard import

This way of importing (Erom mymodule import *)can clutter the namespace and make it
difficult to determine where an imported variable or function came from. Also, the code may end up
with bugs because of name collision.

The best practice is to use specific imports or import the module itself to maintain clarity.

LBYL versus EAFP

LBYL often leads to more cluttered code, while EAFP makes use of Python’s handling of exceptions
and tends to be cleaner.

For example, we may want to check if a file exists, before opening it, with code such as the following:

if os.path.exists(filename) :
with open(filename) as f:
print (f.text)

This is LBYL, and when new to Python, you would think that it is the right way to treat such situations.
But in Python, it is recommended to favor EAFP, where appropriate, for cleaner, more Pythonic code.
So, the recommended way for the expected result would give the following code:

try:
with open(filename) as f:
print (f.text)
except FileNotFoundError:
print ("No file there")

As a demonstration, let’s write a test _open_ file () function that uses the LBYL approach,
as follows:

def test open file(filename) :
if os.path.exists(filename) :
with open(filename) as f:
print (f.text)
else:
print ("No file there")

Maintainability anti-patterns

Then, we add a function that uses the recommended approach:

def better test open file(filename) :
try:
with open(filename) as f:
print (f.text)
except FileNotFoundError:
print ("No file there")

We can then test these functions with the following code:

filename = "no file.txt"
test open file(filename)
better test open file(filename)

You can check the complete code of the example in the ch11/1byl vs eafp.py file, and running
it should give the following output:

No file there
No file there

This output shows us that both approaches give the same outcome, but the t ry/except way makes
our code cleaner.

Overusing inheritance and tight coupling

Inheritance is a powerful feature of OOP, but overusing it — for example, creating a new class for every
slight variation of behavior - can lead to tight coupling between classes. This increases complexity
and makes the code less flexible and harder to maintain.

It is not recommended to create a deep inheritance hierarchy such as the following (as a simplified example):

class GrandParent:
pass

class Parent (GrandParent) :
pass

class Child(Parent) :
Pass

The best practice is to create smaller, more focused classes and combine them to achieve the desired
behavior, as with the following:

class Parent:
pass

257

258

Python Anti-Patterns

class Child:
def init (self, parent):
self.parent = parent

As you may remember, this is the composition approach, which we discussed in the Following the
Favor Composition over Inheritance principle section of Chapter 1, Foundational Design Principles.

Using global variables for sharing data between functions

Global variables are variables that are accessible throughout the entire program, making them tempting
to use for sharing data between functions—for example, configuration settings that are used across
multiple modules or shared resources such as database connections.

However, they can lead to bugs where different parts of the application unexpectedly modify global
state. Also, they make it harder to scale applications as they can lead to issues in multithreaded
environments where multiple threads might attempt to modify the global variable simultaneously.

Here is an example of the non-recommended practice:

Global variable
counter = 0

def increment () :
global counter
counter += 1

def reset () :
global counter
counter = 0

Instead of using a global variable, you should pass the needed data as arguments to functions or
encapsulate state within a class, which improves the modularity and testability of the code. So, the
best-practice equivalent for the counterexample would be defining a Counter class holding a
counter attribute, as follows:

class Counter:
def init (self):
self.counter = 0

def increment (self) :
self.counter += 1

def reset (self):
self.counter = 0

Performance anti-patterns

Next, we add code for testing the Counter class as follows:

if name == " main ":
c = Counter ()
print (f"Counter value: {c.counter}")
c.increment ()
print (£"Counter value: {c.counter}")
c.reset ()

You can check the complete code of the example in the ch11/instead of global variable.
py file, and running it should give the following output:

Counter value: 0
Counter value: 1

This shows how using a class instead of global variables is effective and can be scalable, thus the
recommended practice.

Performance anti-patterns

These anti-patterns lead to inefficiencies that can degrade performance, especially noticeable in large-
scale applications or data-intensive tasks. We will focus on the following such anti-patterns:

o Notusing . join () to concatenate strings in a loop

o Using global variables for caching

Let’s start.

Not using .join() to concatenate strings in a loop

Concatenating strings with + or += in a loop creates a new string object each time, which is inefficient.
The best solution is to use the . join () method on strings, which is designed for efficiency when
concatenating strings from a sequence or iterable.

