

Mastering Python
Second Edition

Write powerful and efficient code using the full range of
Python’s capabilities

Rick van Hattem

BIRMINGHAM—MUMBAI

“Python” and the Python Logo are trademarks of the Python Software Foundation.

Mastering Python
Second Edition

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Senior Publishing Product Manager: Dr. Shailesh Jain

Contracting Acquisition Editor: Ben Renow-Clarke

Acquisition Editor – Peer Reviews: Suresh Jain

Project Editor: Janice Gonsalves

Content Development Editor: Lucy Wan, Joanne Lovell

Copy Editor: Safis Editing

Technical Editor: Aditya Sawant

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Presentation Designer: Ganesh Bhadwalkar
First published: April 2016
Second edition: May 2022

Production reference: 1120522

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-772-1

www.packt.com

http://www.packt.com

Contributors

About the author
Rick van Hattem is an entrepreneur who has founded and sold several successful start-ups. His
expertise is in designing and scaling system architectures to many millions of users and/or large amounts
of data that need to be accessed in real time. He’s been programming for well over 25 years and has
over 20 years of experience with Python. Rick has done consulting for many companies including
(Y-Combinator) start-ups, banks, and airports. One of the start-ups he founded, Fashiolista.com, was one
of the largest social networks for fashion in the world, featuring millions of users. He also wrote Mastering
Python, First Edition, and he was one of the technical reviewers for PostgreSQL Server Programming,
Second Edition.

For my wife, who is always there for me. For my sister, who always goes above and beyond to help. For my
mother, who raised me to be inquisitive. And for my sweet children, who pique my curiosity and allow me
to learn every day.

About the reviewer
Alexander Afanasyev is a software engineer with about 15 years of diverse experience in a variety
of different domains and roles. Currently, Alexander is an independent contractor pursuing ideas in
the space of computer vision, NLP, and building advanced data collections systems in the cyber and
physical threat intelligence domains. Outside of daily work, he is an active contributor to Stack Over-
flow and GitHub. Previously, Alexander helped review the Selenium Testing Cookbook and Advanced
Natural Language Processing with Transformers books by Packt Publishing.

I would like to thank the author of the book for the incredibly hard work and comprehensive content; the
wonderful team of editors and coordinators with excellent communication skills; and my family, who was
and always are supportive of my ideas and my work.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

Table of Contents

Preface � xxiii

Chapter 1: Getting Started – One Environment per Project � 1

Virtual environments �� 1
Why virtual environments are a good idea • 1
Using venv and virtualenv • 2

Creating a venv • 3
Activating a venv/virtualenv • 4
Installing packages • 5

Using pyenv • 6
Using Anaconda • 8

Getting started with Anaconda Navigator • 8
Getting started with conda • 9

Managing dependencies �� 13
Using pip and a requirements.txt file • 13
Version specifiers • 14
Installing through source control repositories • 15
Additional dependencies using extras • 16
Conditional dependencies using environment markers • 16
Automatic project management using poetry • 17

Creating a new poetry project • 17
Adding dependencies • 18
Upgrading dependencies • 19
Running commands • 20

Automatic dependency tracking using pipenv • 20
Updating your packages • 23
Deploying to production • 23
Running cron commands • 24

Exercises �� 24
Reading the Python Enhancement Proposals (PEPs) • 24
Combining pyenv and poetry or pipenv • 25

Table of Contentsviii

Converting an existing project to a poetry project • 25
Summary �� 25

Chapter 2: Interactive Python Interpreters � 27

The Python interpreter �� 27
Modifying the interpreter • 28

Enabling and enhancing autocompletion • 29
Alternative interpreters ��� 32

bpython • 33
Rewinding your session • 34
Reloading modules • 35

ptpython • 35
IPython and Jupyter • 36

Basic interpreter usage • 37
Saving and loading sessions • 38
Regular Python prompt/doctest mode • 39
Introspection and help • 40
Autocompletion • 41
Jupyter • 42
Installing Jupyter • 44
IPython summary • 46

Exercises �� 47
Summary �� 47

Chapter 3: Pythonic Syntax and Common Pitfalls � 49

A brief history of Python �� 49
Code style – What is Pythonic code? ��� 51

Whitespace instead of braces • 51
Formatting strings – printf, str.format, or f-strings? • 51

Simple formatting • 52
Named variables • 53
Arbitrary expressions • 53

PEP 20, the Zen of Python • 54
Beautiful is better than ugly • 55
Explicit is better than implicit • 56
Simple is better than complex • 57
Flat is better than nested • 59

Table of Contents ix

Sparse is better than dense • 60
Readability counts • 60
Practicality beats purity • 61
Errors should never pass silently • 62
In the face of ambiguity, refuse the temptation to guess • 64
One obvious way to do it • 64
Hard to explain, easy to explain • 65
Namespaces are one honking great idea • 65

Explaining PEP 8 • 66
Duck typing • 67
Differences between value and identity comparisons • 68
Loops • 70
Maximum line length • 71

Verifying code quality, pep8, pyflakes, and more • 72
Recent additions to the Python syntax • 76

PEP 572: Assignment expressions/the walrus operator • 76
PEP 634: Structural pattern matching, the switch statement • 77

Common pitfalls ��� 84
Scope matters! • 84

Global variables • 84
Mutable function default arguments • 86
Class properties • 87

Overwriting and/or creating extra built-ins • 88
Modifying while iterating • 90
Catching and storing exceptions • 91
Late binding and closures • 92
Circular imports • 93
Import collisions • 95

Summary �� 95

Chapter 4: Pythonic Design Patterns � 97

Time complexity – The big O notation �� 98
Core collections �� 101

list – A mutable list of items • 101
dict – A map of items • 104
set – Like a dict without values • 107
tuple – The immutable list • 108

Table of Contentsx

Pythonic patterns using advanced collections �� 111
Smart data storage with type hinting using dataclasses • 111
Combining multiple scopes with ChainMap • 114
Default dictionary values using defaultdict • 116
enum – A group of constants • 119
Sorting collections using heapq • 121
Searching through sorted collections using bisect • 122
Global instances using Borg or Singleton patterns • 126
No need for getters and setters with properties • 127
Dict union operators • 128

Exercises �� 129
Summary �� 129

Chapter 5: Functional Programming – Readability Versus Brevity � 131

Functional programming ��� 131
Purely functional • 132
Functional programming and Python • 132
Advantages of functional programming • 133

list, set, and dict comprehensions �� 133
Basic list comprehensions • 134
set comprehensions • 135
dict comprehensions • 135
Comprehension pitfalls • 136

lambda functions �� 138
The Y combinator • 139

functools �� 141
partial – Prefill function arguments • 141
reduce – Combining pairs into a single result • 143

Implementing a factorial function • 143
Processing trees • 144
Reducing in the other direction • 146

itertools �� 147
accumulate – reduce with intermediate results • 147
chain – Combining multiple results • 147
compress – Selecting items using a list of Booleans • 148
dropwhile/takewhile – Selecting items using a function • 149
count – Infinite range with decimal steps • 149

Table of Contents xi

groupby – Grouping your sorted iterable • 150
Exercises �� 151
Summary �� 151

Chapter 6: Decorators – Enabling Code Reuse by Decorating � 153

Decorating functions ��� 154
Generic function decorators • 155
The importance of functools.wraps • 158
Chaining or nesting decorators • 159
Registering functions using decorators • 160
Memoization using decorators • 161
Decorators with (optional) arguments • 165
Creating decorators using classes • 166

Decorating class functions ��� 167
Skipping the instance – classmethod and staticmethod • 168
Properties – Smart descriptor usage • 172

Decorating classes ��� 176
Singletons – Classes with a single instance • 177
Total ordering – Making classes sortable • 178

Useful decorators �� 180
Single dispatch – Polymorphism in Python • 181
contextmanager — with statements made easy • 184
Validation, type checks, and conversions • 186
Useless warnings – How to ignore them safely • 187

Exercises �� 189
Summary �� 189

Chapter 7: Generators and Coroutines – Infinity, One Step at a Time � 191

Generators �� 191
Creating generators • 192
Creating infinite generators • 195
Generators wrapping iterables • 195
Generator comprehensions • 196
Class-based generators and iterators • 197

Generator examples �� 200
Breaking an iterable up into chunks/groups • 200
itertools.islice – Slicing iterables • 202

Table of Contentsxii

itertools.chain – Concatenating multiple iterables • 204
itertools.tee – Using an output multiple times • 204
contextlib.contextmanager – Creating context managers • 205

Coroutines �� 207
A basic example • 208
Priming • 208
Closing and throwing exceptions • 209
Mixing generators and coroutines • 211
Using the state • 214

Exercises �� 217
Summary �� 217

Chapter 8: Metaclasses – Making Classes (Not Instances) Smarter � 219

Dynamically creating classes ��� 219
A basic metaclass �� 221

Arguments to metaclasses • 222
Accessing metaclass attributes through classes • 224

Abstract classes using collections.abc �� 225
Internal workings of the abstract classes • 225
Custom type checks • 229

Automatically registering plugin systems ��� 230
Importing plugins on-demand • 233
Importing plugins through configuration • 234
Importing plugins through the filesystem • 235

Dataclasses ��� 236
Order of operations when instantiating classes ��� 240

Finding the metaclass • 240
Preparing the namespace • 240
Executing the class body • 240
Creating the class object (not instance) • 241
Executing the class decorators • 241
Creating the class instance • 241
Example • 241

Storing class attributes in definition order �� 243
The classic solution without metaclasses • 243
Using metaclasses to get a sorted namespace • 245

Exercises �� 246

Table of Contents xiii

Summary �� 246

Chapter 9: Documentation – How to Use Sphinx and reStructuredText � 249

Type hinting �� 250
Basic example • 250
Custom types • 251
Generics • 253
Type checking • 253
Python type interface files • 254
Type hinting conclusion • 255

reStructuredText and Markdown ��� 255
Getting started with reStructuredText • 257
Getting started with Markdown • 258
Inline markup • 258
Headers • 259

Headers with reStructuredText • 260
Headers with Markdown • 262

Lists • 263
Enumerated lists • 263
Bulleted lists • 264
Option lists • 265
Definition lists (reST only) • 266
Nested lists • 266

Links, references, and labels • 267
Images • 270

Images with reStructuredText • 270
Images with Markdown • 272

Substitutions • 272
Blocks, code, math, comments, and quotes • 273
Conclusion • 275

The Sphinx documentation generator �� 276
Getting started with Sphinx • 276

Using sphinx-quickstart • 277
Using sphinx-apidoc • 280

Sphinx directives • 287
Sphinx roles • 288

Documenting code �� 289

Table of Contentsxiv

Documenting a class with the Sphinx style • 290
Documenting a class with the Google style • 292
Documenting a class with the NumPy style • 293
Which style to choose • 294

Exercises �� 294
Summary �� 295

Chapter 10: Testing and Logging – Preparing for Bugs � 297

Using documentation as tests with doctest ��� 298
A simple doctest example • 298
Writing doctests • 301
Testing with documentation • 302
The doctest flags • 305

True and False versus 1 and 0 • 306
Normalizing whitespace • 307
Ellipsis • 308

Doctest quirks • 309
Testing dictionaries • 309
Testing floating-point numbers • 311
Times and durations • 311

Testing with py.test �� 312
The difference between the unittest and py.test output • 312
The difference between unittest and py.test tests • 317

Simplifying assertions • 317
Parameterizing tests • 320
Automatic arguments using fixtures • 322
Print statements and logging • 325
Plugins • 327

Mock objects ��� 333
Using unittest.mock • 334
Using py.test monkeypatch • 335

Testing multiple environments with tox ��� 336
Getting started with tox • 336
The tox.ini config file • 337
Running tox • 339

Logging ��� 340
Configuration • 341

Table of Contents xv

Basic logging configuration • 341
Dictionary configuration • 343
JSON configuration • 344
ini file configuration • 345
The network configuration • 346

Logger • 348
Usage • 349
Formatting • 350
Modern formatting using f-strings and str.format • 351

Logging pitfalls • 353
Debugging loggers • 354

Exercises �� 356
Summary �� 356

Chapter 11: Debugging – Solving the Bugs � 359

Non-interactive debugging ��� 359
Inspecting your script using trace • 362
Debugging using logging • 366
Showing the call stack without exceptions • 368
Handling crashes using faulthandler • 369

Interactive debugging �� 371
Console on demand • 371
Debugging using Python debugger (pdb) • 372

Breakpoints • 373
Catching exceptions • 376
Aliases • 377
commands • 378

Debugging with IPython • 379
Debugging with Jupyter • 380
Other debuggers • 382

Debugging services • 383
Exercises �� 384
Summary �� 385

Chapter 12: Performance – Tracking and Reducing
Your Memory and CPU Usage � 387

What is performance? ��� 388

Table of Contentsxvi

Measuring CPU performance and execution time ��� 389
Timeit – comparing code snippet performance • 389
cProfile – Finding the slowest components • 394

First profiling run • 395
Calibrating your profiler • 397
Selective profiling using decorators • 400
Using profile statistics • 401

Line profiler – Tracking performance per line • 404
Improving execution time ��� 406

Using the right algorithm • 407
Global interpreter lock • 407
try versus if • 408
Lists versus generators • 409
String concatenation • 409
Addition versus generators • 410
Map versus generators and list comprehensions • 411
Caching • 411
Lazy imports • 412
Using slots • 412
Using optimized libraries • 413
Just-in-time compiling • 414
Converting parts of your code to C • 415

Memory usage ��� 416
tracemalloc • 416
Memory Profiler • 417
Memory leaks • 418

Circular references • 420
Analyzing memory usage using the garbage collector • 422
Weak references • 423
Weakref limitations and pitfalls • 424

Reducing memory usage • 425
Generators versus lists • 428
Recreating collections versus removing items • 428
Using slots • 428

Performance monitoring ��� 430
Exercises �� 431
Summary �� 432

Table of Contents xvii

Chapter 13: asyncio – Multithreading without Threads � 435

Introduction to asyncio ��� 436
Backward compatibility and async/await statements • 436

Python 3.4 • 436
Python 3.5 • 437
Python 3.7 • 437

A basic example of parallel execution • 438
asyncio concepts • 440

Coroutines, Futures, and Tasks • 441
Event loops • 441
Executors • 445

Asynchronous examples �� 448
Processes • 448
Interactive processes • 451
Echo client and server • 453
Asynchronous file operations • 455
Creating async generators to support async for • 456
Asynchronous constructors and destructors • 458

Debugging asyncio �� 460
Forgetting to await a coroutine • 461
Slow blocking functions • 462
Forgetting to check the results or exiting early • 463
Exiting before all tasks are done • 464

Exercises �� 467
Summary �� 468

Chapter 14: Multiprocessing – When a Single CPU Core Is Not Enough � 469

The Global Interpreter Lock (GIL) �� 470
The use of multiple threads • 470
Why do we need the GIL? • 470
Why do we still have the GIL? • 471

Multiple threads and processes �� 471
Basic examples • 472

concurrent.futures • 472
threading • 474
multiprocessing • 476

Table of Contentsxviii

Cleanly exiting long-running threads and processes • 477
Batch processing using concurrent.futures • 480
Batch processing using multiprocessing • 482

Sharing data between threads and processes �� 484
Shared memory between processes • 485
Thread safety • 492
Deadlocks • 495
Thread-local variables • 497

Processes, threads, or a single thread? ��� 498
threading versus concurrent.futures • 499
multiprocessing versus concurrent.futures • 499

Hyper-threading versus physical CPU cores �� 500
Remote processes ��� 502

Distributed processing using multiprocessing • 502
Distributed processing using Dask • 505

Installing Dask • 505
Basic example • 506
Running a single thread • 507
Distributed execution across multiple machines • 507

Distributed processing using ipyparallel • 509
ipython_config.py • 509
ipython_kernel_config.py • 510
ipcontroller_config.py • 510
ipengine_config.py • 511
ipcluster_config.py • 511

Summary �� 513

Chapter 15: Scientific Python and Plotting � 515

Installing the packages �� 515
Arrays and matrices ��� 516

NumPy – Fast arrays and matrices • 516
Numba – Faster Python on CPU or GPU • 519
SciPy – Mathematical algorithms and NumPy utilities • 520

Sparse matrices • 521
Pandas – Real-world data analysis • 522

Input and output options • 525
Pivoting and grouping • 525

Table of Contents xix

Merging • 527
Rolling or expanding windows • 527

Statsmodels – Statistical models on top of Pandas • 528
xarray – Labeled arrays and datasets • 530
STUMPY – Finding patterns in time series • 532

Mathematics and precise calculations �� 533
gmpy2 – Fast and precise calculations • 534
Sage – An alternative to Mathematica/Maple/MATLAB • 534
mpmath – Convenient, precise calculations • 535
SymPy – Symbolic mathematics • 536
Patsy – Describing statistical models • 537

Plotting, graphing, and charting �� 538
Matplotlib • 538

Seaborn • 541
Yellowbrick • 543

Plotly • 545
Bokeh • 547
Datashader • 552

Exercises �� 554
Summary �� 554

Chapter 16: Artificial Intelligence � 557

Introduction to artificial intelligence ��� 558
Types of AI • 558

Installing the packages �� 559
Image processing ��� 559

scikit-image • 559
Installing scikit-image • 560
Edge detection • 560
Face detection • 561
scikit-image overview • 564

OpenCV • 564
Installing OpenCV for Python • 564
Edge detection • 565
Object detection • 567

OpenCV versus scikit-image • 570
Natural language processing �� 570

Table of Contentsxx

NLTK – Natural Language Toolkit • 571
spaCy – Natural language processing with Cython • 572
Gensim – Topic modeling for humans • 573

Machine learning �� 573
Types of machine learning • 573

Supervised learning • 574
Reinforcement learning • 574
Unsupervised learning • 574
Combinations of learning methods • 575
Deep learning • 575

Artificial neural networks and deep learning • 575
Tensors • 576
PyTorch – Fast (deep) neural networks • 576
PyTorch Lightning and PyTorch Ignite – High-level PyTorch APIs • 580
Skorch – Mixing PyTorch and scikit-learn • 580
TensorFlow/Keras – Fast (deep) neural networks • 581
TensorFlow versus PyTorch • 584

Evolutionary algorithms • 584
Support-vector machines • 588
Bayesian networks • 589

Versatile AI libraries and utilities ��� 589
scikit-learn – Machine learning in Python • 589

Supervised learning • 590
Unsupervised learning • 592

auto-sklearn – Automatic scikit-learn • 593
mlxtend – Machine learning extensions • 593
scikit-lego – scikit-learn utilities • 594
XGBoost – eXtreme Gradient Boosting • 595
Featuretools – Feature detection and prediction • 595
Snorkel – Improving your ML data automatically • 595
TPOT – Optimizing ML models using genetic programming • 595

Exercises �� 596
Summary �� 597

Chapter 17: Extensions in C/C++, System Calls, and C/C++ Libraries � 599

Setting up tooling �� 599
Do you need C/C++ modules? • 600

Table of Contents xxi

Windows • 600
OS X • 600
Linux/Unix • 601

Calling C/C++ with ctypes �� 602
Platform-specific libraries • 602

Windows • 602
Linux/Unix • 602
OS X • 603
Making it easy • 603

Calling functions and native types • 603
Complex data structures • 606
Arrays • 607
Gotchas with memory management • 608

CFFI �� 609
Complex data structures • 611
Arrays • 612
ABI or API? • 613
CFFI or ctypes? • 615

Native C/C++ extensions �� 615
A basic example • 615
C is not Python – Size matters • 620
The example explained • 621

static • 622
PyObject* • 622
Parsing arguments • 622

C is not Python – Errors are silent or lethal • 624
Calling Python from C – Handling complex types • 625

Exercises �� 628
Summary �� 628

Chapter 18: Packaging – Creating Your Own Libraries or Applications � 631

Introduction to packages ��� 631
Types of packages • 632

Wheels – The new eggs • 632
Source packages • 633

Package tools • 634
Package versioning �� 634

Table of Contentsxxii

Building packages ��� 635
Packaging using pyproject.toml • 635

Creating a basic package • 637
Installing packages for development • 638
Adding code and data • 638
Adding executable commands • 639
Managing dependencies • 639
Building the package • 641
Building C/C++ extensions • 641

Packaging using setuptools with setup.py or setup.cfg • 643
Creating a basic package • 644
Installing the package for development • 645
Adding packages • 645
Adding package data • 646
Managing dependencies • 648
Adding executable commands • 649
Building the package • 650

Publishing packages �� 650
Adding URLs • 650
PyPI trove classifiers • 651
Uploading to PyPI • 651

C/C++ extensions ��� 652
Regular C/C++ extensions • 653
Cython extensions • 654

Testing �� 655
unittest • 655
py.test • 656

Exercises �� 657
Summary �� 657

Other Books You May Enjoy � 661

Index � 665

Preface

Python is a language that is easy to learn and anyone can get started with a “Hello, World!” script
within minutes. Mastering Python, however, is a completely different question.

Every programming problem has multiple possible solutions and choosing the Pythonic (idiomatic
Python) solution is not always obvious; it can also change with time. This book will not only illustrate
a range of different and new techniques but also explain where and when a method should be applied.
To quote The Zen of Python by Tim Peters:

Even though it does not always help, the author of this book is actually Dutch.

This book is not a beginner’s guide to Python. It is a book that can teach you about the more advanced
techniques possible within Python, such as asyncio. It even includes Python 3.10 features, such as
structural pattern matching (Python’s switch statement), in great detail.

As a Python programmer with many years of experience, I will attempt to rationalize the choices made
in this book with relevant background information. These rationalizations are in no way strict guide-
lines, however, as several of these cases boil down to personal style in the end. Just know that they
stem from experience and are, in many cases, the solutions recommended by the Python community.

Some of the references in this book might not be obvious to you if you are not a fan of Monty Python.
This book regularly uses spam and eggs instead of foo and bar in code samples because the Python pro-
gramming language was named after Monty Python. To provide some background information about
spam and eggs, I would recommend you watch the Spam sketch from Monty Python. It is positively silly.

Who this book is for
This book is meant for programmers who are already experienced in Python and want to learn more
about the advanced features that Python offers. With the depth of this book, I can guarantee that
almost anyone can learn something new here if they wish.

“There should be one—and preferably only one—obvious way to do it. Although that
way may not be obvious at first unless you’re Dutch.”

Prefacexxiv

If you only know the basics of Python, however, don’t worry. The book starts off relatively slow and
builds to the more advanced subjects, so you should be fine.

What this book covers
Chapter 1, Getting Started – One Environment per Project, demonstrates several options for managing
Python versions, virtual environments, and package dependencies.

Chapter 2, Interactive Python Interpreters, explores Python interpreter options. Python’s default in-
terpreter is perfectly functional, but better alternatives are available. With a few modifications or a
replacement, you can get auto-completion, syntax highlighting, and graphical output.

Chapter 3, Pythonic Syntax and Common Pitfalls, discusses Pythonic coding, which is the art of writing
beautiful and readable Python code. This chapter is not the holy grail, but it is filled with tips and best
practices to achieve something along those lines.

Chapter 4, Pythonic Design Patterns, continues on the theme of Chapter 3. Writing Pythonic code is not
just about code style, but also about using the right design patterns and data structures. This chapter
tells you about the data structures available and their performance characteristics.

Chapter 5, Functional Programming – Readability Versus Brevity, covers functional programming. Func-
tional programming is considered a bit of a black art by some, but when applied correctly it can be a
really powerful tool that makes code reuse trivial. It is probably as close to the underlying mathematics
as you can get within programming.

Chapter 6, Decorators – Enabling Code Reuse by Decorating, discusses decorators, an amazing tool for
reusing a method. With decorators, you can wrap functions and classes with some other function to
modify their parameters and return values – an extremely useful tool.

Chapter 7, Generators and Coroutines – Infinity, One Step at a Time, discusses generators. Lists and tuples
are fantastic if you already know that you are going to use every element, but the faster alternative
is to only calculate the elements you actually need. That is what a generator does for you: generate
items on demand.

Chapter 8, Metaclasses – Making Classes (not Instances) Smarter, explores metaclasses, the classes that
make other classes. It is a magic you rarely need, but it does have practical uses cases such as plugin
systems.

Chapter 9, Documentation – How to Use Sphinx and reStructuredText, gives you some documentation-re-
lated tips. Writing documentation might not be the favorite activity for most programmers, but it
is useful. This chapter shows you how to make that easier by using Sphinx and reStructuredText to
generate large portions automatically.

Chapter 10, Testing and Logging – Preparing for Bugs, covers how to implement tests and logging to
prevent and detect bugs. Bugs are inevitable and by using logging, we can trace the cause. Often, bugs
can be prevented by using tests.

Chapter 11, Debugging – Solving the Bugs, builds on Chapter 10. The previous chapter helped us find the
bugs; now we need to solve them. Debuggers can be a huge help when hunting down difficult bugs,

Preface xxv

and this chapter shows you several debugging options.

Chapter 12, Performance – Tracking and Reducing Your Memory and CPU Usage, discusses the performance
of your code. A common problem programmers have is trying to optimize code that does not need it,
a fun but generally futile exercise. This chapter helps you find the code that needs to be optimized.

Chapter 13, asyncio – Multithreading without Threads, covers asyncio. Waiting for external resources
such as network resources is the most common bottleneck for applications. With asyncio, we can
stop waiting for those bottlenecks and switch to another task instead.

Chapter 14, Multiprocessing – When a Single CPU Core Is Not Enough, discusses performance from a dif-
ferent perspective. With multiprocessing, we can use multiple processors (even remotely) in parallel.
When your processor is the bottleneck, this can help a lot.

Chapter 15, Scientific Python and Plotting, covers the most important libraries for scientific computing.
Python has become the language of choice for scientific purposes.

Chapter 16, Artificial Intelligence, shows many AI algorithms and the libraries available for implement-
ing them. In addition to being the language of choice for scientific purposes, most AI libraries are
currently being built using Python as well.

Chapter 17, Extensions in C/C++, System Calls, and C/C++ Libraries, shows you how to use existing C/C++
libraries from Python, which not only allows reuse but can also speed up execution greatly. Python
is a wonderful language, but it is often not the fastest solution.

Chapter 18, Packaging – Creating Your Own Libraries or Applications, will help you package your code
into a fully functioning Python package that others can use. After building your wonderful new library,
you might want to share it with the world.

To get the most out of this book
Depending on your level of experience you should start reading from the beginning, or gloss over the
chapters to skip to sections that are interesting for you. This book is suitable for intermediate to expert
level Python programmers, but not all sections will be equally useful for everyone.

As an example, the first two chapters are about setting up your environment and Python interpreter
and seem like chapters you can skip entirely as an advanced or expert Python programmer, but I
would advise against fully skipping them, as a few useful utilities and libraries are covered which you
might not be familiar with.

The chapters of this book do build on each other to a certain degree, but there is no strict reading
order and you can easily cherry-pick the parts you wish to read. If there is a reference to an earlier
chapter, it is clearly indicated.

The most up-to-date version of the code samples can always be found at https://github.com/
mastering-python/code_2.

The code in this repository is automatically tested and, if you have any suggestions, pull requests are
always welcome.

https://github.com/mastering-python/code_2
https://github.com/mastering-python/code_2

Prefacexxvi

Most chapters of this book also include exercises at the end that will allow you to test what you have
learned. Since there are always multiple solutions to problems, you, and every other reader of this
book, can submit and compare your solutions on GitHub: https://github.com/mastering-python/
exercises

You are encouraged to create a pull request with your solution to the problems. And you can learn
from others here as well, of course.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/mastering-python/code_2
and pull requests with improvements are welcome. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://static.packt-cdn.com/downloads/9781800207721_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

While this book largely adheres to the PEP8 styling conventions, there are a few concessions made
due to the space limitations of a book format. Simply put, code samples that span multiple pages are
hard to read, so some parts use less whitespace than you would usually expect. The full version of the
code is available on GitHub and is automatically tested to be PEP8-compliant.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file ex-
tensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The itertools.
chain() generator is one of the simplest yet one of the most useful generators in the Python library.”

A block of code is set as follows:

from . import base

class A(base.Plugin):
 pass

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

 :show-inheritance:
 :private-members:
 :special-members:
 :inherited-members:

Any command-line input or output is written as follows:

$ pip3 install -U mypy

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises
https://github.com/mastering-python/code_2
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800207721_ColorImages.pdf

Preface xxvii

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in
menus or dialog boxes. For example: “Sometimes interactive interpreters are referred to as REPL.
This stands for Read-Eval-Print-Loop.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of your
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission
Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com

Prefacexxviii

Share your thoughts
Once you’ve read Mastering Python, Second Edition, we’d love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://www.packtpub.com/
https://www.packtpub.com/

1
Getting Started – One
Environment per Project

In this chapter, you’ll learn about the different ways of setting up Python environments for your
projects and how to use multiple Python versions on a single system outside of what your package
manager offers.

After the environment is set up, we will continue with the installation of packages using both the
Python Package Index (PyPI) and conda-forge, the package index that is coupled with Anaconda.

Lastly, we will look at several methods of keeping track of project dependencies.

To summarize, the following topics will be covered:

•	 Creating environments using venv, pipenv, poetry, pyenv, and anaconda
•	 Package installation through pip, poetry, pipenv, and conda
•	 Managing dependencies using requirements.txt, poetry, and pipenv

Virtual environments
The Python ecosystem offers many methods of installing and managing packages. You can simply
download and extract code to your project directory, use the package manager from your operating
system, or use a tool such as pip to install a package. To make sure your packages don’t collide, it
is recommended that you use a virtual environment. A virtual environment is a lightweight Python
installation with its own package directories and a Python binary copied (or linked) from the binary
used to create the environment.

Why virtual environments are a good idea
It might seem like a hassle to create a virtual environment for every Python project, but it offers
enough advantages to do so. More importantly, there are several reasons why installing packages
globally using pip is a really bad idea:

Getting Started – One Environment per Project2

•	 Installing packages globally usually requires elevated privileges (such as sudo, root, or
administrator), which is a huge security risk. When executing pip install <package>, the
setup.py of that package is executed as the user that executed the pip install command. That
means that if the package contains malware, it now has superuser privileges to do whatever it
wants. Don’t forget that anyone can upload a package to PyPI (pypi.org) without any vetting.
As you will see later in this book, it only takes a couple of minutes for anyone to create and
upload a package.

•	 Depending on how you installed Python, it can mess with the existing packages that are in-
stalled by your package manager. On an Ubuntu Linux system, that means you could break
pip or even apt itself because a pip install -U <package> installs and updates both the
package and all of the dependencies.

•	 It can break your other projects. Many projects try their best to remain backward compatible,
but every pip install could pull in new/updated dependencies that could break compatibility
with other packages and projects. The Django Web Framework, for example, changes enough
between versions that many projects using Django will need several changes after an upgrade
to the latest release. So, when you’re upgrading Django on your system to the latest version and
have a project that was written for a previous version, your project will most likely be broken.

•	 It pollutes your list of packages, making it hard to keep track of your project’s dependencies.

In addition to alleviating the issues above, there is a major advantage as well. You can specify the
Python version (assuming you have it installed) when creating the virtual environment. This allows
you to test and debug your projects in multiple Python versions easily while keeping the exact same
package versions beyond that.

Using venv and virtualenv
You are probably already familiar with virtualenv, a library used to create a virtual environment for
your Python installation. What you might not know is the venv command, which has been included
with Python since version 3.3 and can be used as a drop-in replacement for virtualenv in most cases.
To keep things simple, I recommend creating a directory where you keep all of your environments.
Some people opt for an env, .venv, or venv directory within the project, but I advise against that for
several reasons:

•	 Your project files are important, so you probably want to back them up as often as possible.
By keeping the bulky environment with all of the installed packages outside of your backups,
your backups become faster and lighter.

•	 Your project directory stays portable. You can even keep it on a remote drive or flash drive
without having to worry that the virtual environment will only work on a single system.

•	 It prevents you from accidentally adding the virtual environment files to your source control
system.

If you do decide to keep your virtual environment inside your project directory, make sure that you
add that directory to your .gitignore file (or similar) for your version control system. And if you
want to keep your backups faster and lighter, exclude it from the backups. With correct dependency
tracking, the virtual environment should be easy enough to rebuild.

http://pypi.org

Chapter 1 3

Creating a venv
Creating a venv is a reasonably simple process, but it varies slightly according to the operating system
being used.

For Linux/Unix/OS X, using zsh or bash as a shell, it is:

$ python3 -m venv envs/your_env
$ source envs/your_env/bin/activate
(your_env) $

And for Windows cmd.exe (assuming python.exe is in your PATH), it is:

C:\Users\wolph>python.exe -m venv envs\your_env
C:\Users\wolph>envs\your_env\Scripts\activate.bat
(your_env) C:\Users\wolph>

PowerShell is also supported and can be used in a similar fashion:

PS C:\Users\wolph>python.exe -m venv envs\your_env
PS C:\Users\wolph> envs\your_env\Scripts\Activate.ps1
(your_env) PS C:\Users\wolph>

The first command creates the environment and the second activates the environment. After activating
the environment, commands such as python and pip use the environment-specific versions, so pip
install only installs within your virtual environment. A useful side effect of activating the environ-
ment is the prefix with the name of your environment, which is (your_env) in this case.

The following examples use the virtualenv module directly, but for ease I recommend
using poetry instead, which is covered later in this chapter. This module will automati-
cally create a virtual environment for you when you first use it. Before you make the step
up to poetry, however, it is important to understand how virtual environments work.

Since Python 3.6, the pyvenv command has been deprecated in favor of python -m venv.

In the case of Ubuntu, the python3-venv package has to be installed through apt because
the Ubuntu developers have mutilated the default Python installation by not including
ensurepip.

Note that we are not using sudo or other methods of elevating privileges. Elevating priv-
ileges is both unnecessary and a potential security risk, as explained in the Why virtual
environments are a good idea section.

Getting Started – One Environment per Project4

Using virtualenv instead of venv is as simple as replacing the following command:

$ python3 -m venv envs/your_env

with this one:

$ virtualenv envs/your_env

An additional advantage of using virtualenv instead of venv, in that case, is that you can specify the
Python interpreter:

$ virtualenv -p python3.8 envs/your_env

Whereas with the venv command, it uses the currently running Python installation, so you need to
change it through the following invocation:

$ python3.8 -m venv envs/your_env

Activating a venv/virtualenv
Every time you get back to your project after closing the shell, you need to reactivate the environment.
The activation of a virtual environment consists of:

•	 Modifying your PATH environment variable to use envs\your_env\Script or envs/your_env/
bin for Windows or Linux/Unix, respectively

•	 Modifying your prompt so that instead of $, you see (your_env) $, indicating that you are
working in a virtual environment

While you can easily modify those manually, an easier method is to run the activate script that was
generated when creating the virtual environment.

For Linux/Unix with zsh or bash as the shell, it is:

$ source envs/your_env/bin/activate
(your_env) $

For Windows using cmd.exe, it is:

C:\Users\wolph>envs\your_env\Scripts\activate.bat
(your_env) C:\Users\wolph>

For Windows using PowerShell, it is:

PS C:\Users\wolph> envs\your_env\Scripts\Activate.ps1
(your_env) PS C:\Users\wolph>

In the case of poetry, you can use the poetry shell command to create a new
shell with the activated environment.

Chapter 1 5

Different shells, such as fish and csh, are also supported by using the activate.fish and activate.
csh scripts, respectively.

When not using an interactive shell (with a cron job, for example), you can still use the environment by
using the Python interpreter in the bin or scripts directory for Linux/Unix or Windows, respectively.
Instead of running python script.py or /usr/bin/python script.py, you can use:

/home/wolph/envs/your_env/bin/python script.py

Note that commands installed through pip (and pip itself) can be run in a similar fashion:

/home/wolph/envs/your_env/bin/pip

Installing packages
Installing packages within your virtual environment can be done using pip as normal:

$ pip3 install <package>

The great advantage comes when looking at the list of installed packages:

$ pip3 freeze

Because our environment is isolated from the system, we only see the packages and dependencies
that we have explicitly installed.

Fully isolating the virtual environment from the system Python packages can be a downside in some
cases. It takes up more disk space and the package might not be in sync with the C/C++ libraries on
the system. The PostgreSQL database server, for example, is often used together with the psycopg2
package. While binaries are available for most platforms and building the package from the source
is fairly easy, it can sometimes be more convenient to use the package that is bundled with your
system. That way, you are certain that the package is compatible with both the installed Python and
PostgreSQL versions.

To mix your virtual environment with system packages, you can use the --system-site-packages
flag when creating the environment:

$ python3 -m venv --system-site-packages envs/your_env

By default, the PowerShell permissions might be too restrictive to allow this. You can
change this policy for the current PowerShell session by executing:

Set-ExecutionPolicy Unrestricted -Scope Process

If you wish to permanently change it for every PowerShell session for the current user,
execute:

Set-ExecutionPolicy Unrestricted -Scope CurrentUser

Getting Started – One Environment per Project6

When enabling this flag, the environment will have the system Python environment sys.path appended
to your virtual environment’s sys.path, effectively providing the system packages as a fallback when
an import from the virtual environment fails.

As you might suspect, this also affects the results of pip freeze. Luckily, pip freeze can be told to
only list the packages local to the virtual environment, which excludes the system packages:

$ pip3 freeze --local

Using pyenv
The pyenv library makes it really easy to quickly install and switch between multiple Python versions.
A common issue with many Linux and Unix systems is that the package managers opt for stability over
recency. In most cases, this is definitely an advantage, but if you are running a project that requires
the latest and greatest Python version, or a really old version, it requires you to compile and install it
manually. The pyenv package makes this process really easy for you but does still require the compiler
to be installed.

To install pyenv, I recommend visiting the pyenv project page, since it depends highly on your operat-
ing system and operating system version. For Linux/Unix, you can use the regular pyenv installation
manual or the pyenv-installer (https://github.com/pyenv/pyenv-installer) one-liner, if you
deem it safe enough:

$ curl https://pyenv.run | bash

Make sure that you follow the instructions given by the installer. To ensure pyenv works properly, you
will need to modify your .zshrc or .bashrc.

Explicitly installing or updating a package within your virtual environment will effectively
hide the system package from within your virtual environment. Uninstalling the package
from your virtual environment will make it reappear.

Later in this chapter, we will discuss pipenv, which transparently handles the creation
of the virtual environment for you.

