™

‘e python

Mastering

EXPERT INSIGHT

ing

Iies

t code usi

icien

te powerful and effi

the full range of Python’s capab

\"\"/ ¢

X
O

9
9
X

N

X
00
RN
.:..............%

SN

N

\

\

N

QN
0N
o

\

W
i

e

/

———

;','

/
=

Second Edition

Packt

Rick van Hattem

Mastering Python

Second Edition

Write powerful and efficient code using the full range of
Python's capabilities

Rick van Hattem

Packt

BIRMINGHAM—MUMBAI

“Python” and the Python Logo are trademarks of the Python Software Foundation.

Mastering Python

Second Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Senior Publishing Product Manager: Dr. Shailesh Jain
Contracting Acquisition Editor: Ben Renow-Clarke
Acquisition Editor - Peer Reviews: Suresh Jain

Project Editor: Janice Gonsalves

Content Development Editor: Lucy Wan, Joanne Lovell
Copy Editor: Safis Editing

Technical Editor: Aditya Sawant

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Presentation Designer: Ganesh Bhadwalkar
First published: April 2016
Second edition: May 2022

Production reference: 1120522
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80020-772-1

www . packt.com

http://www.packt.com

Contributors

About the author

Rick van Hattem is an entrepreneur who has founded and sold several successful start-ups. His
expertise is in designing and scaling system architectures to many millions of users and/or large amounts
of data that need to be accessed in real time. He’s been programming for well over 25 years and has
over 20 years of experience with Python. Rick has done consulting for many companies including
(Y-Combinator) start-ups, banks, and airports. One of the start-ups he founded, Fashiolista.com, was one
of the largest social networks for fashion in the world, featuring millions of users. He also wrote Mastering

Python, First Edition, and he was one of the technical reviewers for PostgreSQL Server Programming,
Second Edition.

For my wife, who is always there for me. For my sister, who always goes above and beyond to help. For my

mother, who raised me to be inquisitive. And for my sweet children, who pique my curiosity and allow me
to learn every day.

About the reviewer

Alexander Afanasyev is a software engineer with about 15 years of diverse experience in a variety
of different domains and roles. Currently, Alexander is an independent contractor pursuing ideas in
the space of computer vision, NLP, and building advanced data collections systems in the cyber and
physical threat intelligence domains. Outside of daily work, he is an active contributor to Stack Over-
flow and GitHub. Previously, Alexander helped review the Selenium Testing Cookbook and Advanced
Natural Language Processing with Transformers books by Packt Publishing.

I would like to thank the author of the book for the incredibly hard work and comprehensive content; the
wonderful team of editors and coordinators with excellent communication skills; and my family, who was
and always are supportive of my ideas and my work.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHulf

https://discord.gg/QMzJenHuJf

Table of Contents

Preface xxiii

Chapter 1: Getting Started — One Environment per Project 1

Virtual environmentsccccccvviiiiiniiiiimniiiiiiiie s e e s e s e e s
Why virtual environments are a good idea + 1
Using venv and virtualenv ¢ 2
Creating a venv + 3
Activating a venv/virtualenv « 4
Installing packages * 5
Using pyenv * 6
Using Anaconda « 8
Getting started with Anaconda Navigator * 8
Getting started with conda * 9
Managing dePEeNdENCIESccuuuriiriiruurierrirmmierriirueiesssernssssssssssssssssssssnssssssssssssssssssssnsssssssssnssss
Using pip and a requirements.txt file » 13
Version specifiers ¢ 14
Installing through source control repositories * 15
Additional dependencies using extras * 16
Conditional dependencies using environment markers « 16
Automatic project management using poetry « 17
Creating a new poetry project » 17
Adding dependencies * 18
Upgrading dependencies * 19
Running commands * 20
Automatic dependency tracking using pipenv « 20
Updating your packages + 23
Deploying to production * 23
Running cron commands * 24
EX@ICISES iiiiiiiiiiiiiiiiiiitiniiiiiiiieeeete ettt e e e et s e s s s ssssssssssssrsratteeeseseesesssssssssssssssrrans
Reading the Python Enhancement Proposals (PEPs) « 24

Combining pyenv and poetry or pipenv * 25

viii

Table of Contents

Converting an existing project to a poetry project * 25

SUIMIMATY ..oiiiuniiimiiiiiiiiiiiiiiiriiiieiieirtieetiieermsieeeesietessieeessseersssesssseses

Chapter 2: Interactive Python Interpreters

The Python interpretereeeeeeiiiiiiiiiiiiieeetennnccsnieeeeeeececeenenes

Modifying the interpreter « 28

Enabling and enhancing autocompletion « 29

Alternative interpreterscoeeeeevriveuniiiriiiuuiiiriiieuiiiieierueeeeraneeees

bpython « 33
Rewinding your session * 34
Reloading modules * 35
ptpython « 35
IPython and Jupyter * 36
Basic interpreter usage * 37
Saving and loading sessions + 38
Regular Python prompt/doctest mode * 39
Introspection and help + 40
Autocompletion * 41
Jupyter « 42
Installing Jupyter « 44
IPython summary * 46

| 5. C<) (o3 1<) ST

10018011 F: 1 oy PR

Chapter 3: Pythonic Syntax and Common Pitfalls

A brief history of Pythoneeiiiiiiiiiiiiiiiiiiiimiicccinnenecccccceeeees
Code style - What is Pythonic code?ccooeviiiiiiiiieennnnnnnnniiiiiiinnnenes

Whitespace instead of braces « 51
Formatting strings - printf, str.format, or f-strings? « 51
Simple formatting « 52
Named variables * 53
Arbitrary expressions * 53
PEP 20, the Zen of Python « 54
Beautiful is better than ugly + 55
Explicit is better than implicit » 56
Simple is better than complex * 57
Flat is better than nested + 59

..................................... 51

Table of Contents ix

Sparse is better than dense * 60
Readability counts * 60
Practicality beats purity * 61
Errors should never pass silently - 62
In the face of ambiguity, refuse the temptation to guess * 64
One obvious way to do it * 64
Hard to explain, easy to explain * 65
Namespaces are one honking great idea * 65
Explaining PEP 8 « 66
Duck typing * 67
Differences between value and identity comparisons * 68
Loops 70
Maximum line length « 71
Verifying code quality, pep8, pyflakes, and more * 72
Recent additions to the Python syntax « 76
PEP 572: Assignment expressions/the walrus operator « 76
PEP 634: Structural pattern matching, the switch statement * 77
CommMON PILFALLS .eeuuiiiiiiuiiiiiiiiiiiiiiiiiiietiriiiiiirretransseesttransessssssasssssssssnnssssssssnssssssssssnssssssssses 84
Scope matters! * 84
Global variables - 84
Mutable function default arguments « 86
Class properties * 87
Overwriting and/or creating extra built-ins « 88
Modifying while iterating * 90
Catching and storing exceptions * 91
Late binding and closures * 92
Circular imports * 93

Import collisions « 95

SUIMNIMATY teruniiiiiiiiiiiiiitiieieetiteee ettt e ettt et eeettataeeesettasseeesertesssssersssssessssssssssssssssssssssssssnes 95
Chapter 4: Pythonic Design Patterns 97
Time complexity — The big O notationccccceuiiiiiiiuiiiiiiiiiiiiiiiir e 98
L0105 T0) =Tt 10 o TN 101

list - A mutable list of items * 101
dict - A map of items * 104

set — Like a dict without values * 107
tuple - The immutable list « 108

Table of Contents

Pythonic patterns using advanced collectionscceeeeeuueeiriiiiiiiiininnecccieeenne.

Smart data storage with type hinting using dataclasses * 111
Combining multiple scopes with ChainMap -+ 114

Default dictionary values using defaultdict « 116

enum - A group of constants * 119

Sorting collections using heapq * 121

Searching through sorted collections using bisect « 122
Global instances using Borg or Singleton patterns * 126

No need for getters and setters with properties « 127

Dict union operators * 128

| 35 <] (o3 1<) RN

70810014 E: 1oy N

Chapter 5: Functional Programming — Readability Versus Brevity

Functional programimingceeeeeeueeiiiiiiiiniiiiiiieieieeemmennesrreeeeeeeeeesssees

Purely functional » 132
Functional programming and Python « 132

Advantages of functional programming « 133

list, set, and dict COMPreNensionscccceeeeeriiiiiiiiiieeeneenniiinciieeenneeeeeecceeennees

Basic list comprehensions « 134
set comprehensions * 135
dict comprehensions * 135

Comprehension pitfalls « 136

| F2000Y 7o 10 10 0 Ul o (0) o 1= SRS

The Y combinator » 139

10031 10)0) (- T RRN

partial - Prefill function arguments * 141

reduce - Combining pairs into a single result « 143
Implementing a factorial function « 143
Processing trees + 144

Reducing in the other direction * 146

FL<) o 1010) £ 3N

accumulate - reduce with intermediate results « 147

chain - Combining multiple results « 147

compress - Selecting items using a list of Booleans * 148
dropwhile/takewhile - Selecting items using a function - 149

count - Infinite range with decimal steps * 149

Table of Contents

xi

groupby - Grouping your sorted iterable « 150

| 35:C<] (03 £ 1<) PRI

Summary ...

Chapter 6: Decorators — Enabling Code Reuse by Decorating

Decorating fUNCHONS ...cceuuiiiiiiiuiiiiiiiiiniiiiiiiieiiirrttieniessttransiessssssnsssssssssassssssssssssssssssss

Generic function decorators * 155

The importance of functools.wraps ¢ 158
Chaining or nesting decorators * 159
Registering functions using decorators * 160
Memoization using decorators * 161
Decorators with (optional) arguments * 165

Creating decorators using classes * 166

Decorating class fUNCHONScceeveuuuuuiiiiiiiiiiiiiiiiiiiitieeti e

Skipping the instance - classmethod and staticmethod « 168

Properties - Smart descriptor usage * 172

Decorating ClASSEScccuuuiiiriiruniiiiiiiuiiiiriiiiueirrttraeessteransessssssssssssssesasssssssssssssssssens

Singletons - Classes with a single instance * 177

Total ordering - Making classes sortable « 178

LU 01 e (T eo) 21 (o) o P RRN

Single dispatch - Polymorphism in Python « 181
contextmanager — with statements made easy « 184
Validation, type checks, and conversions * 186

Useless warnings - How to ignore them safely « 187

EX@ICISES .iuiuiuinieieieieniirerereracecasansesersesesecnsassssssssssesesesssasassssssssssssssesnsasassssssssssesesnsasnsns

Summary ...

Chapter 7: Generators and Coroutines — Infinity, One Step at a Time

GEINETALOL'S .uiuieieieieieneienenrerececaeeerersrncncscacacecsesssssssssasassssssesesassssssssssssssssesssnsssnsnsasasnsnne

Creating generators 192

Creating infinite generators « 195
Generators wrapping iterables « 195
Generator comprehensions * 196

Class-based generators and iterators « 197

Generator €XaAMPLESeeeeeerieiiiiiiiiiiiiiiiiii et essssssssssissbrbrrrr et e s s s s sssssseas

Breaking an iterable up into chunks/groups * 200

itertools.islice - Slicing iterables « 202

xii Table of Contents

itertools.chain - Concatenating multiple iterables « 204
itertools.tee - Using an output multiple times * 204
contextlib.contextmanager - Creating context managers * 205
COTOULINES cevvrrrrreiiiiiiiiiniiiiiiiiiteeeuuiieeeisseeeeteteteerrssssassssesssssseseeetteeersssssssssssssssssssssseeessnees 207
A basic example ¢ 208
Priming + 208
Closing and throwing exceptions * 209
Mixing generators and coroutines « 211
Using the state « 214

05 (5 X or X N 217
EST08 4 ¥ 38 oy N 217
Chapter 8: Metaclasses — Making Classes (Not Instances) Smarter 219
Dynamically creating ClaSSese.eeeeeiiiiiiiiiiiiiiiitiimumieeiiseeeeeeeeteeteessasesssisessssssseeesesees 219
A Dasic MEtACIASS ..iciiiiiiiiiiriiiiiniiiiiiiieirec e s s e s s e s s s s es 221

Arguments to metaclasses * 222
Accessing metaclass attributes through classes « 224
Abstract classes using collections.abecccoviieeuiiiiiiiiiiiiiiiiiiiiii s 225
Internal workings of the abstract classes * 225
Custom type checks * 229
Automatically registering plugin SYStemscceeuuuuumumiiiiiiiiiiiiiiiiiiiiieemummeeeeeeeeeeees 230
Importing plugins on-demand « 233
Importing plugins through configuration « 234
Importing plugins through the filesystem « 235
D1 13 B T TN 236
Order of operations when instantiating Classesccceeiiiiiiiiiiiiiiiininneeeiiiieceeeni—. 240
Finding the metaclass « 240
Preparing the namespace * 240
Executing the class body * 240
Creating the class object (not instance) « 241
Executing the class decorators * 241
Creating the class instance * 241
Example « 241
Storing class attributes in definition Ordercccevvevuuuuniiiiiiiiiiiiiiiiiiitiieeee e 243
The classic solution without metaclasses * 243
Using metaclasses to get a sorted namespace * 245

EX@ICISES ceuiruiruiieieienireerueeeereeeeeeeserasessesssssssssesssessssssssssnssnssssssnsnne 246

Table of Contents xiii

10018311 F: 1 oy U N 246
Chapter 9: Documentation — How to Use Sphinx and reStructuredText 249
TYPE NINEING oiiiiiiiiiiiiiii ettt e e ettt e s s s s e s s s s e e s e e e s s s esnnnnnnnnns 250

Basic example ¢« 250
Custom types « 251
Generics * 253
Type checking « 253
Python type interface files « 254
Type hinting conclusion * 255
reStructuredText and MarkdOWINceveiiiiiiiiiiiiiiiimmmumuiiiiiiineeeececeeeereesaaaeaesssseeeeeeeeeees 255
Getting started with reStructuredText « 257
Getting started with Markdown « 258
Inline markup « 258
Headers 259
Headers with reStructuredText « 260
Headers with Markdown « 262
Lists « 263
Enumerated lists + 263
Bulleted lists + 264
Option lists * 265
Definition lists (reST only) * 266
Nested lists * 266
Links, references, and labels * 267
Images < 270
Images with reStructuredText « 270
Images with Markdown « 272
Substitutions « 272
Blocks, code, math, comments, and quotes * 273
Conclusion ¢ 275
The Sphinx dOCUMENTAtION ENETALOT ..ccvuvvuiiiiiruniiiriirueieirrermassiesrermasssesssssssssessssssassssssssnnssses 276
Getting started with Sphinx « 276
Using sphinx-quickstart « 277
Using sphinx-apidoc + 280
Sphinx directives 287
Sphinx roles « 288

DOCUMENEING COUE ...riiiunniiiiiiiuniiiiiiiiuiiiirittuierttiateesttteaaeesstteaasssssstrsssssssserssssssssssssssssssses 289

Xiv

Table of Contents

Documenting a class with the Sphinx style « 290
Documenting a class with the Google style « 292
Documenting a class with the NumPy style « 293
Which style to choose « 294

| 5. (<) (o3 11 <Y TN

10018011 F: 1 oy U

Chapter 10: Testing and Logging — Preparing for Bugs

Using documentation as tests with doctestceeeeueeeiiiiiiiiiiiiiiicceenennne.

A simple doctest example + 298
Writing doctests « 301
Testing with documentation + 302
The doctest flags + 305
True and False versus 1 and 0 * 306
Normalizing whitespace + 307
Ellipsis + 308
Doctest quirks * 309
Testing dictionaries * 309
Testing floating-point numbers « 311

Times and durations « 311

Testing With PY.teSt ..cceuuuuueiiiiiiiiiiiiiiiiiiiiiitnne e

The difference between the unittest and py.test output « 312
The difference between unittest and py.test tests « 317
Simplifying assertions * 317
Parameterizing tests « 320
Automatic arguments using fixtures « 322
Print statements and logging * 325
Plugins « 327

MOCK ODJECES ..euviiiiiiiiiiiiiietiteeticieeee e cccttteeraea s s e s e e e s e ee e e s asanaes

Using unittest.mock + 334
Using py.test monkeypatch ¢ 335

Testing multiple environments With tOXccceeeeiiriiiuiiiiiiiiiiiiiinicinnnninnn,

Getting started with tox « 336
The tox.ini config file « 337
Running tox * 339

I =8 1PN

Configuration * 341

Table of Contents

XV

Basic logging configuration « 341
Dictionary configuration 343
JSON configuration « 344
ini file configuration « 345
The network configuration * 346
Logger » 348
Usage « 349
Formatting + 350
Modern formatting using f-strings and str.format « 351
Logging pitfalls « 353
Debugging loggers * 354
EXEICISES evvvuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiceeeeeeeeeeeene e sesssseseeeeeeeesssssssssssssaseesssesseeeeesennnnes

Summary ...

Chapter 11: Debugging — Solving the Bugs

356
356

359

Non-interactive debUZEINGceuuuuuuuriiiiiiiiiiiiiiiiiiiiitiiciirieeeeectererrrssaaasssssseeeeeeeeeees
Inspecting your script using trace * 362
Debugging using logging « 366
Showing the call stack without exceptions * 368

Handling crashes using faulthandler « 369

359

Interactive deDUZZING ..coovviiiiiiimmmiiiiiiiiiiiiiinniiettttttttcc s sss s s s e e e e e e e eeees 371

Console on demand « 371
Debugging using Python debugger (pdb) « 372
Breakpoints « 373
Catching exceptions * 376
Aliases » 377
commands * 378
Debugging with IPython * 379
Debugging with Jupyter « 380
Other debuggers * 382
Debugging services * 383

EX@ICISES ceuivuiiuiieiierrnieuerueenereeeeeceseresesessesssssssssssssssessesssssssnssnssnnsnne 384

10018301 F: 1 oy N 385

Chapter 12: Performance — Tracking and Reducing
Your Memory and CPU Usage

387

WHhat iS PErfOrMANCE?cciiiiiiiiiiiiiiiiieieeeeeeee e ee e ettt teesaee s ee s s s s e e s e eeseeeesansssanssssssssnsssans 388

xvi Table of Contents

Measuring CPU performance and eXecution timeccccceeeeiiiiiiiiiiiieemeennneinnniiccennneeeececeeees 389
Timeit - comparing code snippet performance * 389
cProfile - Finding the slowest components * 394

First profiling run « 395
Calibrating your profiler « 397
Selective profiling using decorators * 400
Using profile statistics * 401
Line profiler - Tracking performance per line « 404

IMProving eXeCUtion tilMeccceiiriiieuiiiiiiiiiuiiiiiiiiieiiiriiieeeriireaiesrterassssssssrssssssssssssssssssaes 406
Using the right algorithm « 407
Global interpreter lock « 407
try versus if « 408
Lists versus generators * 409
String concatenation « 409
Addition versus generators « 410
Map versus generators and list comprehensions * 411
Caching - 411
Lazy imports » 412
Using slots « 412
Using optimized libraries « 413
Just-in-time compiling « 414
Converting parts of your code to C « 415

MEINIOTY USAZE «.evurrrnnrrnrranrennreuneenuierusrraserassesseesssessassssnsssns 416
tracemalloc * 416
Memory Profiler « 417
Memory leaks « 418

Circular references « 420
Analyzing memory usage using the garbage collector « 422
Weak references « 423
Weakref limitations and pitfalls « 424
Reducing memory usage * 425
Generators versus lists « 428

Recreating collections versus removing items * 428

Using slots + 428
Performance MONItOTING ...ccciiieeeuuuuuiiiiiiiiiieieieieitttiieeeeeee s e e e s e eeeteeeeeananeesessessssessseaaaaees 430
EXEICISES eevvuuuitiiiiiiiiiiiiiiiiiiiiiiiiiieeie et e ee e re s s sesss s s e e e e e e e e e e s s b s s s bbb sse s s s e e s e s e s annes 431

Summary ... 432

Table of Contents xvii

Chapter 13: asyncio — Multithreading without Threads 435

INtroduction t0 ASYNCIOccciiiieeumuuuuuiiiiiiiiiiiiieiccettter s e e s e e e e e eeetesaasa s seessseeseeaaasees 436
Backward compatibility and async/await statements * 436
Python 3.4 + 436
Python 3.5+ 437
Python 3.7 « 437
A basic example of parallel execution « 438
asyncio concepts * 440
Coroutines, Futures, and Tasks * 441
Event loops * 441
Executors * 445
ASYyNChronous eXamPleseeeuueeiiiiiiiiiiiiiiiiiiiiiiiiee e eeeeeeeeeeeeseaaasseea e seesssssesseaaeeees 448
Processes * 448
Interactive processes * 451
Echo client and server « 453
Asynchronous file operations * 455
Creating async generators to support async for « 456
Asynchronous constructors and destructors « 458
D=3 010 o4 B Yo T3 v 4 s o LN 460
Forgetting to await a coroutine * 461
Slow blocking functions * 462
Forgetting to check the results or exiting early * 463
Exiting before all tasks are done + 464

EXEICISES .eeeverurriieiiiiiiiieeiiiiitieeeenittee e ceetttee e e et e e ee e bba e e e s e aaa s e e e s ssassesesessbssaesssssssnaeens 467
SUIMIMATY .uuiiiiiiiiiiiiiiiiiiitiiiieiiiiietiii et ettiitertiieestiitesssiserssesesssesesssssesssssssssssssssesessssserssssssaseses 468
Chapter 14: Multiprocessing — When a Single CPU Core Is Not Enough 469
The Global Interpreter LOCK (GIL)ccoviiuuuiiiiiimuniiiiiieuiiiiniiiiinieeiinuiesteeenmessseessssssessnnsnes 470

The use of multiple threads « 470
Why do we need the GIL? « 470
Why do we still have the GIL? « 471
Multiple threads and PrOCESSEScceuueierriiruuiiiiiiiiuuiiiriiiuuieriiimuieriiiemiesstessusssssessssssssssssnes 471
Basic examples « 472
concurrent.futures « 472
threading « 474
multiprocessing * 476

xviii Table of Contents

Cleanly exiting long-running threads and processes * 477
Batch processing using concurrent.futures « 480
Batch processing using multiprocessing « 482
Sharing data between threads and ProCesSesc.eeuuuuuurrriiiiiiiiiniiiiiiittinmuereeeeeeeeeeens 484
Shared memory between processes * 485
Thread safety « 492
Deadlocks * 495
Thread-local variables « 497
Processes, threads, or a single thread?ccccceeeiiiiuniiiiiiiiniiiiiiiiiiiiiireaesreesaaeenee 498
threading versus concurrent.futures * 499
multiprocessing versus concurrent.futures « 499
Hyper-threading versus physical CPU COTESccceeuuummuummmniiiiiiiiniiiiiieeeiesemneensnesssseeeeeeeeeees 500
REMOLE PIrOCESSES ..vuiiuiiniiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeitttttttecttteateastescrectssessessesserscescssssssssssrscssenns 502
Distributed processing using multiprocessing * 502
Distributed processing using Dask ¢ 505
Installing Dask + 505
Basic example * 506
Running a single thread + 507
Distributed execution across multiple machines « 507
Distributed processing using ipyparallel « 509
ipython_config.py + 509
ipython_kernel_config.py * 510
ipcontroller_config.py « 510
ipengine_config.py « 511
ipcluster_config.py « 511

EST08 14U 4 oy Y 513
Chapter 15: Scientific Python and Plotting 515
Installing the PACKAZESccceeirrmmmuuuuiiiiiiiiiiiiiiiiicittitti et eereessaaa s sss s s s e s s e eeeeeees 515
Arrays and MAtriCeSccciiieeumuuuuiiiiiiiiiiiiniieetettttteerrasessee s s e e e e ettt et e esssaa s ssssssssseeseeeeeeees 516

NumPy - Fast arrays and matrices * 516

Numba - Faster Python on CPU or GPU « 519

SciPy - Mathematical algorithms and NumPy utilities « 520
Sparse matrices * 521

Pandas - Real-world data analysis « 522
Input and output options « 525
Pivoting and grouping * 525

Table of Contents xix
Merging « 527
Rolling or expanding windows * 527
Statsmodels - Statistical models on top of Pandas « 528
xarray - Labeled arrays and datasets * 530
STUMPY - Finding patterns in time series * 532
Mathematics and precise calculationscccieeeeeueuuiniiiiiiiiiiiiiiiiiiniieetee e e e e eeeeeees 533
gmpy?2 - Fast and precise calculations * 534
Sage - An alternative to Mathematica/Maple/MATLAB « 534
mpmath - Convenient, precise calculations * 535
SymPy - Symbolic mathematics * 536
Patsy - Describing statistical models * 537
Plotting, graphing, and Chartingccccoeiiiiiiiiiiiiiimmmuicciinineecccceceerreea s e e e e ceeeeees 538
Matplotlib « 538
Seaborn « 541
Yellowbrick « 543
Plotly « 545
Bokeh ¢ 547
Datashader « 552
EXEICISES eevruruuuuiiiiiiiiiiiiiiiiiiiiitiuuiiieeisssetetettteersssaasasssesssssssseeeteeesssssssssssssssssssssssseseeenees 554
100103 4 F: 1 oy N 554
Chapter 16: Artificial Intelligence 557
Introduction to artificial intelligencecoceiiiiiiiimimiiiiiiiiiiiiiiiriiiceett e 558
Types of Al + 558
Installing the PACKAZESviiiiiuuiiiiiiimuiiiiiiiiieiiirrtiinniesttrsnsssessessnsssssssssnssssssssssnsssssssssnssssssnes 559
IIMNAZE PIOCESSINE .eceviieriiiiiiiiiiiemuuiiiiiiiiiiieeetetetetettrseasaasseessssseseeeteeeessssssssssssssssssssssseseseeees 559
scikit-image * 559
Installing scikit-image * 560
Edge detection « 560
Face detection * 561
scikit-image overview * 564
OpenCV -« 564
Installing OpenCV for Python « 564
Edge detection * 565
Object detection * 567
OpenCV versus scikit-image « 570
Natural 1anguage ProCeSSINEcceriireuiiiiiiiiuuiiiiiiiiuiierititiesrtieaieseteraasessetsnssesssssssssssses 570

XX Table of Contents

NLTK - Natural Language Toolkit « 571
spaCy - Natural language processing with Cython « 572

Gensim - Topic modeling for humans « 573

Machine JEArNINEcccceiiiierummuuiiiiiiiiiiiiiiiieeiitiiterrraessee st e ee ettt et eeesasssssssssssssssssssseeeeenees 573
Types of machine learning « 573
Supervised learning « 574
Reinforcement learning « 574
Unsupervised learning * 574
Combinations of learning methods « 575
Deep learning « 575
Artificial neural networks and deep learning * 575
Tensors * 576
PyTorch - Fast (deep) neural networks + 576
PyTorch Lightning and PyTorch Ignite — High-level PyTorch APIs « 580
Skorch - Mixing PyTorch and scikit-learn + 580
TensorFlow/Keras — Fast (deep) neural networks * 581
TensorFlow versus PyTorch « 584
Evolutionary algorithms « 584
Support-vector machines ¢ 588
Bayesian networks « 589
Versatile Al libraries and UtIlitiescccevuveeeeiiiiiiiiiiiiiiiiiiiiiiineicssssarereeeeeeee 589
scikit-learn - Machine learning in Python ¢« 589
Supervised learning * 590
Unsupervised learning « 592
auto-sklearn - Automatic scikit-learn « 593
mlxtend - Machine learning extensions * 593
scikit-lego - scikit-learn utilities « 594
XGBoost - eXtreme Gradient Boosting « 595
Featuretools - Feature detection and prediction * 595
Snorkel - Improving your ML data automatically « 595
TPOT - Optimizing ML models using genetic programming ¢ 595
EXEICISES evvrruuiiiiiiiiiiiiiiiiiiiiiiiiiiiieseeeeeeeeeeeee e ssssseseeeeeeeesssssssssssssassesssssseeesaasannes 596
SUIMIMATY .uiiiiiiiiiiiiiiiiiiiiiiiieiiiietiieeetieettiiterteieerssieerssieesssseersssserssiessssssssssssesssssesssssssssssssssses 597
Chapter 17: Extensions in C/C++, System Calls, and C/C++ Libraries 599
Setting UP tOOLING ...ccevvvriiiiiiiiiiiiiiiiiciiinnn e e s s e e e e e eee 599

Do you need C/C++ modules? * 600

Table of Contents

xxi

Windows « 600
0S X+ 600
Linux/Unix * 601
Calling C/CH+ With CEYPES .ceeevirrrmmuuiiiiiiiiiiiiiiiiiiiititittiiscss e ceeeeressssaasssssssseseeeeeeeees
Platform-specific libraries * 602
Windows * 602
Linux/Unix * 602
0S X603
Making it easy * 603
Calling functions and native types * 603
Complex data structures * 606
Arrays * 607

Gotchas with memory management * 608

Complex data structures * 611
Arrays - 612
ABI or API? + 613
CFFI or ctypes? * 615
NatiVe C/CH+ @XEEINSIOMNS .euuiieuiienieeniernierniereerenereneessserssessnersseessessssesssesssesssessssesssssnsesnsessnessnns
A basic example + 615
C is not Python - Size matters * 620
The example explained « 621
static + 622
PyObject™ - 622
Parsing arguments « 622
Cis not Python - Errors are silent or lethal - 624
Calling Python from C - Handling complex types * 625
EXEICISES 1iiiiiiiiiiiiiiiiiiiiitiiiiiiiiiieeeettieeisiiiiatrrt e e e e e e e essssssssssssssssssrnnesseeseeeesssssssssssssses

SUIMIMATY teuniiiiiiiiiiiiiiiitieieetittiiee ettt ree e eetttteeeettaatseeeettassseeserssssssssessssssesessrsnssssssesssssssssenes

Chapter 18: Packaging — Creating Your Own Libraries or Applications

Introduction to PACKAZESccceuuuiiiiiiuuuiiiiiiiiiiieiiiiiir ettt raa e s sseaa s e e
Types of packages + 632
Wheels — The new eggs * 632
Source packages * 633
Package tools « 634

PacCKage VErSIONINGcccuuuuiiiiiiuuiiiiiiitiiiiiiiiiuiieeitiaiiesetretiee s e tteaasseserassesssserassssessssesssssssnes

xxii

Table of Contents

Building packages
Packaging using pyproject.toml * 635

Packaging using setuptools with setup.py or setup.cfg « 643

Publishing packages

Creating a basic package * 637

Installing packages for development + 638

Adding code and data « 638
Adding executable commands * 639
Managing dependencies + 639
Building the package * 641
Building C/C++ extensions * 641

Creating a basic package * 644

Installing the package for development « 645

Adding packages * 645

Adding package data * 646
Managing dependencies * 648
Adding executable commands * 649
Building the package + 650

Adding URLs * 650
PyPI trove classifiers « 651
Uploading to PyPI - 651

C/C++ extensions

Regular C/C++ extensions * 653

Cython extensions * 654

Testing

unittest ¢ 655
py.test » 656

Exercises

Summary

Other Books You May Enjoy

...

..

...

Index

665

Preface

Python is a language that is easy to learn and anyone can get started with a “Hello, World!” script
within minutes. Mastering Python, however, is a completely different question.

Every programming problem has multiple possible solutions and choosing the Pythonic (idiomatic
Python) solution is not always obvious; it can also change with time. This book will not only illustrate
arange of different and new techniques but also explain where and when a method should be applied.
To quote The Zen of Python by Tim Peters:

“There should be one—and preferably only one—obvious way to do it. Although that
way may not be obvious at first unless you're Dutch.”

Even though it does not always help, the author of this book is actually Dutch.

This book is not a beginner’s guide to Python. It is a book that can teach you about the more advanced
techniques possible within Python, such as asyncio. It even includes Python 3.10 features, such as
structural pattern matching (Python’s switch statement), in great detail.

As a Python programmer with many years of experience, I will attempt to rationalize the choices made
in this book with relevant background information. These rationalizations are in no way strict guide-
lines, however, as several of these cases boil down to personal style in the end. Just know that they
stem from experience and are, in many cases, the solutions recommended by the Python community.

Some of the references in this book might not be obvious to you if you are not a fan of Monty Python.
This book regularly uses spam and eggs instead of foo and bar in code samples because the Python pro-
gramming language was named after Monty Python. To provide some background information about
spamand eggs, I would recommend you watch the Spam sketch from Monty Python. It is positively silly.

Who this book is for

This book is meant for programmers who are already experienced in Python and want to learn more
about the advanced features that Python offers. With the depth of this book, I can guarantee that
almost anyone can learn something new here if they wish.

XXiv Preface

If you only know the basics of Python, however, don’t worry. The book starts off relatively slow and
builds to the more advanced subjects, so you should be fine.

What this book covers

Chapter 1, Getting Started - One Environment per Project, demonstrates several options for managing
Python versions, virtual environments, and package dependencies.

Chapter 2, Interactive Python Interpreters, explores Python interpreter options. Python’s default in-
terpreter is perfectly functional, but better alternatives are available. With a few modifications or a
replacement, you can get auto-completion, syntax highlighting, and graphical output.

Chapter 3, Pythonic Syntax and Common Pitfalls, discusses Pythonic coding, which is the art of writing
beautiful and readable Python code. This chapter is not the holy grail, but it is filled with tips and best
practices to achieve something along those lines.

Chapter 4, Pythonic Design Patterns, continues on the theme of Chapter 3. Writing Pythonic code is not
just about code style, but also about using the right design patterns and data structures. This chapter
tells you about the data structures available and their performance characteristics.

Chapter 5, Functional Programming — Readability Versus Brevity, covers functional programming. Func-
tional programming is considered a bit of a black art by some, but when applied correctly it can be a

really powerful tool that makes code reuse trivial. It is probably as close to the underlying mathematics

as you can get within programming.

Chapter 6, Decorators — Enabling Code Reuse by Decorating, discusses decorators, an amazing tool for
reusing a method. With decorators, you can wrap functions and classes with some other function to
modify their parameters and return values - an extremely useful tool.

Chapter 7, Generators and Coroutines - Infinity, One Step at a Time, discusses generators. Lists and tuples
are fantastic if you already know that you are going to use every element, but the faster alternative
is to only calculate the elements you actually need. That is what a generator does for you: generate
items on demand.

Chapter 8, Metaclasses - Making Classes (not Instances) Smarter, explores metaclasses, the classes that
make other classes. It is a magic you rarely need, but it does have practical uses cases such as plugin
systems.

Chapter 9, Documentation - How to Use Sphinx and reStructuredText, gives you some documentation-re-
lated tips. Writing documentation might not be the favorite activity for most programmers, but it
is useful. This chapter shows you how to make that easier by using Sphinx and reStructuredText to
generate large portions automatically.

Chapter 10, Testing and Logging — Preparing for Bugs, covers how to implement tests and logging to
prevent and detect bugs. Bugs are inevitable and by using logging, we can trace the cause. Often, bugs
can be prevented by using tests.

Chapter 11, Debugging - Solving the Bugs, builds on Chapter 10. The previous chapter helped us find the
bugs; now we need to solve them. Debuggers can be a huge help when hunting down difficult bugs,

Preface XXV

and this chapter shows you several debugging options.

Chapter 12, Performance - Tracking and Reducing Your Memory and CPU Usage, discusses the performance
of your code. A common problem programmers have is trying to optimize code that does not need it,
a fun but generally futile exercise. This chapter helps you find the code that needs to be optimized.

Chapter 13, asyncio - Multithreading without Threads, covers asyncio. Waiting for external resources
such as network resources is the most common bottleneck for applications. With asyncio, we can
stop waiting for those bottlenecks and switch to another task instead.

Chapter 14, Multiprocessing — When a Single CPU Core Is Not Enough, discusses performance from a dif-
ferent perspective. With multiprocessing, we can use multiple processors (even remotely) in parallel.
When your processor is the bottleneck, this can help a lot.

Chapter 15, Scientific Python and Plotting, covers the most important libraries for scientific computing.
Python has become the language of choice for scientific purposes.

Chapter 16, Artificial Intelligence, shows many Al algorithms and the libraries available for implement-
ing them. In addition to being the language of choice for scientific purposes, most Al libraries are
currently being built using Python as well.

Chapter 17, Extensions in G/C++, System Calls, and C/C++ Libraries, shows you how to use existing C/C++
libraries from Python, which not only allows reuse but can also speed up execution greatly. Python
is a wonderful language, but it is often not the fastest solution.

Chapter 18, Packaging - Creating Your Own Libraries or Applications, will help you package your code
into a fully functioning Python package that others can use. After building your wonderful new library,
you might want to share it with the world.

To get the most out of this book

Depending on your level of experience you should start reading from the beginning, or gloss over the
chapters to skip to sections that are interesting for you. This book is suitable for intermediate to expert
level Python programmers, but not all sections will be equally useful for everyone.

As an example, the first two chapters are about setting up your environment and Python interpreter
and seem like chapters you can skip entirely as an advanced or expert Python programmer, but I
would advise against fully skipping them, as a few useful utilities and libraries are covered which you
might not be familiar with.

The chapters of this book do build on each other to a certain degree, but there is no strict reading
order and you can easily cherry-pick the parts you wish to read. If there is a reference to an earlier
chapter, it is clearly indicated.

The most up-to-date version of the code samples can always be found at https://github.com/
mastering-python/code_2.

The code in this repository is automatically tested and, if you have any suggestions, pull requests are
always welcome.

https://github.com/mastering-python/code_2
https://github.com/mastering-python/code_2

xxvi Preface

Most chapters of this book also include exercises at the end that will allow you to test what you have
learned. Since there are always multiple solutions to problems, you, and every other reader of this
book, can submit and compare your solutions on GitHub: https://github.com/mastering-python/
exercises

You are encouraged to create a pull request with your solution to the problems. And you can learn
from others here as well, of course.

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/mastering-python/code_2
and pull requests with improvements are welcome. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://static.packt-cdn.com/downloads/9781800207721_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

While this book largely adheres to the PEPS styling conventions, there are a few concessions made
due to the space limitations of a book format. Simply put, code samples that span multiple pages are
hard to read, so some parts use less whitespace than you would usually expect. The full version of the
code is available on GitHub and is automatically tested to be PEP8-compliant.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file ex-
tensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The itertools.
chain() generator is one of the simplest yet one of the most useful generators in the Python library.”

A block of code is set as follows:

from . import base

class A(base.Plugin):

pass

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

:show-inheritance:
:private-members:
:special-members:
:inherited-members:

Any command-line input or output is written as follows:

$ pip3 install -U mypy

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises
https://github.com/mastering-python/code_2
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800207721_ColorImages.pdf

Preface xxvii

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in
menus or dialog boxes. For example: “Sometimes interactive interpreters are referred to as REPL.
This stands for Read-Eval-Print-Loop.”

\/:ﬁ{ Warnings or important notes appear like this.

N

,@ Tips and tricks appear like this.

7/

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of your
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission
Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com

xxviii Preface

Share your thoughts

Once you've read Mastering Python, Second Edition, we'd love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://www.packtpub.com/
https://www.packtpub.com/

Getting Started — One
Environment per Project

In this chapter, you'll learn about the different ways of setting up Python environments for your
projects and how to use multiple Python versions on a single system outside of what your package
manager offers.

After the environment is set up, we will continue with the installation of packages using both the
Python Package Index (PyPI) and conda-forge, the package index that is coupled with Anaconda.

Lastly, we will look at several methods of keeping track of project dependencies.
To summarize, the following topics will be covered:

. Creating environments using venv, pipenv, poetry, pyenv, and anaconda
. Package installation through pip, poetry, pipenv, and conda

. Managing dependencies using requirements.txt, poetry, and pipenv

Virtual environments

The Python ecosystem offers many methods of installing and managing packages. You can simply
download and extract code to your project directory, use the package manager from your operating
system, or use a tool such as pip to install a package. To make sure your packages don't collide, it
is recommended that you use a virtual environment. A virtual environment is a lightweight Python
installation with its own package directories and a Python binary copied (or linked) from the binary
used to create the environment.

Why virtual environments are a good idea

It might seem like a hassle to create a virtual environment for every Python project, but it offers
enough advantages to do so. More importantly, there are several reasons why installing packages
globally using pip is a really bad idea:

2 Getting Started — One Environment per Project

« Installing packages globally usually requires elevated privileges (such as sudo, root, or
administrator), which is a huge security risk. When executing pip install <package>, the
setup. py of that package is executed as the user that executed the pip install command. That
means that if the package contains malware, it now has superuser privileges to do whatever it
wants. Don’t forget that anyone can upload a package to PyPI (pypi.org) without any vetting.
As you will see later in this book, it only takes a couple of minutes for anyone to create and
upload a package.

« Depending on how you installed Python, it can mess with the existing packages that are in-
stalled by your package manager. On an Ubuntu Linux system, that means you could break
pip or even apt itself because a pip install -U <package> installs and updates both the
package and all of the dependencies.

« Itcan break your other projects. Many projects try their best to remain backward compatible,
butevery pip install could pull in new/updated dependencies that could break compatibility
with other packages and projects. The Django Web Framework, for example, changes enough
between versions that many projects using Django will need several changes after an upgrade
to the latest release. So, when you're upgrading Django on your system to the latest version and
have a project that was written for a previous version, your project will most likely be broken.

« It pollutes your list of packages, making it hard to keep track of your project’s dependencies.

In addition to alleviating the issues above, there is a major advantage as well. You can specify the
Python version (assuming you have it installed) when creating the virtual environment. This allows
you to test and debug your projects in multiple Python versions easily while keeping the exact same
package versions beyond that.

Using venv and virtualenv

You are probably already familiar with virtualenv, alibrary used to create a virtual environment for
your Python installation. What you might not know is the venv command, which has been included
with Python since version 3.3 and can be used as a drop-in replacement for virtualenv in most cases.
To keep things simple, I recommend creating a directory where you keep all of your environments.
Some people opt for an env, .venv, or venv directory within the project, but I advise against that for
several reasons:

* Your project files are important, so you probably want to back them up as often as possible.
By keeping the bulky environment with all of the installed packages outside of your backups,
your backups become faster and lighter.

+ Your project directory stays portable. You can even keep it on a remote drive or flash drive
without having to worry that the virtual environment will only work on a single system.

« It prevents you from accidentally adding the virtual environment files to your source control
system.

If you do decide to keep your virtual environment inside your project directory, make sure that you
add that directory to your .gitignore file (or similar) for your version control system. And if you
want to keep your backups faster and lighter, exclude it from the backups. With correct dependency
tracking, the virtual environment should be easy enough to rebuild.

http://pypi.org

Chapter 1 3

Creating a venv

Creating a venv is a reasonably simple process, but it varies slightly according to the operating system
being used.

The following examples use the virtualenv module directly, but for ease I recommend

:@'_ using poetry instead, which is covered later in this chapter. This module will automati-

-h cally create a virtual environment for you when you first use it. Before you make the step
up to poetry, however, it is important to understand how virtual environments work.

Since Python 3.6, the pyvenv command has been deprecated in favor of python -m venv.

\/V: In the case of Ubuntu, the python3-venv package has to be installed through apt because
the Ubuntu developers have mutilated the default Python installation by not including
ensurepip.

For Linux/Unix/0S X, using zsh or bash as a shell, it is:

$ python3 -m venv envs/your_env

$ source envs/your_env/bin/activate

(your_env) $

And for Windows cmd. exe (assuming python.exe is in your PATH), it is:

C:\Users\wolph>python.exe -m venv envs\your_env
C:\Users\wolph>envs\your_env\Scripts\activate.bat
(your_env) C:\Users\wolph>

PowerShell is also supported and can be used in a similar fashion:

PS C:\Users\wolph>python.exe -m venv envs\your_env
PS C:\Users\wolph> envs\your_env\Scripts\Activate.psl

(your_env) PS C:\Users\wolph>

The first command creates the environment and the second activates the environment. After activating
the environment, commands such as python and pip use the environment-specific versions, so pip
install only installs within your virtual environment. A useful side effect of activating the environ-
ment is the prefix with the name of your environment, which is (your_env) in this case.

ileges is both unnecessary and a potential security risk, as explained in the Why virtual
environments are a good idea section.

C\/ Note that we are not using sudo or other methods of elevating privileges. Elevating priv-
)

N

Getting Started — One Environment per Project

Using virtualenv instead of venv is as simple as replacing the following command:

$ python3 -m venv envs/your_env

with this one:

$ virtualenv envs/your_env

An additional advantage of using virtualenv instead of venv, in that case, is that you can specify the
Python interpreter:

$ virtualenv -p python3.8 envs/your_env
Whereas with the venv command, it uses the currently running Python installation, so you need to
change it through the following invocation:

$ python3.8 -m venv envs/your_env

Activating a venv/virtualenv
Every time you get back to your project after closing the shell, you need to reactivate the environment.

The activation of a virtual environment consists of:

. Modifying your PATH environment variable to use envs\your_env\Script or envs/your_env/
bin for Windows or Linux/Unix, respectively

+ Modifying your prompt so that instead of $, you see (your_env) $, indicating that you are
working in a virtual environment

\II

@ In the case of poetry, you can use the poetry shell command to create a new
g shell with the activated environment.

While you can easily modify those manually, an easier method is to run the activate script that was
generated when creating the virtual environment.

For Linux/Unix with zsh or bash as the shell, it is:

$ source envs/your_env/bin/activate

(your_env) $

For Windows using cmd. exe, it is:

C:\Users\wolph>envs\your_env\Scripts\activate.bat
(your_env) C:\Users\wolph>

For Windows using PowerShell, it is:

PS C:\Users\wolph> envs\your_env\Scripts\Activate.psl

(your_env) PS C:\Users\wolph>

(9]

Chapter 1

By default, the PowerShell permissions might be too restrictive to allow this. You can
change this policy for the current PowerShell session by executing:

|
N

Set-ExecutionPolicy Unrestricted -Scope Process

If you wish to permanently change it for every PowerShell session for the current user,
execute:

Set-ExecutionPolicy Unrestricted -Scope CurrentUser

Different shells, such as fish and csh, are also supported by using the activate.fish and activate.
csh scripts, respectively.

When not using an interactive shell (with a cron job, for example), you can still use the environment by
using the Python interpreter in the bin or scripts directory for Linux/Unix or Windows, respectively.
Instead of running python script.py or /usr/bin/python script.py, you can use:

/home/wolph/envs/your_env/bin/python script.py

Note that commands installed through pip (and pip itself) can be run in a similar fashion:

/home/wolph/envs/your_env/bin/pip

Installing packages

Installing packages within your virtual environment can be done using pip as normal:

$ pip3 install <package>

The great advantage comes when looking at the list of installed packages:

$ pip3 freeze

Because our environment is isolated from the system, we only see the packages and dependencies
that we have explicitly installed.

Fully isolating the virtual environment from the system Python packages can be a downside in some
cases. It takes up more disk space and the package might not be in sync with the C/C++ libraries on
the system. The PostgreSQL database server, for example, is often used together with the psycopg2
package. While binaries are available for most platforms and building the package from the source
is fairly easy, it can sometimes be more convenient to use the package that is bundled with your
system. That way, you are certain that the package is compatible with both the installed Python and
PostgreSQL versions.

To mix your virtual environment with system packages, you can use the --system-site-packages
flag when creating the environment:

$ python3 -m venv --system-site-packages envs/your_env

6 Getting Started — One Environment per Project

When enabling this flag, the environment will have the system Python environment sys . path appended
to your virtual environment’s sys. path, effectively providing the system packages as a fallback when
an import from the virtual environment fails.

V4 Explicitly installing or updating a package within your virtual environment will effectively
\/;ﬁ> hide the system package from within your virtual environment. Uninstalling the package
from your virtual environment will make it reappear.

As you might suspect, this also affects the results of pip freeze. Luckily, pip freeze can be told to
only list the packages local to the virtual environment, which excludes the system packages:

$ pip3 freeze --local

\/‘/’ Later in this chapter, we will discuss pipenv, which transparently handles the creation
of the virtual environment for you.

Using pyenv

The pyenv library makes it really easy to quickly install and switch between multiple Python versions.
A common issue with many Linux and Unix systems is that the package managers opt for stability over
recency. In most cases, this is definitely an advantage, but if you are running a project that requires
the latest and greatest Python version, or a really old version, it requires you to compile and install it
manually. The pyenv package makes this process really easy for you but does still require the compiler
to be installed.

4 A nice addition to pyenv for testing purposes is the tox library. This library allows you
\/;D> to run your tests on a whole list of Python versions simultaneously. The usage of tox is
covered in Chapter 10, Testing and Logging — Preparing for Bugs.

To install pyenv, I recommend visiting the pyenv project page, since it depends highly on your operat-
ing system and operating system version. For Linux/Unix, you can use the regular pyenv installation
manual or the pyenv-installer (https://github.com/pyenv/pyenv-installer) one-liner, if you
deem it safe enough:

$ curl https://pyenv.run | bash

Make sure that you follow the instructions given by the installer. To ensure pyenv works properly, you
will need to modify your .zshrc or .bashrc.

https://github.com/pyenv/pyenv-installer

Chapter 1 7

Windows does not support pyenv natively (outside of Windows Subsystem for Linux) but has a pyenv
fork available: https://github.com/pyenv-win/pyenv-win#installation

After installing pyenv, you can view the list of supported Python versions using:

$ pyenv install --list

The list is rather long, but can be shortened with grep on Linux/Unix:

$ pyenv install --list | grep 3.10
3.10.0
3.10-dev

Once you've found the version you like, you can install it through the install command:

$ pyenv install 3.10-dev
Cloning https://github.com/python/cpython...