Let’s create a concatenate () function where we use += for concatenating items from a list of
strings, as follows:

def concatenate (string list) :
result = ""
for item in string list:
result += item
return result

259

260

Python Anti-Patterns

Then, let’s create a better_ concatenate () function for the same result, but using the str.
join () method, as follows:

def better concatenate(string list):
result = "".join(string_ list)
return result

We can then test both functions using the following:

if name == " main ":
string list = ["Abc", "Def", "Ghi"]
print (concatenate (string list))
print (better concatenate (string list))

Running the code (in the chl1l/concatenate strings in_ loop.py file) gives the
following output:

AbcDefGhi
AbcDefGhi

This confirms that both techniques produce the same result, though using . join () is the recommended
practice for performance reasons.

Using global variables for caching

Using global variables for caching can seem like a quick and easy solution but often leads to poor
maintainability, potential data consistency issues, and difficulties in managing the cache life cycle
effectively. A more robust approach involves using specialized caching libraries designed to handle
these aspects more efficiently.

In this example (in the chl1l/caching/using global var.py file), a global dictionary is used
to cache results from a function that simulates a time-consuming operation (for example, a database
query) done in the perform_expensive operation () function. The complete code for this
demonstration is as follows:

import time
import random

Global variable as cache
_cache = {}

def get data(query) :
if query in _cache:
return _cache [query]
else:

Performance anti-patterns

result = perform expensive operation (query)
_cache [query] = result
return result

def perform expensive operation (user id):

time.sleep (random.uniform (0.5, 2.0))

user data = {

1: {"name": "Alice", "email": "alice@example.com"},

2: {"name": "Bob", "email": "bob@example.com"},

3: {"name": "Charlie", "email": "charlie@example.com"},
result = user data.get (user id, {"error": "User not found"})

return result

if __name == "_main_ ":
print (get data (1))
print (get data (1))

Testing the code by running the python chll/caching/using global var.pycommand
gives the following output:

{'name': 'Alice', 'email': 'alice@example.com'}
{'name': 'Alice', 'email': 'alice@example.com'}

This works as expected, but there is a better approach. We can use a specialized caching library or
Python’s built-in functools.lru_cache () function. The lru_cache decorator provides a least
recently used (LRU) cache, automatically managing the size and lifetime of cache entries. Also, it is
thread-safe, which helps prevent issues that can arise in a multithreaded environment when multiple
threads access or modify the cache simultaneously. Finally, libraries or tools such as 1ru_cache
are optimized for performance, using efficient data structures and algorithms to manage the cache.

Here’s how you can implement the functionality of caching results from a time-consuming function
using functools.lru_cache. The complete code (in the chll/caching/using lru
cache.py file) is as follows:

import random
import time

from functools import lru cache

261

262 Python Anti-Patterns

@lru_cache (maxsize=100)
def get data(user_ id):
return perform expensive operation (user id)

def perform expensive operation (user id) :
time.sleep (random.uniform (0.5, 2.0))

user data = {

1: {"name": "Alice", "email": "alice@example.com"},

2: {"name": "Bob", "email": "bob@example.com"},

3: {"name": "Charlie", "email": "charlie@example.com"},
result = user data.get (user id, {"error": "User not found"})

return result

if name == " main ":
print (get_data(1))
print (get data (1))
print (get data(2))
print (get_data(99))

To test this code, run the python chll/caching/using lru cache.py command. You
should get the following output:

{'name': 'Alice', 'email': 'alice@example.com'}
{'name': 'Alice', 'email': 'alice@example.com'}
{'name': 'Bob', 'email': 'bob@example.com'}
{'error': 'User not found'}

As we can see, this approach not only enhances the robustness of the caching mechanism but also
improves code readability and maintainability.

Summary

Understanding and avoiding common Python anti-patterns will help you write cleaner, more efficient,
and maintainable code.

First, we presented common Python code style violations. Then we discussed several anti-patterns that
are related to correctness and can lead to bugs. Next, we covered practices that, beyond the code style
itself, are not good for code readability and maintainability. Finally, we saw a couple of anti-patterns
that one should avoid for writing code that has good performance.