A nice addition to pyenv for testing purposes is the tox library. This library allows you
to run your tests on a whole list of Python versions simultaneously. The usage of tox is
covered in Chapter 10, Testing and Logging – Preparing for Bugs.

https://github.com/pyenv/pyenv-installer

Chapter 1 7

Windows does not support pyenv natively (outside of Windows Subsystem for Linux) but has a pyenv
fork available: https://github.com/pyenv-win/pyenv-win#installation

After installing pyenv, you can view the list of supported Python versions using:

$ pyenv install --list

The list is rather long, but can be shortened with grep on Linux/Unix:

$ pyenv install --list | grep 3.10
 3.10.0
 3.10-dev
...

Once you’ve found the version you like, you can install it through the install command:

$ pyenv install 3.10-dev
Cloning https://github.com/python/cpython...
Installing Python-3.10-dev...
Installed Python-3.10-dev to /home/wolph/.pyenv/versions/3.10-dev

Once the Python version has been built, you can activate it globally, but you can also use the pyenv-
virtualenv plugin (https://github.com/pyenv/pyenv-virtualenv) to create a virtualenv for your
newly created Python environment:

$ pyenv virtualenv 3.10-dev your_pyenv

you can see in the preceding example, as opposed to the venv and virtualenv commands, pyenv
virtualenv automatically creates the environment in the ~/.pyenv/versions/<version>/envs/
directory so you’re not allowed to fully specify your own path. You can change the base path (~/.
pyenv/) through the PYENV_ROOT environment variable, however. Activating the environment using
the activate script in the environment directory is still possible, but more complicated than it needs
to be since there’s an easy shortcut:

$ pyenv activate your_pyenv

Now that the environment is activated, you can run environment-specific commands, such as pip,
and they will only modify your environment.

The pyenv install command takes an optional --debug parameter, which builds a de-
bug version of Python that makes debugging C/C++ extensions possible using a debugger
such as gdb.

https://github.com/pyenv-win/pyenv-win#installation
https://github.com/pyenv/pyenv-virtualenv

Getting Started – One Environment per Project8

Using Anaconda
Anaconda is a distribution that supports both the Python and R programming languages. It is much
more than simply a virtual environment manager, though; it’s a whole different Python distribution
with its own virtual environment system and even a completely different package system. In addition
to supporting PyPI, it also supports conda-forge, which features a very impressive number of pack-
ages focused on scientific computing.

For the end user, the most important difference is that packages are installed through the conda com-
mand instead of pip. This brings a much more advanced dependency check when installing packages.
Whereas pip will simply install a package and all of its dependencies without regard for other installed
packages, conda will look at all of the installed packages and make sure it won’t install a version that
is not supported by the installed packages.

Getting started with Anaconda Navigator
Installing Anaconda is quite easy on all common platforms. For Windows, OS X, and Linux, you can go
to the Anaconda site and download the (graphical) installer: https://www.anaconda.com/products/
distribution#Downloads

Once it’s installed, the easiest way to continue is by launching Anaconda Navigator, which should
look something like this:

Figure 1.1: Anaconda Navigator – Home

The conda package manager is not alone in smart dependency checking. The pipenv
package manager (discussed later in this chapter) does something similar.

https://www.anaconda.com/products/distribution#Downloads
https://www.anaconda.com/products/distribution#Downloads
https://www.anaconda.com/products/individual#Downloads

Chapter 1 9

Creating an environment and installing packages is pretty straightforward as well:

1.	 Click on the Environments button on the left.
2.	 Click on the Create button below.
3.	 Enter your name and Python version.
4.	 Click on Create to create your environment and wait a bit until Anaconda is done:

Figure 1.2: Anaconda Navigator – Creating an environment

Once Anaconda has finished creating your environment, you should see a list of installed packages.
Installing packages can be done by changing the filter of the package list from Installed to All, marking
the checkbox near the packages you want to install, and applying the changes.

Getting started with conda
While Anaconda Navigator is a really nice tool to use to get an overview, being able to run your code
from the command line can be convenient too. With the conda command, that is luckily very easy.

First, you need to open the conda shell. You can do this from Anaconda Navigator if you wish, but you
can also run it straightaway. On Windows, you can open Anaconda Prompt or Anaconda PowerShell
Prompt from the start menu. On Linux and OS X, the most convenient method is to initialize the shell
integration. For zsh, you can use:

$ conda init zsh

While creating an environment, Anaconda Navigator shows you where the environment
will be created.

Getting Started – One Environment per Project10

For other shells, the process is similar. Note that this process modifies your shell configuration to
automatically activate the base environment every time you open a shell. This can be disabled with
a simple configuration option:

$ conda config --set auto_activate_base false

If automatic activation is not enabled, you will need to run the activate command to get back into
the conda base environment:

$ conda activate
(base) $

If, instead of the conda base environment, you wish to activate the environment you created earlier,
you need to specify the name:

$ conda activate conda_env
(conda_env) $

If you have not created the environment yet, you can do so using the command line as well:

$ conda create --name conda_env
Collecting package metadata (current_repodata.json): done
Solving environment: done
...
Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
...

To list the available environments, you can use the conda info command:

$ conda info --envs
conda environments
#
base * /usr/local/anaconda3
conda_env /usr/local/anaconda3/envs/conda_env

Installing conda packages
Now it’s time to install a package. For conda packages, you can simply use the conda install com-
mand. For example, to install the progressbar2 package that I maintain, use:

(conda_env) $ conda install progressbar2
Collecting package metadata (current_repodata.json): done
Solving environment: done

Chapter 1 11

Package Plan
 environment location: /usr/local/anaconda3/envs/conda_env

 added / updated specs:
 - progressbar2
The following packages will be downloaded:
...
The following NEW packages will be INSTALLED:
...
Proceed ([y]/n)? y

Downloading and Extracting Packages
...

Now you can run Python and see that the package has been installed and is working properly:

(conda_env) $ python
Python 3.8.0 (default, Nov 6 2019, 15:49:01)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import progressbar

>>> for _ in progressbar.progressbar(range(5)): pass
...
100% (5 of 5) |##############################| Elapsed Time: 0:00:00 Time:
0:00:00

Another way to verify whether the package has been installed is by running the conda list command,
which lists the installed packages similarly to pip list:

(conda_env) $ conda list
packages in environment at /usr/local/anaconda3/envs/conda_env:
#
Name Version Build Channel
...

Installing PyPI packages
With PyPI packages, we have two options within the Anaconda distribution. The most obvious is using
pip, but this has the downside of partially circumventing the conda dependency checker. While conda
install will take the packages installed through PyPI into consideration, the pip command might
upgrade packages undesirably. This behavior can be improved by enabling the conda/pip interoper-
ability setting, but this seriously impacts the performance of conda commands:

$ conda config --set pip_interop_enabled True

Getting Started – One Environment per Project12

Depending on how important fixed versions or conda performance is for you, you can also opt for
converting the package to a conda package:

(conda_env) $ conda skeleton pypi progressbar2
Warning, the following versions were found for progressbar2
...
Use --version to specify a different version.
...
Package Plan
...
The following NEW packages will be INSTALLED:
...
INFO:conda_build.config:--dirty flag and --keep-old-work not specified.
Removing build/test folder after successful build/test.

Now that we have a package, we can modify the files if needed, but using the automatically generated
files works most of the time. All that is left now is to build and install the package:

(conda_env) $ conda build progressbar2
...
(conda_env) $ conda install --use-local progressbar2
Collecting package metadata (current_repodata.json): done
Solving environment: done
...

And now we are done! The package has been installed through conda instead of pip.

Sharing your environment
When collaborating with others, it is essential to have environments that are as similar as possible to
avoid debugging local issues. With pip, we can simply create a requirements file by using pip freeze,
but that will not include the conda packages. With conda, there’s actually an even better solution, which
stores not only the dependencies and versions but also the installation channels, environment name,
and environment location:

(conda_env) $ conda env export –file environment.yml
(conda_env) $ cat environment.yml
name: conda_env
channels:
 - defaults
dependencies:
...
prefix: /usr/local/anaconda3/envs/conda_env

Chapter 1 13

Installing the packages from that environment file can be done while creating the environment:

$ conda env create --name conda_env –file environment.yml

Or they can be added to an existing environment:

(conda_env) $ conda env update --file environment.yml
Collecting package metadata (repodata.json): done
...

Managing dependencies
The simplest way of managing dependencies is storing them in a requirements.txt file. In its sim-
plest form, this is a list of package names and nothing else. This file can be extended with version
requirements and can even support environment-specific installations.

A fancier method of installing and managing your dependencies is by using a tool such as poetry or
pipenv. Internally, these use the regular pip installation method, but they build a full dependency
graph of all the packages. This makes sure that all package versions are compatible with each other
and allows the parallel installation of non-dependent packages.

Using pip and a requirements.txt file
The requirements.txt format allows you to list all of the dependencies of your project as broadly or
as specifically as you feel is necessary. You can easily create this file yourself, but you can also tell pip
to generate it for you, or even to generate a new file based on a previous requirements.txt file so you
can view the changes. I recommend using pip freeze to generate an initial file and cherry-picking
the dependencies (versions) you want.

For example, assuming that we run pip freeze in our virtual environment from before:

(your_env) $ pip3 freeze
pkg-resources==0.0.0

If we store that file in a requirements.txt file, install a package, and look at the difference, we get
this result:

(your_env) $ pip3 freeze > requirements.txt
(your_env) $ pip3 install progressbar2
Collecting progressbar2
...
Installing collected packages: six, python-utils, progressbar2
Successfully installed progressbar2-3.47.0 python-utils-2.3.0 six-1.13.0
(your_env) $ pip3 freeze -r requirements.txt
pkg-resources==0.0.0
The following requirements were added by pip freeze:

Getting Started – One Environment per Project14

progressbar2==3.47.0
python-utils==2.3.0
six==1.13.0

As you can see, the pip freeze command automatically detected the addition of the six, progressbar2,
and python-utils packages, and it immediately pinned those versions to the currently installed ones.

Version specifiers
Often, pinning a version as strictly as that is not desirable, however, so let’s change the requirements
file to only contain what we actually care about:

We want a progressbar that is at least version 3.47.0 since we've tested
that.
But newer versions are ok as well.
progressbar2>=3.47.0

If someone else wants to install all of the requirements in this file, they can simply tell pip to include
that requirement:

(your_env) $ pip3 install -r requirements.txt
Requirement already satisfied: progressbar2>=3.47.0 in your_env/lib/python3.9/
site-packages (from -r requirements.txt (line 1))
Requirement already satisfied: python-utils>=2.3.0 in your_env/lib/python3.9/
site-packages (from progressbar2>=3.47.0->-r requirements.txt (line 1))
Requirement already satisfied: six in your_env/lib/python3.9/site-packages
(from progressbar2>=3.47.0->-r requirements.txt (line 1))

In this case, pip checks to see whether all packages are installed and will install or update them if
needed.

Now let’s assume we’ve encountered a bug in the latest version and we wish to skip it. We can assume
that only this specific version is affected, so we will only blacklist that version:

Progressbar 2 version 3.47.0 has a silly bug but anything beyond 3.46.0 still
works with our code
progressbar2>=3.46,!=3.47.0

The lines in the requirements.txt file are understood by pip on the command line as
well, so to install a specific version, you can run:

$ pip3 install 'progressbar2==3.47.0'

-r requirements.txt works recursively, allowing you to include multiple requirements
files.

Chapter 1 15

Lastly, we should talk about wildcards. One of the most common scenarios is needing a specific ma-
jor version number but still wanting the latest security update and bug fixes. There are a few ways to
specify these:

Basic wildcard:
progressbar2 ==3.47.*
Compatible release:
progressbar2 ~=3.47.1
Compatible release above is identical to:
progressbar2 >=3.47.1, ==3.47.*

With the compatible release pattern (~=), you can select the newest version that is within the same
major release but is at least the specified version.

Installing through source control repositories
Now let’s say that we’re really unlucky and there is no working release of the package yet, but it has
been fixed in the develop branch of the Git repository. We can install that either through pip or through
a requirements.txt file, like this:

(your_env) $ pip3 install --editable 'git+https://github.com/wolph/python-
progressbar@develop#egg=progressbar2'
Obtaining progressbar2 from git+https://github.com/wolph/python-progressbar@
develop#egg=progressbar2
 Updating your_env/src/progressbar2 clone (to develop)
Requirement already satisfied: python-utils>=2.3.0 in your_env/lib/python3.9/
site-packages (from progressbar2)
Requirement already satisfied: six in your_env/lib/python3.9/site-packages
(from progressbar2)
Installing collected packages: progressbar2
 Found existing installation: progressbar2 3.47.0
 Uninstalling progressbar2-3.47.0:
 Successfully uninstalled progressbar2-3.47.0
 Running setup.py develop for progressbar2
Successfully installed progressbar2

You may notice that pip not only installed the package but actually did a git clone to your_env/src/
progressbar2. This is an optional step caused by the --editable (short option: -e) flag, which has
the additional advantage that every time you re-run the command, the git clone will be updated. It
also makes it rather easy to go to that directory, modify the code, and create a pull request with a fix.

The version identification and dependency specification standard is described thoroughly
in PEP 440:

https://peps.python.org/pep-0440/

https://peps.python.org/pep-0440/

Getting Started – One Environment per Project16

Additional dependencies using extras
Many packages offer optional dependencies for specific use cases. In the case of the progressbar2
library, I have added tests and docs extras to install the test or documentation building dependencies
needed to run the tests for the package. Extras can be specified using square brackets separated by
commas:

Install the documentation and test extras in addition to the progressbar
progressbar2[docs,tests]

A popular example is the installation of encryption libraries when using the
requests library:
requests[security]

Conditional dependencies using environment markers
If your project needs to run on multiple systems, you will most likely encounter dependencies that
are not required on all systems. One example of this is libraries that are required on some operating
systems but not on others. An example of this is the portalocker package I maintain; on Linux/Unix
systems, the locking mechanisms needed are supported out of the box. On Windows, however, they
require the pywin32 package to work. The install_requires part of the package (which uses the
same syntax as requirements.txt) contains this line:

pywin32!=226; platform_system == "Windows"

This specifies that on Windows, the pywin32 package is required, and version 226 was blacklisted
due to a bug.

In addition to platform_system, there are several more markers, such as python_version and
platform_machine (contains architecture x86_64, for example).

One other useful example of this is the dataclasses library. This library has been included with Python
since version 3.7, so we only need to install the backport for older Python versions:

dataclasses; python_version < '3.7'

In addition to Git, other source control systems such as Bazaar, Mercurial, and Subversion
are also supported.

The full list of markers can be found in PEP 496: https://peps.python.org/pep-0496/.

https://peps.python.org/pep-0496/

Chapter 1 17

Automatic project management using poetry
The poetry tool provides a really easy-to-use solution for creating, updating, and sharing your Python
projects. It’s also very fast, which makes it a fantastic starting point for a project.

Creating a new poetry project
Starting a new project is very easy. It will automatically handle virtual environments, dependencies,
and other project-related tasks for you. To start, we will use the poetry init wizard:

$ poetry init
This command will guide you through creating your pyproject.toml config.

Package name [t_00_poetry]:
Version [0.1.0]:
Description []:
Author [Rick van Hattem <Wolph@wol.ph>, n to skip]:
License []:
Compatible Python versions [^3.10]:

Would you like to define your main dependencies interactively? (yes/no) [yes]
no
Would you like to define your development dependencies interact...? (yes/no)
[yes] no
...
Do you confirm generation? (yes/no) [yes]

Following these few questions, it automatically creates a pyproject.toml file for us that contains all
the data we entered and some automatically generated data. As you may have noticed, it automatically
prefilled several values for us:

•	 The project name. This is based on the current directory name.
•	 The version. This is fixed to 0.1.0.
•	 The author field. This looks at your git user information. This can be set using:

$ git config --global user.name "Rick van Hattem"
$ git config --global user.email "Wolph@wol.ph"

•	 The Python version. This is based on the Python version you are running poetry with, but it
can be customized using poetry init --python=...

Looking at the generated pyproject.toml, we can see the following:

[tool.poetry]
name = "t_00_poetry"
version = "0.1.0"

Getting Started – One Environment per Project18

description = ""
authors = ["Rick van Hattem <Wolph@wol.ph>"]

[tool.poetry.dependencies]
python = "^3.10"

[tool.poetry.dev-dependencies]

[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"

Adding dependencies
Once we have the project up and running, we can now add dependencies:

$ poetry add progressbar2
Using version ^3.55.0 for progressbar2
...
Writing lock file
...
 • Installing progressbar2 (3.55.0)

This automatically installs the package, adds it to the pyproject.toml file, and adds the specific ver-
sion to the poetry.lock file. After this command, the pyproject.toml file has a new line added to
the tool.poetry.dependencies section:

[tool.poetry.dependencies]
python = "^3.10"
progressbar2 = "^3.55.0"

The poetry.lock file is a bit more specific. Whereas the progressbar2 dependency could have a wild-
card version, the poetry.lock file stores the exact version, the file hashes, and all the dependencies
that were installed:

[[package]]
name = "progressbar2"
version = "3.55.0"
...
[package.dependencies]
python-utils = ">=2.3.0"
...
[package.extras]
docs = ["sphinx (>=1.7.4)"]
...

Chapter 1 19

[metadata]
lock-version = "1.1"
python-versions = "^3.10"
content-hash =
"c4235fba0428ce7877f5a94075e19731e5d45caa73ff2e0345e5dd269332bff0"

[metadata.files]
progressbar2 = [
 {file = "progressbar2-3.55.0-py2.py3-none-any.whl", hash = "sha256:..."},
 {file = "progressbar2-3.55.0.tar.gz", hash = "sha256:..."},
]
...

By having all this data, we can build or rebuild a virtual environment for a poetry-based project on
another system exactly as it was created on the original system. To install, upgrade, and/or downgrade
the packages exactly as specified in the poetry.lock file, we need a single command:

$ poetry install
Installing dependencies from lock file
...

This is very similar to how the npm and yarn commands work if you are familiar with those.

Upgrading dependencies
In the previous examples, we simply added a dependency without specifying an explicit version. Of-
ten this is a safe approach, as the default version requirement will allow for any version within that
major version.

If the project uses normal Python versioning or semantic versioning (more about that in Chapter 18,
Packaging - Creating Your Own Libraries or Applications), that should be perfect. At the very least, all of
my projects (such as progressbar2) are generally both backward and largely forward compatible, so
simply fixing the major version is enough. In this case, poetry defaulted to version ^3.55.0, which
means that any version newer than or equal to 3.55.0, up to (but not including) 4.0.0, is valid.

Due to the poetry.lock file, a poetry install will result in those exact versions being installed in-
stead of the new versions, however. So how can we upgrade the dependencies? For this purpose, we
will start by installing an older version of the progressbar2 library:

$ poetry add 'progressbar2=3.1.0'

Now we will relax the version in the pyproject.toml file to ^3.1.0:

[tool.poetry.dependencies]
progressbar2 = "^3.1.0"

Getting Started – One Environment per Project20

Once we have done this, a poetry install will still keep the 3.1.0 version, but we can make poetry
update the dependencies for us:

$ poetry update
...
 • Updating progressbar2 (3.1.0 -> 3.55.0)

Now, poetry has nicely updated the dependencies in our project while still adhering to the require-
ments we set in the pyproject.toml file. If you set the version requirements of all packages to *,
it will always update everything to the latest available versions that are compatible with each other.

Running commands
To run a single command using the poetry environment, you can use poetry run:

$ poetry run pip

For an entire development session, however, I would suggest using the shell command:

$ poetry shell

After this, you can run all Python commands as normal, but these will now be running from the
activated virtual environment.

For cron jobs this is similar, but you will need to make sure that you change directories first:

0 3 * * * cd /home/wolph/workspace/poetry_project/ && poetry run python
script.py

This command runs every day at 03:00 (24-hour clock, so A.M.).

Note that cron might not be able to find the poetry command due to having a different environment.
In that case, I would recommend using the absolute path to the poetry command, which can be
found using which:

$ which poetry
/usr/local/bin/poetry

Automatic dependency tracking using pipenv
For large projects, your dependencies can change often, which makes the manual manipulation of
the requirements.txt file rather tedious. Additionally, having to create a virtual environment before
you can install your packages is also a pretty repetitive task if you work on many projects. The pipenv
tool aims to transparently solve these issues for you, while also making sure that all of your dependen-
cies are compatible and updated. And as a final bonus, it combines the strict and loose dependency
versions so you can make sure your production environment uses the exact same versions you tested.

Initial usage is simple; go to your project directory and install a package. Let’s give it a try:

Chapter 1 21

$ pipenv install progressbar2
Creating a virtualenv for this project...
...
Using /usr/local/bin/python3 (3.10.4) to create virtualenv...
...
✔ Successfully created virtual environment!
...
Creating a Pipfile for this project...
Installing progressbar2...
Adding progressbar2 to Pipfile's [packages]...
✔ Installation Succeeded
Pipfile.lock not found, creating...
...
✔ Success!
Updated Pipfile.lock (996b11)!
Installing dependencies from Pipfile.lock (996b11)...

 🐍🐍 ▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉ 0/0 — 00:00:0
That’s quite a bit of output even when abbreviated. But let’s look at what happened:

•	 A virtual environment was created.
•	 A Pipfile was created, which contains the dependency as you specified it. If you specify a

specific version, that will be added to the Pipfile; otherwise, it will be a wildcard requirement,
meaning that any version will be accepted as long as there are no conflicts with other packages.

•	 A Pipfile.lock was created containing the exact list of packages and versions as installed.
This allows an identical install on a different machine with the exact same versions.

The generated Pipfile contains the following:

[[source]]
name = "pypi"
url = "https://pypi.org/simple"
verify_ssl = true

[dev-packages]

[packages]
progressbar2 = "*"

[requires]
python_version = "3.10"

Getting Started – One Environment per Project22

And the Pipfile.lock is a bit larger, but immediately shows another advantage of this method:

{
 ...
 "default": {
 "progressbar2": {
 "hashes": [
 "sha256:14d3165a1781d053...",
 "sha256:2562ba3e554433f0..."
],
 "index": "pypi",
 "version": "==4.0.0"
 },
 "python-utils": {
 "hashes": [
 "sha256:4dace6420c5f50d6...",
 "sha256:93d9cdc8b8580669..."
],
 "markers": "python_version >= '3.7'",
 "version": "==3.1.0"
 },
 ...
 },
 "develop": {}
}

As you can see, in addition to the exact package versions, the Pipfile.lock contains the hashes of the
packages as well. In this case, the package provides both a .tar.gz (source) and a .whl (wheel) file,
which is why there are two hashes. Additionally, the Pipfile.lock contains all packages installed by
pipenv, including all dependencies.

Using these hashes, you can be certain that during a deployment, you will receive the exact same file
and not some corrupt or even malicious file.

Because the versions are completely fixed, you can also be certain that anyone deploying your project
using the Pipfile.lock will get the exact same package versions. This is very useful when working
together with other developers.

To install all the necessary packages as specified in the Pipfile (even for the initial install), you can
simply run:

$ pipenv install
Installing dependencies from Pipfile.lock (5c99e1)…

 🐍🐍 ▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉ 3/3 — 00:00:00

Chapter 1 23

To activate this project's virtualenv, run pipenv shell.
Alternatively, run a command inside the virtualenv with pipenv run.

Any time you run pipenv install package, the Pipfile will be automatically modified with your
changes and checked for incompatible packages. The big downside is that pipenv can become terribly
slow for large projects. I have encountered multiple projects where a no-op pip install would take
several minutes due to the fetching and checking of the entire dependency graph. In most cases, it’s
still worth it, however; the added functionality can save you a lot of headaches.

Updating your packages
Because of the dependency graph, you can easily update your packages without having to worry about
dependency conflicts. With one command, you’re done:

$ pipenv update

Should you still encounter issues with the versions because some packages haven’t been checked
against each other, you can fix that by specifying the versions of the package you do or do not want:

$ pipenv install 'progressbar2!=3.47.0'
Installing progressbar2!=3.47.0…
Adding progressbar2 to Pipfile's [packages]…
✔ Installation Succeeded
Pipfile.lock (c9327e) out of date, updating to (5c99e1)…
✔ Success!
Updated Pipfile.lock (c9327e)!
Installing dependencies from Pipfile.lock (c9327e)…

 🐍🐍 ▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉ 3/3 — 00:00:00
By running that command, the packages section of the Pipfile changes to:

[packages]
progressbar2 = "!=3.47.0"

Deploying to production
Getting the exact same versions on all of your production servers is absolutely essential to prevent
hard-to-trace bugs. For this very purpose, you can tell pipenv to install everything as specified in the
Pipenv.lock file while still checking to see whether Pipfile.lock is out of date. With one command,
you have a fully functioning production virtual environment with all packages installed.

Don’t forget to run your regular Python commands with the pipenv run prefix or from
pipenv shell.

Getting Started – One Environment per Project24

Let’s create a new directory and see if it all works out:

$ mkdir ../pipenv_production
$ cp Pipfile Pipfile.lock ../pipenv_production/
$ cd ../pipenv_production/
$ pipenv install --deploy
Creating a virtualenv for this project...
Pipfile: /home/wolph/workspace/pipenv_production/Pipfile
Using /usr/bin/python3 (3.10.4) to create virtualenv...
...
✔ Successfully created virtual environment!
...
Installing dependencies from Pipfile.lock (996b11)...

 🐍🐍 ▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉▉ 2/2 — 00:00:01
$ pipenv shell
Launching subshell in virtual environment...
(pipenv_production) $ pip3 freeze
progressbar2==4.0.0
python-utils==3.1.0

All of the versions are exactly as expected and ready for use.

Running cron commands
To run your Python commands outside of the pipenv shell, you can use the pipenv run prefix. In-
stead of python, you would run pipenv run python. In normal usage, this is a lot less practical than
activating the pipenv shell, but for non-interactive sessions, such as cron jobs, this is an essential
feature. For example, a cron job that runs at 03:00 (24-hour clock, so A.M.) every day would look
something like this:

0 3 * * * cd /home/wolph/workspace/pipenv_project/ && pipenv run python
script.py

Exercises
Many of the topics discussed in this chapter already gave full examples, leaving little room for exercises.
There are additional resources to discover, however.

Reading the Python Enhancement Proposals (PEPs)
A good way to learn more about the topics discussed in this chapter (and all the following chapters)
is to read the PEP pages. These proposals were written before the changes were accepted into the
Python core. Note that not all of the PEPs on the Python site have been accepted, but they will remain
on the Python site:

Chapter 1 25

•	 PEP 440 – Version Identification and Dependency Specification: https://peps.python.org/
pep-0440/

•	 PEP 496 – Environment Markers: https://peps.python.org/pep-0496/

Combining pyenv and poetry or pipenv
Even though the chapter did not cover it, there is nothing stopping you from telling poetry or pipenv
to use a pyenv-based Python interpreter. Give it a try!

Converting an existing project to a poetry project
Part of this exercise should be to either create a brand new pyproject.toml or to convert an existing
requirements.txt file to a pyproject.toml.

Summary
In this chapter, you learned why virtual environments are useful and you discovered several imple-
mentations of them and their advantages. We explored how to create virtual environments and how
to install multiple different Python versions. Finally, we covered how to manage the dependencies
for your Python projects.

Since Python is an interpreted language, it is easily possible to run code from the interpreter directly
instead of through a Python file.

The default Python interpreter already features command history and depending on your install,
basic autocompletion.

But with alternative interpreters we can have many more features in our interpreter such as syntax
highlighting, smart autocompletion which includes documentation, and more.

The next chapter will show us several alternative interpreters and their advantages.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://peps.python.org/pep-0440/
https://peps.python.org/pep-0440/
https://peps.python.org/pep-0496/
https://discord.gg/QMzJenHuJf

2
Interactive Python Interpreters

Now that we have a working Python installation, we need to run some code. The most obvious way
is to create a Python file and execute it. Often, it can be faster to interactively develop code from an
interactive Python interpreter, however. While the standard Python interpreter is already quite pow-
erful, many enhancements and alternatives are available.

The alternative interpreters/shells offer features such as:

•	 Smart autocompletion
•	 Syntax highlighting
•	 Saving and loading sessions
•	 Automatic indenting
•	 Graphing/charting output

In this chapter, you will learn about:

•	 Alternative interpreters:

•	 bpython

•	 ptpython

•	 ipython

•	 jupyter

•	 How to enhance interpreters

The Python interpreter
The standard Python interpreter is already fairly powerful, but more options are available through
customization. First, let’s start with a 'Hello world!'. Because the interpreter uses REPL, all output
will be automatically printed and we can simply create a string.

Interactive Python Interpreters28

First, we need to start the interpreter; after that, we can type our commands:

$ python3
Python 3.9.0
[GCC 7.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 'Hello world!'
'Hello world!'

That was easy enough. And note that we didn’t have to use print('Hello world!') to show the output.

Modifying the interpreter
As our first enhancement, we will add a few convenient shortcuts to the scope of the interpreter.
Instead of having to type import pprint; pprint.pprint(...) to pretty-print our output, it would
be useful to use pp(...) instead without having to run an import statement every time we start our
interpreter. To do this, we will create a Python file that will be executed every time we run Python. On
Linux and OS X systems, I would recommend ~/.config/python/init.py; on Windows, something
like C:\Users\rick\AppData\Local\Python\init.py might be more suitable. Within this file, we can
add regular Python code that will be executed.

Sometimes interactive interpreters are referred to as REPL. This stands for Read-Eval-
Print-Loop. This effectively means that all of your statements will be executed and printed
to your screen immediately.

Many interpreters have only limited support for Windows. While they all work to some de-
gree, your experience will be better with Linux or OS X systems. I recommend trying them
from a (virtual) Linux/Unix machine at least once to experience the full range of features.

Python won’t find the file automatically; you need to tell Python where to look for the file
by using the PYTHONSTARTUP environment variable. On Linux and OS X, you can change
the ~/.zshrc, ~/.bashrc file, or whatever your shell has, and add:

$ export PYTHONSTARTUP=~/.config/python/init.py

This file is automatically executed every time you open a new shell session. So, once you
open a new shell session, you are done.

If you want to activate this for your current shell, you can also run the export line above
in your current shell.

On Windows, you need to find the Advanced System Settings and change the environment
variables on that screen.

Chapter 2 29

Now we can add these lines to the file to make pretty print (pprint/pp) and pretty format (pformat/
pf) available by default:

from pprint import pprint as pp
from pprint import pformat as pf

When we run the Python interpreter, now we will have pp and pf available in our scope:

>>> pp(dict(spam=0xA, eggs=0xB))
{'eggs': 11, 'spam': 10}
>>> pf(dict(spam=0xA, eggs=0xB))
"{'eggs': 11, 'spam': 10}"

With a few of these minor changes, you can make your life a lot easier. You could modify your sys.
path to include a directory with custom libraries, for example. And you can also change your prompt
using the sys.ps1 and sys.ps2 variables. To illustrate, we’ll look at the interpreter before our changes:

Modifying prompt
>>> if True:
... print('Hello!')
Hello!

And now we will modify sys.ps1 and sys.ps2 and run the exact same code again:

>>> import sys

>>> sys.ps1 = '> '
>>> sys.ps2 = '. '

With modified prompt
> if True:
. print('Hello!')
Hello!

The configuration above shows that you can easily change the interpreter to a slightly different output
if you wish. For consistency purposes, however, it might be better to keep it the same.

Enabling and enhancing autocompletion
One of the most useful additions to the interpreter is the rlcompleter module. This module enables
tab-activated autocompletion in your interpreter and is automatically activated if the readline mod-
ule is available.

The rlcompleter module depends on the availability of the readline module, which is not
bundled with Python on Windows systems. Luckily, an alternative can be installed easily:

$ pip3 install pyreadline

Interactive Python Interpreters30

It would be very useful to add some extra options to the autocompletion. First, look at the default output:

>>> sandwich = dict(spam=2, eggs=1, sausage=1)
>>> sandwich.<TAB>
sandwich.clear(sandwich.fromkeys(sandwich.items(sandwich.pop(
sandwich.setdefault(sandwich.values(sandwich.copy(sandwich.get(
sandwich.keys(sandwich.popitem(sandwich.update(
>>> sandwich[<TAB>

As you can see, the tab completion for "." works perfectly, but the tab completion for "[" does noth-
ing. It would be useful to know the available items, so now we will work on adding that feature. It
should be noted that this example uses a few techniques that are explained in later chapters, but that
shouldn’t matter for now:

import __main__
import re
import atexit
import readline
import rlcompleter

class Completer(rlcompleter.Completer):
 ITEM_RE = re.compile(r'(?P<expression>.+?)\[(?P<key>[^\[]*)')

 def complete(self, text, state):
 # Init namespace. From 'rlcompleter.Completer.complete'
 if self.use_main_ns:
 self.namespace = __main__.__dict__

 # If we find a [, try and return the keys
 if '[' in text:
 # At state 0 we need to prefetch the matches, after
 # that we use the cached results
 if state == 0:
 self.matches = list(self.item_matches(text))

 # Try and return the match if it exists
 try:
 return self.matches[state]
 except IndexError:
 pass
 else:

Chapter 2 31

 # Fallback to the normal completion
 return super().complete(text, state)

 def item_matches(self, text):
 # Look for the pattern expression[key
 match = self.ITEM_RE.match(text)
 if match:
 search_key = match.group('key').lstrip()
 expression = match.group('expression')

 # Strip quotes from the key
 if search_key and search_key[0] in {"'", '"'}:
 search_key = search_key.strip(search_key[0])

 # Fetch the object from the namespace
 object_ = eval(expression, self.namespace)

 # Duck typing, check if we have a 'keys()' attribute
 if hasattr(object_, 'keys'):
 # Fetch the keys by executing the 'keys()' method
 # Can you guess where the bug is?
 keys = object_.keys()
 for i, key in enumerate(keys):
 # Limit to 25 items for safety, could be infinite
 if i >= 25:
 break

 # Only return matching results
 if key.startswith(search_key):
 yield f'{expression}[{key!r}]'

By default readline doesn't call the autocompleter for [because
it's considered a delimiter. With a little bit of work we can
fix this however :)
delims = readline.get_completer_delims()
Remove [, ' and " from the delimiters
delims = delims.replace('[', '').replace('"', '').replace("'", '')
Set the delimiters
readline.set_completer_delims(delims)

Interactive Python Interpreters32

Create and set the completer
completer = Completer()
readline.set_completer(completer.complete)
Add a cleanup call on Python exit
atexit.register(lambda: readline.set_completer(None))
print('Done initializing the tab completer')

That was quite a bit of code, and if you look carefully, you’ll notice multiple potential bugs in this
limited example. I’m just trying to show a working example here without introducing too much com-
plexity, so several edge cases are not considered. To make the script work, we need to store it in the
PYTHONSTARTUP file as we discussed earlier. You should see the result from print() after opening the
interpreter so you can verify whether the script was loaded. With this addition, we can now complete
dictionary keys as well:

Done initializing the tab completer
>>> sandwich = dict(spam=2, eggs=1, sausage=1)
>>> sandwich['<TAB>
sandwich['eggs'] sandwich['sausage'] sandwich['spam']

Naturally, you could expand this to include colors, other completions, and many more useful features.

Alternative interpreters
Now that you have seen some of the features of the regular Python interpreter, let’s look at some
enhanced alternatives. There are many options available, but we will limit ourselves to the most
popular ones here:

•	 bpython

•	 ptpython

•	 ipython

•	 jupyter (web-based ipython)

Let’s get started.

Since this completion calls object.keys(), there is a potential risk here. This code could
be dangerous if, for some reason, the object.keys() method code is not safe to execute.
Perhaps you are running on an external library, or your code has overridden the keys()
method to execute a heavy database function. And if object.keys() is a generator that
is exhausted after executing once, you won’t have any results when running your actual
code afterward.

Additionally, the eval() function can be dangerous to execute on unknown code. In this
case, eval() is only executing the line we typed ourselves, so that is less of an issue here.

Chapter 2 33

bpython
The bpython interpreter is a curses interface for the Python interpreter that offers many useful fea-
tures, while still being very similar to the regular Python interpreter.

Some key features of bpython:

•	 As-you-type autocompletion (as opposed to tab completion with rlcompleter)
•	 In-line syntax highlighting while typing
•	 Automatic function parameter documentation
•	 A undo/rewind feature that removes the last line
•	 Easy reloading of imported modules, so your external code changes can be tested without

restarting the interpreter
•	 Quick changing of code in an external editor (convenient for multiline functions/code blocks)
•	 The ability to save the session to file/pastebin

Most of these features work fully automatically and transparently for you. Before we can start with
bpython, we need to install it. A simple pip install should suffice:

$ pip3 install bpython

To illustrate the automatically enabled features, here is the output of the code we used for the regular
Python interpreter completion:

$ bpython
bpython version 0.21 on top of Python 3.9.6
>>> sandwich = dict(spam=2, eggs=1, sausage=1)
┌──┐
│ dict: (self, *args, **kwargs) │
│ Initialize self. See help(type(self)) for accurate signature. │
└──┘
>>> sandwich.
┌──┐
│ clear copy fromkeys │
│ get items keys │
│ pop popitem setdefault │
│ update values │
└──┘

The curses library allows you to create a fully functioning text-based user interface (TUI).
A TUI gives you full control over where you want to write to the screen. The regular Python
interpreter is a command-line interface (CLI), which normally only allows you to append
to the screen. With a TUI, you can write to any position on the screen, making its features
somewhat comparable to a graphical user interface (GUI).

Interactive Python Interpreters34

>>> sandwich[
┌──┐
│ 'eggs' 'sausage' 'spam' │
└──┘

If you ran this code on your own system, you would see highlighting as well as the intermediate states
of autocompletion. I encourage you to give it a try; the preceding excerpt does not show enough.

Rewinding your session
As for the more advanced features, let’s give those a try as well. First, let’s start with the rewind feature.
While it appears to simply remove the last line, in the background it actually replays your entire history,
except for the last line. This means that if your code is not safe to be run more than once, it can cause
errors. The following code illustrates the usage and limitations of the rewind feature:

>>> with open('bpython.txt', 'a') as fh:
... fh.write('x')
...
1

>>> with open('bpython.txt') as fh:
... print(fh.read())
...
x

>>> sandwich = dict(spam=2, eggs=1, sausage=1)

Now if we press Ctrl + R to “rewind” the last line, we get the following output:

>>> with open('bpython.txt', 'a') as fh:
... fh.write('x')
...
1

>>> with open('bpython.txt') as fh:
... print(fh.read())
...
xx

>>>

As you can see, the last line is gone now, but that’s not all; the output of the fh.read() line is now xx
instead of x, which means that the line that writes x was executed twice. Additionally, the partial line
will be executed as well, so when rewinding an indented block of code, you will see an error until
you’ve executed valid code again.