Installing Python-3.10-dev...
Installed Python-3.10-dev to /home/wolph/.pyenv/versions/3.10-dev

N The pyenv install command takes an optional - -debug parameter, which builds a de-
,@ bug version of Python that makes debugging C/C++ extensions possible using a debugger
= such as gdb.

Once the Python version has been built, you can activate it globally, but you can also use the pyenv-
virtualenv plugin (https://github.com/pyenv/pyenv-virtualenv)to create a virtualenv for your
newly created Python environment:

$ pyenv virtualenv 3.10-dev your_pyenv

you can see in the preceding example, as opposed to the venv and virtualenv commands, pyenv
virtualenv automatically creates the environment in the ~/.pyenv/versions/<version>/envs/
directory so you're not allowed to fully specify your own path. You can change the base path (~/.
pyenv/) through the PYENV_ROOT environment variable, however. Activating the environment using
the activate script in the environment directory is still possible, but more complicated than it needs
to be since there’s an easy shortcut:

$ pyenv activate your_pyenv

Now that the environment is activated, you can run environment-specific commands, such as pip,
and they will only modify your environment.

https://github.com/pyenv-win/pyenv-win#installation
https://github.com/pyenv/pyenv-virtualenv

8 Getting Started — One Environment per Project

Using Anaconda

Anaconda is a distribution that supports both the Python and R programming languages. It is much
more than simply a virtual environment manager, though; it’s a whole different Python distribution
with its own virtual environment system and even a completely different package system. In addition
to supporting PyPI, it also supports conda-forge, which features a very impressive number of pack-
ages focused on scientific computing.

For the end user, the most important difference is that packages are installed through the conda com-
mand instead of pip. This brings a much more advanced dependency check when installing packages.
Whereas pip will simply install a package and all of its dependencies without regard for other installed
packages, conda will look at all of the installed packages and make sure it won’t install a version that
is not supported by the installed packages.

\/V The conda package manager is not alone in smart dependency checking. The pipenv
package manager (discussed later in this chapter) does something similar.

Getting started with Anaconda Navigator

Installing Anaconda is quite easy on all common platforms. For Windows, OS X, and Linux, you can go
to the Anaconda site and download the (graphical) installer: https://www.anaconda.com/products/
distribution#Downloads

Once it’s installed, the easiest way to continue is by launching Anaconda Navigator, which should
look something like this:

Anaconda Navigator

File Help
{) ANACONDA NAVIGATOR e ——
f Home -
Applications on base (root) ~| Channels Refresh
& Environments 5
<] -] E-
- o
. 2 " \ _/
N Learning Jupyter ”
S’ Q
L
- Community JupyterLab Motebook Spyder
114 6.0.1 336
An extensible environment for interactive Web-based, interactive computing notebook Scientific PYthon Development
and reproducible computing, based on the environment, Edit and run human-readable EmiRonment, Powerful Python IDE with
Jupyter Motebook and Architecture. cocs while describing the data analysis. advanced editing, interactive testing,

Documentation debugging and introspection features

Developer Blog 1
Launch Launch Launch

Yy & 2 _

Figure 1.1: Anaconda Navigator - Home

https://www.anaconda.com/products/distribution#Downloads
https://www.anaconda.com/products/distribution#Downloads
https://www.anaconda.com/products/individual#Downloads

Chapter 1 9

Creating an environment and installing packages is pretty straightforward as well:

1. Click on the Environments button on the left.
2. Click on the Create button below.

3. Enter your name and Python version.
4

Click on Create to create your environment and wait a bit until Anaconda is done:

Hame: | Jeow environment name

Location:

Packages: B Python r 357

(=l [

Figure 1.2: Anaconda Navigator - Creating an environment

Once Anaconda has finished creating your environment, you should see a list of installed packages.
Installing packages can be done by changing the filter of the package list from Installed to All, marking
the checkbox near the packages you want to install, and applying the changes.

'
\@' While creating an environment, Anaconda Navigator shows you where the environment

g will be created.

Getting started with conda

While Anaconda Navigator is a really nice tool to use to get an overview, being able to run your code
from the command line can be convenient too. With the conda command, that is luckily very easy.

First, you need to open the conda shell. You can do this from Anaconda Navigator if you wish, but you
can also run it straightaway. On Windows, you can open Anaconda Prompt or Anaconda PowerShell
Prompt from the start menu. On Linux and OS X, the most convenient method is to initialize the shell
integration. For zsh, you can use:

conda init zsh

10 Getting Started — One Environment per Project

For other shells, the process is similar. Note that this process modifies your shell configuration to
automatically activate the base environment every time you open a shell. This can be disabled with
a simple configuration option:

$ conda config --set auto_activate_base false

If automatic activation is not enabled, you will need to run the activate command to get back into
the conda base environment:

$ conda activate

(base) $

If, instead of the conda base environment, you wish to activate the environment you created earlier,
you need to specify the name:

$ conda activate conda_env
(conda_env) $

If you have not created the environment yet, you can do so using the command line as well:

$ conda create --name conda_env
Collecting package metadata (current_repodata.json): done
Solving environment: done

Proceed ([y]/n)? y
Preparing transaction: done

Verifying transaction: done
Executing transaction: done

To list the available environments, you can use the conda info command:

$ conda info --envs
conda environments
#

base * Jusr/local/anaconda3

conda_env /usr/local/anaconda3/envs/conda_env

Installing conda packages
Now it’s time to install a package. For conda packages, you can simply use the conda install com-

mand. For example, to install the progressbar2 package that I maintain, use:

(conda_env) $ conda install progressbar2

Collecting package metadata (current_repodata.json): done

Solving environment: done

Chapter 1 11

environment location: /usr/local/anaconda3/envs/conda_env

added / updated specs:

- progressbar2

The following packages will be downloaded:
The following NEW packages will be INSTALLED:
Proceed ([y]/n)? y

Downloading and Extracting Packages

Now you can run Python and see that the package has been installed and is working properly:

(conda_env) $ python

Python 3.8.0 (default, Nov 6 2019, 15:49:01)

[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import progressbar

>>> for _ in progressbar.progressbar(range(5)): pass

100% (5 of 5) |#H#HHHHHHHHHHHHHHEHEHEHH | Elapsed Time: 0:00:00 Time:
0:00:00

Another way to verify whether the package has been installed is by running the conda 1ist command,
which lists the installed packages similarly to pip list:

(conda_env) $ conda list
packages in environment at /usr/local/anaconda3/envs/conda_env:
#

Name Version Build Channel

Installing PyPI packages

With PyPI packages, we have two options within the Anaconda distribution. The most obvious is using
pip, but this has the downside of partially circumventing the conda dependency checker. While conda
install will take the packages installed through PyPI into consideration, the pip command might
upgrade packages undesirably. This behavior can be improved by enabling the conda/pip interoper-
ability setting, but this seriously impacts the performance of conda commands:

$ conda config --set pip_interop_enabled True

12 Getting Started — One Environment per Project

Depending on how important fixed versions or conda performance is for you, you can also opt for
converting the package to a conda package:

(conda_env) $ conda skeleton pypi progressbar2

Warning, the following versions were found for progressbar2

Use --version to specify a different version.

The following NEW packages will be INSTALLED:

INFO:conda_build.config:--dirty flag and --keep-old-work not specified.
Removing build/test folder after successful build/test.

Now that we have a package, we can modify the files if needed, but using the automatically generated
files works most of the time. All that is left now is to build and install the package:

(conda_env) $ conda build progressbar2

(conda_env) $ conda install --use-local progressbar2
Collecting package metadata (current_repodata.json): done
Solving environment: done

And now we are done! The package has been installed through conda instead of pip.

Sharing your environment

When collaborating with others, it is essential to have environments that are as similar as possible to
avoid debugging local issues. With pip, we can simply create a requirements file by using pip freeze,
but that will not include the conda packages. With conda, there’s actually an even better solution, which
stores not only the dependencies and versions but also the installation channels, environment name,
and environment location:

(conda_env) $ conda env export -file environment.yml
(conda_env) $ cat environment.yml
name: conda_env
channels:
- defaults
dependencies:

prefix: /usr/local/anaconda3/envs/conda_env

Chapter 1 13

Installing the packages from that environment file can be done while creating the environment:

$ conda env create --name conda_env -file environment.yml

Or they can be added to an existing environment:

(conda_env) $ conda env update --file environment.yml

Collecting package metadata (repodata.json): done

Managing dependencies

The simplest way of managing dependencies is storing them in a requirements.txt file. In its sim-
plest form, this is a list of package names and nothing else. This file can be extended with version
requirements and can even support environment-specific installations.

A fancier method of installing and managing your dependencies is by using a tool such as poetry or
pipenv. Internally, these use the regular pip installation method, but they build a full dependency
graph of all the packages. This makes sure that all package versions are compatible with each other
and allows the parallel installation of non-dependent packages.

Using pip and a requirements.ixt file

The requirements. txt format allows you to list all of the dependencies of your project as broadly or
as specifically as you feel is necessary. You can easily create this file yourself, but you can also tell pip
to generate it for you, or even to generate a new file based on a previous requirements. txt file so you
can view the changes. I recommend using pip freeze to generate an initial file and cherry-picking
the dependencies (versions) you want.

For example, assuming that we run pip freeze in our virtual environment from before:

(your_env) $ pip3 freeze

pkg-resources==0.0.0

If we store that file in a requirements.txt file, install a package, and look at the difference, we get
this result:

(your_env) $ pip3 freeze > requirements.txt
(your_env) $ pip3 install progressbar2
Collecting progressbar2

Installing collected packages: six, python-utils, progressbar2
Successfully installed progressbar2-3.47.0 python-utils-2.3.0 six-1.13.0

(your_env) $ pip3 freeze -r requirements.txt

pkg-resources==0.0.0

14 Getting Started — One Environment per Project

progressbar2==3.47.0
python-utils==2.3.0

six==1.13.0

Asyou can see, the pip freeze command automatically detected the addition of the six, progressbar2,
and python-utils packages, and it immediately pinned those versions to the currently installed ones.

The lines in the requirements. txt file are understood by pip on the command line as

! 7/
-@— well, so to install a specific version, you can run:
4 AN

$ pip3 install 'progressbar2==3.47.0'

Version specifiers

Often, pinning a version as strictly as that is not desirable, however, so let’s change the requirements
file to only contain what we actually care about:

progressbar2>=3.47.0

If someone else wants to install all of the requirements in this file, they can simply tell pip to include
that requirement:

(your_env) $ pip3 install -r requirements.txt

Requirement already satisfied: progressbar2>=3.47.0 in your_env/lib/python3.9/
site-packages (from -r requirements.txt (line 1))

Requirement already satisfied: python-utils>=2.3.0 in your_env/1lib/python3.9/
site-packages (from progressbar2>=3.47.0->-r requirements.txt (line 1))

Requirement already satisfied: six in your_env/lib/python3.9/site-packages
(from progressbar2>=3.47.0->-r requirements.txt (line 1))

In this case, pip checks to see whether all packages are installed and will install or update them if
needed.

\ 7/

|
@ -r requirements.txt works recursively, allowing you to include multiple requirements
N
files.

Now let’s assume we’ve encountered a bug in the latest version and we wish to skip it. We can assume
that only this specific version is affected, so we will only blacklist that version:

progressbar2>=3.46,!=3.47.0

Chapter 1 15

Lastly, we should talk about wildcards. One of the most common scenarios is needing a specific ma-
jor version number but still wanting the latest security update and bug fixes. There are a few ways to
specify these:

progressbar2 ==3.47.%
progressbar2 ~=3.47.1

progressbar2 >=3.47.1, ==3.47.%

With the compatible release pattern (~=), you can select the newest version that is within the same
major release but is at least the specified version.

ey The version identification and dependency specification standard is described thoroughly
-(y)- inPEP440:
4 N

https://peps.python.org/pep-0440/

Installing through source control repositories

Now let’s say that we’re really unlucky and there is no working release of the package yet, but it has
been fixed in the develop branch of the Git repository. We can install that either through pip or through
a requirements.txt file, like this:

(your_env) $ pip3 install --editable 'git+https://github.com/wolph/python-
progressbar@develop#egg=progressbar2’
Obtaining progressbar2 from git+https://github.com/wolph/python-progressbar@
developtegg=progressbar2

Updating your_env/src/progressbar2 clone (to develop)
Requirement already satisfied: python-utils>=2.3.0 in your_env/1lib/python3.9/
site-packages (from progressbar2)

Requirement already satisfied: six in your_env/lib/python3.9/site-packages

(from progressbar2)

Installing collected packages: progressbar2
Found existing installation: progressbar2 3.47.0
Uninstalling progressbar2-3.47.0:
Successfully uninstalled progressbar2-3.47.0
Running setup.py develop for progressbar2

Successfully installed progressbar2

You may notice that pip not only installed the package but actually did a git cloneto your_env/src/
progressbar2. This is an optional step caused by the --editable (short option: -e) flag, which has
the additional advantage that every time you re-run the command, the git clone will be updated. It
also makes it rather easy to go to that directory, modify the code, and create a pull request with a fix.

https://peps.python.org/pep-0440/

16 Getting Started — One Environment per Project

\/V In addition to Git, other source control systems such as Bazaar, Mercurial, and Subversion
are also supported.

Additional dependencies using extras

Many packages offer optional dependencies for specific use cases. In the case of the progressbar2
library, I have added tests and docs extras to install the test or documentation building dependencies
needed to run the tests for the package. Extras can be specified using square brackets separated by
commas:

progressbar2[docs,tests]

requests[security]

Conditional dependencies using environment markers

If your project needs to run on multiple systems, you will most likely encounter dependencies that
are not required on all systems. One example of this is libraries that are required on some operating
systems but not on others. An example of this is the portalocker package I maintain; on Linux/Unix
systems, the locking mechanisms needed are supported out of the box. On Windows, however, they
require the pywin32 package to work. The install_requires part of the package (which uses the
same syntax as requirements.txt) contains this line:

pywin32!1=226; platform_system == "Windows"

This specifies that on Windows, the pywin32 package is required, and version 226 was blacklisted
due to a bug.

In addition to platform_system, there are several more markers, such as python_version and
platform_machine (contains architecture x86_64, for example).

\/;l’{ The full list of markers can be found in PEP 496: https://peps.python.org/pep-0496/.

One other useful example of this is the dataclasses library. This library has been included with Python
since version 3.7, so we only need to install the backport for older Python versions:

dataclasses; python_version < '3.7'

https://peps.python.org/pep-0496/

Chapter 1 17

Automatic project management using poetry

The poetry tool provides a really easy-to-use solution for creating, updating, and sharing your Python
projects. It’s also very fast, which makes it a fantastic starting point for a project.

Creating a new poetry project

Starting a new project is very easy. It will automatically handle virtual environments, dependencies,
and other project-related tasks for you. To start, we will use the poetry init wizard:

$ poetry init

This command will guide you through creating your pyproject.toml config.

Package name [t_0@ poetry]:

Version [0.1.0]:

Description []:

Author [Rick van Hattem <Wolph@wol.ph>, n to skip]:
License []:

Compatible Python versions [73.10]:

Would you like to define your main dependencies interactively? (yes/no) [yes]
no

Would you like to define your development dependencies interact...? (yes/no)
[yes] no

Do you confirm generation? (yes/no) [yes]

Following these few questions, it automatically creates a pyproject.toml file for us that contains all
the data we entered and some automatically generated data. As you may have noticed, it automatically
prefilled several values for us:

+ The project name. This is based on the current directory name.

+ Theversion. This is fixed to ©.1.0.

+ The author field. This looks at your git user information. This can be set using:

$ git config --global user.name "Rick van Hattem"

$ git config --global user.email "Wolph@wol.ph"

« The Python version. This is based on the Python version you are running poetry with, but it
can be customized using poetry init --python=...

Looking at the generated pyproject.toml, we can see the following:

[tool.poetry]
name = "t_00_poetry"

version = "0.1.0"

18 Getting Started — One Environment per Project

description =

authors = ["Rick van Hattem <Wolph@wol.ph>"]

[tool.poetry.dependencies]
python = "~3.10"

[tool.poetry.dev-dependencies]

[build-system]
requires = ["poetry-core>=1.0.0"]

build-backend = "poetry.core.masonry.api”

Adding dependencies

Once we have the project up and running, we can now add dependencies:

$ poetry add progressbar2
Using version 7~3.55.0 for progressbar2

Writing lock file

e Installing progressbar2 (3.55.0)

This automatically installs the package, adds it to the pyproject.toml file, and adds the specific ver-
sion to the poetry.lock file. After this command, the pyproject.toml file has a new line added to
the tool.poetry.dependencies section:

[tool.poetry.dependencies]
python = "~3.10"
progressbar2 = "~3.55.0"

The poetry.lock file is a bit more specific. Whereas the progressbar2 dependency could have a wild-
card version, the poetry.lock file stores the exact version, the file hashes, and all the dependencies
that were installed:

[[package]]
name = "progressbar2"
version = "3.55.0"

[package.dependencies]
python-utils = ">=2.3.0"

[package.extras]
docs = ["sphinx (>=1.7.4)"]

Chapter 1 19

[metadata]
lock-version = "1.1"
python-versions = "~3.10"

content-hash =
"c4235fbav428ce787715a94075e19731e5d45caa73ff2e0345e5dd269332bFf0"

[metadata.files]

progressbar2 = [
{file = "progressbar2-3.55.0-py2.py3-none-any.whl", hash = "sha256:..."},
{file = "progressbar2-3.55.0.tar.gz", hash = "sha256:..."},

By having all this data, we can build or rebuild a virtual environment for a poetry-based project on
another system exactly as it was created on the original system. To install, upgrade, and/or downgrade
the packages exactly as specified in the poetry.lock file, we need a single command:

$ poetry install

Installing dependencies from lock file

This is very similar to how the npm and yarn commands work if you are familiar with those.

Upgrading dependencies

In the previous examples, we simply added a dependency without specifying an explicit version. Of-
ten this is a safe approach, as the default version requirement will allow for any version within that
major version.

If the project uses normal Python versioning or semantic versioning (more about that in Chapter 18,
Packaging - Creating Your Own Libraries or Applications), that should be perfect. At the very least, all of
my projects (such as progressbar2) are generally both backward and largely forward compatible, so
simply fixing the major version is enough. In this case, poetry defaulted to version #3.55.0, which
means that any version newer than or equal to 3.55.0, up to (but not including) 4.0.0, is valid.

Due to the poetry.lock file, a poetry install will result in those exact versions being installed in-
stead of the new versions, however. So how can we upgrade the dependencies? For this purpose, we
will start by installing an older version of the progressbar2 library:

$ poetry add 'progressbar2=3.1.0'

Now we will relax the version in the pyproject.toml file to ~3.1.0:

[tool.poetry.dependencies]
progressbar2 = "~3.1.0"

20 Getting Started — One Environment per Project

Once we have done this, a poetry install will still keep the 3.1.0 version, but we can make poetry
update the dependencies for us:

$ poetry update

e Updating progressbar2 (3.1.0 -> 3.55.0)

Now, poetry has nicely updated the dependencies in our project while still adhering to the require-
ments we set in the pyproject.toml file. If you set the version requirements of all packages to *,
it will always update everything to the latest available versions that are compatible with each other.

Running commands

To run a single command using the poetry environment, you can use poetry run:

$ poetry run pip

For an entire development session, however, I would suggest using the shell command:

$ poetry shell

After this, you can run all Python commands as normal, but these will now be running from the
activated virtual environment.

For cron jobs this is similar, but you will need to make sure that you change directories first:

@ 3 * * * cd /home/wolph/workspace/poetry project/ && poetry run python

script.py

This command runs every day at 03:00 (24-hour clock, so A.M.).

Note that cron might not be able to find the poetry command due to having a different environment.
In that case, I would recommend using the absolute path to the poetry command, which can be
found using which:

$ which poetry

/usr/local/bin/poetry

Automatic dependency tracking using pipenv

For large projects, your dependencies can change often, which makes the manual manipulation of
the requirements.txt file rather tedious. Additionally, having to create a virtual environment before
you can install your packages is also a pretty repetitive task if you work on many projects. The pipenv
tool aims to transparently solve these issues for you, while also making sure that all of your dependen-
cies are compatible and updated. And as a final bonus, it combines the strict and loose dependency
versions so you can make sure your production environment uses the exact same versions you tested.

Initial usage is simple; go to your project directory and install a package. Let’s give it a try:

Chapter 1 21

$ pipenv install progressbar2
Creating a virtualenv for this project...

Using /usr/local/bin/python3 (3.10.4) to create virtualenv...

v Successfully created virtual environment!

Creating a Pipfile for this project...

Installing progressbar2...

Adding progressbar2 to Pipfile's [packages]...
v Installation Succeeded

Pipfile.lock not found, creating...

v Success!
Updated Pipfile.lock (996b11)!
Installing dependencies from Pipfile.lock (996b11l)...

S 1IIENARARERRNRARUARERARNNENN o/0 - co:00:0

That’s quite a bit of output even when abbreviated. But let’s look at what happened:

. A virtual environment was created.

+ APipfile was created, which contains the dependency as you specified it. If you specify a
specific version, that will be added to the Pipfile; otherwise, it will be a wildcard requirement,
meaning that any version will be accepted as long as there are no conflicts with other packages.

« APipfile.lock was created containing the exact list of packages and versions as installed.
This allows an identical install on a different machine with the exact same versions.

The generated Pipfile contains the following:

[[source]]

name = "pypi"

url = "https://pypi.org/simple"
verify_ssl = true

[dev-packages]

[packages]

progressbar2 = "*"

[requires]

python_version = "3.10"

22 Getting Started — One Environment per Project

And the Pipfile.lock is a bit larger, but immediately shows another advantage of this method:

{

"default": {
"progressbar2": {

"hashes": [
"sha256:14d3165a21781d@53...",
"sha256:2562ba3e554433f0..."

1,

"index": "pypi",

"version": "==4.0.0"

s
"python-utils": {

"hashes": [
"sha256:4dace6420c5f50d6...",
"sha256:93d9cdc8b8580669. . ."

1,
"markers": "python_version >= '3.7'",
"version": "==3.1.0"
¥
¥
"develop": {}

}

Asyou can see, in addition to the exact package versions, the Pipfile.lock contains the hashes of the
packages as well. In this case, the package provides both a .tar.gz (source) and a .whl (wheel) file,
which is why there are two hashes. Additionally, the Pipfile.lock contains all packages installed by
pipenv, including all dependencies.

Using these hashes, you can be certain that during a deployment, you will receive the exact same file
and not some corrupt or even malicious file.

Because the versions are completely fixed, you can also be certain that anyone deploying your project
using the Pipfile.lock will get the exact same package versions. This is very useful when working
together with other developers.

To install all the necessary packages as specified in the Pipfile (even for the initial install), you can
simply run:

$ pipenv install
Installing dependencies from Pipfile.lock (5c99el)..

S 1 Bl 3/3 - 00:00:00

Chapter 1 23

To activate this project's virtualenv, run pipenv shell.

Alternatively, run a command inside the virtualenv with pipenv run.

Any time you run pipenv install package, the Pipfile will be automatically modified with your
changes and checked for incompatible packages. The big downside is that pipenv can become terribly
slow for large projects. I have encountered multiple projects where a no-op pip install would take
several minutes due to the fetching and checking of the entire dependency graph. In most cases, it’s
still worth it, however; the added functionality can save you a lot of headaches.

\ 7/

_@ Don’t forget to run your regular Python commands with the pipenv run prefix or from
g pipenv shell.

Updating your packages
Because of the dependency graph, you can easily update your packages without having to worry about
dependency conflicts. With one command, you're done:

$ pipenv update

Should you still encounter issues with the versions because some packages haven't been checked
against each other, you can fix that by specifying the versions of the package you do or do not want:

$ pipenv install 'progressbar2!=3.47.0'

Installing progressbar2!=3.47.0..

Adding progressbar2 to Pipfile's [packages]..

v 1Installation Succeeded

Pipfile.lock (c9327e) out of date, updating to (5c99el)..
v Success!

Updated Pipfile.lock (c9327e)!

Installing dependencies from Pipfile.lock (c9327e)..

S IINARNRENARNRRNARNNRARRUNNANN 3/3 - e0:00:00

By running that command, the packages section of the Pipfile changes to:

[packages]
progressbar2 = "1=3.47.0"

Deploying to production

Getting the exact same versions on all of your production servers is absolutely essential to prevent
hard-to-trace bugs. For this very purpose, you can tell pipenv to install everything as specified in the
Pipenv.lock file while still checking to see whether Pipfile.lock is out of date. With one command,
you have a fully functioning production virtual environment with all packages installed.

24 Getting Started — One Environment per Project

Let’s create a new directory and see if it all works out:

$ mkdir ../pipenv_production

$ cp Pipfile Pipfile.lock ../pipenv_production/

$ cd ../pipenv_production/

$ pipenv install --deploy

Creating a virtualenv for this project...

Pipfile: /home/wolph/workspace/pipenv_production/Pipfile
Using /usr/bin/python3 (3.10.4) to create virtualenv...

v Successfully created virtual environment!

Installing dependencies from Pipfile.lock (996b11)...
S TIIINNRNRRRRRNRNNNRRNNRNNNNENE ;) _ 00:00:01

$ pipenv shell

Launching subshell in virtual environment...
(pipenv_production) $ pip3 freeze
progressbar2==4.0.0

python-utils==3.1.0

All of the versions are exactly as expected and ready for use.

Running cron commands

To run your Python commands outside of the pipenv shell, you can use the pipenv run prefix. In-
stead of python, you would run pipenv run python. In normal usage, this is a lot less practical than
activating the pipenv shell, but for non-interactive sessions, such as cron jobs, this is an essential
feature. For example, a cron job that runs at 03:00 (24-hour clock, so A.M.) every day would look
something like this:

9 3 * * * cd /home/wolph/workspace/pipenv_project/ && pipenv run python

script.py

Exercises

Many of the topics discussed in this chapter already gave full examples, leaving little room for exercises.
There are additional resources to discover, however.

Reading the Python Enhancement Proposals (PEPs)

A good way to learn more about the topics discussed in this chapter (and all the following chapters)
is to read the PEP pages. These proposals were written before the changes were accepted into the
Python core. Note that not all of the PEPs on the Python site have been accepted, but they will remain
on the Python site:

Chapter 1 25

. PEP 440 - Version Identification and Dependency Specification: https://peps.python.org/
pep-0440/

. PEP 496 - Environment Markers: https://peps.python.org/pep-0496/

Combining pyenv and poetry or pipenv

Even though the chapter did not cover it, there is nothing stopping you from telling poetry or pipenv
to use a pyenv-based Python interpreter. Give it a try!

Converting an existing project to a poetry project

Part of this exercise should be to either create a brand new pyproject.toml or to convert an existing
requirements.txt file to a pyproject.toml.

Summary

In this chapter, you learned why virtual environments are useful and you discovered several imple-
mentations of them and their advantages. We explored how to create virtual environments and how
to install multiple different Python versions. Finally, we covered how to manage the dependencies
for your Python projects.

Since Python is an interpreted language, it is easily possible to run code from the interpreter directly
instead of through a Python file.

The default Python interpreter already features command history and depending on your install,
basic autocompletion.

But with alternative interpreters we can have many more features in our interpreter such as syntax
highlighting, smart autocompletion which includes documentation, and more.

The next chapter will show us several alternative interpreters and their advantages.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHulf

https://peps.python.org/pep-0440/
https://peps.python.org/pep-0440/
https://peps.python.org/pep-0496/
https://discord.gg/QMzJenHuJf

Interactive Python Interpreters

Now that we have a working Python installation, we need to run some code. The most obvious way
is to create a Python file and execute it. Often, it can be faster to interactively develop code from an
interactive Python interpreter, however. While the standard Python interpreter is already quite pow-
erful, many enhancements and alternatives are available.

The alternative interpreters/shells offer features such as:

. Smart autocompletion

. Syntax highlighting

. Saving and loading sessions
+ Automatic indenting

+ Graphing/charting output
In this chapter, you will learn about:

+ Alternative interpreters:

. bpython

. ptpython
ipython

. jupyter

+ How to enhance interpreters

The Python interpreter

The standard Python interpreter is already fairly powerful, but more options are available through
customization. First, let’s start with a 'Hello world!'. Because the interpreter uses REPL, all output
will be automatically printed and we can simply create a string.

28 Interactive Python Interpreters

V4 Sometimes interactive interpreters are referred to as REPL. This stands for Read-Eval-
; a7 Print-Loop. This effectively means that all of your statements will be executed and printed

to your screen immediately.

First, we need to start the interpreter; after that, we can type our commands:

$ python3
Python 3.9.0
[GCC 7.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> 'Hello world!"
'Hello world!'

That was easy enough. And note that we didn’t have to use print('Hello world! ") to show the output.

N Many interpreters have only limited support for Windows. While they all work to some de-
',@\' gree, your experience will be better with Linux or OS X systems. I recommend trying them

from a (virtual) Linux/Unix machine at least once to experience the full range of features.

Modifying the interpreter

As our first enhancement, we will add a few convenient shortcuts to the scope of the interpreter.
Instead of having to type import pprint; pprint.pprint(...) to pretty-print our output, it would
be useful to use pp(...) instead without having to run an import statement every time we start our
interpreter. To do this, we will create a Python file that will be executed every time we run Python. On
Linux and OS X systems, I would recommend ~/.config/python/init.py; on Windows, something
like C:\Users\rick\AppData\Local\Python\init.py might be more suitable. Within this file, we can
add regular Python code that will be executed.

Python won’t find the file automatically; you need to tell Python where to look for the file
by using the PYTHONSTARTUP environment variable. On Linux and OS X, you can change
the ~/.zshrc, ~/ .bashrc file, or whatever your shell has, and add:

$ export PYTHONSTARTUP=~/.config/python/init.py

\/V This file is automatically executed every time you open a new shell session. So, once you
open a new shell session, you are done.

If you want to activate this for your current shell, you can also run the export line above
in your current shell.

On Windows, you need to find the Advanced System Settings and change the environment
variables on that screen.

Chapter 2 29

Now we can add these lines to the file to make pretty print (pprint/pp) and pretty format (pformat/
pf) available by default:

from pprint import pprint as pp
from pprint import pformat as pf

When we run the Python interpreter, now we will have pp and pf available in our scope:

>>> pp(dict(spam=0xA, eggs=0xB))

{'eggs': 11, 'spam': 10}

>>> pf(dict(spam=0xA, eggs=0xB))
"{'eggs': 11, ‘'spam': 10}"

With a few of these minor changes, you can make your life a lot easier. You could modify your sys.
path to include a directory with custom libraries, for example. And you can also change your prompt
using the sys.psland sys.ps2 variables. To illustrate, we’ll look at the interpreter before our changes:

>>> if True:
print('Hello!")
Hello!

And now we will modify sys.ps1 and sys.ps2 and run the exact same code again:

>>> import sys

>>> sys.psl
>>> sys.ps2

> if True:
print('Hello!")
Hello!

The configuration above shows that you can easily change the interpreter to a slightly different output
if you wish. For consistency purposes, however, it might be better to keep it the same.

Enabling and enhancing autocompletion

One of the most useful additions to the interpreter is the rlcompleter module. This module enables
tab-activated autocompletion in your interpreter and is automatically activated if the readline mod-
ule is available.

i The rlcompleter module depends on the availability of the readline module, which is not
—/@\— bundled with Python on Windows systems. Luckily, an alternative can be installed easily:

$ pip3 install pyreadline

30 Interactive Python Interpreters

It would be very useful to add some extra options to the autocompletion. First, look at the default output:

>>> sandwich = dict(spam=2, eggs=1, sausage=1)
>>> sandwich.<TAB>

sandwich.clear(sandwich.fromkeys(sandwich.items(sandwich.pop(

sandwich.setdefault(sandwich.values(sandwich. copy(sandwich.get(
sandwich.keys(sandwich.popitem(sandwich.update(

>>> sandwich[<TAB>

As you can see, the tab completion for "." works perfectly, but the tab completion for "[" does noth-

ing. It would be useful to know the available items, so now we will work on adding that feature. It
should be noted that this example uses a few techniques that are explained in later chapters, but that
shouldn’t matter for now:

import __main__
import re
import atexit
import readline

import rlcompleter

class Completer(rlcompleter.Completer):
ITEM_RE = re.compile(r'(?P<expression>.+?)\[(?P<key>[*\[]1*)")

def complete(self, text, state):

if self.use_main_ns:

self.namespace = __main__. dict__

if '[" in text:

if state == 0:
self.matches = list(self.item_matches(text))

try:

return self.matches[state]
except IndexError:

pass

else:

Chapter 2

Fallback to the normal completion

return super().complete(text, state)

def item matches(self, text):
Look for the pattern expression[key
match = self.ITEM_RE.match(text)
if match:
search_key

match.group('key").1lstrip()
expression

match.group('expression')

Strip quotes from the key
if search_key and search_key[0] in {"'", ""'}:
search_key = search_key.strip(search_key[0])

Fetch the object from the namespace
object_ = eval(expression, self.namespace)

Duck typing, check if we have a 'keys()' attribute
if hasattr(object_, 'keys'):
Fetch the keys by executing the 'keys()' method
Can you guess where the bug is?
keys = object_.keys()
for i, key in enumerate(keys):
Limit to 25 items for safety, could be infinite
if i >= 25:
break

Only return matching results
if key.startswith(search_key):
yield f'{expression}[{key!r}]’

By default readline doesn't call the autocompleter for [because
1t's considered a delimiter. With a Little bit of work we can

fix this however :)

delims = readline.get_completer_delims()

Remove [, ' and " from the delimiters

delims = delims.replace('[', '').replace('"', '').replace("'", '")
Set the delimiters

readline.set_completer_delims(delims)

32 Interactive Python Interpreters

completer = Completer()
readline.set_completer(completer.complete)

atexit.register(lambda: readline.set _completer(None))

print('Done initializing the tab completer')

That was quite a bit of code, and if you look carefully, you'll notice multiple potential bugs in this
limited example. I'm just trying to show a working example here without introducing too much com-
plexity, so several edge cases are not considered. To make the script work, we need to store it in the
PYTHONSTARTUP file as we discussed earlier. You should see the result from print() after opening the
interpreter so you can verify whether the script was loaded. With this addition, we can now complete
dictionary keys as well:

Done initializing the tab completer
>>> sandwich = dict(spam=2, eggs=1, sausage=1)
>>> sandwich['<TAB>

sandwich['eggs'] sandwich['sausage'] sandwich['spam']

Naturally, you could expand this to include colors, other completions, and many more useful features.

Since this completion calls object . keys (), there is a potential risk here. This code could

be dangerous if, for some reason, the object.keys () method code is not safe to execute.

Perhaps you are running on an external library, or your code has overridden the keys ()

V4 method to execute a heavy database function. And if object.keys() is a generator that

\E/‘ is exhausted after executing once, you won't have any results when running your actual
code afterward.

Additionally, the eval () function can be dangerous to execute on unknown code. In this
case, eval() is only executing the line we typed ourselves, so that is less of an issue here.

Alternative interpreters

Now that you have seen some of the features of the regular Python interpreter, let’s look at some
enhanced alternatives. There are many options available, but we will limit ourselves to the most
popular ones here:

. bpython
. ptpython
. ipython

* jupyter (web-based ipython)

Let’s get started.

Chapter 2 33

bpython

The bpython interpreter is a curses interface for the Python interpreter that offers many useful fea-
tures, while still being very similar to the regular Python interpreter.

The curses library allows you to create a fully functioning text-based user interface (TUI).
V4 A TUI gives you full control over where you want to write to the screen. The regular Python
\E/\ interpreter is a command-line interface (CLI), which normally only allows you to append
to the screen. With a TUI, you can write to any position on the screen, making its features

somewhat comparable to a graphical user interface (GUI).

Some key features of bpython:

« As-you-type autocompletion (as opposed to tab completion with rlcompleter)
. In-line syntax highlighting while typing

+ Automatic function parameter documentation

. A undo/rewind feature that removes the last line

« Easy reloading of imported modules, so your external code changes can be tested without
restarting the interpreter

* Quick changing of code in an external editor (convenient for multiline functions/code blocks)
+ The ability to save the session to file/pastebin

Most of these features work fully automatically and transparently for you. Before we can start with
bpython, we need to install it. A simple pip install should suffice:

$ pip3 install bpython

To illustrate the automatically enabled features, here is the output of the code we used for the regular
Python interpreter completion:

$ bpython

bpython version 0.21 on top of Python 3.9.6

>>> sandwich = dict(spam=2, eggs=1, sausage=1)
-
| dict: (self, *args, **kwargs) |

| Initialize self. See help(type(self)) for accurate signature. |
I EEEEE————————————————————

>>> sandwich.

e
| clear copy fromkeys

| pop popitem setdefault

| update values
R — |

|
| get items keys |
|
|

34 Interactive Python Interpreters

>>> sandwich[

e
| 'eggs' 'sausage' ‘'spam'
I ——————————————

If you ran this code on your own system, you would see highlighting as well as the intermediate states
of autocompletion. [encourage you to give it a try; the preceding excerpt does not show enough.

Rewinding your session

As for the more advanced features, let’s give those a try as well. First, let’s start with the rewind feature.
While it appears to simply remove the last line, in the background it actually replays your entire history,
except for the last line. This means that if your code is not safe to be run more than once, it can cause
errors. The following code illustrates the usage and limitations of the rewind feature:

>>> with open('bpython.txt', 'a') as fh:
fh.write('x")

>>> with open('bpython.txt') as fh:
print(fh.read())

>>> sandwich = dict(spam=2, eggs=1, sausage=1)

Now if we press Ctrl + R to “rewind” the last line, we get the following output:

>>> with open('bpython.txt', 'a') as fh:
fh.write('x")

>>> with open('bpython.txt') as fh:
print(fh.read())

As you can see, the last line is gone now, but that’s not all; the output of the fh.read() line is now xx
instead of x, which means that the line that writes x was executed twice. Additionally, the partial line
will be executed as well, so when rewinding an indented block of code, you will see an error until
you've executed valid code again.

Chapter 2 35

Reloading modules

Often, when developing, I will write code in my regular editor and test the execution in the Python shell.

When developing like this, a very useful feature of Python is the ability to reload imported modules us-
ing importlib.reload(). When you have multiple (nested) modules, this can get tedious fast, however.
This is where the reload shortcut in bpython can help a lot. By using the F6 button on your keyboard,
bpython will not only run importlib.reload() on all modules in sys.modules, but it will also rerun
the code in your session in a similar way to the rewind feature you saw earlier.

To demonstrate this, we will start by creating a file named bpython_reload. py with the following code:

with open('reload.txt', 'a+') as fh:
fh.write('x")
fh.seek(0)
print(fh.read())

This opens the reload. txt file for reading and writing in append mode. This means that fh.write('x")
will append to the end of the file. The fh. seek(0) will jump to the beginning of the file (position 0) so
that print(fh.read()) can print the entire file content to the screen.

Now we open the bpython shell and import the module:

>>> import bpython_reload
X

If we press the F6 button within that same shell, we will see that an extra character has been written
and the code has been re-executed:

>>> import bpython_reload

XX

Reloaded at ... by user.

This is an extremely useful feature with the same caveat as the rewind feature that not all code is safe
to re-execute without side effects.

ptpython

The ptpython interpreter is younger (available since 2014) than bpython (available since 2009), so it
might be slightly less mature and feature rich. It is, however, very actively developing and certainly
worth mentioning. While there is (currently) no code reload feature similar to the one in bpython,
there are several other useful features that bpython currently lacks:

« Multiline code editing

. Mouse support

+ Both Vi and Emacs key bindings
« Syntax checking while typing

+ Ahistory browser

. Output highlighting

36 Interactive Python Interpreters

These features are all ones you need to experience yourself, though; a book is not the right medium
for a demonstration in this case. In any case, this interpreter is certainly worth looking at.

Installation can be done with a simple pip install:

$ pip3 install ptpython

After installing, you can run it using the ptpython command:

$ ptpython
>>>

Once the interpreter is running, you can configure ptpython using the built-in menu (press F2). In that
menu, you can configure and enable/disable features such as completion for dictionaries, completion
while typing, input validation, color depth, and highlighting colors.

IPython and Jupyter

The IPython interpreter is a completely different beast from the previously mentioned interpreters.
In addition to being the interpreter with the most features, it is part of a whole ecosystem of packages
that includes parallel computing, integrations with visual toolkits, interactive widgets, and a web-
based interpreter (Jupyter).

Some key features of the IPython interpreter:

+ Easy object introspection
+ Output formatting (instead of repr(), IPython calls pprint.pformat())

+ Command history can be accessed through variables and magic methods from both new and
old sessions

+ Saving and loading sessions
+ A whole range of magic commands and shortcuts
« Access to regular shell commands such as cd and 1s

« Extensible tab completion, supporting not just Python methods and functions but filenames
as well

Several of the other features of the IPython project are covered in the chapters about debugging,
multiprocessing, scientific programming, and machine learning.

The basic installation of IPython can be done using a pip install:

$ pip3 install ipython

Installing through Anaconda is also a good option, though, especially if you are planning to use a lot
of data science packages, which are often far easier to install and manage through conda:

$ conda install ipython

Chapter 2 37

Basic interpreter usage
The IPython interpreter can be used in a similar way to the other interpreters, but has somewhat

different output from the other interpreters. Here’s an example covering some of the key features:

$ ipython
Python 3.9.6 (default, Jun 29 2021, ©5:25:02)
Type 'copyright', 'credits' or 'license' for more information

IPython 7.25.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: sandwich = dict(spam=2, eggs=1, sausage=1)

In [2]: sandwich
Out[2]: {'spam': 2, 'eggs': 1, 'sausage': 1}

In [3]: sandwich = dict(spam=2, eggs=1, sausage=1, bacon=1, chees
: e=2, lettuce=1, tomatoes=3, pickles=1)

In [4]: sandwich

out[4]:

{'spam': 2,
'eggs': 1,
'sausage': 1,
'bacon': 1,
‘cheese': 2,
'lettuce': 1,
'tomatoes': 3,
'pickles': 1}

In [5]: _i1
Out[5]: 'sandwich = dict(spam=2, eggs=1, sausage=1)'

In [6]: !echo "$_i2"
sandwich

The first line is a simple variable declaration; nothing special there. The second line shows the print
output for the variable declared in the first line.

Now we declare a similar dictionary with more items in it. You can see that the output is now auto-
matically formatted and split over multiple lines for readability if the line is too long for the screen.
This effectively comes down to print() versus pprint.pprint().

AtIn [5]: _il, we see one of the useful internal variables, the input line. The _i<N> and _ih[<N>]
variables give you the lines you wrote. Similarly, the last three entered lines are available through
_i,_ii,and _iii, respectively.

38 Interactive Python Interpreters

If the command generated output, it will be available through _<N>. And the last three output results
are available through , _ ,and __ .

Finally, we call the external shell function echo by prefixing the line with ! while passing along the
Python variable _i2. When executing external shell functions, we can pass along Python variables
by prefixing them with a $.

Saving and loading sessions

The ability to save and load a session so you can always come back to it is an incredibly useful feature.
As is usually the case with IPython, there are several ways of achieving this goal. First of all, every
session is already automatically saved for you, requiring no effort whatsoever. To load the previous
session, you can run:

%load ~1/

%load ~1/
: sandwich = dict(spam=2, eggs=1, sausage=1)

In [3]: sandwich
Out[3]: {'spam': 2, 'eggs': 1, 'sausage': 1}

This command uses the same syntax as the %¥history command. Here is a quick overview
of how the %history syntax works:
. 5: Line 5
) + -t 5:Line 5 as pure Python (without IPython magic)
N/ . 10-20: Lines 10 to 20
. 10/20: Session 10, line 20
2 ~0/: Current session
. ~1/10-20: Previous session lines 10 to 20

. ~5/-~2: Everything from 5 sessions ago to 2 sessions ago

If you know that a session will be an important one and you want to make sure it gets saved, use
%logstart:

In [1]: %logstart

Activating auto-logging. Current session state plus future input saved.
Filename : ipython_log.py

Mode . rotate

Output logging : False

Raw input log : False

Timestamping : False
State : active

Chapter 2 39

As can be seen in the output, this feature is configurable. By default, it will write to (and rotate, if it
exists) ipython_log.py. As soon as you run this command again, the previous logfile will be renamed
to ipython_log.@01~ and so on for the older files.

Loading is done using the %load command and will immediately reactivate auto-logging since it’s
replaying that line as well:

%load ipython_log.py

%load ipython_log.py
: # IPython log file

: get_ipython().run_line_magic('logstart', '')

Activating auto-logging. Current session state plus future input saved.
Filename : ipython_log.py

Mode : rotate

Output logging : False

Raw input log : False

Timestamping : False

State : active

Naturally, manually saving is also an option using %save. I would recommend adding the -r parameter
so the session is saved as raw instead of a regular Python file. Let’s illustrate the difference:

In [1]: %save session_filename ~0/
The following commands were written to file 'session_filename.py':
get _ipython().run_line magic('save', 'session_filename ~0/")

In [2]: %save -r raw_session ~@/
The following commands were written to file 'raw_session.ipy':
%save session_filename ~0/

%save -r raw_session ~@/

If you don’t need to run the session from a regular Python interpreter, using the raw files is somewhat
more legible.

Regular Python prompt/doctest mode

The default ipython prompt is very useful but it can feel a little verbose at times and you can't easily
copy the results to a file for doctests (we will cover more about doctests in Chapter 10, Testing and Log-
ging - Preparing for Bugs). Because of that, it can be convenient to activate the %doctest_mode magic
function so your prompt looks like the familiar Python interpreter:

In [1]: sandwich = dict(spam=2, eggs=1, sausage=1, bacon=1, chees

: e=2, lettuce=1, tomatoes=3, pickles=1)

40 Interactive Python Interpreters

In [2]: sandwich
Out[2]:
{'spam': 2,

'eggs': 1,
'sausage': 1,
‘bacon': 1,
‘cheese': 2,
'lettuce': 1,
'tomatoes': 3,
'pickles': 1}

In [3]: %doctest_mode

Exception reporting mode: Plain

Doctest mode is: ON

>>> sandwich

{'spam': 2, 'eggs': 1, 'sausage': 1, 'bacon': 1, ‘'cheese': 2, 'lettuce': 1,
‘tomatoes': 3, 'pickles': 1}

As you can see, this also influences how the output is formatted, so it’s really similar to the regular
Python shell. While magic functions can still be used, the output is nearly identical to the regular
Python shell.

Introspection and help

One of the most useful shortcuts of IPython is ?. That is the shortcut for accessing the IPython help,
object help, and object introspection. If you're looking for an up-to-date overview of the IPython
interpreter features, start by typing ? and start reading. If you're planning to use IPython, I definitely
recommend doing so.

\l/

@ The ? and ?? can be used both as a suffix and as a prefix. So, both ?history and history?
g will return in the documentation for the %history command.

Because the ? shortcut shows the documentation, it is useful for both regular Python objects and the
magic functions in IPython. The magic functions are really not that magic; besides having a name
that’s prefixed with a %, they are just regular Python functions. In addition to ?, there is also ??, which
attempts to show the source of the object:

In [1]: import pathlib

In [2]: pathlib.Path.name?
Type: property

String form: <property object at @x1@c540ef0>

Chapter 2

Docstring: The final path component, if any.

In [3]: pathlib.Path.name??

Type: property

String form: <property object at ©0x1@c540ef@>
Source:

pathlib.Path.name.fget

@property

def name(self):

The final path component, if any.
parts = self. parts
if len(parts) == (1 if (self. drv or self. root) else 9):

return

return parts[-1]

Autocompletion

Autocompletion is where ipython really gets interesting. In addition to the regular code completion,
ipython will complete filenames and LaTeX/Unicode for special characters as well.

The really useful part starts when creating your own objects, though. While regular automatic auto-
completion will work without a hitch, you can customize the autocompletion to only return specific
items, or do dynamic lookups from a database if needed. Usage is certainly easy enough:

In [1]: class CompletionExample:
def __dir__ (self):
return ['attribute', 'autocompletion']

def _ipython_key completions (self):
return ['key', 'autocompletion']

In [2]: completion = CompletionExample()

In [3]: completion.a<TAB>
attribute
autocompletion

In [4]: completion['aut<TAB>
%autoawait %autoindent
%autocall %automagic
autocompletion

42 Interactive Python Interpreters

Now for the LaTeX/Unicode character completion. While this might not be something you need to use
that often, I find it really useful in the cases that you do need it:

In [1]: '"\pi<TAB>'

In [1]: 'm

Jupyter
The Jupyter project offers an amazing web-based interpreter (Jupyter Notebook) that makes Python

much more accessible for people who need to write some scripts but aren’t programmers by trade. It
allows a seamless mix of Python code, LaTeX, and other markup.