Summary

Always remember - the best code is not just about making it work but also about making it work well.
Even more, ideally, it should be easy to maintain.

We finally reached the end of this book. It was quite a journey. We started with the main design principles,
then moved on to cover the most popular design patterns in the way they can be applied to Python,
and finally touched upon Python anti-patterns. That’s a lot! The ideas and examples we discussed help
us to think about different implementation options or techniques to choose from whenever we have
a use case. Whatever the solution you choose, keep in mind that Python favors simplicity, try to use
patterns and techniques that are considered Pythonic, and avoid Python’s anti-patterns.

263

A

abstract base classes (ABCs) 12,13,78

abstract factory pattern 53
implementing 54-58
real-world examples 54
use cases 54

abstract syntax tree (AST) 140

Actor model 203

adaptation 79

adaptee 79

adapter 77

adapter pattern 77
implementing 78-82
legacy class, adapting 78-80
real-world examples 78
several classes, adapting into

unified interface 80-83

use cases 78

architectural design patterns 163
Clean Architecture 185
Command Query Responsibility

Segregation (CQRS) 185

Event-Driven Architecture (EDA) 185
Event Sourcing pattern 180-184
Microservices pattern 169-176

Index

Model-View-Controller (MVC)
pattern 164-169
Serverless pattern 177-179
asynchronous programming 187
asyncio library 197
awscli-local 164
AWS Lambda 178

backpressure 204
Backus-Naur Form (BNF) notation 141
behavioral design patterns 117
Chain of Responsibility pattern 118-122
Command pattern 123-128
Interpreter pattern 140-144
Iterator pattern 153-156
Mediator pattern 159
Memento pattern 149-152
Observer pattern 128-132
State pattern 132-139
Strategy pattern 144-149
Template pattern 156-158
Visitor pattern 159
behavior verification 236

266

Index

Black
reference link 248

bridge pattern 89
implementing 90-92
real-world examples 90
use cases 90

builder pattern 58
comparing, with factory pattern 59
implementing 59-64
real-world examples 59
use cases 59

builtins module 237

Bulkhead pattern 232

C

cache-aside pattern 206
implementing 206-212
real-world examples 206
use cases 206

cardiopulmonary resuscitation (CPR) 236

Chain of Responsibility pattern 118
implementing 119-122
real-world examples 118, 119
use cases 119

chip cards 103

Circuit Breaker pattern 229
implementing 230, 231
real-world examples 230
use cases 230

Clean Architecture 185

cloud service providers (CSPs) 65

code style recommendations
blank lines 248
comments 250
imports 249
indentation 248
maximum line length 248

naming conventions 249
whitespace, in expressions
and statements 250
code style violations 247
tools, for fixing 248
collection pipelines 200
Command pattern 123
implementing 124-128
real-world examples 123
use cases 124
Command Query Responsibility
Segregation (CQRS) 185, 232
concurrency 187
concurrency and asynchronous patterns 203
Actor model 203
backpressure 204
coroutines 204
Future and Promise pattern 194-198
message passing 204
Observer pattern, in reactive
programming 199-203
Thread Pool pattern 188-191
Worker Model pattern 191-194
containers 171
coroutines 197, 204
correctness anti-patterns 251
mutable default argument 252, 253
protected member, accessing from
outside of class 254, 255
type() function, used for
comparing types 251, 252
creational design patterns 43
builder pattern 58-64
factory pattern 44-58
object pool pattern 73-75
prototype pattern 64-69
singleton pattern 69-73

Index

D

DataCash payment gateway 93
decoration 87
decorator pattern 83
implementing 85-89
real-world examples 84
use cases 84
dependency injection (DI) 18,239
Dependency Injection pattern 239
decorator, using 242-246
implementing 240-246
mock object, using 240-242
real-world examples 239
use cases 239
dependency inversion principle (DIP) 36, 37
example 37-39
design patterns 43
device drivers 90
dispatcher 192
distributed systems patterns
Bulkhead pattern 232
Circuit Breaker pattern 229-231
Command and Query Responsibility
Segregation (CQRS) pattern 232
Retry pattern 226-229
saga 232
Service Registry 232
Sidecar pattern 232
Throttling pattern 222-225
Two-Phase Commit 232
Django 166
URL 166
django-throttle-requests
reference link 222
Docker 164
domain-specific language (DSL) 140