Chapter 2 35

Reloading modules
Often, when developing, I will write code in my regular editor and test the execution in the Python shell.

When developing like this, a very useful feature of Python is the ability to reload imported modules us-
ing importlib.reload(). When you have multiple (nested) modules, this can get tedious fast, however.
This is where the reload shortcut in bpython can help a lot. By using the F6 button on your keyboard,
bpython will not only run importlib.reload() on all modules in sys.modules, but it will also rerun
the code in your session in a similar way to the rewind feature you saw earlier.

To demonstrate this, we will start by creating a file named bpython_reload.py with the following code:

with open('reload.txt', 'a+') as fh:
 fh.write('x')
 fh.seek(0)
 print(fh.read())

This opens the reload.txt file for reading and writing in append mode. This means that fh.write('x')
will append to the end of the file. The fh.seek(0) will jump to the beginning of the file (position 0) so
that print(fh.read()) can print the entire file content to the screen.

Now we open the bpython shell and import the module:

>>> import bpython_reload
x

If we press the F6 button within that same shell, we will see that an extra character has been written
and the code has been re-executed:

>>> import bpython_reload
xx
Reloaded at ... by user.

This is an extremely useful feature with the same caveat as the rewind feature that not all code is safe
to re-execute without side effects.

ptpython
The ptpython interpreter is younger (available since 2014) than bpython (available since 2009), so it
might be slightly less mature and feature rich. It is, however, very actively developing and certainly
worth mentioning. While there is (currently) no code reload feature similar to the one in bpython,
there are several other useful features that bpython currently lacks:

•	 Multiline code editing
•	 Mouse support
•	 Both Vi and Emacs key bindings
•	 Syntax checking while typing
•	 A history browser
•	 Output highlighting

Interactive Python Interpreters36

These features are all ones you need to experience yourself, though; a book is not the right medium
for a demonstration in this case. In any case, this interpreter is certainly worth looking at.

Installation can be done with a simple pip install:

$ pip3 install ptpython

After installing, you can run it using the ptpython command:

$ ptpython
>>>

Once the interpreter is running, you can configure ptpython using the built-in menu (press F2). In that
menu, you can configure and enable/disable features such as completion for dictionaries, completion
while typing, input validation, color depth, and highlighting colors.

IPython and Jupyter
The IPython interpreter is a completely different beast from the previously mentioned interpreters.
In addition to being the interpreter with the most features, it is part of a whole ecosystem of packages
that includes parallel computing, integrations with visual toolkits, interactive widgets, and a web-
based interpreter (Jupyter).

Some key features of the IPython interpreter:

•	 Easy object introspection
•	 Output formatting (instead of repr(), IPython calls pprint.pformat())
•	 Command history can be accessed through variables and magic methods from both new and

old sessions
•	 Saving and loading sessions
•	 A whole range of magic commands and shortcuts
•	 Access to regular shell commands such as cd and ls
•	 Extensible tab completion, supporting not just Python methods and functions but filenames

as well

Several of the other features of the IPython project are covered in the chapters about debugging,
multiprocessing, scientific programming, and machine learning.

The basic installation of IPython can be done using a pip install:

$ pip3 install ipython

Installing through Anaconda is also a good option, though, especially if you are planning to use a lot
of data science packages, which are often far easier to install and manage through conda:

$ conda install ipython

Chapter 2 37

Basic interpreter usage
The IPython interpreter can be used in a similar way to the other interpreters, but has somewhat
different output from the other interpreters. Here’s an example covering some of the key features:

$ ipython
Python 3.9.6 (default, Jun 29 2021, 05:25:02)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.25.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: sandwich = dict(spam=2, eggs=1, sausage=1)

In [2]: sandwich
Out[2]: {'spam': 2, 'eggs': 1, 'sausage': 1}

In [3]: sandwich = dict(spam=2, eggs=1, sausage=1, bacon=1, chees
 ...: e=2, lettuce=1, tomatoes=3, pickles=1)

In [4]: sandwich
Out[4]:
{'spam': 2,
 'eggs': 1,
 'sausage': 1,
 'bacon': 1,
 'cheese': 2,
 'lettuce': 1,
 'tomatoes': 3,
 'pickles': 1}

In [5]: _i1
Out[5]: 'sandwich = dict(spam=2, eggs=1, sausage=1)'

In [6]: !echo "$_i2"
sandwich

The first line is a simple variable declaration; nothing special there. The second line shows the print
output for the variable declared in the first line.

Now we declare a similar dictionary with more items in it. You can see that the output is now auto-
matically formatted and split over multiple lines for readability if the line is too long for the screen.
This effectively comes down to print() versus pprint.pprint().

At In [5]: _i1, we see one of the useful internal variables, the input line. The _i<N> and _ih[<N>]
variables give you the lines you wrote. Similarly, the last three entered lines are available through
_i, _ii, and _iii, respectively.

Interactive Python Interpreters38

If the command generated output, it will be available through _<N>. And the last three output results
are available through _, __, and ___.

Finally, we call the external shell function echo by prefixing the line with ! while passing along the
Python variable _i2. When executing external shell functions, we can pass along Python variables
by prefixing them with a $.

Saving and loading sessions
The ability to save and load a session so you can always come back to it is an incredibly useful feature.
As is usually the case with IPython, there are several ways of achieving this goal. First of all, every
session is already automatically saved for you, requiring no effort whatsoever. To load the previous
session, you can run:

In [1]: %load ~1/

In [2]: # %load ~1/
 ...: sandwich = dict(spam=2, eggs=1, sausage=1)

In [3]: sandwich
Out[3]: {'spam': 2, 'eggs': 1, 'sausage': 1}

If you know that a session will be an important one and you want to make sure it gets saved, use
%logstart:

In [1]: %logstart
Activating auto-logging. Current session state plus future input saved.
Filename : ipython_log.py
Mode : rotate
Output logging : False
Raw input log : False
Timestamping : False
State : active

This command uses the same syntax as the %history command. Here is a quick overview
of how the %history syntax works:

•	 5: Line 5
•	 -t 5: Line 5 as pure Python (without IPython magic)
•	 10-20: Lines 10 to 20
•	 10/20: Session 10, line 20
•	 ~0/: Current session
•	 ~1/10-20: Previous session lines 10 to 20
•	 ~5/-~2: Everything from 5 sessions ago to 2 sessions ago

Chapter 2 39

As can be seen in the output, this feature is configurable. By default, it will write to (and rotate, if it
exists) ipython_log.py. As soon as you run this command again, the previous logfile will be renamed
to ipython_log.001~ and so on for the older files.

Loading is done using the %load command and will immediately reactivate auto-logging since it’s
replaying that line as well:

In [1]: %load ipython_log.py

In [2]: # %load ipython_log.py
 ...: # IPython log file
 ...:
 ...: get_ipython().run_line_magic('logstart', '')
 ...:
Activating auto-logging. Current session state plus future input saved.
Filename : ipython_log.py
Mode : rotate
Output logging : False
Raw input log : False
Timestamping : False
State : active

Naturally, manually saving is also an option using %save. I would recommend adding the -r parameter
so the session is saved as raw instead of a regular Python file. Let’s illustrate the difference:

In [1]: %save session_filename ~0/
The following commands were written to file 'session_filename.py':
get_ipython().run_line_magic('save', 'session_filename ~0/')

In [2]: %save -r raw_session ~0/
The following commands were written to file 'raw_session.ipy':
%save session_filename ~0/
%save -r raw_session ~0/

If you don’t need to run the session from a regular Python interpreter, using the raw files is somewhat
more legible.

Regular Python prompt/doctest mode
The default ipython prompt is very useful but it can feel a little verbose at times and you can’t easily
copy the results to a file for doctests (we will cover more about doctests in Chapter 10, Testing and Log-
ging – Preparing for Bugs). Because of that, it can be convenient to activate the %doctest_mode magic
function so your prompt looks like the familiar Python interpreter:

In [1]: sandwich = dict(spam=2, eggs=1, sausage=1, bacon=1, chees
 ...: e=2, lettuce=1, tomatoes=3, pickles=1)

Interactive Python Interpreters40

In [2]: sandwich
Out[2]:
{'spam': 2,
 'eggs': 1,
 'sausage': 1,
 'bacon': 1,
 'cheese': 2,
 'lettuce': 1,
 'tomatoes': 3,
 'pickles': 1}

In [3]: %doctest_mode
Exception reporting mode: Plain
Doctest mode is: ON
>>> sandwich
{'spam': 2, 'eggs': 1, 'sausage': 1, 'bacon': 1, 'cheese': 2, 'lettuce': 1,
'tomatoes': 3, 'pickles': 1}

As you can see, this also influences how the output is formatted, so it’s really similar to the regular
Python shell. While magic functions can still be used, the output is nearly identical to the regular
Python shell.

Introspection and help
One of the most useful shortcuts of IPython is ?. That is the shortcut for accessing the IPython help,
object help, and object introspection. If you’re looking for an up-to-date overview of the IPython
interpreter features, start by typing ? and start reading. If you’re planning to use IPython, I definitely
recommend doing so.

Because the ? shortcut shows the documentation, it is useful for both regular Python objects and the
magic functions in IPython. The magic functions are really not that magic; besides having a name
that’s prefixed with a %, they are just regular Python functions. In addition to ?, there is also ??, which
attempts to show the source of the object:

In [1]: import pathlib

In [2]: pathlib.Path.name?
Type: property
String form: <property object at 0x10c540ef0>

The ? and ?? can be used both as a suffix and as a prefix. So, both ?history and history?
will return in the documentation for the %history command.

Chapter 2 41

Docstring: The final path component, if any.

In [3]: pathlib.Path.name??
Type: property
String form: <property object at 0x10c540ef0>
Source:
pathlib.Path.name.fget
@property
def name(self):
 """The final path component, if any."""
 parts = self._parts
 if len(parts) == (1 if (self._drv or self._root) else 0):
 return ''
 return parts[-1]

Autocompletion
Autocompletion is where ipython really gets interesting. In addition to the regular code completion,
ipython will complete filenames and LaTeX/Unicode for special characters as well.

The really useful part starts when creating your own objects, though. While regular automatic auto-
completion will work without a hitch, you can customize the autocompletion to only return specific
items, or do dynamic lookups from a database if needed. Usage is certainly easy enough:

In [1]: class CompletionExample:
 ...: def __dir__(self):
 ...: return ['attribute', 'autocompletion']
 ...:
 ...: def _ipython_key_completions_(self):
 ...: return ['key', 'autocompletion']
 ...:

In [2]: completion = CompletionExample()

In [3]: completion.a<TAB>
 attribute
 autocompletion

In [4]: completion['aut<TAB>
 %autoawait %autoindent
 %autocall %automagic
 autocompletion

Interactive Python Interpreters42

Now for the LaTeX/Unicode character completion. While this might not be something you need to use
that often, I find it really useful in the cases that you do need it:

In [1]: '\pi<TAB>'

In [1]: 'π

Jupyter
The Jupyter project offers an amazing web-based interpreter (Jupyter Notebook) that makes Python
much more accessible for people who need to write some scripts but aren’t programmers by trade. It
allows a seamless mix of Python code, LaTeX, and other markup.

The web-based interpreter isn’t the only or even most important feature of the Jupyter project, though.
The biggest advantage of the Jupyter project is that it allows you to connect to remote systems (called

“kernels”) from your local machine.

Before we continue, we should look at the current structure of the Jupyter and IPython projects and
describe the most important projects:

•	 jupyter: The metapackage that contains all the Jupyter projects.
•	 notebook: The web-based interpreter, which is part of the Jupyter project.
•	 lab: The next-generation web-based interpreter offering multiple notebooks side by side and

even supporting code embedded in other languages such as Markdown, R, and LaTeX.
•	 ipython: The Python terminal interface with the magic functions.
•	 jupyter_console: The Jupyter version of ipython.
•	 ipywidgets: Interactive widgets that can be used as user input in notebook.
•	 ipyparallel: The library for easy parallel execution of Python code across multiple servers.

There will be more about this in Chapter 14, Multiprocessing - When a Single CPU Core Is Not
Enough.

•	 traitlets: The config system used by IPython and Jupyter, which allows you to create config-
urable objects with validation. There will be more about this in Chapter 8, Metaclasses - Making
Classes (Not Instances) Smarter.

Figure 2.1 shows the complexity and the size of the Jupyter and IPython projects and how they work
together:

Originally, the project was part of the IPython project when ipython was still a large
monolithic application that contained all components internally. Since then, the IPython
project has been split into multiple IPython projects and several projects under the Jupy-
ter name. Internally, they are still using much of the same code base and Jupyter heavily
depends on IPython.

Chapter 2 43

Figure 2.1: Jupyter and IPython project structure

From this overview, you might wonder why both ipython and jupyter console exist. The difference
is that ipython runs completely locally in a single process, and jupyter console runs everything on
a remote kernel. When running locally, this means that Jupyter will automatically start a background
processing kernel that any Jupyter application can connect to.

The Jupyter project could easily fill several books by itself so we will cover only the most common
features in this chapter. Additionally, Chapter 14 covers the multiprocessing aspect in more detail. And
Chapter 15, Scientific Python and Plotting, depends on Jupyter Notebook as well.

Interactive Python Interpreters44

Installing Jupyter
First, let’s start with the installation. The installation is easy enough with a simple pip install or
conda install:

$ pip3 install --upgrade jupyterlab

Now, all that’s left is to start it. Once you run the following command, your web browser should au-
tomatically open:

$ jupyter lab

Docker images are available as well if, for some reason, the installation gives you trouble or if you
want an easy installation for a lot of dependency-heavy packages. For the data science chapter later
in the book, the jupyter/tensorflow-notebook Docker image is used:

$ docker run -p 8888:8888 jupyter/tensorflow-notebook

This will run the Docker image and forward port 8888 to the running jupyter lab so you can access
it. Note that because of the default security, you will need to open jupyter lab through the links
provided in the console, which contains the randomly generated security token. It should look some-
thing like this:

http://127.0.0.1:8888/?token=..........

Once you have it up and running, you should see something like this in your browser:

Figure 2.2: Jupyter dashboard

Now you can create a new notebook:

Chapter 2 45

Figure 2.3: A new file in Jupyter

And start typing with tab completion and all the features that are similar to ipython:

Figure 2.4: Jupyter tab completion

Within a notebook, you can have multiple cells. Each cell can have multiple lines of code and behave
similarly to the IPython interpreter with one key difference: only the last line decides what is returned
as the output, instead of each line being printed separately. But that doesn’t prevent you from using
print() functions.

Figure 2.5: Jupyter output

Interactive Python Interpreters46

Each of these cells can be (re-)executed separately if needed, or all at once, to make sure the note-
book still functions properly. In addition to code cells, Jupyter also supports several types of markup
languages, such as Markdown, to add nicely formatted documentation.

And because it’s a web-based format, you can attach all sorts of objects, such as videos, audio files, PDF
files, images, and renders. LaTeX formulas, for example, are mostly impossible to render in a normal
interpreter, but with Jupyter, rendering a LaTeX formula is easily possible:

Figure 2.6: A LaTeX formula in Jupyter

Lastly, we have interactive widgets, which are one of the best features of using notebooks over a
regular shell session:

Figure 2.7: Jupyter widgets

By moving the slider, the function will be called again and the result will be immediately updated.
This is extremely useful when debugging functions. In the chapter about user interfaces, you will
learn how to create our own.

IPython summary
The entire list of features in the IPython and Jupyter projects could easily fill several books by itself,
so we have only glossed over a very small portion of what the interpreter supports.

Later chapters will cover some other parts of the project, but the IPython documentation is your friend.
The documentation is really detailed and largely up to date.

Chapter 2 47

An overview of some of the shortcuts/magic functions that you’ll want to look at follows:

•	 %quickref: A quick reference for most of the interpreter features and a list of the magic
functions.

•	 %cd: Change the current working directory for your ipython session.
•	 %paste: Paste a pre-formatted code block from the clipboard so your indentation is pasted

correctly and not mutilated/clobbered due to auto-indentation.
•	 %edit: Open an external editor for easy editing of code blocks. This is very useful when quickly

testing multiline code blocks. The %edit -p command, for example, will re-edit the previous
(-p) code block.

•	 %timeit: A shortcut to quickly benchmark a line of Python code using the timeit module.
•	 ?: Look at the documentation for any object.
•	 ??: Look at the source for any Python object. Native methods such as sum() are compiled C

code, so the source can’t be fetched easily.

Exercises
1.	 The rlcompleter enhancement we created currently only handles dictionaries. Try and extend

the code so it supports lists, strings, and tuples as well.
2.	 Add colors to the completer (hint: use colorama for the coloring).
3.	 Instead of manually completing using our own object introspection, try and use the jedi library

for autocompletion, which does static code analysis.

4.	 Try to create a Hello <ipywidget> so the name of the person can be edited through a notebook
without code changes.

5.	 Try and create a script that will look for a given pattern through all of your previous ipython
sessions.

6.	

Static code analysis inspects code without executing it. This means it’s entirely safe
to run, even on foreign code, as opposed to the autocompletion we wrote earlier,
which runs the code in object.keys().

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Interactive Python Interpreters48

Summary
This chapter has shown you several of the available Python interpreters and some of the pros and
cons. Additionally, you have had a small glimpse of what IPython and Jupyter can offer us. Chapter
15, Scientific Python and Plotting, almost exclusively uses Jupyter Notebooks and demonstrates a few
more powerful features, such as plotting integration.

For most generic Python programmers, I would suggest using either bpython or ptpython, since they
are really fast and lightweight interpreters to (re-)start that still offer a lot of useful features.

If your focus is more on scientific programming and/or handling large datasets in your shell, then
IPython or JupyterLab are probably more useful. These are far more powerful tools, but they come
at the cost of having slightly higher start up times and system requirements. I personally use both
depending on the use case. When testing a few simple lines of Python and/or verifying the behavior
of a small code block, I mostly use bpython/ptpython. When working with larger blocks of code and/
or data, I tend to use IPython (or ptipython) or even JupyterLab.

The next chapter covers the Python style guide, which rules are important, and why they matter.
Readability is one of the most important aspects of the Python philosophy, and you will learn methods
and styles for writing cleaner and more readable Python code. In short, you will learn what Pythonic
code is and how to write it.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

3
Pythonic Syntax and
Common Pitfalls

In this chapter, you will learn how to write Pythonic code, along with finding out about some of the
common pitfalls of Python and how to work around them. The pitfalls range from passing a list or dic-
tionary (which are mutable) as an argument to more advanced pitfalls, such as late-binding in closures.
You will also see how to fix or work around circular imports in a clean way. Some of the techniques
used in the examples in this chapter might seem a bit too advanced for such an early chapter. Do not
worry, though, as the inner workings will be covered later on.

We will explore the following topics in this chapter:

•	 Code style (PEP 8, pyflakes, flake8, and more)
•	 Common pitfalls (lists as function arguments, pass by value versus pass by reference, and

inheritance behavior)

A brief history of Python
The Python project started in December 1989 as a hobby project for Guido van Rossum during his
week off around Christmas. His goal was to write an easy-to-use successor for the ABC programming
language and to fix the issues that limited the applicability of the it. One of the main design goals of
Python is, and has always been, readability. That is what the first part of the chapter is about: readability.

To facilitate new features and to maintain that readability, the Python Enhancement Proposal (PEP)
process was developed. This process allows anyone to submit a PEP for a new feature, library, or other
addition. After a discussion on the Python mailing lists and some improvements, a decision is made
to either accept or reject the proposal.

The definition of Pythonic code used in this chapter is based on commonly accepted coding
guidelines and my subjective opinions. When working on a project, it is most important
to stay consistent with the coding styles of that project.

Pythonic Syntax and Common Pitfalls50

The Python style guide (PEP 8: https://peps.python.org/pep-0008/) was once submitted as one
of those PEPs, was accepted, and has been improved regularly ever since. It has a lot of great and
widely accepted conventions, as well as a few disputed ones. In particular, the maximum line length
of 79 characters is a topic of much discussion. Limiting a line to 79 characters does have some merits,
however. Originally, this choice was made because terminals were 80 characters wide, but these days,
larger monitors allow you to place multiple files next to each other. For docstrings and comments, a
72-character limit is recommended to increase readability. Additionally, it’s the common convention
for Linux/Unix man (manual) pages.

While just the style guide itself does not make code Pythonic, as The Zen of Python (PEP 20: https://peps.
python.org/pep-0020/) elegantly puts it: “Beautiful is better than ugly.” PEP 8 defines how code should
be formatted in an exact way, while PEP 20 is more of a philosophy and mindset than anything else.

For almost 30 years, all major decisions for the Python project were made by Guido van Rossum, lov-
ingly called the BDFL (Benevolent Dictator For Life). Unfortunately, the “For Life” part of BDFL was
not to be after a heated debate over PEP 572. PEP 572 (covered later in this chapter) was a proposal
about assignment operators, the ability to set a variable inside an if statement, a common practice in
languages such as C, C++, C# and others. Guido van Rossum was not a fan of the syntax and opposed
the PEP. This triggered a huge debate and he was met with such resistance that it moved him to step
down as BDFL. It saddened many people that Guido van Rossum, universally loved by the communi-
ty, felt he had to do this. I, for one, will certainly miss his insights as the decision-maker. I hope we
will still see his “Time Machine” in action a few times. Guido van Rossum is thought to have a time
machine, as he has repeatedly answered feature requests with “I just implemented that last night.”

Without the BDFL to make the final decisions, the Python community had to come up
with a new way of decision-making, and a whole list of proposals have been written to
solve this issue:

•	 PEP 8010: Continue status quo (ish): https://peps.python.org/pep-8010/
•	 PEP 8011: Like status quo but with three co-leaders: https://peps.python.org/

pep-8011/

•	 PEP 8012: No central authority: https://peps.python.org/pep-8012/
•	 PEP 8013: Non-core oversight: https://peps.python.org/pep-8013/
•	 PEP 8014: Core oversight: https://peps.python.org/pep-8014/
•	 PEP 8015: Organization of the Python community: https://peps.python.org/

pep-8015/

•	 PEP 8016: The Steering Council Model: https://peps.python.org/pep-8016/

After a small debate, PEP 8016 - the steering council model - was accepted as the solution.
PEP 81XX has been reserved for future elections of the steering council, with PEP 8100
for the 2019 election, PEP 8101 for the 2020 election, and so on.

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0020/
https://peps.python.org/pep-0020/
https://peps.python.org/pep-8010/
https://peps.python.org/pep-8011/
https://peps.python.org/pep-8011/
https://peps.python.org/pep-8012/
https://peps.python.org/pep-8013/
https://peps.python.org/pep-8014/
https://peps.python.org/pep-8015/
https://peps.python.org/pep-8015/
https://peps.python.org/pep-8016/

Chapter 3 51

Code style – What is Pythonic code?
When you first hear of Pythonic code, you might think it is a programming paradigm, similar to ob-
ject-oriented or functional programming. It is actually more of a design philosophy. Python leaves
you free to choose to program in an object-oriented, procedural, functional, aspect-oriented, or even
logic-oriented way. These freedoms make Python a great language to write in, but they have the
drawback of requiring more discipline to keep code clean and readable. PEP 8 tells us how to format
code and PEP 20 is about style and how to write Pythonic code. PEP 20, the Pythonic philosophy, is
about code that is:

•	 Clean
•	 Simple
•	 Beautiful
•	 Explicit
•	 Readable

Most of these sound like common sense, and I think they should be. There are cases, however, where
there is not a single obvious way to write your code (unless you’re Dutch, of course, as you’ll read later
in this chapter). That is the goal of this chapter—to help you to learn how to write beautiful Python
code and understand why certain decisions have been made in the Python style guide.

Let’s get started.

Whitespace instead of braces
One of the most common complaints about Python for non-Python programmers is the use of
whitespace instead of braces. Something can be said for both cases, and in the end, it doesn’t matter
that much. Since nearly every programming language already defaults to similar indenting rules even
with braces, why not skip the braces altogether and make things more readable? That’s what Guido
van Rossum must have thought when designing the Python language.

At one point, some programmers asked Guido van Rossum whether Python would ever support braces.
Since that day, braces have been available through a __future__ import. Just give it a try:

>>> from __future__ import braces

Next, let’s talk about formatting strings.

Formatting strings – printf, str.format, or f-strings?
Python has supported both the printf style (%) and str.format for a long time, so you are most likely
familiar with both already. With the introduction of Python 3.6, an extra option became available, the
f-string (PEP 498). The f-string is a convenient shorthand for str.format, which helps with brevity
(and therefore, I would argue, readability).

Pythonic Syntax and Common Pitfalls52

The previous edition of this book mainly used the printf style because brevity is important in code samples.
While the maximum line length as per PEP 8 is 79 characters, this book is limited to 66 characters before
wrapping occurs. With f-strings, we finally have a concise alternative to the printf style.

To show the power of f-strings, let’s see a few examples of str.format and the printf style next to
each other.

Simple formatting
Formatting a simple string:

Simple formatting
>>> name = 'Rick'

>>> 'Hi %s' % name
'Hi Rick'

>>> 'Hi {}'.format(name)
'Hi Rick'

Formatting a floating-point number with two decimals:

>>> value = 1 / 3

>>> '%.2f' % value
'0.33'

PEP 498 – Literal String Interpolation: https://peps.python.org/pep-0498/

Tip for running the code in this book

Since a large portion includes the >>> prefix, simply copy/paste it into IPython and it will
execute the code as regular Python code.

Alternatively, the GitHub repository for the book has a script to automatically convert a
sample from doctest style to regular Python: https://github.com/mastering-python/
code_2/blob/master/doctest_to_python.py

The examples in this chapter show the output as returned by the Python console. For a
regular Python file, you need to add print() to see the output.

https://peps.python.org/pep-0498/
https://github.com/mastering-python/code_2/blob/master/doctest_to_python.py
https://github.com/mastering-python/code_2/blob/master/doctest_to_python.py

Chapter 3 53

>>> '{:.2f}'.format(value)
'0.33'

The first real advantage comes when using a variable multiple times. That is not possible with the
printf style without resorting to named values:

>>> name = 'Rick'
>>> value = 1 / 3

>>> 'Hi {0}, value: {1:.3f}. Bye {0}'.format(name, value)
'Hi Rick, value: 0.333. Bye Rick'

As you can see, we used name twice by using the reference {0}.

Named variables
Using named variables is fairly similar and this is where we get introduced to the magic of f-strings:

>>> name = 'Rick'

>>> 'Hi %(name)s' % dict(name=name)
'Hi Rick'

>>> 'Hi {name}'.format(name=name)
'Hi Rick'

>>> f'Hi {name}'
'Hi Rick'

As you can see, with the f-strings, the variables are fetched from the scope automatically. It’s basically
a shorthand for:

>>> 'Hi {name}'.format(**globals())
'Hi Rick'

Arbitrary expressions
Arbitrary expressions are where the real power of f-strings becomes visible. The features of f-strings
go far beyond the string interpolation of the printf-style features. The f-strings also support full Py-
thon expressions, which means they support complex objects, calling methods, if statements, and
even loops:

Accessing dict items
>>> username = 'wolph'
>>> a = 123
>>> b = 456
>>> some_dict = dict(a=a, b=b)

Pythonic Syntax and Common Pitfalls54

>>> f'''a: {some_dict['a']}'''
'a: 123'

>>> f'''sum: {some_dict['a'] + some_dict['b']}'''
'sum: 579'

Python expressions, specifically an inline if statement
>>> f'if statement: {a if a > b else b}'
'if statement: 456'

Function calls
>>> f'min: {min(a, b)}'
'min: 123'

>>> f'Hi {username}. And in uppercase: {username.upper()}'
'Hi wolph. And in uppercase: WOLPH'

Loops
>>> f'Squares: {[x ** 2 for x in range(5)]}'
'Squares: [0, 1, 4, 9, 16]'

PEP 20, the Zen of Python
The Zen of Python, as mentioned in the A brief history of Python section earlier, is about code that not
only works, but is Pythonic. Pythonic code is readable, concise, and maintainable. PEP 20 says it best:

The next few paragraphs will explain the intentions of these 19 aphorisms with some example code.

For clarity, let’s see these aphorisms before we begin:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.

“Long time Pythoneer Tim Peters succinctly channels the BDFL’s guiding principles for
Python’s design into 20 aphorisms, only 19 of which have been written down.”

Chapter 3 55

Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Beautiful is better than ugly
Beauty is subjective, of course, but there are still some style rules that are good to adhere to. Rules
such as (from PEP 8):

•	 Indent using spaces instead of tabs
•	 Line length limits
•	 Each statement on a separate line
•	 Each import on a separate line

When in doubt, always keep in mind that consistency is more important than fixed rules. If a project
prefers to use tabs instead of spaces, or vice versa, it’s better to keep the tabs/spaces like that than to
potentially break existing code (and revision control history) by replacing the tabs/spaces.

In short, instead of hard-to-read code like this, which shows all odd numbers below 10:

>>> filter_modulo = lambda i, m: (i[j] for j in \
... range(len(i)) if i[j] % m)
>>> list(filter_modulo(range(10), 2))
[1, 3, 5, 7, 9]

I would prefer:

>>> def filter_modulo(items, modulo):
... for item in items:
... if item % modulo:
... yield item
...

>>> list(filter_modulo(range(10), 2))
[1, 3, 5, 7, 9]

Pythonic Syntax and Common Pitfalls56

It is simpler, easier to read, and a bit more beautiful!

Explicit is better than implicit
Imports, arguments, and variable names are just some of the many cases where explicit code is far
easier to read at the cost of a little bit more effort and/or verbosity when writing the code.

Here is an example of how this can go wrong:

>>> from os import *
>>> from asyncio import *

>>> assert wait

Where does wait come from, in this case? You might say that it’s obvious—it comes from os. But you
would be wrong, sometimes. On Windows, the os module doesn’t have a wait function, so it would
be asyncio.wait instead.

It could be even worse: many editors and code clean-up tools have a sort-imports feature. If the sort
order of your import changes, the behavior of your project will change.

The immediate fix is simple enough:

>>> from os import path
>>> from asyncio import wait

>>> assert wait

With this method, we have at least a way to find out where wait came from. But I would recommend
going a step further and importing by module instead, so the executing code immediately shows
which function is executed:

>>> import os
>>> import asyncio

>>> assert asyncio.wait
>>> assert os.path

The same can be said for *args and **kwargs. While they are very useful, they can make the usage
of your functions and classes a lot less obvious:

>>> def spam(eggs, *args, **kwargs):
... for arg in args:
... eggs += arg

These examples are an early introduction to generators. Generators will be discussed more
thoroughly in Chapter 7, Generators and Coroutines – Infinity, One Step at a Time.

Chapter 3 57

... for extra_egg in kwargs.get('extra_eggs', []):

... eggs += extra_egg

... return eggs

>>> spam(1, 2, 3, extra_eggs=[4, 5])
15

Without looking at the code within the function, you cannot know what to pass as **kwargs or what
*args does. A reasonable function name can help here, of course:

>>> def sum_ints(*args):
... total = 0
... for arg in args:
... total += arg
... return total

>>> sum_ints(1, 2, 3, 4, 5)
15

Documentation can obviously help for cases like these, and I use *args and **kwargs very often, but
it is definitely a good idea to keep at least the most common arguments explicit. Even when it requires
you to repeat the arguments for a parent class, it just makes the code much clearer. When refactoring
the parent class in the future, you’ll know whether there are subclasses that still use some parameters.

Simple is better than complex

Keeping things simple is often much harder than you would expect. Complexity has a tendency to creep
up on you. You start with a beautiful little script and, before you know it, feature creep has turned it
into a complex (or worse, complicated) mess:

>>> import math
>>> import itertools

>>> def primes_complicated():
... sieved = dict()
... i = 2
...
... while True:
... if i not in sieved:
... yield i
... sieved[i * i] = [i]
... else:

”Simple is better than complex. Complex is better than complicated.”

Pythonic Syntax and Common Pitfalls58

... for j in sieved[i]:

... sieved.setdefault(i + j, []).append(j)

... del sieved[i]

...

... i += 1

>>> list(itertools.islice(primes_complicated(), 10))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

At first glance, this code might look a bit difficult. If you’re familiar with the sieve of Eratosthenes
however, you’ll quickly realize what is happening. With just a little bit of effort, you will see that the
algorithm isn’t all that complicated but uses a few tricks to reduce the necessary computations.

We can do better, however; let’s see a different example featuring the Python 3.8 assignment operator:

>>> def primes_complex():
... numbers = itertools.count(2)
... while True:
... yield (prime := next(numbers))
... numbers = filter(prime.__rmod__, numbers)

>>> list(itertools.islice(primes_complex(), 10))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

This algorithm looks a bit less intimidating, but I wouldn’t call it immediately obvious at first glance.
The prime := next(numbers) is the Python 3.8 version of setting a variable and immediately return-
ing it in the same statement. The prime.__rmod__ does a modulo with the given number to sieve in a
similar fashion to the previous example.

What might be confusing, however, is that the numbers variable is being reassigned with added filters
on each iteration. Let’s see a better solution:

>>> def is_prime(number):
... if number == 0 or number == 1:
... return False
... for modulo in range(2, number):
... if not number % modulo:
... return False
... else:
... return True

>>> def primes_simple():
... for i in itertools.count():
... if is_prime(i):
... yield i

Chapter 3 59

>>> list(itertools.islice(primes_simple(), 10))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Now we’ve come to one of the most obvious methods of generating prime numbers. The is_prime
function is really simple and immediately shows what is_prime is doing. And the primes_simple
function is nothing more than a loop with a filter.

Unless you have a really good reason to go for the complicated approach, try to keep your code as sim-
ple as you can. You (and perhaps someone else) will be grateful when reading your code in the future.

Flat is better than nested
Nested code quickly becomes unreadable and hard to understand. There are no strict rules here, but
generally, when you have multiple levels of nested loops, it is time to refactor.

Just take a look at the following example, which prints a list of two-dimensional matrices. While noth-
ing specific is wrong here, splitting it into a few more functions might make it easier to understand
the purpose and also make it easier to test:

>>> def between_and_modulo(value, a, b, modulo):
... if value >= a:
... if value <= b:
... if value % modulo:
... return True
... return False

>>> for i in range(10):
... if between_and_modulo(i, 2, 9, 2):
... print(i, end=' ')
3 5 7 9

Here’s the flatter version:

>>> def between_and_modulo(value, a, b, modulo):
... if value < a:
... return False
... elif value > b:
... return False
... elif not value % modulo:
... return False
... else:
... return True

>>> for i in range(10):
... if between_and_modulo(i, 2, 9, 2):

Pythonic Syntax and Common Pitfalls60

... print(i, end=' ')
3 5 7 9

This example might be a bit contrived, but the idea is sound. Deeply nested code can easily become
very unreadable and splitting code into multiple lines or even functions can help readability a lot.

Sparse is better than dense
Whitespace is generally a good thing. Yes, it will make your files longer and your code will take up
more space, but it can help a lot with readability if you split your code logically. Let’s take an example:

>>> f=lambda x:0**x or x*f(x-1)
>>> f(40)
815915283247897734345611269596115894272000000000

By looking at the output and the code, you might be able to guess that this is the factorial function.
But its workings are probably not immediately obvious. Let’s try rewriting:

>>> def factorial(x):
... if 0 ** x:
... return 1
... else:
... return x * factorial(x - 1)

>>> factorial(40)
815915283247897734345611269596115894272000000000

By using a proper name, expanding the if statement, and explicitly returning 1, it is suddenly much
more obvious what is happening.

Readability counts
Shorter does not always mean easier to read. Let’s take the Fibonacci numbers. There are many ways
of writing this code, many of them hard to read:

>>> from functools import reduce

>>> fib=lambda n:n if n<2 else fib(n-1)+fib(n-2)
>>> fib(10)
55

>>> fib=lambda n:reduce(lambda x,y:(x[0]+x[1],x[0]),[(1,1)]*(n-1))[0]
>>> fib(10)
55

Even though there is a kind of beauty and elegance in the solutions, they are not readable. With just a
few minor changes, we can change these functions to more readable functions that function similarly:

Chapter 3 61

>>> def fib(n):
... if n < 2:
... return n
... else:
... return fib(n - 1) + fib(n - 2)

>>> fib(10)
55

>>> def fib(n):
... a = 0
... b = 1
... for _ in range(n):
... a, b = b, a + b
...
... return a

>>> fib(10)
55

Practicality beats purity

Breaking the rules can be tempting at times, but it’s a slippery slope. If your quick fix is going to break
the rules, you should really try to refactor it immediately. Chances are that you won’t have the time
to fix it later and will regret it.

No need to go overboard, though. If the solution is good enough and refactoring would be much more
work, then choosing the working method might be better. Even though all of these examples pertain
to imports, this guideline applies to nearly all cases.

To prevent long lines, imports can be made shorter by using a few methods, adding a backslash, adding
parentheses, or just shortening the imports. I will illustrate some options next:

>>> from concurrent.futures import ProcessPoolExecutor, \
... CancelledError, TimeoutError

This case can easily be avoided by using parentheses:

>>> from concurrent.futures import (
... ProcessPoolExecutor, CancelledError, TimeoutError)

”Special cases aren’t special enough to break the rules. Although practicality beats purity.”

Pythonic Syntax and Common Pitfalls62

Or my personal preference, importing modules instead of the separate objects:

>>> from concurrent import futures

But what about really long imports?

>>> from concurrent.futures.process import \
... ProcessPoolExecutor

In that case, I would recommend using parentheses. If you need to split the imports across multiple
lines, I would recommend one line per import for readability:

>>> from concurrent.futures.process import (
... ProcessPoolExecutor
...)

>>> from concurrent.futures import (
... ProcessPoolExecutor,
... CancelledError,
... TimeoutError,
...)

Errors should never pass silently

Handling errors the right way is really difficult and there is no one method that works for every situ-
ation. There are, however, better and worse methods to catch errors.

Bare or too-broad exception catching can be a quick way to make your life a bit more difficult in the
case of bugs. Not passing exception info at all can make you (or some other person working on the
code) wonder for ages about what is happening.

To illustrate a bare exception, the worst option is as follows:

>>> some_user_input = '123abc'

>>> try:
... value = int(some_user_input)
... except:
... pass

A much better solution is to explicitly capture only the error you need:

>>> some_user_input = '123abc'

>>> try:

”Errors should never pass silently. Unless explicitly silenced.”