The web-based interpreter isn't the only or even most important feature of the Jupyter project, though.
The biggest advantage of the Jupyter project is that it allows you to connect to remote systems (called
“kernels”) from your local machine.

Originally, the project was part of the IPython project when ipython was still a large
V4 monolithic application that contained all components internally. Since then, the IPython
\E/\ project has been split into multiple IPython projects and several projects under the Jupy-
ter name. Internally, they are still using much of the same code base and Jupyter heavily

depends on IPython.

Before we continue, we should look at the current structure of the Jupyter and IPython projects and
describe the most important projects:

* jupyter: The metapackage that contains all the Jupyter projects.
. notebook: The web-based interpreter, which is part of the Jupyter project.

« lab: The next-generation web-based interpreter offering multiple notebooks side by side and
even supporting code embedded in other languages such as Markdown, R, and LaTeX.

. ipython: The Python terminal interface with the magic functions.
. jupyter_console: The Jupyter version of ipython.
. ipywidgets: Interactive widgets that can be used as user input in notebook.

« ipyparallel: The library for easy parallel execution of Python code across multiple servers.
There will be more about this in Chapter 14, Multiprocessing - When a Single CPU Core Is Not
Enough.

« traitlets: The config system used by IPython and Jupyter, which allows you to create config-
urable objects with validation. There will be more about this in Chapter 8, Metaclasses - Making
Classes (Not Instances) Smarter.

Figure 2.1 shows the complexity and the size of the Jupyter and IPython projects and how they work
together:

Chapter 2

43

H Metapackage and
-I u pyte r overview docs
Notebooks for Notebooks for
multiple users multiple users
with logins with no logins
Servers
Applications
Jupyter terminal Jupyter Qt
application

jupyter command

console application

Jupyter notebook
application

Notebooks as
assignments -

creating and grading

ipynb file loading,

HTML views of
notebooks on the
web

Convert notebook
iles to other formats

. Interactive

config file handling and Messaging saving, format version \, widgets
filesystem locations migration and trust ; -
Kernel 5 ipywidgets
communication i py kernel
machinery Ke rne l
Python execution, 5
magics, and |pyth0n
ipython terminal
interface
Everything
depends on:
traitlets

Config system and
widget base layer

Figure 2.1: Jupyter and IPython project structure

From this overview, you might wonder why both ipython and jupyter console exist. The difference
is that ipython runs completely locally in a single process, and jupyter console runs everything on
aremote kernel. When running locally, this means that Jupyter will automatically start a background
processing kernel that any Jupyter application can connect to.

The Jupyter project could easily fill several books by itself so we will cover only the most common
features in this chapter. Additionally, Chapter 14 covers the multiprocessing aspect in more detail. And
Chapter 15, Scientific Python and Plotting, depends on Jupyter Notebook as well.

44 Interactive Python Interpreters

Installing Jupyter

First, let’s start with the installation. The installation is easy enough with a simple pip install or
conda install:

$ pip3 install --upgrade jupyterlab

Now, all that’s left is to start it. Once you run the following command, your web browser should au-
tomatically open:

$ jupyter lab

Docker images are available as well if, for some reason, the installation gives you trouble or if you
want an easy installation for a lot of dependency-heavy packages. For the data science chapter later
in the book, the jupyter/tensorflow-notebook Docker image is used:

$ docker run -p 8888:8888 jupyter/tensorflow-notebook

This will run the Docker image and forward port 8888 to the running jupyter lab so you can access
it. Note that because of the default security, you will need to open jupyter 1lab through the links
provided in the console, which contains the randomly generated security token. It should look some-
thing like this:

http://127.0.0.1:8888/?token=..........

Once you have it up and running, you should see something like this in your browser:
— Jupyter Quit | | Logout
Files Running Clusters

Select items to perform actions on them.

Upload | New~ || &

Oo0o ~ W/ Name ¥ Last Modified ~ File size
0O O work a month ago

Figure 2.2: Jupyter dashboard

Now you can create a new notebook:

Chapter 2 45

Upload || New +

Notebook:

Python 3

Other:
Text File
Folder

Terminal

Figure 2.3: A new file in Jupyter

And start typing with tab completion and all the features that are similar to ipython:
‘: J u pyte r Untitled a Logout

= Menu rusted ¢ | Python3 O

B + = @& B 4+ ¥ MHWBRun B C »
Code v =

In [1]:

sandwich = dict(spam=2, eggs=1, sausage=1l)
sandwich['spa']
spam

Figure 2.4: Jupyter tab completion

Within a notebook, you can have multiple cells. Each cell can have multiple lines of code and behave
similarly to the IPython interpreter with one key difference: only the last line decides what is returned
as the output, instead of each line being printed separately. But that doesn’t prevent you from using
print() functions.

In [3]: sandwich = dict(spam=2, eggs=l, sausage=l)
sandwich
sandwich

Out[3]: {'spam': 2, 'eggs': 1, 'sausage': 1}

Figure 2.5: Jupyter output

46

Interactive Python Interpreters

Each of these cells can be (re-)executed separately if needed, or all at once, to make sure the note-
book still functions properly. In addition to code cells, Jupyter also supports several types of markup
languages, such as Markdown, to add nicely formatted documentation.

And because it’s a web-based format, you can attach all sorts of objects, such as videos, audio files, PDF
files, images, and renders. LaTeX formulas, for example, are mostly impossible to render in a normal
interpreter, but with Jupyter, rendering a LaTeX formula is easily possible:

In [6]:

Out[6]:

from IPython import display

display.Math(r' "'

F(k) = \int_{-\infty}"*{\infty}
f(x) e*{2\pi 1 k} dx")'"'")

F(k) = / N F)e*k dx')

Figure 2.6: A LaTeX formula in Jupyter

Lastly, we have interactive widgets, which are one of the best features of using notebooks over a

regular shell session:

In [6]:

Oout[6]:

import ipywidgets

def square(n):
return n ** 2

ipywidgets.interact(square, n=10)

n o 6

36

<function _ main_ .square(n)>

Figure 2.7: Jupyter widgets

By moving the slider, the function will be called again and the result will be immediately updated.
This is extremely useful when debugging functions. In the chapter about user interfaces, you will
learn how to create our own.

IPython summary

The entire list of features in the IPython and Jupyter projects could easily fill several books by itself,

so we have only glossed over a very small portion of what the interpreter supports.

Later chapters will cover some other parts of the project, but the IPython documentation is your friend.
The documentation is really detailed and largely up to date.

Chapter 2 47

An overview of some of the shortcuts/magic functions that you’ll want to look at follows:

%quickref: A quick reference for most of the interpreter features and a list of the magic
functions.

%cd: Change the current working directory for your ipython session.

%paste: Paste a pre-formatted code block from the clipboard so your indentation is pasted
correctly and not mutilated/clobbered due to auto-indentation.

%edit: Open an external editor for easy editing of code blocks. This is very useful when quickly
testing multiline code blocks. The %edit -p command, for example, will re-edit the previous
(-p) code block.

%timeit: A shortcut to quickly benchmark a line of Python code using the timeit module.
?: Look at the documentation for any object.

??: Look at the source for any Python object. Native methods such as sum() are compiled C
code, so the source can’t be fetched easily.

Exercises

1.

The rlcompleter enhancement we created currently only handles dictionaries. Try and extend
the code so it supports lists, strings, and tuples as well.
Add colors to the completer (hint: use colorama for the coloring).

Instead of manually completing using our own object introspection, try and use the jedi library
for autocompletion, which does static code analysis.

V4 Static code analysis inspects code without executing it. This means it’s entirely safe
\/L’; to run, even on foreign code, as opposed to the autocompletion we wrote earlier,
which runs the code in object.keys().

Try to create aHello <ipywidget> sothe name of the person can be edited through a notebook
without code changes.

Try and create a script that will look for a given pattern through all of your previous ipython
sessions.

C\, Example answers for these exercises can be found on GitHub: https://github.com/
)-)

mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

48 Interactive Python Interpreters

Summary

This chapter has shown you several of the available Python interpreters and some of the pros and
cons. Additionally, you have had a small glimpse of what IPython and Jupyter can offer us. Chapter
15, Scientific Python and Plotting, almost exclusively uses Jupyter Notebooks and demonstrates a few
more powerful features, such as plotting integration.

For most generic Python programmers, I would suggest using either bpython or ptpython, since they
are really fast and lightweight interpreters to (re-)start that still offer a lot of useful features.

If your focus is more on scientific programming and/or handling large datasets in your shell, then
IPython or JupyterLab are probably more useful. These are far more powerful tools, but they come
at the cost of having slightly higher start up times and system requirements. I personally use both
depending on the use case. When testing a few simple lines of Python and/or verifying the behavior
of a small code block, I mostly use bpython/ptpython. When working with larger blocks of code and/
or data, I tend to use IPython (or ptipython) or even JupyterLab.

The next chapter covers the Python style guide, which rules are important, and why they matter.
Readability is one of the most important aspects of the Python philosophy, and you will learn methods
and styles for writing cleaner and more readable Python code. In short, you will learn what Pythonic
code is and how to write it.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHulf

https://discord.gg/QMzJenHuJf

Pythonic Syntax and
Common Pitfalls

In this chapter, you will learn how to write Pythonic code, along with finding out about some of the
common pitfalls of Python and how to work around them. The pitfalls range from passing a list or dic-
tionary (which are mutable) as an argument to more advanced pitfalls, such as late-binding in closures.
You will also see how to fix or work around circular imports in a clean way. Some of the techniques
used in the examples in this chapter might seem a bit too advanced for such an early chapter. Do not
worry, though, as the inner workings will be covered later on.

We will explore the following topics in this chapter:

. Code style (PEP 8, pyflakes, flake8, and more)
« Common pitfalls (lists as function arguments, pass by value versus pass by reference, and
inheritance behavior)

V4 The definition of Pythonic code used in this chapter is based on commonly accepted coding
\/:ﬁ> guidelines and my subjective opinions. When working on a project, it is most important
to stay consistent with the coding styles of that project.

A brief history of Python

The Python project started in December 1989 as a hobby project for Guido van Rossum during his
week off around Christmas. His goal was to write an easy-to-use successor for the ABC programming
language and to fix the issues that limited the applicability of the it. One of the main design goals of
Python is, and has always been, readability. That is what the first part of the chapter is about: readability.

To facilitate new features and to maintain that readability, the Python Enhancement Proposal (PEP)
process was developed. This process allows anyone to submit a PEP for a new feature, library, or other
addition. After a discussion on the Python mailing lists and some improvements, a decision is made
to either accept or reject the proposal.

50 Pythonic Syntax and Common Pitfalls

The Python style guide (PEP 8: https://peps.python.org/pep-0008/) was once submitted as one
of those PEPs, was accepted, and has been improved regularly ever since. It has a lot of great and
widely accepted conventions, as well as a few disputed ones. In particular, the maximum line length
of 79 characters is a topic of much discussion. Limiting a line to 79 characters does have some merits,
however. Originally, this choice was made because terminals were 80 characters wide, but these days,
larger monitors allow you to place multiple files next to each other. For docstrings and comments, a
72-character limit is recommended to increase readability. Additionally, it’s the common convention
for Linux/Unix man (manual) pages.

While just the style guide itself does not make code Pythonic, as The Zen of Python (PEP 20: https://peps.
python.org/pep-0020/) elegantly puts it: “Beautiful is better than ugly.” PEP 8 defines how code should
be formatted in an exact way, while PEP 20 is more of a philosophy and mindset than anything else.

For almost 30 years, all major decisions for the Python project were made by Guido van Rossum, lov-
ingly called the BDFL (Benevolent Dictator For Life). Unfortunately, the “For Life” part of BDFL was
not to be after a heated debate over PEP 572. PEP 572 (covered later in this chapter) was a proposal
about assignment operators, the ability to set a variable inside an if statement, a common practice in
languages such as C, C++, C# and others. Guido van Rossum was not a fan of the syntax and opposed
the PEP. This triggered a huge debate and he was met with such resistance that it moved him to step
down as BDFL. It saddened many people that Guido van Rossum, universally loved by the communi-
ty, felt he had to do this. I, for one, will certainly miss his insights as the decision-maker. I hope we
will still see his “Time Machine” in action a few times. Guido van Rossum is thought to have a time
machine, as he has repeatedly answered feature requests with “I just implemented that last night.”

Without the BDFL to make the final decisions, the Python community had to come up
with a new way of decision-making, and a whole list of proposals have been written to
solve this issue:

. PEP 8010: Continue status quo (ish): https://peps.python.org/pep-8010/

. PEP 8011: Like status quo but with three co-leaders: https://peps.python.org/

pep-8011/
Y . PEP 8012: No central authority: https://peps.python.org/pep-8012/
\/;ﬁ> . PEP 8013: Non-core oversight: https://peps.python.org/pep-8013/

. PEP 8014: Core oversight: https://peps.python.org/pep-8014/
. PEP 8015: Organization of the Python community: https://peps.python.org/
pep-8015/
. PEP 8016: The Steering Council Model: https://peps.python.org/pep-8016/
After a small debate, PEP 8016 - the steering council model - was accepted as the solution.

PEP 81XX has been reserved for future elections of the steering council, with PEP 8100
for the 2019 election, PEP 8101 for the 2020 election, and so on.

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0020/
https://peps.python.org/pep-0020/
https://peps.python.org/pep-8010/
https://peps.python.org/pep-8011/
https://peps.python.org/pep-8011/
https://peps.python.org/pep-8012/
https://peps.python.org/pep-8013/
https://peps.python.org/pep-8014/
https://peps.python.org/pep-8015/
https://peps.python.org/pep-8015/
https://peps.python.org/pep-8016/

Chapter 3 51

Code style — What is Pythonic code?

When you first hear of Pythonic code, you might think it is a programming paradigm, similar to ob-
ject-oriented or functional programming. It is actually more of a design philosophy. Python leaves
you free to choose to program in an object-oriented, procedural, functional, aspect-oriented, or even
logic-oriented way. These freedoms make Python a great language to write in, but they have the
drawback of requiring more discipline to keep code clean and readable. PEP 8 tells us how to format
code and PEP 20 is about style and how to write Pythonic code. PEP 20, the Pythonic philosophy, is
about code that is:

. Clean

. Simple

. Beautiful
« Explicit

. Readable

Most of these sound like common sense, and I think they should be. There are cases, however, where
there is not a single obvious way to write your code (unless you’re Dutch, of course, as you'll read later
in this chapter). That is the goal of this chapter—to help you to learn how to write beautiful Python
code and understand why certain decisions have been made in the Python style guide.

Let’s get started.

Whitespace instead of braces

One of the most common complaints about Python for non-Python programmers is the use of
whitespace instead of braces. Something can be said for both cases, and in the end, it doesn’t matter
that much. Since nearly every programming language already defaults to similar indenting rules even
with braces, why not skip the braces altogether and make things more readable? That’s what Guido
van Rossum must have thought when designing the Python language.

At one point, some programmers asked Guido van Rossum whether Python would ever support braces.
Since that day, braces have been available through a _ future__ import. Just give it a try:

>>> from __ future__ import braces

Next, let’s talk about formatting strings.

Formatting strings — printf, str.format, or f-strings?

Python has supported both the printf style (%) and str.format for a long time, so you are most likely
familiar with both already. With the introduction of Python 3.6, an extra option became available, the
f-string (PEP 498). The f-string is a convenient shorthand for str.format, which helps with brevity
(and therefore, I would argue, readability).

52 Pythonic Syntax and Common Pitfalls

; D/> PEP 498 - Literal String Interpolation: https://peps.python.org/pep-0498/

(

The previous edition of this book mainly used the printf style because brevity is important in code samples.
While the maximum line length as per PEP 8is 79 characters, this book is limited to 66 characters before
wrapping occurs. With f-strings, we finally have a concise alternative to the printf style.

Tip for running the code in this book

Since a large portion includes the >>> prefix, simply copy/paste it into IPython and it will
(- execute the code as regular Python code.

Alternatively, the GitHub repository for the book has a script to automatically convert a
sample from doctest style to regular Python: https://github.com/mastering-python/
code_2/blob/master/doctest_to_python.py

To show the power of f-strings, let’s see a few examples of str.format and the printf style next to
each other.

\@’ The examples in this chapter show the output as returned by the Python console. For a
g regular Python file, you need to add print() to see the output.

Simple formatting

Formatting a simple string:

>>> name = 'Rick’

>>> 'Hi %s' % name
'Hi Rick'

>>> '"Hi {}'.format(name)
'Hi Rick'

Formatting a floating-point number with two decimals:

>>> value =1 / 3

>>> '%.2f" % value

'0.33'

https://peps.python.org/pep-0498/
https://github.com/mastering-python/code_2/blob/master/doctest_to_python.py
https://github.com/mastering-python/code_2/blob/master/doctest_to_python.py

Chapter 3 53

>>> '"{:.2f}"'.format(value)

'90.33"

The first real advantage comes when using a variable multiple times. That is not possible with the
printf style without resorting to named values:

>>> name = 'Rick'
>>> value =1 / 3

>>> 'Hi {@}, value: {1:.3f}. Bye {@}'.format(name, value)
'Hi Rick, value: @.333. Bye Rick'

As you can see, we used name twice by using the reference {0}.

Named variables

Using named variables is fairly similar and this is where we get introduced to the magic of f-strings:

>>> name = 'Rick’

'"Hi %(name)s' % dict(name=name)
i Rick'

'Hi {name}'.format(name=name)
i Rick'

f'Hi {name}’
i Rick'

Asyou can see, with the f-strings, the variables are fetched from the scope automatically. It’s basically
a shorthand for:

>>> "Hi {name}'.format(**globals())
"Hi Rick'

Arbitrary expressions

Arbitrary expressions are where the real power of f-strings becomes visible. The features of f-strings
go far beyond the string interpolation of the printf-style features. The f-strings also support full Py-
thon expressions, which means they support complex objects, calling methods, if statements, and
even loops:

username = 'wolph'
= 123
b = 456

some_dict = dict(a=a, b=b)

54 Pythonic Syntax and Common Pitfalls

>>> f'''a: {some_dict['a"']}"'""
'a: 123

>>> f'''sum: {some_dict['a'] + some_dict['b"']}"""
‘sum: 579°

>>> f'if statement: {a if a > b else b}’
'if statement: 456'

>>> f'min: {min(a, b)}"'
‘min: 123'
>>> f'Hi {username}. And in uppercase: {username.upper()}’

'Hi wolph. And in uppercase: WOLPH'

>>> f'Squares: {[x ** 2 for x in range(5)]}'
‘Squares: [0, 1, 4, 9, 16]"

PEP 20, the Zen of Python

The Zen of Python, as mentioned in the A brief history of Python section earlier, is about code that not
only works, but is Pythonic. Pythonic code is readable, concise, and maintainable. PEP 20 says it best:

“Long time Pythoneer Tim Peters succinctly channels the BDFL'’s guiding principles for
Python’s design into 20 aphorisms, only 19 of which have been written down.”

The next few paragraphs will explain the intentions of these 19 aphorisms with some example code.
For clarity, let’s see these aphorisms before we begin:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.
Flat is better than nested.

Sparse is better than dense.
Readability counts.

Chapter 3 55

Special cases aren't special enough to break the rules.
Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Beautiful is better than ugly

Beauty is subjective, of course, but there are still some style rules that are good to adhere to. Rules
such as (from PEP 8):

« Indent using spaces instead of tabs
+ Line length limits
+ Each statement on a separate line

« Each import on a separate line

When in doubt, always keep in mind that consistency is more important than fixed rules. If a project
prefers to use tabs instead of spaces, or vice versa, it’s better to keep the tabs/spaces like that than to
potentially break existing code (and revision control history) by replacing the tabs/spaces.

In short, instead of hard-to-read code like this, which shows all odd numbers below 10:
>>> filter_modulo = lambda i, m: (i[j] for j in \
range(len(i)) if i[j] % m)
>>> list(filter_modulo(range(10), 2))
[1, 3, 5, 7, 9]

I would prefer:

>>> def filter_modulo(items, modulo):
for item in items:
if item % modulo:
yield item

>>> list(filter_modulo(range(10), 2))
[1, 3, 5, 7, 9]

56 Pythonic Syntax and Common Pitfalls

It is simpler, easier to read, and a bit more beautiful!

\/‘p/' These examples are an early introduction to generators. Generators will be discussed more
thoroughly in Chapter 7, Generators and Coroutines - Infinity, One Step at a Time.

Explicit is better than implicit
Imports, arguments, and variable names are just some of the many cases where explicit code is far
easier to read at the cost of a little bit more effort and/or verbosity when writing the code.

Here is an example of how this can go wrong:

>>> from os import *

>>> from asyncio import *

>>> assert wait

Where does wait come from, in this case? You might say that it’s obvious—it comes from os. But you
would be wrong, sometimes. On Windows, the os module doesn’t have a wait function, so it would
be asyncio.wait instead.

It could be even worse: many editors and code clean-up tools have a sort-imports feature. If the sort
order of your import changes, the behavior of your project will change.

The immediate fix is simple enough:

>>> from os import path

>>> from asyncio import wait

>>> assert wait

With this method, we have at least a way to find out where wait came from. But I would recommend
going a step further and importing by module instead, so the executing code immediately shows
which function is executed:

import os

import asyncio

assert asyncio.wait

assert os.path

The same can be said for *args and **kwargs. While they are very useful, they can make the usage
of your functions and classes a lot less obvious:

>>> def spam(eggs, *args, **kwargs):

for arg in args:

eggs += arg

Chapter 3 57

for extra_egg in kwargs.get('extra_eggs', []):

eggs += extra_egg
return eggs

>>> spam(1l, 2, 3, extra_eggs=[4, 5])
15

Without looking at the code within the function, you cannot know what to pass as **kwargs or what
*args does. A reasonable function name can help here, of course:

>>> def sum_ints(*args):
total = 0
for arg in args:
total += arg
return total

>>> sum_ints(1, 2, 3, 4, 5)
15

Documentation can obviously help for cases like these, and I use *args and **kwargs very often, but
itis definitely a good idea to keep at least the most common arguments explicit. Even when it requires
you to repeat the arguments for a parent class, it just makes the code much clearer. When refactoring
the parent class in the future, you'll know whether there are subclasses that still use some parameters.

Simple is better than complex

“Simple is better than complex. Complex is better than complicated.”

Keeping things simple is often much harder than you would expect. Complexity has a tendency to creep
up on you. You start with a beautiful little script and, before you know it, feature creep has turned it
into a complex (or worse, complicated) mess:

>>> import math
>>> import itertools

>>> def primes_complicated():
sieved = dict()
i=2

while True:
if i not in sieved:

yield i

sieved[i * i] = [i]

else:

58 Pythonic Syntax and Common Pitfalls

for j in sieved[i]:

sieved.setdefault(i + j, []).append(j)

del sieved[i]

i+=1

>>> list(itertools.islice(primes_complicated(), 10))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

At first glance, this code might look a bit difficult. If you're familiar with the sieve of Eratosthenes
however, you'll quickly realize what is happening. With just a little bit of effort, you will see that the
algorithm isn'’t all that complicated but uses a few tricks to reduce the necessary computations.

We can do better, however; let’s see a different example featuring the Python 3.8 assignment operator:

>>> def primes_complex():
numbers = itertools.count(2)
while True:
yield (prime := next(numbers))
numbers = filter(prime._ rmod__, numbers)

>>> list(itertools.islice(primes_complex(), 10))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

This algorithm looks a bit less intimidating, but I wouldn’t call it immediately obvious at first glance.
The prime := next(numbers) is the Python 3.8 version of setting a variable and immediately return-
ing it in the same statement. The prime.__rmod__ does a modulo with the given number to sieve in a
similar fashion to the previous example.

What might be confusing, however, is that the numbers variable is being reassigned with added filters
on each iteration. Let’s see a better solution:

>>> def is_prime(number):

if number == 0 or number ==
return False

for modulo in range(2, number):
if not number % modulo:

return False

else:

return True

>>> def primes_simple():

for i in itertools.count():
if is prime(i):
yield i

Chapter 3 59

>>> list(itertools.islice(primes_simple(), 10))

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Now we’ve come to one of the most obvious methods of generating prime numbers. The is_prime
function is really simple and immediately shows what is_prime is doing. And the primes_simple
function is nothing more than a loop with a filter.

Unless you have a really good reason to go for the complicated approach, try to keep your code as sim-
ple as you can. You (and perhaps someone else) will be grateful when reading your code in the future.

Flat is better than nested

Nested code quickly becomes unreadable and hard to understand. There are no strict rules here, but
generally, when you have multiple levels of nested loops, it is time to refactor.

Just take a look at the following example, which prints a list of two-dimensional matrices. While noth-
ing specific is wrong here, splitting it into a few more functions might make it easier to understand
the purpose and also make it easier to test:

>>> def between_and_modulo(value, a, b, modulo):
if value >= a:
if value <= b:
if value % modulo:
return True
return False

>>> for i in range(10):
if between_and_modulo(i, 2, 9, 2):

print(i, end="' ")

Here’s the flatter version:

>>> def between_and_modulo(value, a, b, modulo):
if value < a:
return False
elif value > b:
return False
elif not value % modulo:
return False
else:

return True

i in range(10):
if between_and_modulo(i, 2, 9, 2):

60 Pythonic Syntax and Common Pitfalls

print(i, end=' ")

This example might be a bit contrived, but the idea is sound. Deeply nested code can easily become
very unreadable and splitting code into multiple lines or even functions can help readability a lot.

Sparse is better than dense

Whitespace is generally a good thing. Yes, it will make your files longer and your code will take up
more space, but it can help a lot with readability if you split your code logically. Let’s take an example:

>>> f=lambda x:0**x or x*f(x-1)
>>> £(40)

815915283247897734345611269596115894272000000000

By looking at the output and the code, you might be able to guess that this is the factorial function.
But its workings are probably not immediately obvious. Let’s try rewriting:

>>> def factorial(x):
if @ ** x:
return 1
else:

return x * factorial(x - 1)

>>> factorial(490)
815915283247897734345611269596115894272000000000

By using a proper name, expanding the if statement, and explicitly returning 1, it is suddenly much
more obvious what is happening.

Readability counts

Shorter does not always mean easier to read. Let’s take the Fibonacci numbers. There are many ways
of writing this code, many of them hard to read:

>>> from functools import reduce

fib=lambda n:n if n<2 else fib(n-1)+fib(n-2)
fib(10)

fib=1lambda n:reduce(lambda x,y:(x[0]+x[1],x[0]),[(1,1)]*(n-1))[0]
fib(10)

Even though there is a kind of beauty and elegance in the solutions, they are not readable. With just a
few minor changes, we can change these functions to more readable functions that function similarly:

Chapter 3 61

>>> def fib(n):
if n < 2:

return n

else:
return fib(n - 1) + fib(n - 2)

>>> fib(10)
55

>>> def fib(n):
a =20
b=1
for _ in range(n):
a, b=b, a+b

return a

>>> fib(10)
55

Practicality beats purity

“Special cases aren’t special enough to break the rules. Although practicality beats purity.”

Breaking the rules can be tempting at times, butit’s a slippery slope. If your quick fix is going to break
the rules, you should really try to refactor it immediately. Chances are that you won’t have the time
to fix it later and will regret it.

No need to go overboard, though. If the solution is good enough and refactoring would be much more
work, then choosing the working method might be better. Even though all of these examples pertain
to imports, this guideline applies to nearly all cases.

To prevent long lines, imports can be made shorter by using a few methods, adding a backslash, adding
parentheses, or just shortening the imports. I will illustrate some options next:

>>> from concurrent.futures import ProcessPoolExecutor, \
CancelledError, TimeoutError

This case can easily be avoided by using parentheses:

>>> from concurrent.futures import (

ProcessPoolExecutor, CancelledError, TimeoutError)

62 Pythonic Syntax and Common Pitfalls

Or my personal preference, importing modules instead of the separate objects:

>>> from concurrent import futures

But what about really long imports?

>>> from concurrent.futures.process import \

ProcessPoolExecutor

In that case, I would recommend using parentheses. If you need to split the imports across multiple
lines, I would recommend one line per import for readability:

>>> from concurrent.futures.process import (
ProcessPoolExecutor

>>> from concurrent.futures import (
ProcessPoolExecutor,
CancelledError,
TimeoutError,

Errors should never pass silently
“Errors should never pass silently. Unless explicitly silenced.”

Handling errors the right way is really difficult and there is no one method that works for every situ-
ation. There are, however, better and worse methods to catch errors.

Bare or too-broad exception catching can be a quick way to make your life a bit more difficult in the
case of bugs. Not passing exception info at all can make you (or some other person working on the

code) wonder for ages about what is happening.
To illustrate a bare exception, the worst option is as follows:

>>> some_user_input = '123abc’

>>> try:
value = int(some_user_input)
. except:
PERTS

A much better solution is to explicitly capture only the error you need:

>>> some_user_input = '123abc’

>>> try:

Chapter 3 63

value = int(some_user_input)

. except ValueError:
pass

Alternatively, if you really need to capture all exceptions, make sure to log them properly:

>>> import logging
>>> some_user_input = '123abc’

>>> try:
value = int(some_user_input)
. except Exception as exception:

logging.exception('Uncaught: {exception!r}")

When using multiple lines inside a try block, the issue of tracing bugs is aggravated even further
because there is even more code that could be responsible for the hidden exception. The tracing of
bugs also becomes much more difficult when the except is accidently capturing exceptions from
functions a few levels deep. For example, consider the following code block:

>>> some_user_input_a
>>> some_user_input_b

>>> try:
value = int(some_user_input_a)
value += int(some_user_input_b)
. except:
value

If an exception is raised, which line is causing it? With silent catching of the error, there is no way to
know without running the code in a debugger. The exception could even be caused a few levels deeper
in the code if, instead of int (), you are using a more complex function.

If you are testing for a specific exception in a specific block of code, the safer method is using the else
in the try/except. The else is only executed if there was no exception.

To illustrate the full strength of the try/except:, here is an example of all variants including the else,
finally, and BaseException:

>>> try:
1/ 0
. except ZeroDivisionError:
print('Got zero division error')
. except Exception as exception:
print(f'Got unexpected exception: {exception}')

. except BaseException as exception:

64 Pythonic Syntax and Common Pitfalls

print(f'Got base exception: {exception}')

. else:
print('No exceptions happened, we can continue')
. finally:

print('This code is _always_ executed')
Got zero division error
This code is _always_ executed

In the face of ambiguity, refuse the temptation to guess

While guesses will work in many cases, they can bite you if you're not careful. As already demonstrat-
ed in the Explicit is better than implicit section, when you have a few from ... import *, you cannot
always be certain which module is providing you with the variable you were expecting.

Clear and unambiguous code generates fewer bugs so it’s always a good idea to think about what
happens when someone else reads your code. A prime example of ambiguity is function calling. Take,
for example, the following two function calls:

open('spam', 'w', -1, None, None, '\n')

open(file="'spam', mode='w', buffering=-1, newline='\n")

These two calls have the exact same result. However, it’s obvious in the second call that the -1 is
configuring the buffer. You probably know the first two arguments of open() by heart but the others
are less common.

Regardless, without seeing help(open) or viewing the documentation in another manner, it’s impos-
sible to say whether the two are identical.

Note that I don’t think you should use keyword arguments in all cases, but if there are many arguments
involved and/or hard-to-identify parameters (such as numbers), it can be a good idea. A good alternative
is using good variable names, which make the function call a lot more obvious:

>>> filename = 'spam'

>>> mode = 'w
>>> buffers = -1

>>> fh_b = open(filename, mode, buffers, newline='\n')

One obvious way to do it

“There should be one—and preferably only one—obvious way to do it. Although that
way may not be obvious at first unless you're Dutch.”

Chapter 3 65

In general, after thinking about a difficult problem for a while, you will find that there is one solution
that is clearly preferable over the alternatives. There are times where this is not the case, however,
and in such instances, it can be useful if you’re Dutch. The joke here is that Guido van Rossum, the
original author of Python, is Dutch (as am I) and that only Guido knows the obvious way in some cases.

The other joke is that the Perl programming language slogan is the opposite: “There’s more than one
way to do it.”

Now is better than never

“Now is better than never. Although never is often better than *right* now.”

It’s better to fix a problem right now than push it into the future. There are cases, however, where
fixing it right away is not an option. In those cases, a good alternative can be to mark a function as
deprecated instead so that there is no chance of accidentally forgetting the problem:

>>> import warnings

>>> warnings.warn('Something deprecated', DeprecationWarning)

Hard to explain, easy to explain

“If the implementation is hard to explain, it’s a bad idea. If the implementation is easy
to explain, it may be a good idea.”

As always, keep things as simple as you can. While complicated code can be nice to test with, it is more
prone to bugs. The simpler you can keep things, the better.

Namespaces are one honking great idea

“Namespaces are one honking great idea—let’s do more of those!”

Namespaces can make code a lot clearer to use. Naming them properly makes it even better. For ex-
ample, assume the import isn’t on your screen in a larger file. What does the loads line do?

>>> from json import loads

>>> loads('{}")
{}

66 Pythonic Syntax and Common Pitfalls

Now let’s take the version with the namespace:

>>> import json

>>> json.loads('{}")
{}

Now it is obvious that loads() is the json loader and not any other type of loader.

Namespace shortcuts are still useful, though. Let’s look at the User class in Django, which is used in
nearly every Django project. The User class is stored in django.contrib.auth.models.User by default
(can be overridden). Many projects use the object in the following way:

from django.contrib.auth.models import User

While this is fairly clear, projects might be using multiple classes named User, which obscures the
import. Also, it might make someone think that the User class is local to the current class. Doing the
following instead lets people know that it is in a different module:

from django.contrib.auth import models

This quickly clashes with other models’ imports, though, so I personally use the following instead:

from django.contrib.auth import models as auth_models

Or the shorter version:

import django.contrib.auth.models as auth_models

Now you should have some idea of what the Pythonic ideology is about—creating code that is:

. Beautiful

+ Readable

+ Unambiguous

« Explicit enough

« Not completely void of whitespace

So let’s move on to some more examples of how to create beautiful, readable, and simple code using
the Python style guide.

Explaining PEP 8

The previous sections have already shown a lot of examples of using PEP 20 as a reference, but there
are a few other important guidelines to note as well. The PEP 8 style guide specifies the standard
Python coding conventions.

Chapter 3 67

Simply following the PEP 8 standard doesn’t make your code Pythonic, though, but it is most certainly
a good start. Which style you use is really not that much of a concern as long as you are consistent.
The only thing worse than not using a proper style guide is being inconsistent with it.

Duck typing

Duck typing is a method of handling variables by behavior. To quote Alex Martelli (one of my Python
heroes, also nicknamed the MartelliBot by many):

“Don’t check whether it IS-a duck: check whether it QUACKS-like-a duck, WALKS-like-a
duck, etc, etc, depending on exactly what subset of duck-like behavior you need to play
your language-games with. If the argument fails this specific-ducklyhood-subset-test,
then you can shrug, ask “why a duck?”

In many cases, when people make a comparison such as if spam != '':, they are actually just looking
for anything that is considered a true value. While you can compare the value to the string value ',
you generally don’t have to make it so specific. In many cases, simply doing if spam: is more than
enough and actually functions better.

For example, the following lines of code use the value of timestamp to generate a filename:

>>> timestamp = 12345

>>> filename = f'{timestamp}.csv'

Because the variable is named timestamp, you might be tempted to check whether itis actually a date
or datetime object, like this:

>>> import datetime
>>> timestamp = 12345

>>> if isinstance(timestamp, datetime.datetime):
filename = f'{timestamp}.csv'
. else:

raise TypeError(f'{timestamp} is not a valid datetime')

Traceback (most recent call last):

TypeError: 12345 is not a valid datetime

While this is not inherently wrong, comparing types is considered a bad practice in Python, as there
is often no need.

68 Pythonic Syntax and Common Pitfalls

In Python, the commonly used style is EAFP (easier to ask for forgiveness than permission: https://
docs.python.org/3/glossary.html#term-eafp), which assumes no errors but catches them if need-
ed. Within the Python interpreter, a try/except block is extremely efficient if no exception is raised.
Actually catching an exception is expensive, however, so this approach is mainly recommended when
you don’t expect the try to fail often.

The opposite of EAFP is LBYL (look before you leap: https://docs.python.org/3/glossary.
html#term-1byl), which tests for pre-conditions before other calls or lookups are made. The notable
downside of this method is the potential for race conditions in multi-threaded environments. While
you are checking for the existence of a key in a dict, another thread may have removed it already.

That’s why in Python, duck typing is often preferred. Just test the variable for the features you need
and don’t worry about the actual type. To illustrate how little difference this can make to the end result,
see the following code:

>>> import datetime

>>> timestamp = datetime.date(2000, 10, 5)

>>> filename = f'{timestamp}.csv’
>>> print(f'Filename from date: {filename}"')
Filename from date: 2000-10-05.csv

Versus a string instead of a date:

>>> timestamp = '2000-10-05'
>>> filename = f'{timestamp}.csv'

>>> print(f'Filename from str: {filename}")
Filename from str: 2000-10-05.csv

As you can see, the result is identical.

The same goes for converting a number to a float or an integer; instead of enforcing a certain type,
just require certain features. Need something that can pass as a number? Just try to convert to int or
float. Need a file object? Why not just check whether there is a read method with hasattr?

Differences between value and identity comparisons

There are many methods of comparing objects in Python: greater than, bitwise operators, equal,
etc., but there is one comparator that is special: the identity comparison operator. Instead of using
if spam == eggs, you would use if spam is eggs. The first compares the value and the second
compares the identity or memory address. Because it only compares the memory address, it’s one
of the lightest and strictest lookups you can get. Whereas a value check needs to make sure that the
types are comparable and perhaps check the sub-values, the identity check just checks whether the
unique identifier is the same.

https://docs.python.org/3/glossary.html#term-eafp
https://docs.python.org/3/glossary.html#term-eafp
https://docs.python.org/3/glossary.html#term-lbyl
https://docs.python.org/3/glossary.html#term-lbyl

Chapter 3 69

4 If you've ever written Java, you should be familiar with this principle. In Java, a regular
; Ay string comparison (spam == eggs) will use the identity instead of the value. To compare
the value, you need to use spam.equals(eggs) to get the correct results.

These comparisons are recommended to be used when the identity of the object is expected to be
constant. One obvious example of this is a comparison with True, False, or None. To demonstrate
this behavior, let’s look at values that evaluate to True or False when comparing by value, but are
actually different:

is True

=0

== False

is False

Similarly, you need to be careful with if statements and None values, which is a common pattern with
default function arguments:

>>> def some_unsafe_function(arg=None):
if not arg:
arg = 123

return arg

>>> some_unsafe_function(9)
123

>>> some_unsafe_function(None)
123

The second one indeed needed the default argument, but the first one had an actual value that should
have been used:

>>> def some_safe_function(arg=None):
if arg is None:

arg = 123

70 Pythonic Syntax and Common Pitfalls

return arg

>>> some_safe_function(9)

0
>>> some_safe_function(None)
123

Now we actually get the value that we passed along because we used an identity instead of a value
check for arg.

There are a few gotchas with the identities, though. Let’s look at an example that doesn’t make any sense:

>>> a 200 + 56
>>> b = 256
>%> C 200 + 57
>>>d 257

>>> a ==
True
>>> a is
True
>>> € ==
True
>>> C is
False

While the values are the same, the identities are different. The catch is that Python keeps an internal
array of integer objects for all integers between -5 and 256; that’s why it works for 256 but not for 257.

To look at what Python is actually doing internally with the is operator, you can use the id function.
When executing if spam is eggs, Python will execute the equivalent of if id(spam) == id(eggs)
internally and id() (at least for CPython) returns the memory address.

Loops
Coming from other languages, one might be tempted to use for loops or while loops with counters

to process the items of a list, tuple, str, and so on. While valid, it is more complex than needed.
For example, consider this code:

>>> my_range = range(5)

>»> i =0

>>> while i < len(my_range):
item = my_range [i]

print(i, item, end="', ')

i+=1
©0, 11, 22, 33, 44,

Chapter 3 71

Within Python, there is no need to build a custom loop: you can simply loop the iterable object instead.
Although enumerating including a counter is easily possible too:

>>> my_range = range(5)

>>> for item in my_range :

print(item, end="', ')
0, 1, 2, 3, 4,

>>> for i, item in enumerate(my_range):
print(i, item, end=', ')
o0, 11, 22, 33, 44,

This can be written even shorter, of course (albeit not 100% identically, since we're not using print),
but I wouldn’t recommend that for the sake of readability in most cases:

>>> my_range = range(5)

>>> [(i, item) for i, item in enumerate(my_range)]
[(e, ©), (1, 1), (2, 2), (3, 3), (4, 4)]

The last option might be clear to some but not all. A common recommendation is to limit the usage
of list/dict/set comprehensions and map/filter statements to cases where the entire statement
fits on a single line.

Maximum line length

Many Python programmers think 79 characters is too constricting and just keep the lines longer.
While I am not going to argue for 79 characters specifically, setting a low limit is a good idea so you
can easily keep multiple editors side by side. I often have four Python files open next to each other. If
the line width were more than 79 characters, that simply wouldn't fit.

PEP 8 tells us to use backslashes in cases where lines get too long. While I agree that backslashes are
preferable over long lines, I still think they should be avoided, if possible, since they easily generate syn-
tax errors when manipulating code by copying/pasting and rearranging. Here’s an example from PEP 8:

with open('/path/to/some/file/you/want/to/read') as file_ 1, \
open('/path/to/some/file/being/written', 'w') as file_2:

file 2.write(file_1.read())

Instead of using backslashes, I would reformat the code by introducing extra variables so all lines
are easy to read:

filename_1 '/path/to/some/file/you/want/to/read’
filename_2 = '/path/to/some/file/being/written’

with open(filename_1) as file_1, open(filename_2, 'w') as file 2:
file 2.write(file_1.read())

72 Pythonic Syntax and Common Pitfalls

Or in this specific case of filenames, by using pathlib:

import pathlib
filename_1 = pathlib.Path('/path/to/some/file/you/want/to/read")
filename_2 = pathlib.Path('/path/to/some/file/being/written")

with filename_1.open() as file 1, filename_2.open('w') as file 2:
file 2.write(file_1.read())

This is not always an option, of course, but it’s a good consideration to keep the code short and readable.
It actually provides a bonus of adding more information to the code. If, instead of filename_1, you use
aname that conveys the goal of the filename, it immediately becomes clearer what you are trying to do.

Verifying code quality, pep8, pyflakes, and more

There are many tools for checking code quality and style in Python. The options range from pycodestyle
(previously named pep8) for checking rules pertaining to PEP 8, to tools such as flake8, which bundles
a lot of tools and can help refactor code and track down bugs in code that appears to work.

Let’s go into more detail.

pycodestyle/pep8

The pycodestyle package (previously named pep8) is the default code style checker to start with. The
pycodestyle checker attempts to validate many of the rules suggested in PEP 8 that are considered
to be the standard by the community. It doesn’t check everything that is in the PEP 8 standard, but it
goes a long way and is still updated regularly to add new checks. Some of the most important things
checked by pycodestyle are as follows:

+ Indentation: While Python will not check how many spaces you use to indent, it does not help
with the readability of your code

. Missing whitespace, such as spam=123

« Too much whitespace, such as def eggs(spam = 123):
+ Too many or too few blank lines

+ Toolong lines

. Syntax and indentation errors

« Incorrect and/or superfluous comparisons (not in, is not, if spam is True, and type com-
parisons without isinstance)

If some of the specific rules are not to your liking, you can easily tweak them to fit your purpose. Be-
yond that, the tool is not too opinionated, which makes it an ideal starting point for any Python project.

Chapter 3 73

An honorable mention goes out to the black project, which is a Python formatter that

automatically formats your code to largely adhere to the PEP 8 style. The name black

y 4 stems from Henry Ford’s quote: “Any customer can have a car painted any color that he
\G/‘ wants so long as it is black.”

That immediately shows the downside of black: it offers very little in the way of custom-
ization. If you don’t like one of the rules, you are most likely out of luck.

pyflakes

The pyflakes checker is meant to detect errors and potential bugs in your code by parsing (not im-
porting) the code. This makes it ideal for editor integration, but it can also be used to warn you about
potential issues in your code beyond that. It will warn you about:

+ Unused imports
. Wildcard imports (from module import *)

. Incorrect _ future__imports (after other imports)
More importantly, it warns you about potential bugs, such as the following:

+ Redefinitions of names that were imported
+ Usage of undefined variables

. Referencing variables before assignment

+ Duplicate argument names

. Unused local variables

pep8-naming
The last bit of PEP 8 is covered by the pep8-naming package. It makes sure that your naming is close
to the standard dictated by PEP 8:

. Class names as CapWord
. Function, variable, and argument names all in lowercase
« Constants as full uppercase and being treated as constants

» The first argument of instance methods and class methods as self and cls, respectively

McCabe

Lastly, there is the McCabe complexity. It checks the complexity of code by looking at the Abstract
Syntax Tree (AST), which Python builds from the source code internally. It finds out how many lines,
levels, and statements are there and warns you if your code has more complexity than a preconfig-
ured threshold. Generally, you will use McCabe through flake8, but a manual call is possible as well.
Using the following code:

def noop():

pass

74 Pythonic Syntax and Common Pitfalls

def yield_cube_points(matrix):
for x in matrix:
for y in x:
for z in y:
yield (x, y, z)

def print_cube(matrix):
for x in matrix:
for y in x:
for z in y:
print(z, end="")
print()
print()

McCabe will give us the following output:

$ pip3 install mccabe

$ python3 -m mccabe T_16_mccabe.py

1:0: 'noop' 1
5:0: 'yield_cube_points' 4
12:0: 'print_cube' 4

At first, when you look at the 1 generated by noop, you might think mccabe counts the lines of code.
Upon further inspection, you can see this isn’t the case. Having multiple noop operators does not
increase the count and nor do the print statements in the print_cube function.

The mccabe tool checks the cyclomatic complexity of code. In a nutshell, this means that it counts the
number of possible execution paths. Code without any control flow statements such as if/for/while
counts as 1, as you can see in the noop function. A simple if or if/else results in two options: one
where the if statement is True and one where the if statementis False. If there is a nested if or an
elif, this would increase further. Loops count as 2 since there is the flow of going inside the loop if
there are items, and not going into the loop if there are no items.

The warning threshold for mccabe is set to 10 by default, but is configurable. If your code actually has
a score of more than 10, it is time for some refactoring. Remember the advice from PEP 20.

Mypy

Mypy is a tool used to check the variable types within your code. While specifying fixed types goes
against duck typing, there are certainly cases where this is useful and where it will protect you from
bugs.

Taking the following code, for example:

some_number: int
some_number = 'test’

Chapter 3 75

The mypy command will tell us we've made a mistake:

$ mypy T_17_mypy.py
T 17 _mypy.py:2: error: Incompatible types in assignment (expression has type

"str", variable has type "int")

Found 1 error in 1 file (checked 1 source file)

Note that this syntax depends on the type hinting introduced in Python 3.5. For older Python versions,
you can use comments for type hints instead:

some_number = 'test’

Even if you're not using code hinting in your own code, this can still be useful to check whether your
calls to external libraries are correct. If the arguments for a function of an external library changed
with an update, this can quickly tell you something is wrong at the location of the mistake instead of
having to trace a bug throughout your code.

flake8

To run all of these tests combined, you can use flake8, a tool that runs pycodestyle, pyflakes, and
mccabe by default. After running these commands, flake8 combines their outputs into a single report.
Some of the warnings generated by flake8 might not fit your taste, so each and every one of the checks
can be disabled, both per file and for the entire project if needed. For example, I personally disable
w391 for all my projects, which warns you about blank lines at the end of a file.

This is something I find useful while working on code so that I can easily jump to the end of the file
and start writing code instead of having to append a few lines first.

There are also many plugins available to make flake8 even more powerful.
Some example plugins are:

. pep8-naming: Tests PEP naming conventions

. flake8-docstrings: Tests whether docstrings follow the PEP 257, NumPy, or Google convention.
More about these conventions will be in the chapter about documentation.

. flake8-bugbear: Finds likely bugs and design problems in your code, such as bare excepts.

« flake8-mypy: Tests whether the types of values are consistent with the declared types.

In general, before committing your code and/or putting it online, just run flake8 from your source
directory to check everything recursively.

Here is a demonstration with some poorly formatted code:

def spam(a,b,c):print(a,b+c)
def eggs():pass

76 Pythonic Syntax and Common Pitfalls

It results in the following:

$ pip3 install flake8

$ flake8 T_18 flakeS8.

T 18 flake8.py:1:11: missing whitespace
T_18 flake8.py:1:13: missing whitespace
T 18 flake8.py:1:16: missing whitespace
T_18 flake8.py:1:24: missing whitespace
T 18 flake8.py:2:11: missing whitespace

Recent additions to the Python syntax

The Python syntax has remained largely unchanged in the last decade, but we have seen a few addi-
tions, such as the f-strings, type hinting, and async functions, of course. We already covered f-strings
atthe beginning of this chapter, and the other two are covered by Chapter 9 and Chapter 13, respectively,
but there have a been a few other recent additions to the Python syntax that you might have missed.
Additionally, in Chapter 4 you will see the dictionary merge operators added in Python 3.9.