E

Easier to Ask for Forgiveness than
Permission (EAFP) 255
ElastiCache
URL 206
ElasticSearch 171
Encapsulate What Varies principle 4
benefits 4
encapsulation with polymorphism
example 6,7
encapsulation with property example 7-9
techniques, for enhancing encapsulation 5
Event-Driven Architecture (EDA) 185
Event Sourcing pattern 180
implementing 181-184
real-world examples 180
use cases 180, 181
external DSLs 140
extrinsic data 98

F

facade pattern 93
implementing 94-98
real-world examples 93
use cases 94

factory method pattern 44
builder pattern, comparing with 59
implementing 46-53
real-world examples 44
use cases 45

fault tolerance (FT) 221

Favor Composition Over

Inheritance principle 9
benefits 10
composition example 10, 11
techniques for composition 10

267

268

Index

finite-state machine 132

first-person shooter (FPS) 98

Flask-Limiter
reference link 222

flyweight pattern 98
implementing 99-103
real-world examples 98, 99
use cases 99

FrogWorld game 54, 57

Future and Promise pattern 194
implementing, asyncio used 197, 198
implementing, concurrent.

futures used 196, 197

real-world examples 194, 195
use cases 195, 196

futures 194

G

getters and setters technique 5

graphical user interface (GUI) toolkits 84

gRPC 163
gRPC-tools 163

H

hard disk drive (HDD) 98

Implementor 91

integration testing 236

interface segregation principle (ISP) 33
example 33-36

internal DSLs 140

internet of things (IoT) 141

Interpreter pattern 140
implementing 141-144
real-world examples 140
use cases 140, 141

inter-process communication (IPC) 204

intrinsic data 98

isort
reference link 248

Iterator pattern 153
implementing 154-156
use cases 153

K

Kivy 128

L

Lanarky 163, 174
large language models (LLMs) 174
lazy initialization 103
lazy loading pattern 215
implementing 216-219
real-world examples 215
use cases 215
least recently used (LRU) cache 261
Liskov substitution principle (LSP) 30
example 30-33
LocalStack 164
Look Before You Leap (LBYL) 255
loose coupling 94
Loose Coupling principle 18, 164
benefits 18
message service example 19, 20
techniques for loose coupling 18

Index

M

maintainability anti-patterns 255
global variables, used for sharing data
between functions 258, 259
inheritance and tight coupling,
overusing 257
LBYL, versus EAFP 256, 257
wildcard import, using 256
Mediator pattern 159
Memento pattern 149
Caretaker 149
implementing 150-152
Memento 149
Originator 149
real-world examples 149
use cases 150
memoization decorator 85
memoization pattern 212
implementing 213-215
real-world examples 213
use cases 213
message passing 204
metaclass technique 71
microkernel 94
Microservices 178
Microservices pattern 169, 170
implementing 171-176
LLM service, with Lanarky 174-176
payment service, with gRPC 171-174
real-world examples 170
use cases 171
Mock Object pattern 235
behavior verification 235
implementing 237, 238
isolation 235
real-world examples 236

simplification 235
use cases 236
mock_open 238
model-view-adapter (MVA) 166
Model View Controller (MVC)
architecture 236
Model-View-Controller (MVC)
pattern 164, 165
implementing 167-169
real-world examples 165
use cases 166, 167
model-view-presenter (MVP) 166
Model-View Template (MVT) 166
MySQL 171

(0

object-oriented programming
(O0P) 43,99, 204

object pool pattern 73
implementing 74, 75
real-world examples 73
use cases 74

object-relational mapping (ORM) API 104

observable 128

Observer pattern 18, 128
implementing 129-132
real-world examples 128
use cases 129