Chapter 3 63

... value = int(some_user_input)

... except ValueError:

... pass

Alternatively, if you really need to capture all exceptions, make sure to log them properly:

>>> import logging

>>> some_user_input = '123abc'

>>> try:
... value = int(some_user_input)
... except Exception as exception:
... logging.exception('Uncaught: {exception!r}')

When using multiple lines inside a try block, the issue of tracing bugs is aggravated even further
because there is even more code that could be responsible for the hidden exception. The tracing of
bugs also becomes much more difficult when the except is accidently capturing exceptions from
functions a few levels deep. For example, consider the following code block:

>>> some_user_input_a = '123'
>>> some_user_input_b = 'abc'

>>> try:
... value = int(some_user_input_a)
... value += int(some_user_input_b)
... except:
... value = 0

If an exception is raised, which line is causing it? With silent catching of the error, there is no way to
know without running the code in a debugger. The exception could even be caused a few levels deeper
in the code if, instead of int(), you are using a more complex function.

If you are testing for a specific exception in a specific block of code, the safer method is using the else
in the try/except. The else is only executed if there was no exception.

To illustrate the full strength of the try/except:, here is an example of all variants including the else,
finally, and BaseException:

>>> try:
... 1 / 0 # Raises ZeroDivisionError
... except ZeroDivisionError:
... print('Got zero division error')
... except Exception as exception:
... print(f'Got unexpected exception: {exception}')
... except BaseException as exception:

Pythonic Syntax and Common Pitfalls64

... # Base exceptions are a special case for keyboard

... # interrupts and a few other exceptions that are not

... # technically errors.

... print(f'Got base exception: {exception}')

... else:

... print('No exceptions happened, we can continue')

... finally:

... # Useful cleanup functions such as closing a file

... print('This code is _always_ executed')
Got zero division error
This code is _always_ executed

In the face of ambiguity, refuse the temptation to guess
While guesses will work in many cases, they can bite you if you’re not careful. As already demonstrat-
ed in the Explicit is better than implicit section, when you have a few from ... import *, you cannot
always be certain which module is providing you with the variable you were expecting.

Clear and unambiguous code generates fewer bugs so it’s always a good idea to think about what
happens when someone else reads your code. A prime example of ambiguity is function calling. Take,
for example, the following two function calls:

>>> fh_a = open('spam', 'w', -1, None, None, '\n')
>>> fh_b = open(file='spam', mode='w', buffering=-1, newline='\n')

These two calls have the exact same result. However, it’s obvious in the second call that the -1 is
configuring the buffer. You probably know the first two arguments of open() by heart but the others
are less common.

Regardless, without seeing help(open) or viewing the documentation in another manner, it’s impos-
sible to say whether the two are identical.

Note that I don’t think you should use keyword arguments in all cases, but if there are many arguments
involved and/or hard-to-identify parameters (such as numbers), it can be a good idea. A good alternative
is using good variable names, which make the function call a lot more obvious:

>>> filename = 'spam'
>>> mode = 'w'
>>> buffers = -1

>>> fh_b = open(filename, mode, buffers, newline='\n')

One obvious way to do it

“There should be one—and preferably only one—obvious way to do it. Although that
way may not be obvious at first unless you’re Dutch.”

Chapter 3 65

In general, after thinking about a difficult problem for a while, you will find that there is one solution
that is clearly preferable over the alternatives. There are times where this is not the case, however,
and in such instances, it can be useful if you’re Dutch. The joke here is that Guido van Rossum, the
original author of Python, is Dutch (as am I) and that only Guido knows the obvious way in some cases.

The other joke is that the Perl programming language slogan is the opposite: “There’s more than one
way to do it.”

Now is better than never

It’s better to fix a problem right now than push it into the future. There are cases, however, where
fixing it right away is not an option. In those cases, a good alternative can be to mark a function as
deprecated instead so that there is no chance of accidentally forgetting the problem:

>>> import warnings

>>> warnings.warn('Something deprecated', DeprecationWarning)

Hard to explain, easy to explain

As always, keep things as simple as you can. While complicated code can be nice to test with, it is more
prone to bugs. The simpler you can keep things, the better.

Namespaces are one honking great idea

Namespaces can make code a lot clearer to use. Naming them properly makes it even better. For ex-
ample, assume the import isn’t on your screen in a larger file. What does the loads line do?

>>> from json import loads

>>> loads('{}')
{}

“Now is better than never. Although never is often better than *right* now.”

“If the implementation is hard to explain, it’s a bad idea. If the implementation is easy
to explain, it may be a good idea.”

“Namespaces are one honking great idea—let’s do more of those!”

Pythonic Syntax and Common Pitfalls66

Now let’s take the version with the namespace:

>>> import json

>>> json.loads('{}')
{}

Now it is obvious that loads() is the json loader and not any other type of loader.

Namespace shortcuts are still useful, though. Let’s look at the User class in Django, which is used in
nearly every Django project. The User class is stored in django.contrib.auth.models.User by default
(can be overridden). Many projects use the object in the following way:

from django.contrib.auth.models import User
Use it as: User

While this is fairly clear, projects might be using multiple classes named User, which obscures the
import. Also, it might make someone think that the User class is local to the current class. Doing the
following instead lets people know that it is in a different module:

from django.contrib.auth import models
Use it as: models.User

This quickly clashes with other models’ imports, though, so I personally use the following instead:

from django.contrib.auth import models as auth_models
Use it as auth_models.User

Or the shorter version:

import django.contrib.auth.models as auth_models
Use it as auth_models.User

Now you should have some idea of what the Pythonic ideology is about—creating code that is:

•	 Beautiful
•	 Readable
•	 Unambiguous
•	 Explicit enough
•	 Not completely void of whitespace

So let’s move on to some more examples of how to create beautiful, readable, and simple code using
the Python style guide.

Explaining PEP 8
The previous sections have already shown a lot of examples of using PEP 20 as a reference, but there
are a few other important guidelines to note as well. The PEP 8 style guide specifies the standard
Python coding conventions.

Chapter 3 67

Simply following the PEP 8 standard doesn’t make your code Pythonic, though, but it is most certainly
a good start. Which style you use is really not that much of a concern as long as you are consistent.
The only thing worse than not using a proper style guide is being inconsistent with it.

Duck typing
Duck typing is a method of handling variables by behavior. To quote Alex Martelli (one of my Python
heroes, also nicknamed the MartelliBot by many):

In many cases, when people make a comparison such as if spam != '':, they are actually just looking
for anything that is considered a true value. While you can compare the value to the string value '',
you generally don’t have to make it so specific. In many cases, simply doing if spam: is more than
enough and actually functions better.

For example, the following lines of code use the value of timestamp to generate a filename:

>>> timestamp = 12345

>>> filename = f'{timestamp}.csv'

Because the variable is named timestamp, you might be tempted to check whether it is actually a date
or datetime object, like this:

>>> import datetime

>>> timestamp = 12345

>>> if isinstance(timestamp, datetime.datetime):
... filename = f'{timestamp}.csv'
... else:
... raise TypeError(f'{timestamp} is not a valid datetime')
Traceback (most recent call last):
...
TypeError: 12345 is not a valid datetime

While this is not inherently wrong, comparing types is considered a bad practice in Python, as there
is often no need.

“Don’t check whether it IS-a duck: check whether it QUACKS-like-a duck, WALKS-like-a
duck, etc, etc, depending on exactly what subset of duck-like behavior you need to play
your language-games with. If the argument fails this specific-ducklyhood-subset-test,
then you can shrug, ask “why a duck?”

Pythonic Syntax and Common Pitfalls68

In Python, the commonly used style is EAFP (easier to ask for forgiveness than permission: https://
docs.python.org/3/glossary.html#term-eafp), which assumes no errors but catches them if need-
ed. Within the Python interpreter, a try/except block is extremely efficient if no exception is raised.
Actually catching an exception is expensive, however, so this approach is mainly recommended when
you don’t expect the try to fail often.

The opposite of EAFP is LBYL (look before you leap: https://docs.python.org/3/glossary.
html#term-lbyl), which tests for pre-conditions before other calls or lookups are made. The notable
downside of this method is the potential for race conditions in multi-threaded environments. While
you are checking for the existence of a key in a dict, another thread may have removed it already.

That’s why in Python, duck typing is often preferred. Just test the variable for the features you need
and don’t worry about the actual type. To illustrate how little difference this can make to the end result,
see the following code:

>>> import datetime

>>> timestamp = datetime.date(2000, 10, 5)
>>> filename = f'{timestamp}.csv'
>>> print(f'Filename from date: {filename}')
Filename from date: 2000-10-05.csv

Versus a string instead of a date:

>>> timestamp = '2000-10-05'
>>> filename = f'{timestamp}.csv'
>>> print(f'Filename from str: {filename}')
Filename from str: 2000-10-05.csv

As you can see, the result is identical.

The same goes for converting a number to a float or an integer; instead of enforcing a certain type,
just require certain features. Need something that can pass as a number? Just try to convert to int or
float. Need a file object? Why not just check whether there is a read method with hasattr?

Differences between value and identity comparisons
There are many methods of comparing objects in Python: greater than, bitwise operators, equal,
etc., but there is one comparator that is special: the identity comparison operator. Instead of using
if spam == eggs, you would use if spam is eggs. The first compares the value and the second
compares the identity or memory address. Because it only compares the memory address, it’s one
of the lightest and strictest lookups you can get. Whereas a value check needs to make sure that the
types are comparable and perhaps check the sub-values, the identity check just checks whether the
unique identifier is the same.

https://docs.python.org/3/glossary.html#term-eafp
https://docs.python.org/3/glossary.html#term-eafp
https://docs.python.org/3/glossary.html#term-lbyl
https://docs.python.org/3/glossary.html#term-lbyl

Chapter 3 69

These comparisons are recommended to be used when the identity of the object is expected to be
constant. One obvious example of this is a comparison with True, False, or None. To demonstrate
this behavior, let’s look at values that evaluate to True or False when comparing by value, but are
actually different:

>>> a = 1
>>> a == True
True
>>> a is True
False

>>> b = 0
>>> b == False
True
>>> b is False
False

Similarly, you need to be careful with if statements and None values, which is a common pattern with
default function arguments:

>>> def some_unsafe_function(arg=None):
... if not arg:
... arg = 123
...
... return arg

>>> some_unsafe_function(0)
123
>>> some_unsafe_function(None)
123

The second one indeed needed the default argument, but the first one had an actual value that should
have been used:

>>> def some_safe_function(arg=None):
... if arg is None:
... arg = 123
...

If you’ve ever written Java, you should be familiar with this principle. In Java, a regular
string comparison (spam == eggs) will use the identity instead of the value. To compare
the value, you need to use spam.equals(eggs) to get the correct results.

Pythonic Syntax and Common Pitfalls70

... return arg

>>> some_safe_function(0)
0
>>> some_safe_function(None)
123

Now we actually get the value that we passed along because we used an identity instead of a value
check for arg.

There are a few gotchas with the identities, though. Let’s look at an example that doesn’t make any sense:

>>> a = 200 + 56
>>> b = 256
>>> c = 200 + 57
>>> d = 257

>>> a == b
True
>>> a is b
True
>>> c == d
True
>>> c is d
False

While the values are the same, the identities are different. The catch is that Python keeps an internal
array of integer objects for all integers between -5 and 256; that’s why it works for 256 but not for 257.

To look at what Python is actually doing internally with the is operator, you can use the id function.
When executing if spam is eggs, Python will execute the equivalent of if id(spam) == id(eggs)
internally and id() (at least for CPython) returns the memory address.

Loops
Coming from other languages, one might be tempted to use for loops or while loops with counters
to process the items of a list, tuple, str, and so on. While valid, it is more complex than needed.
For example, consider this code:

>>> my_range = range(5)
>>> i = 0
>>> while i < len(my_range):
... item = my_range [i]
... print(i, item, end=', ')
... i += 1
0 0, 1 1, 2 2, 3 3, 4 4,

Chapter 3 71

Within Python, there is no need to build a custom loop: you can simply loop the iterable object instead.
Although enumerating including a counter is easily possible too:

>>> my_range = range(5)
>>> for item in my_range :
... print(item, end=', ')
0, 1, 2, 3, 4,

>>> for i, item in enumerate(my_range):
... print(i, item, end=', ')
0 0, 1 1, 2 2, 3 3, 4 4,

This can be written even shorter, of course (albeit not 100% identically, since we’re not using print),
but I wouldn’t recommend that for the sake of readability in most cases:

>>> my_range = range(5)
>>> [(i, item) for i, item in enumerate(my_range)]
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

The last option might be clear to some but not all. A common recommendation is to limit the usage
of list/dict/set comprehensions and map/filter statements to cases where the entire statement
fits on a single line.

Maximum line length
Many Python programmers think 79 characters is too constricting and just keep the lines longer.
While I am not going to argue for 79 characters specifically, setting a low limit is a good idea so you
can easily keep multiple editors side by side. I often have four Python files open next to each other. If
the line width were more than 79 characters, that simply wouldn’t fit.

PEP 8 tells us to use backslashes in cases where lines get too long. While I agree that backslashes are
preferable over long lines, I still think they should be avoided, if possible, since they easily generate syn-
tax errors when manipulating code by copying/pasting and rearranging. Here’s an example from PEP 8:

with open('/path/to/some/file/you/want/to/read') as file_1, \
 open('/path/to/some/file/being/written', 'w') as file_2:
 file_2.write(file_1.read())

Instead of using backslashes, I would reformat the code by introducing extra variables so all lines
are easy to read:

filename_1 = '/path/to/some/file/you/want/to/read'
filename_2 = '/path/to/some/file/being/written'
with open(filename_1) as file_1, open(filename_2, 'w') as file_2:
 file_2.write(file_1.read())

Pythonic Syntax and Common Pitfalls72

Or in this specific case of filenames, by using pathlib:

import pathlib
filename_1 = pathlib.Path('/path/to/some/file/you/want/to/read')
filename_2 = pathlib.Path('/path/to/some/file/being/written')
with filename_1.open() as file_1, filename_2.open('w') as file_2:
 file_2.write(file_1.read())

This is not always an option, of course, but it’s a good consideration to keep the code short and readable.
It actually provides a bonus of adding more information to the code. If, instead of filename_1, you use
a name that conveys the goal of the filename, it immediately becomes clearer what you are trying to do.

Verifying code quality, pep8, pyflakes, and more
There are many tools for checking code quality and style in Python. The options range from pycodestyle
(previously named pep8) for checking rules pertaining to PEP 8, to tools such as flake8, which bundles
a lot of tools and can help refactor code and track down bugs in code that appears to work.

Let’s go into more detail.

pycodestyle/pep8
The pycodestyle package (previously named pep8) is the default code style checker to start with. The
pycodestyle checker attempts to validate many of the rules suggested in PEP 8 that are considered
to be the standard by the community. It doesn’t check everything that is in the PEP 8 standard, but it
goes a long way and is still updated regularly to add new checks. Some of the most important things
checked by pycodestyle are as follows:

•	 Indentation: While Python will not check how many spaces you use to indent, it does not help
with the readability of your code

•	 Missing whitespace, such as spam=123
•	 Too much whitespace, such as def eggs(spam = 123):
•	 Too many or too few blank lines
•	 Too long lines
•	 Syntax and indentation errors
•	 Incorrect and/or superfluous comparisons (not in, is not, if spam is True, and type com-

parisons without isinstance)

If some of the specific rules are not to your liking, you can easily tweak them to fit your purpose. Be-
yond that, the tool is not too opinionated, which makes it an ideal starting point for any Python project.

Chapter 3 73

pyflakes
The pyflakes checker is meant to detect errors and potential bugs in your code by parsing (not im-
porting) the code. This makes it ideal for editor integration, but it can also be used to warn you about
potential issues in your code beyond that. It will warn you about:

•	 Unused imports
•	 Wildcard imports (from module import *)
•	 Incorrect __future__ imports (after other imports)

More importantly, it warns you about potential bugs, such as the following:

•	 Redefinitions of names that were imported
•	 Usage of undefined variables
•	 Referencing variables before assignment
•	 Duplicate argument names
•	 Unused local variables

pep8-naming
The last bit of PEP 8 is covered by the pep8-naming package. It makes sure that your naming is close
to the standard dictated by PEP 8:

•	 Class names as CapWord
•	 Function, variable, and argument names all in lowercase
•	 Constants as full uppercase and being treated as constants
•	 The first argument of instance methods and class methods as self and cls, respectively

McCabe
Lastly, there is the McCabe complexity. It checks the complexity of code by looking at the Abstract
Syntax Tree (AST), which Python builds from the source code internally. It finds out how many lines,
levels, and statements are there and warns you if your code has more complexity than a preconfig-
ured threshold. Generally, you will use McCabe through flake8, but a manual call is possible as well.
Using the following code:

def noop():
 pass

An honorable mention goes out to the black project, which is a Python formatter that
automatically formats your code to largely adhere to the PEP 8 style. The name black
stems from Henry Ford’s quote: “Any customer can have a car painted any color that he
wants so long as it is black.”

That immediately shows the downside of black: it offers very little in the way of custom-
ization. If you don’t like one of the rules, you are most likely out of luck.

Pythonic Syntax and Common Pitfalls74

def yield_cube_points(matrix):
 for x in matrix:
 for y in x:
 for z in y:
 yield (x, y, z)

def print_cube(matrix):
 for x in matrix:
 for y in x:
 for z in y:
 print(z, end='')
 print()
 print()

McCabe will give us the following output:

$ pip3 install mccabe
...
$ python3 -m mccabe T_16_mccabe.py
1:0: 'noop' 1
5:0: 'yield_cube_points' 4
12:0: 'print_cube' 4

At first, when you look at the 1 generated by noop, you might think mccabe counts the lines of code.
Upon further inspection, you can see this isn’t the case. Having multiple noop operators does not
increase the count and nor do the print statements in the print_cube function.

The mccabe tool checks the cyclomatic complexity of code. In a nutshell, this means that it counts the
number of possible execution paths. Code without any control flow statements such as if/for/while
counts as 1, as you can see in the noop function. A simple if or if/else results in two options: one
where the if statement is True and one where the if statement is False. If there is a nested if or an
elif, this would increase further. Loops count as 2 since there is the flow of going inside the loop if
there are items, and not going into the loop if there are no items.

The warning threshold for mccabe is set to 10 by default, but is configurable. If your code actually has
a score of more than 10, it is time for some refactoring. Remember the advice from PEP 20.

Mypy
Mypy is a tool used to check the variable types within your code. While specifying fixed types goes
against duck typing, there are certainly cases where this is useful and where it will protect you from
bugs.

Taking the following code, for example:

some_number: int
some_number = 'test'

Chapter 3 75

The mypy command will tell us we’ve made a mistake:

$ mypy T_17_mypy.py
T_17_mypy.py:2: error: Incompatible types in assignment (expression has type
"str", variable has type "int")
Found 1 error in 1 file (checked 1 source file)

Note that this syntax depends on the type hinting introduced in Python 3.5. For older Python versions,
you can use comments for type hints instead:

some_number = 'test' # type: int

Even if you’re not using code hinting in your own code, this can still be useful to check whether your
calls to external libraries are correct. If the arguments for a function of an external library changed
with an update, this can quickly tell you something is wrong at the location of the mistake instead of
having to trace a bug throughout your code.

flake8
To run all of these tests combined, you can use flake8, a tool that runs pycodestyle, pyflakes, and
mccabe by default. After running these commands, flake8 combines their outputs into a single report.
Some of the warnings generated by flake8 might not fit your taste, so each and every one of the checks
can be disabled, both per file and for the entire project if needed. For example, I personally disable
W391 for all my projects, which warns you about blank lines at the end of a file.

This is something I find useful while working on code so that I can easily jump to the end of the file
and start writing code instead of having to append a few lines first.

There are also many plugins available to make flake8 even more powerful.

Some example plugins are:

•	 pep8-naming: Tests PEP naming conventions
•	 flake8-docstrings: Tests whether docstrings follow the PEP 257, NumPy, or Google convention.

More about these conventions will be in the chapter about documentation.
•	 flake8-bugbear: Finds likely bugs and design problems in your code, such as bare excepts.
•	 flake8-mypy: Tests whether the types of values are consistent with the declared types.

In general, before committing your code and/or putting it online, just run flake8 from your source
directory to check everything recursively.

Here is a demonstration with some poorly formatted code:

def spam(a,b,c):print(a,b+c)
def eggs():pass

Pythonic Syntax and Common Pitfalls76

It results in the following:

$ pip3 install flake8
...
$ flake8 T_18_flake8.py
T_18_flake8.py:1:11: E231 missing whitespace after ','
T_18_flake8.py:1:13: E231 missing whitespace after ','
T_18_flake8.py:1:16: E231 missing whitespace after ':'
T_18_flake8.py:1:24: E231 missing whitespace after ','
T_18_flake8.py:2:11: E231 missing whitespace after ':'

Recent additions to the Python syntax
The Python syntax has remained largely unchanged in the last decade, but we have seen a few addi-
tions, such as the f-strings, type hinting, and async functions, of course. We already covered f-strings
at the beginning of this chapter, and the other two are covered by Chapter 9 and Chapter 13, respectively,
but there have a been a few other recent additions to the Python syntax that you might have missed.
Additionally, in Chapter 4 you will see the dictionary merge operators added in Python 3.9.

PEP 572: Assignment expressions/the walrus operator
We already covered this briefly earlier in this chapter, but since Python 3.8, we have assignment ex-
pressions. If you have experience with C or C++, you have most likely seen something like this before:

if((fh = fopen("filename.txt", "w")) == NULL)

Within C, this opens a file using fopen(), stores the result of fopen() in fh, and checks whether the
result of the fopen() call is NULL. Until Python 3.8, we always had to split these two operations into an
assignment and an if statement, assuming we also had fopen() and NULL available in our Python code:

fh = fopen("filename.txt", "w")
if fh == NULL:

Since Python 3.8, we can use assignment expressions to do this in a single line, similar to C:

if (fh := fopen("filename.txt", "w")) == NULL:

With the := operator you can assign and check the result in one operation. This can be useful when
reading user input, for example:

 while (line := input('Please enter a line: ')) != '':
 # Process the line here
 # The last line was empty, continue the script

This operator is often called the walrus operator because it looks slightly like the eyes and tusks of a
walrus (:=).

Chapter 3 77

PEP 634: Structural pattern matching, the switch statement
Many programmers who are new to Python wonder why it does not have a switch statement like most
common programming languages. Often the lack of a switch statement has been addressed with
dictionary lookups or, simply, a chain of if/elif/elif/elif/else statements. While those solutions
work fine, I personally feel that at times my code could have been prettier and more readable with a
switch statement.

Since Python 3.10, we finally have a feature that is very comparable to a switch statement but so much
more powerful. As is the case with the Python ternary operator (i.e. true_value if condition else
false_value), the syntax is far from a literal copy of other languages. In this case, especially, this is
for the better. With most programming languages, it can be really easy to forget the break statement
in a switch, which can cause unintended side effects.

At a glance, the Python implementation appears much simpler in syntax and features. Without the
break statement, you might wonder how you can match multiple patterns in a single go. Stay tuned
and find out! The pattern matching feature is very powerful and offers many more features than you
might expect.

The basic match statement
First, let’s look at a basic example. This one offers little benefit but can still be easier to read than a
regular if/elif/else statement:

>>> some_variable = 123

>>> match some_variable:
... case 1:
... print('Got 1')
... case 2:
... print('Got 2')
... case _:
... print('Got something else')
Got something else

>>> if some_variable == 1:
... print('Got 1')
... elif some_variable == 1:
... print('Got 2')
... else:
... print('Got something else')
Got something else

Since we have both the if and the match statement here, you can easily compare them. In this case,
I would go for the if statement, but the main advantage of not having to repeat the some_variable
== part can still be useful.

Pythonic Syntax and Common Pitfalls78

The _ is the special wild card case for the match statement. It matches any value, so it can be seen as
the equivalent of the else statement.

Storing the fallback as a variable
A slightly more useful example is to automatically store the result when it doesn’t match. The previous
example uses an underscore (_), which is not actually stored in _ because it is a special case, but if we
name the variable differently, we can store the result:

>>> some_variable = 123

>>> match some_variable:
... case 1:
... print('Got 1')
... case other:
... print('Got something else:', other)
Got something else: 123

In this case we store the else case in the other variable. Note that you cannot use _ and a variable
name at the same time since they do the same thing, which would be useless.

Matching from variables
You saw that a case such as case other: will store the result in other instead of comparing it with the
value of other, so you might be wondering if we can do the equivalent of:

if some_variable == some_value:

The answer is that we can, with a caveat. Since any bare case variable: will result in storing into
a variable, we need to have something that does not match that pattern. The common way to work
around this limitation is by introducing a dot:

>>> class Direction:
... LEFT = -1
... RIGHT = 1

>>> some_variable = Direction.LEFT

>>> match some_variable:
... case Direction.LEFT:
... print('Going left')
... case Direction.RIGHT:
... print('Going right')
Going left

As long as it cannot be interpreted as a variable name, this will work for you. When comparing with
a local variable, an if statement can always be used as well, of course.

Chapter 3 79

Matching multiple values in a single case
If you’re familiar with the switch statement in many other programming languages, you might be won-
dering whether you can have multiple case statements before you break, like this, for example (C++):

switch(variable){
 case Direction::LEFT:
 case Direction::RIGHT:
 cout << "Going horizontal" << endl;
 break;
 case Direction::UP:
 case Direction::DOWN:
 cout << "Going vertical" << endl;
}

This roughly means that if variable is either equal to LEFT or RIGHT, print the "Going horizontal"
line and break. Since the Python match statement does not have a break, how can we match something
like this? Well, some syntax was introduced specifically for that:

>>> class Direction:
... LEFT = -1
... UP = 0
... RIGHT = 1
... DOWN = 2

>>> some_variable = Direction.LEFT

>>> match some_variable:
... case Direction.LEFT | Direction.RIGHT:
... print('Going horizontal')
... case Direction.UP | Direction.DOWN:
... print('Going vertical')
Going horizontal

As you can see, using the | operator (which is also used for bitwise operations), you can test for multiple
values at the same time.

Matching values with guards or extra conditions
There are times when you want a more advanced comparison such as if variable > value:. Luckily,
even that is possible with the match statement using a feature called guards:

>>> values = -1, 0, 1

>>> for value in values:
... print('matching', value, end=': ')

Pythonic Syntax and Common Pitfalls80

... match value:

... case negative if negative < 0:

... print(f'{negative} is smaller than 0')

... case positive if positive > 0:

... print(f'{positive} is greater than 0')

... case _:

... print('no match')
matching -1: -1 is smaller than 0
matching 0: no match
matching 1: 1 is greater than 0

Note that this uses the variable name that I just introduced, but it’s a regular Python expression, so
you could also compare something else. However, you always need to have the variable name before
the if. This will not work: case if

Matching lists, tuples, and other sequences
If you are familiar with tuple unpacking, you can probably guess how sequence matching works:

>>> values = (0, 1), (0, 2), (1, 2)

>>> for value in values:
... print('matching', value, end=': ')
... match value:
... case 0, 1:
... print('exactly matched 0, 1')
... case 0, y:
... print(f'matched 0, y with y: {y}')
... case x, y:
... print(f'matched x, y with x, y: {x}, {y}')
matching (0, 1): exactly matched 0, 1
matching (0, 2): matched 0, y with y: 2
matching (1, 2): matched x, y with x, y: 1, 2

The first case explicitly matches both of the given values, which is identical to if value == (0, 1):.

The second case explicitly matches 0 for the first value, but leaves the second value as a variable and
stores it in y. Effectively this comes down to if value[0] == 0: y = value[1].

The last case stores a variable for both the x and y values and will match any sequence with exactly
two items.

Matching sequence patterns
If you thought the previous example with the unpacking of the variables was useful, you will love this
section. One of the really powerful features of the match statement is matching based on patterns.

Chapter 3 81

Let’s assume we have a function that takes up to three parameters, host, port, and protocol. For
port and protocol, we can assume 443 and https, respectively, so that only leaves the hostname as a
required parameter. How can we match this so one, two, three, or more parameters are all supported
and work correctly? Let’s find out:

>>> def get_uri(*args):
... # Set defaults so we only have to store changed variables
... protocol, port, paths = 'https', 443, ()
... match args:
... case (hostname,):
... pass
... case (hostname, port):
... pass
... case (hostname, port, protocol, *paths):
... pass
... case _:
... raise RuntimeError(f'Invalid arguments {args}')
...
... path = '/'.join(paths)
... return f'{protocol}://{hostname}:{port}/{path}'

>>> get_uri('localhost')
'https://localhost:443/'
>>> get_uri('localhost', 12345)
'https://localhost:12345/'
>>> get_uri('localhost', 80, 'http')
'http://localhost:80/'
>>> get_uri('localhost', 80, 'http', 'some', 'paths')
'http://localhost:80/some/paths'

As you can see, the match statement also handles different length sequences, which is a very useful
tool to have. You could do this with if statements as well, but I’ve never found a way to handle that in
a really pretty fashion. Naturally you could still combine this with the earlier examples, so you could
have a case such as: case (hostname, port, 'http'): if you want to invoke specific behavior. You
can also apply *variable to capture all extra variables. The * matches 0 or more extra items in the
sequence.

Capturing sub-patterns
In addition to specifying a variable name to save all values into, you can also store explicit value
matches:

>>> values = (0, 1), (0, 2), (1, 2)

Pythonic Syntax and Common Pitfalls82

>>> for value in values:
... print('matching', value, end=': ')
... match value:
... case 0 as x, (1 | 2) as y:
... print(f'matched x, y with x, y: {x}, {y}')
... case _:
... print('no match')
matching (0, 1): matched x, y with x, y: 0, 1
matching (0, 2): matched x, y with x, y: 0, 2
matching (1, 2): no match

In this case we explicitly match 0 as the first part of value, and 1 or 2 as the second part of value. And
we store those in the variables x and y, respectively.

Matching dictionaries and other mappings
Naturally it is also possible to match mappings (such as dict) by key:

>>> values = dict(a=0, b=0), dict(a=0, b=1), dict(a=1, b=1)

>>> for value in values:
... print('matching', value, end=': ')
... match value:
... case {'a': 0}:
... print('matched a=0:', value)
... case {'a': 0, 'b': 0}:
... print('matched a=0, b=0:', value)
... case _:
... print('no match')
matching {'a': 0, 'b': 0}: matched a=0: {'a': 0, 'b': 0}
matching {'a': 0, 'b': 1}: matched a=0: {'a': 0, 'b': 1}
matching {'a': 1, 'b': 1}: no match

Note that match only checks for the given keys and values and does not care about extra keys in the
mapping. This is why the first case matches both of the first two items.

It is important to note here that within the context of a case statement the | operator will
always work as a or for the case, instead of a bitwise or for the variables/values. Normally
1 | 2 would result in 3 because in binary 1 = 0001, 2 = 0010 , and the combination of
those is 3 = 0011.

As you can see in the preceding example, matching happens sequentially and it will stop
at the first match, not the best match. The second case is never reached in this scenario.

Chapter 3 83

Matching using isinstance and attributes
If you thought the previous examples of the match statement were impressive, get ready to be com-
pletely amazed. The way the match statement can match instances including properties is amazingly
powerful and can be incredibly useful. Just look at the following example and try to understand what
is happening:

>>> class Person:
... def __init__(self, name):
... self.name = name

>>> values = Person('Rick'), Person('Guido')

>>> for value in values:
... match value:
... case Person(name='Rick'):
... print('I found Rick')
... case Person(occupation='Programmer'):
... print('I found a programmer')
... case Person() as person:
... print('I found a person:', person.name)
I found Rick
I found a person: Guido

While I will admit that the syntax is slightly confusing and, dare I say it, unPythonic, it is so useful
that it still makes sense.

Firstly, we will look at the case Person() as person:. We’re discussing this first because it is import-
ant to understand what is happening here before we continue with the other examples. This line is
effectively identical to if isinstance(value, Person):. It does not actually instantiate the Person
class at this point, which is a bit confusing.

Secondly, the case Person(name='Rick') matches the instance type Person and it requires the in-
stance to have an attribute name with value Rick.

Lastly, the case Person(occupation='Programmer') matches value to be a Person instance and
have an attribute called occupation with the value Programmer. Since that attribute does not exist, it
ignores that issue silently.

Note that this also works for built-in types and supports nesting:

>>> class Person:
... def __init__(self, name):
... self.name = name

>>> value = Person(123)

Pythonic Syntax and Common Pitfalls84

>>> match value:
... case Person(name=str() as name):
... print('Found person with str name:', name)
... case Person(name=int() as name):
... print('Found person with int name:', name)
Found person with int name: 123

We have covered several examples of how the new pattern matching feature works, but you could
think of many more. Since all parts can be nested, the possibilities really are endless. It might not
be the perfect solution for everything, and the syntax might feel a little odd, but it is such a powerful
solution that I would recommend any Python programmer learns it by heart.

Common pitfalls
Python is a language meant to be clear and readable without any ambiguities and unexpected behav-
iors. Unfortunately, these goals are not achievable in all cases, and that is why Python does have a few
corner cases where it might do something different than what you were expecting.

This section will show you some issues that you might encounter when writing Python code.

Scope matters!
There are a few cases in Python where you might not be using the scope that you are actually expecting.
Some examples are when declaring a class and with function arguments, but the most annoying one
is accidentally trying to overwrite a global variable.

Global variables
A common problem when accessing variables from the global scope is that setting a variable makes
it local, even when accessing the global variable.

This works:

>>> g = 1

>>> def print_global():
... print(f'Value: {g}')

>>> print_global()
Value: 1

But the following does not:

>>> g = 1

>>> def print_global():
... g += 1

Chapter 3 85

... print(f'Value: {g}')

>>> print_global()
Traceback (most recent call last):
 ...
UnboundLocalError: local variable 'g' referenced before assignment

The problem is that g += 1 actually translates to g = g + 1, and anything containing g = makes the
variable local to your scope. Since the local variable is being assigned at that point, it has no value yet
and you are trying to use it.

For these cases, there is the global statement, although it is generally recommended to avoid writing to
global variables altogether because it can make your life a lot more difficult while debugging. Modern
editors can help a lot to track who or what is writing to your global variables, but restructuring your
code so it purposefully passes and modifies values in a clear path can help you to avoid many bugs.

Pass by reference with mutable variables
Within Python, variables are passed by reference. This means that when you do something like x =
y, both x and y will point to the same variable. When you change the value (not the object) of either
x or y, the other will change as well.

Since most variable types such as strings, integers, floats, and tuples are immutable, this is not a
problem. Doing x = 123 won’t affect y since we aren’t changing the value of x, but we are replacing
x with a new object that has the value 123.

With mutable variables, however, we can change the value of the object. Let’s illustrate this behavior
and how to work around it:

>>> x = []
>>> y = x
>>> z = x.copy()

>>> x.append('x')
>>> y.append('y')
>>> z.append('z')

>>> x
['x', 'y']
>>> y
['x', 'y']
>>> z
['z']

Unless you explicitly copy the variable as we did with z, your new variable will point to the same object.

Pythonic Syntax and Common Pitfalls86

Now you might be wondering whether copy() always works. As you might suspect, it doesn’t. The copy()
function only copies the object itself, not the values within the object. For that we have deepcopy(),
which even handles recursion safely:

>>> import copy

>>> x = [[1], [2, 3]]
>>> y = x.copy()
>>> z = copy.deepcopy(x)

>>> x.append('a')
>>> x[0].append(x)

>>> x
[[1, [...]], [2, 3], 'a']
>>> y
[[1, [...]], [2, 3]]
>>> z
[[1], [2, 3]]

Mutable function default arguments
While the issues with mutable arguments can be easily avoided and seen in most cases, the scenario
of default arguments for functions is a lot less obvious:

>>> def append(list_=[], value='value'):
... list_.append(value)
... return list_

>>> append(value='a')
['a']
>>> append(value='b')
['a', 'b']

Note that this is the case for dict, list, set, and several of the types in collections. Additionally,
the classes you define yourself are mutable by default.

To work around this issue, you could consider changing the function to the following instead:

>>> def append(list_=None, value='value'):
... if list_ is None:
... list_ = []
... list_.append(value)
... return list_

Chapter 3 87

>>> append(value='a')
['a']
>>> append(value='b')
['b']

Note that we had to use if list_ is None here. If we had done if not list_ instead, it would have
ignored the given list_ if an empty list was passed.

Class properties
The problem of mutable variables also occurs when defining classes. It is very easy to mix class at-
tributes and instance attributes. This can be confusing, especially when you are coming from other
languages such as C#. Let’s illustrate it:

>>> class SomeClass:
... class_list = []
...
... def __init__(self):
... self.instance_list = []

>>> SomeClass.class_list.append('from class')
>>> instance = SomeClass()
>>> instance.class_list.append('from instance')
>>> instance.instance_list.append('from instance')

>>> SomeClass.class_list
['from class', 'from instance']
>>> SomeClass.instance_list
Traceback (most recent call last):
...
AttributeError: ... 'SomeClass' has no attribute 'instance_list'

>>> instance.class_list
['from class', 'from instance']
>>> instance.instance_list
['from instance']

As with the function arguments, the list and dictionaries are shared. So if you want a mutable property
for a class that isn’t shared between all instances, you will need to define it from within the __init__
or any other instance method.

Pythonic Syntax and Common Pitfalls88

Another important thing to note when dealing with classes is that a class property will be inherited,
and that’s where things might prove to be confusing. When inheriting, the original properties will
stay references (unless overwritten) to the original values, even in subclasses:

>>> class Parent:
... pass

>>> class Child(Parent):
... pass

>>> Parent.parent_property = 'parent'
>>> Child.parent_property
'parent'

>>> Child.parent_property = 'child'
>>> Parent.parent_property
'parent'
>>> Child.parent_property
'child'

>>> Child.child_property = 'child'
>>> Parent.child_property
Traceback (most recent call last):
...
AttributeError: ... 'Parent' has no attribute 'child_property'

While this is to be expected due to inheritance, someone else using the class might not expect the
variable to change in the meantime. After all, we modified Parent, not Child.

There are two easy ways to prevent this. It is obviously possible to simply set the properties for every
class separately. But the better solution is never to modify class properties outside of the class defini-
tion. It’s easy to forget that the property will change in multiple locations, and if it has to be modifiable
anyway, it’s usually better to put it in an instance variable instead.