PEP 572: Assignment expressions/the walrus operator

We already covered this briefly earlier in this chapter, but since Python 3.8, we have assignment ex-
pressions. If you have experience with C or C++, you have most likely seen something like this before:

if((fh = fopen("filename.txt", "w")) == NULL)
Within C, this opens a file using fopen(), stores the result of fopen() in fh, and checks whether the

result of the fopen() call is NULL. Until Python 3.8, we always had to split these two operations into an
assignment and an if statement, assuming we also had fopen() and NULL available in our Python code:

fh = fopen("filename.txt", "w")

if fh == NULL:
Since Python 3.8, we can use assignment expressions to do this in a single line, similar to C:

if (fh := fopen("filename.txt", "w")) == NULL:
With the := operator you can assign and check the result in one operation. This can be useful when
reading user input, for example:

while (line := input('Please enter a line: ')) I= "':

This operator is often called the walrus operator because it looks slightly like the eyes and tusks of a
walrus (:=).

Chapter 3 77

PEP 634: Structural pattern matching, the switch statement

Many programmers who are new to Python wonder why it does not have a switch statement like most
common programming languages. Often the lack of a switch statement has been addressed with
dictionary lookups or, simply, a chain of if/elif/elif/elif/else statements. While those solutions
work fine, I personally feel that at times my code could have been prettier and more readable with a
switch statement.

Since Python 3.10, we finally have a feature that is very comparable to a switch statement but so much
more powerful. As is the case with the Python ternary operator (i.e. true_value if condition else
false_value), the syntax is far from a literal copy of other languages. In this case, especially, this is
for the better. With most programming languages, it can be really easy to forget the break statement
in a switch, which can cause unintended side effects.

At a glance, the Python implementation appears much simpler in syntax and features. Without the
break statement, you might wonder how you can match multiple patterns in a single go. Stay tuned
and find out! The pattern matching feature is very powerful and offers many more features than you
might expect.

The basic match statement

First, let’s look at a basic example. This one offers little benefit but can still be easier to read than a
regular if/elif/else statement:

>>> some_variable = 123

>>> match some_variable:

case 1:
print('Got 1)

case 2:
print('Got 2')

case _
print('Got something else')

something else

if some_variable ==
print('Got 1')

. elif some_variable == 1:
print('Got 2')
. else:

print('Got something else')
something else

Since we have both the if and the match statement here, you can easily compare them. In this case,
I would go for the if statement, but the main advantage of not having to repeat the some_variable
== part can still be useful.

78 Pythonic Syntax and Common Pitfalls

The _ is the special wild card case for the match statement. It matches any value, so it can be seen as
the equivalent of the else statement.

Storing the fallback as a variable

A slightly more useful example is to automatically store the result when it doesn’t match. The previous
example uses an underscore (_), which is not actually stored in _ because it is a special case, but if we
name the variable differently, we can store the result:

>>> some_variable = 123

>>> match some_variable:
case 1:
print('Got 1'")
case other:
print('Got something else:', other)
Got something else: 123

In this case we store the else case in the other variable. Note that you cannot use _ and a variable
name at the same time since they do the same thing, which would be useless.

Matching from variables

You saw that a case such as case other: will store the result in other instead of comparing it with the
value of other, so you might be wondering if we can do the equivalent of:

if some_variable == some_value:

The answer is that we can, with a caveat. Since any bare case variable: will result in storing into
a variable, we need to have something that does not match that pattern. The common way to work
around this limitation is by introducing a dot:

>>> class Direction:
LEFT = -1
RIGHT = 1

>>> some_variable = Direction.LEFT

>>> match some_variable:
case Direction.LEFT:
print('Going left')
case Direction.RIGHT:

print('Going right")

Going left

Aslong as it cannot be interpreted as a variable name, this will work for you. When comparing with
alocal variable, an if statement can always be used as well, of course.

Chapter 3 79

Matching multiple values in a single case

If you're familiar with the switch statement in many other programming languages, you might be won-
dering whether you can have multiple case statements before you break, like this, for example (C++):

switch(variable){

case Direction::LEFT:

case Direction::RIGHT:
cout << "Going horizontal" << endl;
break;

case Direction::UP:

case Direction: :DOWN:
cout << "Going vertical" << endl;

}

This roughly means that if variable is either equal to LEFT or RIGHT, print the "Going horizontal"
line and break. Since the Python match statement does not have a break, how can we match something
like this? Well, some syntax was introduced specifically for that:

>>> class Direction:
LEFT = -1
P =0
RIGHT = 1
DOWN = 2

>>> some_variable = Direction.LEFT

>>> match some_variable:
case Direction.LEFT | Direction.RIGHT:
print('Going horizontal')
case Direction.UP | Direction.DOWN:
print('Going vertical')
Going horizontal

Asyou can see, using the | operator (which is also used for bitwise operations), you can test for multiple
values at the same time.

Matching values with guards or extra conditions

There are times when you want a more advanced comparison such as if variable > value:. Luckily,
even that is possible with the match statement using a feature called guards:

>>> values = -1, 0, 1

>>> for value in values:

print('matching', value, end=": ")

80 Pythonic Syntax and Common Pitfalls

match value:
case negative if negative < 0:
print(f'{negative} is smaller than 0')
case positive if positive > 0:

print(f'{positive} is greater than @')

case _
print('no match"')

matching -1: -1 is smaller than ©

matching ©: no match

matching 1: 1 is greater than ©

Note that this uses the variable name that I just introduced, but it’s a regular Python expression, so
you could also compare something else. However, you always need to have the variable name before
the if. This will not work: case if

Matching lists, tuples, and other sequences

If you are familiar with tuple unpacking, you can probably guess how sequence matching works:

>>> values = (0, 1), (9, 2), (1, 2)

>>> for value in values:
print('matching', value, end=': ")
match value:
case 0, 1:
print('exactly matched 0, 1')
case 0, y:
print(f'matched 0, y with y: {y}")
case X, y:
000 print(f'matched x, y with x, y: {x}, {y}")
matching (@, 1): exactly matched 0, 1
matching (@, 2): matched 0, y with y: 2

matching (1, 2): matched x, y with x, y: 1, 2

The first case explicitly matches both of the given values, which is identical to if value == (0, 1):.

The second case explicitly matches 0 for the first value, but leaves the second value as a variable and
stores it in y. Effectively this comes down to if value[@] == @: y = value[1].

The last case stores a variable for both the x and y values and will match any sequence with exactly

two items.

Matching sequence patterns

If you thought the previous example with the unpacking of the variables was useful, you will love this
section. One of the really powerful features of the match statement is matching based on patterns.

Chapter 3 81

Let’s assume we have a function that takes up to three parameters, host, port, and protocol. For
port and protocol, we can assume 443 and https, respectively, so that only leaves the hostname as a
required parameter. How can we match this so one, two, three, or more parameters are all supported
and work correctly? Let’s find out:

>>> def get_uri(*args):

protocol, port, paths = 'https', 443, ()
match args:
case (hostname,):
pass
case (hostname, port):
pass
case (hostname, port, protocol, *paths):
pass
case _

raise RuntimeError(f'Invalid arguments {args}')

path = '/'.join(paths)
return f'{protocol}://{hostname}:{port}/{path}’

>>> get_uri('localhost")

'https://localhost:443/"'

>>> get_uri('localhost', 12345)
'https://localhost:12345/"

>>> get_uri('localhost', 80, 'http')
'http://localhost:80/"'

>>> get_uri('localhost', 80, 'http', 'some', 'paths')
'http://localhost:80/some/paths’

As you can see, the match statement also handles different length sequences, which is a very useful
tool to have. You could do this with if statements as well, but I've never found a way to handle that in
a really pretty fashion. Naturally you could still combine this with the earlier examples, so you could
have a case such as: case (hostname, port, 'http'): if you want to invoke specific behavior. You
can also apply *variable to capture all extra variables. The * matches 0 or more extra items in the
sequence.

Capturing sub-patterns

In addition to specifying a variable name to save all values into, you can also store explicit value
matches:

>>> values = (0, 1), (0, 2), (1, 2)

82 Pythonic Syntax and Common Pitfalls

>>> for value in values:
print('matching', value, end=': ')
match value:

case 9 as x, (1 | 2) as y:

print(f'matched x, y with x, y: {x}, {y}')
case _
000 print('no match')
matching (@, 1): matched x, y with x, y: 0, 1
matching (@0, 2): matched x, y with x, y: @, 2
matching (1, 2): no match

In this case we explicitly match 0 as the first part of value, and 1 or 2 as the second part of value. And
we store those in the variables x and y, respectively.

It is important to note here that within the context of a case statement the | operator will

\@/’ always work as a or for the case, instead of a bitwise or for the variables/values. Normally
1 | 2would resultin 3 because in binary 1 = 0001, 2 = 0010, and the combination of
thoseis 3 = 0011.

Matching dictionaries and other mappings
Naturally it is also possible to match mappings (such as dict) by key:

>>> values = dict(a=0, b=0), dict(a=0, b=1), dict(a=1, b=1)

>>> for value in values:
print('matching', value, end=": ')
match value:
case {'a': 0}:
print('matched a=0:"', value)
case {'a': 9, 'b': 0}:

print('matched a=0, b=0:', value)

case _

500 print('no match"')

matching {'a': @, 'b': 0}: matched a=0: {'a': @, 'b':
matching {'a': @, 'b': 1}: matched a=0: {'a': @, 'b':
matching {'a': 1, 'b': 1}: no match

Note that match only checks for the given keys and values and does not care about extra keys in the
mapping. This is why the first case matches both of the first two items.

\/‘/' As you can see in the preceding example, matching happens sequentially and it will stop
at the first match, not the best match. The second case is never reached in this scenario.

Chapter 3 83

Matching using isinstance and attributes

If you thought the previous examples of the match statement were impressive, get ready to be com-
pletely amazed. The way the match statement can match instances including properties is amazingly
powerful and can be incredibly useful. Just look at the following example and try to understand what
is happening:

>>> class Person:

def __init__ (self, name):

self.name = name
>>> values = Person('Rick'), Person('Guido"')

>>> for value in values:
match value:
case Person(name='Rick"):
print('I found Rick")
case Person(occupation="'Programmer"):
print('I found a programmer"')
case Person() as person:
500 print('I found a person:', person.name)
I found Rick
I found a person: Guido

While I will admit that the syntax is slightly confusing and, dare I say it, unPythonic, it is so useful
that it still makes sense.

Firstly, we will look at the case Person() as person:. We're discussing this first because it is import-
ant to understand what is happening here before we continue with the other examples. This line is
effectively identical to if isinstance(value, Person):. It does not actually instantiate the Person
class at this point, which is a bit confusing.

Secondly, the case Person(name='Rick"') matches the instance type Person and it requires the in-
stance to have an attribute name with value Rick.

Lastly, the case Person(occupation='Programmer') matches value to be a Person instance and
have an attribute called occupation with the value Programmer. Since that attribute does not exist, it
ignores that issue silently.

Note that this also works for built-in types and supports nesting:

>>> class Person:
def __init__ (self, name):
self.name = name

>>> value = Person(123)

84 Pythonic Syntax and Common Pitfalls

>>> match value:
case Person(name=str() as name):
print('Found person with str name:', name)

case Person(name=int() as name):

print('Found person with int name:', name)

Found person with int name: 123

We have covered several examples of how the new pattern matching feature works, but you could
think of many more. Since all parts can be nested, the possibilities really are endless. It might not
be the perfect solution for everything, and the syntax might feel a little odd, but it is such a powerful
solution that I would recommend any Python programmer learns it by heart.

Common pitfalls

Python is a language meant to be clear and readable without any ambiguities and unexpected behav-
iors. Unfortunately, these goals are not achievable in all cases, and that is why Python does have a few
corner cases where it might do something different than what you were expecting.

This section will show you some issues that you might encounter when writing Python code.

Scope matters!

There are a few cases in Python where you might not be using the scope that you are actually expecting.
Some examples are when declaring a class and with function arguments, but the most annoying one
is accidentally trying to overwrite a global variable.

Global variables

A common problem when accessing variables from the global scope is that setting a variable makes
it local, even when accessing the global variable.

This works:

>»> g=1

>>> def print_global():
print(f'value: {g}')

>>> print_global()
Value: 1

But the following does not:

>>> g =1

>>> def print_global():

g +=1

Chapter 3 85

print(f'value: {g}"')

>>> print_global()
Traceback (most recent call last):

UnboundLocalError: local variable 'g' referenced before assignment

The problem is that g += 1 actually translatestog = g + 1, and anything containing g = makes the
variable local to your scope. Since the local variable is being assigned at that point, it has no value yet
and you are trying to use it.

For these cases, there is the global statement, although it is generally recommended to avoid writing to
global variables altogether because it can make your life a lot more difficult while debugging. Modern
editors can help a lot to track who or what is writing to your global variables, but restructuring your
code so it purposefully passes and modifies values in a clear path can help you to avoid many bugs.

Pass by reference with mutable variables

Within Python, variables are passed by reference. This means that when you do something like x =
y, both x and y will point to the same variable. When you change the value (not the object) of either
x or y, the other will change as well.

Since most variable types such as strings, integers, floats, and tuples are immutable, this is not a
problem. Doing x = 123 won't affect y since we aren’t changing the value of x, but we are replacing
x with a new object that has the value 123.

With mutable variables, however, we can change the value of the object. Let’s illustrate this behavior
and how to work around it:

[]
X

x.copy()

x.append('x")
.append('y")
.append('z")

Unless you explicitly copy the variable as we did with z, your new variable will point to the same object.

86 Pythonic Syntax and Common Pitfalls

Now you might be wondering whether copy () always works. As you might suspect, it doesn’t. The copy()
function only copies the object itself, not the values within the object. For that we have deepcopy(),
which even handles recursion safely:

>>> import copy

[[1], [2, 3]]
x.copy()
copy.deepcopy(x)

x.append('a")
>>> x[0].append(x)

>>> X
(f1, [...11, [2, 3], "a’]
>>> y

(fx, [...11, [2, 3]]

>>> Z

[[11, [2, 3]]

Mutable function default arguments

While the issues with mutable arguments can be easily avoided and seen in most cases, the scenario
of default arguments for functions is a lot less obvious:

>>> def append(list_=[], value='value'):
list_.append(value)
return list_

>>> append(value='a')
["a]

>>> append(value='b")
['a', 'b']

Note that this is the case for dict, list, set, and several of the types in collections. Additionally,
the classes you define yourself are mutable by default.

To work around this issue, you could consider changing the function to the following instead:

>>> def append(list_=None, value='value'):
if list_ is None:
list = []
list_.append(value)
return list_

Chapter 3 87

>>> append(value='a")

[*a’]

>>> append(value='b")

['b"]

Note that we had touse if list_ is None here. If we had done if not list_instead, it would have
ignored the given list_ if an empty 1ist was passed.

Class properties
The problem of mutable variables also occurs when defining classes. It is very easy to mix class at-

tributes and instance attributes. This can be confusing, especially when you are coming from other
languages such as C#. Let’s illustrate it:

>>> class SomeClass:
class_1list =

def __init__ (self):
self.instance_list = []

SomeClass.class_list.append('from class')
instance = SomeClass()
instance.class_list.append('from instance')
instance.instance_list.append('from instance')

>>> SomeClass.class_list
['from class', 'from instance']
>>> SomeClass.instance_list

Traceback (most recent call last):

AttributeError: ... 'SomeClass' has no attribute 'instance_list'

>>> instance.class_list

['from class', 'from instance']
>>> instance.instance_list
['from instance']

As with the function arguments, the list and dictionaries are shared. So if you want a mutable property
for a class that isn’t shared between all instances, you will need to define it from within the __init__
or any other instance method.

88 Pythonic Syntax and Common Pitfalls

Another important thing to note when dealing with classes is that a class property will be inherited,
and that’s where things might prove to be confusing. When inheriting, the original properties will
stay references (unless overwritten) to the original values, even in subclasses:

>>> class Parent:

pass

>>> class Child(Parent):
pass

>>> Parent.parent_property = 'parent’
>>> Child.parent_property
'parent’

>>> Child.parent_property = 'child’
>>> Parent.parent_property

'parent’

>>> Child.parent_property

‘child’

>>> Child.child_property = 'child’
>>> Parent.child_property

Traceback (most recent call last):

AttributeError: ... 'Parent' has no attribute 'child_property"

While this is to be expected due to inheritance, someone else using the class might not expect the
variable to change in the meantime. After all, we modified Parent, not Child.

There are two easy ways to prevent this. It is obviously possible to simply set the properties for every
class separately. But the better solution is never to modify class properties outside of the class defini-
tion. It’s easy to forget that the property will change in multiple locations, and if it has to be modifiable
anyway, it’s usually better to put it in an instance variable instead.

Overwriting and/or creating extra built-ins

While it can be useful in some cases, generally you will want to avoid overwriting global functions.
The PEP 8 convention for naming your functions—similar to built-in statements, functions, and vari-
ables—is to use a trailing underscore.

So, do not use this:

list = [1, 2, 3]

Chapter 3 89

Instead, use the following:

list_ = [1, 2, 3]
For lists and such, this is just a good convention. For statements such as from, import, and with, it’s
arequirement. Forgetting about this can lead to very confusing errors:

>>> list = list((1, 2, 3))
>>> list
[1, 2, 3]

>>> list((4, 5, 6))
Traceback (most recent call last):

TypeError: 'list' object is not callable

>>> import = 'Some import'
Traceback (most recent call last):

SyntaxError: invalid syntax

If you actually want to define a built-in that is available everywhere without requiring an import, that
is possible. For debugging purposes, I've been known to add this code to a project while developing:

import builtins
import inspect
import pprint
import re

def pp(*args, **kwargs):
'"'PrettyPrint function that prints the variable name when

available and pprints the data

name = None
frame = inspect.currentframe().f_back

frame_info = inspect.getframeinfo(frame)

for line in frame_info[3]:

m = re.search(r'\bpp\s*\(\s*([*)]*)\s*\)', line)
if m:
print('# %s:' % m.group(1l), end=" ")

90 Pythonic Syntax and Common Pitfalls

break

pprint.pprint(*args, **kwargs)

builtins.pf = pprint.pformat
pp

builtins.pp

This is much too hacky for production code, but it is still useful when working on a large project where
you need print statements to debug. Alternative (and better) debugging solutions can be found in
Chapter 11, Debugging - Solving the Bugs.

The usage is quite simple:
x = 10

pp(x)

Here is the output:

Modifying while iterating

At one point or another, you will run into this problem: while iterating through some mutable objects
such as dict and set, you cannot modify them. All of these result in a RuntimeError telling you that
you cannot modify the object during iteration:

>>> dict_ = dict(a=123)
>>> set_ = set((456,))

>>> for key in dict_:
del dict_ [key]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

>>> for item in set_:

set_.remove(item)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

RuntimeError: Set changed size during iteration

For a list, it does work, but can result in very strange results, so it should definitely be avoided as well:

>>> list_ = list(range(10))

>>> list

Chapter 3 91

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> for item in list_:
print(list_.pop(©), end="', ')
e, 1, 2, 3, 4,

>>> list_
[5, 6, 7, 8, 9]

While these issues can be avoided by copying the collections before usage, in many cases you are
doing something wrong if you run into this issue. If manipulation is actually needed, building a new
collection is often the easier way to go because the code will look more obvious. Whenever someone
looks at code like this in the future, they might try to refactor it by removing the 1ist() since it looks
futile at first glance:

>>> list_ = list(range(10))

>>> for item in list(list_):
print(list_.pop(0), end="', ')
e, 1, 2, 3, 4, 5, 6, 7, 8, 9,

Catching and storing exceptions

When catching and storing exceptions in Python, you must keep in mind that for performance rea-
sons, the stored exception is local to the except block. The result is that you need to explicitly store
the exception in a different variable. Simply declaring the variable before the try/except block does
not work and will make your variable disappear:

>>> exception = None

>>> try:
1/ 0
. except ZeroDivisionError as exception:
pass

>>> exception
Traceback (most recent call last):

NameError: name 'exception' is not defined

Storing the result in a new variable does work:

>>> try:
1/0

. except ZeroDivisionError as exception:

92 Pythonic Syntax and Common Pitfalls

new_exception = exception

>>> new_exception

ZeroDivisionError('division by zero')

As you can probably see already, this code does have a bug now. If we don’t end up in an exception,
new_exception will not be defined yet. We will either need to add an else to the try/except or, better
yet, pre-declare the variable before the try/except.

We really need to save it explicitly because Python 3 automatically deletes anything saved with as
variable at the end of the except statements. The reason for this is that exceptions in Python 3 con-
tain a __traceback__ attribute. Having this attribute makes it much more difficult for the garbage
collector to detect which memory should be freed as it introduces a recursive self-referencing cycle.

Specifically, this is exception -> traceback -> exception -> traceback ...

This does mean that you should keep in mind that storing these exceptions can introduce memory
leaks into your program.

The Python garbage collector is smart enough to understand that the variables are not visible any-
more and will delete the variable eventually, but it can take a lot more time because it is a far more
complicated garbage collection procedure. How the garbage collection actually works is covered in
Chapter 12, Performance — Tracking and Reducing Your Memory and CPU Usage.

Late binding and closures

Closures are a method of implementing local scopes in code. They make it possible to locally define
variables without overriding variables in the parent (or global) scope and hide the variables from the
outside scope later. The problem with closures in Python is that Python tries to bind its variables as late
as possible for performance reasons. While generally useful, it does have some unexpected side effects:

>>> functions = [lambda: i for i in range(3)]

>>> for function in functions:

print(function(), end="', ")

You were probably expecting ®, 1, 2instead. Due to late binding, however, all functions get the last
value of i instead, which is 2.

What should we do instead? As with the cases in earlier paragraphs, the variable needs to be made
local. One option is to force immediate binding by currying the function with partial:

>>> from functools import partial

>>> functions = [partial(lambda x: x, i) for i in range(3)]

Chapter 3 93

>>> for function in functions:

print(function(), end="', ")

A better solution would be to avoid binding problems altogether by not introducing extra scopes (the
lambda) that use external variables. If i is specified as an argument to 1lambda, this will not be a problem.

Circular imports

Even though Python is fairly tolerant of circular imports, there are some cases where you will get errors.
Let’s assume we have two files:
T_28_circular_imports_a.py:

import T_28_ circular_imports_b

class FileA:

pass

class FileC(T_28 circular_imports_b.FileB):

pass

T_28_circular_imports_b.py:

import T_28 circular_imports_a

class FileB(T_28 circular_imports_a.FileA):

pass

Running either of these files results in a circular import error:

Traceback (most recent call last):
File "T_28 circular_imports_a.py", line 1, in <module>

import T_28 circular_imports b
File "T_28 circular_imports_b.py", line 1, in <module>

import T_28 circular_imports_a

File "T_28 circular_imports_a.py", line 8, in <module>

class FileC(T_28 circular_imports b.FileB):
AttributeError: partially initialized module 'T_28 circular_imports_b' has no
attribute 'FileB' (most likely due to a circular import)

There are several ways to work around this problem. The simplest solution is to move the import
statement so the circular import doesn’t occur anymore. In this case, the import in import T_28_
circular_imports_a.py needs to be moved between FileA and FileB.

94 Pythonic Syntax and Common Pitfalls

In most cases, the better solution is to restructure the code, however. Move the common base class to
a separate file so there is no need for a circular import anymore. For the example above, that would
look something like this:

T_29_circular_imports_a.py:

class FileA:

pass

T_29_circular_imports_b.py:

import T_29 circular_imports_a

class FileB(T_29 circular_imports_a.FileA):
pass

T_29_circular_imports_c.py:

import T_29_circular_imports_b

class FileC(T_29 circular_imports_b.FileB):
pass

If that is also not possible, it can be useful to import from a function at runtime instead of at import
time. Naturally this is not an easy option for class inheritance, but if you only need the import at
runtime, you can defer the importing.

Lastly, there is the option of dynamic imports, such as what the Django framework uses for the
ForeignKey fields. In addition to actual classes, the ForeignKey fields also support strings, which
will be imported automatically when needed.

While this is a very effective way of working around the problem, it does mean that your editor, linting
tools, and other tools won't understand the object you are dealing with. To those tools, it will look like
a string, so unless specific hacks are added to those, they will not assume the value to be anything
besides a string.

In addition, because the import only happens at runtime, you will not notice import problems until
you execute the function. That means that errors that normally would have presented themselves as
soon as you run the script or application will now only show up when the function is called. This is a
great recipe for hard-to-trace bugs that won't occur for you but will for other users of the code.

The pattern is still useful for cases such as plugin systems, however, as long as care is taken to avoid
the caveats mentioned. Here’s a simple example to import dynamically:

>>> import importlib

>>> module_name

>>> attribute = 'version_info'

Chapter 3 95

>>> module = importlib.import_module(module name)
>>> module

<module 'sys' (built-in)>

>>> getattr(module, attribute).major
3

Using importlib, it is fairly easy to dynamically import a module and by using getattr, you can get
a specific object from the module.

Import collisions

One problem that can be extremely confusing is having colliding imports—multiple packages/modules
with the same name. I have had more than a few bug reports on my packages about cases like these.

My numpy - st1 project, for example, houses the code in a package named st1. Many people create a test
file named stl.py. When importing st1 from stl.py, it will import itself instead of the st1 package.

In addition to this, there is also the problem of packages being incompatible with each other. Common
names might be used by several packages, so be careful when installing a bunch of similar packages
since they might be sharing the same name. When in doubt, just create a new virtual environment
and try again. Doing this can save you a lot of debugging.

Summary

This chapter showed you what the Pythonic philosophy is all about and some of the reasoning behind
it. Additionally, you have learned about the Zen of Python and what is considered beautiful and ugly
within the Python community. While code style is highly personal, Python has a few very helpful
guidelines that at least keep people mostly on the same page and style.

In the end, we are all consenting adults; everyone has the right to write code as they sees fit. But I
do request that you please read through the style guides and try to adhere to them unless you have a
really good reason not to.

With all that power comes great responsibility, and a few pitfalls, though there aren’t too many. Some
are tricky enough to fool me regularly and I've been writing Python for a long time! Python improves
all the time though. Many pitfalls have been taken care of since Python 2, but some will always remain.
For example, circular imports and definitions can easily bite you in most languages that support them,
but that doesn’t mean we’ll stop trying to improve Python.

A good example of the improvements in Python over the years is the collections module. It contains
many useful collections that have been added by users because there was a need. Most of them are
actually implemented in pure Python, and because of that, they are easy enough to be read by anyone.
Understanding them might take a bit more effort, but I truly believe that if you make it to the end of
this book, you will have no problem understanding what the collections do. Fully understanding how
the internals work is something I cannot promise, though; some parts of that speak more to generic
computer science than Python mastery.

96 Pythonic Syntax and Common Pitfalls

The next chapter will show you some of the collections available in Python and how they are constructed
internally. Even though you are undoubtedly familiar with collections such as lists and dictionaries,
you might not be aware of the performance characteristics involved with some of the operations. If
some of the examples in this chapter were less than clear, you don’t have to worry. The next chapter
will at least revisit some of them, and more will come in later chapters.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHulf

https://discord.gg/QMzJenHuJf

Pythonic Design Patterns

The previous chapter covered a lot of guidelines for what to do and what to avoid in Python. Next, we
will explore a few examples of how to work in a Pythonic way using the modules included with Python.

Design patterns are largely dependent on storing data; for this, Python comes bundled with several
very useful collections. The most basic collections such as list, tuple, set, and dict will already be
familiar to you, but Python also comes bundled with more advanced collections. Most of these simply
combine the basic types for more powerful features. In this chapter, I will explain how to use these
data types and collections in a Pythonic fashion.

Before we can properly discuss data structures and related performance, a basic understanding of
time complexity (and specifically the big O notation) is required. The concept is really simple, but
without it, I cannot easily explain the performance characteristics of operations and why seemingly
nice-looking code can perform horribly.

In this chapter, once the big O notation is clear, we will discuss some data structures and I will show
you some example design patterns, along with how to use them. We will start with the following basic
data structures:

. list
. dict
. set

. tuple

Building on the basic data structures, we will continue with more advanced collections, such as the
following:

« Dictionary-like types:

. ChainMap

. Counter

. Defaultdict
. OrderedDict

98 Pythonic Design Patterns

. List types: heapq
. Tuple types: dataclass
« Other types: enum

Time complexity — The big O notation

Before we can begin with this chapter, there is a simple notation that you need to understand. This
chapter uses the big O notation to indicate the time complexity for an operation. Feel free to skip this
section if you are already familiar with this notation. While the notation sounds really complicated,
the concept is actually quite simple.

\/‘/’ The big O letter refers to the capital version of the Greek letter Omicron, which means
small-o (micron o).

When we say that a function takes 0(1) time, it means that it generally only takes 1 step to execute.
Similarly, a function with 0(n) time would take n steps to execute, where n is generally the size (or
length) of the object. This time complexity is just a basic indication of what to expect when executing
the code, as it is generally what matters most.

In addition to O, several other characters might pop up in literature. Here’s an overview
of the characters used:

. 0 Big Omicron: The upper bound/worst-case scenario.
. Q Big Omega: The lower bound/best-case scenario.
. 0 Big Theta: The tight bound, which means both O and Q are identical.

A good example of an algorithm where these differ a lot is the quicksort algorithm. The
E’ quicksort algorithm is one of the most widely used sorting algorithm, which is surprising
\/ if you only look at time complexity according to the (big) O. The worst case for quicksort is
0(n**2) and the best case is either Q(n log n) or Q(n), depending on the implementation.

Given the worst case of 0(n**2), you might not expect the algorithm to be used a lot, but
ithas been the default sorting algorithm for many programming languages. Within C, itis
still the default; for Java, it was the default up to Java 6; and Python used it up to 2002. So,
why is/was quicksort so popular? For quicksort, it is very important to look at the average
case, which is far more likely to occur than the worst case. Indeed, the average case is
0(n log n), which is really good for a sorting algorithm.

The purpose of the big O notation is to indicate the approximate performance of an operation based
on the number of steps that need to be executed. A piece of code that executes a single step 1,000 times
faster but needs to execute 0(2**n) steps will still be slower than another version of it that takes only
0(n) steps for a value of n equal to 10 or more.

Chapter 4 99

This is because 2**n for n=10 is 2**10=1024, which is 1,024 steps to execute the same code. This makes
choosing the right algorithm very important, even when using languages such as C/C++, which are
generally expected to perform better than Python with the CPython interpreter. If the code uses the
wrong algorithm, it will still be slower for a non-trivial n.

For example, suppose you have a list of 1,000 items and you walk through them. This will take 0(n)
time because there are n=1000 items. Checking to see whether an item exists in a list means silently
walking through the items in a similar way, which means it also takes 0(n), so that’s 1,000 steps.

If you do the same with a dict or set that has 1,000 keys/items, it will only take 0(1) step because of
how a dict/set is structured. How the dict and set are structured internally will be covered later in
this chapter.

This means that if you want to check the existence of 100 items in that 1ist or dict, it will take you
100*0(n) for the 1ist and 100*0(1) for the dict or set. That is the difference between 100 steps and
100,000 steps, which means that the dict/set is n or 1,000 times faster in this case.

Even though the code seems very similar, the performance characteristics vary enormously:

>>> n 1000
>>> a = list(range(n))

>>> b = dict.fromkeys(range(n))

>>> for i in range(100):
assert i in a
assert i in b

To illustrate 0(1), 0(n), and 0(n**2) functions:

>>> def o_one(items):
return 1

>>> def o_n(items):
total = 0

for item in items:
total += item
return total

>>> def o_n_squared(items):
total = 0

for a in items:
for b in items:

100 Pythonic Design Patterns

total += a * b
return total

>>> n = 10

>>> items = range(n)

>>> o0_one(items)

1

>>> o_n(items)

45

>>> 0_n_squared(items)
2025

To illustrate this, we will look at some slower-growing functions first:

10000
8000
6000
O(n*log(n))
2000 ‘\~ o(n)
0 1\ 0(log(n))
n= n=10
o= n=1000 o
n=10000
n=1 n=10 n=100 n=1000 n=10000
mO(1) 1 1 1 1 1
O(log(n)) 0.0 33 6.6 10.0 133
m0(n) 1 10 100 1000 10000
= O(n*log(n)) 0 33 664 9966 132877

Figure 4.1: Time complexity of slow-growing functions with n=1 to n=10,000

As you can see, the 0(log(n)) function scales really well with larger numbers; this is why a binary

search is so incredibly fast, even for large datasets. Later in this chapter, you will see an example of
a binary search algorithm.

The 0(n*1log(n)) result shows a rather fast growth, which is undesirable, but better than some of the
alternatives, as you can see in Figure 4.2 with faster-growing functions:

Chapter 4 101

1000
800
600
400
200
0 Oén.')
1 0(2**n)
2 3 0(n**2)
O(n*log(n))
1 2 3 4 5 6 7 8 9 10
mO(n*log(n)) 0 2 5 8 12 16 20 24 29 33
O(n**2) 1 4 9 16 25 36 49 64 81 100
m O(2**n) 2 4 8 16 32 64 128 256 512 1024
mO(n!) 1 2 6 24 120 720 5040 40320 362880 3628800

Figure 4.2: Time complexity of fast-growing functions with n=1 to n=10

Looking at these charts, the 0(n*1og(n)) looks quite good by comparison. As you will see later in this
chapter, many sorting algorithms use 0(n*1log(n)) functions and some use O(n**2).

These algorithms quickly grow to an incalculable size; the 0(2**n) function, for example, already
takes 1,024 steps with 10 items and doubles with every step. A famous example of this is the current
solution to the Towers of Hanoi problem, where n is the number of disks.

The 0(n!) factorial function is far worse and becomes impossibly large after just a few steps. One
of the most famous examples of this is the Traveling Salesman problem: finding the shortest route
covering a list of cities exactly once.

Next, we’ll dive into core collections.

Core collections

Before we can look at the more advanced combined collections later in this chapter, you need to
understand the workings of the core Python collections. This is not just about their usage; it is also
about the time complexities involved, which can strongly affect how your application will behave as
it grows. If you are well versed in the time complexities of these objects and know the possibilities
of Python 3’s tuple packing and unpacking by heart, then feel free to jump to the Advanced collections
section.

list — A mutable list of items

The 1ist is most likely the container structure that you've used most in Python. It is simple in terms
of its usage, and for most cases, it exhibits great performance.

102 Pythonic Design Patterns

While you may already be very familiar with the usage of 1ist, you might not be aware of the time
complexities of the 1ist object. Luckily, many of the time complexities of 1ist are very low; append,
get operations, set operations, and len all take 0(1) time—the best possible. However, you may not
know that remove and insert have 0(n) worst-case time complexity. So, to delete a single item out
of 1,000 items, Python might have to walk through 1,000 items. Internally, the remove and insert
operations execute something along these lines:

>>> def remove(items, value):
new_items = []
found = False
for item in items:

if not found and item == value:
found = True
continue

new_items.append(item)

if not found:
raise ValueError('list.remove(x): x not in list')

return new_items

>>> def insert(items, index, value):
new_items = []
for i, item in enumerate(items):
if i == index:
new_items.append(value)
new_items.append(item)

return new_items

>>> items list(range(10))
>>> items
[6, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> items remove(items, 5)
>>> items
[6, 1, 2, 3, 4, 6, 7, 8, 9]

>>> items insert(items, 2, 5)
>>> items
[6, 1, 5, 2, 3, 4, 6, 7, 8, 9]

Chapter 4 103

To remove or insert a single item from/into the list, Python needs to shift the rest of the list after the
insertion/deletion point. For a large 1ist, this can become a performance burden and, if possible,
should be avoided by using append instead of insert. When executing this only once, it is, of course, not
all that bad. But when executing a large number of remove operations, a filter or 1ist comprehension
is a much faster solution because, if properly structured, it needs to copy the list only once.

For example, suppose we wish to remove a specific set of numbers from the list. We have quite a few
options for this. The first is a solution using remove, which becomes slower if the number of items to
remove becomes larger.

Next up is constructing a new list, a list comprehension, or a filter statement. Chapter 5, Functional
Programming — Readability Versus Brevity, will explain 1ist comprehensions and the filter statement
in more detail. But first, let’s check out some examples:

>>> primes = set((1, 2, 3, 5, 7))

items = list(range(190))

for prime in primes:
items.remove(prime)

items

4, 6, 8, 9]

items = list(range(10))
[item for item in items if item not in primes]
4, 6, 8, 9]

items = list(range(190))

list(filter(lambda item: item not in primes, items))
4, 6, 8, 9]

The latter two examples are much faster for large lists of items. This is because the operations are much
faster. To compare using n=1en(items) and m=1len(primes), the first example takes O(m*n)=5*10=50
operations, whereas the latter two take 0(n*1)=10*1=10 operations.

The first method is actually slightly better than stated because n decreases during the loop.

\@/’ So, it’s effectively 10+9+8+7+6=40, but this is an effect that is negligible enough to ignore.
In the case of n=1000, that would be the difference between 1000+999+998+997+996=4990
and 5*1000=5000, which makes no real-world difference.

Of course, min, max, and in all take O(n) as well, but that is expected for a structure that is not optimized
for these types of lookups.

104 Pythonic Design Patterns

They can be implemented like this:

>>> def in_(items, value):
for item in items:

if item == value:
return True

return False

>>> def min_(items):
current_min = items[0]
for item in items[1:]:
if current_min > item:
current_min = item

return current_min

>>> def max_(items):
current_max = items[0]
for item in items[1:]:
if current_max < item:
current_max = item

return current_max

>>> items = range(5)

>>> in_(items, 3)
True

>>> min_(items)

0

>>> max_(items)

4

With these examples, it’s also clear that the in operator is a good example of where the best, worst, and
average cases are vastly different. The best case is 0(1), which is being lucky and finding our value at
the first item. The worst case is 0(n) because it might not exist or it could be the last item. From this,
you might expect the average case to be 0(n/2), but you would be wrong. The average case is still0(n)
since there is a large likelihood of the item not existing in the list at all.

dict — A map of items

The dict is probably the container structure you will choose to use the most. You might not realize
that you are using it constantly without explicitly using dict. Every function call and variable access
goes through a dict to look up the name from the local() or global() scope dictionaries.

The dict is fast, simple to use, and very effective for a wide range of use cases. The average time
complexity is 0(1) for the get, set, and delete operations.

Chapter 4 105

There are exceptions to this time complexity that you need to be aware of, however. The way a dict
works is by converting the key into a hash using the hash function (which calls the __hash__ method
of the object given as a key) and storing it in a hash table.

\Il

@ Magic methods such as __hash__ are called either magic methods or dunder methods,
gn where dunder is short for double-underscore.

There are two problems with hash tables, however. The first and the most obvious is that the items
will be sorted by hash, which appears at random in most cases. The second problem with hash tables
is that they can have hash collisions, and the result of a hash collision is that in the worst case, all the
former operations can take 0(n) instead. Hash collisions are not all that likely to occur, but they can
occur, and if a large dict performs below par, that is the place to look.

V4 Since Python 3.6, the default dict implementation in CPython has changed to a version
; Ay that is sorted by insertion. Since Python 3.7, this is guaranteed behavior since other Python
versions such as Jython and PyPy could use different implementations before version 3.7.

Let’s see how this actually works in practice. For the sake of this example, I will use one of the simplest
hashing algorithms I can think of, which uses the most significant digit of a number. So, for the case
of 12345, this hashing function will return 1, and for 56789, it will return 5:

>>> def most_significant(value):
while value >= 10:
value //= 10

return value

>>> most_significant(12345)

1

>>> most_significant(99)
©

>>> most_significant(0)
0

Now, we will emulate a dict using a 1ist of lists with this hashing method. We know that our hashing
method can only return numbers from 0 to 9, so we need only 10 buckets in our list. Now, we will add
a few values and see how a contains function could work:

>>> def add(collection, key, value):
index = most_significant(key)

collection[index].append((key, value))

106 Pythonic Design Patterns

>>> def contains(collection, key):
index = most_significant(key)
for k, v in collection[index]:
if k == key:
return True

return False

collection = [[], [1, [], [1, [1, [1, [1, [1, [1, []]

add(collection,
add(collection,
add(collection,
add(collection,

>>> collection

[[1, [(123, 'a"), (101, 'c")], [1, [I,
[(456, 'b")], [1, [1, [(789, 'c")], [1, []]

>>> contains(collection, 123)
True

>>> contains(collection, 1)

False

This code is obviously not identical to the dict implementation, but it is similar. Since we can just
get item 1 for a value of 123 by simple indexing, we have only 0(1) lookup costs in the general case.
However, since both keys, 123 and 101, are within the 1 bucket, the runtime can actually increase to
0(n) in the worst case, where all keys have the same hash. As mentioned, that is a hash collision. To
alleviate hash collisions beyond what the hash() function already does, the Python dict uses a probing
sequence to automatically shift hashes if needed. The details of this method are well explained in the
dictobject.c file of the Python source.

N To debug hash collisions, you can use the hash() function paired with collections.
,@ Counter. This will quickly show you where hash collisions occur but it does not take the

dict probing sequence into consideration.

Chapter 4 107

In addition to the hash collision performance problem, there is another behavior that might surprise
you. When deleting items from a dictionary, it won't actually resize the dictionary in memory. The result
is that both copying and iterating over the entire dictionary take 0(m) time (where m is the maximum
size of the dictionary); n, the current number of items, is not used. So, if you add 1,000 items to a dict
and remove 999, iterating and copying will still take 1,000 steps. The only way to work around this
issue is by recreating the dictionary, which is something that both the copy and insert operations
do. Note that recreation during an insert operation is not guaranteed and depends on the number
of free slots available internally.

set — Like a dict without values
A set is a structure that uses the hash() function to get a unique collection of values. Internally, it is

very similar to a dict, with the same hash collision problem, but there are a few handy features of
set that need to be shown:

>>> def print_set(expression, set_):
'Print set as a string sorted by letters'
print(expression, ''.join(sorted(set_)))

>>> spam = set('spam')
>>> print_set('spam:', spam)

spam: amps

>>> eggs = set('eggs’')

>>> print_set('eggs:', eggs)
eggs: egs

The first few are pretty much as expected. When we get to the operators, it gets interesting:

Expression Output Explanation
spam amps o)
All unique items. A set doesn'’t allow for duplicates.
eggs egs
spam & eggs s Every item in both.
spam | eggs aegmps Every item in either or both.
spam "~ eggs aegmp Every item in either but not in both.
spam - eggs amp . .
Every item in the first but not the latter.
eggs - spam eg
spam > eggs False
eggs > spam False True if every item in the latter is in the first.
spam > sp True
spam < sp False True if every item in the first is contained in the latter.

108 Pythonic Design Patterns

One useful example of set operations is calculating the differences between two objects. For example,
let’s assume we have two lists:

. current_users: The current users in a group

« new_users: The new list of users in a group

In permission systems, this is a very common scenario—mass adding and/or removing users from a
group. Within many permission databases, it’s not easily possible to set the entire list at once, so you
need a list to insert and a list to delete. This is where set comes in really handy:

>>> current_users = set((
ar,
b,
ar,
))

>>> new_users = set((
b,

c,

>>> to_insert = new_users - current_users
>>> sorted(to_insert)
['c', 'e']

>>> to_delete = current_users - new_users

>>> sorted(to_delete)
[a']

>>> unchanged = new_users & current_users

>>> sorted(unchanged)
['b', 'd']

Now, we have lists of all users who were added, removed, and unchanged. Note that sorted is only
needed for consistent output, since a set has no predefined sort order.

tuple — The immutable list

A tuple is another object that you probably use very often without even noticing it. When you look
at it initially, it seems like a useless data structure. It’s like a list that you can’t modify, so why not just
use a list? In fact, there are a few cases where a tuple offers some really useful functionalities that
a list does not.

Chapter 4 109

Firstly, they are hashable. This means that you can use a tuple as a key in a dict or as an item of a
set, which is something a 1ist can'’t do:

spam

€ggs

data = dict()
data[spam] = 'spam'

dataf[eggs] = 'eggs'
import pprint

pprint.pprint(data)
{(1, 2, 3): 'spam’, (4, 5, 6): 'eggs'}

However, tuples can contain more than simple numbers. You can use nested tuples, strings, numbers,
and anything else for which the hash() function returns a consistent result:

spam = 1, ‘'abc', (2, 3, (4, 5)), 'def’'
eggs = 4, (spam, 5), 6

data = dict()
data[spam] = 'spam'

dataf[eggs] = 'eggs'
import pprint

pprint.pprint(data)
{(1, 'abc', (2, 3, (4, 5)), 'def'): 'spam',
(4, ((1, 'abc', (2, 3, (4, 5)), 'def'), 5), 6): ‘eggs'}

You can make these as complex as you need. As long as all the parts of the tuple are hashable, you will
have no problem hashing the tuple as well. You can still construct a tuple containing a 1ist or any
other unhashable type without a problem, but that will make the tuple unhashable.

Perhaps even more useful is the fact that tuples also support tuple packing and unpacking:

>»> a, b, c=1, 2, 3
>>> a
1

>>> spam = a, (b, c)

Pythonic Design Patterns

In addition to regular packing and unpacking, from Python 3 onward, we can actually pack and unpack
objects with a variable number of items:

*eggs = range(190)

Chapter 4 111

Packing and unpacking can be applied to function arguments:

>>> def eggs(*args):

print('args:', args)

>>> eggs(1l, 2, 3)
args: (1, 2, 3)

They are equally useful when returning from a function:

>>> def spam_eggs():
return 'spam', 'eggs'

>>> spam, eggs = spam_eggs()
>>> spam

‘spam’

>>> eggs
'eggs’

Now that you have seen the core Python collections and their limitations, you should understand a
bit better when certain collections are a good (or bad) idea. And more importantly, if a data structure
doesn’t perform as you expect it to, you will understand why.

Unfortunately, often real-world problems are not as simple as the ones you have seen in this chapter,
so you will have to weigh up the pros and the cons of the data structures and choose the best solution
for your case. Alternatively, you can build a more advanced data structure by combining a few of these
structures. Before you start building your own structures, however, keep reading because we will now
dive into more advanced collections that do just that: combine the core collections.

Pythonic patterns using advanced collections

The following collections are mostly just extensions of base collections; some of them are fairly simple,
while others are a bit more advanced. For all of them, though, it is important to know the characteristics
of the underlying structures. Without understanding them, it will be difficult to comprehend the
characteristics of the collections.

There are a few collections that are implemented in native C code for performance reasons, but all of
them can easily be implemented in pure Python as well. The following examples will show you not only
the features and characteristics of these collections, but also a few example design patterns where they
can be useful. Naturally, this is not an exhaustive list, but it should give you an idea of the possibilities.

Smart data storage with type hinting using dataclasses

One of the most useful recent additions to Python (since 3.5) is type hinting. With the type annotations,
you can give type hints to your editor, documentation generator, and others reading your code.

112 Pythonic Design Patterns

Within Python, we are generally expected to be “consenting adults,” which means the
hints are not enforced in any way. This is similar to how private and protected variables
in Python are not enforced. This means that we can easily give a completely different type
from what our hint would suggest:

>>> spam: int

>>> _ _annotations_ ['spam']

<class 'int'>

>>> spam = 'not a number'
>>> _ annotations_ ['spam']
<class 'int'>

Even with the int type hint, we can still insert a str if we want to.

The dataclasses module, which was introduced in Python 3.7 (backports available for Python 3.6), uses
the type hinting system to automatically generate classes, including documentation and constructors
based on these types:

>>> import dataclasses

>>> @dataclasses.dataclass
. class Sandwich:
spam: int

eggs: int = 3

>>> Sandwich(1, 2)
Sandwich(spam=1, eggs=2)

>>> sandwich = Sandwich(4)
>>> sandwich

Sandwich(spam=4, eggs=3)

>>> sandwich.eggs

3

>>> dataclasses.asdict(sandwich)
{'spam': 4, ‘'eggs': 3}

>>> dataclasses.astuple(sandwich)
(4, 3)

The basic class looks quite simple and like it’s nothing special, but if you look carefully, the dataclass
has generated multiple methods for us. Which ones are generated becomes obvious when looking at
the dataclass arguments:

Chapter 4 113

>>> help(dataclasses.dataclass)

Help on ... dataclass(..., *, init=True, repr=True, eq=True,
order=False, unsafe_hash=False, frozen=False) ...

As you can see, dataclass has several Boolean flags that decide what to generate.
First, the init flag tells dataclass to create an __init__ method that looks something like this:

>>> def __init__ (self, spam, eggs=3):

self.spam = spam

self.eggs = eggs

Further, dataclass has flags for:

. repr: This generatesa__repr__ magic function that generates a nice and readable output like
Sandwich(spam=1, eggs=2) instead of somethinglike <_ main__.Sandwich object at @x...>.

+ eq: This generates an automatic comparison method that compares two instances of Sandwich
by their value when doing if sandwich_a == sandwich_b.