Observer pattern, in reactive

programming 199

implementing 200-202
new streams of data, handling 202, 203
real-world examples 199
use cases 200

observers 128

open-closed principle (OCP) 26
example 27-30

269

270

Index

P

patterns, for testing
Dependency Injection pattern 239-246
Mock Object pattern 235-238
payment gateways 90
performance anti-patterns 259
global variables, using for caching 260-262
join(), disusing to concatenate
strings in loop 259, 260
performance patterns 205
cache-aside pattern 206-212
lazy loading pattern 215-219
memoization pattern 212-215
Pester library
reference link 227
pickle module
reference link 150
polymorphism 5
Program to Interfaces, Not
Implementations principle 12
benefits 12
different types of logger with
protocols, example 16, 17
different types of logging
mechanisms, example 14-16
techniques for interfaces 12
promises 194
property technique 5
protection proxy 103
implementing 107-109
Protocol Buffers (protobuf) 171
prototype pattern 64
implementing 65-69
real-world examples 64
use cases 65

proxy pattern 103
implementing 104-114
real-world examples 103
use cases 104

purchase system 119

pybreaker library
reference link 230

PyT 140

Python decorator 83
reference link 83

Python Enhancement Proposal

no 8 (PEP 8) 247

reference link 247

R

RabbitMQ library 128
ReactiveX
URL 199
Read-Eval-Print Loop (REPL) 46
Redis server 171
remote proxy 103
implementing 109-111
REST over HTTP 174
Retrying library
reference link 227
Retry pattern 226
implementing 227-229
real-world examples 226
use cases 227
Ruff
reference link 248

S

saga 232

separation of concern principle 165

Index

Serverless pattern 177
implementing 178, 179
real-world examples 177
use cases 178
Service Registry 232
Sidecar pattern 232
single responsibility principle (SRP) 23, 24
example 24-26
singleton pattern 69
implementing 70-72
real-world examples 69
use cases 70
smart proxy 103
implementing 111-114
SOLID Principles 23
dependency inversion principle (DIP) 36, 37
interface segregation principle (ISP) 33
Liskov substitution principle (LSP) 30
open-closed principle (OCP) 26
single responsibility principle (SRP) 23, 24
solid-state drives (SSDs) 98
sorting algorithm
considerations 144
state 133
state diagrams 133
state machine 132, 133
State pattern 132, 133
implementing 134-139
real-world examples 133
use cases 134
Strategy pattern 144, 145
implementing 145-149
real-world examples 145
use cases 145
structural design patterns 77
adapter pattern 77-83
bridge pattern 89-92
decorator pattern 83-89

facade pattern 93-98

flyweight pattern 98-103

proxy pattern 103-114
surrogate object 103

T

task queue 192

techniques, for enhancing encapsulation 5
getters and setters technique 5
polymorphism 5

techniques, for interfaces
abstract base classes (ABCs) 12,13
protocols 14

Template pattern 156
implementing 157, 158
real-world examples 156
use cases 156

Thread Pool pattern 188
benefits 188
implementing 189-191
real-world examples 188
use cases 189

threads 188

Throttling pattern 222
implementing 223-225
real-world examples 222
reference link 222
use cases 223

Through-The-Web object

management interface 149
transition 133
Two-Phase Commit 232

U

unit testing 236
unittest.mock.patch 238

271

272

Index

Vv

virtual proxy 103
creating 104-107
Visitor pattern 159

W

Web2py framework 165
URL 165

WizardWorld game 55, 57

Worker Model pattern 191
benefits 191
implementing 192-194
real-world examples 191
use cases 191

workers 192

worker threads 188

y 4

Zope
URL 149
zope.interface package
reference link 78
Zope Object Database (ZODB) 149
Zope Toolkit (ZTK) 78

<pack®h

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?

o Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

« Improve your learning with Skill Plans built especially for you

o Geta free eBook or video every month

o Fully searchable for easy access to vital information

« Copy and paste, print, and bookmark content
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub . comand as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www . packtpub . com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Advanced Python
Programming

Accelerate your Python programs using proven
techniques and design patterns

Quan Nguyen

Advanced Python Programming

Quan Nguyen

ISBN: 978-1-80181-401-0

Write efficient numerical code with NumPy, pandas, and Xarray

Use Cython and Numba to achieve native performance

Find bottlenecks in your Python code using profilers

Optimize your machine learning models with JAX

Implement multithreaded, multiprocessing, and asynchronous programs
Solve common problems in concurrent programming, such as deadlocks