Overwriting and/or creating extra built-ins
While it can be useful in some cases, generally you will want to avoid overwriting global functions.
The PEP 8 convention for naming your functions—similar to built-in statements, functions, and vari-
ables—is to use a trailing underscore.

So, do not use this:

list = [1, 2, 3]

Chapter 3 89

Instead, use the following:

list_ = [1, 2, 3]

For lists and such, this is just a good convention. For statements such as from, import, and with, it’s
a requirement. Forgetting about this can lead to very confusing errors:

>>> list = list((1, 2, 3))
>>> list
[1, 2, 3]

>>> list((4, 5, 6))
Traceback (most recent call last):
 ...
TypeError: 'list' object is not callable

>>> import = 'Some import'
Traceback (most recent call last):
 ...
SyntaxError: invalid syntax

If you actually want to define a built-in that is available everywhere without requiring an import, that
is possible. For debugging purposes, I’ve been known to add this code to a project while developing:

import builtins
import inspect
import pprint
import re

def pp(*args, **kwargs):
 '''PrettyPrint function that prints the variable name when
 available and pprints the data'''
 name = None
 # Fetch the current frame from the stack
 frame = inspect.currentframe().f_back
 # Prepare the frame info
 frame_info = inspect.getframeinfo(frame)

 # Walk through the lines of the function
 for line in frame_info[3]:
 # Search for the pp() function call with a fancy regexp
 m = re.search(r'\bpp\s*\(\s*([^)]*)\s*\)', line)
 if m:
 print('# %s:' % m.group(1), end=' ')

Pythonic Syntax and Common Pitfalls90

 break

 pprint.pprint(*args, **kwargs)

builtins.pf = pprint.pformat
builtins.pp = pp

This is much too hacky for production code, but it is still useful when working on a large project where
you need print statements to debug. Alternative (and better) debugging solutions can be found in
Chapter 11, Debugging – Solving the Bugs.

The usage is quite simple:

x = 10
pp(x)

Here is the output:

x: 10

Modifying while iterating
At one point or another, you will run into this problem: while iterating through some mutable objects
such as dict and set, you cannot modify them. All of these result in a RuntimeError telling you that
you cannot modify the object during iteration:

>>> dict_ = dict(a=123)
>>> set_ = set((456,))

>>> for key in dict_:
... del dict_[key]
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

>>> for item in set_:
... set_.remove(item)
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
RuntimeError: Set changed size during iteration

For a list, it does work, but can result in very strange results, so it should definitely be avoided as well:

>>> list_ = list(range(10))
>>> list_

Chapter 3 91

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> for item in list_:
... print(list_.pop(0), end=', ')
0, 1, 2, 3, 4,

>>> list_
[5, 6, 7, 8, 9]

While these issues can be avoided by copying the collections before usage, in many cases you are
doing something wrong if you run into this issue. If manipulation is actually needed, building a new
collection is often the easier way to go because the code will look more obvious. Whenever someone
looks at code like this in the future, they might try to refactor it by removing the list() since it looks
futile at first glance:

>>> list_ = list(range(10))

>>> for item in list(list_):
... print(list_.pop(0), end=', ')
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

Catching and storing exceptions
When catching and storing exceptions in Python, you must keep in mind that for performance rea-
sons, the stored exception is local to the except block. The result is that you need to explicitly store
the exception in a different variable. Simply declaring the variable before the try/except block does
not work and will make your variable disappear:

>>> exception = None

>>> try:
... 1 / 0
... except ZeroDivisionError as exception:
... pass

>>> exception
Traceback (most recent call last):
 ...
NameError: name 'exception' is not defined

Storing the result in a new variable does work:

>>> try:
... 1 / 0
... except ZeroDivisionError as exception:

Pythonic Syntax and Common Pitfalls92

... new_exception = exception

>>> new_exception
ZeroDivisionError('division by zero')

As you can probably see already, this code does have a bug now. If we don’t end up in an exception,
new_exception will not be defined yet. We will either need to add an else to the try/except or, better
yet, pre-declare the variable before the try/except.

We really need to save it explicitly because Python 3 automatically deletes anything saved with as
variable at the end of the except statements. The reason for this is that exceptions in Python 3 con-
tain a __traceback__ attribute. Having this attribute makes it much more difficult for the garbage
collector to detect which memory should be freed as it introduces a recursive self-referencing cycle.

Specifically, this is exception -> traceback -> exception -> traceback

This does mean that you should keep in mind that storing these exceptions can introduce memory
leaks into your program.

The Python garbage collector is smart enough to understand that the variables are not visible any-
more and will delete the variable eventually, but it can take a lot more time because it is a far more
complicated garbage collection procedure. How the garbage collection actually works is covered in
Chapter 12, Performance – Tracking and Reducing Your Memory and CPU Usage.

Late binding and closures
Closures are a method of implementing local scopes in code. They make it possible to locally define
variables without overriding variables in the parent (or global) scope and hide the variables from the
outside scope later. The problem with closures in Python is that Python tries to bind its variables as late
as possible for performance reasons. While generally useful, it does have some unexpected side effects:

>>> functions = [lambda: i for i in range(3)]

>>> for function in functions:
... print(function(), end=', ')
2, 2, 2,

You were probably expecting 0, 1, 2 instead. Due to late binding, however, all functions get the last
value of i instead, which is 2.

What should we do instead? As with the cases in earlier paragraphs, the variable needs to be made
local. One option is to force immediate binding by currying the function with partial:

>>> from functools import partial

>>> functions = [partial(lambda x: x, i) for i in range(3)]

Chapter 3 93

>>> for function in functions:
... print(function(), end=', ')
0, 1, 2,

A better solution would be to avoid binding problems altogether by not introducing extra scopes (the
lambda) that use external variables. If i is specified as an argument to lambda, this will not be a problem.

Circular imports
Even though Python is fairly tolerant of circular imports, there are some cases where you will get errors.

Let’s assume we have two files:

T_28_circular_imports_a.py:

import T_28_circular_imports_b

class FileA:
 pass

class FileC(T_28_circular_imports_b.FileB):
 pass

T_28_circular_imports_b.py:

import T_28_circular_imports_a

class FileB(T_28_circular_imports_a.FileA):
 pass

Running either of these files results in a circular import error:

Traceback (most recent call last):
 File "T_28_circular_imports_a.py", line 1, in <module>
 import T_28_circular_imports_b
 File "T_28_circular_imports_b.py", line 1, in <module>
 import T_28_circular_imports_a
 File "T_28_circular_imports_a.py", line 8, in <module>
 class FileC(T_28_circular_imports_b.FileB):
AttributeError: partially initialized module 'T_28_circular_imports_b' has no
attribute 'FileB' (most likely due to a circular import)

There are several ways to work around this problem. The simplest solution is to move the import
statement so the circular import doesn’t occur anymore. In this case, the import in import T_28_
circular_imports_a.py needs to be moved between FileA and FileB.

Pythonic Syntax and Common Pitfalls94

In most cases, the better solution is to restructure the code, however. Move the common base class to
a separate file so there is no need for a circular import anymore. For the example above, that would
look something like this:

T_29_circular_imports_a.py:

class FileA:
 pass

T_29_circular_imports_b.py:

import T_29_circular_imports_a

class FileB(T_29_circular_imports_a.FileA):
 pass

T_29_circular_imports_c.py:

import T_29_circular_imports_b

class FileC(T_29_circular_imports_b.FileB):
 pass

If that is also not possible, it can be useful to import from a function at runtime instead of at import
time. Naturally this is not an easy option for class inheritance, but if you only need the import at
runtime, you can defer the importing.

Lastly, there is the option of dynamic imports, such as what the Django framework uses for the
ForeignKey fields. In addition to actual classes, the ForeignKey fields also support strings, which
will be imported automatically when needed.

While this is a very effective way of working around the problem, it does mean that your editor, linting
tools, and other tools won’t understand the object you are dealing with. To those tools, it will look like
a string, so unless specific hacks are added to those, they will not assume the value to be anything
besides a string.

In addition, because the import only happens at runtime, you will not notice import problems until
you execute the function. That means that errors that normally would have presented themselves as
soon as you run the script or application will now only show up when the function is called. This is a
great recipe for hard-to-trace bugs that won’t occur for you but will for other users of the code.

The pattern is still useful for cases such as plugin systems, however, as long as care is taken to avoid
the caveats mentioned. Here’s a simple example to import dynamically:

>>> import importlib

>>> module_name = 'sys'
>>> attribute = 'version_info'

Chapter 3 95

>>> module = importlib.import_module(module_name)
>>> module
<module 'sys' (built-in)>
>>> getattr(module, attribute).major
3

Using importlib, it is fairly easy to dynamically import a module and by using getattr, you can get
a specific object from the module.

Import collisions
One problem that can be extremely confusing is having colliding imports—multiple packages/modules
with the same name. I have had more than a few bug reports on my packages about cases like these.

My numpy-stl project, for example, houses the code in a package named stl. Many people create a test
file named stl.py. When importing stl from stl.py, it will import itself instead of the stl package.

In addition to this, there is also the problem of packages being incompatible with each other. Common
names might be used by several packages, so be careful when installing a bunch of similar packages
since they might be sharing the same name. When in doubt, just create a new virtual environment
and try again. Doing this can save you a lot of debugging.

Summary
This chapter showed you what the Pythonic philosophy is all about and some of the reasoning behind
it. Additionally, you have learned about the Zen of Python and what is considered beautiful and ugly
within the Python community. While code style is highly personal, Python has a few very helpful
guidelines that at least keep people mostly on the same page and style.

In the end, we are all consenting adults; everyone has the right to write code as they sees fit. But I
do request that you please read through the style guides and try to adhere to them unless you have a
really good reason not to.

With all that power comes great responsibility, and a few pitfalls, though there aren’t too many. Some
are tricky enough to fool me regularly and I’ve been writing Python for a long time! Python improves
all the time though. Many pitfalls have been taken care of since Python 2, but some will always remain.
For example, circular imports and definitions can easily bite you in most languages that support them,
but that doesn’t mean we’ll stop trying to improve Python.

A good example of the improvements in Python over the years is the collections module. It contains
many useful collections that have been added by users because there was a need. Most of them are
actually implemented in pure Python, and because of that, they are easy enough to be read by anyone.
Understanding them might take a bit more effort, but I truly believe that if you make it to the end of
this book, you will have no problem understanding what the collections do. Fully understanding how
the internals work is something I cannot promise, though; some parts of that speak more to generic
computer science than Python mastery.

Pythonic Syntax and Common Pitfalls96

The next chapter will show you some of the collections available in Python and how they are constructed
internally. Even though you are undoubtedly familiar with collections such as lists and dictionaries,
you might not be aware of the performance characteristics involved with some of the operations. If
some of the examples in this chapter were less than clear, you don’t have to worry. The next chapter
will at least revisit some of them, and more will come in later chapters.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

4
Pythonic Design Patterns

The previous chapter covered a lot of guidelines for what to do and what to avoid in Python. Next, we
will explore a few examples of how to work in a Pythonic way using the modules included with Python.

Design patterns are largely dependent on storing data; for this, Python comes bundled with several
very useful collections. The most basic collections such as list, tuple, set, and dict will already be
familiar to you, but Python also comes bundled with more advanced collections. Most of these simply
combine the basic types for more powerful features. In this chapter, I will explain how to use these
data types and collections in a Pythonic fashion.

Before we can properly discuss data structures and related performance, a basic understanding of
time complexity (and specifically the big O notation) is required. The concept is really simple, but
without it, I cannot easily explain the performance characteristics of operations and why seemingly
nice-looking code can perform horribly.

In this chapter, once the big O notation is clear, we will discuss some data structures and I will show
you some example design patterns, along with how to use them. We will start with the following basic
data structures:

•	 list

•	 dict

•	 set

•	 tuple

Building on the basic data structures, we will continue with more advanced collections, such as the
following:

•	 Dictionary-like types:

•	 ChainMap

•	 Counter

•	 Defaultdict

•	 OrderedDict

Pythonic Design Patterns98

•	 List types: heapq
•	 Tuple types: dataclass
•	 Other types: enum

Time complexity – The big O notation
Before we can begin with this chapter, there is a simple notation that you need to understand. This
chapter uses the big O notation to indicate the time complexity for an operation. Feel free to skip this
section if you are already familiar with this notation. While the notation sounds really complicated,
the concept is actually quite simple.

When we say that a function takes O(1) time, it means that it generally only takes 1 step to execute.
Similarly, a function with O(n) time would take n steps to execute, where n is generally the size (or
length) of the object. This time complexity is just a basic indication of what to expect when executing
the code, as it is generally what matters most.

The purpose of the big O notation is to indicate the approximate performance of an operation based
on the number of steps that need to be executed. A piece of code that executes a single step 1,000 times
faster but needs to execute O(2**n) steps will still be slower than another version of it that takes only
O(n) steps for a value of n equal to 10 or more.

The big O letter refers to the capital version of the Greek letter Omicron, which means
small-o (micron o).

In addition to O, several other characters might pop up in literature. Here’s an overview
of the characters used:

•	 Ο Big Omicron: The upper bound/worst-case scenario.
•	 Ω Big Omega: The lower bound/best-case scenario.
•	 Θ Big Theta: The tight bound, which means both O and Ω are identical.

A good example of an algorithm where these differ a lot is the quicksort algorithm. The
quicksort algorithm is one of the most widely used sorting algorithm, which is surprising
if you only look at time complexity according to the (big) O. The worst case for quicksort is
O(n**2) and the best case is either Ω(n log n) or Ω(n), depending on the implementation.

Given the worst case of O(n**2), you might not expect the algorithm to be used a lot, but
it has been the default sorting algorithm for many programming languages. Within C, it is
still the default; for Java, it was the default up to Java 6; and Python used it up to 2002. So,
why is/was quicksort so popular? For quicksort, it is very important to look at the average
case, which is far more likely to occur than the worst case. Indeed, the average case is
O(n log n), which is really good for a sorting algorithm.

Chapter 4 99

This is because 2**n for n=10 is 2**10=1024, which is 1,024 steps to execute the same code. This makes
choosing the right algorithm very important, even when using languages such as C/C++, which are
generally expected to perform better than Python with the CPython interpreter. If the code uses the
wrong algorithm, it will still be slower for a non-trivial n.

For example, suppose you have a list of 1,000 items and you walk through them. This will take O(n)
time because there are n=1000 items. Checking to see whether an item exists in a list means silently
walking through the items in a similar way, which means it also takes O(n), so that’s 1,000 steps.

If you do the same with a dict or set that has 1,000 keys/items, it will only take O(1) step because of
how a dict/set is structured. How the dict and set are structured internally will be covered later in
this chapter.

This means that if you want to check the existence of 100 items in that list or dict, it will take you
100*O(n) for the list and 100*O(1) for the dict or set. That is the difference between 100 steps and
100,000 steps, which means that the dict/set is n or 1,000 times faster in this case.

Even though the code seems very similar, the performance characteristics vary enormously:

>>> n = 1000
>>> a = list(range(n))
>>> b = dict.fromkeys(range(n))

>>> for i in range(100):
... assert i in a # takes n=1000 steps
... assert i in b # takes 1 step

To illustrate O(1), O(n), and O(n**2) functions:

>>> def o_one(items):
... return 1 # 1 operation so O(1)

>>> def o_n(items):
... total = 0
... # Walks through all items once so O(n)
... for item in items:
... total += item
... return total

>>> def o_n_squared(items):
... total = 0
... # Walks through all items n*n times so O(n**2)
... for a in items:
... for b in items:

Pythonic Design Patterns100

... total += a * b

... return total

>>> n = 10
>>> items = range(n)
>>> o_one(items) # 1 operation
1
>>> o_n(items) # n = 10 operations
45
>>> o_n_squared(items) # n*n = 10*10 = 100 operations
2025

To illustrate this, we will look at some slower-growing functions first:

Figure 4.1: Time complexity of slow-growing functions with n=1 to n=10,000

As you can see, the O(log(n)) function scales really well with larger numbers; this is why a binary
search is so incredibly fast, even for large datasets. Later in this chapter, you will see an example of
a binary search algorithm.

The O(n*log(n)) result shows a rather fast growth, which is undesirable, but better than some of the
alternatives, as you can see in Figure 4.2 with faster-growing functions:

Chapter 4 101

Figure 4.2: Time complexity of fast-growing functions with n=1 to n=10

Looking at these charts, the O(n*log(n)) looks quite good by comparison. As you will see later in this
chapter, many sorting algorithms use O(n*log(n)) functions and some use O(n**2).

These algorithms quickly grow to an incalculable size; the O(2**n) function, for example, already
takes 1,024 steps with 10 items and doubles with every step. A famous example of this is the current
solution to the Towers of Hanoi problem, where n is the number of disks.

The O(n!) factorial function is far worse and becomes impossibly large after just a few steps. One
of the most famous examples of this is the Traveling Salesman problem: finding the shortest route
covering a list of cities exactly once.

Next, we’ll dive into core collections.

Core collections
Before we can look at the more advanced combined collections later in this chapter, you need to
understand the workings of the core Python collections. This is not just about their usage; it is also
about the time complexities involved, which can strongly affect how your application will behave as
it grows. If you are well versed in the time complexities of these objects and know the possibilities
of Python 3’s tuple packing and unpacking by heart, then feel free to jump to the Advanced collections
section.

list – A mutable list of items
The list is most likely the container structure that you’ve used most in Python. It is simple in terms
of its usage, and for most cases, it exhibits great performance.

Pythonic Design Patterns102

While you may already be very familiar with the usage of list, you might not be aware of the time
complexities of the list object. Luckily, many of the time complexities of list are very low; append,
get operations, set operations, and len all take O(1) time—the best possible. However, you may not
know that remove and insert have O(n) worst-case time complexity. So, to delete a single item out
of 1,000 items, Python might have to walk through 1,000 items. Internally, the remove and insert
operations execute something along these lines:

>>> def remove(items, value):
... new_items = []
... found = False
... for item in items:
... # Skip the first item which is equal to value
... if not found and item == value:
... found = True
... continue
... new_items.append(item)
...
... if not found:
... raise ValueError('list.remove(x): x not in list')
...
... return new_items

>>> def insert(items, index, value):
... new_items = []
... for i, item in enumerate(items):
... if i == index:
... new_items.append(value)
... new_items.append(item)
... return new_items

>>> items = list(range(10))
>>> items
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> items = remove(items, 5)
>>> items
[0, 1, 2, 3, 4, 6, 7, 8, 9]

>>> items = insert(items, 2, 5)
>>> items
[0, 1, 5, 2, 3, 4, 6, 7, 8, 9]

Chapter 4 103

To remove or insert a single item from/into the list, Python needs to shift the rest of the list after the
insertion/deletion point. For a large list, this can become a performance burden and, if possible,
should be avoided by using append instead of insert. When executing this only once, it is, of course, not
all that bad. But when executing a large number of remove operations, a filter or list comprehension
is a much faster solution because, if properly structured, it needs to copy the list only once.

For example, suppose we wish to remove a specific set of numbers from the list. We have quite a few
options for this. The first is a solution using remove, which becomes slower if the number of items to
remove becomes larger.

Next up is constructing a new list, a list comprehension, or a filter statement. Chapter 5, Functional
Programming – Readability Versus Brevity, will explain list comprehensions and the filter statement
in more detail. But first, let’s check out some examples:

>>> primes = set((1, 2, 3, 5, 7))

Classic solution
>>> items = list(range(10))
>>> for prime in primes:
... items.remove(prime)
>>> items
[0, 4, 6, 8, 9]

List comprehension
>>> items = list(range(10))
>>> [item for item in items if item not in primes]
[0, 4, 6, 8, 9]

Filter
>>> items = list(range(10))
>>> list(filter(lambda item: item not in primes, items))
[0, 4, 6, 8, 9]

The latter two examples are much faster for large lists of items. This is because the operations are much
faster. To compare using n=len(items) and m=len(primes), the first example takes O(m*n)=5*10=50
operations, whereas the latter two take O(n*1)=10*1=10 operations.

Of course, min, max, and in all take O(n) as well, but that is expected for a structure that is not optimized
for these types of lookups.

The first method is actually slightly better than stated because n decreases during the loop.
So, it’s effectively 10+9+8+7+6=40, but this is an effect that is negligible enough to ignore.
In the case of n=1000, that would be the difference between 1000+999+998+997+996=4990
and 5*1000=5000, which makes no real-world difference.

Pythonic Design Patterns104

They can be implemented like this:

>>> def in_(items, value):
... for item in items:
... if item == value:
... return True
... return False

>>> def min_(items):
... current_min = items[0]
... for item in items[1:]:
... if current_min > item:
... current_min = item
... return current_min

>>> def max_(items):
... current_max = items[0]
... for item in items[1:]:
... if current_max < item:
... current_max = item
... return current_max

>>> items = range(5)
>>> in_(items, 3)
True
>>> min_(items)
0
>>> max_(items)
4

With these examples, it’s also clear that the in operator is a good example of where the best, worst, and
average cases are vastly different. The best case is O(1), which is being lucky and finding our value at
the first item. The worst case is O(n) because it might not exist or it could be the last item. From this,
you might expect the average case to be O(n/2), but you would be wrong. The average case is still O(n)
since there is a large likelihood of the item not existing in the list at all.

dict – A map of items
The dict is probably the container structure you will choose to use the most. You might not realize
that you are using it constantly without explicitly using dict. Every function call and variable access
goes through a dict to look up the name from the local() or global() scope dictionaries.

The dict is fast, simple to use, and very effective for a wide range of use cases. The average time
complexity is O(1) for the get, set, and delete operations.

Chapter 4 105

There are exceptions to this time complexity that you need to be aware of, however. The way a dict
works is by converting the key into a hash using the hash function (which calls the __hash__ method
of the object given as a key) and storing it in a hash table.

There are two problems with hash tables, however. The first and the most obvious is that the items
will be sorted by hash, which appears at random in most cases. The second problem with hash tables
is that they can have hash collisions, and the result of a hash collision is that in the worst case, all the
former operations can take O(n) instead. Hash collisions are not all that likely to occur, but they can
occur, and if a large dict performs below par, that is the place to look.

Let’s see how this actually works in practice. For the sake of this example, I will use one of the simplest
hashing algorithms I can think of, which uses the most significant digit of a number. So, for the case
of 12345, this hashing function will return 1, and for 56789, it will return 5:

>>> def most_significant(value):
... while value >= 10:
... value //= 10
... return value

>>> most_significant(12345)
1
>>> most_significant(99)
9
>>> most_significant(0)
0

Now, we will emulate a dict using a list of lists with this hashing method. We know that our hashing
method can only return numbers from 0 to 9, so we need only 10 buckets in our list. Now, we will add
a few values and see how a contains function could work:

>>> def add(collection, key, value):
... index = most_significant(key)
... collection[index].append((key, value))

Magic methods such as __hash__ are called either magic methods or dunder methods,
where dunder is short for double-underscore.

Since Python 3.6, the default dict implementation in CPython has changed to a version
that is sorted by insertion. Since Python 3.7, this is guaranteed behavior since other Python
versions such as Jython and PyPy could use different implementations before version 3.7.

Pythonic Design Patterns106

>>> def contains(collection, key):
... index = most_significant(key)
... for k, v in collection[index]:
... if k == key:
... return True
... return False

Create the collection of 10 lists
>>> collection = [[], [], [], [], [], [], [], [], [], []]

Add some items, using key/value pairs
>>> add(collection, 123, 'a')
>>> add(collection, 456, 'b')
>>> add(collection, 789, 'c')
>>> add(collection, 101, 'c')

Look at the collection
>>> collection
[[], [(123, 'a'), (101, 'c')], [], [],
 [(456, 'b')], [], [], [(789, 'c')], [], []]

Check if the contains works correctly
>>> contains(collection, 123)
True
>>> contains(collection, 1)
False

This code is obviously not identical to the dict implementation, but it is similar. Since we can just
get item 1 for a value of 123 by simple indexing, we have only O(1) lookup costs in the general case.
However, since both keys, 123 and 101, are within the 1 bucket, the runtime can actually increase to
O(n) in the worst case, where all keys have the same hash. As mentioned, that is a hash collision. To
alleviate hash collisions beyond what the hash() function already does, the Python dict uses a probing
sequence to automatically shift hashes if needed. The details of this method are well explained in the
dictobject.c file of the Python source.

To debug hash collisions, you can use the hash() function paired with collections.
Counter. This will quickly show you where hash collisions occur but it does not take the
dict probing sequence into consideration.

Chapter 4 107

In addition to the hash collision performance problem, there is another behavior that might surprise
you. When deleting items from a dictionary, it won’t actually resize the dictionary in memory. The result
is that both copying and iterating over the entire dictionary take O(m) time (where m is the maximum
size of the dictionary); n, the current number of items, is not used. So, if you add 1,000 items to a dict
and remove 999, iterating and copying will still take 1,000 steps. The only way to work around this
issue is by recreating the dictionary, which is something that both the copy and insert operations
do. Note that recreation during an insert operation is not guaranteed and depends on the number
of free slots available internally.

set – Like a dict without values
A set is a structure that uses the hash() function to get a unique collection of values. Internally, it is
very similar to a dict, with the same hash collision problem, but there are a few handy features of
set that need to be shown:

All output in the table below is generated using this function
>>> def print_set(expression, set_):
... 'Print set as a string sorted by letters'
... print(expression, ''.join(sorted(set_)))

>>> spam = set('spam')
>>> print_set('spam:', spam)
spam: amps

>>> eggs = set('eggs')
>>> print_set('eggs:', eggs)
eggs: egs

The first few are pretty much as expected. When we get to the operators, it gets interesting:

Expression Output Explanation
spam amps

All unique items. A set doesn’t allow for duplicates.eggs egs

spam & eggs s Every item in both.
spam | eggs aegmps Every item in either or both.
spam ^ eggs aegmp Every item in either but not in both.
spam - eggs amp

Every item in the first but not the latter.eggs - spam eg
spam > eggs False

True if every item in the latter is in the first.eggs > spam False
spam > sp True

spam < sp False True if every item in the first is contained in the latter.

Pythonic Design Patterns108

One useful example of set operations is calculating the differences between two objects. For example,
let’s assume we have two lists:

•	 current_users: The current users in a group
•	 new_users: The new list of users in a group

In permission systems, this is a very common scenario—mass adding and/or removing users from a
group. Within many permission databases, it’s not easily possible to set the entire list at once, so you
need a list to insert and a list to delete. This is where set comes in really handy:

The set function takes a sequence as argument so the double (is required.
>>> current_users = set((
... 'a',
... 'b',
... 'd',
...))

>>> new_users = set((
... 'b',
... 'c',
... 'd',
... 'e',
...))

>>> to_insert = new_users - current_users
>>> sorted(to_insert)
['c', 'e']
>>> to_delete = current_users - new_users
>>> sorted(to_delete)
['a']
>>> unchanged = new_users & current_users
>>> sorted(unchanged)
['b', 'd']

Now, we have lists of all users who were added, removed, and unchanged. Note that sorted is only
needed for consistent output, since a set has no predefined sort order.

tuple – The immutable list
A tuple is another object that you probably use very often without even noticing it. When you look
at it initially, it seems like a useless data structure. It’s like a list that you can’t modify, so why not just
use a list? In fact, there are a few cases where a tuple offers some really useful functionalities that
a list does not.

Chapter 4 109

Firstly, they are hashable. This means that you can use a tuple as a key in a dict or as an item of a
set, which is something a list can’t do:

>>> spam = 1, 2, 3
>>> eggs = 4, 5, 6

>>> data = dict()
>>> data[spam] = 'spam'
>>> data[eggs] = 'eggs'

>>> import pprint # Using pprint for consistent and sorted output

>>> pprint.pprint(data)
{(1, 2, 3): 'spam', (4, 5, 6): 'eggs'}

However, tuples can contain more than simple numbers. You can use nested tuples, strings, numbers,
and anything else for which the hash() function returns a consistent result:

>>> spam = 1, 'abc', (2, 3, (4, 5)), 'def'
>>> eggs = 4, (spam, 5), 6

>>> data = dict()
>>> data[spam] = 'spam'
>>> data[eggs] = 'eggs'

>>> import pprint # Using pprint for consistent and sorted output

>>> pprint.pprint(data)
{(1, 'abc', (2, 3, (4, 5)), 'def'): 'spam',
 (4, ((1, 'abc', (2, 3, (4, 5)), 'def'), 5), 6): 'eggs'}

You can make these as complex as you need. As long as all the parts of the tuple are hashable, you will
have no problem hashing the tuple as well. You can still construct a tuple containing a list or any
other unhashable type without a problem, but that will make the tuple unhashable.

Perhaps even more useful is the fact that tuples also support tuple packing and unpacking:

Assign using tuples on both sides
>>> a, b, c = 1, 2, 3
>>> a
1

Assign a tuple to a single variable
>>> spam = a, (b, c)

Pythonic Design Patterns110

>>> spam
(1, (2, 3))

Unpack a tuple to two variables
>>> a, b = spam
>>> a
1
>>> b
(2, 3)

In addition to regular packing and unpacking, from Python 3 onward, we can actually pack and unpack
objects with a variable number of items:

Unpack with variable length objects which assigns a list instead
of a tuple
>>> spam, *eggs = 1, 2, 3, 4
>>> spam
1
>>> eggs
[2, 3, 4]

Which can be unpacked as well of, course
>>> a, b, c = eggs
>>> c
4

This works for ranges as well
>>> spam, *eggs = range(10)
>>> spam
0
>>> eggs
[1, 2, 3, 4, 5, 6, 7, 8, 9]

And it works both ways
>>> a, b, *c = a, *eggs
>>> a, b
(2, 1)
>>> c
[2, 3, 4, 5, 6, 7, 8, 9]

Chapter 4 111

Packing and unpacking can be applied to function arguments:

>>> def eggs(*args):
... print('args:', args)

>>> eggs(1, 2, 3)
args: (1, 2, 3)

They are equally useful when returning from a function:

>>> def spam_eggs():
... return 'spam', 'eggs'

>>> spam, eggs = spam_eggs()
>>> spam
'spam'
>>> eggs
'eggs'

Now that you have seen the core Python collections and their limitations, you should understand a
bit better when certain collections are a good (or bad) idea. And more importantly, if a data structure
doesn’t perform as you expect it to, you will understand why.

Unfortunately, often real-world problems are not as simple as the ones you have seen in this chapter,
so you will have to weigh up the pros and the cons of the data structures and choose the best solution
for your case. Alternatively, you can build a more advanced data structure by combining a few of these
structures. Before you start building your own structures, however, keep reading because we will now
dive into more advanced collections that do just that: combine the core collections.

Pythonic patterns using advanced collections
The following collections are mostly just extensions of base collections; some of them are fairly simple,
while others are a bit more advanced. For all of them, though, it is important to know the characteristics
of the underlying structures. Without understanding them, it will be difficult to comprehend the
characteristics of the collections.

There are a few collections that are implemented in native C code for performance reasons, but all of
them can easily be implemented in pure Python as well. The following examples will show you not only
the features and characteristics of these collections, but also a few example design patterns where they
can be useful. Naturally, this is not an exhaustive list, but it should give you an idea of the possibilities.

Smart data storage with type hinting using dataclasses
One of the most useful recent additions to Python (since 3.5) is type hinting. With the type annotations,
you can give type hints to your editor, documentation generator, and others reading your code.

Pythonic Design Patterns112

The dataclasses module, which was introduced in Python 3.7 (backports available for Python 3.6), uses
the type hinting system to automatically generate classes, including documentation and constructors
based on these types:

>>> import dataclasses

>>> @dataclasses.dataclass
... class Sandwich:
... spam: int
... eggs: int = 3

>>> Sandwich(1, 2)
Sandwich(spam=1, eggs=2)

>>> sandwich = Sandwich(4)
>>> sandwich
Sandwich(spam=4, eggs=3)
>>> sandwich.eggs
3
>>> dataclasses.asdict(sandwich)
{'spam': 4, 'eggs': 3}
>>> dataclasses.astuple(sandwich)
(4, 3)

The basic class looks quite simple and like it’s nothing special, but if you look carefully, the dataclass
has generated multiple methods for us. Which ones are generated becomes obvious when looking at
the dataclass arguments:

Within Python, we are generally expected to be “consenting adults,” which means the
hints are not enforced in any way. This is similar to how private and protected variables
in Python are not enforced. This means that we can easily give a completely different type
from what our hint would suggest:

>>> spam: int
>>> __annotations__['spam']
<class 'int'>

>>> spam = 'not a number'
>>> __annotations__['spam']
<class 'int'>

Even with the int type hint, we can still insert a str if we want to.

Chapter 4 113

>>> help(dataclasses.dataclass)
Help on ... dataclass(..., *, init=True, repr=True, eq=True,
order=False, unsafe_hash=False, frozen=False) ...

As you can see, dataclass has several Boolean flags that decide what to generate.

First, the init flag tells dataclass to create an __init__ method that looks something like this:

>>> def __init__(self, spam, eggs=3):
... self.spam = spam
... self.eggs = eggs

Further, dataclass has flags for:

•	 repr: This generates a __repr__ magic function that generates a nice and readable output like
Sandwich(spam=1, eggs=2) instead of something like <__main__.Sandwich object at 0x...>.

•	 eq: This generates an automatic comparison method that compares two instances of Sandwich
by their value when doing if sandwich_a == sandwich_b.

•	 order: This generates a whole range of methods so that comparison operators such as >= and
< work by comparing the output of dataclasses.astuple.

•	 unsafe_hash: This will force the generation of a __hash__ method so that you use the hash()
function on it. By default, a __hash__ function is only generated when all parts of the object
are considered immutable. The reason for this is that hash() should always be consistent. If
you wish to store an object in a set, it needs to have a consistent hash. Since a set uses hash()
to decide which memory address to use, if the object changes, the set would need to move
the object as well.

•	 frozen: This will prevent changes after the instance has been created. The main use for this
is to make sure the hash() of the object remains consistent.

•	 slots: This automatically adds a __slots__ attribute which makes attribute access and storage
faster and more efficient. More about slots in Chapter 12, Performance – Tracking and Reducing
Your Memory and CPU Usage.

The only flag that adds validation is the frozen flag, which makes everything read-only and prevents
us from changing the __setattr__ and __getattr__ methods, which could be used to modify the
instance otherwise.

The type hinting system still only provides hints; however, these hints are not enforced in any way.
In Chapter 6, Decorators – Enabling Code Reuse by Decorating, you will see how we can add these types
of enforcements to our code using custom decorators.

For a more useful example that includes dependence, let’s say that we have some users who all belong
to one or multiple groups in a system:

>>> import typing

>>> @dataclasses.dataclass
... class Group:
... name: str

Pythonic Design Patterns114

... parent: 'Group' = None

>>> @dataclasses.dataclass
... class User:
... username: str
... email: str = None
... groups: typing.List[Group] = None

>>> users = Group('users')
>>> admins = Group('admins', users)
>>> rick = User('rick', groups=[admins])
>>> gvr = User('gvanrossum', 'guido@python.org', [admins])

>>> rick.groups
[Group(name='admins', parent=Group(name='users', parent=None))]

>>> rick.groups[0].parent
Group(name='users', parent=None)

In addition to linking dataclasses to each other, this also shows how to create a collection as a field
and how to have recursive definitions. As you can see, the Group class references its own definition
as a parent.

These dataclasses are especially useful when used for reading data from databases or CSV files. You
can easily extend the behavior of dataclasses to include custom methods, which makes them a very
useful basis for storing your custom data models.

Combining multiple scopes with ChainMap
Introduced in Python 3.3, ChainMap allows you to combine multiple mappings (dictionaries, for
example) into one. This is especially useful when combining multiple contexts. For example, when
looking for a variable in your current scope, by default, Python will search in locals(), globals(),
and, lastly, builtins.

To explicitly write code to do this, we could do something like this:

>>> import builtins

>>> builtin_vars = vars(builtins)

>>> key = 'something to search for'

>>> if key in locals():
... value = locals()[key]
... elif key in globals():
... value = globals()[key]
... elif key in builtin_vars:

Chapter 4 115

... value = builtin_vars[key]

... else:

... raise NameError(f'name {key!r} is not defined')
Traceback (most recent call last):
...
NameError: name 'something to search for' is not defined

This works, but it’s ugly to say the least. We can make it prettier by removing some of the repeated code:

>>> mappings = locals(), globals(), vars(builtins)

>>> for mapping in mappings:
... if key in mapping:
... value = mapping[key]
... break
... else:
... raise NameError(f'name {key!r} is not defined')
Traceback (most recent call last):
...
NameError: name 'something to search for' is not defined

That’s a lot better! Moreover, this can actually be considered a nice solution. But since Python 3.3, it’s
even easier. Now, we can simply use the following code:

>>> import collections

>>> mappings = collections.ChainMap(
... locals(), globals(), vars(builtins))
>>> mappings[key]
Traceback (most recent call last):
...
KeyError: 'something to search for'

As you can see, the ChainMap class is automatically coalescing the requested value through every given
dict until it finds a match. And if the value is not available, a KeyError is raised since it behaves like
a dict.

This is very useful for reading configurations from multiple sources and simply getting the first
matching item. For a command-line application, this could start with the command-line arguments,
followed by the local configuration file, followed by the global configuration file, and lastly the defaults.
To illustrate a bit of code similar to what I use in small command-line scripts:

>>> import json
>>> import pathlib
>>> import argparse

Pythonic Design Patterns116

>>> import collections

>>> DEFAULT = dict(verbosity=1)

>>> config_file = pathlib.Path('config.json')
>>> if config_file.exists():
... config = json.load(config_file.open())
... else:
... config = dict()

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('-v', '--verbose', action='count',
... dest='verbosity')
_CountAction(...)

>>> args, _ = parser.parse_known_args()
>>> defined_args = {k: v for k, v in vars(args).items() if v}
>>> combined = collections.ChainMap(defined_args, config, DEFAULT)
>>> combined['verbosity']
1

>>> args, _ = parser.parse_known_args(['-vv'])
>>> defined_args = {k: v for k, v in vars(args).items() if v}
>>> combined = collections.ChainMap(defined_args, config, DEFAULT)
>>> combined['verbosity']
2

The inheritance can clearly be seen here. When a specific command-line argument is given (-vv), that
result is used. Otherwise, the code falls back to the one in DEFAULTS or any other available variable.