. order: This generates a whole range of methods so that comparison operators such as >= and
< work by comparing the output of dataclasses.astuple.

. unsafe_hash: This will force the generation of a__hash__ method so that you use the hash()
function on it. By default, a __hash__ function is only generated when all parts of the object
are considered immutable. The reason for this is that hash() should always be consistent. If
you wish to store an object in a set, it needs to have a consistent hash. Since a set uses hash()
to decide which memory address to use, if the object changes, the set would need to move
the object as well.

« frozen: This will prevent changes after the instance has been created. The main use for this
is to make sure the hash() of the object remains consistent.

+ slots:Thisautomaticallyaddsa__slots__attribute which makes attribute access and storage
faster and more efficient. More about slots in Chapter 12, Performance - Tracking and Reducing
Your Memory and CPU Usage.

The only flag that adds validation is the frozen flag, which makes everything read-only and prevents
us from changing the _ setattr__ and _ getattr__ methods, which could be used to modify the
instance otherwise.

The type hinting system still only provides hints; however, these hints are not enforced in any way.
In Chapter 6, Decorators — Enabling Code Reuse by Decorating, you will see how we can add these types
of enforcements to our code using custom decorators.

For a more useful example that includes dependence, let’s say that we have some users who all belong
to one or multiple groups in a system:

>>> import typing

>>> @dataclasses.dataclass
. class Group:
name: str

114 Pythonic Design Patterns

parent: 'Group' = None

>>> @dataclasses.dataclass
. class User:
username: str
email: str = None
groups: typing.List[Group] = None

users = Group('users')

admins = Group('admins', users)
rick = User('rick', groups=[admins])
gvr = User('gvanrossum', ‘'guido@python.org', [admins])

>>> rick.groups
[Group(name="'admins"', parent=Group(name='users', parent=None))]

>>> rick.groups[@].parent
Group(name="users', parent=None)

In addition to linking dataclasses to each other, this also shows how to create a collection as a field
and how to have recursive definitions. As you can see, the Group class references its own definition
as a parent.

These dataclasses are especially useful when used for reading data from databases or CSV files. You
can easily extend the behavior of dataclasses to include custom methods, which makes them a very
useful basis for storing your custom data models.

Combining multiple scopes with ChainMap

Introduced in Python 3.3, ChainMap allows you to combine multiple mappings (dictionaries, for
example) into one. This is especially useful when combining multiple contexts. For example, when
looking for a variable in your current scope, by default, Python will search in locals(), globals(),
and, lastly, builtins.

To explicitly write code to do this, we could do something like this:

>>> import builtins
builtin_vars = vars(builtins)
key = 'something to search for'
if key in locals():
value = locals()[key]

. elif key in globals():
value = globals()[key]

. elif key in builtin_vars:

Chapter 4 115

value = builtin_vars[key]

. else:
raise NameError(f'name {key!r} is not defined')
Traceback (most recent call last):

NameError: name 'something to search for' is not defined

This works, but it’s ugly to say the least. We can make it prettier by removing some of the repeated code:

>>> mappings = locals(), globals(), vars(builtins)

>>> for mapping in mappings:
if key in mapping:
value = mapping[key]
break
. else:
raise NameError(f'name {key!r} is not defined")
Traceback (most recent call last):

NameError: name 'something to search for' is not defined

That’s a lot better! Moreover, this can actually be considered a nice solution. But since Python 3.3, it’s
even easier. Now, we can simply use the following code:

>>> import collections

>>> mappings = collections.ChainMap(
locals(), globals(), vars(builtins))

>>> mappings[key]

Traceback (most recent call last):

KeyError: ‘'something to search for'

Asyou can see, the ChainMap class is automatically coalescing the requested value through every given
dict until it finds a match. And if the value is not available, a KeyError is raised since it behaves like
adict.

This is very useful for reading configurations from multiple sources and simply getting the first
matching item. For a command-line application, this could start with the command-line arguments,
followed by the local configuration file, followed by the global configuration file, and lastly the defaults.
To illustrate a bit of code similar to what I use in small command-line scripts:

>>> import json

>>> import pathlib

>>> import argparse

116 Pythonic Design Patterns

import collections

DEFAULT = dict(verbosity=1)

config file = pathlib.Path('config.json")
if config file.exists():
config = json.load(config_file.open())
. else:

config = dict()

parser = argparse.ArgumentParser()
parser.add_argument('-v', '--verbose', action='count',
dest="verbosity"')

_CountAction(...)

args, _ = parser.parse_known_args()

defined_args = {k: v for k, v in vars(args).items() if v}
combined = collections.ChainMap(defined_args, config, DEFAULT)
combined['verbosity"']

args, _ = parser.parse_known_args(['-vv'])

defined_args = {k: v for k, v in vars(args).items() if v}
combined = collections.ChainMap(defined_args, config, DEFAULT)
combined['verbosity"']

The inheritance can clearly be seen here. When a specific command-line argument is given (-vv), that
result is used. Otherwise, the code falls back to the one in DEFAULTS or any other available variable.

Default dictionary values using defaultdict

The defaultdict is one of my favorite objects in the collections package. Before it was added to the
core, I wrote similar objects several times. While it is a fairly simple object, it is extremely useful for all
sorts of design patterns. Instead of having to check for the existence of a key and adding a value every
time, you can just declare the default from the beginning, and there is no need to worry about the rest.

For example, let’s say we are building a very basic graph structure from a list of connected nodes.
This is our list of connected nodes (one way):

nodes = [
("a’, b,
(ta', 'c'),
(‘b 'ah),

Chapter 4 117

(b, "d"),
(e, ran),
('dIJ 'aI)J
('d’, 'b'),
('dIJ 'CI)J

]

Now, let’s put this graph into a normal dictionary:

>>> graph = dict()
>>> for from_, to in nodes:
if from_ not in graph:
graph[from_] = []
graph[from_].append(to)

>>> import pprint

>>> pprint.pprint(graph)
{'a: ['b", 'c'l,

'b': ['a', 'd'],

e [fa'l,

'‘d': ['a', 'b', 'c']}

Some variations are possible, of course, such as using setdefault. However, they remain more complex
than they need to be.

The truly Pythonic version uses defaultdict instead:
>>> import collections
>>> graph = collections.defaultdict(list)
>>> for from_, to in nodes:

graph[from_].append(to)

>>> import pprint

>>> pprint.pprint(graph)
defaultdict(<class 'list'>,

{a": ['b", c'l,

'b': ['a', 'd'],

s ['a'l,

'd': ['a', 'b', 'c']})

118 Pythonic Design Patterns

Isn’t that a beautiful bit of code? The defaultdict can also be used as a basic version of the Counter
object. It’s not as fancy and doesn’t have all the bells and whistles that Counter has, but it does the
job in many cases:

>>> counter = collections.defaultdict(int)

>>> counter['spam'] += 5

>>> counter
defaultdict(<class 'int'>, {'spam': 5})

The default value for defaultdict needs to be a callable object. In the previous cases, these were
int and list, but you can easily define your own functions to use as a default value. That’s what the
following example uses, although I don’t recommend production usage since it lacks a bit of readability.
I do believe, however, that it is a beautiful example of the power of Python.

This is how we create a tree in a single line of Python:

import collections

def tree(): return collections.defaultdict(tree)

Brilliant, isn't it? Here’s how we can actually use it:

>>> import json
>>> import collections

def tree():
return collections.defaultdict(tree)

colours = tree()
colours['other']['black"'] 0x000000
colours['other']['white"'] OXFFFFFF
colours['primary']['red'] = 0xFF0000
colours['primary']['green'] = Ox00OFF00

colours[‘primary']['blue’'] = ©x00OOFF
colours['secondary']['yellow'] = OxFFFF00

colours[‘'secondary']['aqua'] = Ox@OFFFF
colours['secondary']['fuchsia'] = OxFFOOFF

print(json.dumps(colours, sort_keys=True, indent=4))
"other": {

"black": 9,
"white": 16777215

Chapter 4

"primary": {
"blue": 255,
"green": 65280,
"red": 16711680

bs

"secondary": {
"aqua": 65535,
"fuchsia": 16711935,
"yellow": 16776960

The nice thing is that you can make it go as deep as you like. Because of the defaultdict base, it
generates itself recursively.

enum — A group of constants

The enum package introduced in Python 3.4 is quite similar in its workings to enums in many other
programming languages, such as C and C++. It helps to create reusable constants for your module so
you can avoid arbitrary constants. A basic example is as follows:

>>> import enum

>>> class Color(enum.Enum):
red = 1
green = 2
blue = 3

>>> Color.red

<Color.red: 1>

>>> Color['red']

<Color.red: 1>

>>> Color(1)

<Color.red: 1>

>>> Color.red.name

‘red’

>>> Color.red.value

1

>>> isinstance(Color.red, Color)
True

>>> Color.red is Color['red']
True

>>> Color.red is Color(1)
True

120 Pythonic Design Patterns

A few of the handy features of the enum package are that the objects are iterable, accessible through
both numeric and textual representation of the values, and, with proper inheritance, even comparable
to other classes.

The following code shows the usage of a basic API:

>>> for color in Color:
color
<Color.red: 1>

<Color.green: 2>

<Color.blue: 3>

>>> colors = dict()

>>> colors[Color.green] = 0x00FF00
>>> colors

{<Color.green: 2>: 65280}

One of the lesser-known possibilities of the enum package is that you can make value comparisons work
in addition to the identity comparisons you would normally use. And this works for every type—not
just integers but (your own) custom types as well.

With a regular enum, only an identity check (thatis, a is b) works:

>>> import enum

>>> class Spam(enum.Enum):
EGGS = 'eggs'

>>> Spam.EGGS == 'eggs'

False

When we make the enum inherit str as well, it starts comparing the values in addition to the identity:

>>> import enum

>>> class Spam(str, enum.Enum):
EGGS = 'eggs'

>>> Spam.EGGS == 'eggs'

True

In addition to the preceding examples, the enum package has a few other variants such as enum.Flag and
enum. IntFlag, which allow for bitwise operations. These can be useful for representing permissions
as follows: permissions = Perm.READ | Perm.Write.

Whenever you have a list of constants that can be grouped together, consider using the enum package.
It makes validation much cleaner than having to use if/elif/elif/else several times.

Chapter 4 121

Sorting collections using heapq

The heapg module is a great little module that makes it very easy to create a priority queue in Python.
Itis a data structure that will always make the smallest (or largest, depending on the implementation)
item available with minimum effort. The API is quite simple, and one of the best examples of its usage
can be seen in the OrderedDict object. While you might not need it often, it is a very useful structure
if you need it. And understanding the inner workings is important if you wish to understand the
workings of classes such as OrderedDict.

\l/

@ If you are looking for a structure to keep your list always sorted, try the bisect module
- instead, which is covered in the next section.

The basic usage of heapq is simple but somewhat confusing initially:

>>> import heapq

heap = [1, 3, 5, 7, 2, 4, 3]
heapq.heapify(heap)

heap
2, 3,7, 3, 4, 5]

while heap:
heapq.heappop(heap), heap

[2, 3, 3, 7, 5, 4])

[3, 3, 4, 7, 5])

[3, 5, 4, 7])

[4, 5, 7])

[5, 71

[71)

[(n

One important thing to note here—something that you have probably already understood from the
preceding example—is that the heapq module does not create a special object. It consists of a few
methods to treat a regular list as a heap. That doesn’t make it less useful, but it is something to take
into consideration.

The really confusing part, at first glance, is the sort order. The array is actually sorted but not as a list;
it is sorted as a tree. To illustrate this, take a look at the following tree, which shows how the tree is
supposed to be read:

122 Pythonic Design Patterns

The smallest number is always at the top and the biggest numbers are always at the bottom row of
the tree. Because of that, it’s really easy to find the smallest number, but finding the largest is not as
easy. To get the sorted version of the heap, we simply need to keep removing the top of the tree until
all the items are gone. Therefore, the heapsort algorithm can be implemented as follows:

>>> def heapsort(iterable):
heap = []
for value in iterable:
heapq.heappush(heap, value)

while heap:
yield heapq.heappop(heap)

>>> list(heapsort([1, 3, 5, 2, 4, 1]))
[1, 1, 2, 3, 4, 5]

With heapq doing the heavy lifting, it becomes incredibly easy to write your own version of the sorted()
function.

Since the heappush and heappop functions both have 0(log(n)) time complexity, they can be considered
really fast. Combining those for the n items in the preceding iterable gives us 0(n*1log(n)) for the
heapsort function. The heappush method uses list.append() internally and swaps the items in the
list to avoid the O(n) time complexity of 1ist.insert().

The log(n) refers to the base 2 logarithm function. To calculate this value, the
math.log2 () function can be used. This results in an increase of 1 every time the number

\E/\, doubles in size. For n=2, the value of log(n) is 1, and consequently for n=4 and n=8, the
log values are 2 and 3, respectively. And n=1024 results in a log of only 10.

This means that a 32-bit number, which is 2**32 = 4294967296, has a log of 32.

Searching through sorted collections using bisect

The heapq module in the previous section gave us an easy way to sort a structure and keep it sorted.
But what if we want to search through a sorted collection to see whether the item exists? Or what'’s the
next biggest/smallest item if it doesn’t? That’s where the bisect algorithm helps us.

The bisect module inserts items in an object in such a way that they stay sorted and are easily
searchable. If your primary purpose is searching, then bisect should be your choice. If you're
modifying your collection a lot, heapq might be better for you.

As is the case with heapq, bisect does not really create a special data structure. The bisect module
expects a list and expects that 1ist to always be sorted. It is important to understand the performance
implications of this. While appending items to a 1ist has 0(1) time complexity, inserting has 0(n)
time complexity, making it a very heavy operation. Effectively, creating a sorted list using bisect takes
0(n*n), which is quite slow, especially because creating the same sorted list using heapq or sorted()
takes 0(n*1log(n)) instead.

Chapter 4 123

If you have a sorted structure and you only need to add a single item, then the bisect algorithm can
be used for insertion. Otherwise, it’s generally faster to simply append the items and call 1ist.sort()
or sorted() afterward.

To illustrate, we have these lines:

>>> import bisect

sorted_list = []
sorted_list.append(5)

sorted_list.append(3)

sorted_list.append(1)
sorted list.append(2)
sorted _list.sort()
sorted list

2, 3, 5]

sorted_list = []
bisect.insort(sorted_list,
bisect.insort(sorted list,
bisect.insort(sorted list,
bisect.insort(sorted_list,
sorted_list

2, 3, 5]

For a small number of items, the difference is negligible, but the number of operations needed to sort
using bisect quickly grows to a point where the difference will be large. For n=4, the difference is
justbetween4 * 1 + 8 = 12and1 + 2 + 3 + 4 = 10, making the bisect solution faster. But if we
were to insert 1,000 items, it would be 1000 + 1000 * log(1000) = 10966 versus1l + 2 + .. 1000 =
1000 * (1000 + 1) / 2 = 500500. So, be very careful while inserting many items.

Searching within the list is very fast, though; because it is sorted, we can use a very simple binary
search algorithm. For example, what if we want to check whether a few numbers exist within the list?
The simplest algorithm, shown as follows, simply loops through the list and checks all items, resulting
in 0(n) worst-case performance:

>>> sorted_list

>>> def contains(sorted_list, value):
for item in sorted_list:
if item > value:
break

elif item == value:

124 Pythonic Design Patterns

return True

return False

>>> contains(sorted list, 2)

True
>>> contains(sorted list, 4)
False
>>> contains(sorted list, 6)

False

With the bisect algorithm, though, there is no need to walk through the entire list:

>>> import bisect

>>> sorted list = [1, 2, 5]
>>> def contains(sorted_list, value):
i = bisect.bisect left(sorted list, value)
return i < len(sorted_list) and sorted_list[i] == value

>>> contains(sorted_list, 2)
True

>>> contains(sorted_list, 4)
False

>>> contains(sorted_list, 6)
False

The bisect_left function tries to find the position at which the number is supposed to be. This is
actually what bisect. insort does as well; it inserts the number at the correct position by searching
for the location of the number.

The biggest difference between these methods is that bisect does a binary search internally, which
means that it starts in the middle and jumps to the middle of the left or right section, depending on
whether the value in the list is bigger or smaller than the value we are looking for. To illustrate, we
will search for 4 in a list of numbers from 0 to 14:

sorted_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
Step 1: 4 >
Step 2:

N

7
3
)
5

4 >
Step 3: 4 >
Step 4: 4 >

As you can see, after only four steps, we have found the number we searched for. Depending on the
number (7, for example), it may go faster, but it will never take more than 0(log(n)) steps to find a
number.

Chapter 4 125

With a regular list, a search will simply walk through all the items until it finds the desired item. If
you’re lucky, it could be the first number you encounter, but if you’re unlucky, it could be the last item.
In the case of 1,000 items, that would be the difference between 1,000 steps and 1og(1000) = 10 steps.

While very fast and efficient, the bisect module doesn’t feel Pythonic at all. Let’s fix that by creating
our own SortedList class:

>>> import bisect

>>> import collections

>>> class SortedList:
def __init__ (self, *values):

self. list = sorted(values)

index(self, value):
i = bisect.bisect_left(self._ list, value)
if i < len(self. list) and self. list[i] == value:

return index

delete(self, value):
del self. list[self.index(value)]

add(self, value):

bisect.insort(self._list, value)

__iter__(self):
for value in self. list:
yield value

__exists__ (self, value):

return self.index(value) is not None

>>> sorted_list = SortedList(1, 3, 6, 2)
>>> 3 in sorted_list

True

>>> 5 in sorted_list

False

>>> sorted_list.add(5)

>>> 5 in sorted_list

True

>>> list(sorted_list)

[1, 2, 3, 5, 6]

126 Pythonic Design Patterns

While functional, this implementation is obviously still a tad limited. But it’s certainly a nice starting
point in case you need a structure like this.

Global instances using Borg or Singleton patterns

Most programmers will be familiar with the Singleton pattern, which ensures that only a single instance
of a class will ever exist. Within Python, a common alternative solution to this is the Borg pattern,
named after the Borg in Star Trek. Where a Singleton enforces a single instance, the Borg pattern
enforces a single state for all instances and subclasses as well. Due to the way class creation works in
Python, the Borg pattern is a tiny bit easier to implement and modify than the Singleton pattern as well.

To illustrate an example of both:
The Borg class:

>>> class Borg:
_state = {}
def __init__ (self):
self. dict__ = self._state

class SubBorg(Borg):

pass

Borg()

Borg()

Borg()
.a_property = 123
.a_property

.a_property

The Singleton class:

>>> class Singleton:
def __new__(cls):
if not hasattr(cls, '_instance'):

cls. instance = super(Singleton, cls). new_ (cls)

return cls. instance

>>> class SubSingleton(Singleton):

pass

Chapter 4

a = Singleton()

b = Singleton()

c = SubSingleton()
a.a_property = 123
b.a_property

.a_property

The Borg pattern works by overriding the _ dict__ of the instance that contains the instance state.
The Singleton overridesthe _ new__ (note, not__init_) method so that we only ever return a single
instance of the class.

No need for getters and setters with properties

Within many languages (notably Java), a common design pattern for accessing instance variables
is using getters and setters so that you can modify the behavior when needed in the future. Within
Python, we can transparently change the behavior of attributes for existing classes without the need
to touch the calling code:

>>> class Sandwich:
def __init_ (self, spam):
self.spam = spam

@property
def spam(self):
return self._spam

@spam.setter
def spam(self, value):
self. _spam = value
if self. spam >= 5:
print('You must be hungry"')

@spam.deleter
def spam(self):
self. spam = 0

sandwich = Sandwich(2)
sandwich.spam += 1
sandwich.spam += 2

must be hungry

128 Pythonic Design Patterns

The calling code doesn’t need to be changed at all. We can simply change the behavior of the property
in a completely transparent way.

Dict union operators

This is not actually a separate advanced collection, but it is advanced usage of the dict collection.
Since Python 3.9, we have a few easy options for combining multiple dict instances. The “old” solution
was to use dict.update(), possibly combined with dict.copy() to create a new instance. While that
works fine, it is rather verbose and a tad clunky.

Since this is a case where a few examples are much more useful than just explanation, let’s see how
the old solution works:

dict(x=1, y=2)
dict(y=1, z=2)

a.copy()

1, 'y': 2}
update(b)

dict(x=1, y=2)
dict(y=1, z=2)

This is a feature that can be very convenient when specifying arguments to a function, especially if
you want to automatically fill in keyword arguments with default arguments:

some_function(**(default_arguments | given_arguments))
Now that you have seen a few of the more advanced collections bundled with Python, you should have

a pretty good idea of when to apply which type of collection. You may also have learned about a few
new Python design patterns.

Chapter 4 129

Exercises

In addition to enhancing the examples in this chapter, there are many other exercises:

. Create a SortedDict collection that takes a keyfunc to decide the sort order.

. Create a SortedList collection that has 0(log(n)) inserts and always returns a sorted list
during each iteration.

« Create a Borg pattern that has a state per subclass.

/ Example answers for these exercises can be found on GitHub: https://github.com/
\/;n> mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

Summary

Python is a bit unlike other languages in some aspects and several design patterns that are common
in other languages make little sense in Python. In this chapter, you have seen some common Python
design patterns, but many more patterns exist. Before you start implementing your own collections
based on these patterns, quickly search the web to see whether there is an existing solution already.
In particular, the collections module receives a lot of updates, so it is possible that your problem
has already been solved.

If you are ever wondering how these structures work, have a look at the following source:
https://github.com/python/cpython/blob/master/Lib/collections/__init__.py.

After finishing this chapter, you should be aware of the time complexities of the basic Python structures.
You should also be familiar with a few Pythonic methods of tackling certain problems. Many of these
examples use the collections module, but this chapter does not list all of the classes in the collections
module.

Selecting the correct data structure within your applications is by far the most important performance
factor for your code. This makes basic knowledge about performance characteristics essential for any
serious programmer.

In the next chapter, we will continue with functional programming, which covers lambda functions,
list comprehensions, dict comprehensions, set comprehensions, and an array of related topics.
Additionally, you will learn about the mathematic background of functional programming.

https://github.com/python/cpython/blob/master/Lib/collections/__init__.py

130 Pythonic Design Patterns

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHulf

https://discord.gg/QMzJenHuJf

Functional Programming —
Readability Versus Brevity

This chapter will show you some of the cool tricks that functional programming in Python gives you,
and it will explain some of the limitations of Python’s implementation. For learning and entertain-
ment, we will also briefly discuss the mathematical equivalent using lambda calculus, using the Y
combinator as an example.

The last few paragraphs will list and explain the usage of the functools and itertools libraries. If you
are familiar with these libraries, feel free to skip them, but note that some of these will be used heavily
in the later chapters about decorators (Chapter 6), generators (Chapter 7), and performance (Chapter 12).

These are the topics covered in this chapter:

+ The theory behind functional programming
. list, dict, and set comprehensions

+ lambda functions

. functools (partial and reduce)

. itertools (accumulate, chain, dropwhile, starmap, and so on)

First, we will begin with a bit of history about functional programming in Python and what functional
programming actually means.

Functional programming

Functional programming is a paradigm that originates from the lambda calculus (A-calculus), a formal
system in mathematics that can be used to simulate any Turing machine. Without diving too much
into the A-calculus, this means that computation is performed using only the function arguments
as input and that the output consists of a new variable without mutating the input variables. With a
strictly functional programming language this behavior would be enforced, but since Python is not a
strictly functional language, this doesn’t necessarily hold true.

132 Functional Programming — Readability Versus Brevity

It is still a good idea to adhere to this paradigm since mixing paradigms can cause unforeseen bugs,
as discussed in Chapter 3, Pythonic Syntax and Common Pitfalls.

Purely functional

Purely functional programming expects functions to have no side effects. That means that arguments
given to the function should not be mutated, and neither should any other external states. Let’s illus-
trate this with a simple example:

>>> def add_value_functional(items, value):
return items + [value]

items = [1, 2, 3]

add_value functional(items, 5)
2, 3, 5]

items

2, 3]

def add_value_regular(items, value):
items.append(value)

return items

add_value_regular(items, 5)
2, 3, 5]

items

2, 3, 5]

That essentially shows the difference between a regular function and a purely functional one. The first
function returns a new value purely based on the input, without any other side effects. This is in com-
parison to the second function, which modifies the given input or even variables outside of its scope.

Even outside of functional programming, limiting your changes to local variables only is a good idea.
Keeping functions purely functional (relying only on the given input) makes code clearer, easier to
understand, and better to test as there are fewer dependencies. Well-known examples can be found
within the math module. These functions (sin, cos, pow, sqrt, and so on) have an input and an output
that is strictly dependent on the input.

Functional programming and Python

Python is one of the few, or at least earliest, non-functional programming languages to add functional
programming features. The initial few functional programming functions were introduced around
1993, and these were lambda, reduce, filter, and map. Since that time, Guido van Rossum has been
less than happy with their existence because they often make readability suffer. Additionally, functions
such as map and filter can easily be replicated using list comprehensions. Because of this, Guido
wanted to remove these functions with the Python 3 release, but after a lot of resistance he opted for
moving at least the reduce function to functools.reduce.

Chapter 5 133

Since then, several other functional programming features have been added to Python:

. list/dict/set comprehensions
. Generator expressions
. Generator functions

. Coroutines

There are also a host of useful functions in the functools and itertools modules.

Advantages of functional programming

The big question is, of course, why would you want to use functional programming instead of regular/
procedural programming? There are multiple advantages to writing code in a functional style:

+ One major advantage of writing purely functional code is that it becomes trivially easy to run
in parallel. Because there are no external variables needed and no external variables changed,
you can easily parallelize the code to run on multiple processors or even on multiple machines.
Assuming you can easily transfer the input variables and output results, of course.

« Because the functions are self-contained and don’t have any side effects, they mitigate several
kinds of bugs. Mutating function arguments in-place, for example, is a great source of bugs.
Additionally, a seemingly useless function call that modifies a variable in the parent scope
couldn’t exist in a purely functional codebase.

« Itmakestesting much easier. If a function only has a given input and output and does not touch
anything outside of those, you can test without having to set up an entire environment for that
function. It also omits the need for sandboxing functions while testing them.

Naturally, functional programming also comes with a few drawbacks, several of which are caused by
the same advantages.

In some cases it can be a hassle to pass along all useful arguments all of the time. When modifying
a database for example, you need to get the database connection somehow. If you decide to pass the
database connection as an argument and did not prepare for that, you will need to modify not just
that function but all the calling functions as well to pass along that argument. In those cases a globally
accessible variable containing the database connection could save you a lot of work.

Another often-touted downside of functional programming is recursion. While recursion is a very
useful tool, it can make it much harder to trace the code execution path, which can be a problem
when solving bugs.

Functional programming has its place and its time. It’s not suited for every situation but when applied
correctly it is a very useful tool for your toolbox. Now let’s continue with some examples of functional
programming.

list, set, and dict comprehensions

The Python list, set, and dict comprehensions are a very easy way to apply a function or filter to
a list of items.

134 Functional Programming — Readability Versus Brevity

When used correctly, 1ist/set/dict comprehensions can be really useful for quick filtering or trans-
forming of lists, sets, and dicts. The same results can be achieved using the “functional” functions
map and filter, but list/set/dict comprehensions are often easier to use and also easier to read.

Basic list comprehensions

Let’s dive right into a few examples. The basic premise of a 1ist comprehension looks like this:

>>> squares = [x ** 2 for x in range(10)]

>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We can easily expand this with a filter:

>>> odd_squares = [x ** 2 for x in range(10) if x % 2]
>>> odd_squares
[1, 9, 25, 49, 81]

This brings us to the version that is common in most functional languages using map and filter:

>>> def square(x):

return x ** 2

def odd(x):

return x % 2

squares = list(map(square, range(10)))
squares
1, 4, 9, 16, 25, 36, 49, 64, 81]

odd_squares = list(filter(odd, map(square, range(10))))

odd_squares
9, 25, 49, 81]

After seeing this it becomes slightly more obvious why Guido van Rossum wanted to remove these
from the language. In particular, the version using both filter and map isn't all that readable given
the number of parentheses, unless you're used to the Lisp programming language, that is.

The most important application of map is actually not using map itself, but using one of the map-like
functions such as multiprocessing.pool.Pool.map and variants such as map_async, imap, starmap,
starmap_async, and imap_unordered, which automatically execute the functions in parallel on mul-
tiple processors.

While I am personally not against map or filter, I think their usage should be reserved for cases
where you have an existing function available to use in the map or filter call. A somewhat more
useful example would be:

Chapter 5 135

>>> import os

>>> directories = filter(os.path.isdir, os.listdir('.'))

>>> directories [x for x in os.listdir('.') if os.path.isdir(x)]

In this case, the filter version might be slightly more readable than the 1ist comprehension.

As for the list comprehensions, the syntax is pretty close to regular Python for loops, but the if
statement and automatic storing of results make it quite useful to condense code slightly. The regular
Python equivalent is not much longer:

odd_squares = []
for x in range(10):
if x % 2:
odd_squares.append(x ** 2)

>>> odd_squares
[1, 9, 25, 49, 81]

set comprehensions

In addition to 1ist comprehensions, we can also use a set comprehension, which has the same syntax
but returns a unique and unordered (all sets are unordered) set instead:

[x // 2 for x in range(3)]
0, 1]

>>> numbers = {x // 2 for x in range(3)}
>>> sorted(numbers)
[0, 1]

dict comprehensions

Lastly, we have dict comprehensions, which return a dict instead of a 1ist or set.

Beyond the return type, the only real difference is that you need to return both a key and a value. The
following is a basic example:

>>> {x: x ** 2 for x in range(6)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

>>> {x: x ** 2 for x in range(6) if x % 2}
{1: 1, 3: 9, 5: 25}

136 Functional Programming — Readability Versus Brevity

Since the output is a dictionary, the key needs to be hashable for the dict comprehension

\G/\/ to work. We covered hashing in Chapter 4, but the short version is that hash(key) needs
to return a consistent value for your object. That means that hashing mutable objects
such as lists is not possible.

The funny thing is that you can mix these two, of course, for even more unreadable magic:

>>> {x ** 2: [y for y in range(x)] for x in range(5)}

{e: [1, 1: [e], 4: [e, 1], 16: [0, 1, 2, 3], 9: [0, 1, 2]}

Obviously, you need to be careful with these. They can be very useful if used correctly, but the output
quickly becomes unreadable, even with proper whitespace.

Comprehension pitfalls

When using comprehensions, some care must be taken. Some types of operations are not as obvious
as you might expect. This time, we are looking for random numbers greater than @.5:

>>> import random

>>> [random.random() for _ in range(10) if random.random() >= 0.5]
[0.5211948104577864, ©.650010512129705, 0©.021427316545174158]

See that last number? It’s actually less than . 5. This happens because the first and the last random
calls are actually separate calls and return different results.

One way to counter this is by creating the list separately from the filter:
>>> import random
>>> numbers = [random.random() for _ in range(10)]

>>> [x for x in numbers if x >= 0.5]
[0.715510247827078, ©.8426277505519564, ©.5071133900377911]

That obviously works, but it’s not all that pretty. So what other options are there? Well, there are a few
but the readability is a bit questionable, so these are not the solutions that I would recommend. It’s
good to see them at least once, however.

Here is a 1ist comprehension within a 1ist comprehension:

>>> import random

>>> [x for x in [random.random() for _ in range(10)] if x >= 0.5]

And here’s one that quickly becomes an incomprehensible 1ist comprehension:

>>> import random

>>> [x for _ in range(10) for x in [random.random()] if x >= ©.5]

Chapter 5 137

Caution is needed with these options as the double list comprehension actually works like a nested
for loop would, so it quickly generates a lot of results. To elaborate on this, consider:

>>> [(x, y) for x in range(3) for y in range(3, 5)]
[(e, 3), (8, 4), (1, 3), (1, 4), (2, 3), (2, 4)]

This effectively does the following:

>>> results = []
>>> for x in range(3):
for y in range(3, 5):
results.append((x, y))

>>> results
[(8, 3), (0, 4), (1, 3), (1, 4), (2, 3), (2, 4)]

These can be useful for some cases, but I would strongly recommend against nesting comprehensions
as this quickly results in unreadable code. Understanding what is happening is still useful, however,
so let’s look at one more example. The following 1ist comprehension swaps the column and row
counts, so a 3 x 4 matrix becomes 4 x 3:

>>> matrix = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],

>>> reshaped_matrix =
[
[y for x in matrix for y in x][i * len(matrix) + j]
for j in range(len(matrix))
]

for i in range(len(matrix[0]))

>>> import pprint

>>> pprint.pprint(reshaped_matrix, width=40)
([1, 2, 3],

[4, 5, 6],

[7, 8, 9],

12 s A A

138 Functional Programming — Readability Versus Brevity

Even with the extra indentation, the 1ist comprehension justisn’t all that readable. With four nested
loops, that is expectedly so, of course. There are rare cases where nested list comprehensions might
be justified, such as very basic matrix manipulation. In the general case, however, I would not rec-
ommend using nested comprehensions.

Next up, we will look at 1ambda functions, which can be combined with map and filter for short
convenient functions.

lambda functions

The lambda statement in Python is simply an anonymous function. Due to the syntax, it is slightly
more limited than regular functions, but a lot can be done through it. As always though, readability
counts, so generally it is a good idea to keep it as simple as possible. One of the more common use
cases is as the sort key for the sorted function:

>>> import operator

>>> values = dict(one=1, two=2, three=3)

>>> sorted(values.items())
[(‘one', 1), ('three', 3), ('two', 2)]

>>> sorted(values.items(), key=lambda item: item[1])
[(‘one', 1), ('"two', 2), ('three', 3)]

>>> get value = operator.itemgetter(1l)
>>> sorted(values.items(), key=get_value)
[(‘one', 1), ('"two', 2), ('three', 3)]

The first version sorts by key and the second sorts by the value. The last one shows an alternative
option using operator.itemgetter to generate a function that gets a specific item.

The regular (non-lambda) function wouldn’t be much more verbose but in these cases, a lambda
function is a very useful shorthand. For completeness, let’s look at both identical functions:

>>> key = lambda item: item[1]

>>> def key(item):

return item[1]

Do note that PEP8 dictates that assigning a lambda to a variable is a bad idea
(https://peps.python.org/pep-0008/#programming-recommendations). And logically, itis. The idea
of an anonymous function is that it is just that—anonymous and without a name. If you are giving it
an identity, you should define it as a normal function.

In my opinion, the only valid use case for a lambda function is as an anonymous one-line argument
to a function such as sorted().

https://peps.python.org/pep-0008/#programming-recommendations

Chapter 5 139

The Y combinator

\ n’j This section can easily be skipped. It is mostly an example of the mathematical value of
\/ the lambda statement.

The Y combinator is probably the most famous example of the A-calculus:
Y = Af. (Ax. f (xx)) (Ax. f (xx))

All this looks very complicated, but that’s mostly because it uses the lambda calculus notation, which
is not all that difficult if you look beyond the special characters.

To illustrate, you should read this syntax, Ax, x2, as an anonymous (lambda) function that takes x
as an input and returns x2. In Python, this would be expressed almost exactly as it is in the original
lambda calculus, except for replacing A with lambda and . with :, so it results in lambda x: x**2.

With some algebra (https://en.wikipedia.org/wiki/Fixed-point_combinator#Fixed-point_
combinators_in_lambda_calculus), the Y combinator can be reducedto Yf = f(Yf), or a function
that takes the f function and applies it to itself. The A-calculus notation of this function is as follows:

Ax. f(xx)

Here is the Python notation for the 1ambda functions:

Y = lambda f: lambda *args: f(Y(f))(*args)

Or the regular function version:
def Y(F):
def y(*args):
y_function = f(Y(f))
return y_function(*args)

return y

This all comes down to a function that accepts a function f which gets called with that function as an
argument using the Y combinator.

This might still be a bit unclear, so let’s look at an example that actually uses it:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> def factorial(combinator):
def _factorial(n):

if n:
return n * combinator(n - 1)

else:

https://en.wikipedia.org/wiki/Fixed-point_combinator#Fixed-point_combinators_in_lambda_calculus
https://en.wikipedia.org/wiki/Fixed-point_combinator#Fixed-point_combinators_in_lambda_calculus

140 Functional Programming — Readability Versus Brevity

return 1

return _factorial

>>> Y(factorial)(5)
120

The following is the short version, where the power of the Y combinator becomes more apparent,
with a recursive anonymous function:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> Y(lambda c: lambda n: n and n * c(n - 1) or 1)(5)
120

Note thatthen and n * c(n - 1) or 1 partisshort for the if statement used in the longer version
of the function. Alternatively, this can be written using the Python ternary operator:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> Y(lambda c: lambda n: n * c(n - 1) if n else 1)(5)
120

You might be wondering about the point of this entire exercise. You could easily write a factorial
function in regular Python that is shorter, easier and more idiomatic. So what is the point of the Y
combinator? The Y combinator allows us to make a non-recursive function execute in a recursive way.

More importantly, however, I think it is an interesting demonstration of the power of Python — how
you can implement something as fundamental as the lambda-calculus in a few lines of Python. I think
it has a certain kind of beauty in its implementation.

One final example of the Y combinator will be given by the definition of quicksort in a few lines:

>>> quicksort = Y(lambda f:
lambda x: (
f([item for item in x if item < x[0]])
+ [y for y in x if x[@] == y]
+ f([item for item in x if item > x[@]])

) if x else [])

>>> quicksort([1, 3, 5, 4, 1, 3, 2])
[1, 1, 2, 3, 3, 4, 5]

While the Y combinator most likely doesn’t have much practical use in Python, it does show the power
of the 1ambda statement and how close Python is to the fundamental mathematics behind it. Essentially,
the difference is only in the notation and not in the functionality.

Chapter 5 141

Now that we know how to write our own lambda and functional functions, we will take a look at the
bundled functional functions in Python.

functools

In addition to the 1ist/dict/set comprehensions, Python also has a few (more advanced) functions
that can be really convenient when coding functionally. The functools library is a collection of func-
tions that return callable objects. Some of these functions are used as decorators (we’ll cover more
about that in Chapter 6, Decorators — Enabling Code Reuse by Decorating), but the ones that we are going
to talk about are used as straight-up functions to make your life easier.

partial — Prefill function arguments

The partial function is really convenient for adding some default arguments to a function that you
use often but can’t (or don’t want to) redefine. With object-oriented code, you can usually work around
cases similar to these, but with procedural code, you will often have to repeat your arguments. Let’s
take the heapq functions from Chapter 4, Pythonic Design Patterns, as an example:

>>> import heapq

heap = []
heapqg.heappush(heap, 1)
heapqg.heappush(heap, 3)
heapq.heappush(heap, 5)
heapq.heappush(heap, 2)
heapq.heappush(heap, 4)
heapg.nsmallest(3, heap)
2, 3]

Almost all of the heapq functions require a heap argument, so we are going to make a shortcut that
automatically fills the heap variable for us. This could easily be done with a regular function of course:

>>> def push(*args, **kwargs):

return heapq.heappush(heap, *args, **kwargs)

There is an easier method, however. Python comes bundled with a function called functools.partial
that generates a function with pre-filled arguments:

import functools
import heapq

heap = []
push = functools.partial(heapq.heappush, heap)
smallest = functools.partial(heapg.nsmallest, iterable=heap)

push(1)

142 Functional Programming — Readability Versus Brevity

push(3)
push(5)
push(2)

push(4)
smallest(3)
2, 3]

With functools.partial we can automatically fill in positional and/or keyword arguments for us. So
a call to push(...) is automatically expanded to heapq.heappush(heap, ...).

Why should we use partial instead of writing a lambda argument? Well, it’s mostly about convenience,
but it also helps solve the late binding problem discussed in Chapter 3, Pythonic Syntax and Common
Pitfalls. Additionally, partial functions still behave somewhat similarly to the original function, which
means they still have the documentation available and can be pickled, whereas lambda statements cannot.

The pickle module in Python allows serialization of many complex Python objects, but
4 not all by default. The 1lambda functions have no defined pickle method by default, but
\G/\ this can be worked around by defining your own lambda-pickle method in copy_reg.
dispatch_table. An easy way to achieve this is by using the dill library, which contains

a whole range of pickle helpers.

To illustrate the difference between lambda and functools.partial, look at the following example:

>>> lambda_push = lambda x: heapq.heappush(heap, x)

>>> heapq.heappush

<built-in function heappush>

>>> push

functools.partial(<built-in function heappush>, [1, 2, 5, 3, 4])
>>> lambda_push

<function <lambda> at ...

>>> heapq.heappush._ doc__
'Push item onto heap, maintaining the heap invariant.'
>>> push. doc_

"partial(func, *args, **keywords) - new function ...

>>> lambda_push.__doc___

Note how the 1ambda_push.__doc__doesn’t return anything and the 1lambda only has a very unhelpful
<function <lambda> ...>representation string. This is one of the reasons that functools.partial
is far more convenient to use in practice. It shows the documentation from the reference function;
the representation string shows exactly what it is doing and it can be pickled with no modification.

In Chapter 6, Decorators - Enabling Code Reuse by Decorating (specifically, in the section about functools.
wraps), we will see how we can make functions copy attributes from other functions in a similar fash-
ion to how functools.partial copies the documentation.

Chapter 5 143

reduce — Combining pairs into a single result
The reduce function implements a mathematical technique called folding. It applies a pair of the

previous result and the next item in the given list to the function that is passed.

The reduce function is supported by many languages but in most cases using different names such as
curry, fold, accumulate, or aggregate. Python has actually supported reduce for a very long time, but
since Python 3, it has been moved from the global scope to the functools library. Some code can be
simplified beautifully using the reduce statement; whether it’s readable or not is debatable, however.

Implementing a factorial function

One of the most used examples of reduce is for calculating factorials, which is indeed quite simple:

>>> import operator

>>> import functools

>>> functools.reduce(operator.mul, range(l, 5))
24

\/‘/’ The preceding code uses operator.mul instead of lambda a, b: a * b. While they
produce the same results, the former can be much faster.

Internally, the reduce function will do the following:

>>> from operator import mul

>>> mul(mul(mul(1, 2), 3), 4)
24

Or, creating a reduce function that automatically loops would look like:

>>> import operator

>>> def reduce(function, iterable):
print(f'iterable={iterable}")

result, *iterable = iterable

for item in iterable:
old_result = result

result = function(result, item)
print(f'{old_result} * {item} = {result}')

144 Functional Programming — Readability Versus Brevity

return result

>>> iterable = list(range(1, 5))
>>> iterable
[1, 2, 3, 4]

>>> reduce(operator.mul, iterable)
iterable=[1, 2, 3, 4]

1*2=2

2*3=6

6 * 4 =24

24

Using the form a, *b = c, we can split an iterable between the first item and the remaining ones.
Which means thata, *b = [1, 2, 3] will resultin a=1, b=[2, 3].

In this example, this means that we start by priming the result variable so it contains the initial value
and continue to call the function with the current result and the next item until the iterable is exhausted.

Effectively, this comes down to:

iterable = [1, 2, 3, 4]

2. result, *iterable = iterable
This gives us result=1 and iterable = [2, 3, 4].

3. Next up is the first call to operator.mul with the arguments result and item, which is stored
in result. This is the big difference between reduce and map. Whereas map applies the func-
tion only to the given item, reduce applies both the previous result and the item to the func-
tion. So effectively, it runs result = operator.mul(result, item). Filling in the variables gives us
result=1%*2=2,

4. The next call effectively repeats the process, but because of the previous call our initial result
value is now 2 and the next itemis 3: result = 2 * 3 = 6.

5. We repeat this one more time because our iterable is now exhausted. The last call will run
result = 6 * 4 = 24,

Processing trees

Trees are a case where the reduce function really shines. Remember the one-line tree definition using
a defaultdict from Chapter 4, Pythonic Design Patterns. What would be a good way to access the keys
inside of that object? Given a path of a tree item, we can use reduce to easily access the items inside.
First, let’s build a tree:

>>> import json
>>> import functools

>>> import collections

Chapter 5

def tree():

return collections.defaultdict(tree)

taxonomy = tree()

reptilia = taxonomy['Chordata']['Vertebrata']['Reptilia‘]

reptilia[‘Squamata']['Serpentes']['Pythonidae’] = [
'Liasis', 'Morelia‘', 'Python']

print(json.dumps(taxonomy, indent=4))

"Chordata": {
"Vertebrata": {
"Reptilia": {
"Squamata": {
"Serpentes": {
"Pythonidae": [
"Liasis",
"Morelia",
"Python"

First, we created a tree structure by using a recursive definition with collections.defaultdict. This
allows us to nest the tree many levels deep without the need for explicit definitions.

To provide somewhat readable output, we use the json module to export the tree (which is effectively
a list of nested dicts).

Now it’s time for the lookup:

>>> import operator
>>> def lookup(tree, path):

path = path.split('.")

146 Functional Programming — Readability Versus Brevity

return functools.reduce(operator.getitem, path, tree)

>>> path = 'Chordata.Vertebrata.Reptilia.Squamata.Serpentes’
>>> dict(lookup(taxonomy, path))

{'Pythonidae': ['Liasis', 'Morelia', 'Python']}

>>> path = 'Chordata.Vertebrata.Reptilia.Squamata’
>>> lookup(taxonomy, path).keys()

dict_keys(['Serpentes'])

Now we have a very simple way of walking through the tree structure recursively in just a few short
lines of code.

Reducing in the other direction

People that are familiar with functional programming might wonder why Python only has the equiv-
alent of fold_left and no fold_right. You honestly don't really need both of them as you can easily
reverse the operation. To be fair, however, the same can be said of reduce as well since it is trivial to
implement, as we have seen in the previous paragraph.

The regular reduce—the fold left operation:

fold_left = functools.reduce(
lambda x, y: function(x, y),
iterable,
initializer,

)

The reverse—the fold right operation:

fold_right = functools.reduce(
lambda x, y: function(y, x),
reversed(iterable),
initializer,

)

There may not be too many useful cases for reduce, but there are definitely a few. In particular, tra-
versing recursive data structures is far more easily done using reduce, since it would otherwise involve
more complicated loops or recursive functions.

Now that we have seen a few of the functional functions in Python, it is time to take a look at a few
methods that focus on iterables instead.

Chapter 5 147

itertools

The itertools library contains iterable functions inspired by those available in functional languag-
es. All of these are iterable and have been constructed in such a way that only a minimal amount of
memory is required to process even the largest of datasets. While you can easily write most of these
functions yourself, I would still recommend using the ones available in the itertools library. These
are all fast, memory efficient, and—perhaps more importantly—tested. We're going to explore a few
now: accumulate, chain, compress, dropwhile/takewhile, count, and groupby.

accumulate — reduce with intermediate results
The accumulate function is very similar to the reduce function, which is why some languages actually

have accumulate instead of reduce as the folding operator.

The major difference between the two is that the accumulate function returns the immediate results.
This can be useful when summing the results of a company’s sales, for example:

>>> import operator

>>> import itertools

>>> months = [10, 8, 5, 7, 12, 10, 5, 8, 15, 3, 4, 2]
>>> list(itertools.accumulate(months, operator.add))
[1e, 18, 23, 30, 42, 52, 57, 65, 80, 83, 87, 89]

It should be noted that the operator.add function is actually optional in this case as the default
behavior of accumulate is to sum the results. In some other languages and libraries, this function is
sometimes called cumsum (cumulative sum).

chain — Combining multiple results

The chain function is a simple but useful function that combines the results of multiple iterators.
Very simple but also very useful if you have multiple lists, iterators, and so on—just combine them
with a simple chain:

>>> import itertools

>>> a = range(3)
>>> b = range(5)

>>> list(itertools.chain(a, b))
[6, 1, 2, o, 1, 2, 3, 4]

It should be noted that there is a small variant of chain that accepts an iterable containing iterables,
namely chain.from_iterable. This works nearly identically, except for the fact that you need to pass
along an iterable item instead of passing a list of arguments.