Tackle architecture challenges with design patterns

https://packt.link/1801814015

Other Books You May Enjoy 275

Metaprogramming
with Python

A programmer’s guide to writing reusable code
1o build smarter applications

SULEKHA ALOORRAVI

Metaprogramming with Python
Sulekha AloorRavi

ISBN: 978-1-83855-465-1

o Understand the programming paradigm of metaprogramming and its need
« Revisit the fundamentals of object-oriented programming

o Define decorators and work with metaclasses

« Employ introspection and reflection on your code

o Apply generics, typing, and templates to enhance your code

o Get to grips with the structure of your code through abstract syntax trees and the
behavior through method resolution order

o Create dynamic objects and generate dynamic code

o Understand various design patterns and best practices

https://packt.link/1838554653

276

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors . packtpub. comand
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts

Now you've finished Mastering Python Design Patterns, wed love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1837639612

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don't stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837639618

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

277

https://packt.link/free-ebook/9781837639618

	Cover
	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
Start with Principles
	Chapter 1: Foundational Design Principles
	Technical requirements
	Following the Encapsulate What Varies principle
	What does it mean?
	Benefits
	Techniques for achieving encapsulation
	An example – encapsulating using polymorphism
	An example – encapsulating using a property

	Following the Favor Composition Over Inheritance principle
	What does it mean?
	Benefits
	Techniques for composition
	An example – compose a car using the engine

	Following the Program to Interfaces, Not Implementations principle
	What does it mean?
	Benefits
	Techniques for interfaces
	An example – different types of logger
	An example – different types of logger, now using Protocols

	Following the Loose Coupling principle
	What does it mean?
	Benefits
	Techniques for loose coupling
	An example – a message service

	Summary

	Chapter 2: SOLID Principles
	Technical requirements
	SRP
	An example of software design following the SRP

	OCP
	An example of design following the OCP

	LSP
	An example of design following the LSP

	ISP
	An example of design following the ISP

	DIP
	An example of design following the ISP

	Summary

	Part 2:
From the Gang of Four
	Chapter 3: Creational Design Patterns
	Technical requirements
	The factory pattern
	The factory method
	The abstract factory pattern

	The builder pattern
	Real-world examples
	Comparison with the factory pattern
	Use cases for the builder pattern
	Implementing the builder pattern

	The prototype pattern
	Real-world examples
	Use cases for the prototype pattern
	Implementing the prototype pattern

	The singleton pattern
	Real-world examples
	Use cases for the singleton pattern
	Implementing the singleton pattern
	Should you use the singleton pattern?

	The object pool pattern
	Real-world examples
	Use cases for the object pool pattern
	Implementing the object pool pattern

	Summary

	Chapter 4: Structural Design Patterns
	The adapter pattern
	Real-world examples
	Use cases for the adapter pattern
	Implementing the adapter pattern – adapt a legacy class
	Implementing the adapter pattern – adapt several classes into a unified interface

	The decorator pattern
	Real-world examples
	Use cases for the decorator pattern
	Implementing the decorator pattern

	The bridge pattern
	Real-world examples
	Use cases for the bridge pattern
	Implementing the bridge pattern

	The facade pattern
	Real-world examples
	Use cases for the facade pattern
	Implementing the facade pattern

	The flyweight pattern
	Real-world examples
	Use cases for the flyweight pattern
	Implementing the flyweight pattern

	The proxy pattern
	Real-world examples
	Use cases for the proxy pattern
	Implementing the proxy pattern – a virtual proxy
	Implementing the proxy pattern – a protection proxy
	Implementing the proxy pattern – a remote proxy
	Implementing the proxy pattern – a smart proxy

	Summary

	Chapter 5: Behavioral Design Patterns
	Technical requirements
	The Chain of Responsibility pattern
	Real-world examples
	Use cases for the Chain of Responsibility pattern
	Implementing the Chain of Responsibility pattern

	The Command pattern
	Real-world examples
	Use cases for the Command pattern
	Implementing the Command pattern

	The Observer pattern
	Real-world examples
	Use cases for the Observer pattern
	Implementing the Observer pattern

	The State pattern
	Real-world examples
	Use cases for the State pattern
	Implementing the State pattern

	The Interpreter pattern
	Real-world examples
	Use cases for the Interpreter pattern
	Implementing the Interpreter pattern