Default dictionary values using defaultdict
The defaultdict is one of my favorite objects in the collections package. Before it was added to the
core, I wrote similar objects several times. While it is a fairly simple object, it is extremely useful for all
sorts of design patterns. Instead of having to check for the existence of a key and adding a value every
time, you can just declare the default from the beginning, and there is no need to worry about the rest.

For example, let’s say we are building a very basic graph structure from a list of connected nodes.

This is our list of connected nodes (one way):

nodes = [
 ('a', 'b'),
 ('a', 'c'),
 ('b', 'a'),

Chapter 4 117

 ('b', 'd'),
 ('c', 'a'),
 ('d', 'a'),
 ('d', 'b'),
 ('d', 'c'),
]

Now, let’s put this graph into a normal dictionary:

>>> graph = dict()
>>> for from_, to in nodes:
... if from_ not in graph:
... graph[from_] = []
... graph[from_].append(to)

>>> import pprint

>>> pprint.pprint(graph)
{'a': ['b', 'c'],
 'b': ['a', 'd'],
 'c': ['a'],
 'd': ['a', 'b', 'c']}

Some variations are possible, of course, such as using setdefault. However, they remain more complex
than they need to be.

The truly Pythonic version uses defaultdict instead:

>>> import collections

>>> graph = collections.defaultdict(list)
>>> for from_, to in nodes:
... graph[from_].append(to)

>>> import pprint

>>> pprint.pprint(graph)
defaultdict(<class 'list'>,
 {'a': ['b', 'c'],
 'b': ['a', 'd'],
 'c': ['a'],
 'd': ['a', 'b', 'c']})

Pythonic Design Patterns118

Isn’t that a beautiful bit of code? The defaultdict can also be used as a basic version of the Counter
object. It’s not as fancy and doesn’t have all the bells and whistles that Counter has, but it does the
job in many cases:

>>> counter = collections.defaultdict(int)
>>> counter['spam'] += 5
>>> counter
defaultdict(<class 'int'>, {'spam': 5})

The default value for defaultdict needs to be a callable object. In the previous cases, these were
int and list, but you can easily define your own functions to use as a default value. That’s what the
following example uses, although I don’t recommend production usage since it lacks a bit of readability.
I do believe, however, that it is a beautiful example of the power of Python.

This is how we create a tree in a single line of Python:

import collections

def tree(): return collections.defaultdict(tree)

Brilliant, isn’t it? Here’s how we can actually use it:

>>> import json
>>> import collections

>>> def tree():
... return collections.defaultdict(tree)

>>> colours = tree()
>>> colours['other']['black'] = 0x000000
>>> colours['other']['white'] = 0xFFFFFF
>>> colours['primary']['red'] = 0xFF0000
>>> colours['primary']['green'] = 0x00FF00
>>> colours['primary']['blue'] = 0x0000FF
>>> colours['secondary']['yellow'] = 0xFFFF00
>>> colours['secondary']['aqua'] = 0x00FFFF
>>> colours['secondary']['fuchsia'] = 0xFF00FF

>>> print(json.dumps(colours, sort_keys=True, indent=4))
{
 "other": {
 "black": 0,
 "white": 16777215
 },

Chapter 4 119

 "primary": {
 "blue": 255,
 "green": 65280,
 "red": 16711680
 },
 "secondary": {
 "aqua": 65535,
 "fuchsia": 16711935,
 "yellow": 16776960
 }
}

The nice thing is that you can make it go as deep as you like. Because of the defaultdict base, it
generates itself recursively.

enum – A group of constants
The enum package introduced in Python 3.4 is quite similar in its workings to enums in many other
programming languages, such as C and C++. It helps to create reusable constants for your module so
you can avoid arbitrary constants. A basic example is as follows:

>>> import enum

>>> class Color(enum.Enum):
... red = 1
... green = 2
... blue = 3

>>> Color.red
<Color.red: 1>
>>> Color['red']
<Color.red: 1>
>>> Color(1)
<Color.red: 1>
>>> Color.red.name
'red'
>>> Color.red.value
1
>>> isinstance(Color.red, Color)
True
>>> Color.red is Color['red']
True
>>> Color.red is Color(1)
True

Pythonic Design Patterns120

A few of the handy features of the enum package are that the objects are iterable, accessible through
both numeric and textual representation of the values, and, with proper inheritance, even comparable
to other classes.

The following code shows the usage of a basic API:

>>> for color in Color:
... color
<Color.red: 1>
<Color.green: 2>
<Color.blue: 3>

>>> colors = dict()
>>> colors[Color.green] = 0x00FF00
>>> colors
{<Color.green: 2>: 65280}

One of the lesser-known possibilities of the enum package is that you can make value comparisons work
in addition to the identity comparisons you would normally use. And this works for every type—not
just integers but (your own) custom types as well.

With a regular enum, only an identity check (that is, a is b) works:

>>> import enum

>>> class Spam(enum.Enum):
... EGGS = 'eggs'

>>> Spam.EGGS == 'eggs'
False

When we make the enum inherit str as well, it starts comparing the values in addition to the identity:

>>> import enum

>>> class Spam(str, enum.Enum):
... EGGS = 'eggs'

>>> Spam.EGGS == 'eggs'
True

In addition to the preceding examples, the enum package has a few other variants such as enum.Flag and
enum.IntFlag, which allow for bitwise operations. These can be useful for representing permissions
as follows: permissions = Perm.READ | Perm.Write.

Whenever you have a list of constants that can be grouped together, consider using the enum package.
It makes validation much cleaner than having to use if/elif/elif/else several times.

Chapter 4 121

Sorting collections using heapq
The heapq module is a great little module that makes it very easy to create a priority queue in Python.
It is a data structure that will always make the smallest (or largest, depending on the implementation)
item available with minimum effort. The API is quite simple, and one of the best examples of its usage
can be seen in the OrderedDict object. While you might not need it often, it is a very useful structure
if you need it. And understanding the inner workings is important if you wish to understand the
workings of classes such as OrderedDict.

The basic usage of heapq is simple but somewhat confusing initially:

>>> import heapq

>>> heap = [1, 3, 5, 7, 2, 4, 3]
>>> heapq.heapify(heap)
>>> heap
[1, 2, 3, 7, 3, 4, 5]

>>> while heap:
... heapq.heappop(heap), heap
(1, [2, 3, 3, 7, 5, 4])
(2, [3, 3, 4, 7, 5])
(3, [3, 5, 4, 7])
(3, [4, 5, 7])
(4, [5, 7])
(5, [7])
(7, [])

One important thing to note here—something that you have probably already understood from the
preceding example—is that the heapq module does not create a special object. It consists of a few
methods to treat a regular list as a heap. That doesn’t make it less useful, but it is something to take
into consideration.

The really confusing part, at first glance, is the sort order. The array is actually sorted but not as a list;
it is sorted as a tree. To illustrate this, take a look at the following tree, which shows how the tree is
supposed to be read:

 1
 2 3
7 3 4 5

If you are looking for a structure to keep your list always sorted, try the bisect module
instead, which is covered in the next section.

Pythonic Design Patterns122

The smallest number is always at the top and the biggest numbers are always at the bottom row of
the tree. Because of that, it’s really easy to find the smallest number, but finding the largest is not as
easy. To get the sorted version of the heap, we simply need to keep removing the top of the tree until
all the items are gone. Therefore, the heapsort algorithm can be implemented as follows:

>>> def heapsort(iterable):
... heap = []
... for value in iterable:
... heapq.heappush(heap, value)
...
... while heap:
... yield heapq.heappop(heap)

>>> list(heapsort([1, 3, 5, 2, 4, 1]))
[1, 1, 2, 3, 4, 5]

With heapq doing the heavy lifting, it becomes incredibly easy to write your own version of the sorted()
function.

Since the heappush and heappop functions both have O(log(n)) time complexity, they can be considered
really fast. Combining those for the n items in the preceding iterable gives us O(n*log(n)) for the
heapsort function. The heappush method uses list.append() internally and swaps the items in the
list to avoid the O(n) time complexity of list.insert().

Searching through sorted collections using bisect
The heapq module in the previous section gave us an easy way to sort a structure and keep it sorted.
But what if we want to search through a sorted collection to see whether the item exists? Or what’s the
next biggest/smallest item if it doesn’t? That’s where the bisect algorithm helps us.

The bisect module inserts items in an object in such a way that they stay sorted and are easily
searchable. If your primary purpose is searching, then bisect should be your choice. If you’re
modifying your collection a lot, heapq might be better for you.

As is the case with heapq, bisect does not really create a special data structure. The bisect module
expects a list and expects that list to always be sorted. It is important to understand the performance
implications of this. While appending items to a list has O(1) time complexity, inserting has O(n)
time complexity, making it a very heavy operation. Effectively, creating a sorted list using bisect takes
O(n*n), which is quite slow, especially because creating the same sorted list using heapq or sorted()
takes O(n*log(n)) instead.

The log(n) refers to the base 2 logarithm function. To calculate this value, the
math.log2() function can be used. This results in an increase of 1 every time the number
doubles in size. For n=2, the value of log(n) is 1, and consequently for n=4 and n=8, the
log values are 2 and 3, respectively. And n=1024 results in a log of only 10.

This means that a 32-bit number, which is 2**32 = 4294967296, has a log of 32.

Chapter 4 123

If you have a sorted structure and you only need to add a single item, then the bisect algorithm can
be used for insertion. Otherwise, it’s generally faster to simply append the items and call list.sort()
or sorted() afterward.

To illustrate, we have these lines:

>>> import bisect

Using the regular sort:
>>> sorted_list = []
>>> sorted_list.append(5) # O(1)
>>> sorted_list.append(3) # O(1)
>>> sorted_list.append(1) # O(1)
>>> sorted_list.append(2) # O(1)
>>> sorted_list.sort() # O(n * log(n)) = 4 * log(4) = 8
>>> sorted_list
[1, 2, 3, 5]

Using bisect:
>>> sorted_list = []
>>> bisect.insort(sorted_list, 5) # O(n) = 1
>>> bisect.insort(sorted_list, 3) # O(n) = 2
>>> bisect.insort(sorted_list, 1) # O(n) = 3
>>> bisect.insort(sorted_list, 2) # O(n) = 4
>>> sorted_list
[1, 2, 3, 5]

For a small number of items, the difference is negligible, but the number of operations needed to sort
using bisect quickly grows to a point where the difference will be large. For n=4, the difference is
just between 4 * 1 + 8 = 12 and 1 + 2 + 3 + 4 = 10, making the bisect solution faster. But if we
were to insert 1,000 items, it would be 1000 + 1000 * log(1000) = 10966 versus 1 + 2 + … 1000 =
1000 * (1000 + 1) / 2 = 500500. So, be very careful while inserting many items.

Searching within the list is very fast, though; because it is sorted, we can use a very simple binary
search algorithm. For example, what if we want to check whether a few numbers exist within the list?
The simplest algorithm, shown as follows, simply loops through the list and checks all items, resulting
in O(n) worst-case performance:

>>> sorted_list = [1, 2, 5]

>>> def contains(sorted_list, value):
... for item in sorted_list:
... if item > value:
... break
... elif item == value:

Pythonic Design Patterns124

... return True

... return False

>>> contains(sorted_list, 2) # Need to walk through 2 items, O(n) = 2
True
>>> contains(sorted_list, 4) # Need to walk through 3 items, O(n) = 3
False
>>> contains(sorted_list, 6) # Need to walk through 3 items, O(n) = 3
False

With the bisect algorithm, though, there is no need to walk through the entire list:

>>> import bisect

>>> sorted_list = [1, 2, 5]
>>> def contains(sorted_list, value):
... i = bisect.bisect_left(sorted_list, value)
... return i < len(sorted_list) and sorted_list[i] == value

>>> contains(sorted_list, 2) # Found it after the first step, O(log(n)) = 1
True
>>> contains(sorted_list, 4) # No result after 2 steps, O(log(n)) = 2
False
>>> contains(sorted_list, 6) # No result after 2 steps, O(log(n)) = 2
False

The bisect_left function tries to find the position at which the number is supposed to be. This is
actually what bisect.insort does as well; it inserts the number at the correct position by searching
for the location of the number.

The biggest difference between these methods is that bisect does a binary search internally, which
means that it starts in the middle and jumps to the middle of the left or right section, depending on
whether the value in the list is bigger or smaller than the value we are looking for. To illustrate, we
will search for 4 in a list of numbers from 0 to 14:

sorted_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
Step 1: 4 > 7 ^
Step 2: 4 > 3 ^
Step 3: 4 > 5 ^
Step 4: 4 > 5 ^

As you can see, after only four steps, we have found the number we searched for. Depending on the
number (7, for example), it may go faster, but it will never take more than O(log(n)) steps to find a
number.

Chapter 4 125

With a regular list, a search will simply walk through all the items until it finds the desired item. If
you’re lucky, it could be the first number you encounter, but if you’re unlucky, it could be the last item.
In the case of 1,000 items, that would be the difference between 1,000 steps and log(1000) = 10 steps.

While very fast and efficient, the bisect module doesn’t feel Pythonic at all. Let’s fix that by creating
our own SortedList class:

>>> import bisect
>>> import collections

>>> class SortedList:
... def __init__(self, *values):
... self._list = sorted(values)
...
... def index(self, value):
... i = bisect.bisect_left(self._list, value)
... if i < len(self._list) and self._list[i] == value:
... return index
...
... def delete(self, value):
... del self._list[self.index(value)]
...
... def add(self, value):
... bisect.insort(self._list, value)
...
... def __iter__(self):
... for value in self._list:
... yield value
...
... def __exists__(self, value):
... return self.index(value) is not None

>>> sorted_list = SortedList(1, 3, 6, 2)
>>> 3 in sorted_list
True
>>> 5 in sorted_list
False
>>> sorted_list.add(5)
>>> 5 in sorted_list
True
>>> list(sorted_list)
[1, 2, 3, 5, 6]

Pythonic Design Patterns126

While functional, this implementation is obviously still a tad limited. But it’s certainly a nice starting
point in case you need a structure like this.

Global instances using Borg or Singleton patterns
Most programmers will be familiar with the Singleton pattern, which ensures that only a single instance
of a class will ever exist. Within Python, a common alternative solution to this is the Borg pattern,
named after the Borg in Star Trek. Where a Singleton enforces a single instance, the Borg pattern
enforces a single state for all instances and subclasses as well. Due to the way class creation works in
Python, the Borg pattern is a tiny bit easier to implement and modify than the Singleton pattern as well.

To illustrate an example of both:

The Borg class:

>>> class Borg:
... _state = {}
... def __init__(self):
... self.__dict__ = self._state

>>> class SubBorg(Borg):
... pass

>>> a = Borg()
>>> b = Borg()
>>> c = Borg()
>>> a.a_property = 123
>>> b.a_property
123
>>> c.a_property
123

The Singleton class:

>>> class Singleton:
... def __new__(cls):
... if not hasattr(cls, '_instance'):
... cls._instance = super(Singleton, cls).__new__(cls)
...
... return cls._instance

>>> class SubSingleton(Singleton):
... pass

Chapter 4 127

>>> a = Singleton()
>>> b = Singleton()
>>> c = SubSingleton()
>>> a.a_property = 123
>>> b.a_property
123
>>> c.a_property
123

The Borg pattern works by overriding the __dict__ of the instance that contains the instance state.
The Singleton overrides the __new__ (note, not __init__) method so that we only ever return a single
instance of the class.

No need for getters and setters with properties
Within many languages (notably Java), a common design pattern for accessing instance variables
is using getters and setters so that you can modify the behavior when needed in the future. Within
Python, we can transparently change the behavior of attributes for existing classes without the need
to touch the calling code:

>>> class Sandwich:
... def __init__(self, spam):
... self.spam = spam
...
... @property
... def spam(self):
... return self._spam
...
... @spam.setter
... def spam(self, value):
... self._spam = value
... if self._spam >= 5:
... print('You must be hungry')
...
... @spam.deleter
... def spam(self):
... self._spam = 0

>>> sandwich = Sandwich(2)
>>> sandwich.spam += 1
>>> sandwich.spam += 2
You must be hungry

Pythonic Design Patterns128

The calling code doesn’t need to be changed at all. We can simply change the behavior of the property
in a completely transparent way.

Dict union operators
This is not actually a separate advanced collection, but it is advanced usage of the dict collection.
Since Python 3.9, we have a few easy options for combining multiple dict instances. The “old” solution
was to use dict.update(), possibly combined with dict.copy() to create a new instance. While that
works fine, it is rather verbose and a tad clunky.

Since this is a case where a few examples are much more useful than just explanation, let’s see how
the old solution works:

>>> a = dict(x=1, y=2)
>>> b = dict(y=1, z=2)

>>> c = a.copy()
>>> c
{'x': 1, 'y': 2}
>>> c.update(b)

>>> a
{'x': 1, 'y': 2}
>>> b
{'y': 1, 'z': 2}
>>> c
{'x': 1, 'y': 1, 'z': 2}

That solution works great, but with Python 3.9 and above we can do it in a much easier and shorter way:

>>> a = dict(x=1, y=2)
>>> b = dict(y=1, z=2)

>>> a | b
{'x': 1, 'y': 1, 'z': 2}

This is a feature that can be very convenient when specifying arguments to a function, especially if
you want to automatically fill in keyword arguments with default arguments:

some_function(**(default_arguments | given_arguments))

Now that you have seen a few of the more advanced collections bundled with Python, you should have
a pretty good idea of when to apply which type of collection. You may also have learned about a few
new Python design patterns.

Chapter 4 129

Exercises
In addition to enhancing the examples in this chapter, there are many other exercises:

•	 Create a SortedDict collection that takes a keyfunc to decide the sort order.
•	 Create a SortedList collection that has O(log(n)) inserts and always returns a sorted list

during each iteration.
•	 Create a Borg pattern that has a state per subclass.

Summary
Python is a bit unlike other languages in some aspects and several design patterns that are common
in other languages make little sense in Python. In this chapter, you have seen some common Python
design patterns, but many more patterns exist. Before you start implementing your own collections
based on these patterns, quickly search the web to see whether there is an existing solution already.
In particular, the collections module receives a lot of updates, so it is possible that your problem
has already been solved.

If you are ever wondering how these structures work, have a look at the following source:
https://github.com/python/cpython/blob/master/Lib/collections/__init__.py.

After finishing this chapter, you should be aware of the time complexities of the basic Python structures.
You should also be familiar with a few Pythonic methods of tackling certain problems. Many of these
examples use the collections module, but this chapter does not list all of the classes in the collections
module.

Selecting the correct data structure within your applications is by far the most important performance
factor for your code. This makes basic knowledge about performance characteristics essential for any
serious programmer.

In the next chapter, we will continue with functional programming, which covers lambda functions,
list comprehensions, dict comprehensions, set comprehensions, and an array of related topics.
Additionally, you will learn about the mathematic background of functional programming.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/python/cpython/blob/master/Lib/collections/__init__.py

Pythonic Design Patterns130

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

5
Functional Programming –
Readability Versus Brevity

This chapter will show you some of the cool tricks that functional programming in Python gives you,
and it will explain some of the limitations of Python’s implementation. For learning and entertain-
ment, we will also briefly discuss the mathematical equivalent using lambda calculus, using the Y
combinator as an example.

The last few paragraphs will list and explain the usage of the functools and itertools libraries. If you
are familiar with these libraries, feel free to skip them, but note that some of these will be used heavily
in the later chapters about decorators (Chapter 6), generators (Chapter 7), and performance (Chapter 12).

These are the topics covered in this chapter:

•	 The theory behind functional programming
•	 list, dict, and set comprehensions
•	 lambda functions
•	 functools (partial and reduce)
•	 itertools (accumulate, chain, dropwhile, starmap, and so on)

First, we will begin with a bit of history about functional programming in Python and what functional
programming actually means.

Functional programming
Functional programming is a paradigm that originates from the lambda calculus (λ-calculus), a formal
system in mathematics that can be used to simulate any Turing machine. Without diving too much
into the λ-calculus, this means that computation is performed using only the function arguments
as input and that the output consists of a new variable without mutating the input variables. With a
strictly functional programming language this behavior would be enforced, but since Python is not a
strictly functional language, this doesn’t necessarily hold true.

Functional Programming – Readability Versus Brevity132

It is still a good idea to adhere to this paradigm since mixing paradigms can cause unforeseen bugs,
as discussed in Chapter 3, Pythonic Syntax and Common Pitfalls.

Purely functional
Purely functional programming expects functions to have no side effects. That means that arguments
given to the function should not be mutated, and neither should any other external states. Let’s illus-
trate this with a simple example:

>>> def add_value_functional(items, value):
... return items + [value]

>>> items = [1, 2, 3]
>>> add_value_functional(items, 5)
[1, 2, 3, 5]
>>> items
[1, 2, 3]

>>> def add_value_regular(items, value):
... items.append(value)
... return items

>>> add_value_regular(items, 5)
[1, 2, 3, 5]
>>> items
[1, 2, 3, 5]

That essentially shows the difference between a regular function and a purely functional one. The first
function returns a new value purely based on the input, without any other side effects. This is in com-
parison to the second function, which modifies the given input or even variables outside of its scope.

Even outside of functional programming, limiting your changes to local variables only is a good idea.
Keeping functions purely functional (relying only on the given input) makes code clearer, easier to
understand, and better to test as there are fewer dependencies. Well-known examples can be found
within the math module. These functions (sin, cos, pow, sqrt, and so on) have an input and an output
that is strictly dependent on the input.

Functional programming and Python
Python is one of the few, or at least earliest, non-functional programming languages to add functional
programming features. The initial few functional programming functions were introduced around
1993, and these were lambda, reduce, filter, and map. Since that time, Guido van Rossum has been
less than happy with their existence because they often make readability suffer. Additionally, functions
such as map and filter can easily be replicated using list comprehensions. Because of this, Guido
wanted to remove these functions with the Python 3 release, but after a lot of resistance he opted for
moving at least the reduce function to functools.reduce.

Chapter 5 133

Since then, several other functional programming features have been added to Python:

•	 list/dict/set comprehensions
•	 Generator expressions
•	 Generator functions
•	 Coroutines

There are also a host of useful functions in the functools and itertools modules.

Advantages of functional programming
The big question is, of course, why would you want to use functional programming instead of regular/
procedural programming? There are multiple advantages to writing code in a functional style:

•	 One major advantage of writing purely functional code is that it becomes trivially easy to run
in parallel. Because there are no external variables needed and no external variables changed,
you can easily parallelize the code to run on multiple processors or even on multiple machines.
Assuming you can easily transfer the input variables and output results, of course.

•	 Because the functions are self-contained and don’t have any side effects, they mitigate several
kinds of bugs. Mutating function arguments in-place, for example, is a great source of bugs.
Additionally, a seemingly useless function call that modifies a variable in the parent scope
couldn’t exist in a purely functional codebase.

•	 It makes testing much easier. If a function only has a given input and output and does not touch
anything outside of those, you can test without having to set up an entire environment for that
function. It also omits the need for sandboxing functions while testing them.

Naturally, functional programming also comes with a few drawbacks, several of which are caused by
the same advantages.

In some cases it can be a hassle to pass along all useful arguments all of the time. When modifying
a database for example, you need to get the database connection somehow. If you decide to pass the
database connection as an argument and did not prepare for that, you will need to modify not just
that function but all the calling functions as well to pass along that argument. In those cases a globally
accessible variable containing the database connection could save you a lot of work.

Another often-touted downside of functional programming is recursion. While recursion is a very
useful tool, it can make it much harder to trace the code execution path, which can be a problem
when solving bugs.

Functional programming has its place and its time. It’s not suited for every situation but when applied
correctly it is a very useful tool for your toolbox. Now let’s continue with some examples of functional
programming.

list, set, and dict comprehensions
The Python list, set, and dict comprehensions are a very easy way to apply a function or filter to
a list of items.

Functional Programming – Readability Versus Brevity134

When used correctly, list/set/dict comprehensions can be really useful for quick filtering or trans-
forming of lists, sets, and dicts. The same results can be achieved using the “functional” functions
map and filter, but list/set/dict comprehensions are often easier to use and also easier to read.

Basic list comprehensions
Let’s dive right into a few examples. The basic premise of a list comprehension looks like this:

>>> squares = [x ** 2 for x in range(10)]
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We can easily expand this with a filter:

>>> odd_squares = [x ** 2 for x in range(10) if x % 2]
>>> odd_squares
[1, 9, 25, 49, 81]

This brings us to the version that is common in most functional languages using map and filter:

>>> def square(x):
... return x ** 2

>>> def odd(x):
... return x % 2

>>> squares = list(map(square, range(10)))
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> odd_squares = list(filter(odd, map(square, range(10))))
>>> odd_squares
[1, 9, 25, 49, 81]

After seeing this it becomes slightly more obvious why Guido van Rossum wanted to remove these
from the language. In particular, the version using both filter and map isn’t all that readable given
the number of parentheses, unless you’re used to the Lisp programming language, that is.

The most important application of map is actually not using map itself, but using one of the map-like
functions such as multiprocessing.pool.Pool.map and variants such as map_async, imap, starmap,
starmap_async, and imap_unordered, which automatically execute the functions in parallel on mul-
tiple processors.

While I am personally not against map or filter, I think their usage should be reserved for cases
where you have an existing function available to use in the map or filter call. A somewhat more
useful example would be:

Chapter 5 135

>>> import os

>>> directories = filter(os.path.isdir, os.listdir('.'))
Versus:
>>> directories = [x for x in os.listdir('.') if os.path.isdir(x)]

In this case, the filter version might be slightly more readable than the list comprehension.

As for the list comprehensions, the syntax is pretty close to regular Python for loops, but the if
statement and automatic storing of results make it quite useful to condense code slightly. The regular
Python equivalent is not much longer:

>>> odd_squares = []
>>> for x in range(10):
... if x % 2:
... odd_squares.append(x ** 2)

>>> odd_squares
[1, 9, 25, 49, 81]

set comprehensions
In addition to list comprehensions, we can also use a set comprehension, which has the same syntax
but returns a unique and unordered (all sets are unordered) set instead:

List comprehension
>>> [x // 2 for x in range(3)]
[0, 0, 1]

Set comprehension
>>> numbers = {x // 2 for x in range(3)}
>>> sorted(numbers)
[0, 1]

dict comprehensions
Lastly, we have dict comprehensions, which return a dict instead of a list or set.

Beyond the return type, the only real difference is that you need to return both a key and a value. The
following is a basic example:

>>> {x: x ** 2 for x in range(6)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

>>> {x: x ** 2 for x in range(6) if x % 2}
{1: 1, 3: 9, 5: 25}

Functional Programming – Readability Versus Brevity136

The funny thing is that you can mix these two, of course, for even more unreadable magic:

>>> {x ** 2: [y for y in range(x)] for x in range(5)}
{0: [], 1: [0], 4: [0, 1], 16: [0, 1, 2, 3], 9: [0, 1, 2]}

Obviously, you need to be careful with these. They can be very useful if used correctly, but the output
quickly becomes unreadable, even with proper whitespace.

Comprehension pitfalls
When using comprehensions, some care must be taken. Some types of operations are not as obvious
as you might expect. This time, we are looking for random numbers greater than 0.5:

>>> import random

>>> [random.random() for _ in range(10) if random.random() >= 0.5]
[0.5211948104577864, 0.650010512129705, 0.021427316545174158]

See that last number? It’s actually less than 0.5. This happens because the first and the last random
calls are actually separate calls and return different results.

One way to counter this is by creating the list separately from the filter:

>>> import random

>>> numbers = [random.random() for _ in range(10)]
>>> [x for x in numbers if x >= 0.5]
[0.715510247827078, 0.8426277505519564, 0.5071133900377911]

That obviously works, but it’s not all that pretty. So what other options are there? Well, there are a few
but the readability is a bit questionable, so these are not the solutions that I would recommend. It’s
good to see them at least once, however.

Here is a list comprehension within a list comprehension:

>>> import random

>>> [x for x in [random.random() for _ in range(10)] if x >= 0.5]

And here’s one that quickly becomes an incomprehensible list comprehension:

>>> import random

>>> [x for _ in range(10) for x in [random.random()] if x >= 0.5]

Since the output is a dictionary, the key needs to be hashable for the dict comprehension
to work. We covered hashing in Chapter 4, but the short version is that hash(key) needs
to return a consistent value for your object. That means that hashing mutable objects
such as lists is not possible.

Chapter 5 137

Caution is needed with these options as the double list comprehension actually works like a nested
for loop would, so it quickly generates a lot of results. To elaborate on this, consider:

>>> [(x, y) for x in range(3) for y in range(3, 5)]
[(0, 3), (0, 4), (1, 3), (1, 4), (2, 3), (2, 4)]

This effectively does the following:

>>> results = []
>>> for x in range(3):
... for y in range(3, 5):
... results.append((x, y))
...
>>> results
[(0, 3), (0, 4), (1, 3), (1, 4), (2, 3), (2, 4)]

These can be useful for some cases, but I would strongly recommend against nesting comprehensions
as this quickly results in unreadable code. Understanding what is happening is still useful, however,
so let’s look at one more example. The following list comprehension swaps the column and row
counts, so a 3 x 4 matrix becomes 4 x 3:

>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
...]

>>> reshaped_matrix = [
... [
... [y for x in matrix for y in x][i * len(matrix) + j]
... for j in range(len(matrix))
...]
... for i in range(len(matrix[0]))
...]

>>> import pprint

>>> pprint.pprint(reshaped_matrix, width=40)
[[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9],
 [10, 11, 12]]

Functional Programming – Readability Versus Brevity138

Even with the extra indentation, the list comprehension just isn’t all that readable. With four nested
loops, that is expectedly so, of course. There are rare cases where nested list comprehensions might
be justified, such as very basic matrix manipulation. In the general case, however, I would not rec-
ommend using nested comprehensions.

Next up, we will look at lambda functions, which can be combined with map and filter for short
convenient functions.

lambda functions
The lambda statement in Python is simply an anonymous function. Due to the syntax, it is slightly
more limited than regular functions, but a lot can be done through it. As always though, readability
counts, so generally it is a good idea to keep it as simple as possible. One of the more common use
cases is as the sort key for the sorted function:

>>> import operator

>>> values = dict(one=1, two=2, three=3)

>>> sorted(values.items())
[('one', 1), ('three', 3), ('two', 2)]

>>> sorted(values.items(), key=lambda item: item[1])
[('one', 1), ('two', 2), ('three', 3)]

>>> get_value = operator.itemgetter(1)
>>> sorted(values.items(), key=get_value)
[('one', 1), ('two', 2), ('three', 3)]

The first version sorts by key and the second sorts by the value. The last one shows an alternative
option using operator.itemgetter to generate a function that gets a specific item.

The regular (non-lambda) function wouldn’t be much more verbose but in these cases, a lambda
function is a very useful shorthand. For completeness, let’s look at both identical functions:

>>> key = lambda item: item[1]

>>> def key(item):
... return item[1]

Do note that PEP8 dictates that assigning a lambda to a variable is a bad idea
(https://peps.python.org/pep-0008/#programming-recommendations). And logically, it is. The idea
of an anonymous function is that it is just that—anonymous and without a name. If you are giving it
an identity, you should define it as a normal function.

In my opinion, the only valid use case for a lambda function is as an anonymous one-line argument
to a function such as sorted().

https://peps.python.org/pep-0008/#programming-recommendations

Chapter 5 139

The Y combinator

The Y combinator is probably the most famous example of the λ-calculus:𝑌𝑌 𝑌 𝜆𝜆𝜆𝜆. (𝜆𝜆𝜆𝜆. 𝑓𝑓𝑓𝑥𝑥𝑥𝑥))(𝜆𝜆𝜆𝜆. 𝑓𝑓𝑓𝑥𝑥𝑥𝑥))
All this looks very complicated, but that’s mostly because it uses the lambda calculus notation, which
is not all that difficult if you look beyond the special characters.

To illustrate, you should read this syntax, 𝜆𝜆𝜆𝜆. 𝑥𝑥2 , as an anonymous (lambda) function that takes x
as an input and returns 𝑥𝑥2 . In Python, this would be expressed almost exactly as it is in the original
lambda calculus, except for replacing 𝜆𝜆 with lambda and . with :, so it results in lambda x: x**2.

With some algebra (https://en.wikipedia.org/wiki/Fixed-point_combinator#Fixed-point_
combinators_in_lambda_calculus), the Y combinator can be reduced to 𝑌𝑌𝑌𝑌 = 𝑓𝑓𝑓𝑌𝑌𝑌𝑌) , or a function
that takes the 𝑓𝑓 function and applies it to itself. The λ-calculus notation of this function is as follows: 𝜆𝜆𝜆𝜆. 𝑓𝑓𝑓𝑥𝑥𝑥𝑥)

Here is the Python notation for the lambda functions:

Y = lambda f: lambda *args: f(Y(f))(*args)

Or the regular function version:

def Y(f):
 def y(*args):
 y_function = f(Y(f))
 return y_function(*args)
 return y

This all comes down to a function that accepts a function f which gets called with that function as an
argument using the Y combinator.

This might still be a bit unclear, so let’s look at an example that actually uses it:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> def factorial(combinator):
... def _factorial(n):
... if n:
... return n * combinator(n - 1)
... else:

This section can easily be skipped. It is mostly an example of the mathematical value of
the lambda statement.

https://en.wikipedia.org/wiki/Fixed-point_combinator#Fixed-point_combinators_in_lambda_calculus
https://en.wikipedia.org/wiki/Fixed-point_combinator#Fixed-point_combinators_in_lambda_calculus

Functional Programming – Readability Versus Brevity140

... return 1

... return _factorial

>>> Y(factorial)(5)
120

The following is the short version, where the power of the Y combinator becomes more apparent,
with a recursive anonymous function:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> Y(lambda c: lambda n: n and n * c(n - 1) or 1)(5)
120

Note that the n and n * c(n – 1) or 1 part is short for the if statement used in the longer version
of the function. Alternatively, this can be written using the Python ternary operator:

>>> Y = lambda f: lambda *args: f(Y(f))(*args)

>>> Y(lambda c: lambda n: n * c(n - 1) if n else 1)(5)
120

You might be wondering about the point of this entire exercise. You could easily write a factorial
function in regular Python that is shorter, easier and more idiomatic. So what is the point of the Y
combinator? The Y combinator allows us to make a non-recursive function execute in a recursive way.

More importantly, however, I think it is an interesting demonstration of the power of Python — how
you can implement something as fundamental as the lambda-calculus in a few lines of Python. I think
it has a certain kind of beauty in its implementation.

One final example of the Y combinator will be given by the definition of quicksort in a few lines:

>>> quicksort = Y(lambda f:
... lambda x: (
... f([item for item in x if item < x[0]])
... + [y for y in x if x[0] == y]
... + f([item for item in x if item > x[0]])
...) if x else [])

>>> quicksort([1, 3, 5, 4, 1, 3, 2])
[1, 1, 2, 3, 3, 4, 5]

While the Y combinator most likely doesn’t have much practical use in Python, it does show the power
of the lambda statement and how close Python is to the fundamental mathematics behind it. Essentially,
the difference is only in the notation and not in the functionality.

Chapter 5 141

Now that we know how to write our own lambda and functional functions, we will take a look at the
bundled functional functions in Python.

functools
In addition to the list/dict/set comprehensions, Python also has a few (more advanced) functions
that can be really convenient when coding functionally. The functools library is a collection of func-
tions that return callable objects. Some of these functions are used as decorators (we’ll cover more
about that in Chapter 6, Decorators – Enabling Code Reuse by Decorating), but the ones that we are going
to talk about are used as straight-up functions to make your life easier.

partial – Prefill function arguments
The partial function is really convenient for adding some default arguments to a function that you
use often but can’t (or don’t want to) redefine. With object-oriented code, you can usually work around
cases similar to these, but with procedural code, you will often have to repeat your arguments. Let’s
take the heapq functions from Chapter 4, Pythonic Design Patterns, as an example:

>>> import heapq

>>> heap = []
>>> heapq.heappush(heap, 1)
>>> heapq.heappush(heap, 3)
>>> heapq.heappush(heap, 5)
>>> heapq.heappush(heap, 2)
>>> heapq.heappush(heap, 4)
>>> heapq.nsmallest(3, heap)
[1, 2, 3]

Almost all of the heapq functions require a heap argument, so we are going to make a shortcut that
automatically fills the heap variable for us. This could easily be done with a regular function of course:

>>> def push(*args, **kwargs):
... return heapq.heappush(heap, *args, **kwargs)

There is an easier method, however. Python comes bundled with a function called functools.partial
that generates a function with pre-filled arguments:

>>> import functools
>>> import heapq

>>> heap = []
>>> push = functools.partial(heapq.heappush, heap)
>>> smallest = functools.partial(heapq.nsmallest, iterable=heap)

>>> push(1)

Functional Programming – Readability Versus Brevity142

>>> push(3)
>>> push(5)
>>> push(2)
>>> push(4)
>>> smallest(3)
[1, 2, 3]

With functools.partial we can automatically fill in positional and/or keyword arguments for us. So
a call to push(...) is automatically expanded to heapq.heappush(heap, ...).

Why should we use partial instead of writing a lambda argument? Well, it’s mostly about convenience,
but it also helps solve the late binding problem discussed in Chapter 3, Pythonic Syntax and Common
Pitfalls. Additionally, partial functions still behave somewhat similarly to the original function, which
means they still have the documentation available and can be pickled, whereas lambda statements cannot.

To illustrate the difference between lambda and functools.partial, look at the following example:

>>> lambda_push = lambda x: heapq.heappush(heap, x)

>>> heapq.heappush
<built-in function heappush>
>>> push
functools.partial(<built-in function heappush>, [1, 2, 5, 3, 4])
>>> lambda_push
<function <lambda> at ...>

>>> heapq.heappush.__doc__
'Push item onto heap, maintaining the heap invariant.'
>>> push.__doc__
'partial(func, *args, **keywords) - new function ...'
>>> lambda_push.__doc__

Note how the lambda_push.__doc__ doesn’t return anything and the lambda only has a very unhelpful
<function <lambda> ...> representation string. This is one of the reasons that functools.partial
is far more convenient to use in practice. It shows the documentation from the reference function;
the representation string shows exactly what it is doing and it can be pickled with no modification.

In Chapter 6, Decorators – Enabling Code Reuse by Decorating (specifically, in the section about functools.
wraps), we will see how we can make functions copy attributes from other functions in a similar fash-
ion to how functools.partial copies the documentation.