148 Functional Programming — Readability Versus Brevity

Your initial response might be that this can be achieved simply by unpacking the (*args) tuple, as we
will see in Chapter 7, Generators and Coroutines - Infinity, One Step at a Time. However, this is not always
the case. For now, just remember that if you have an iterable containing iterables, the easiest method
isto use itertools.chain.from_iterable. The usage is as you would expect:

>>> import itertools

>>> iterables = [range(3), range(5)]

>>> list(itertools.chain.from_iterable(iterables))
[9) 1) 2) e) 1J 21 3) 4]

compress — Selecting items using a list of Booleans

The compress function is one of those that you won't need too often, but it can be very useful when you
do need it. It applies a Boolean filter to your iterable, making it return only the elements you actually
need. The most important thing to note here is that compress executes lazy and that compress will
stop if either the data is exhausted, or no elements are being fetched anymore. So, even with infinite
ranges, it works without a hitch:

>>> import itertools

>>> list(itertools.compress(range(1000), [0, 1, 1, 1, 0, 1]))
[1) 2) 3) 5]

The compress function can be useful if you want to make a filtered view of a larger iterable without
modifying the original iterable. If calculating the filter is a heavy operation and the actual values inside
the iterable can change, this can be very useful. To build on the example above:

>>> primes = [0, 0, 1, 1, 0, 1, 0, 1]
>>> odd = [0, 1, 0, 1, 0, 1, 0, 1]

>>> numbers = ['zero', 'one', 'two', 'three', 'four', ‘five']

>>> list(itertools.compress(numbers, primes))
['two', 'three', 'five']

>>> list(itertools.compress(numbers,

[‘one', 'three', 'five']

>>> list(itertools.compress(numbers, map(all, zip(odd, primes))))
['three', 'five']

Chapter 5 149

In this case, both the filters and the iterable are predefined and very small. But if you have a large set
that takes a lot of time to compute (or fetch from an external resource), this method can be useful to
quickly filter without having to recalculate everything, especially since the filters can be combined
easily using a combination of map, all, and zip. You can use any instead of all if you want to see the
results from both.

dropwhile/takewhile — Selecting items using a function

The dropwhile function will drop all results until a given predicate evaluates to true. This can be useful
if you are waiting for a device to finally return an expected result. That’s a bit difficult to demonstrate
in a book, so we only have an example with the basic usage—waiting for a number greater than 3:

>>> import itertools

>>> list(itertools.dropwhile(lambda x: x <= 3, [1, 3, 5, 4, 2]))
[5, 4, 2]

As you might expect, the takewhile function is the reverse of this. It will simply return all rows until
the predicate turns false:

>>> import itertools

>>> list(itertools.takewhile(lambda x: x <= 3, [1, 3, 5, 4, 2]))
[1, 3]

Adding the results from dropwhile and takewhile will give you all the elements again as they are
each other’s opposites.

count — Infinite range with decimal steps

The count function is quite similar to the range function, but there are two significant differences:

. The first is that this range is infinite, so don’t even try to do list(itertools.count()). You'll
definitely run out of memory immediately and it might even freeze your system.

« The second difference is that, unlike the range function, you can actually use floating-point
numbers here, so there is no need for whole/integer numbers.

Since listing the entire range will kill our Python interpreter, we’ll limit the results using the itertools.
islice function, which is similar to regular slicing (e.g. some_list[10:20]) but works on infinitely
large inputs as well.

V4 The infinitely large functions such as count are not sliceable because they are infinite
; LY generators, a topic we will discuss in Chapter 7, Generators and Coroutines - Infinity, One
Step at a Time.

150 Functional Programming — Readability Versus Brevity

The count function takes two optional parameters: a start parameter, which defaults to 0, and a step
parameter, which defaults to 1:

>>> import itertools

>>> list(itertools.islice(itertools.count(), 10))
[e, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(itertools.islice(itertools.count(), 5, 108, 2))
[5, 7, 9]

>>> list(itertools.islice(itertools.count(10, 2.5), 5))
[10, 12.5, 15.0, 17.5, 20.0]

groupby — Grouping your sorted iterable

The groupby function is a really convenient function for grouping results. It allows you to convert a
list of objects into a list of groups given a specific grouping function.

A basic example of groupby usage:

import operator

import itertools

words = ['aa', 'ab', 'ba', 'bb', 'ca', 'cb', '

getter = operator.itemgetter(0)

for group, items in itertools.groupby(words, key=getter):
print(f'group: {group}, items: {list(items)}')
group: a, items: ['aa', 'ab']
group: b, items: ['ba', 'bb']

group: c, items: ['ca', 'cb', 'cc']

We can see here how the words are grouped by the first character with very little effort. This can be
a really convenient utility for grouping employees by department in a user interface, for example.

There are some important things to keep in mind when using this function, however:

« The input needs to be sorted by the group parameter. Otherwise, every repeated group will
be added as a separate group.

« Theresults are available for use only once. So, after processing a group, it will not be available
anymore. If you wish to iterate the results twice, wrap the results in 1ist() or tuple().

Chapter 5 151

Here is an example of groupby including the side effects of not sorting:

>>> import itertools

>>> raw_items = ['spam', ‘'eggs', 'sausage', ‘spam’]

>>> def keyfunc(group):

return group[9]

>>> for group, items in itertools.groupby(raw_items, key=keyfunc):
print(f'group: {group}, items: {list(items)}")

group: s, items: ['spam']

group: e, items: ['eggs']

group: s, items: ['sausage', 'spam']

>>> raw_items.sort()

>>> for group, items in itertools.groupby(raw_items, key=keyfunc):
print(f'group: {group}, items: {list(items)}')

group: e, items: ['eggs']

group: s, items: ['sausage', 'spam', 'spam']

The groupby function is definitely a very useful one that you can use in a wide variety of scenarios.
Grouping output for a user, for example, can make results much easier to read.

Exercises

Now that you know how to use some of the functional programming features in Python, perhaps you
can try writing the quicksort algorithm as (a collection of) regular functions instead of the hard-to-
read Y-combinator version.

You can also try and write a groupby function yourself that isn'’t affected by sorting and returns lists
of results that can be used multiple times rather than just once.

/ Example answers for these exercises can be found on GitHub: https://github.com/
\/;ﬂ> mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

Summary

Functional programming is a paradigm that scares many people initially, but really it shouldn’t. The
most important difference between functional and procedural programming (within Python) is the
mindset. Everything is executed using simple functions that depend only on their input variables and
don’t produce any side effects outside of the local scope.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

152 Functional Programming — Readability Versus Brevity

The main advantages are:

+ Because there are fewer side-effects and code influencing each other, you will get fewer bugs.

« Because the functions always have a predictable input and output, they can be easily paral-
lelized across multiple processors or even multiple machines.

This chapter covered the basics of functional programming within Python and a tiny portion of the
mathematics behind it. In addition to this, some of the many useful libraries that can be used in a
very convenient way by using functional programming were covered.

The most important takeaways should be the following:

+ Lambda statements are not inherently bad, but it would be best to make them use variables
from the local scope only, and they should not be longer than a single line.

« Functional programming can be very powerful, but has a tendency to become unreadable.
Care must be taken.

« list/dict/set comprehensions are very useful but have a tendency to quickly become un-
readable. In particular, nested comprehensions are hard to read in nearly all cases and should
mostly be avoided.

Ultimately, it is a matter of preference. For the sake of readability, I recommend limiting the usage of
the functional paradigm when there is no obvious benefit. Having said that, when executed correctly,
it can be a thing of beauty.

Next up are decorators - methods to wrap your functions and classes in other functions and/or classes
to modify their behavior and extend their functionality.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHulf

https://discord.gg/QMzJenHuJf

Decorators — Enabling Code
Reuse by Decorating

In this chapter, you are going to learn about Python decorators. The previous chapters have already
shown the usage of a few decorators, but you will now find out more about them. Decorators are es-
sentially function/class wrappers that can be used to modify the input, output, or even the function/
class itself before executing it. This type of wrapping can just as easily be achieved by having a separate
function that calls the inner function, or via inheriting small feature classes commonly called mixins.
As is the case with many Python constructs, decorators are not the only way to reach the goal but are
definitely convenient in many cases.

While you can get along fine without knowing too much about decorators, they give you a lot of “re-
use power” and are therefore used heavily in framework libraries such as web frameworks. Python
actually comes bundled with some useful decorators, most notably the @property, @classmethod,
and @staticmethod decorators.

There are, however, some particularities to take note of: wrapping a function creates a new func-
tion and makes it harder to reach the inner function and its properties. One example of this is the
help(function) functionality of Python; by default, you, your editor, and your documentation gen-
erator can lose function properties such as the help text and the module the function exists in.

This chapter will cover the usage of both function and class decorators, as well as the intricate details
you need to know when decorating functions within classes.

The following are the topics covered:

. Decorating functions

+ Decorating class functions

« Decorating classes

+ Useful decorators in the Python Standard Library

154 Decorators — Enabling Code Reuse by Decorating

Decorating functions

Decorators are functions or classes that wrap other functions and/or classes. In its most basic form,
you can view a regular function call as add(1, 2), which transforms into decorator(add(1, 2))
when applying a decorator. There’s slightly more to it, but we will come to that later. Let’s implement
that decorator() function:

>>> def decorator(function):

return function

>>> def add(a, b):

return a + b

>>> add = decorator(add)

To make the syntax easier to use, Python has a special syntax for this case. So, instead of adding a
line such as the preceding one below the function, you can decorate a function using the @ operator
as a shortcut:

>>> @decorator
. def add(a, b):

return a + b

This example shows the simplest and most useless decorator you can get: simply returning the input
function and doing nothing else.

From this, you might wonder what the use of a decorator is and what is so special about them. Some
possibilities of decorators are:

« Registering a function/class
* Modifying function/class input
+ Modifying function/class output

+ Logging function calls/class instantiations
All of these will be covered later in this chapter, but let’s start simple for now.

Our first decorator will show how we can modify both the input and the output of a function call.
Additionally, it adds some logging calls so we can see what is happening:

>>> import functools

>>> def decorator(function):

@functools.wraps(function)

def _decorator(a, b):

Chapter 6 155

result = function(a, b + 5)

name = function.__name__
print(f'{name}(a={a}, b={b}): {result}')

return result + 4

return _decorator

>>> @decorator
. def func(a, b):
return a + b

>>> func(1l, 2)
func(a=1, b=2): 8
12

This should show you how powerful decorators can be. We can modify, add, and/or remove arguments.
We can modify the return value or even call a completely different function if we want to. And we
can easily log all behavior if needed, which can be very useful when debugging. Instead of return
function(...), we can return something completely different if we wish.

More extensive examples of how to log using decorators are covered in Chapter 12, Debugging - Solving
the Bugs.

Generic function decorators

The decorator we wrote earlier explicitly used the a and b arguments so it only works with functions
that have a signature very similar to taking a and b arguments. If we want to make the generator more
generic, we can replace a, bwith *args and **kwargs to get the arguments and keyword arguments,
respectively. That introduces a new problem, however. We either need to make sure to only use regular
arguments or keyword arguments, or the checking will become increasingly difficult:

>>> import functools

>>> def decorator(function):
@functools.wraps(function)
def _decorator(*args, **kwargs):
a, b = args

return function(a, b + 5)

Decorators — Enabling Code Reuse by Decorating

return _decorator

>>> @decorator
. def func(a, b):

return a + b

>>> func(1, 2)
8

>>> func(a=1, b=2)
Traceback (most recent call last):

ValueError: not enough values to unpack (expected 2, got 0)

As can be seen, in this case, keyword arguments are broken. To work around this issue, we have a
few different methods. We can change the arguments to positional-only or keyword-only arguments:

4 This code uses positional-only arguments (the / as the last function argument), which
> have been supported since Python 3.8. For older versions, you can emulate this behavior
using *args instead of explicit arguments.

>>> def add(a, b, /):

return a + b

>>> add(a=1, b=2)

Traceback (most recent call last):
TypeError: add() got some positional-only arguments passed

>>> def add(*, a, b):

return a + b

>>> add(1, 2)

Traceback (most recent call last):

TypeError: add() takes @ positional arguments but 2 were given

Or we can make Python automatically take care of this by fetching the signature and binding it to the
given arguments:

>>> import inspect
>>> import functools

Chapter 6

>>> def decorator(function):

signature = inspect.signature(function)

@functools.wraps(function)
def _decorator(*args, **kwargs):

bound = signature.bind(*args, **kwargs)

bound.apply defaults()

a = bound.arguments['a']
b = bound.arguments['b"]
return function(a, b + 5)

return _decorator
>>> @decorator
. def func(a, b=3):

return a + b

>>> func(1l, 2)
8

>>> func(a=1, b=2)
8

>>> func(a=1)
9

By using this method, the function has become a lot more versatile. We could easily add arguments
to the add function and still be sure that the decorator functions.

158 Decorators — Enabling Code Reuse by Decorating

The importance of functools.wraps

Whenever you are writing a decorator, always be sure to add functools.wraps to wrap the inner
function. Without wrapping it, you will lose all properties from the original function, which can lead
to confusion and unexpected behavior. Take a look at the following code without functools.wraps:

>>> def decorator(function):
def _decorator(*args, **kwargs):

return function(*args, **kwargs)
return _decorator

>>> @decorator
. def add(a, b):
'"'Add a and b" "'
return a + b

>>> help(add)

Help on function _decorator in module ...:
<BLANKLINE>

_decorator(*args, **kwargs)

<BLANKLINE>

>>> add.__name__

' _decorator'

Now, our add method has no documentation anymore and the name is gone. It has been renamed
_decorator. Since we are indeed calling _decorator, this is understandable, but it’s very inconvenient
for code that relies on this information. Now we will try the same code with a minor difference; we
will use functools.wraps:

>>> import functools

>>> def decorator(function):
@functools.wraps(function)
def _decorator(*args, **kwargs):
return function(*args, **kwargs)

return _decorator
>>> @decorator

. def add(a, b):
'"'"'Add a and b"""'

Chapter 6 159

return a + b

>>> help(add)

Help on function add in module ...:
<BLANKLINE>

add(a, b)

Add a and b
<BLANKLINE>

>>> add.__name__
‘add’

Without any further changes, we now have documentation and the expected function name. The
working of functools.wraps is nothing magical; it copies and updates several attributes. Specifically,
the following attributes are copied:

e doc__

* _ _name__

e __module__

e __annotations__
« __qualname__

Also, _dict__isupdated using _decorator._ dict__.update(add.__dict_), and a new property
called _ wrapped__isadded, which contains the original function (add, in this case). The actual wraps
function is available in the functools. py file of your Python distribution.

Chaining or nesting decorators

Since we’re wrapping functions, there is nothing stopping us from adding multiple wrappers. The
order is important to keep in mind, though, because the decorators are initialized starting from the
inside, but are called starting from the outside. Additionally, the teardown starts from the inside again:

>>> import functools
>>> def track(function=None, label=None):

if label and not function:
return functools.partial(track, label=label)

print(f'initializing {label}")

@functools.wraps(function)

def _track(*args, **kwargs):
print(f'calling {label}")

160 Decorators — Enabling Code Reuse by Decorating

function(*args, **kwargs)
print(f'called {label}")

return _track

>>> @track(label="'outer')
... @track(label="inner")
. def func():
print('func')

initializing inner

initializing outer

>>> func()
calling outer
calling inner
func

called inner
called outer

Asyou can see in the output, the decorators are called from outer to inner before running the function
and running from inner to outer when processing the results.

Registering functions using decorators

We have seen how calls can be tracked, arguments can be modified, and return values can be changed.
Now it is time to see how we can use decorators to register a function that can be useful for registering
plugins, callbacks, and so on.

One situation where this is very useful is a user interface. Let us assume we have a GUI that has a
button that can be clicked. By creating a system that can register callbacks, we can make the button
fire a “clicked” signal and connect functions to that event.

To create an event manager like that, we will now create a class that keeps track of all of the registered
functions and allows the firing of events:

>>> import collections

>>> class EventRegistry:
def __init__ (self):
self.registry = collections.defaultdict(list)

def on(self, *events):

def _on(function):

for event in events:

Chapter 6 161

self.registry[event].append(function)
return function

return _on

def fire(self, event, *args, **kwargs):
for function in self.registry[event]:
function(*args, **kwargs)

>>> events = EventRegistry()

>>> @events.on('success', 'error')
. def teardown(value):
print(f'Tearing down got: {value}')

>>> @events.on('success')
. def success(value):
print(f'Successfully executed: {value}')

>>> events.fire('non-existing', 'nothing to see here')
>>> events.fire('error', 'Oops, some error here')
Tearing down got: Oops, some error here

>>> events.fire('success', 'Everything is fine')
Tearing down got: Everything is fine

Successfully executed: Everything is fine

Firstly, we create the EventRegistry class to handle all of the events and store all the callbacks. After
that, we register a few functions with the registry. Lastly, we fire a few events to see if it works as
expected.

While this example is rather basic, this pattern can be applied to many scenarios: handling events
for a web server, letting plugins register themselves for events, letting plugins register themselves in
an application, and so on.

Memoization using decorators

Memoization is a simple trick for remembering results to make code run a lot faster in specific sce-
narios. The basic trick here is to store a mapping of the input and expected output so that you have
to calculate a value only once. One of the most common examples of this technique is the naive
(recursive) Fibonacci function.

162 Decorators — Enabling Code Reuse by Decorating

The Fibonacci sequence starts from 0 or 1 (depending how you look at it) and each consec-
utive number consists of the sum of the previous two numbers. To illustrate the pattern
starting from the additions of the initial © and 1:

C\/ 1=0+1

=

2=1+1
3 =1+ 2
5=2+3
8=3+5

I'will now show how you can build a very basic memoization function decorator, and how it can be used:

>>> import functools

>>> def memoize(function):

function.cache = dict()

@functools.wraps(function)

def _memoize(*args):

if args not in function.cache:
function.cache[args] = function(*args)

return function.cache[args]

return _memoize

The memoize decorator has to be used without arguments and the cache can be introspected as well:

>>> @memoize
. def fibonacci(n):
if n < 2:
return n
else:

return fibonacci(n - 1) + fibonacci(n - 2)

>>> for i in range(l, 7):
print(f'fibonacci {i}: {fibonacci(i)}')
fibonacci 1: 1

fibonacci 2: 1

Chapter 6 163

fibonacci

fibonacci

3
fibonacci 4:
5
6

fibonacci

>>> fibonacci. wrapped__.cache
{(1,): 1, (8,): 0, (2,): 1, (3,): 2, (4,): 3, (5,): 5, (6,): 8}

When arguments are given, it breaks because the decorator is not built to support them:

>>> fibonacci(n=2)
Traceback (most recent call last):

TypeError: _memoize() got an unexpected keyword argument 'n

Additionally, the arguments need to be hashable to work with this implementation:

>>> fibonacci([123])

Traceback (most recent call last):

TypeError: unhashable type: 'list'

While examples with a small n will work easily without memoization, for larger numbers it will run
for an extremely long time. For n=2, the function would execute fibonacci(n - 1) and fibonacci(n
- 2) recursively, resulting in exponential time complexity. For n=30, the Fibonacci function would
already be called 2,692,537 times; at n=58, it will stall or even crash your system.

Without memoization, the call stack becomes a tree that very quickly grows. To illustrate, let’s assume
we want to calculate fibonacci(4).

First, fibonacci(4) calls fibonacci(3) and fibonacci(2). There’s nothing special here.

Now, fibonacci(3) calls fibonacci(2) and fibonacci(1). You will notice that we got fibonacci(2)
for the second time now. fibonacci(4) also executed it.

That split with each call is exactly the problem. Each function call starts two new function calls, which
means it doubles for every call. And those double again and again until we have reached the end of
the calculation.

Because the memoized version caches the results and only needs to calculate every number once, it
doesn’t even break a sweat and only needs to execute 31 times for n=30.

This decorator also shows how a context can be attached to a function itself. In this case, the cache
property becomes an attribute of the internal (wrapped fibonacci) function so that an extra memoize
decorator for a different object won't clash with any of the other decorated functions.

164 Decorators — Enabling Code Reuse by Decorating

Note, however, that implementing the memoization function yourself is generally not that useful any-
more since Python introduced 1ru_cache (least recently used cache) in Python 3.2. The 1ru_cache
is similar to the preceding memoize decorator function but a bit more advanced. It maintains a fixed
cache size (128 by default) to save memory, and stores statistics so you can check whether the cache
size should be increased.

If you are only looking for statistics and have no need for caching, you can also set the maxsize to @. Or
if you want to forego the LRU algorithm and save everything, you can pass None as maxsize. With a fixed
size, the 1ru_cache will keep only the most recently accessed items and discard the oldest once it is full.

In most cases, I would suggest using 1ru_cache over your own decorator, but if you always need to
store all items or if you need to process the keys before storing them, you can always roll your own.
At the very least, it is useful to know how to write a decorator like this.

To demonstrate how 1ru_cache works internally, we will calculate fibonacci(100), which would
keep our computer busy until the end of the universe without any caching. Moreover, to make sure
that we can actually see how many times the fibonacci function is being called, we’ll add an extra
decorator that keeps track of the count, as follows:

>>> import functools

>>> def counter(function):
function.calls = @
@functools.wraps(function)
def _counter(*args, **kwargs):
function.calls += 1
return function(*args, **kwargs)

return _counter

>>> @functools.lru_cache(maxsize=3)
... @counter

. def fibonacci(n):

if n < 2:
return n
else:

return fibonacci(n - 1) + fibonacci(n - 2)

>>> fibonacci(100)
354224848179261915075

Chapter 6 165

>>> fibonacci.cache_info()

CacheInfo(hits=98, misses=101, maxsize=3, currsize=3)

>>> fibonacci. wrapped_ . wrapped .calls
101

You might wonder why we need only 101 calls with a cache size of 3. That’s because we recursively
require onlyn - landn - 2, sowe have no need for a larger cache in this case. If your cache is not
performing as expected, the cache size might be the culprit.

Additionally, this example shows the usage of two decorators for a single function. You can see these
as the layers of an onion. When calling fibonacci, the execution order is as follows:

1. functools.lru_cache

2. counter

3. fibonacci

Returning the values works in the reverse order, of course; fibonacci returns its value to counter,
which passes the value along to 1ru_cache.

Decorators with (optional) arguments

The previous examples mostly used simple decorators without any arguments. As you have already
seen with 1ru_cache, decorators can accept arguments as well since they are just regular functions,
but this adds an extra layer to a decorator. This means that we need to check the decorator arguments
to see if they are the decorated method or a regular argument. The only caveat is that the optional
argument should not be callable. If the argument has to be callable, you will need to pass it as a key-
word argument instead.

The upcoming code shows a decorator that has an optional (keyword) argument to the decorator:

>>> import functools
>>> def add(function=None, add_n=0):
if not callable(function):
if function is not None:

add_n = function
return functools.partial(add, add_n=add_n)

@functools.wraps(function)
def _add(n):
return function(n) + add_n

166 Decorators — Enabling Code Reuse by Decorating

return _add

@add
. def add_zero(n):
return n

@add(1)
. def add_one(n):
return n

@add(add_n=2)

. def add_two(n):

return n

add_zero(5)

add_one(5)

add_two(5)

This decorator uses the callable() test to see whether the argument is a callable such as a function.
This method works in many cases, but if for some reason your argument to the add() decorator is
callable, this will break because it will be called instead of the function.

Whenever you have the choice available, I recommend that you either have a decorator with arguments
or without them. Having optional arguments makes the flow of the function less obvious and slightly
harder to debug when issues arise.

Creating decorators using classes

Similar to how we create regular function decorators, it is also possible to create decorators using
classes instead. As is always the case with classes, this makes storing data, inheriting, and reuse more
convenient than with functions. After all, a function is just a callable object and a class can implement
the callable interface as well. The following decorator works similarly to the debug decorator we used
earlier, but uses a class instead of a regular function:

>>> import functools

>>> class Debug(object):

Chapter 6 167

def __init__ (self, function):
self.function = function

functools.update_wrapper(self, function)

def __call__ (self, *args, **kwargs):

output = self.function(*args, **kwargs)

name = self.function.__name__
print(f'{name}({args!r}, {kwargs!r}): {output!r}')
return output

>>> @Debug
. def add(a, b=0):

return a + b

>>> output = add(3)
add((3,), {}): 3

>>> output = add(a=4, b=2)
add((), {'a': 4, 'b': 2}): 6

The only notable difference between functions and classes is that functools.wraps is now replaced
with functools.update_wrapper inthe _init__ method.

Since class methods have a self argument in addition to the regular arguments, you might wonder
whether decorators will function in that scenario. The next section will cover decorator usage within
classes.

Decorating class functions

Decorating class functions is very similar to regular functions, but you need to be aware of the required
first argument, self—the class instance. You have most likely already used a few class function dec-
orators. The classmethod, staticmethod, and property decorators, for example, are used in many
different projects. To explain how all this works, we will build our own versions of the classmethod,
staticmethod, and property decorators. First, let’s look at a simple decorator for class functions to
demonstrate the difference from regular decorators:

>>> import functools

>>> def plus_one(function):

168 Decorators — Enabling Code Reuse by Decorating

@functools.wraps(function)
def _plus_one(self, n, *args):

return function(self, n + 1, *args)

return _plus_one

class Adder(object):
@plus_one
def add(self, a, b=0):
return a + b

adder = Adder()
adder.add(90)

adder.add(3, 4)

As is the case with regular functions, the class function decorator now gets passed along self as the
instance. Nothing unexpected!

Skipping the instance — classmethod and staticmethod

The difference between a classmethod and a staticmethod is fairly simple. The classmethod passes a
class object instead of a class instance (self), and staticmethod skips both the class and the instance
entirely. This effectively makes staticmethod very similar to a regular function outside of a class.

V4 In the following examples, we will use pprint.pprint(... width=60) to account for
:ﬁ > the width of the book. Additionally, locals() is a Python built-in that shows all local
variables. Similarly, a globals () function is also available.

Before we recreate classmethod and staticmethod, we need to take a look at the expected behavior
of these methods:

>>> import pprint
>>> class Spam(object):
def some_instancemethod(self, *args, **kwargs):

pprint.pprint(locals(), width=60)

@classmethod

def some_classmethod(cls, *args, **kwargs):

pprint.pprint(locals(), width=60)

Chapter 6

@staticmethod
def some_staticmethod(*args, **kwargs):
pprint.pprint(locals(), width=60)

>>> spam = Spam()

The following examples will use the example above to illustrate the difference between a regular
(class instance) method, a classmethod, and a staticmethod. Be wary of the difference between spam
(lowercase) the instance and Spam (capitalized) the class:

>>> spam.some_instancemethod(1, 2, a=3, b=4)
{'args': (1, 2),

'kwargs': {'a': 3, 'b': 4},

'self': <__main__.Spam object at ...>}

>>> Spam.some_instancemethod()
Traceback (most recent call last):

TypeError: some_instancemethod() missing ... argument: 'self’

>>> Spam.some_instancemethod(1, 2, a=3, b=4)
{'args': (2,), 'kwargs': {'a': 3, 'b': 4}, 'self': 1}

In particular, the last example is rather tricky. Because we passed some arguments to the function, these
have automatically been passed as the self argument. Similarly, the last example shows how you can
use this argument handling to call a method using a given instance. Spam. some_instancemethod(spam)

is identical to spam.some_instancemethod().

Now let’s look at the classmethod:

>>> spam.some_classmethod(1, 2, a=3, b=4)
{'args': (1, 2),

cls': <class '__main__.Spam'>,
'kwargs': {'a': 3, 'b': 4}}

>>> Spam.some_classmethod()

170 Decorators — Enabling Code Reuse by Decorating

‘cls': <class '__main__.Spam'>, ‘kwargs': {}}

{targs’: (),

>>> Spam.some_classmethod(1, 2, a=3, b=4)
{'args': (1, 2),

cls':

<class '__main__.Spam'>,

'kwargs': {'a': 3, 'b': 4}}

The main difference here is that instead of self we now have cls, which contains the class (Spam)
instead of the instance (spam).

\/‘/’ The names self and cls are conventions and are not enforced in any way. You could
easily call them s and ¢ or something completely different instead.

Next up is the staticmethod. The staticmethod behaves identically to a regular function outside of
a class.

>>> spam.some_staticmethod(1l, 2, a=3, b=4)
{'args': (1, 2), ‘'kwargs': {'a': 3, 'b': 4}}

>>> Spam.some_staticmethod()
{'args"': (), 'kwargs': {}}

>>> Spam.some_staticmethod(1l, 2, a=3, b=4)
{'args': (1, 2), ‘'kwargs': {'a': 3, 'b': 4}}

Before we can continue with decorators, you need to be aware of how Python descriptors function.
Descriptors can be used to modify the binding behavior of object attributes. This means that if a de-
scriptor is used as the value of an attribute, you can modify which value is being set, got, and deleted
when these operations are called on the attribute. Here is a basic example of this behavior:

>>> class Spam:
def __init__ (self, spam=1):
self.spam = spam

__get__ (self, instance, cls):
return self.spam + instance.eggs

__set__(self, instance, value):

instance.eggs = value - self.spam

>>> class Sandwich:

Chapter 6
spam = Spam(5)

def __init__ (self, eggs):
self.eggs = eggs

sandwich = Sandwich(1)

sandwich.eggs

sandwich.spam

sandwich.

sandwich.

Asyou can see, whenever we set or get values from sandwich.spam, itactually calls__get_ or_ set_
on Spam, which has access not only to its own variables, but also the calling class. A very useful feature

for automatic conversions and type checking, the property decorator we will see in the next section

is just a more convenient implementation of this technique.

Now that you know how descriptors work, we can continue with creating the classmethod and
staticmethod decorators. For these two, we simply need to modify _ get__ instead of _ call__ so

that we can control which type of instance (or none at all) is passed along:

>>> import functools

>>> class ClassMethod(object):
def __init__ (self, method):
self.method = method

__get__ (self, instance, cls):
@functools.wraps(self.method)
def method(*args, **kwargs):

return self.method(cls, *args, **kwargs)

return method
>>> class StaticMethod(object):
def __init__ (self, method):

self.method = method

__get__ (self, instance, cls):
return self.method

172 Decorators — Enabling Code Reuse by Decorating

>>> class Sandwich:
spam = 'class’

def __init__ (self, spam):
self.spam = spam

@ClassMethod
def some_classmethod(cls, arg):

return cls.spam, arg

@StaticMethod
def some_staticmethod(arg):
return Sandwich.spam, arg

>>> sandwich = Sandwich('instance')

>>> sandwich.spam

'instance’

>>> sandwich.some_classmethod('argument')
('class', 'argument')

>>> sandwich.some_staticmethod('argument')
('class', 'argument')

The ClassMethod decorator still features a sub-function to actually produce a working decorator.
Looking at the function, you can most likely guess how it functions. Instead of passing instance as
the first argument to self.method, it passes c1s.

StaticMethod is even simpler, because it completely ignores both the instance and the cls. It can
just return the original method unmodified. Because it returns the original method without any mod-
ifications, we have no need for the functools.wraps call either.

Properties — Smart descriptor usage

The property decorator is probably the most used decorator in Python land. It allows you to add
getters/setters to existing instance properties so that you can add validators and modify your values
before setting them to your instance properties.

The property decorator can be used both as an assignment and as a decorator. The following example
shows both syntaxes so that you know what to expect from the property decorator.

Python 3.8 added functools.cached_property, which functions the same as property but executes only
once per instance.

>>> import functools

>>> class Sandwich(object):

Chapter 6

def get_eggs(self):
print('getting eggs"')
return self._eggs

set_eggs(self, eggs):
print('setting eggs to %s' % eggs)
self. eggs = eggs

delete_eggs(self):
print('deleting eggs"')
del self. eggs

eggs = property(get_eggs, set_eggs, delete_eggs)

@property

def spam(self):
print('getting spam')
return self. spam

@spam.setter
def spam(self, spam):
print('setting spam to %s' % spam)

self. spam = spam

@spam.deleter

def spam(self):
print('deleting spam')
del self. spam

@functools.cached_property
def bacon(self):
print('getting bacon')

return 'bacon!'

>>> sandwich = Sandwich()

>>> sandwich.eggs = 123
setting eggs to 123

>>> sandwich.eggs
getting eggs

Decorators — Enabling Code Reuse by Decorating

123

>>> del sandwich.eggs
deleting eggs

>>> sandwich.bacon
getting bacon
‘bacon!’

>>> sandwich.bacon
‘bacon!’

Similar to how we implemented the classmethod and staticmethod decorators, we need the Python

descriptors again. This time, we require the full power of the descriptors, notjust __get_ but__set__
and _ delete__ as well. For brevity, however, we will skip handling the documentation and some
error handling:

>>> class Property(object):
def __init_ (self, fget=None, fset=None, fdel=None):
self.fget = fget
self.fset = fset
self.fdel = fdel

__get__(self, instance, cls):

if instance is None:

return self
elif self.fget:
return self.fget(instance)

_ set_ (self, instance, value):
self.fset(instance, value)

__delete__(self, instance):
self.fdel(instance)

getter(self, fget):
return Property(fget, self.fset, self.fdel)

setter(self, fset):
return Property(self.fget, fset, self.fdel)

deleter(self, fdel):
return Property(self.fget, self.fset, fdel)

Chapter 6 175

That doesn’t look all that complicated, does it> The descriptors make up most of the code, which is
fairly straight to the point. Only the getter/setter/deleter functions might look a bit strange, but
they’re actually fairly straightforward as well.

To make sure the property still works as expected, the class returns a new Property instance while
copying the other methods. The only small caveat to make this work here is the return self in the
__get_ method.

>>> class Sandwich:
@Property

def eggs(self):

return self._eggs

@eggs.setter
def eggs(self, value):
self. eggs = value

@eggs.deleter
def eggs(self):
del self. eggs

>>> sandwich = Sandwich()
>>> sandwich.eggs = 5
>>> sandwich.eggs

5

As expected, our Property decorator works as it should. But note that this is a more limited version
of the built-in property decorator; our version has no checking for edge cases.

Naturally, being Python, there are more methods of achieving the effect of properties. In the previ-
ous examples, you saw the bare descriptor implementation, and in our previous example, you saw
the property decorator. Now we will look at a generic solution by implementing __getattr__ or
__getattribute_ . Here’s a simple demonstration:

>>> class Sandwich(object):
def __init__ (self):
self.registry = {}

__getattr__(self, key):
print('Getting %r' % key)

return self.registry.get(key, 'Undefined')

__setattr__(self, key, value):
if key == 'registry':

object.__ setattr__ (self, key, value)

176 Decorators — Enabling Code Reuse by Decorating

else:
print('Setting %r to %r' % (key, value))
self.registry[key] = value

def __delattr__(self, key):
print('Deleting %r' % key)

del self.registry[key]

>>> sandwich = Sandwich()

>>> sandwich.a

Getting 'a
'Undefined"’

>>> sandwich.a = 1
Setting 'a' to 1

>>> sandwich.a

Getting 'a
1

>>> del sandwich.a

Deleting 'a

The _ getattr__ method looks for existing attributes, for example, it checks whether the key exists
in instance.__dict__, and is called only if it does not exist. That’s why we never see a __getattr__
for the registry attribute. The _ getattribute__ method is called in all cases, which makes it a bit
more dangerous to use. With the __getattribute__ method, you will need a specific exclusion for
registry since it will be executed infinitely through recursion if you try to access self.registry.

There is rarely a need to look at descriptors, but they are used by several internal Python processes,
such as the super() method when inheriting classes.

Now that you know how to create decorators for regular functions and class methods, let’s continue
by decorating entire classes.

Decorating classes

Python 2.6 introduced the class decorator syntax. As is the case with the function decorator syntax,
this is not really a new technique either. Even without the syntax, a class can be decorated simply by
executing DecoratedClass = decorator(RegularClass). After the previous sections, you should be
familiar with writing decorators. Class decorators are no different from regular ones, except for the
fact that they take a class instead of a function. As is the case with functions, this happens at declara-
tion time and not at instantiating/calling time.

Chapter 6 177

Because there are quite a few alternative ways to modify how classes work, such as standard inheritance,
mixins, and metaclasses (read more in Chapter 8, Metaclasses - Making Classes (Not Instances) Smarter),
class decorators are never strictly needed. This does not reduce their usefulness, but it does offer an
explanation of why you will most likely not see too many examples of class decorating in the wild.

Singletons — Classes with a single instance

Singletons are classes that always allow only a single instance to exist. So, instead of getting an in-
stance specifically for your call, you always get the same one. This can be very useful for things such
as a database connection pool, where you don’t want to keep opening connections all of the time but
want to reuse the original ones:

>>> import functools

>>> def singleton(cls):
instances = dict()
@functools.wraps(cls)
def _singleton(*args, **kwargs):
if cls not in instances:
instances[cls] = cls(*args, **kwargs)

return instances[cls]
return _singleton
>>> @singleton

. class SomeSingleton(object):
def __init__ (self):

print('Executing init")

>>> a = SomeSingleton()
Executing init
>>> b = SomeSingleton()

>»> ais b
True

>»> a.x = 123
>>> b.x
123

Asyoucanseeinthea is b comparison, both objects have the same identity, so we can conclude that
they are indeed the same object. As is the case with regular decorators, due to the functools.wraps
functionality, we can still access the original class through Spam.__wrapped__ if needed.

178 Decorators — Enabling Code Reuse by Decorating

V4 The is operator compares objects by identity, which is implemented as the memory
\/;D> address in CPython. If a is b returns True, we can conclude that both a and b are the
same instance.

Total ordering — Making classes sortable

At some point or the other, you have probably needed to sort data structures. While this is easily
achievable using the key parameter of the sorted function, there is a more convenient way if you need
to do this often—by implementing the __ gt , ge_ , 1t ,_ le ,and_ eq__ functions. That
seems a bit verbose, doesn’t it? If you want the best performance, it’s still a good idea, but if you can
take a tiny performance hit and some slightly more complicated stack traces, then total_ordering
might be a nice alternative.

The total_ordering class decorator can implement all required sort functions based on a class that
possessesan __eq__ function and one of the comparison functions (__1t_ , _le , gt ,or_ ge).
This means you can seriously shorten your function definitions. Let’s compare the regular function
definition and the function definition using the total_ordering decorator:

>>> import functools

>>> class Value(object):

def __init__ (self, value):
self.value = value

def __repr__(self):
return f'<{self._class__. name__} {self.value}>'

>>> class Spam(Value):
def gt (self, other):
return self.value > other.value

__ge__ (self, other):
return self.value >= other.value

__ 1t (self, other):
return self.value < other.value

le (self, other):
return self.value <= other.value

__eq__(self, other):
return self.value == other.value

Chapter 6

>>> @functools.total_ordering
. class Egg(Value):
def __ 1t (self, other):
return self.value < other.value

def __eq__(self, other):
return self.value == other.value

As you can see, without functools.total_ordering, it’s quite a bit of work to create a fully sortable
class. Now we will test whether they actually sort in a similar way:

numbers = [4, 2, 3, 4]
spams = [Spam(n) for n in numbers]
eggs = [Egg(n) for n in numbers]

SENS
[<Spam 4>, <Spam 2>, <Spam 3>, <Spam 4>]

>>> eggs
[<Egg 4>, <Egg 2>, <Egg 3>, <Egg 4>]

>>> sorted(spams)
[<Spam 2>, <Spam 3>, <Spam 4>, <Spam 4>]

>>> sorted(eggs)
[<Egg 2>, <Egg 3>, <Egg 4>, <Egg 4>]

>>> values = [Value(n) for n in numbers]
>>> values
[<Value 4>, <Value 2>, <Value 3>, <Value 4>]

>>> sorted(values, key=lambda v: v.value)
[<Value 2>, <Value 3>, <Value 4>, <Value 4>]

Now, you might be wondering, “Why isn’t there a class decorator to make a class sortable using a speci-
fied key property?” Well, that might indeed be a good idea for the functools library, but itisn’t there yet.
So, let’s see how we would implement something like it while still using functools.total_ordering:

>>> def sort_by_ attribute(attr, keyfunc=getattr):
def _sort_by_attribute(cls):

180 Decorators — Enabling Code Reuse by Decorating

def __ 1t_ (self, other):
return getattr(self, attr) < getattr(other, attr)

def __eq__(self, other):
return getattr(self, attr) <= getattr(other, attr)

cls. 1t = _ 1t
cls. _eq_ = __eq

return functools.total ordering(cls)
return _sort_by attribute
>>> class Value(object):
def __init_ (self, value):

self.value = value

def __repr__(self):
return f'<{self. class__. name__} {self.value}>'

>>> @sort_by_attribute('value')
. class Spam(Value):

pass

>>> numbers = [4, 2, 3, 4]
>>> spams = [Spam(n) for n in numbers]

>>> sorted(spams)

[<Spam 2>, <Spam 3>, <Spam 4>, <Spam 4>]

Certainly, this greatly simplifies the making of a sortable class. And if you would rather have your own
key function instead of getattr, it’s even easier. Simply replace the getattr(self, attr) call with
key_function(self), do that for other as well, and change the argument for the decorator to your
function. You can even use that as the base function and implement sort_by_attribute by simply
passing a wrapped getattr function.

Now that you know how to create all types of decorators, let’s look at a few useful decorator examples
bundled with Python.

Useful decorators

In addition to the ones already mentioned in this chapter, Python comes bundled with a few other
useful decorators. There are some that aren'’t in the standard library (yet?).

Chapter 6 181

Single dispatch — Polymorphism in Python

If you've used C++ or Java before, you're probably used to having ad hoc polymorphism available—dif-
ferent functions being called depending on the argument types. Python being a dynamically typed
language, most people would not expect the possibility of a single dispatch pattern. Python, however,
is a language that is not only dynamically typed but also strongly typed, which means we can rely on
the type we receive.

A dynamically typed language does not require strict type definitions. While a language
such as C would require the following to declare an integer:

int some_integer = 123;
Python simply accepts that our value has a type:
some_integer = 123
\G/\/ Although with type hinting we could also do:
some_integer: int = 123

As opposed to languages such as JavaScript and PHP, however, Python does very little
implicit type conversion. In Python, the following will return an error, whereas JavaScript
would execute it without any problems:

'spam’ + 5

In Python, the result is a TypeError. In JavaScript, it’s 'spam5*.

The idea of single dispatch is that depending on the type you pass, the correct function is called. Since
str + int results in an error in Python, this can be very convenient to automatically convert your
arguments before passing them to your function. This can be useful for separating the actual workings
of your function from the type conversions.

Since Python 3.4, there is a decorator that makes it easily possible to implement the single dispatch
pattern in Python. This decorator is useful if you need to execute different functions depending on
the type() of your input variable. Here is a basic example:

>>> import functools

>>> @functools.singledispatch
. def show_type(argument):
print(f'argument: {argument}')

>>> @show_type.register(int)

. def show_int(argument):
print(f'int argument: {argument}')

Decorators — Enabling Code Reuse by Decorating

>>> @show_type.register
. def show_float(argument: float):
print(f'float argument: {argument}')

>>> show_type('abc')
argument: abc

>>> show_type(123)
int argument: 123

>>> show_type(1.23)
float argument: 1.23

The singledispatch decorator automatically calls the correct function for the type passed as the first
argument. As you can see in the example, this works both when using type annotations and if explicit
types are passed to the register function.

Let’s see how we could make a simplified version of this method ourselves:

>>> import functools
>>> registry = dict()
>>> def register(function):
type_ = next(iter(function.__annotations__.values()))
registry[type_] = function
@functools.wraps(function)
def _register(argument):
new_function = registry.get(type(argument), function)
return new_function(argument)
return _register
>>> @register

. def show_type(argument: any):
print(f'argument: {argument}')

Chapter 6 183

>>> @register
. def show_int(argument: int):

print(f'int argument: {argument}')

>>> show_type('abc")
argument: abc

>>> show_type(123)
int argument: 123

Naturally, this method is a bit basic and it uses a single global registry, which limits its application.
But this exact pattern can be used for registering plugins or callbacks.

When naming the functions, make sure that you do not overwrite the original

\E/\/ singledispatch function. If you named show_int as just show_type, it would over-
write the initial show_type function. This would make it impossible to access the original
show_type function and make all register operations after that fail as well.

Now, a slightly more useful example—differentiating between a filename and a file handler:

import json

import functools

@functools.singledispatch
. def write_as_json(file, data):
json.dump(data, file)

@write_as_json.register(str)
. @write_as_json.register(bytes)
. def write_as_json_filename(file, data):
with open(file, 'w') as fh:
write_as_json(fh, data)

data = dict(a=1, b=2, c=3)
write_as_json('testl.json', data)

write_as_json(b'test2.json', 'w')

with open('test3.json', 'w') as fh:
write_as_json(fh, data)

So now we have a single write_as_json function; it calls the right code depending on the type. If it’s
astr or bytes object, it will automatically open the file and call the regular version of write_as_json,
which accepts file objects.

184 Decorators — Enabling Code Reuse by Decorating

Writing a decorator that does this is not that hard to do, of course, but it’s still quite convenient to have
the singledispatch decorator in the base library. It most certainly beats manually checking the given
argument types with a list of isinstance() if/elif/elif/else statements.

To see which function will be called, you can use the write_as_json.dispatch function with a spe-
cific type. When passing along a str, you will get the write_as_json_filename function. It should
be noted that the names of the dispatched functions are completely arbitrary. They are accessible as
regular functions, of course, but you can name them anything you like.

To check the registered types, you can access the registry, which is a dictionary, through write_as_json.
registry:

>>> write_as_json.registry.keys()

dict_keys([<class 'bytes'>, <class 'object'>, <class 'str'>])

contextmanager — with statements made easy
Using the contextmanager class, we can make the creation of a context wrapper very easy. Context

wrappers are used whenever you use a with statement. One example is the open function, which works
as a context wrapper as well, allowing you to use the following code:

with open(filename) as fh:
pass

Let’s just assume for now that the open function is not usable as a context manager and that we need
to build our own function to do this. The standard method of creating a context manager is by creating
a class that implements the __enter__and __exit__ methods:

>>> class Open:
def __init_ (self, filename, mode):
self.filename = filename
self.mode = mode

__enter__(self):
self.handle = open(self.filename, self.mode)
return self.handle

__exit__ (self, exc_type, exc_val, exc_tb):
self.handle.close()

>>> with Open('test.txt', 'w') as fh:
print('Our test is complete!', file=fh)

Chapter 6 185

While that works perfectly, it’s a tad verbose. With contextlib.contextmanager, we can have the
same behavior in just a few lines:

>>> import contextlib

>>> @contextlib.contextmanager

. def open_context_manager(filename, mode='r'):

fh = open(filename, mode)
yield fh
fth.close()

>>> with open_context_manager('test.txt', 'w') as fh:
print('Our test is complete!', file=fh)

Simple, right? However, I should mention that for this specific case—the closing of objects—there is
a dedicated function in contextlib, and it is even easier to use.

With file objects, database connections, and connections, it is important to always have

a close() call to clean up resources. In the case of a file, it tells the operating system

to write the data to disk (as opposed to temporary buffers), and in the case of network

/ connections and database connections, it releases the network connection and related

\E/‘ resources on both ends. With database connections, it will also notify the server that the
connection is no longer needed so that part is also handled gracefully.

Without these calls, you can quickly run into “too many open files” or “too many connec-
tions” errors.

Let’s demonstrate it with the most basic example of when closing() would be useful:

>>> import contextlib

>>> with contextlib.closing(open('test.txt', 'a')) as fh:
print('Yet another test', file=fh)

For a file object, you can usually also use with open(...) because it is a context manager by itself,
but if some other part of the code handles the opening, you don'’t always have that luxury, and in those
cases, you will need to close it yourself. Additionally, some objects such as requests made by urllib
don’t support automatic closing in that manner and benefit from this function.

But wait; there’s more! In addition to being usable in a with statement, the results of a contextmanager
are actually usable as decorators since Python 3.2. In older Python versions, the contextmanager was
simply a small wrapper, but since Python 3.2 it’s based on the ContextDecorator class, which makes
it a decorator.

186 Decorators — Enabling Code Reuse by Decorating

The open_context_manager context manager isn’t really suitable as a decorator since it has a yield
<value> as opposed to an empty yield (more about that in Chapter 7, Generators and Coroutines - Infinity,
One Step at a Time), but we can think of other functions:

>>> @contextlib.contextmanager
. def debug(name):

print(f'Debugging {name}:")

yield
print(f'Finished debugging {name}")

>>> @debug('spam')
. def spam():
print('This is the inside of our spam function')

>>> spam()

Debugging spam:

This is the inside of our spam function
Finished debugging spam

There are quite a few nice use cases for this, but at the very least, it’s just a convenient way to wrap a
function in a context without all the (nested) with statements.

Validation, type checks, and conversions

While checking for types is usually not the best way to go in Python, at times it can be useful if you
know that you will need a specific type (or something that can be cast to that type). To facilitate this,
Python 3.5 introduced a type hinting system so that you can do the following:

>>> def sandwich(bacon: float, eggs: int):
pass

In some cases, it can be useful to change these hints into requirements. Instead of using an isinstance(),
we will simply try to enforce the types by casting, which is more along the lines of duck-typing.

The essence of duck-typing is: if it looks like a duck, walks like a duck, and quacks like a duck, it might be a
duck. Essentially, this means that we don’t care if the value is a duck or something else, only if it supports
the quack() method that we need.

To enforce the type hints, we can create a decorator:

>>> import inspect
>>> import functools

>>> def enforce_type_hints(function):

Chapter 6

signature = inspect.signature(function)

@functools.wraps(function)
def _enforce_type_hints(*args, **kwargs):

bound = signature.bind(*args, **kwargs)
bound.apply defaults()

for key, value in bound.arguments.items():

param = signature.parameters[key]

if param.annotation:

bound.arguments[key] = param.annotation(value)
return function(*bound.args, **bound.kwargs)
return _enforce_type_hints

>>> @enforce_type_hints
. def sandwich(bacon: float, eggs: int):
print(f'bacon: {bacon!r}, eggs: {eggs!r}')

>>> sandwich(1, 2)

bacon: 1.0, eggs: 2

>>> sandwich(3, 'abc')

Traceback (most recent call last):

ValueError: invalid literal for int() with base 10: 'abc'

This is a fairly simple yet very versatile type enforcer that should work with most type annotations.