	The Strategy pattern
	Real-world examples
	Use cases for the Strategy pattern
	Implementing the Strategy pattern

	The Memento pattern
	Real-world examples
	Use cases for the Memento pattern
	Implementing the Memento pattern

	The Iterator pattern
	Use cases for the Iterator pattern
	Implementing the Iterator pattern

	The Template pattern
	Real-world examples
	Use cases for the Template pattern
	Implementing the Template pattern

	Other behavioral design patterns
	Summary

	Part 3:
Beyond the Gang of Four
	Chapter 6: Architectural Design Patterns
	Technical requirements
	The MVC pattern
	Real-world examples
	Use cases for the MVC pattern
	Implementing the MVC pattern

	The Microservices pattern
	Real-world examples
	Use cases for the Microservices pattern
	Implementing the microservices pattern – a payment service using gRPC
	Implementing the microservices pattern – an LLM service
using Lanarky

	The Serverless pattern
	Real-world examples
	Use cases for the Serverless pattern
	Implementing the Serverless pattern

	The Event Sourcing pattern
	Real-world examples
	Use cases for the Event Sourcing pattern
	Implementing the event sourcing pattern – the manual way
	Implementing the Event Sourcing pattern – using a library

	Other architectural design patterns
	Summary

	Chapter 7: Concurrency and Asynchronous Patterns
	Technical requirements
	The Thread Pool pattern
	Real-world examples
	Use cases for the Thread Pool pattern
	Implementing the Thread Pool pattern

	The Worker Model pattern
	Real-world examples
	Use cases for the Worker Model pattern
	Implementing the Worker Model pattern

	The Future and Promise pattern
	Real-world examples
	Use cases for the Future and Promise pattern
	Implementing the Future and Promise pattern – using concurrent.futures
	Implementing the Future and Promise pattern – using asyncio

	The Observer pattern in reactive programming
	Real-world examples
	Use cases for the Observer pattern in reactive programming
	Implementing the Observer pattern in reactive programming

	Other concurrency and asynchronous patterns
	Summary

	Chapter 8: Performance Patterns
	Technical requirements
	The Cache-Aside pattern
	Real-world examples
	Use cases for the cache-aside pattern
	Implementing the cache-aside pattern

	The Memoization pattern
	Real-world examples
	Use cases for the memoization pattern
	Implementing the memoization pattern

	The Lazy Loading pattern
	Real-world examples
	Use cases for the lazy loading pattern
	Implementing the lazy loading pattern – lazy attribute loading
	Implementing the lazy loading pattern – using caching

	Summary

	Chapter 9: Distributed Systems Patterns
	Technical requirements
	The Throttling pattern
	Real-world examples
	Use cases for the Throttling pattern
	Implementing the Throttling pattern

	The Retry pattern
	Real-world examples
	Use cases for the Retry pattern
	Implementing the Retry pattern

	The Circuit Breaker pattern
	Real-world examples
	Use cases for the Circuit Breaker pattern
	Implementing the Circuit Breaker pattern

	Other distributed systems patterns
	Summary

	Chapter 10: Patterns for Testing
	Technical requirements
	The Mock Object pattern
	Real-world examples
	Use cases for the Mock Object pattern
	Implementing the Mock Object pattern

	The Dependency Injection pattern
	Real-world examples
	Use cases for the Dependency Injection pattern
	Implementing the Dependency Injection pattern – using a mock object
	Implementing the Dependency Injection pattern – using a decorator

	Summary

	Chapter 11: Python Anti-Patterns
	Technical requirements
	Code style violations
	Tools for fixing coding style violations
	Indentation
	Maximum line length and blank lines
	Imports
	Naming conventions
	Comments
	Whitespace in expressions and statements

	Correctness anti-patterns
	Using the type() function for comparing types
	Mutable default argument
	Accessing a protected member from outside a class

	Maintainability anti-patterns
	Using a wildcard import
	LBYL versus EAFP
	Overusing inheritance and tight coupling
	Using global variables for sharing data between functions

	Performance anti-patterns
	Not using .join() to concatenate strings in a loop
	Using global variables for caching

	Summary

	Index
	About Packt
	Other Books You May Enjoy