The pickle module in Python allows serialization of many complex Python objects, but
not all by default. The lambda functions have no defined pickle method by default, but
this can be worked around by defining your own lambda-pickle method in copy_reg.
dispatch_table. An easy way to achieve this is by using the dill library, which contains
a whole range of pickle helpers.

Chapter 5 143

reduce – Combining pairs into a single result
The reduce function implements a mathematical technique called folding. It applies a pair of the
previous result and the next item in the given list to the function that is passed.

The reduce function is supported by many languages but in most cases using different names such as
curry, fold, accumulate, or aggregate. Python has actually supported reduce for a very long time, but
since Python 3, it has been moved from the global scope to the functools library. Some code can be
simplified beautifully using the reduce statement; whether it’s readable or not is debatable, however.

Implementing a factorial function
One of the most used examples of reduce is for calculating factorials, which is indeed quite simple:

>>> import operator
>>> import functools

>>> functools.reduce(operator.mul, range(1, 5))
24

Internally, the reduce function will do the following:

>>> from operator import mul

>>> mul(mul(mul(1, 2), 3), 4)
24

Or, creating a reduce function that automatically loops would look like:

>>> import operator

>>> def reduce(function, iterable):
... print(f'iterable={iterable}')
... # Fetch the first item to prime 'result'
... result, *iterable = iterable
...
... for item in iterable:
... old_result = result
... result = function(result, item)
... print(f'{old_result} * {item} = {result}')
...

The preceding code uses operator.mul instead of lambda a, b: a * b. While they
produce the same results, the former can be much faster.

Functional Programming – Readability Versus Brevity144

... return result

>>> iterable = list(range(1, 5))
>>> iterable
[1, 2, 3, 4]

>>> reduce(operator.mul, iterable)
iterable=[1, 2, 3, 4]
1 * 2 = 2
2 * 3 = 6
6 * 4 = 24
24

Using the form a, *b = c, we can split an iterable between the first item and the remaining ones.
Which means that a, *b = [1, 2, 3] will result in a=1, b=[2, 3].

In this example, this means that we start by priming the result variable so it contains the initial value
and continue to call the function with the current result and the next item until the iterable is exhausted.

Effectively, this comes down to:

1.	 iterable = [1, 2, 3, 4]

2.	 result, *iterable = iterable

This gives us result=1 and iterable = [2, 3, 4].

3.	 Next up is the first call to operator.mul with the arguments result and item, which is stored
in result. This is the big difference between reduce and map. Whereas map applies the func-
tion only to the given item, reduce applies both the previous result and the item to the func-
tion. So effectively, it runs result = operator.mul(result, item). Filling in the variables gives us
result = 1 * 2 = 2.

4.	 The next call effectively repeats the process, but because of the previous call our initial result
value is now 2 and the next item is 3: result = 2 * 3 = 6.

5.	 We repeat this one more time because our iterable is now exhausted. The last call will run
result = 6 * 4 = 24.

Processing trees
Trees are a case where the reduce function really shines. Remember the one-line tree definition using
a defaultdict from Chapter 4, Pythonic Design Patterns. What would be a good way to access the keys
inside of that object? Given a path of a tree item, we can use reduce to easily access the items inside.
First, let’s build a tree:

>>> import json
>>> import functools
>>> import collections

Chapter 5 145

>>> def tree():
... return collections.defaultdict(tree)

Build the tree:
>>> taxonomy = tree()
>>> reptilia = taxonomy['Chordata']['Vertebrata']['Reptilia']
>>> reptilia['Squamata']['Serpentes']['Pythonidae'] = [
... 'Liasis', 'Morelia', 'Python']

The actual contents of the tree
>>> print(json.dumps(taxonomy, indent=4))
{
 "Chordata": {
 "Vertebrata": {
 "Reptilia": {
 "Squamata": {
 "Serpentes": {
 "Pythonidae": [
 "Liasis",
 "Morelia",
 "Python"
]
 }
 }
 }
 }
 }
}

First, we created a tree structure by using a recursive definition with collections.defaultdict. This
allows us to nest the tree many levels deep without the need for explicit definitions.

To provide somewhat readable output, we use the json module to export the tree (which is effectively
a list of nested dicts).

Now it’s time for the lookup:

Let's build the lookup function
>>> import operator

>>> def lookup(tree, path):
... # Split the path for easier access
... path = path.split('.')

Functional Programming – Readability Versus Brevity146

...

... # Use 'operator.getitem(a, b)' to get 'a[b]'

... # And use reduce to recursively fetch the items

... return functools.reduce(operator.getitem, path, tree)

>>> path = 'Chordata.Vertebrata.Reptilia.Squamata.Serpentes'
>>> dict(lookup(taxonomy, path))
{'Pythonidae': ['Liasis', 'Morelia', 'Python']}

The path we wish to get
>>> path = 'Chordata.Vertebrata.Reptilia.Squamata'
>>> lookup(taxonomy, path).keys()
dict_keys(['Serpentes'])

Now we have a very simple way of walking through the tree structure recursively in just a few short
lines of code.

Reducing in the other direction
People that are familiar with functional programming might wonder why Python only has the equiv-
alent of fold_left and no fold_right. You honestly don’t really need both of them as you can easily
reverse the operation. To be fair, however, the same can be said of reduce as well since it is trivial to
implement, as we have seen in the previous paragraph.

The regular reduce—the fold left operation:

fold_left = functools.reduce(
 lambda x, y: function(x, y),
 iterable,
 initializer,
)

The reverse—the fold right operation:

fold_right = functools.reduce(
 lambda x, y: function(y, x),
 reversed(iterable),
 initializer,
)

There may not be too many useful cases for reduce, but there are definitely a few. In particular, tra-
versing recursive data structures is far more easily done using reduce, since it would otherwise involve
more complicated loops or recursive functions.

Now that we have seen a few of the functional functions in Python, it is time to take a look at a few
methods that focus on iterables instead.

Chapter 5 147

itertools
The itertools library contains iterable functions inspired by those available in functional languag-
es. All of these are iterable and have been constructed in such a way that only a minimal amount of
memory is required to process even the largest of datasets. While you can easily write most of these
functions yourself, I would still recommend using the ones available in the itertools library. These
are all fast, memory efficient, and—perhaps more importantly—tested. We’re going to explore a few
now: accumulate, chain, compress, dropwhile/takewhile, count, and groupby.

accumulate – reduce with intermediate results
The accumulate function is very similar to the reduce function, which is why some languages actually
have accumulate instead of reduce as the folding operator.

The major difference between the two is that the accumulate function returns the immediate results.
This can be useful when summing the results of a company’s sales, for example:

>>> import operator
>>> import itertools

Sales per month
>>> months = [10, 8, 5, 7, 12, 10, 5, 8, 15, 3, 4, 2]
>>> list(itertools.accumulate(months, operator.add))
[10, 18, 23, 30, 42, 52, 57, 65, 80, 83, 87, 89]

It should be noted that the operator.add function is actually optional in this case as the default
behavior of accumulate is to sum the results. In some other languages and libraries, this function is
sometimes called cumsum (cumulative sum).

chain – Combining multiple results
The chain function is a simple but useful function that combines the results of multiple iterators.
Very simple but also very useful if you have multiple lists, iterators, and so on—just combine them
with a simple chain:

>>> import itertools

>>> a = range(3)
>>> b = range(5)
>>> list(itertools.chain(a, b))
[0, 1, 2, 0, 1, 2, 3, 4]

It should be noted that there is a small variant of chain that accepts an iterable containing iterables,
namely chain.from_iterable. This works nearly identically, except for the fact that you need to pass
along an iterable item instead of passing a list of arguments.

Functional Programming – Readability Versus Brevity148

Your initial response might be that this can be achieved simply by unpacking the (*args) tuple, as we
will see in Chapter 7, Generators and Coroutines – Infinity, One Step at a Time. However, this is not always
the case. For now, just remember that if you have an iterable containing iterables, the easiest method
is to use itertools.chain.from_iterable. The usage is as you would expect:

>>> import itertools

>>> iterables = [range(3), range(5)]
>>> list(itertools.chain.from_iterable(iterables))
[0, 1, 2, 0, 1, 2, 3, 4]

compress – Selecting items using a list of Booleans
The compress function is one of those that you won’t need too often, but it can be very useful when you
do need it. It applies a Boolean filter to your iterable, making it return only the elements you actually
need. The most important thing to note here is that compress executes lazy and that compress will
stop if either the data is exhausted, or no elements are being fetched anymore. So, even with infinite
ranges, it works without a hitch:

>>> import itertools

>>> list(itertools.compress(range(1000), [0, 1, 1, 1, 0, 1]))
[1, 2, 3, 5]

The compress function can be useful if you want to make a filtered view of a larger iterable without
modifying the original iterable. If calculating the filter is a heavy operation and the actual values inside
the iterable can change, this can be very useful. To build on the example above:

>>> primes = [0, 0, 1, 1, 0, 1, 0, 1]
>>> odd = [0, 1, 0, 1, 0, 1, 0, 1]
>>> numbers = ['zero', 'one', 'two', 'three', 'four', 'five']

Primes:
>>> list(itertools.compress(numbers, primes))
['two', 'three', 'five']

Odd numbers
>>> list(itertools.compress(numbers, odd))
['one', 'three', 'five']

Odd primes
>>> list(itertools.compress(numbers, map(all, zip(odd, primes))))
['three', 'five']

Chapter 5 149

In this case, both the filters and the iterable are predefined and very small. But if you have a large set
that takes a lot of time to compute (or fetch from an external resource), this method can be useful to
quickly filter without having to recalculate everything, especially since the filters can be combined
easily using a combination of map, all, and zip. You can use any instead of all if you want to see the
results from both.

dropwhile/takewhile – Selecting items using a function
The dropwhile function will drop all results until a given predicate evaluates to true. This can be useful
if you are waiting for a device to finally return an expected result. That’s a bit difficult to demonstrate
in a book, so we only have an example with the basic usage—waiting for a number greater than 3:

>>> import itertools

>>> list(itertools.dropwhile(lambda x: x <= 3, [1, 3, 5, 4, 2]))
[5, 4, 2]

As you might expect, the takewhile function is the reverse of this. It will simply return all rows until
the predicate turns false:

>>> import itertools

>>> list(itertools.takewhile(lambda x: x <= 3, [1, 3, 5, 4, 2]))
[1, 3]

Adding the results from dropwhile and takewhile will give you all the elements again as they are
each other’s opposites.

count – Infinite range with decimal steps
The count function is quite similar to the range function, but there are two significant differences:

•	 The first is that this range is infinite, so don’t even try to do list(itertools.count()). You’ll
definitely run out of memory immediately and it might even freeze your system.

•	 The second difference is that, unlike the range function, you can actually use floating-point
numbers here, so there is no need for whole/integer numbers.

Since listing the entire range will kill our Python interpreter, we’ll limit the results using the itertools.
islice function, which is similar to regular slicing (e.g. some_list[10:20]) but works on infinitely
large inputs as well.

The infinitely large functions such as count are not sliceable because they are infinite
generators, a topic we will discuss in Chapter 7, Generators and Coroutines – Infinity, One
Step at a Time.

Functional Programming – Readability Versus Brevity150

The count function takes two optional parameters: a start parameter, which defaults to 0, and a step
parameter, which defaults to 1:

>>> import itertools

>>> list(itertools.islice(itertools.count(), 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(itertools.islice(itertools.count(), 5, 10, 2))
[5, 7, 9]

>>> list(itertools.islice(itertools.count(10, 2.5), 5))
[10, 12.5, 15.0, 17.5, 20.0]

groupby – Grouping your sorted iterable
The groupby function is a really convenient function for grouping results. It allows you to convert a
list of objects into a list of groups given a specific grouping function.

A basic example of groupby usage:

>>> import operator
>>> import itertools

>>> words = ['aa', 'ab', 'ba', 'bb', 'ca', 'cb', 'cc']

Gets the first element from the iterable
>>> getter = operator.itemgetter(0)

>>> for group, items in itertools.groupby(words, key=getter):
... print(f'group: {group}, items: {list(items)}')
group: a, items: ['aa', 'ab']
group: b, items: ['ba', 'bb']
group: c, items: ['ca', 'cb', 'cc']

We can see here how the words are grouped by the first character with very little effort. This can be
a really convenient utility for grouping employees by department in a user interface, for example.

There are some important things to keep in mind when using this function, however:

•	 The input needs to be sorted by the group parameter. Otherwise, every repeated group will
be added as a separate group.

•	 The results are available for use only once. So, after processing a group, it will not be available
anymore. If you wish to iterate the results twice, wrap the results in list() or tuple().

Chapter 5 151

Here is an example of groupby including the side effects of not sorting:

>>> import itertools

>>> raw_items = ['spam', 'eggs', 'sausage', 'spam']

>>> def keyfunc(group):
... return group[0]

>>> for group, items in itertools.groupby(raw_items, key=keyfunc):
... print(f'group: {group}, items: {list(items)}')
group: s, items: ['spam']
group: e, items: ['eggs']
group: s, items: ['sausage', 'spam']

>>> raw_items.sort()
>>> for group, items in itertools.groupby(raw_items, key=keyfunc):
... print(f'group: {group}, items: {list(items)}')
group: e, items: ['eggs']
group: s, items: ['sausage', 'spam', 'spam']

The groupby function is definitely a very useful one that you can use in a wide variety of scenarios.
Grouping output for a user, for example, can make results much easier to read.

Exercises
Now that you know how to use some of the functional programming features in Python, perhaps you
can try writing the quicksort algorithm as (a collection of) regular functions instead of the hard-to-
read Y-combinator version.

You can also try and write a groupby function yourself that isn’t affected by sorting and returns lists
of results that can be used multiple times rather than just once.

Summary
Functional programming is a paradigm that scares many people initially, but really it shouldn’t. The
most important difference between functional and procedural programming (within Python) is the
mindset. Everything is executed using simple functions that depend only on their input variables and
don’t produce any side effects outside of the local scope.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Functional Programming – Readability Versus Brevity152

The main advantages are:

•	 Because there are fewer side-effects and code influencing each other, you will get fewer bugs.
•	 Because the functions always have a predictable input and output, they can be easily paral-

lelized across multiple processors or even multiple machines.

This chapter covered the basics of functional programming within Python and a tiny portion of the
mathematics behind it. In addition to this, some of the many useful libraries that can be used in a
very convenient way by using functional programming were covered.

The most important takeaways should be the following:

•	 Lambda statements are not inherently bad, but it would be best to make them use variables
from the local scope only, and they should not be longer than a single line.

•	 Functional programming can be very powerful, but has a tendency to become unreadable.
Care must be taken.

•	 list/dict/set comprehensions are very useful but have a tendency to quickly become un-
readable. In particular, nested comprehensions are hard to read in nearly all cases and should
mostly be avoided.

Ultimately, it is a matter of preference. For the sake of readability, I recommend limiting the usage of
the functional paradigm when there is no obvious benefit. Having said that, when executed correctly,
it can be a thing of beauty.

Next up are decorators – methods to wrap your functions and classes in other functions and/or classes
to modify their behavior and extend their functionality.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

6
Decorators – Enabling Code
Reuse by Decorating

In this chapter, you are going to learn about Python decorators. The previous chapters have already
shown the usage of a few decorators, but you will now find out more about them. Decorators are es-
sentially function/class wrappers that can be used to modify the input, output, or even the function/
class itself before executing it. This type of wrapping can just as easily be achieved by having a separate
function that calls the inner function, or via inheriting small feature classes commonly called mixins.
As is the case with many Python constructs, decorators are not the only way to reach the goal but are
definitely convenient in many cases.

While you can get along fine without knowing too much about decorators, they give you a lot of “re-
use power” and are therefore used heavily in framework libraries such as web frameworks. Python
actually comes bundled with some useful decorators, most notably the @property, @classmethod,
and @staticmethod decorators.

There are, however, some particularities to take note of: wrapping a function creates a new func-
tion and makes it harder to reach the inner function and its properties. One example of this is the
help(function) functionality of Python; by default, you, your editor, and your documentation gen-
erator can lose function properties such as the help text and the module the function exists in.

This chapter will cover the usage of both function and class decorators, as well as the intricate details
you need to know when decorating functions within classes.

The following are the topics covered:

•	 Decorating functions
•	 Decorating class functions
•	 Decorating classes
•	 Useful decorators in the Python Standard Library

Decorators – Enabling Code Reuse by Decorating154

Decorating functions
Decorators are functions or classes that wrap other functions and/or classes. In its most basic form,
you can view a regular function call as add(1, 2), which transforms into decorator(add(1, 2))
when applying a decorator. There’s slightly more to it, but we will come to that later. Let’s implement
that decorator() function:

>>> def decorator(function):
... return function

>>> def add(a, b):
... return a + b

>>> add = decorator(add)

To make the syntax easier to use, Python has a special syntax for this case. So, instead of adding a
line such as the preceding one below the function, you can decorate a function using the @ operator
as a shortcut:

>>> @decorator
... def add(a, b):
... return a + b

This example shows the simplest and most useless decorator you can get: simply returning the input
function and doing nothing else.

From this, you might wonder what the use of a decorator is and what is so special about them. Some
possibilities of decorators are:

•	 Registering a function/class
•	 Modifying function/class input
•	 Modifying function/class output
•	 Logging function calls/class instantiations

All of these will be covered later in this chapter, but let’s start simple for now.

Our first decorator will show how we can modify both the input and the output of a function call.
Additionally, it adds some logging calls so we can see what is happening:

>>> import functools

>>> def decorator(function):
... # This decorator makes sure we mimic the wrapped function
... @functools.wraps(function)
... def _decorator(a, b):
... # Pass the modified arguments to the function

Chapter 6 155

... result = function(a, b + 5)

...

... # Log the function call

... name = function.__name__

... print(f'{name}(a={a}, b={b}): {result}')

...

... # Return a modified result

... return result + 4

...

... return _decorator

>>> @decorator
... def func(a, b):
... return a + b

>>> func(1, 2)
func(a=1, b=2): 8
12

This should show you how powerful decorators can be. We can modify, add, and/or remove arguments.
We can modify the return value or even call a completely different function if we want to. And we
can easily log all behavior if needed, which can be very useful when debugging. Instead of return
function(...), we can return something completely different if we wish.

More extensive examples of how to log using decorators are covered in Chapter 12, Debugging – Solving
the Bugs.

Generic function decorators
The decorator we wrote earlier explicitly used the a and b arguments so it only works with functions
that have a signature very similar to taking a and b arguments. If we want to make the generator more
generic, we can replace a, b with *args and **kwargs to get the arguments and keyword arguments,
respectively. That introduces a new problem, however. We either need to make sure to only use regular
arguments or keyword arguments, or the checking will become increasingly difficult:

>>> import functools

>>> def decorator(function):
... @functools.wraps(function)
... def _decorator(*args, **kwargs):
... a, b = args
... return function(a, b + 5)
...

Decorators – Enabling Code Reuse by Decorating156

... return _decorator

>>> @decorator
... def func(a, b):
... return a + b

>>> func(1, 2)
8

>>> func(a=1, b=2)
Traceback (most recent call last):
...
ValueError: not enough values to unpack (expected 2, got 0)

As can be seen, in this case, keyword arguments are broken. To work around this issue, we have a
few different methods. We can change the arguments to positional-only or keyword-only arguments:

>>> def add(a, b, /):
... return a + b

>>> add(a=1, b=2)
Traceback (most recent call last):
...
TypeError: add() got some positional-only arguments passed ...

>>> def add(*, a, b):
... return a + b

>>> add(1, 2)
Traceback (most recent call last):
...
TypeError: add() takes 0 positional arguments but 2 were given

Or we can make Python automatically take care of this by fetching the signature and binding it to the
given arguments:

>>> import inspect
>>> import functools

This code uses positional-only arguments (the / as the last function argument), which
have been supported since Python 3.8. For older versions, you can emulate this behavior
using *args instead of explicit arguments.

Chapter 6 157

>>> def decorator(function):
... # Use the inspect module to get function signature. More
... # about this in the logging chapter
... signature = inspect.signature(function)
...
... @functools.wraps(function)
... def _decorator(*args, **kwargs):
... # Bind the arguments to the given *args and **kwargs.
... # If you want to make arguments optional, use
... # signature.bind_partial instead.
... bound = signature.bind(*args, **kwargs)
...
... # Apply the defaults so b is always filled
... bound.apply_defaults()
...
... # Extract the filled arguments. If the number of
... # arguments is still expected to be fixed, you can use
... # tuple unpacking: 'a, b = bound.arguments.values()'
... a = bound.arguments['a']
... b = bound.arguments['b']
... return function(a, b + 5)
...
... return _decorator

>>> @decorator
... def func(a, b=3):
... return a + b

>>> func(1, 2)
8

>>> func(a=1, b=2)
8

>>> func(a=1)
9

By using this method, the function has become a lot more versatile. We could easily add arguments
to the add function and still be sure that the decorator functions.

Decorators – Enabling Code Reuse by Decorating158

The importance of functools.wraps
Whenever you are writing a decorator, always be sure to add functools.wraps to wrap the inner
function. Without wrapping it, you will lose all properties from the original function, which can lead
to confusion and unexpected behavior. Take a look at the following code without functools.wraps:

>>> def decorator(function):
... def _decorator(*args, **kwargs):
... return function(*args, **kwargs)
...
... return _decorator

>>> @decorator
... def add(a, b):
... '''Add a and b'''
... return a + b

>>> help(add)
Help on function _decorator in module ...:
<BLANKLINE>
_decorator(*args, **kwargs)
<BLANKLINE>

>>> add.__name__
'_decorator'

Now, our add method has no documentation anymore and the name is gone. It has been renamed
_decorator. Since we are indeed calling _decorator, this is understandable, but it’s very inconvenient
for code that relies on this information. Now we will try the same code with a minor difference; we
will use functools.wraps:

>>> import functools

>>> def decorator(function):
... @functools.wraps(function)
... def _decorator(*args, **kwargs):
... return function(*args, **kwargs)
...
... return _decorator

>>> @decorator
... def add(a, b):
... '''Add a and b'''

Chapter 6 159

... return a + b

>>> help(add)
Help on function add in module ...:
<BLANKLINE>
add(a, b)
 Add a and b
<BLANKLINE>

>>> add.__name__
'add'

Without any further changes, we now have documentation and the expected function name. The
working of functools.wraps is nothing magical; it copies and updates several attributes. Specifically,
the following attributes are copied:

•	 __doc__

•	 __name__

•	 __module__

•	 __annotations__

•	 __qualname__

Also, __dict__ is updated using _decorator.__dict__.update(add.__dict__), and a new property
called __wrapped__ is added, which contains the original function (add, in this case). The actual wraps
function is available in the functools.py file of your Python distribution.

Chaining or nesting decorators
Since we’re wrapping functions, there is nothing stopping us from adding multiple wrappers. The
order is important to keep in mind, though, because the decorators are initialized starting from the
inside, but are called starting from the outside. Additionally, the teardown starts from the inside again:

>>> import functools

>>> def track(function=None, label=None):
... # Trick to add an optional argument to our decorator
... if label and not function:
... return functools.partial(track, label=label)
...
... print(f'initializing {label}')
...
... @functools.wraps(function)
... def _track(*args, **kwargs):
... print(f'calling {label}')

Decorators – Enabling Code Reuse by Decorating160

... function(*args, **kwargs)

... print(f'called {label}')

...

... return _track

>>> @track(label='outer')
... @track(label='inner')
... def func():
... print('func')
initializing inner
initializing outer

>>> func()
calling outer
calling inner
func
called inner
called outer

As you can see in the output, the decorators are called from outer to inner before running the function
and running from inner to outer when processing the results.

Registering functions using decorators
We have seen how calls can be tracked, arguments can be modified, and return values can be changed.
Now it is time to see how we can use decorators to register a function that can be useful for registering
plugins, callbacks, and so on.

One situation where this is very useful is a user interface. Let us assume we have a GUI that has a
button that can be clicked. By creating a system that can register callbacks, we can make the button
fire a “clicked” signal and connect functions to that event.

To create an event manager like that, we will now create a class that keeps track of all of the registered
functions and allows the firing of events:

>>> import collections

>>> class EventRegistry:
... def __init__(self):
... self.registry = collections.defaultdict(list)
...
... def on(self, *events):
... def _on(function):
... for event in events:

Chapter 6 161

... self.registry[event].append(function)

... return function

...

... return _on

...

... def fire(self, event, *args, **kwargs):

... for function in self.registry[event]:

... function(*args, **kwargs)

>>> events = EventRegistry()

>>> @events.on('success', 'error')
... def teardown(value):
... print(f'Tearing down got: {value}')

>>> @events.on('success')
... def success(value):
... print(f'Successfully executed: {value}')

>>> events.fire('non-existing', 'nothing to see here')
>>> events.fire('error', 'Oops, some error here')
Tearing down got: Oops, some error here
>>> events.fire('success', 'Everything is fine')
Tearing down got: Everything is fine
Successfully executed: Everything is fine

Firstly, we create the EventRegistry class to handle all of the events and store all the callbacks. After
that, we register a few functions with the registry. Lastly, we fire a few events to see if it works as
expected.

While this example is rather basic, this pattern can be applied to many scenarios: handling events
for a web server, letting plugins register themselves for events, letting plugins register themselves in
an application, and so on.

Memoization using decorators
Memoization is a simple trick for remembering results to make code run a lot faster in specific sce-
narios. The basic trick here is to store a mapping of the input and expected output so that you have
to calculate a value only once. One of the most common examples of this technique is the naïve
(recursive) Fibonacci function.

Decorators – Enabling Code Reuse by Decorating162

I will now show how you can build a very basic memoization function decorator, and how it can be used:

>>> import functools

>>> def memoize(function):
... # Store the cache as attribute of the function so we can
... # apply the decorator to multiple functions without
... # sharing the cache.
... function.cache = dict()
...
... @functools.wraps(function)
... def _memoize(*args):
... # If the cache is not available, call the function
... # Note that all args need to be hashable
... if args not in function.cache:
... function.cache[args] = function(*args)
... return function.cache[args]
...
... return _memoize

The memoize decorator has to be used without arguments and the cache can be introspected as well:

>>> @memoize
... def fibonacci(n):
... if n < 2:
... return n
... else:
... return fibonacci(n - 1) + fibonacci(n - 2)

>>> for i in range(1, 7):
... print(f'fibonacci {i}: {fibonacci(i)}')
fibonacci 1: 1
fibonacci 2: 1

The Fibonacci sequence starts from 0 or 1 (depending how you look at it) and each consec-
utive number consists of the sum of the previous two numbers. To illustrate the pattern
starting from the additions of the initial 0 and 1:

1 = 0 + 1
2 = 1 + 1
3 = 1 + 2
5 = 2 + 3
8 = 3 + 5

Chapter 6 163

fibonacci 3: 2
fibonacci 4: 3
fibonacci 5: 5
fibonacci 6: 8

>>> fibonacci.__wrapped__.cache
{(1,): 1, (0,): 0, (2,): 1, (3,): 2, (4,): 3, (5,): 5, (6,): 8}

When arguments are given, it breaks because the decorator is not built to support them:

It breaks keyword arguments:
>>> fibonacci(n=2)
Traceback (most recent call last):
...
TypeError: _memoize() got an unexpected keyword argument 'n'

Additionally, the arguments need to be hashable to work with this implementation:

Unhashable types don't work as dict keys:
>>> fibonacci([123])
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

While examples with a small n will work easily without memoization, for larger numbers it will run
for an extremely long time. For n=2, the function would execute fibonacci(n - 1) and fibonacci(n
- 2) recursively, resulting in exponential time complexity. For n=30, the Fibonacci function would
already be called 2,692,537 times; at n=50, it will stall or even crash your system.

Without memoization, the call stack becomes a tree that very quickly grows. To illustrate, let’s assume
we want to calculate fibonacci(4).

First, fibonacci(4) calls fibonacci(3) and fibonacci(2). There’s nothing special here.

Now, fibonacci(3) calls fibonacci(2) and fibonacci(1). You will notice that we got fibonacci(2)
for the second time now. fibonacci(4) also executed it.

That split with each call is exactly the problem. Each function call starts two new function calls, which
means it doubles for every call. And those double again and again until we have reached the end of
the calculation.

Because the memoized version caches the results and only needs to calculate every number once, it
doesn’t even break a sweat and only needs to execute 31 times for n=30.

This decorator also shows how a context can be attached to a function itself. In this case, the cache
property becomes an attribute of the internal (wrapped fibonacci) function so that an extra memoize
decorator for a different object won’t clash with any of the other decorated functions.

Decorators – Enabling Code Reuse by Decorating164

Note, however, that implementing the memoization function yourself is generally not that useful any-
more since Python introduced lru_cache (least recently used cache) in Python 3.2. The lru_cache
is similar to the preceding memoize decorator function but a bit more advanced. It maintains a fixed
cache size (128 by default) to save memory, and stores statistics so you can check whether the cache
size should be increased.

If you are only looking for statistics and have no need for caching, you can also set the maxsize to 0. Or
if you want to forego the LRU algorithm and save everything, you can pass None as maxsize. With a fixed
size, the lru_cache will keep only the most recently accessed items and discard the oldest once it is full.

In most cases, I would suggest using lru_cache over your own decorator, but if you always need to
store all items or if you need to process the keys before storing them, you can always roll your own.
At the very least, it is useful to know how to write a decorator like this.

To demonstrate how lru_cache works internally, we will calculate fibonacci(100), which would
keep our computer busy until the end of the universe without any caching. Moreover, to make sure
that we can actually see how many times the fibonacci function is being called, we’ll add an extra
decorator that keeps track of the count, as follows:

>>> import functools

Create a simple call counting decorator
>>> def counter(function):
... function.calls = 0
... @functools.wraps(function)
... def _counter(*args, **kwargs):
... function.calls += 1
... return function(*args, **kwargs)
...
... return _counter

Create a LRU cache with size 3
>>> @functools.lru_cache(maxsize=3)
... @counter
... def fibonacci(n):
... if n < 2:
... return n
... else:
... return fibonacci(n - 1) + fibonacci(n - 2)

>>> fibonacci(100)
354224848179261915075

The LRU cache offers some useful statistics

Chapter 6 165

>>> fibonacci.cache_info()
CacheInfo(hits=98, misses=101, maxsize=3, currsize=3)

The result from our counter function which is now wrapped both by
our counter and the cache
>>> fibonacci.__wrapped__.__wrapped__.calls
101

You might wonder why we need only 101 calls with a cache size of 3. That’s because we recursively
require only n - 1 and n - 2, so we have no need for a larger cache in this case. If your cache is not
performing as expected, the cache size might be the culprit.

Additionally, this example shows the usage of two decorators for a single function. You can see these
as the layers of an onion. When calling fibonacci, the execution order is as follows:

1.	 functools.lru_cache

2.	 counter

3.	 fibonacci

Returning the values works in the reverse order, of course; fibonacci returns its value to counter,
which passes the value along to lru_cache.

Decorators with (optional) arguments
The previous examples mostly used simple decorators without any arguments. As you have already
seen with lru_cache, decorators can accept arguments as well since they are just regular functions,
but this adds an extra layer to a decorator. This means that we need to check the decorator arguments
to see if they are the decorated method or a regular argument. The only caveat is that the optional
argument should not be callable. If the argument has to be callable, you will need to pass it as a key-
word argument instead.

The upcoming code shows a decorator that has an optional (keyword) argument to the decorator:

>>> import functools

>>> def add(function=None, add_n=0):
... # function is not callable so it's probably 'add_n'
... if not callable(function):
... # Test to make sure we don't pass 'None' as 'add_n'
... if function is not None:
... add_n = function
... return functools.partial(add, add_n=add_n)
...
... @functools.wraps(function)
... def _add(n):
... return function(n) + add_n

Decorators – Enabling Code Reuse by Decorating166

...

... return _add

>>> @add
... def add_zero(n):
... return n

>>> @add(1)
... def add_one(n):
... return n

>>> @add(add_n=2)
... def add_two(n):
... return n

>>> add_zero(5)
5

>>> add_one(5)
6

>>> add_two(5)
7

This decorator uses the callable() test to see whether the argument is a callable such as a function.
This method works in many cases, but if for some reason your argument to the add() decorator is
callable, this will break because it will be called instead of the function.

Whenever you have the choice available, I recommend that you either have a decorator with arguments
or without them. Having optional arguments makes the flow of the function less obvious and slightly
harder to debug when issues arise.

Creating decorators using classes
Similar to how we create regular function decorators, it is also possible to create decorators using
classes instead. As is always the case with classes, this makes storing data, inheriting, and reuse more
convenient than with functions. After all, a function is just a callable object and a class can implement
the callable interface as well. The following decorator works similarly to the debug decorator we used
earlier, but uses a class instead of a regular function:

>>> import functools

>>> class Debug(object):

Chapter 6 167

...

... def __init__(self, function):

... self.function = function

... # functools.wraps for classes

... functools.update_wrapper(self, function)

...

... def __call__(self, *args, **kwargs):

... output = self.function(*args, **kwargs)

... name = self.function.__name__

... print(f'{name}({args!r}, {kwargs!r}): {output!r}')

... return output

>>> @Debug
... def add(a, b=0):
... return a + b
...

>>> output = add(3)
add((3,), {}): 3

>>> output = add(a=4, b=2)
add((), {'a': 4, 'b': 2}): 6

The only notable difference between functions and classes is that functools.wraps is now replaced
with functools.update_wrapper in the __init__ method.

Since class methods have a self argument in addition to the regular arguments, you might wonder
whether decorators will function in that scenario. The next section will cover decorator usage within
classes.

Decorating class functions
Decorating class functions is very similar to regular functions, but you need to be aware of the required
first argument, self—the class instance. You have most likely already used a few class function dec-
orators. The classmethod, staticmethod, and property decorators, for example, are used in many
different projects. To explain how all this works, we will build our own versions of the classmethod,
staticmethod, and property decorators. First, let’s look at a simple decorator for class functions to
demonstrate the difference from regular decorators:

>>> import functools

>>> def plus_one(function):

Decorators – Enabling Code Reuse by Decorating168

... @functools.wraps(function)

... def _plus_one(self, n, *args):

... return function(self, n + 1, *args)

...

... return _plus_one

>>> class Adder(object):
... @plus_one
... def add(self, a, b=0):
... return a + b

>>> adder = Adder()
>>> adder.add(0)
1
>>> adder.add(3, 4)
8

As is the case with regular functions, the class function decorator now gets passed along self as the
instance. Nothing unexpected!

Skipping the instance – classmethod and staticmethod
The difference between a classmethod and a staticmethod is fairly simple. The classmethod passes a
class object instead of a class instance (self), and staticmethod skips both the class and the instance
entirely. This effectively makes staticmethod very similar to a regular function outside of a class.

Before we recreate classmethod and staticmethod, we need to take a look at the expected behavior
of these methods:

>>> import pprint

>>> class Spam(object):
... def some_instancemethod(self, *args, **kwargs):
... pprint.pprint(locals(), width=60)
...
... @classmethod
... def some_classmethod(cls, *args, **kwargs):
... pprint.pprint(locals(), width=60)
...

In the following examples, we will use pprint.pprint(... width=60) to account for
the width of the book. Additionally, locals() is a Python built-in that shows all local
variables. Similarly, a globals() function is also available.

Chapter 6 169

... @staticmethod

... def some_staticmethod(*args, **kwargs):

... pprint.pprint(locals(), width=60)

Create an instance so we can compare the difference between
executions with and without instances easily
>>> spam = Spam()

The following examples will use the example above to illustrate the difference between a regular
(class instance) method, a classmethod, and a staticmethod. Be wary of the difference between spam
(lowercase) the instance and Spam (capitalized) the class:

With an instance (note the lowercase spam)
>>> spam.some_instancemethod(1, 2, a=3, b=4)
{'args': (1, 2),
 'kwargs': {'a': 3, 'b': 4},
 'self': <__main__.Spam object at ...>}

Without an instance (note the capitalized Spam)
>>> Spam.some_instancemethod()
Traceback (most recent call last):
 ...
TypeError: some_instancemethod() missing ... argument: 'self'

But what if we add parameters? Be very careful with these!
Our first argument is now used as an argument, this can give
very strange and unexpected errors
>>> Spam.some_instancemethod(1, 2, a=3, b=4)
{'args': (2,), 'kwargs': {'a': 3, 'b': 4}, 'self': 1}

In particular, the last example is rather tricky. Because we passed some arguments to the function, these
have automatically been passed as the self argument. Similarly, the last example shows how you can
use this argument handling to call a method using a given instance. Spam.some_instancemethod(spam)
is identical to spam.some_instancemethod().

Now let’s look at the classmethod:

Classmethods are expectedly identical
>>> spam.some_classmethod(1, 2, a=3, b=4)
{'args': (1, 2),
 'cls': <class '__main__.Spam'>,
 'kwargs': {'a': 3, 'b': 4}}

>>> Spam.some_classmethod()

Decorators – Enabling Code Reuse by Decorating170

{'args': (), 'cls': <class '__main__.Spam'>, 'kwargs': {}}

>>> Spam.some_classmethod(1, 2, a=3, b=4)
{'args': (1, 2),
 'cls': <class '__main__.Spam'>,
 'kwargs': {'a': 3, 'b': 4}}

The main difference here is that instead of self we now have cls, which contains the class (Spam)
instead of the instance (spam).

Next up is the staticmethod. The staticmethod behaves identically to a regular function outside of
a class.

Staticmethods are also identical
>>> spam.some_staticmethod(1, 2, a=3, b=4)
{'args': (1, 2), 'kwargs': {'a': 3, 'b': 4}}

>>> Spam.some_staticmethod()
{'args': (), 'kwargs': {}}

>>> Spam.some_staticmethod(1, 2, a=3, b=4)
{'args': (1, 2), 'kwargs': {'a': 3, 'b': 4}}

Before we can continue with decorators, you need to be aware of how Python descriptors function.
Descriptors can be used to modify the binding behavior of object attributes. This means that if a de-
scriptor is used as the value of an attribute, you can modify which value is being set, got, and deleted
when these operations are called on the attribute. Here is a basic example of this behavior:

>>> class Spam:
... def __init__(self, spam=1):
... self.spam = spam
...
... def __get__(self, instance, cls):
... return self.spam + instance.eggs
...
... def __set__(self, instance, value):
... instance.eggs = value - self.spam

>>> class Sandwich:

The names self and cls are conventions and are not enforced in any way. You could
easily call them s and c or something completely different instead.

Chapter 6 171

... spam = Spam(5)

...