Useless warnings — How to ignore them safely

When writing in Python, warnings are often very useful when you're actually writing the code. When
executing it, however, it is not useful to get that same message every time you run your script/appli-
cation. So, let’s create some code that allows easy hiding of the expected warnings, but not all of them
so that we can easily catch new ones:

>>> import warnings
>>> import functools

>>> def ignore_warning(warning, count=None):
def _ignore_warning(function):

Decorators — Enabling Code Reuse by Decorating

@functools.wraps(function)
def __ignore_warning(*args, **kwargs):

with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter('always', warning)
result = function(*args, **kwargs)
if count is not None:
for w in ws[count:]:
warnings.warn(w.message)
return result
return __ignore_warning
return _ignore_warning
>>> @ignore_warning(DeprecationWarning, count=1)
. def spam():

warnings.warn(‘deprecation 1', DeprecationWarning)

warnings.warn('deprecation 2', DeprecationWarning)

>>> with warnings.catch_warnings(record=True) as ws:
spam()

for i, w in enumerate(ws):
print(w.message)
deprecation 2

Using this method, we can catch the first (expected) warning and still see the second (unexpected)
warning.

Now that you have seen some examples of useful decorators, it is time to continue with a few exercises
and see how much you can write yourself.

Chapter 6 189

Exercises

Decorators have a huge range of uses, so you can probably think of some yourself after reading this
chapter, but you can easily elaborate on some of the decorators we wrote earlier:

. Extend the track function to monitor execution time.

. Extend the track function with min/max/average execution time and call count.

« Modify the memoization function to function with unhashable types.

+ Modify the memoization function to have a cache per function instead of a global one.

. Create a version of functools.cached_property that can be recalculated as needed.

. Create a single-dispatch decorator that considers all or a configurable number of arguments
instead of only the first one.

. Enhance the type_check decorator to include additional checks such as requiring a number
to be greater than or less than a given value.

/ Example answers for these exercises can be found on GitHub: https://github.com/
\/<D> mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

Summary

This chapter showed you some of the places where decorators can be used to make our code simpler
and add some fairly complex behavior to very simple functions. Truthfully, most decorators are more
complex than the regular function would have been by simply adding the functionality directly, but the
added advantage of applying the same pattern to many functions and classes is generally well worth it.

Decorators have so many uses to make your functions and classes smarter and more convenient to use:

+ Debugging
« Validation
+ Argument convenience (pre-filling or converting arguments)

« Output convenience (converting the output to a specific type)

The most important takeaway of this chapter should be to never forget functools.wraps when wrapping
a function. Debugging decorated functions can be rather difficult because of (unexpected) behavior
modification, but losing attributes as well can make that problem much worse.

The next chapter will show you how and when to use generators and coroutines. This chapter has
already shown you the usage of the with statement briefly, but generators and coroutines go much
further with this. We will still be using decorators often, both in this book and when using Python in
general, so make sure you have a good understanding of how they work.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

190 Decorators — Enabling Code Reuse by Decorating

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHulf

https://discord.gg/QMzJenHuJf

Generators and Coroutines —
Infinity, One Step at a Time

Generator functions are functions that behave like iterators by generating the return values one by one.
While traditional methods build and return a 1ist or tuple of items with a fixed length, a generator
will yield a single value only when requested by the caller. The side effect is that these generators
can be infinitely large because you can keep yielding forever.

In addition to generators, there is a variation to the generator’s syntax that creates coroutines. Corou-
tines are functions that allow multitasking without requiring multiple threads or processes. Whereas
generators can only yield values to the caller based on the initial arguments, coroutines enable two-
way communication with the calling function while running. The modern implementation of corou-
tines in Python is through the asyncio module, which is covered extensively in Chapter 13, asyncio
- Multithreading without Threads, but the basics stem from the coroutines discussed in this chapter. If
coroutines or asyncio work for your case, they can offer a tremendous performance improvement.

In this chapter, we will cover the following topics:

+ Advantages and disadvantages of generators

« The characteristics and quirks of generators

. Creating generators using regular functions

. Generator comprehensions similar to 1ist, dict, and set comprehensions
. Creating generators using classes

+ Generators bundled with Python

« Abasicimplementation of coroutines and a few of their quirks

Generators

Generators are a very useful tool but they come with a set of rules to keep in mind.

192 Generators and Coroutines - Infinity, One Step at a Time

First, let’s explore the advantages of generators:

+ Generators are often simpler to write than list-generating functions. Instead of having to de-
clare a 1ist, list.append(value), and return, you only need yield value.

+ Memory usage. Items can be processed one at a time, so there is generally no need to keep
the entire list in memory.

. Results can depend on outside factors. Instead of having a static list, you generate the value
when it is being requested. Think of processing a queue/stack, for example.

« Generators are lazy. This means that if you're using only the first five results of a generator,
the rest won’t even be calculated. Additionally, between fetching the items, the generator is
completely frozen.

The most important disadvantages are:

. Results are available only once. After processing the results of a generator, it cannot be used
again.

+ The size is unknown. Until you are done processing, you cannot get any information about the
size of the generator. It might even be infinite. This makes 1ist(some_infinite_generator) a
dangerous operation. It can quickly crash your Python interpreter or even your entire system.

. Slicing is not possible, so some_generator[10:20] will not work. You can work around this
using itertools.islice as you will see later in this chapter, but that effectively discards the
unused indices.

+ Indexing generators, similar to slicing, is also not possible. This means that the following will
not work: some_generator[5].

Now that you know what to expect, let’s create a few generators.

Creating generators
The simplest generator is a function containing a yield statement instead of a return statement. The

key difference with regular functions containing a return is that you can have many yield statements
in your function.

An example of a generator with a few fixed yield statements and how it behaves with several opera-
tions is as follows:

>>> def generator():
yield 1
yield 'a'
yield []

return 'end'
>>> result = generator()

>>> result

<generator object generator at ...

Chapter 7

>>> len(result)

Traceback (most recent call last):
TypeError: object of type 'generator' has no len()

>>> result[:10]

Traceback (most recent call last):
TypeError: 'generator' object is not subscriptable

>>> list(result)

[1, *a', []]

>>> list(result)

[]

A few of the downsides of generators become immediately apparent in this example. The result
does not offer much meaningful information when looking at its repr(), getting len() (length), or
slicing. And trying to do list() to get the values a second time does not work because the generator
is already exhausted.

Additionally, you may have noticed that the return value of the function appears to have completely
disappeared. This is actually not the case; the value of return is still used, but as the value for the
StopIteration exception raised by the generator to indicate that the generator has been exhausted:

>>> def generator_with_return():
yield 'some_value'

return 'The end of our generator'
>>> result = generator_with_return()

>>> next(result)
'some_value'
>>> next(result)

Traceback (most recent call last):

StopIteration: The end of our generator

The following example demonstrates the lazy execution of generators:

>>> def lazy():
print('before the yield")
yield ‘'yielding'

Generators and Coroutines - Infinity, One Step at a Time

print('after the yield')

>>> generator = lazy()

>>> next(generator)
before the yield
'yielding'

>>> next(generator)
Traceback (most recent call last):

StopIteration

As you can see in this example, the code after the yield isn’t executed. This is caused by the
StopIteration exception; if we properly catch this exception, the code will be executed:

>>> def lazy():
print('before the yield')
yield 'yielding'
print('after the yield')

>>> generator = lazy()

>>> next(generator)
before the yield
'yielding'

>>> try:
next(generator)
.. except StopIteration:
PERTS
after the yield

>>> for item in lazy():
print(item)

before the yield

yielding

after the yield

To properly handle generators, you always need to either catch the StopIteration yourself, or use a
loop or another structure that handles the StopIteration implicitly.

Chapter 7 195

Creating infinite generators

Creating an endless generator (such as the itertools. count iterator discussed in Chapter 5, Functional
Programming - Readability Versus Brevity) is easy as well. If, instead of having the fixed yield <value>
lines like in the previous function, we yield from inside of an infinite loop, we can easily make an
infinite generator.

Asopposed to the itertools.count() generator, we will add a stop parameter to make testing easier:

>>> def count(start=0, step=1, stop=None):

n = start

while stop is not None and n < stop:
yield n
n += step

>>> list(count(10, 2.5, 20))
[18, 12.5, 15.0, 17.5]

NV Due to the potentially infinite nature of generators, caution is required. Without
,@ the stop variable, simply doing 1ist(count()) would result in an infinite loop that
= results in an out-of-memory situation quite fast.

So, how does this work? Essentially it is just a normal loop, but the big difference between this and
the regular method of returning a list of items is that the yield statement returns the items one at
a time, which means you only have to calculate the requested items and you don’t have to keep all
results in memory.

Generators wrapping iterables
While generators are already quite useful when generating values from scratch, the real power comes

when wrapping other iterables. To illustrate this, we will create a generator that automatically squares
all numbers from the given input:

>>> def square(iterable):
for i in iterable:
yield i ** 2

>>> list(square(range(5)))
[0, 1, 4, 9, 16]

Naturally, there is nothing stopping you from adding extra yield statements outside of the loop:

>>> def padded_square(iterable):

yield 'begin'’

for i in iterable:

196 Generators and Coroutines - Infinity, One Step at a Time

yield i ** 2
yield 'end’

>>> list(padded_square(range(5)))
['begin', @, 1, 4, 9, 16, 'end']

Because these generators are iterable, you can chain them together by wrapping them as many times
as you like. A basic example of chaining a square() and an odd() generator together is:

>>> import itertools

def odd(iterable):
for i in iterable:
if 1 % 2:
yield i

def square(iterable):
for i in iterable:
yield i ** 2

list(square(odd(range(10))))
9, 25, 49, 81]

If we analyze how the code is executed, we need to start from the inside to the outside:

1. The range(10) statement generates 10 numbers for us.

2. The odd() generator filters the input values, so from the [0, 1, 2 ..] values it only returns
[1, 3, 5, 7, 9].

3. The square() function squares the given input, which is the list of odd numbers as generated
by odd().

The real power of chaining is that the generators will only do something when we request a value. If
we request a single value with next() instead of 1ist(), it will mean that only the first iteration of
the loop in square() will be run. For odd() and range (), however, it will have to process two values
because odd () will discard the first value given by range() and not yield anything.

Generator comprehensions

In the previous chapters, you saw list, dict, and set comprehensions, which generate collections.
With a generator comprehension we can make similar collections, but make them lazy so they are
only evaluated as needed. The basic premise is identical to the 1ist comprehension but using round
brackets/parentheses instead of square brackets:

>>> squares = (x ** 2 for x in range(4))

>>> squares

Chapter 7 197

<generator object <genexpr> at Ox...>

>>> list(squares)
[0, 1, 4, 9]

This is very useful when you need to wrap the results of a different generator because it only calculates
the values you asked for:

>>> import itertools

result = itertools.count()

odd = (x for x in result if x % 2)
sliced odd = itertools.islice(odd, 5)
list(sliced_odd)

3, 5, 7, 9]

result = itertools.count()

sliced_result = itertools.islice(result, 5)
odd = (x for x in sliced result if x % 2)
list(odd)

|

Asyou can probably surmise from this result, this can be dangerous with infinite-sized generators such
as itertools.count(). The order of operations is very important because the itertools.islice()
function slices the result at that point, not the original generator. This means that if we replace odd()
with a function that never evaluates to True for the given collection, it will run forever because it will
never yield any results.

Class-based generators and iterators

In addition to creating generators as regular functions and through generator comprehensions, we
can also create generators using classes. This can be beneficial for more complex generators where
you need to remember the state or where inheritance can be used.

First, let’s look at an example of creating a basic generator class that mimics the behavior of itertools.
count() with an added stop parameter:

>>> class CountGenerator:
def __init__ (self, start=0, step=1, stop=None):
self.start = start
self.step = step
self.stop = stop

def __iter_ (self):

Generators and Coroutines - Infinity, One Step at a Time

i = self.start

while self.stop is None or i < self.stop:
yield i
i += self.step

>>> list(CountGenerator(start=2.5, step=0.5, stop=5))
[2.5, 3.0, 3.5, 4.0, 4.5]

Now let’s convert the generator class into an iterator with more features:

>>> class CountIterator:
def __init__ (self, start=0, step=1, stop=None):
self.i = start
self.start = start
self.step step
self.stop = stop

__iter__(self):
return self

__next__(self):
if self.stop is not None and self.i >= self.stop:
raise StopIteration

value = self.i
self.i += self.step

return value

>>> list(CountIterator(start=2.5, step=0.5, stop=5))
[2.5, 3.0, 3.5, 4.0, 4.5]

The most important distinction between the generator and the iterator is that instead of a simple
iterable object, we now have a fully fledged class that acts as an iterator, which means we can also
expand it beyond the capabilities of regular generators.

A few of the limitations of regular generators are that they don’t have a length and we cannot slice

them. With an iterator, we can explicitly define the behavior in these scenarios if needed:

>>> import itertools

>>> class AdvancedCountIterator:
def __init__ (self, start=0, step=1, stop=None):

Chapter 7

self.i = start
self.start = start
self.step step
self.stop stop

__iter__ (self):
return self

__next__(self):
if self.stop is not None and self.i >= self.stop:
raise StopIteration

value = self.i
self.i += self.step

return value

__len__(self):
return int((self.stop - self.start) // self.step)

__contains__(self, key):

return self.start < key < self.stop

__repr__(self):

return (
f'{self. class_ . name__ }(start={self.start},
f'step={self.step}, stop={self.stop})’)

__getitem__(self, slice):

return itertools.islice(self, slice_.start,
slice .stop, slice_.step)

Now that we have our advanced count iterator with support for features such as 1len(), in, and repr(),

we can test to see if it works as expected:

>>> count = AdvancedCountIterator(start=2.5, step=0.5, stop=5)

>>> count
AdvancedCountIterator(start=2.5, step=0.5, stop=5)

200 Generators and Coroutines - Infinity, One Step at a Time

>>> 3 in count
True

>>> 3.1 in count
True

>>> 1 in count
False

>>> len(count)
5

>>> count[:3]

<itertools.islice object at ox...

>>> list(count[:3])
[2.5, 3.0, 3.5]

>>> list(count[:3])
[4.0, 4.5]

In addition to working around some of the limitations, in the last example, you can also see a very
useful feature of generators. We can exhaust the items one by one and stop/start whenever we want.
And since we still have full access to the object, we could alter count. i to restart the iterator.

Generator examples

Now that you know how generators can be created, let’s look at a few useful generators and examples
of how to use them.

Before you start writing a generator for your project, always make sure to look at the Python itertools
module. It features a host of useful generators that cover a vast array of use cases. The following sec-
tions show some custom generators and a few of the most useful generators in the standard library.

\ll

@ These generators work on all iterables, not just generators. So, you could also apply them
gn toa list, tuple, string, or other kinds of iterables.

Breaking an iterable up into chunks/groups

When executing large amounts of queries in a database or when running tasks via multiple process-
es, it is often more efficient to chunk the operations. Having a single huge operation could result in
out-of-memory issues; having many tiny operations can be slow due to start-up/teardown sequences.

Chapter 7 201

To make things more efficient, a good method is to split the input into chunks. The Python documenta-
tion (https://docs.python.org/3/library/itertools.html?highlight=chunk#itertools-recipes)
already comes with an example of how to do this by using itertools.zip_longest():

>>> import itertools

>>> def grouper(iterable, n, fillvalue=None):
'''Collect data into fixed-length chunks or blocks'''
args = [iter(iterable)] * n

return itertools.zip_longest(*args, fillvalue=fillvalue)

>>> list(grouper('ABCDEFG', 3, 'x"))
[('AI, 'Bl) Icl)) (lD" IEI, IFI)’ (IG|) IXI) IXI)]

This code is a very nice example of how easy it is to chunk your data, but it has to hold the entire chunk
in memory. To work around that, we can create a version that generates sub-generators for the chunks:

>>> def chunker(iterable, chunk_size):
iterable = iter(iterable)
def chunk(value):
yield value

for _ in range(chunk_size - 1):
try:
yield next(iterable)
except StopIteration:
break

while True:
try:

yield chunk(next(iterable))
except StopIteration:
break

>>> for chunk in chunker('ABCDEFG', 3):
for value in chunk:
print(value, end="', ')
print()

https://docs.python.org/3/library/itertools.html?highlight=chunk#itertools-recipes

202 Generators and Coroutines - Infinity, One Step at a Time

Because we need to catch the StopIteration exceptions, this example does not look very pretty in
my opinion. Part of the code could be improved by using itertools.islice() (which is covered
next) but that will still leave us with the problem that we cannot know when we have reached the end.

If you are interested, an implementation using itertools.islice() and itertools.chains() canbe
found on this book’s GitHub: https://github.com/mastering-python/code_2.

itertools.islice — Slicing iterables

One limitation of generators is that they cannot be sliced. You can work around this by converting
the generator into a 1ist before slicing, but that is not possible with infinite generators, and it can be
inefficient if you only need a few values.

To solve this, the itertools library has an islice() function, which can slice any iterable object. The
function is the generator version of the slicing operators and similarly to slicing supports a start, stop,
and step parameter. The following illustrates how regular slicing and itertools.islice() compare:

>>> import itertools

some_list = list(range(1000))
some_list[:5]

1, 2, 3, 4]
list(itertools.islice(some_list, 5))
1, 2, 3, 4]

>>> some_list[10:20:2]

[10, 12, 14, 16, 18]

>>> list(itertools.islice(some_list, 10, 20, 2))
[10, 12, 14, 16, 18]

It is very important to note that while the output is identical, these methods are far from equivalent
internally. Regular slicing only works on objects that are sliceable; effectively, this means the object
has to implement the __getitem_ (self, slice) method.

Additionally, we expect that slicing objects is a fast and efficient operation. For 1ist and tuple this is
certainly the case, but for a given generator this might not be the case.

If for a list with size n=1000 we take any slice of any k=10 elements, we can expect the time com-
plexity of that to be only 0(k); that is, 10 steps. It doesn’t matter whether we do some_list[:10] or
some_list[900:920:2].

https://github.com/mastering-python/code_2

Chapter 7 203

For itertools.islice() thisis notthe case because the only assumption it makes is that the input is
iterable. That means that getting the first 10 items is easy; simply loop through the items, return the
first 10, and stop. So itertools.islice(some_list, 10) also takes 10 steps. Getting items 900 to 920,
however, means walking through and discarding the first 900 items, and only returning 10 of the next
20 items. So that is 920 steps instead.

To illustrate this, here’s a slightly simplified implementation of itertools.islice() that expects to
always have a stop available:

>>> def islice(iterable, start, stop=None, step=1):

if stop is None and step == 1 and start is not None:
start, stop = 0, start

iterator = iter(iterable)
for _ in range(start):
next(iterator)

for i, item in enumerate(iterator, start):

if i >= stop:
return

if 1 % step:
continue

yield item

>>> list(islice(range(1000), 10))
[eJ 1J 21 3) 4) 5, 6) 7J 8) 9]

>>> list(islice(range(1000), 900, 920, 2))
[900, 902, 904, 906, 908, 910, 912, 914, 916, 918]

>>> list(islice(range(1000), 900, 910))
[900, 901, 902, 903, 904, 905, 906, 907, 908, 909]

As you can see, both the start and the step sections discard items that are not needed. This does not
mean you should not use itertools.islice(), but be wary of the internals. Also, as you might expect,
this generator does not support negative values for the indices and expects all values to be positive.

204 Generators and Coroutines - Infinity, One Step at a Time

itertools.chain — Concatenating multiple iterables

The itertools.chain() generator is one of the simplest yet one of the most useful generators in the
Python library. It simply returns every item from every passed iterable in sequential order and can
be implemented in just three lines:

>>> def chain(*iterables):

for iterable in iterables:
yield from iterable

>»> a=1, 2, 3
>>> b = [4, 5, 6]

>>> ¢ = 'abc’

>>> list(chain(a, b, c))
[1) 2) 3J 4J 51 6J ‘a'J 'b'J 'C']

>»> a+ b + ¢

Traceback (most recent call last):

TypeError: can only concatenate tuple (not "list") to tuple

Asyou might notice, this also introduces a feature not yet discussed: the yield fromexpression.yield
from does exactly what you can expect from the name and yields all items from the given iterable. So
itertools.chain() can also be replaced with the slightly more verbose:

>>> def chain(*iterables):
for iterable in iterables:

for i in iterable:

yield i

Interestingly, this method is more powerful than adding the collections because it doesn’t care about
the types as long as they are iterable—duck typing at its finest.

itertools.tee — Using an output multiple times

As mentioned before, one of the biggest disadvantages of generators is that the results are usable only
once. Luckily, Python has a function that allows you to copy the output to several generators. The
name tee might be familiar to you if you are used to working in a Linux/Unix command-line shell.
The tee program allows you to write outputs to both the screen and a file, so you can store an output
while still maintaining a live view of it.

The Python version, itertools.tee(), does a similar thing except that it returns several iterators,
allowing you to process the results separately.

By default, tee will split your generator into a tuple containing two different generators, which is why
tuple unpacking works nicely here. By passing along the n parameter, you can tell itertools.tee()
to create more than two generators. Here is an example:

Chapter 7 205

>>> import itertools

>>> def spam_and_eggs():

yield 'spam'
yield 'eggs'

>>> a, b = itertools.tee(spam_and_eggs())
>>> next(a)

‘spam’

>>> next(a)

'eggs’

>>> next(b)

‘spam’

>>> next(b)

'eggs’

>>> next(b)

Traceback (most recent call last):

StopIteration

After seeing this code, you might be wondering about the memory usage of tee. Does it need to store
the entire list for you? Luckily, no. The tee function is pretty smart in handling this. Assume you have
a generator that contains 1,000 items, and you read the first 100 items from a and the first 75 items
from b simultaneously. Then tee will only keep the difference (160 - 75 = 25 items) in memory and
drop the rest while you are iterating the results.

Whether tee is the best solution in your case or not depends, of course. If instance a is read from the
beginning to (nearly) the end before instance b is read, then it would not be a great idea to use tee.
Simply converting the generator into a 1ist would be faster since it involves much fewer operations.

contextlib.contextmanager — Creating context managers

You have already seen context managers in Chapter 5, Functional Programming — Readability Versus
Brevity, and Chapter 6, Decorators — Enabling Code Reuse by Decorating, but there are many more useful
things to be done with context managers. While the contextlib.contextmanager() generator is not
meant to be a result-generating generator like the examples you saw earlier in this chapter, it does
use yield, so it’s a nice example of non-standard generator usage.

Some useful examples to log your output to a file and measure function execution time are:

>>> import time
>>> import datetime
>>> import contextlib

Generators and Coroutines - Infinity, One Step at a Time

>>> @contextlib.contextmanager
. def timer(name):
start_time = datetime.datetime.now()
yield
stop_time = datetime.datetime.now()
print('%s took %s' % (name, stop_time - start time))

>>> with timer('basic timer'):
time.sleep(9.1)
basic timer took 0:00:00.1...

>>> @contextlib.contextmanager
. def write_to_log(name):
with open(f'{name}.txt', 'w') as fh:
with contextlib.redirect stdout(fh):
with timer(name):

yield

>>> @write_to_log('some_name")
. def some_function():
print('This will be written to 'some_name.txt'')

>>> some_function()

This all works perfectly, but the code could be prettier. Having three levels of context managers tends
to get a bit unreadable, which is something you could generally solve using decorators, as covered in
Chapter 6. In this case, however, we need the output from one context manager as the input for the
next, which would make for a more complicated decorator setup.

That’s where the ExitStack context manager comes in. It allows the easy combining of multiple con-
text managers without increasing the indentation level:

>>> import contextlib

>>> @contextlib.contextmanager
. def write_to_log(name):
with contextlib.ExitStack() as stack:
fh = stack.enter_context(open(f'{name}.txt', 'w'))
stack.enter_context(contextlib.redirect_stdout(fh))

Chapter 7 207

stack.enter_context(timer(name))

yield
>>> @write_to_log('some_name')
. def some_function():

print('This will be written to 'some name.txt'')

>>> some_function()

Looks a bit simpler, doesn’t it> While this example is still reasonably legible without the ExitStack
context manager, the convenience of ExitStack becomes quickly apparent when you need to do
specific teardowns. In addition to the automatic handling, as seen before, it’s also possible to transfer
the contexts to a new ExitStack to manually handle the closing:

>>> import contextlib

>>> with contextlib.ExitStack() as stack:
fth = stack.enter_context(open('file.txt"', 'w'))

new_stack = stack.pop_all()

>>> bytes_written = fh.write('fh is still open')

>>> new_stack.close()

>>> fh.write('cant write anymore')

Traceback (most recent call last):

ValueError: I/0 operation on closed file.

Most of the contextlib functions have extensive documentation available in the Python man-
ual. ExitStack in particular is documented using many examples at https://docs.python.
org/3/library/contextlib.html#contextlib.ExitStack. I recommend keeping an eye on
the contextlib documentation as it is improving greatly with every Python version.

Now that we have covered regular generators, it is time to continue with coroutines.

Coroutines

Coroutines are subroutines that offer non-pre-emptive multitasking through multiple entry points.
The basic premise is that coroutines allow two functions to communicate with each other while run-
ning within a single thread. Normally, this type of communication is reserved only for multitasking
or multithreading solutions, but coroutines offer a relatively simple way of achieving this at almost
no added performance cost.

https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack
https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack

208 Generators and Coroutines - Infinity, One Step at a Time

Since generators are lazy by default, you might be able to guess how coroutines function. Until a result
is consumed, the generator sleeps; but while consuming a result, the generator becomes active. The
difference between regular generators and coroutines is that with coroutines the communication goes
both ways; the coroutine can receive values as well as yield them to the calling function.

If you are familiar with asyncio you might notice a strong similarity between asyncio and coroutines.
That is because asyncio is built on the idea of coroutines and has evolved from a little bit of syntactic
sugar into a whole ecosystem. For practical purposes I would suggest using asyncio instead of the
coroutine syntax explained here; for educational purposes, however, it is very useful to understand how
they work. The asyncio module is under very active development and has a much less awkward syntax.

A basic example

In the previous sections, you saw how regular generators can yield values. But generators can do
more; they can actually receive values through yield as well. The basic usage is fairly simple:

>>> def generator():

value = yield 'value from generator'
print('Generator received:', value)

yield f'Previous value: {value!r}'

>>> g = generator()
>>> print('Result from generator:', next(g))
Result from generator: value from generator

>>> print(g.send('value from caller'))
Generator received: value from caller

Previous value: 'value from caller'

And that’s all there is to it. The function is frozen until the send method is called, at which point it will
process up to the next yield statement. One limitation you can see from this is that the coroutine can’t
wake up by itself. The value exchanges can only happen when the calling code runs next(generator)
or generator.send().

Priming

Since generators are lazy, you can't just send a value to a brand-new generator. Before a value can
be sent to the generator, either a result must be fetched using next () or a send(None) has to be issued
so that the code is actually reached. This is understandable, but a bit tedious at times. Let’s create a
simple decorator to omit the need for this:

>>> import functools

>>> def coroutine(function):

Chapter 7 209

@functools.wraps(function)
def _coroutine(*args, **kwargs):
active_coroutine = function(*args, **kwargs)

assert not next(active_coroutine)

return active_coroutine

return _coroutine

>>> @coroutine
. def our_coroutine():
while True:
print('Waiting for yield...')
value = yield

print('our coroutine received:', value)

>>> generator = our_coroutine()

Waiting for yield...

>>> generator.send('a')
our coroutine received: a

Waiting for yield...

As you've probably noticed, even though the generator is still lazy, it now automatically executes all
of the code until it reaches the yield statement again. At that point, it will stay dormant until new
values are sent.

4 Note that the coroutine decorator will be used throughout this chapter from this point
\/;D> onward. For brevity, the coroutine function definition will be omitted from the following
examples.

Closing and throwing exceptions

Unlike regular generators, which simply exit as soon as the input sequence is exhausted, coroutines
generally employ infinite while loops, which means that they won'’t be torn down the normal way.
That’s why coroutines also support both the close and throw methods, which will exit the function.
The important thing here is not the closing but the possibility of adding a teardown method. Essentially,
itis very comparable to how context wrappers function withan __enter__and __exit__ method, but
with coroutines in this case.

210 Generators and Coroutines - Infinity, One Step at a Time

The following example shows a coroutine with normal and exception exit cases using the coroutine
decorator from the previous paragraph:

>>> from coroutine_decorator import coroutine

>>> @coroutine
. def simple_coroutine():
print('Setting up the coroutine')
try:
while True:
item = yield
print('Got item:', item)
except GeneratorExit:
print('Normal exit')
except Exception as e:
print('Exception exit:', e)
raise
finally:
print('Any exit")

This simple_coroutine() function can show us some of the internal flow of coroutines and how they
are interrupted. The try/finally behavior might surprise you in particular:

>>> active_coroutine = simple_coroutine()
Setting up the coroutine

>>> active_coroutine.send('from caller"')
Got item: from caller

>>> active_coroutine.close()

Normal exit

Any exit

>>> active_coroutine = simple_coroutine()

Setting up the coroutine

>>> active_coroutine.throw(RuntimeError, 'caller sent an error')
Traceback (most recent call last):

RuntimeError: caller sent an error

>>> active_coroutine = simple_coroutine()
Setting up the coroutine
>>> try:
active_coroutine.throw(RuntimeError, 'caller sent an error')

. except RuntimeError as exception:

Chapter 7 211

print('Exception:', exception)

Exception exit: caller sent an error
Any exit
Exception: caller sent an error

Most of this output is as you would expect, but as was the case with the StopIteration in generators,
you have to catch the exception to be sure the teardown is handled correctly.

Mixing generators and coroutines

While generators and coroutines appear to be very similar due to the yield statements, they are
somewhat different beasts. Let’s create a two-way pipeline to process the given input and pass this
along to multiple coroutines along the way:

from coroutine_decorator import coroutine
lines = 'some old text', 'really really old', 'old old old'

@coroutine
. def replace(search, replace):
while True:
item = yield
print(item.replace(search, replace))

old_replace = replace('old', 'new')
for line in lines:
old_replace.send(line)
some new text
really really new
new new new

Given this example, you might be wondering why we are now printing the value instead of yielding it.
We can yield the value, but remember that generators freeze until a value is yielded. Let’s see what
will happen if we simply yield the value instead of calling print. By default, you might be tempted
to do this:

>>> @coroutine
. def replace(search, replace):
while True:
item = yield
yield item.replace(search, replace)

>>> old_replace = replace('old’', 'new')

>>> for line in lines:

212 Generators and Coroutines - Infinity, One Step at a Time

old_replace.send(line)

'some new text'

'new new new'

Half of the values have disappeared now; our “really really new"line has disappeared. Notice that
the second yield isn’t storing the results, and that yield effectively makes this a generator and not a
coroutine. We need to store the results from that yield as well:

>>> @coroutine
. def replace(search, replace):
item = yield
while True:

item = yield item.replace(search, replace)

>>> old_replace = replace('old', 'new')
>>> for line in lines:
old replace.send(line)
‘some new text'
'really really new'

'new new new'

But even this is far from optimal. We are essentially using coroutines to mimic the behavior of gen-
erators right now. It works, but it is a bit pointless and offers no real benefit.

Let’s make a real pipeline this time where the coroutines send the data to the next coroutine or
coroutines. This demonstrates the real power of coroutines, which is being able to chain multiple
coroutines together:

>>> @coroutine
. def replace(target, search, replace):
while True:
target.send((yield).replace(search, replace))

>>> @coroutine
. def print_(formatstring):
count = 0@
while True:
count += 1

print(count, formatstring.format((yield)))

>>> @coroutine

Chapter 7 213

. def tee(*targets):
while True:

item = yield

for target in targets:
target.send(item)

Now that we have our coroutine functions, let’s see how we can link these together:

>>> printer = print_('print: {}')

>>> old _replace = replace(printer, 'old', 'new')
>>> current_replace = replace(printer, ‘'old', 'current')

>>> branch = tee(old_replace, current_replace)

>>> for line in lines:
branch.send(line)

print: some new text
print: some current text
print: really really new
print: really really current
print: new new new
print: current current current

This makes the code much simpler and more readable and shows how you can send a single input
source to multiple destinations simultaneously. At first glance, this example does not look that exciting,
but the exciting part is that even though we split the input using tee() and processed it through two
separate replace() instances, we still ended up at the same print_() function with the same state.
This means that it’s possible to route and modify your data along whichever way is convenient for you
while still having it end up at the same endpoint with no effort whatsoever.

For now, the most important takeaway is that mixing generators and coroutines is not a good idea
in most cases since it can have very strange side effects if used incorrectly. Even though both use
the yield statement, they are significantly different creatures with different behavior. The next section
will demonstrate one of the few cases where mixing coroutines and generators can be useful.

214 Generators and Coroutines - Infinity, One Step at a Time

Using the state

Now that you know how to write basic coroutines and which pitfalls you have to take care of, how
about writing a function where remembering the state is required? That is, a function that always gives
you the average value of all sent values. This is one of the few cases where it is still relatively safe and
useful to combine the coroutine and generator syntax:

>>> import itertools

>>> @coroutine

. def average():

total = yield
for count in itertools.count(start=1):
total += yield total / count

>>> averager = average()
>>> averager.send(20)
20.0

>>> averager.send(10)
15.0

It still requires some extra logic to work properly, though. We need to prime our coroutine using yield,
but we don’t send any data at that point because the first yield is the primer and is executed before
we get the value. Once that’s all set up, we can easily yield the average value while summing. It’s not
all that bad, but the pure coroutine version is slightly simpler to understand since we only have a
single execution path because we don’t have to worry about priming. To illustrate this, here is the
pure coroutine version:

>>> import itertools

>>> @coroutine
. def print_(formatstring):
while True:
print(formatstring.format((yield)))

>>> @coroutine
. def average(target):
total = 0
for count in itertools.count(start=1):
total += yield
target.send(total / count)

>>> printer = print_('{:.1f}")

Chapter 7 215

>>> averager = average(printer)

>>> averager.send(20)
20.0
>>> averager.send(10)
15.0

While that example is a few lines longer than the version that includes a generator, it is much easier
to understand. Let’s analyze it to make sure the workings are clear:

1. We set total to @ to start counting.

2. We keep track of the measurement count by using itertools.count(), which we configure
to start counting from 1.
We fetch the next value using yield.

4. We send the average to the given coroutine instead of returning the value to make the code
less confusing.

Another nice example is itertools.groupby, which is also quite simple to recreate using coroutines.
For comparison, I will once again show both the generator coroutine and the pure coroutine version:

>>> @coroutine
. def groupby():

key, value = yield
old key, values = key, []

while True:

old_value = value
if key == old_key:
key, value = yield
else:
key, value = yield old_key, values
old key, values = key, []
values.append(old_value)

grouper = groupby()
grouper.send('al')

grouper.send('a2")

>>> grouper.send('a3")

>>> grouper.send('bl")
(lal) [lll, l2l, l3l])
>>> grouper.send('b2")

Generators and Coroutines - Infinity, One Step at a Time

>>> grouper.send('al')

(b, ['1', "2'])

>>> grouper.send('a2")

>>> grouper.send((None, None))
(a', ['1%, "2'])

As you can see, this function uses a few tricks. Firstly, we store the previous key and value so that we
can detect when the group (key) changes. Secondly, we obviously cannot recognize a group until the
group has changed, so only after the group has changed will the results be returned. This means that
the last group will be sent only if a different group is sent after it, hence the (None, None).

The example uses tuple unpacking for the string, splitting 'al’ into group 'a’' and value
'1'. Alternatively, you could also use grouper.send(('a", 1)).

Now here is the pure coroutine version:

>>> @coroutine
. def print_(formatstring):
while True:

print(formatstring.format(*(yield)))

>>> @coroutine
. def groupby(target):
old_key = None
while True:
key, value = yield
if old_key != key:

if old_key and values:
target.send((old_key, values))
values = []
old_key = key
values.append(value)

grouper = groupby(print_('group: {}, values: {}'))
grouper.send('al')
grouper.send('a2")
grouper.send('a3")
grouper.send('bl")
group: a, values: ['1', '2°',

Chapter 7 217

>>> grouper.send('b2")
>>> grouper.send('al")
group: b, values: ['1', '2']
>>> grouper.send('a2")

>>> grouper.send((None, None))

group: a, values: ['1', '2']

While the functions are fairly similar, the coroutine version has a less complex control path and
only needs to yield in one spot. This is because we don’t have to think about priming and potentially
losing values.

Exercises

Generators have a multitude of uses so you can probably start using them in your own code right away.
Nevertheless, the following exercises might help you understand the features and the limitations a
bit better:

+ Create a generator similar to itertools.islice() that allows for a negative step so you can
execute some_list[20:10:-1].

. Create a class that wraps a generator so it becomes sliceable by using itertools.islice()
internally.

+ Write a generator for the Fibonacci numbers.

« Write a generator that uses the sieve of Eratosthenes to generate prime numbers.

/ Example answers for these exercises can be found on GitHub: https://github.com/
\/<ﬂ> mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

Summary

This chapter showed you how to create generators and both the strengths and weaknesses that they
possess. Additionally, it should now be clear how to work around their limitations and the implica-
tions of doing so.

In general, I would always recommend the use of generators over traditional collection-generating
functions. They are easier to write, consume less memory, and, if needed, the downsides can be mit-
igated by replacing some_generator() with list(some_generator()), or a decorator that handles
that for you.

While the paragraphs about coroutines provided some insights into what they are and how they can
be used, they were just a mild introduction to coroutines. Both the pure coroutines and the coroutine
generator combinations are still somewhat clunky, which is why the asyncio library was created.
Chapter 13, - asyncio - Multithreading without Threads, covers asyncio in detail and also introduces the
async and await statements, which make coroutine usage much more intuitive compared to yield.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

218 Generators and Coroutines - Infinity, One Step at a Time

In the previous chapter, you saw how we can modify classes using class decorators. In the next chapter,
we will cover the creation of classes using metaclasses. Using metaclasses, you can modify classes
during the creation of the class itself. Note that I am not talking about the instances of the class, but
the actual class object. Using this technique, you can create automatically registering plugin systems,
add extra attributes to classes, and more.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHulf

https://discord.gg/QMzJenHuJf

Metaclasses — Making Classes
(Not Instances) Smarter

The previous chapters have already shown us how to modify classes and functions using decorators.
But that’s not the only option to modify or extend a class. An even more advanced technique for mod-
ifying your classes before creation is the usage of metaclasses. The name already gives you a hint as
to what it could be; a metaclass is a class containing meta information about a class.

The basic premise of a metaclass is a class that generates another class for you at definition time, so
generally you wouldn’t use it to change the class instances, but only the class definitions. By changing
the class definitions, it is possible to automatically add some properties to a class, validate whether
certain properties are set, change inheritance, automatically register the class with a manager, and
many other things.

Although metaclasses are generally considered to be a more powerful technique than (class) decora-
tors, effectively they don't differ too much in possibilities. The choice usually comes down to either
convenience or personal preference.

In this chapter, we will cover the following topics:

+ Basic dynamic class creation

. Metaclasses with arguments

« Abstract base classes, examples, and inner workings

« Automatic plugin systems using metaclasses

» Internals of class creation and the order of operations

+ Storing the definition order of class attributes

Dynamically creating classes

Metaclasses are the factories that create new classes in Python. In fact, even though you may not be
aware of it, Python will always execute the type metaclass whenever you create a class.

220 Metaclasses — Making Classes (Not Instances) Smarter

A few common examples where metaclasses are used internally are abc (abstract base classes),
dataclasses, and the Django framework, which heavily relies on metaclasses for the Model class.

When creating classes in a procedural way, the type metaclass is used as a function that takes three
arguments: name, bases, and dict.name will become the _ name__ attribute, bases is the list of inher-
ited base classes and will be stored in __bases__, and dict is the namespace dictionary that contains
all variables and will be stored in __dict .

It should be noted that the type () function has another use as well. Given the arguments documented
above, it will create a class with those specifications. Given a single argument with the instance of a
class (for example, type(spam)), it will return the class object/definition.

Your next question might be, what happens if I call type() on a class definition instead of a class
instance? Well, that returns the metaclass for the class, which is type by default.

Let’s clarify this using a few examples:

>>> class Spam(object):

eggs = ‘my eggs’

>>> Spam = type('Spam', (object,), dict(eggs='my eggs'))

The above two definitions of Spam are completely identical; they both create a class with an instantiat-
ed property of eggs and object as a base. Let’s test whether this actually works as you would expect:

>>> class Spam(object):
eggs = 'my eggs'

>>> spam = Spam()
>>> spam.eggs

'my eggs'

>>> type(spam)
<class ' ...Spam'>
>>> type(Spam)
<class 'type'>

>>> Spam = type('Spam', (object,), dict(eggs="my eggs'))

>>> spam = Spam()
>>> spam.eggs

'my eggs'

>>> type(spam)
<class '...Spam'>
>>> type(Spam)
<class 'type'>

Chapter 8 221

As expected, the results for the two are the same. When creating a class, Python will silently add the
type metaclass, and custom metaclasses are classes that inherit type. A simple class definition has a
silent metaclass, making a simple definition such as:

class Spam(object):

pass
essentially identical to:
class Spam(object, metaclass=type):

pass

This raises the question: if every class is created by a (silent) metaclass, what is the metaclass of type?
This is a recursive definition; the metaclass of type is type. That is the essence of what a custom
metaclass is: a class that inherits type to allow class modification without needing to modify the class
definition itself.

A basic metaclass

Since metaclasses can modify any class attribute, you can do absolutely anything you wish. Before we
continue with more advanced metaclasses, let’s create a metaclass that does the following:

1. Makes the class inherit int
2. Adds a lettuce attribute to the class

3. Changes the name of the class

First we create the metaclass. After that, we create a class both with and without the metaclass:

>>> class MetaSandwich(type):

def __new__(metaclass, name, bases, namespace):
name = 'SandwichCreatedByMeta'
bases = (int,) + bases
namespace['lettuce'] = 1
return type._new__(metaclass, name, bases, namespace)

First, the regular Sandwich:

>>> class Sandwich(object):

pass

>>> Sandwich.__name__

'Sandwich’

222 Metaclasses — Making Classes (Not Instances) Smarter

>>> issubclass(Sandwich, int)

False
>>> Sandwich.lettuce
Traceback (most recent call last):

AttributeError: type object 'Sandwich' has no attribute 'lettuce’

Now, the meta-Sandwich:

>>> class Sandwich(object, metaclass=MetaSandwich):

pass

>>> Sandwich._ name__
'SandwichCreatedByMeta'

>>> issubclass(Sandwich, int)
True

>>> Sandwich.lettuce

1

As you can see, the class with the custom metaclass now inherits int, has the lettuce attribute, and
has a different name.

With metaclasses, you can modify any aspect of the class definition. That makes them a tool that is
both very powerful and potentially very confusing. With just a few small modifications, you can cause
the strangest of bugs in your (or others’) code.

Arguments to metaclasses

The possibility of adding arguments to a metaclass is a little-known feature, but very useful nonetheless.
In many cases, simply adding attributes or methods to a class definition is enough to detect what to
do, but there are cases where it is useful to be more specific:

>>> class AddClassAttributeMeta(type):
def __init__(metaclass, name, bases, namespace, **kwargs):

type. init (metaclass, name, bases, namespace)

def __new__(metaclass, name, bases, namespace, **kwargs):

for k, v in kwargs.items():

namespace.setdefault(k, v)

Chapter 8 223

return type._ new__(metaclass, name, bases, namespace)

>>> class WithArgument(metaclass=AddClassAttributeMeta, a=1234):
pass

>>> WithArgument.a

1234

>>> with_argument = WithArgument()
>>> with_argument.a

1234

This simplistic example may not be useful, but the possibilities are. For example, a metaclass that
automatically registers a plugin in a plugin registry could use this to specify plugin name aliases.

With this feature, instead of having to include all class-creating parameters as attributes and methods
on the class, you can pass these arguments without polluting your class. The only thing you need to
keep in mind is that both the __new__and __init__ methods need to be extended in order for this to
work because the arguments are passed to the metaclass constructor (__init_).

Since Python 3.6, however, we have had a simpler alternative to get this effect. Python 3.6 introduced
the __init_subclass__magic method, which allows for similar modifications in a slightly easier way:

>>> class AddClassAttribute:
def __init_subclass__(cls, **kwargs):
super().__init subclass__ ()

for k, v in kwargs.items():
setattr(cls, k, v)

>>> class WithAttribute(metaclass=AddClassAttributeMeta, a=1234):
PETS

>>> WithAttribute.a
1234
>>> with_attribute = WithAttribute()

>>> with_attribute.a
1234

Several of the metaclasses in this chapter could be replaced with the __init_subclass__ method,
and it is a very useful option for small modifications. For larger changes, I would recommend using
a full metaclass instead to make the distinction between the regular class and the metaclass slightly
more obvious.

224 Metaclasses — Making Classes (Not Instances) Smarter

Accessing metaclass attributes through classes

When using metaclasses, it might be confusing that the class actually does more than simply construct
the class; it’s actually inheriting the class during the creation. To illustrate:

>>> class Meta(type):
@property
def some_property(cls):
return ‘property of %r' % cls

def some_method(self):
return 'method of %r' % self

>>> class SomeClass(metaclass=Meta):
PERE

>>> SomeClass.some_property

"property of <class '...SomeClass'>"

>>> SomeClass.some_method

<bound method Meta.some_method of <class '_ _main__.SomeClass'>>
>>> SomeClass.some_method()

"method of <class '__main__.SomeClass'>"

>>> some_class = SomeClass()
>>> some_class.some_property
Traceback (most recent call last):

AttributeError: 'SomeClass' object has no attribute 'some_property'
>>> some_class.some_method
Traceback (most recent call last):

AttributeError: 'SomeClass' object has no attribute 'some_method'

As can be seen in the preceding example, these methods are only available for the class objects and
not the instances. The some_property and some_method are not accessible through the instance, while
they are accessible through the class. This can be useful for making some functions class- (as opposed
to instance-) only, and it keeps your class namespace cleaner.

Chapter 8 225

In the general case, however, I suspect this only adds confusion, so I would typically recommend
against it.

Abstract classes using collections.abc

The abstract base classes (also known as interface classes) module is one of the most useful and most
widely used examples of metaclasses in Python, as it makes it easy to ensure that a class adheres to
a certain interface without a lot of manual checks. We have already seen some examples of abstract
base classes in previous chapters, but now we will also look at their inner workings and some more
advanced features, such as custom abstract base classes (ABCs).

Internal workings of the abstract classes

First, let’s demonstrate the usage of the regular abstract base class:

>>> import abc

>>> class AbstractClass(metaclass=abc.ABCMeta):
@abc.abstractmethod
def some_method(self):
raise NotImplemented()

>>> class ConcreteClass(AbstractClass):

pass

>>> ConcreteClass()

Traceback (most recent call last):

TypeError: Can't instantiate abstract class ConcreteClass with

abstract methods some_method
>>> class ImplementedConcreteClass(ConcreteClass):
def some_method():

pass

>>> instance = ImplementedConcreteClass()

As you can see, the abstract base class blocks us from instantiating the classes until all abstract methods
have been inherited. This is really useful when your code expects certain properties or methods to
be available, but a sane default value is not an option. A common example of this is with base classes
for plugins and data models.

226 Metaclasses — Making Classes (Not Instances) Smarter

In addition to regular methods, property, staticmethod, and classmethod are also supported:

>>> import abc

>>> class AbstractClass(object, metaclass=abc.ABCMeta):
@property
@abc.abstractmethod
def some_property(self):
raise NotImplemented()

@classmethod
@abc.abstractmethod

def some_classmethod(cls):

raise NotImplemented()

@staticmethod

@abc.abstractmethod

def some_staticmethod():
raise NotImplemented()

@abc.abstractmethod
def some_method():
raise NotImplemented()

So what does Python do internally? You could, of course, read the abc.py source code, but I think a
simple explanation would be better.

First, the abc.abstractmethod sets the __isabstractmethod__ property on the function to True. So
if you don’t want to use the decorator, you could simply emulate the behavior by doing something
along the lines of:

some_method.__isabstractmethod__ = True

After that, the abc.ABCMeta metaclass walks through all of the items in the namespace and looks for
objects where the __isabstractmethod__ attribute evaluates to True. In addition to that, it will walk
through all bases and check the __abstractmethods__ set for every base class, in case the class in-
herits an abstract class. All of the items where __isabstractmethod__ still evaluates to True will be
added to the __abstractmethods__ set that is stored in the class as a frozenset.

Note that we don’t use abc.abstractproperty, abc.abstractclassmethod, and abc.
abstractstaticmethod. Since Python 3.3, these have been deprecated as the classmethod,

\E/\/ staticmethod, and property decorators are recognized by abc.abstractmethod, so a
simple property decorator followed by an abc.abstractmethod is recognized as well.
Take care when ordering the decorators; abc.abstractmethod needs to be the innermost
decorator for this to work properly.

Chapter 8 227

The next question now is where the actual checks come in, the checks to see whether the classes are
completely implemented. This actually functions through a few Python internals:

>>> class AbstractMeta(type):
def __new__(metaclass, name, bases, namespace):
cls = super().__new__(metaclass, name, bases,
namespace)
cls. abstractmethods__ = frozenset(('something',))

return cls

>>> class ConcreteClass(metaclass=AbstractMeta):

pass

>>> ConcreteClass()

Traceback (most recent call last):

TypeError: Can't instantiate abstract class ConcreteClass with

abstract methods something

We can easily emulate the same behavior with a metaclass ourselves, but it should be noted that abc.
ABCMeta actually does more, which we will demonstrate in the next section. To illustrate the behavior
as described above, let’s create an abstract base metaclass that mimics abc.ABCMeta:

>>> import functools

>>> class AbstractMeta(type):
def __new__(metaclass, name, bases, namespace):

cls = super().__new__ (metaclass, name, bases,
namespace)

abstracts = set()
for k, v in namespace.items():

if getattr(v, '__abstract__ ', False):
abstracts.add(k)

for base in bases:
for k in getattr(base, '__abstracts__ ', ()):
v = getattr(cls, k, None)
if getattr(v, '__abstract__', False):

Metaclasses — Making Classes (Not Instances) Smarter

abstracts.add(k)

cls. abstracts__ = frozenset(abstracts)

original new = cls. new_
@functools.wraps(original_new)
def new(self, *args, **kwargs):
for k in self._ abstracts_ :
v = getattr(self, k)
if getattr(v, '__abstract__', False):
raise RuntimeError(
'%r is not implemented' % k)

return original_new(self, *args, **kwargs)
cls.__new__

return cls

>>> def abstractmethod(function):
function. abstract__ = True

return function

Now that we have the metaclass and decorator for creating abstract classes, let’s see if it works as

expected:

>>> class ConcreteClass(metaclass=AbstractMeta):
@abstractmethod
def some_method(self):

pass

>>> ConcreteClass()
Traceback (most recent call last):

RuntimeError: 'some_method' is not implemented

Chapter 8 229

The actual implementation is much more complicated since it needs to handle decorators such as
property, classmethod, and staticmethod. It also has some caching to features, but this code covers
the most useful part of the implementation. One of the most important tricks to note here is that the
actual check is executed by decorating the __new__ function of the actual class. This method is only
executed once within a class, so we can avoid the overhead of these checks for multiple instantiations.

The actual implementation of the abstract methods can be found by looking for __

\@/’ isabstractmethod__ in the Python source code in the following files: Objects/
descrobject.c, Objects/funcobject.c, and Objects/object.c. The Python part of
the implementation can be found in Lib/abc. py.

Custom type checks

Defining your own interfaces using abstract base classes is great, of course. But it can also be very
convenient to tell Python what your class actually resembles and what kind of types are similar. For
that, abc.ABCMeta offers a register function that allows you to specify which types are similar. For
example, a custom list that sees the 1ist type as similar:

>>> import abc

>>> class CustomList(abc.ABC):

This class implements a list-like interface'''’

>>> class CustomInheritingList(list, abc.ABC):

T

This class implements a list-like interface'''

>>> issubclass(list, CustomList)

False

>>> issubclass(list, CustomInheritinglList)
False

>>> CustomList.register(list)

<class 'list'>

>>> CustomInheritinglList.register(list)
Traceback (most recent call last):

RuntimeError: Refusing to create an inheritance cycle

>>> issubclass(list, CustomList)
True

>>> issubclass(list, CustomInheritinglList)

230 Metaclasses — Making Classes (Not Instances) Smarter

>>> issubclass(CustomList, list)

False

>>> isinstance(CustomList(), list)

False

>>> issubclass(CustomInheritinglList, list)
True

>>> isinstance(CustomInheritinglList(), list)
True

As demonstrated by the last eight lines, this is a one-way relationship. The other way around re-
quires inheriting list, but due to inheritance cycles, it can’t be done both ways. Otherwise,
CustomInheritinglList would inherit list and list would inherit CustomInheritinglList, which
could recurse forever during the issubclass() call.

To be able to handle cases like these, there is another useful feature in abc . ABCMeta. When subclassing
abc.ABCMeta, the _subclasshook__method can be extended to customize the behavior of issubclass
and with that, isinstance:

>>> import abc

>>> class UniversalClass(abc.ABC):
@classmethod
def __subclasshook__(cls, subclass):

return True

>>> issubclass(list, UniversalClass)
True

>>> issubclass(bool, UniversalClass)

True

>>> isinstance(True, UniversalClass)
True

>>> issubclass(UniversalClass, bool)
False

The __subclasshook__ should return True, False, or NotImplemented, which results in issubclass
returning True, False, or the usual behavior when NotImplemented is returned.

Automatically registering plugin systems

One very useful way to use metaclasses is to have classes automatically register themselves as plugins/
handlers.

Chapter 8 231

Instead of manually adding a register call after creating the class or by adding a decorator, you can
make it completely automatic for the user. That means that the user of your library or plugin system
cannot accidentally forget to add the register call.

\/‘/’ Note the distinction between registering and importing. While this first example shows
automatic registering, automatic importing is covered in later sections.

Examples of these can be seen in many projects such as web frameworks. The Django web framework,
for example, uses metaclasses for its database models (effectively tables) to automatically generate
the table and column names based on the class and attribute names.

The actual code base of projects like these is too extensive to usefully explain here though. Hence, we’ll
show a simpler example that demonstrates the power of metaclasses as a self-registering plugin system:

>>> import abc

>>> class Plugins(abc.ABCMeta):
plugins = dict()

def __new__(metaclass, name, bases, namespace):
cls = abc.ABCMeta.__new__(metaclass, name, bases,
namespace)
if isinstance(cls.name, str):
metaclass.plugins[cls.name] = cls
return cls

@classmethod
def get(cls, name):
return cls.plugins[name]

>>> class PluginBase(metaclass=Plugins):
@property
@abc.abstractmethod
def name(self):
raise NotImplemented()

>>> class PluginA(PluginBase):

name = 'a

>>> class PluginB(PluginBase):
name = 'b'

232 Metaclasses — Making Classes (Not Instances) Smarter

>>> Plugins.get('a")

<class '...PluginA'>

>>> Plugins.plugins

{'a': <class '...PluginA'>,

'b': <class '...PluginB'>}

This example is a tad simplistic of course, but it’s the basis for many plugin systems.

V4 While metaclasses run at definition time, the module still needs to be imported to work.
\/;n> There are several options for doing this; loading on-demand through the get method
would have my vote if possible, as that also doesn’t add load time if the plugin is not used.

The following examples will use the following file structure to get reproducible results. All files will
be contained in a plugins directory. Note that all the code for this book, including this example, can
be found on GitHub: https://github.com/mastering-python/code_2.

The __init__ .py file is used to create shortcuts, so a simple import plugins will result in having
plugins.Plugins available, instead of requiring the import of plugins.base explicitly:

from .base import Plugin
from .base import Plugins

all = ['Plugin', 'Plugins']

Here’s the base. py file containing the Plugins collection and the Plugin base class:

import abc

class Plugins(abc.ABCMeta):
plugins = dict()

def _ new_ (metaclass, name, bases, namespace):
cls = abc.ABCMeta.__new__ (
metaclass, name, bases, namespace)
metaclass.plugins[name.lower()] = cls

return cls

@classmethod
def get(cls, name):

https://github.com/mastering-python/code_2

Chapter 8 233

return cls.plugins[name]

class Plugin(metaclass=Plugins):
pass

And two simple plugins, a.py and b. py (omitted since it’s functionally identical to a. py):

from . import base

class A(base.Plugin):
pass

Now that we have set up the plugins and the automatic registering, we need to take care of the loading
of a.py and b.py. While A and B will automatically register within Plugins, if you forget to import them,
they will not be registered. To solve this, we have several options; first we will look at on-demand loading.

Importing plugins on-demand
The first of the solutions for the import problem is simply taking care of it in the get method of the

Plugins metaclass. Whenever the plugin is not found in the registry, the get method should automat-
ically import the module from the plugins directory.

The advantages of this approach are that the plugins don’t explicitly need to be preloaded, but also that
the plugins are only loaded when the need is there. Unused plugins won't be touched, so this method
can help in reducing your applications’ load times.

The downsides are that the code will not be run or tested, so it might be completely broken and you
won’t know about it until it is finally loaded. Solutions for this problem will be covered in the chapter
on testing, Chapter 10. The other problem is that if the code self-registers into other parts of an ap-
plication, then that code won’t be executed either, unless you add the required import in other parts
of the code, that is.

Modifying the Plugins.get method, we get the following:

import importlib

class PluginsOnDemand(Plugins):
@classmethod
def get(cls, name):
if name not in cls.plugins:
print('Loading plugins from plugins.%s' % name)
importlib.import_module('plugins.%s' % name)

return cls.plugins[name]

234 Metaclasses — Making Classes (Not Instances) Smarter

Now we run this from a Python file:
import plugins

print(plugins.PluginsOnDemand.get('a"))
print(plugins.PluginsOnDemand.get('a"))

Which results in:

Loading plugins from plugins.a
<class 'plugins.a.A'>

<class 'plugins.a.A'>

As you can see, this approach only results in running the import once; the second time, the plugin
will be available in the plugins dictionary, so no loading will be necessary.

Importing plugins through configuration

While only loading the required plugins is useful because it reduces your initial load time and memory
overhead, there is something to be said about preloading the plugins you will likely need. As dictated
by the Zen of Python, explicit is better than implicit, so an explicit list of plugins to load is generally a
good solution. The added advantages of this method are that you are able to make the registration a bit
more advanced as you are guaranteed it is run, and that you can load plugins from multiple packages.
The disadvantage is, of course, that you need to explicitly define which plugins to load, which could
be considered a violation of the DRY (Don’t Repeat Yourself) principle.

Instead of importing in the get method, we will add a 1load method this time, which imports all the
given module names:

class PluginsThroughConfiguration(PluginsOnDemand):
@classmethod
def load(cls, *plugin_names):
for plugin_name in plugin_names:
cls.get(plugin_name)

Which can be called using the following code:

import plugins

plugins.PluginsThroughConfiguration.load(
‘ar,
b,

print('After load')

Chapter 8 235

print(plugins.PluginsThroughConfiguration.get('a"))
print(plugins.PluginsThroughConfiguration.get('a"'))

This results in the following output:

Loading plugins from plugins.a
Loading plugins from plugins.b
After load

<class 'plugins.a.A'>

<class 'plugins.a.A'>

A fairly simple and straightforward system to load the plugins based on settings, this could easily
be combined with any type of settings system to fill the load method. An example of this method is
INSTALLED_APPS in Django.

Importing plugins through the filesystem

The most convenient method of loading plugins is one you don’t have to think about because it happens
automatically. While this is very convenient, very important caveats should be considered.

First, they often make debugging much more difficult. Similar automatic import systems in Django
have caused me a fair share of headaches, as they tend to obfuscate errors or even completely hide
them, making you debug for hours.

Second, it can be a security risk. If someone has write access to one of your plugin directories, they
can effectively execute code within your application.

Having that said, especially for beginners and/or new users of your framework, automatic plugin
loading can be very convenient and certainly warrants a demonstration.

This time, we inherit the PluginsThroughConfiguration class we created in the previous example,
and add an autoload method to detect available plugins.

import re
import pathlib
import importlib

CURRENT_FILE = pathlib.Path(__file)
PLUGINS_DIR = CURRENT_FILE.parent
MODULE_NAME_RE = re.compile('[a-z][a-z8-9]*', re.IGNORECASE)

class PluginsThroughFilesystem(PluginsThroughConfiguration):
@classmethod
def autoload(cls):
for filename in PLUGINS_DIR.glob('*.py"):

if not MODULE_NAME_RE.match(filename.stem):

236 Metaclasses — Making Classes (Not Instances) Smarter

continue

cls.get(filename.stem)

if filename == CURRENT_FILE:

continue

cls.get(filename.stem)

Now, let’s give this code a try:

import pprint
import plugins

plugins.PluginsThroughFilesystem.autoload()

print('After load')
pprint.pprint(plugins.PluginsThroughFilesystem.plugins)

This results in:

Loading plugins from plugins.a
Loading plugins from plugins.b

After load

{'a': <class 'plugins.a.A'>,
'b': <class 'plugins.b.B'>,

'plugin': <class 'plugins.base.Plugin'>}

Now every file in the plugins directory will automatically be loaded. But note that it can obscure
certain errors. For example, if one of your plugins imports a library that you do not have installed,
you will get the ImportError from the plugin, not the actual library.

To make this system a bit smarter (even importing packages outside of your Python path), you can
create a plugin loader using the abstract base classes in importlib.abc; note that you will most likely
still need to somehow list the files and/or directories though. To improve this, you could also take a
look at the loaders in importlib. Using these loaders, you can load plugins from ZIP files and other
sources as well.

Now that we are done with plugin systems, it is time to look at how dataclasses could be implemented
using metaclasses instead of decorators.

Dataclasses

In Chapter 4, Pythonic Design Patterns, we already saw the dataclasses module, which makes it possible
to implement easy type hinting and even enforce some structure in your classes.

Chapter 8 237

Now let’s look at how we can implement our own version using a metaclass. The actual dataclasses
module mostly relies on a class decorator, but that is no issue. Metaclasses can be seen as a more pow-
erful version of a class decorator, so they will work fine. With metaclasses, you can use inheritance to
reuse them, or make the class inherit other classes, but above all, they allow you to modify the class
object, instead of the instance with decorators.

The dataclasses module has several tricks up its sleeve that are non-trivial to replicate. Beyond adding
documentation and some utility methods, it also generatesan __init__ method with a signature that
matches the fields of the dataclass. Since the entire dataclasses module is roughly 1,300 lines, we
will not get close with our implementation. So we will implementthe __init_ () method, includinga
generated signature and __annotations__fortype hinting,anda__repr__method to show the results:

import inspect

class Dataclass(type):
def get signature(namespace):

annotations = namespace.get(' annotations_ ', dict())

parameters = []

for name, annotation in annotations.items():

Parameter = inspect.Parameter

parameters.append(Parameter(
name=name,
kind=Parameter.POSITIONAL_OR_KEYWORD,
default=namespace.get(name, Parameter.empty),
annotation=annotation,

))

return inspect.Signature(parameters)
def _create_init(namespace, signature):

if ' _init__ ' in namespace:

return

238 Metaclasses — Making Classes (Not Instances) Smarter

Create the __init__ method and use the signature to
process the arguments
def __init_ (self, *args, **kwargs):

bound = signature.bind(*args, **kwargs)

bound.apply defaults()

for key, value in bound.arguments.items():
Convert to the annotation to enforce types
parameter = signature.parameters[key]
Set the casted value
setattr(self, key, parameter.annotation(value))

Override the signature for __init__ so help() works

__init_ . signature__ = signature

namespace[' init '] = __init__

def _create_repr(namespace, signature):
def __repr__ (self):
arguments = []
for key, value in vars(self).items():
arguments.append(f'{key}={valuelr}")

arguments = ', '.join(arguments)
return f'{self. class . name__ }({arguments})'
namespace[' repr '] = _ _repr__

def new (metaclass, name, bases, namespace):
signature = metaclass._get_signature(namespace)
metaclass._create_init(namespace, signature)
metaclass._create_repr(namespace, signature)

cls = super().__new__(metaclass, name, bases, namespace)

return cls

At first glance, this might look complicated, but the general process is actually fairly simple:

We generate a signature from the __annotations__ and defaults in the class.
We generate an __init__ method based on the signature.

We make the __init__ method use the signature to automatically bind the arguments passed
to the function and apply those to the instance.

Chapter 8 239

4. We generate a __repr__ method, which simply prints the class name and the values stored
in the instance. Note that this method is rather limited and will show anything you've added
to the class.

Note that as an extra little touch, we have a cast to the annotated type to enforce the type correctly.

Let’s see if it works as expected by using the dataclass example from Chapter 4 with a few small ad-
ditions to test the type conversions:

>>> from T_10 dataclasses import Dataclass

>>> class Sandwich(metaclass=Dataclass):
spam: int

eggs: int = 3

>>> Sandwich(1, 2)
Sandwich(spam=1, eggs=2)

>>> sandwich = Sandwich(4)
>>> sandwich
Sandwich(spam=4, eggs=3)
>>> sandwich.eggs

3

>>> help(Sandwich. _init_)
Help on function __init__ in ...
<BLANKLINE>

__init_ (spam: int, eggs: int = 3)
<BLANKLINE>

>>> Sandwich('a")
Traceback (most recent call last):

ValueError: invalid literal for int() with base 10: 'a

>>> Sandwich('1234', 56.78)
Sandwich(spam=1234, eggs=56)

That all functions as expected, with similar output to the original dataclass. Naturally, it’s far more
limited in features, but it shows how you can generate your own classes and functions dynamically,
and how easy it is to add automatic annotation-based type casting to your code.

Next up is a deep dive into the creation and instantiation of classes.

240 Metaclasses — Making Classes (Not Instances) Smarter

Order of operations when instantiating classes

The order of operations during class instantiation is very important to keep in mind when debugging
issues with dynamically created and/or modified classes. Assuming an incorrect order can cause
difficult-to-trace bugs. The instantiation of a class happens in the following order:

Finding the metaclass
Preparing the namespace
Executing the class body
Creating the class object

Executing the class decorators

o v ko=

Creating the class instance

We will go through each of these now.

Finding the metaclass
The metaclass comes from either the explicitly given metaclass on the class or bases, or by using the
default type metaclass.

For every class, the class itself and the bases, the first matching of the following will be used:

« Explicitly given metaclass
. Explicit metaclass from bases

* type()

V4 Note that if no metaclass is found that is a subtype of all of the candidate metaclasses, a
: LY TypeError will be raised. This scenario is not that likely to occur, but is certainly a pos-
sibility when using multiple inheritance/mixins with metaclasses.

Preparing the namespace

The class namespace is prepared through the metaclass selected above. If the metaclass hasa __
prepare__ method, it will be called as namespace = metaclass.__prepare__(names, bases, **kwargs)
where the **kwargs originate from the class definition. If no __prepare__ method is available, the
result will be namespace = dict().

Note that there are multiple ways of achieving custom namespaces. As we saw in the previous section,
the type() function call also takes a dict argument, which can be used to alter the namespace as well.

Executing the class body

The body of the class is executed very similarly to normal code execution with one key difference: the
separate namespace. Since a class has a separate namespace, which shouldn’t pollute the globals()/
locals() namespaces, it is executed within that context. The resulting call looks something like this:

exec(body, globals(), namespace)

Chapter 8 241

where the namespace is the previously produced namespace.

Creating the class object (not instance)

Now that we have all components ready, the actual class object can be produced. This is done through
the class_ = metaclass(name, bases, namespace, **kwargs) call, whichis, as you can see, actually
identical to the type() call previously discussed. The **kwargs here are the same as the ones passed
tothe __prepare__ method earlier.

It might be useful to note that this is also the object that will be referenced from the super() call
without arguments.

Executing the class decorators

Now that the class object is actually done already, the class decorators will be executed. Since this
is only executed after everything else in the class object has already been constructed, it becomes
difficult to modify class attributes such as which classes are being inherited and the name of the class.
By modifying the _ class__ object, you can still modify or overwrite these, but it is, at the very least,
more difficult.

Creating the class instance

From the class object produced above, we can now finally create the actual instances as you normally
would with a class. It should be noted that, unlike the steps above, this step and the class decorators
step, are the only ones that are executed every time you instantiate a class. The steps before these two
are only executed once per class definition.

Example

Enough theory - let’s illustrate the creation and instantiation of the class objects so we can check the
order of operations:

>>> import functools

>>> def decorator(name):
def _decorator(cls):
@functools.wraps(cls)
def __decorator(*args, **kwargs):
print('decorator(%s)' % name)
return cls(*args, **kwargs)

return __decorator

return _decorator

>>> class SpamMeta(type):

@decorator('SpamMeta. init ')

Metaclasses — Making Classes (Not Instances) Smarter

def __init__ (self, name, bases, namespace, **kwargs):
print('SpamMeta. init_ ()")
return type. init (self, name, bases, namespace)

@staticmethod

@decorator('SpamMeta. new_ ")

def __new__(cls, name, bases, namespace, **kwargs):
print('SpamMeta._ new_ ()')
return type._new__ (cls, name, bases, namespace)

@classmethod
@decorator('SpamMeta._prepare__ ')

def _ prepare__(cls, names, bases, **kwargs):

print('SpamMeta.__prepare_ ()')
namespace = dict(spam=5)
return namespace

With the created class and decorator, we can now illustrate when methods such as __prepare__ and
__new__ are called:

>>> @decorator('Spam')

. class Spam(metaclass=SpamMeta):
@decorator('Spam.__init__ ")
def __init__ (self, eggs=10):

print('Spam.__init_ ()")

self.eggs = eggs
decorator(SpamMeta.__prepare_)
SpamMeta.__prepare__ ()
decorator(SpamMeta.__new_)
SpamMeta._new_ ()
decorator(SpamMeta.__init_)

SpamMeta. _init_ ()

>>> spam = Spam
>>> spam.spam

)

>>> spam.eggs

Traceback (most recent call last):

File "<doctest T_11 order_of_operations.rst[6]>", line 1, in ...

AttributeError: 'function' object has no attribute 'eggs'

Chapter 8 243

>>> spam = Spam()
decorator(Spam)

decorator(Spam.__init_)

Spam.__init ()
>>> spam.spam

)

>>> spam.eggs
10

The example clearly shows the creation order of the class:

Preparing the namespace through _ prepare__
Creating the class body using __new__
Initializing the metaclass using __init__ (note: this is not the class __init_)

Initializing the class through the class decorator

ok woNd

Initializing the class through the class __init__ function

One thing we can note from this is that class decorators are executed each and every time the class is
actually instantiated and not before that. This can be both an advantage and a disadvantage, of course,
but if you wish to build a register of all subclasses, it is definitely more convenient to use a metaclass
since the decorator will not register until you instantiate the class.

In addition to this, having the power to modify the namespace before actually creating the class object
(not the instance) can be very powerful as well. This can be convenient for sharing a certain scope
between several class objects, for example, or to easily ensure that certain items are always available
in the scope.

Storing class atiributes in definition order

There are cases where the definition order makes a difference. For example, let’s assume we are cre-
ating a class that represents a CSV (Comma-Separated Values) format. The CSV format expects fields
to have a particular order. In some cases, this will be indicated by a header, but it’s still useful to have
a consistent field order. Similar systems are used in ORM systems such as SQLAlchemy to store the
column order for table definitions, and for the input field order within forms in Django.

The classic solution without metaclasses

An easy way to store the order of the fields is by giving the field instances a special __init__ method
that increments for every definition, so the fields have an incrementing index property. This solution
could be considered the classic solution, as it would also work in Python 2:

>>> import itertools

>>> class Field(object):

Metaclasses — Making Classes (Not Instances) Smarter

counter = itertools.count()

def __init__ (self, name=None):
self.name = name
self.index = next(Field.counter)

def __repr__(self):
return '<%s[%d] %s>' % (
self. class__._name__,
self.index,
self.name,

>>> class FieldsMeta(type):
def _ new__(metaclass, name, bases, namespace):
cls = type. new__ (metaclass, name, bases, namespace)
fields = []
for k, v in namespace.items():
if isinstance(v, Field):
fields.append(v)

v.name = v.name or k

cls.fields = sorted(fields, key=lambda f: f.index)
return cls

>>> class Fields(metaclass=FieldsMeta):
spam = Field()
eggs Field()

>>> Fields.fields
[<Field[@] spam>, <Field[1] eggs>]

>>> fields = Fields()

>>> fields.eggs.index

1

>>> fields.spam.index

0

>>> fields.fields

[<Field[@] spam>, <Field[1] eggs>]

For convenience, and to make things prettier, we have added the FieldsMeta class.

Chapter 8 245

It is not strictly required here, but it automatically takes care of filling in the name if needed, and adds
the fields list, which contains a sorted list of fields.

Using metaclasses to get a sorted namespace

The previous solution is a bit more straightforward and supports Python 2 as well, but with Python 3 we
have more options. As you have seen in the previous section, Python 3 gave usthe _ prepare__ method,
which returns the namespace. From Chapter 4, you might remember collections.OrderedDict, so
let’s see what happens when we combine them:

>>> import collections

>>> class Field(object):
def __init__ (self, name=None):
self.name = name

def __repr__(self):
return '<%s %s>' % (
self. class__._name__,
self.name,

>>> class FieldsMeta(type):
@classmethod
def _ prepare__(metaclass, name, bases):
return collections.OrderedDict()

__new__(metaclass, name, bases, namespace):
cls = type._new__(metaclass, name, bases, namespace)
cls.fields = []
for k, v in namespace.items():
if isinstance(v, Field):
cls.fields.append(v)

v.name = v.name or k
return cls

>>> class Fields(metaclass=FieldsMeta):
spam = Field()

eggs = Field()

>>> Fields.fields

246 Metaclasses — Making Classes (Not Instances) Smarter

[<Field spam>, <Field eggs>]
>>> fields = Fields()
>>> fields.fields

[<Field spam>, <Field eggs>]

Asyou can see, the fields are indeed in the order we defined them. Spam first, eggs after that. Since the

class namespace is now a collections.OrderedDict instance, we know that the order is guaranteed.
It should be noted that, since Python 3.6, the order of the regular dict is also consistent, but the usage

example of __prepare__ is still useful. It demonstrates how convenient metaclasses can be to extend

your classes in a generic way. Another big advantage of metaclasses instead of a custom __init__
method is that users won't lose the functionality if they forget to call the parent __init__ method. The

metaclass will always be executed, unless a different metaclass is added, that is.

Exercises

The most important point of this chapter is to teach you how metaclasses work internally: a metaclass
is just a class that creates a class, which, in turn, is created by another metaclass (eventually ending
up recursively at type). If you want to challenge yourself, however, there is more you can do with
metaclasses:

+ Validation is one of the most prominent examples of where metaclasses can be useful. You
can validate to check if attributes/methods are available, you can check if required classes are
inherited, and so on. The possibilities are endless.

. Build a metaclass that wraps every method with a decorator (could be useful for logging/de-
bugging purposes), something with a signature like this:

class SomeClass(metaclass=WrappingMeta, wrapper=some_wrapper):

, Example answers for these exercises can be found on GitHub: https://github.com/
\/;D> mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

Summary

The Python metaclass system is something every Python programmer uses all the time, perhaps
without even knowing about it. Every class is created through some (subclass of) type, which allows
for endless customization and magic.

Instead of statically defining your class, you can now have it created as you normally would and dy-
namically add, modify, or remove attributes from your class during definition; very magical but very
useful. The magic component, however, is also the reason why metaclasses should be used with a
lot of caution. While they can be used to make your life much easier, they are also among the easiest
ways of producing completely incomprehensible code.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Chapter 8 247

Regardless, there are some great use cases for metaclasses, and many libraries such as SQLAlchemy
and Django use metaclasses to make your code work much more easily and arguably better. Actually
comprehending the magic that is used inside is generally not needed for the usage of these libraries,
which makes the cases defendable.

The question becomes whether a much better experience for beginners is worth some dark magic
internally, and looking at the success of these libraries, I would say yes in this case.

To conclude, when thinking about using metaclasses, keep in mind what Tim Peters once said:

“Metaclasses are deeper magic than 99% of users should ever worry about.
If you wonder whether you need them, you don't.”

With the introduction of class decorators and methods suchas __init_subclass__and__set_name__,
the need for metaclasses has dwindled even further. So when in doubt, you probably have no real
need for them.

Now we will continue with a solution to remove some of the magic that metaclasses generate - docu-
mentation. The next chapter will show us how your code can be documented, how that documentation
can be tested, and most importantly, how the documentation can be made smarter by annotating types.

Join our community on Discord

Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHulf

https://discord.gg/QMzJenHuJf

Documentation — How to Use
Sphinx and reStructuredText

Documenting code can be both fun and useful! I will admit that many programmers have a strong
dislike for documenting code and understandably so. Writing documentation can be a boring job
and, traditionally, only others reap the benefits of that effort. The tools available for Python, however,
make it almost trivial to generate useful and up-to-date documentation with little to no effort at all.
Generating documentation has actually become so easy that I often create and generate documentation
before using a Python package. Assuming it wasn’t available already, that is.

In addition to simple text documentation explaining what a function does, it is also possible to add
metadata, such as type hints. These type hints can be used to make the arguments and return types
of a function or class clickable in the documentation. But more importantly, many modern IDEs and
editors, such as VIM, have plugins available that parse the type hints and use them for intelligent
autocompletion. So if you type 'some_string. ', your editor will automatically complete the specific
attributes and methods of a string object, something that is traditionally only viable with statically
typed languages such as Java, C, and C++.

This chapter will explain the types of documentation available in Python and how easily a full set
of documentation can be created. With the amazing tools that Python provides, you can have fully
functioning documentation within minutes.

The topics covered in this chapter are as follows:

+ Type hinting

« The reStructuredText syntax

+ The Markdown syntax

. Setting up documentation using Sphinx

. Sphinx-, Google-, and NumPy-style docstrings

250 Documentation - How to Use Sphinx and reStructuredText

Type hinting

Since Python 3.5, we've had a feature called type hinting, which is arguably one of the most useful
additions to Python 3. It allows you to specify the types of variables and return values, which means
your editor will be able to give you smart autocompletion. This makes it useful for all Python pro-
grammers, regardless of level, and can make your life much easier when paired with a good editor.

Basic example

Most editors are already smart enough to recognize basic types in regular variables such as these:

It becomes a lot harder for an editor when, instead of a = 123, we have something like a =
some_function(). In some cases, the return type of a function is obvious (i.e. return True), but if
the return type depends on the input variables or is not consistent, it becomes much harder for the
editor to understand what is happening.

As the Zen of Python tells us, explicit is better than implicit. In the case of function return types, this
is often the case and can be implemented with very little effort:

>>> def pow(base: int, exponent: int) -> int:

return base ** exponent

>>> help(pow)

Help on function pow in module _ main__:
<BLANKLINE>

pow(base: int, exponent: int) -> int
<BLANKLINE>

>>> pow.__annotations__

{'base': <class 'int'>,

'exponent': <class 'int'>,

'return': <class 'int'>}

>>> pow(2, 10)

1024

>>> pow(pow(9, 2) + pow(19, 2) / 22, 0.25)
3.1415926525826463

That works as expected. With a simple -> type, you can specify the function return type, which is
automatically reflected in the __annotations__, which is also visible in the help(). And the arguments
(and variables) can be type-specified using name: type.

Chapter 9 251

In this case, you may notice that even though we specified the function to return an int, it can actually
return a float as well, since Python only has type hints, not type constraints/enforcements.

While basic types such as int, float, str, dict, list, and set can be specified with variable: int
alone, for more advanced types, we need the typing module.

N Since Python 3.9, you can use variable: list[int]. For older versions of Python, you
_,@\' need to use variable: typing.List[int] for all collection types such as dict/list/
set that require the getitem ([]) operator.

The typing module contains types such as typing.Any to allow everything, typing.Optional to allow
for None, and typing.Union to specify multiple allowed types, which we will now demonstrate:

>>> import typing

>>> int_or_float = typing.Union[int, float]

>>> def pow(base: int, exponent: int) -> int_or_float:

return base ** exponent

>>> help(pow)

Help on function pow in module _ main__ :
<BLANKLINE>

pow(base: int, exponent: int) -> Union[int, float]
<BLANKLINE>

With typing.Union, we can specify a list of types that apply. Similarly, an optional type can be speci-
fied using typing.Optional[int] to indicate that the type can be either int or None, effectively being
equivalent to typing.Union[int, None]. Additionally, since Python 3.10 we can write thisas int | None.

Custom types

Since regular Python objects are their own type, you usually don'’t even have to think about what type
they are. Simply specify the object and it will work:

>>> class Sandwich:
pass

>>> def get_sandwich() -> Sandwich:

return Sandwich()

252 Documentation - How to Use Sphinx and reStructuredText

But what would happen with circular definitions or other circumstances where you do not have the
type available yet? In that case, you can work around the issue by specifying the type as a string:

>>> class A:
@staticmethod
def get_b() -> 'B':
return B()

>>> class B:
@staticmethod
def get_a() -> A:
return A()

Whenever possible, I would recommend against this method because it gives you no guarantee that
the type can actually be resolved:

>>> some_variable: 'some_non_existing type'

>>> some_variable: some_non_existing_ type
Traceback (most recent call last):

NameError: name 'some_non_existing type' is not defined

Naturally, this will only check whether the type actually exists. For proper type checking, we can use
tools such as mypy, which will be covered in the next section. To make sure that your type checker can
resolve the type, you can encase your imports in an if typing.TYPE_CHECKING block like so:

>>> if typing.TYPE_CHECKING:

The typing. TYPE_CHECKING constant is not normally set, but can be set by type checkers such as mypy
to make sure all types are working correctly.

In the examples above, we have seen custom classes as custom types, but what if we want to create a
custom type out of an existing built-in type? That is also possible using typing.NewType, which creates
a new type that behaves like the base type, but can be checked by static type checkers:

>>> import typing
>>> Username = typing.NewType('Username', str)

>>> rick = Username('Rick")

>>> type(rick)
<class 'str'>

Chapter 9 253

Here we created a type called Username, which is treated as a subclass of str in this case.

Generics

In some cases, you don’t want to statically specify the type of a function, but make it depend on the
input instead. For this reason, the Python type system supports generics. If you're familiar with Java,
C++, or C#, you might be familiar with them.

Generics allow you to create a generic type whose only constraint is that it is the same in all cases.
This means that if you specify a generic type as both the input and the output for a function, it will be
assumed to be the same; if you input an int into a function, you will receive an int.

First, we need to specify a generic type and, after that, we can specify it as parameters for our functions:

>>> import typing
53> T = typing.TypeVar‘('T', int, Str‘)

>>> def add(a: T, b: T) -> T:

return a + b

>>> add(1, 2)

3

>>> add('a', 'b")
"ab"

In this case, we created a generic type with the constraint that it needs to be either int or str. When
the type checker runs, it will check if a, b, and the return value have the same type. This means that
even though an int is valid for type T, if you make a a str, b and the output have to be str as well.

Type checking

Now that we know how to specify and create type hints, it’s time to run a type checker. The reference
implementation for type checking is the mypy tool. It can thoroughly check your code and warn about
potential problems.

First, we need to install mypy - luckily, that’s easy enough with pip:

$ pip3 install -U mypy

Now we will use mypy to check some of the earlier examples with a few errors added:

import typing

def pow(base: int, exponent: int) -> int:

return base ** exponent

pow(2.5, 10)

254 Documentation - How to Use Sphinx and reStructuredText

Since we hinted base to be an int, 2.5 is not a valid value since it is a float:

$ mypy T_01 type_hinting.py

T 01 type hinting.py:8: error: Argument 1 to "pow" has incompatible type
"float"; expected "int"

Now an example with a custom type:

Username = typing.NewType('Username', str)
rick = Username('Rick")

def print_username(username: Username):

print(f'Username: {username}')

print_username(rick)

print_username(str(rick))

Here we specified that print_username() should receive a Username type. Even though Username
inherits str, it is not considered valid:

$ mypy T_01 type_hinting.py

T_01 type_hinting.py:22: error: Argument 1 to "print_username" has incompatible
type "str"; expected "Username"

Lastly, we will create a generic type:

T = typing.TypeVar('T")

def to_string(value: T) -> T:

return str(value)

to_string(1)

Since to_string() received an int, it should return an int, which is not the case. Let’s run mypy to
see what’s wrong:

error: Incompatible return value type (got "str", expected "T")

While writing code, mypy can save you a lot of debugging by warning you about incorrect type usage.

Python type interface files

Python type hint files (. py1i), also called stub files, are files that allow you to specify all type hints for
a file without touching the original file. This is useful for libraries that you do not have write access
to, or if you do not want to clutter your files with type hints.

Chapter 9 255

The files use the regular Python syntax, but the functions are not meant to contain anything beyond
stubs that only hint the types. An example stub for the print_username() function mentioned above
could be:

import typing
Username = typing.NewType('Username', str)

def print username(username: Username):

The files are nothing special, but they can be especially useful when interacting with libraries that
lack type hinting. If your regular file is named test.py, the pyi file would be named test.pyi.

Type hinting conclusion

Within this section, you have seen a few very basic examples of how type hinting can be applied and
how the types can be checked. The Python typing module is still getting enhanced quite a lot and mypy
has really extensive documentation that can be useful if you are applying this to your own code. Make
sure to look at the documentation if you have any specific issues; it is high quality and very useful.

When it comes to using type hinting in your own projects, my suggestion is to use it wherever it en-
hances your workflow but not to go overboard. In many cases, your editor will be smart enough to
figure out the arguments automatically, or it won't really matter too much. But when passing along
more advanced classes where you tend to forget the methods available for that class, it becomes a
really useful feature. Having smart autocompletion can really save you a lot of time.

Now that we have type hints covered, it is time to continue with documenting our code and the markup
languages available for that task.

reStructuredText and Markdown

The reStructuredText format (also known as RST, ReST, or reST) was developed in 2002 as a language
that implements enough markup to be usable, but is simple enough to be readable as plain text. These
two features make it readable enough to use in code, yet still versatile enough to generate pretty and
useful documentation.

The Markdown format is really similar to reStructuredText and largely comparable. While reStruc-
turedText is slightly older (2012) than Markdown (2014), the Markdown format has gained a bit more
popularity because it’s a bit simpler and less Python-focused. Both standards are excellent for writing
text thatis legible straightaway and can easily be converted to other formats such as HTML or PDF files.

The main advantages of reST are:

+ Avery extensive feature set
+ Astrictly defined standard
+ Easy extensibility

256 Documentation - How to Use Sphinx and reStructuredText

The main advantages of Markdown are:

« Itisless Python-centric, which caused it to gain more widespread adoption

* A more forgiving and less strict parser, which makes it easier to write

The greatest thing about both reStructuredText and Markdown is that they are very intuitive to write
and natively supported by most (social) coding platforms such as GitHub, GitLab, BitBucket, and PyP]I.

Even without knowing anything about the standard, you can easily write documentation in this style.
However, more advanced techniques, such as images and links, do require some explanation.

For Python documentation itself, reStructuredText is the most convenient standard since it’s well sup-
ported by tools such as Sphinx and docutils. For readme files on sites such as GitHub and the Python
Package Index, the Markdown standard is generally better supported.

|

\ 7/

_@ To easily convert between formats such as reStructuredText and Markdown, use the Pandoc
g tool, available at https://pandoc.org/.

The basic syntax reads just like text and the next few paragraphs will show some of the more advanced
features. However, let us start with a simple example demonstrating how simple a reStructuredText
or Markdown file can be:

Documentation, how to use Sphinx and reStructuredText
S e e e b e

Documenting code can be both fun and useful!
Additionally, adding ...
. So that typing 'some_string.' will automatically ...

Topics covered in this chapter are as follows:

- The reStructuredText syntax

- Setting up documentation using Sphinx

- Sphinx style docstrings

- Google style docstrings

- NumPy style docstrings

The reStructuredText syntax
3k 3k 3k 5k sk sk >k >k >k ok sk sk sk 3k 3k ok sk sk sk sk 3k ok ok sk sk sk 3k sk sk sk sk sk 3k 3k ok sk sk sk 3k >k ok sk sk sk 3k >k sk ok sk sk >k >k ok ok sk sk sk >k ok ok ok sk sk k ok ok

The reStructuredText format (also known as ...

https://pandoc.org/

Chapter 9 257

That’s how easy it is to convert the text of this chapter so far to reStructuredText or Markdown. The
example above works in both. But for the Markdown file to look similar, we need to modify the head-
ers slightly:

Documentation, how to use Sphinx and reStructuredText

The reStructuredText syntax

The following paragraphs will cover the following features:

Inline markup (italic, bold, code, and links)
Lists

Headers

Advanced links

Images

Substitutions

Nk ow =

Blocks containing code, math, and others

Getting started with reStructuredText

To quickly convert a reStructuredText file to HTML, we can use the docutils library. The sphinx li-
brary discussed later in this chapter actually uses the docutils library internally, but has some extra
features that we won’t need initially. To get started, we just need to install docutils:

$ pip3 install docutils

After that, we can easily convert reStructuredText into PDF, LaTeX, HTML, and other formats. For the
examples in this paragraph, we’ll use the HTML format, which is easily generated using the following
command:

$ rst2html.py file.rst file.html

The reStructuredText language has two basic components:

. Roles that allow for inline modifications of the output, such as :code:, :math:, :emphasis:,
and :literal:.

« Directives that generate markup blocks, such as code samples with multiple lines. These look
like this:

. code:: python

print('Hello world")

258 Documentation - How to Use Sphinx and reStructuredText

Within pure reStructuredText, the directives are the most important, but we will see many uses for
the roles in the section on Sphinx roles later in this chapter.

Getting started with Markdown

To quickly convert a Markdown file to HTML we have many options available. But, because we are
using Python, we will use the markdown package:

$ pip3 install markdown

Now we can convert our file to HTML with the following command:

$ markdown_py file.md -f file.html

It should be noted that this converter only supports plain Markdown, not the GitHub flavored Mark-
down, which also supports code syntax highlighting.

N The grip (GitHub Readme Instant Preview) Python package supports live rendering of
_,@\' GitHub flavored Markdown by using the GitHub servers and can be useful while writing
= Markdown.

Inline markup

Inline markup is the markup that is used within a regular line of text. Examples of these are emphasis,
inline code examples, links, images, and bullet lists.

\/V' Within reStructuredText, these are implemented through roles, but often have useful
shorthands. Instead of :emphasis: 'text’, you can also use *text*.

Emphasis, for example, can be added by encapsulating the words between one or two asterisk signs.
This sentence, for example, could add a little bit of *emphasis* by adding a single asterisk on both
sides, or a lot of **emphasis** by adding two asterisks on both sides. There are many different inline
markup directives so we will list only the most common ones. A full list can always be found through
the reStructuredText home page at https://docutils.sourceforge.io/docs/ and the Markdown
home page at https://daringfireball.net/projects/markdown/syntax, respectively.

The following are some examples that work for both reST and Markdown:

. Emphasis (italic) text: *emphasis for this phrase*.
. Extra emphasis (bold) text: **extra emphasis for this phrase**.

« For lists without numbers, a simple dash with a space after it:

. - item 1

https://docutils.sourceforge.io/docs/
https://daringfireball.net/projects/markdown/syntax

Chapter 9 259

. - item 2

Note

\n/ The space after the dash is required for reStructuredText to recognize
the list.

« For lists with numbers, the number followed by a period and a space:

. 1. item 1
. 2. item 2

+ For numbered lists, the period after the number is required.

+ Interpreted text: These are domain-specific. Within Python documentation, the default role
is code, which means that surrounding text with backticks will convert your code to use code
tags, for example, 'if spam and eggs:'.

« Inline literals: This is formatted with a monospace font, which makes it ideal for inline code.
Just add two backticks to ' 'add some code''. For Markdown, there is no noticeable difference
between single and double backticks in output, but it can be used to escape single backticks:
''some code ' with backticks''.

+ Escaping in reST can be done using a \, similar to escaping in Python: ' 'some code \' with

backticks''.

For reStructuredText, there are a few extra options using roles, similar to the interpreted text role we
saw earlier. These roles can be set through role prefixes or suffixes depending on your preference; for
example, :math: 'E=mc”2"' to show mathematical equations.

References can be added through a trailing underscore. They can point to headers, links, labels, and
more. The next section will cover more about these, but the basic syntax is simply reference_, or
enclosed in backticks when the reference contains spaces - 'some reference link'_.

There are many more available, but these are the ones you will use the most when writing reStruc-
turedText.

Headers

The headers are used to indicate the start of a document, section, chapter, or paragraph. Itis therefore
the first structure you need in a document. While not strictly needed, its usage is highly recommended
as it serves several purposes:

1. The headers are consistently formatted according to their level.
2. Atable of contents (TOC) tree can be generated from the headers.

3. All headers automatically function as labels, which means you can create links to them.

The format required to make headers overlaps a little between reST and Markdown, but for clarity,
we will cover them separately.

260 Documentation - How to Use Sphinx and reStructuredText

Headers with reStructuredText

When creating headers, consistency is one of the few constraints; the number of characters used is
fairly arbitrary, as is the number of levels.

Personally, I default to a simple system with a fixed-size header, but I recommend at least following
the default of the Python documentation in terms of the parts, chapters, sections, subsections, sub-
subsections, and paragraphs, something along the lines of the following:

Part
S

Chapter
3k 3k 3k 3k 3k 5k 3k 3k 3k 3k sk >k 3k >k sk >k sk 3k sk 3k 3k sk 3k sk >k sk >k sk >k sk 3k sk sk ok sk ok sk >k sk >k sk >k sk sk sk sk ok sk ok sk ok sk ok sk sk sk >k ok sk ok skok ok

Section

Subsubsection

ANNAANNNNANNANNNANNAANNANNANNNANNNNNNNANNANNNANNANNNANNANNNNANNNANNNANANNNNN

Paragraph

Content

This creates the following output:

Part
Chapter
Section
Subsection
Subsubsection
Paragraph
Content

Figure 9.1: Headers with reStructuredText

Chapter 9 261

That is just the common usage of the headers, but the main idea of reStructuredText is that you can
use just about anything that feels natural to you, which means that you can use any of the following

characters: = - ' : ~ N _ % + # <>.Italso supports both underlines and overlines, so if you
prefer that, they are options as well:

S
Part
S

3k >k 5k ok ok >k 5k >k ok >k >k %k >k 5k ok 5k >k 5k >k 5k >k 5k >k 5k >k 5k 3k >k %k >k 5k >k 5k >k 5k >k 5k 3k 5k 3k >k 3k >k %k >k sk >k ok ok ok >k 5k >k >k >k >k 3k %k %k %k %k k %k %

Chapter

3k >k 5k ok ok 3k 5k >k 5k >k >k %k >k 5k ok 5k >k 5k >k 5k >k 5k >k 5k 3k 5k 3k 5k 5k >k %k >k 5k >k 5k >k 5k 3k 5k 3k >k 3k >k %k >k 5k ok ok ok 5k >k 5k >k >k >k >k 3k %k %k %k %k k %k k

ANNAANNNNANNANNNANNANNANNANNNNNNNNNNNNANNNANNNANNANNNANNNNNNNNNNANNNNNNNNN

Subsubsection

ANNAANNNNANNANNNNANNANANNNANNANNNNNNNNNNANNANNNNANNANNNNANNANNNANNNNANNNNNANNNNN

Paragraph

Content

While I try to keep the number of characters fixed to 78 characters as PEP8 (Chapter 3, Pythonic Syntax
and Common Pitfalls) recommends for Python, the number of characters used is mostly arbitrary, but
it does have to be at least as long as the text of the header. This allows it to accept the following result:

Section

262 Documentation - How to Use Sphinx and reStructuredText

Headers with Markdown

With Markdown, you have several options for headers depending on what you feel like. Similar to
reST, you can use the = and - characters to underline, but only those, and the length and blank lines
after them do not matter:

Part

Chapter
If you want more levels, you can use up to 6 levels by using the # prefix and optional suffixes:

Part

Chapter

#i## Section

Subsection

#it### Subsubsection

#i#H#H### Paragraph

Content

##H###E Paragraph with suffix ######
Content

This results in:

Part

Chapter

Section

Subsection
Subsubsection
Paragraph

Content

Paragraph with suffix

Content

Figure 9.2: Headers in Markdown

Chapter 9 263

Asyou can see, Markdown is slightly less flexible than reStructuredText when it comes to headers, but
in most cases, it offers enough features to be perfectly usable.

Lists

The reStructuredText format has several styles of lists:

1. Enumerated
2. Bulleted

3. Options
4

Definitions

The simplest forms of lists were already displayed in the introduction section, but it’s actually possible
to use many different characters, such as letters, Roman numerals, and others, for enumeration. After
demonstrating the basic list types, we will continue with the nesting of lists and structures, which
makes them even more powerful. Care must be taken with the amount of whitespace, as one space
too many can cause a structure to be recognized as regular text instead of a structure.

Enumerated lists

Enumerated lists are convenient for all sorts of enumerations. The basic premise for enumerated lists
is an alphanumeric character followed by a period, a right parenthesis, or parentheses on both sides.
Additionally, the # character functions as an automatic enumeration. For example:

1. With
2. Numbers

a. With
#. letters
i. Roman

#. numerals

(1) With
(2) Parenthesis

264 Documentation - How to Use Sphinx and reStructuredText

The output is perhaps a bit simpler than you would expect. The reason is that it depends on the output
format. The following figure shows the rendered HTML output, which has no support for parentheses.
If you output LaTeX, for example, the difference can be made visible.

1.With

2. Numbers
4. With
b.letters

1. Roman
il. numerals
1.With

2. Parenthesis
Figure 9.3: Enumerated lists generated with the HTML output format

Markdown also supports enumerated lists, but it is a bit more limited in its options. It only supports
regular numbered lists. It's more convenient in how it supports them though; there is no need for
explicit numbering, and repeating 1. works without a problem:

1. With
1. Numbers

Bulleted lists

If the order of t