... def __init__(self, eggs):

... self.eggs = eggs

>>> sandwich = Sandwich(1)
>>> sandwich.eggs
1
>>> sandwich.spam
6

>>> sandwich.eggs = 10
>>> sandwich.spam
15

As you can see, whenever we set or get values from sandwich.spam, it actually calls __get__ or __set__
on Spam, which has access not only to its own variables, but also the calling class. A very useful feature
for automatic conversions and type checking, the property decorator we will see in the next section
is just a more convenient implementation of this technique.

Now that you know how descriptors work, we can continue with creating the classmethod and
staticmethod decorators. For these two, we simply need to modify __get__ instead of __call__ so
that we can control which type of instance (or none at all) is passed along:

>>> import functools

>>> class ClassMethod(object):
... def __init__(self, method):
... self.method = method
...
... def __get__(self, instance, cls):
... @functools.wraps(self.method)
... def method(*args, **kwargs):
... return self.method(cls, *args, **kwargs)
...
... return method

>>> class StaticMethod(object):
... def __init__(self, method):
... self.method = method
...
... def __get__(self, instance, cls):
... return self.method

Decorators – Enabling Code Reuse by Decorating172

>>> class Sandwich:
... spam = 'class'
...
... def __init__(self, spam):
... self.spam = spam
...
... @ClassMethod
... def some_classmethod(cls, arg):
... return cls.spam, arg
...
... @StaticMethod
... def some_staticmethod(arg):
... return Sandwich.spam, arg

>>> sandwich = Sandwich('instance')
>>> sandwich.spam
'instance'
>>> sandwich.some_classmethod('argument')
('class', 'argument')
>>> sandwich.some_staticmethod('argument')
('class', 'argument')

The ClassMethod decorator still features a sub-function to actually produce a working decorator.
Looking at the function, you can most likely guess how it functions. Instead of passing instance as
the first argument to self.method, it passes cls.

StaticMethod is even simpler, because it completely ignores both the instance and the cls. It can
just return the original method unmodified. Because it returns the original method without any mod-
ifications, we have no need for the functools.wraps call either.

Properties – Smart descriptor usage
The property decorator is probably the most used decorator in Python land. It allows you to add
getters/setters to existing instance properties so that you can add validators and modify your values
before setting them to your instance properties.

The property decorator can be used both as an assignment and as a decorator. The following example
shows both syntaxes so that you know what to expect from the property decorator.

Python 3.8 added functools.cached_property, which functions the same as property but executes only
once per instance.

>>> import functools

>>> class Sandwich(object):

Chapter 6 173

... def get_eggs(self):

... print('getting eggs')

... return self._eggs

...

... def set_eggs(self, eggs):

... print('setting eggs to %s' % eggs)

... self._eggs = eggs

...

... def delete_eggs(self):

... print('deleting eggs')

... del self._eggs

...

... eggs = property(get_eggs, set_eggs, delete_eggs)

...

... @property

... def spam(self):

... print('getting spam')

... return self._spam

...

... @spam.setter

... def spam(self, spam):

... print('setting spam to %s' % spam)

... self._spam = spam

...

... @spam.deleter

... def spam(self):

... print('deleting spam')

... del self._spam

...

... @functools.cached_property

... def bacon(self):

... print('getting bacon')

... return 'bacon!'

>>> sandwich = Sandwich()

>>> sandwich.eggs = 123
setting eggs to 123

>>> sandwich.eggs
getting eggs

Decorators – Enabling Code Reuse by Decorating174

123
>>> del sandwich.eggs
deleting eggs
>>> sandwich.bacon
getting bacon
'bacon!'
>>> sandwich.bacon
'bacon!'

Similar to how we implemented the classmethod and staticmethod decorators, we need the Python
descriptors again. This time, we require the full power of the descriptors, not just __get__ but __set__
and __delete__ as well. For brevity, however, we will skip handling the documentation and some
error handling:

>>> class Property(object):
... def __init__(self, fget=None, fset=None, fdel=None):
... self.fget = fget
... self.fset = fset
... self.fdel = fdel
...
... def __get__(self, instance, cls):
... if instance is None:
... # Redirect class (not instance) properties to self
... return self
... elif self.fget:
... return self.fget(instance)
...
... def __set__(self, instance, value):
... self.fset(instance, value)
...
... def __delete__(self, instance):
... self.fdel(instance)
...
... def getter(self, fget):
... return Property(fget, self.fset, self.fdel)
...
... def setter(self, fset):
... return Property(self.fget, fset, self.fdel)
...
... def deleter(self, fdel):
... return Property(self.fget, self.fset, fdel)

Chapter 6 175

That doesn’t look all that complicated, does it? The descriptors make up most of the code, which is
fairly straight to the point. Only the getter/setter/deleter functions might look a bit strange, but
they’re actually fairly straightforward as well.

To make sure the property still works as expected, the class returns a new Property instance while
copying the other methods. The only small caveat to make this work here is the return self in the
__get__ method.

>>> class Sandwich:
... @Property
... def eggs(self):
... return self._eggs
...
... @eggs.setter
... def eggs(self, value):
... self._eggs = value
...
... @eggs.deleter
... def eggs(self):
... del self._eggs

>>> sandwich = Sandwich()
>>> sandwich.eggs = 5
>>> sandwich.eggs
5

As expected, our Property decorator works as it should. But note that this is a more limited version
of the built-in property decorator; our version has no checking for edge cases.

Naturally, being Python, there are more methods of achieving the effect of properties. In the previ-
ous examples, you saw the bare descriptor implementation, and in our previous example, you saw
the property decorator. Now we will look at a generic solution by implementing __getattr__ or
__getattribute__. Here’s a simple demonstration:

>>> class Sandwich(object):
... def __init__(self):
... self.registry = {}
...
... def __getattr__(self, key):
... print('Getting %r' % key)
... return self.registry.get(key, 'Undefined')
...
... def __setattr__(self, key, value):
... if key == 'registry':
... object.__setattr__(self, key, value)

Decorators – Enabling Code Reuse by Decorating176

... else:

... print('Setting %r to %r' % (key, value))

... self.registry[key] = value

...

... def __delattr__(self, key):

... print('Deleting %r' % key)

... del self.registry[key]

>>> sandwich = Sandwich()

>>> sandwich.a
Getting 'a'
'Undefined'

>>> sandwich.a = 1
Setting 'a' to 1

>>> sandwich.a
Getting 'a'
1

>>> del sandwich.a
Deleting 'a'

The __getattr__ method looks for existing attributes, for example, it checks whether the key exists
in instance.__dict__, and is called only if it does not exist. That’s why we never see a __getattr__
for the registry attribute. The __getattribute__ method is called in all cases, which makes it a bit
more dangerous to use. With the __getattribute__ method, you will need a specific exclusion for
registry since it will be executed infinitely through recursion if you try to access self.registry.

There is rarely a need to look at descriptors, but they are used by several internal Python processes,
such as the super() method when inheriting classes.

Now that you know how to create decorators for regular functions and class methods, let’s continue
by decorating entire classes.

Decorating classes
Python 2.6 introduced the class decorator syntax. As is the case with the function decorator syntax,
this is not really a new technique either. Even without the syntax, a class can be decorated simply by
executing DecoratedClass = decorator(RegularClass). After the previous sections, you should be
familiar with writing decorators. Class decorators are no different from regular ones, except for the
fact that they take a class instead of a function. As is the case with functions, this happens at declara-
tion time and not at instantiating/calling time.

Chapter 6 177

Because there are quite a few alternative ways to modify how classes work, such as standard inheritance,
mixins, and metaclasses (read more in Chapter 8, Metaclasses – Making Classes (Not Instances) Smarter),
class decorators are never strictly needed. This does not reduce their usefulness, but it does offer an
explanation of why you will most likely not see too many examples of class decorating in the wild.

Singletons – Classes with a single instance
Singletons are classes that always allow only a single instance to exist. So, instead of getting an in-
stance specifically for your call, you always get the same one. This can be very useful for things such
as a database connection pool, where you don’t want to keep opening connections all of the time but
want to reuse the original ones:

>>> import functools

>>> def singleton(cls):
... instances = dict()
... @functools.wraps(cls)
... def _singleton(*args, **kwargs):
... if cls not in instances:
... instances[cls] = cls(*args, **kwargs)
... return instances[cls]

... return _singleton

>>> @singleton
... class SomeSingleton(object):
... def __init__(self):
... print('Executing init')

>>> a = SomeSingleton()
Executing init
>>> b = SomeSingleton()

>>> a is b
True

>>> a.x = 123
>>> b.x
123

As you can see in the a is b comparison, both objects have the same identity, so we can conclude that
they are indeed the same object. As is the case with regular decorators, due to the functools.wraps
functionality, we can still access the original class through Spam.__wrapped__ if needed.

Decorators – Enabling Code Reuse by Decorating178

Total ordering – Making classes sortable
At some point or the other, you have probably needed to sort data structures. While this is easily
achievable using the key parameter of the sorted function, there is a more convenient way if you need
to do this often—by implementing the __gt__, __ge__, __lt__, __le__, and __eq__ functions. That
seems a bit verbose, doesn’t it? If you want the best performance, it’s still a good idea, but if you can
take a tiny performance hit and some slightly more complicated stack traces, then total_ordering
might be a nice alternative.

The total_ordering class decorator can implement all required sort functions based on a class that
possesses an __eq__ function and one of the comparison functions (__lt__, __le__, __gt__, or __ge__).
This means you can seriously shorten your function definitions. Let’s compare the regular function
definition and the function definition using the total_ordering decorator:

>>> import functools

>>> class Value(object):
... def __init__(self, value):
... self.value = value
...
... def __repr__(self):
... return f'<{self.__class__.__name__} {self.value}>'

>>> class Spam(Value):
... def __gt__(self, other):
... return self.value > other.value
...
... def __ge__(self, other):
... return self.value >= other.value
...
... def __lt__(self, other):
... return self.value < other.value
...
... def __le__(self, other):
... return self.value <= other.value
...
... def __eq__(self, other):
... return self.value == other.value

The is operator compares objects by identity, which is implemented as the memory
address in CPython. If a is b returns True, we can conclude that both a and b are the
same instance.

Chapter 6 179

>>> @functools.total_ordering
... class Egg(Value):
... def __lt__(self, other):
... return self.value < other.value
...
... def __eq__(self, other):
... return self.value == other.value

As you can see, without functools.total_ordering, it’s quite a bit of work to create a fully sortable
class. Now we will test whether they actually sort in a similar way:

>>> numbers = [4, 2, 3, 4]
>>> spams = [Spam(n) for n in numbers]
>>> eggs = [Egg(n) for n in numbers]

>>> spams
[<Spam 4>, <Spam 2>, <Spam 3>, <Spam 4>]

>>> eggs
[<Egg 4>, <Egg 2>, <Egg 3>, <Egg 4>]

>>> sorted(spams)
[<Spam 2>, <Spam 3>, <Spam 4>, <Spam 4>]

>>> sorted(eggs)
[<Egg 2>, <Egg 3>, <Egg 4>, <Egg 4>]

Sorting using key is of course still possible and in this case
perhaps just as easy:
>>> values = [Value(n) for n in numbers]
>>> values
[<Value 4>, <Value 2>, <Value 3>, <Value 4>]

>>> sorted(values, key=lambda v: v.value)
[<Value 2>, <Value 3>, <Value 4>, <Value 4>]

Now, you might be wondering, “Why isn’t there a class decorator to make a class sortable using a speci-
fied key property?” Well, that might indeed be a good idea for the functools library, but it isn’t there yet.
So, let’s see how we would implement something like it while still using functools.total_ordering:

>>> def sort_by_attribute(attr, keyfunc=getattr):
... def _sort_by_attribute(cls):

Decorators – Enabling Code Reuse by Decorating180

... def __lt__(self, other):

... return getattr(self, attr) < getattr(other, attr)

...

... def __eq__(self, other):

... return getattr(self, attr) <= getattr(other, attr)

...

... cls.__lt__ = __lt__

... cls.__eq__ = __eq__

...

... return functools.total_ordering(cls)

...

... return _sort_by_attribute

>>> class Value(object):
... def __init__(self, value):
... self.value = value
...
... def __repr__(self):
... return f'<{self.__class__.__name__} {self.value}>'

>>> @sort_by_attribute('value')
... class Spam(Value):
... pass

>>> numbers = [4, 2, 3, 4]
>>> spams = [Spam(n) for n in numbers]
>>> sorted(spams)
[<Spam 2>, <Spam 3>, <Spam 4>, <Spam 4>]

Certainly, this greatly simplifies the making of a sortable class. And if you would rather have your own
key function instead of getattr, it’s even easier. Simply replace the getattr(self, attr) call with
key_function(self), do that for other as well, and change the argument for the decorator to your
function. You can even use that as the base function and implement sort_by_attribute by simply
passing a wrapped getattr function.

Now that you know how to create all types of decorators, let’s look at a few useful decorator examples
bundled with Python.

Useful decorators
In addition to the ones already mentioned in this chapter, Python comes bundled with a few other
useful decorators. There are some that aren’t in the standard library (yet?).

Chapter 6 181

Single dispatch – Polymorphism in Python
If you’ve used C++ or Java before, you’re probably used to having ad hoc polymorphism available—dif-
ferent functions being called depending on the argument types. Python being a dynamically typed
language, most people would not expect the possibility of a single dispatch pattern. Python, however,
is a language that is not only dynamically typed but also strongly typed, which means we can rely on
the type we receive.

The idea of single dispatch is that depending on the type you pass, the correct function is called. Since
str + int results in an error in Python, this can be very convenient to automatically convert your
arguments before passing them to your function. This can be useful for separating the actual workings
of your function from the type conversions.

Since Python 3.4, there is a decorator that makes it easily possible to implement the single dispatch
pattern in Python. This decorator is useful if you need to execute different functions depending on
the type() of your input variable. Here is a basic example:

>>> import functools

>>> @functools.singledispatch
... def show_type(argument):
... print(f'argument: {argument}')

>>> @show_type.register(int)
... def show_int(argument):
... print(f'int argument: {argument}')

A dynamically typed language does not require strict type definitions. While a language
such as C would require the following to declare an integer:

int some_integer = 123;

Python simply accepts that our value has a type:

some_integer = 123

Although with type hinting we could also do:

some_integer: int = 123

As opposed to languages such as JavaScript and PHP, however, Python does very little
implicit type conversion. In Python, the following will return an error, whereas JavaScript
would execute it without any problems:

'spam' + 5

In Python, the result is a TypeError. In JavaScript, it’s 'spam5'.

Decorators – Enabling Code Reuse by Decorating182

>>> @show_type.register
... def show_float(argument: float):
... print(f'float argument: {argument}')

>>> show_type('abc')
argument: abc

>>> show_type(123)
int argument: 123

>>> show_type(1.23)
float argument: 1.23

The singledispatch decorator automatically calls the correct function for the type passed as the first
argument. As you can see in the example, this works both when using type annotations and if explicit
types are passed to the register function.

Let’s see how we could make a simplified version of this method ourselves:

>>> import functools

>>> registry = dict()

>>> def register(function):
... # Fetch the first type from the type annotation but be
... # careful not to overwrite the 'type' function
... type_ = next(iter(function.__annotations__.values()))
... registry[type_] = function
...
... @functools.wraps(function)
... def _register(argument):
... # Fetch the function using the type of argument, and
... # fall back to the main function
... new_function = registry.get(type(argument), function)
... return new_function(argument)
...
... return _register

>>> @register
... def show_type(argument: any):
... print(f'argument: {argument}')

Chapter 6 183

>>> @register
... def show_int(argument: int):
... print(f'int argument: {argument}')

>>> show_type('abc')
argument: abc

>>> show_type(123)
int argument: 123

Naturally, this method is a bit basic and it uses a single global registry, which limits its application.
But this exact pattern can be used for registering plugins or callbacks.

Now, a slightly more useful example—differentiating between a filename and a file handler:

>>> import json
>>> import functools

>>> @functools.singledispatch
... def write_as_json(file, data):
... json.dump(data, file)

>>> @write_as_json.register(str)
... @write_as_json.register(bytes)
... def write_as_json_filename(file, data):
... with open(file, 'w') as fh:
... write_as_json(fh, data)

>>> data = dict(a=1, b=2, c=3)
>>> write_as_json('test1.json', data)
>>> write_as_json(b'test2.json', 'w')
>>> with open('test3.json', 'w') as fh:
... write_as_json(fh, data)

So now we have a single write_as_json function; it calls the right code depending on the type. If it’s
a str or bytes object, it will automatically open the file and call the regular version of write_as_json,
which accepts file objects.

When naming the functions, make sure that you do not overwrite the original
singledispatch function. If you named show_int as just show_type, it would over-
write the initial show_type function. This would make it impossible to access the original
show_type function and make all register operations after that fail as well.

Decorators – Enabling Code Reuse by Decorating184

Writing a decorator that does this is not that hard to do, of course, but it’s still quite convenient to have
the singledispatch decorator in the base library. It most certainly beats manually checking the given
argument types with a list of isinstance() if/elif/elif/else statements.

To see which function will be called, you can use the write_as_json.dispatch function with a spe-
cific type. When passing along a str, you will get the write_as_json_filename function. It should
be noted that the names of the dispatched functions are completely arbitrary. They are accessible as
regular functions, of course, but you can name them anything you like.

To check the registered types, you can access the registry, which is a dictionary, through write_as_json.
registry:

>>> write_as_json.registry.keys()
dict_keys([<class 'bytes'>, <class 'object'>, <class 'str'>])

contextmanager — with statements made easy
Using the contextmanager class, we can make the creation of a context wrapper very easy. Context
wrappers are used whenever you use a with statement. One example is the open function, which works
as a context wrapper as well, allowing you to use the following code:

with open(filename) as fh:
 pass

Let’s just assume for now that the open function is not usable as a context manager and that we need
to build our own function to do this. The standard method of creating a context manager is by creating
a class that implements the __enter__ and __exit__ methods:

>>> class Open:
... def __init__(self, filename, mode):
... self.filename = filename
... self.mode = mode
...
... def __enter__(self):
... self.handle = open(self.filename, self.mode)
... return self.handle
...
... def __exit__(self, exc_type, exc_val, exc_tb):
... self.handle.close()

>>> with Open('test.txt', 'w') as fh:
... print('Our test is complete!', file=fh)

Chapter 6 185

While that works perfectly, it’s a tad verbose. With contextlib.contextmanager, we can have the
same behavior in just a few lines:

>>> import contextlib

>>> @contextlib.contextmanager
... def open_context_manager(filename, mode='r'):
... fh = open(filename, mode)
... yield fh
... fh.close()

>>> with open_context_manager('test.txt', 'w') as fh:
... print('Our test is complete!', file=fh)

Simple, right? However, I should mention that for this specific case—the closing of objects—there is
a dedicated function in contextlib, and it is even easier to use.

Let’s demonstrate it with the most basic example of when closing() would be useful:

>>> import contextlib

>>> with contextlib.closing(open('test.txt', 'a')) as fh:
... print('Yet another test', file=fh)

For a file object, you can usually also use with open(...) because it is a context manager by itself,
but if some other part of the code handles the opening, you don’t always have that luxury, and in those
cases, you will need to close it yourself. Additionally, some objects such as requests made by urllib
don’t support automatic closing in that manner and benefit from this function.

But wait; there’s more! In addition to being usable in a with statement, the results of a contextmanager
are actually usable as decorators since Python 3.2. In older Python versions, the contextmanager was
simply a small wrapper, but since Python 3.2 it’s based on the ContextDecorator class, which makes
it a decorator.

With file objects, database connections, and connections, it is important to always have
a close() call to clean up resources. In the case of a file, it tells the operating system
to write the data to disk (as opposed to temporary buffers), and in the case of network
connections and database connections, it releases the network connection and related
resources on both ends. With database connections, it will also notify the server that the
connection is no longer needed so that part is also handled gracefully.

Without these calls, you can quickly run into “too many open files” or “too many connec-
tions” errors.

Decorators – Enabling Code Reuse by Decorating186

The open_context_manager context manager isn’t really suitable as a decorator since it has a yield
<value> as opposed to an empty yield (more about that in Chapter 7, Generators and Coroutines – Infinity,
One Step at a Time), but we can think of other functions:

>>> @contextlib.contextmanager
... def debug(name):
... print(f'Debugging {name}:')
... yield
... print(f'Finished debugging {name}')

>>> @debug('spam')
... def spam():
... print('This is the inside of our spam function')

>>> spam()
Debugging spam:
This is the inside of our spam function
Finished debugging spam

There are quite a few nice use cases for this, but at the very least, it’s just a convenient way to wrap a
function in a context without all the (nested) with statements.

Validation, type checks, and conversions
While checking for types is usually not the best way to go in Python, at times it can be useful if you
know that you will need a specific type (or something that can be cast to that type). To facilitate this,
Python 3.5 introduced a type hinting system so that you can do the following:

>>> def sandwich(bacon: float, eggs: int):
... pass

In some cases, it can be useful to change these hints into requirements. Instead of using an isinstance(),
we will simply try to enforce the types by casting, which is more along the lines of duck-typing.

The essence of duck-typing is: if it looks like a duck, walks like a duck, and quacks like a duck, it might be a
duck. Essentially, this means that we don’t care if the value is a duck or something else, only if it supports
the quack() method that we need.

To enforce the type hints, we can create a decorator:

>>> import inspect
>>> import functools

>>> def enforce_type_hints(function):
... # Construct the signature from the function which contains
... # the type annotations

Chapter 6 187

... signature = inspect.signature(function)

...

... @functools.wraps(function)

... def _enforce_type_hints(*args, **kwargs):

... # Bind the arguments and apply the default values

... bound = signature.bind(*args, **kwargs)

... bound.apply_defaults()

...

... for key, value in bound.arguments.items():

... param = signature.parameters[key]

... # The annotation should be a callable

... # type/function so we can cast as validation

... if param.annotation:

... bound.arguments[key] = param.annotation(value)

...

... return function(*bound.args, **bound.kwargs)

...

... return _enforce_type_hints

>>> @enforce_type_hints
... def sandwich(bacon: float, eggs: int):
... print(f'bacon: {bacon!r}, eggs: {eggs!r}')

>>> sandwich(1, 2)
bacon: 1.0, eggs: 2
>>> sandwich(3, 'abc')
Traceback (most recent call last):
...
ValueError: invalid literal for int() with base 10: 'abc'

This is a fairly simple yet very versatile type enforcer that should work with most type annotations.

Useless warnings – How to ignore them safely
When writing in Python, warnings are often very useful when you’re actually writing the code. When
executing it, however, it is not useful to get that same message every time you run your script/appli-
cation. So, let’s create some code that allows easy hiding of the expected warnings, but not all of them
so that we can easily catch new ones:

>>> import warnings
>>> import functools

>>> def ignore_warning(warning, count=None):
... def _ignore_warning(function):

Decorators – Enabling Code Reuse by Decorating188

... @functools.wraps(function)

... def __ignore_warning(*args, **kwargs):

... # Execute the code while catching all warnings

... with warnings.catch_warnings(record=True) as ws:

... # Catch all warnings of the given type

... warnings.simplefilter('always', warning)

... # Execute the function

... result = function(*args, **kwargs)

...

... # Re-warn all warnings beyond the expected count

... if count is not None:

... for w in ws[count:]:

... warnings.warn(w.message)

...

... return result

...

... return __ignore_warning

...

... return _ignore_warning

>>> @ignore_warning(DeprecationWarning, count=1)
... def spam():
... warnings.warn('deprecation 1', DeprecationWarning)
... warnings.warn('deprecation 2', DeprecationWarning)

Note, we use catch_warnings here because doctests normally
capture the warnings quietly
>>> with warnings.catch_warnings(record=True) as ws:
... spam()
...
... for i, w in enumerate(ws):
... print(w.message)
deprecation 2

Using this method, we can catch the first (expected) warning and still see the second (unexpected)
warning.

Now that you have seen some examples of useful decorators, it is time to continue with a few exercises
and see how much you can write yourself.

Chapter 6 189

Exercises
Decorators have a huge range of uses, so you can probably think of some yourself after reading this
chapter, but you can easily elaborate on some of the decorators we wrote earlier:

•	 Extend the track function to monitor execution time.
•	 Extend the track function with min/max/average execution time and call count.
•	 Modify the memoization function to function with unhashable types.
•	 Modify the memoization function to have a cache per function instead of a global one.
•	 Create a version of functools.cached_property that can be recalculated as needed.
•	 Create a single-dispatch decorator that considers all or a configurable number of arguments

instead of only the first one.
•	 Enhance the type_check decorator to include additional checks such as requiring a number

to be greater than or less than a given value.

Summary
This chapter showed you some of the places where decorators can be used to make our code simpler
and add some fairly complex behavior to very simple functions. Truthfully, most decorators are more
complex than the regular function would have been by simply adding the functionality directly, but the
added advantage of applying the same pattern to many functions and classes is generally well worth it.

Decorators have so many uses to make your functions and classes smarter and more convenient to use:

•	 Debugging
•	 Validation
•	 Argument convenience (pre-filling or converting arguments)
•	 Output convenience (converting the output to a specific type)

The most important takeaway of this chapter should be to never forget functools.wraps when wrapping
a function. Debugging decorated functions can be rather difficult because of (unexpected) behavior
modification, but losing attributes as well can make that problem much worse.

The next chapter will show you how and when to use generators and coroutines. This chapter has
already shown you the usage of the with statement briefly, but generators and coroutines go much
further with this. We will still be using decorators often, both in this book and when using Python in
general, so make sure you have a good understanding of how they work.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Decorators – Enabling Code Reuse by Decorating190

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

7
Generators and Coroutines –
Infinity, One Step at a Time

Generator functions are functions that behave like iterators by generating the return values one by one.
While traditional methods build and return a list or tuple of items with a fixed length, a generator
will yield a single value only when requested by the caller. The side effect is that these generators
can be infinitely large because you can keep yielding forever.

In addition to generators, there is a variation to the generator’s syntax that creates coroutines. Corou-
tines are functions that allow multitasking without requiring multiple threads or processes. Whereas
generators can only yield values to the caller based on the initial arguments, coroutines enable two-
way communication with the calling function while running. The modern implementation of corou-
tines in Python is through the asyncio module, which is covered extensively in Chapter 13, asyncio

– Multithreading without Threads, but the basics stem from the coroutines discussed in this chapter. If
coroutines or asyncio work for your case, they can offer a tremendous performance improvement.

In this chapter, we will cover the following topics:

•	 Advantages and disadvantages of generators
•	 The characteristics and quirks of generators
•	 Creating generators using regular functions
•	 Generator comprehensions similar to list, dict, and set comprehensions
•	 Creating generators using classes
•	 Generators bundled with Python
•	 A basic implementation of coroutines and a few of their quirks

Generators
Generators are a very useful tool but they come with a set of rules to keep in mind.

Generators and Coroutines – Infinity, One Step at a Time192

First, let’s explore the advantages of generators:

•	 Generators are often simpler to write than list-generating functions. Instead of having to de-
clare a list, list.append(value), and return, you only need yield value.

•	 Memory usage. Items can be processed one at a time, so there is generally no need to keep
the entire list in memory.

•	 Results can depend on outside factors. Instead of having a static list, you generate the value
when it is being requested. Think of processing a queue/stack, for example.

•	 Generators are lazy. This means that if you’re using only the first five results of a generator,
the rest won’t even be calculated. Additionally, between fetching the items, the generator is
completely frozen.

The most important disadvantages are:

•	 Results are available only once. After processing the results of a generator, it cannot be used
again.

•	 The size is unknown. Until you are done processing, you cannot get any information about the
size of the generator. It might even be infinite. This makes list(some_infinite_generator) a
dangerous operation. It can quickly crash your Python interpreter or even your entire system.

•	 Slicing is not possible, so some_generator[10:20] will not work. You can work around this
using itertools.islice as you will see later in this chapter, but that effectively discards the
unused indices.

•	 Indexing generators, similar to slicing, is also not possible. This means that the following will
not work: some_generator[5].

Now that you know what to expect, let’s create a few generators.

Creating generators
The simplest generator is a function containing a yield statement instead of a return statement. The
key difference with regular functions containing a return is that you can have many yield statements
in your function.

An example of a generator with a few fixed yield statements and how it behaves with several opera-
tions is as follows:

>>> def generator():
... yield 1
... yield 'a'
... yield []
... return 'end'

>>> result = generator()

>>> result
<generator object generator at ...>

Chapter 7 193

>>> len(result)
Traceback (most recent call last):
 ...
TypeError: object of type 'generator' has no len()

>>> result[:10]
Traceback (most recent call last):
 ...
TypeError: 'generator' object is not subscriptable

>>> list(result)
[1, 'a', []]

>>> list(result)
[]

A few of the downsides of generators become immediately apparent in this example. The result
does not offer much meaningful information when looking at its repr(), getting len() (length), or
slicing. And trying to do list() to get the values a second time does not work because the generator
is already exhausted.

Additionally, you may have noticed that the return value of the function appears to have completely
disappeared. This is actually not the case; the value of return is still used, but as the value for the
StopIteration exception raised by the generator to indicate that the generator has been exhausted:

>>> def generator_with_return():
... yield 'some_value'
... return 'The end of our generator'

>>> result = generator_with_return()

>>> next(result)
'some_value'
>>> next(result)
Traceback (most recent call last):
 ...
StopIteration: The end of our generator

The following example demonstrates the lazy execution of generators:

>>> def lazy():
... print('before the yield')
... yield 'yielding'

Generators and Coroutines – Infinity, One Step at a Time194

... print('after the yield')

>>> generator = lazy()

>>> next(generator)
before the yield
'yielding'

>>> next(generator)
Traceback (most recent call last):
 ...
StopIteration

As you can see in this example, the code after the yield isn’t executed. This is caused by the
StopIteration exception; if we properly catch this exception, the code will be executed:

>>> def lazy():
... print('before the yield')
... yield 'yielding'
... print('after the yield')

>>> generator = lazy()

>>> next(generator)
before the yield
'yielding'

>>> try:
... next(generator)
... except StopIteration:
... pass
after the yield

>>> for item in lazy():
... print(item)
before the yield
yielding
after the yield

To properly handle generators, you always need to either catch the StopIteration yourself, or use a
loop or another structure that handles the StopIteration implicitly.

Chapter 7 195

Creating infinite generators
Creating an endless generator (such as the itertools.count iterator discussed in Chapter 5, Functional
Programming – Readability Versus Brevity) is easy as well. If, instead of having the fixed yield <value>
lines like in the previous function, we yield from inside of an infinite loop, we can easily make an
infinite generator.

As opposed to the itertools.count() generator, we will add a stop parameter to make testing easier:

>>> def count(start=0, step=1, stop=None):
... n = start
... while stop is not None and n < stop:
... yield n
... n += step

>>> list(count(10, 2.5, 20))
[10, 12.5, 15.0, 17.5]

So, how does this work? Essentially it is just a normal loop, but the big difference between this and
the regular method of returning a list of items is that the yield statement returns the items one at
a time, which means you only have to calculate the requested items and you don’t have to keep all
results in memory.

Generators wrapping iterables
While generators are already quite useful when generating values from scratch, the real power comes
when wrapping other iterables. To illustrate this, we will create a generator that automatically squares
all numbers from the given input:

>>> def square(iterable):
... for i in iterable:
... yield i ** 2

>>> list(square(range(5)))
[0, 1, 4, 9, 16]

Naturally, there is nothing stopping you from adding extra yield statements outside of the loop:

>>> def padded_square(iterable):
... yield 'begin'
... for i in iterable:

Due to the potentially infinite nature of generators, caution is required. Without
the stop variable, simply doing list(count()) would result in an infinite loop that
results in an out-of-memory situation quite fast.

Generators and Coroutines – Infinity, One Step at a Time196

... yield i ** 2

... yield 'end'

>>> list(padded_square(range(5)))
['begin', 0, 1, 4, 9, 16, 'end']

Because these generators are iterable, you can chain them together by wrapping them as many times
as you like. A basic example of chaining a square() and an odd() generator together is:

>>> import itertools

>>> def odd(iterable):
... for i in iterable:
... if i % 2:
... yield i

>>> def square(iterable):
... for i in iterable:
... yield i ** 2

>>> list(square(odd(range(10))))
[1, 9, 25, 49, 81]

If we analyze how the code is executed, we need to start from the inside to the outside:

1.	 The range(10) statement generates 10 numbers for us.
2.	 The odd() generator filters the input values, so from the [0, 1, 2 …] values it only returns

[1, 3, 5, 7, 9].
3.	 The square() function squares the given input, which is the list of odd numbers as generated

by odd().

The real power of chaining is that the generators will only do something when we request a value. If
we request a single value with next() instead of list(), it will mean that only the first iteration of
the loop in square() will be run. For odd() and range(), however, it will have to process two values
because odd() will discard the first value given by range() and not yield anything.

Generator comprehensions
In the previous chapters, you saw list, dict, and set comprehensions, which generate collections.
With a generator comprehension we can make similar collections, but make them lazy so they are
only evaluated as needed. The basic premise is identical to the list comprehension but using round
brackets/parentheses instead of square brackets:

>>> squares = (x ** 2 for x in range(4))

>>> squares

Chapter 7 197

<generator object <genexpr> at 0x...>

>>> list(squares)
[0, 1, 4, 9]

This is very useful when you need to wrap the results of a different generator because it only calculates
the values you asked for:

>>> import itertools

>>> result = itertools.count()
>>> odd = (x for x in result if x % 2)
>>> sliced_odd = itertools.islice(odd, 5)
>>> list(sliced_odd)
[1, 3, 5, 7, 9]

>>> result = itertools.count()
>>> sliced_result = itertools.islice(result, 5)
>>> odd = (x for x in sliced_result if x % 2)
>>> list(odd)
[1, 3]

As you can probably surmise from this result, this can be dangerous with infinite-sized generators such
as itertools.count(). The order of operations is very important because the itertools.islice()
function slices the result at that point, not the original generator. This means that if we replace odd()
with a function that never evaluates to True for the given collection, it will run forever because it will
never yield any results.

Class-based generators and iterators
In addition to creating generators as regular functions and through generator comprehensions, we
can also create generators using classes. This can be beneficial for more complex generators where
you need to remember the state or where inheritance can be used.

First, let’s look at an example of creating a basic generator class that mimics the behavior of itertools.
count() with an added stop parameter:

>>> class CountGenerator:
... def __init__(self, start=0, step=1, stop=None):
... self.start = start
... self.step = step
... self.stop = stop
...
... def __iter__(self):

Generators and Coroutines – Infinity, One Step at a Time198

... i = self.start

... while self.stop is None or i < self.stop:

... yield i

... i += self.step

>>> list(CountGenerator(start=2.5, step=0.5, stop=5))
[2.5, 3.0, 3.5, 4.0, 4.5]

Now let’s convert the generator class into an iterator with more features:

>>> class CountIterator:
... def __init__(self, start=0, step=1, stop=None):
... self.i = start
... self.start = start
... self.step = step
... self.stop = stop
...
... def __iter__(self):
... return self
...
... def __next__(self):
... if self.stop is not None and self.i >= self.stop:
... raise StopIteration
...
... # We need to return the value before we increment to
... # maintain identical behavior
... value = self.i
... self.i += self.step
... return value

>>> list(CountIterator(start=2.5, step=0.5, stop=5))
[2.5, 3.0, 3.5, 4.0, 4.5]

The most important distinction between the generator and the iterator is that instead of a simple
iterable object, we now have a fully fledged class that acts as an iterator, which means we can also
expand it beyond the capabilities of regular generators.

A few of the limitations of regular generators are that they don’t have a length and we cannot slice
them. With an iterator, we can explicitly define the behavior in these scenarios if needed:

>>> import itertools

>>> class AdvancedCountIterator:
... def __init__(self, start=0, step=1, stop=None):

Chapter 7 199

... self.i = start

... self.start = start

... self.step = step

... self.stop = stop

...

... def __iter__(self):

... return self

...

... def __next__(self):

... if self.stop is not None and self.i >= self.stop:

... raise StopIteration

...

... value = self.i

... self.i += self.step

... return value

...

... def __len__(self):

... return int((self.stop - self.start) // self.step)

...

... def __contains__(self, key):

... # To check 'if 123 in count'.

... # Note that this does not look at 'step'!

... return self.start < key < self.stop

...

... def __repr__(self):

... return (

... f'{self.__class__.__name__}(start={self.start}, '

... f'step={self.step}, stop={self.stop})')

...

... def __getitem__(self, slice_):

... return itertools.islice(self, slice_.start,

... slice_.stop, slice_.step)

Now that we have our advanced count iterator with support for features such as len(), in, and repr(),
we can test to see if it works as expected:

>>> count = AdvancedCountIterator(start=2.5, step=0.5, stop=5)

Pretty representation using '__repr__'
>>> count
AdvancedCountIterator(start=2.5, step=0.5, stop=5)

Check if item exists using '__contains__'

Generators and Coroutines – Infinity, One Step at a Time200

>>> 3 in count
True
>>> 3.1 in count
True
>>> 1 in count
False

Getting the length using '__len__'
>>> len(count)
5

Slicing using '__getitem__' with a slice as a parameter
>>> count[:3]
<itertools.islice object at 0x...>

>>> list(count[:3])
[2.5, 3.0, 3.5]

>>> list(count[:3])
[4.0, 4.5]

In addition to working around some of the limitations, in the last example, you can also see a very
useful feature of generators. We can exhaust the items one by one and stop/start whenever we want.
And since we still have full access to the object, we could alter count.i to restart the iterator.

Generator examples
Now that you know how generators can be created, let’s look at a few useful generators and examples
of how to use them.

Before you start writing a generator for your project, always make sure to look at the Python itertools
module. It features a host of useful generators that cover a vast array of use cases. The following sec-
tions show some custom generators and a few of the most useful generators in the standard library.

Breaking an iterable up into chunks/groups
When executing large amounts of queries in a database or when running tasks via multiple process-
es, it is often more efficient to chunk the operations. Having a single huge operation could result in
out-of-memory issues; having many tiny operations can be slow due to start-up/teardown sequences.

These generators work on all iterables, not just generators. So, you could also apply them
to a list, tuple, string, or other kinds of iterables.

Chapter 7 201

To make things more efficient, a good method is to split the input into chunks. The Python documenta-
tion (https://docs.python.org/3/library/itertools.html?highlight=chunk#itertools-recipes)
already comes with an example of how to do this by using itertools.zip_longest():

>>> import itertools

>>> def grouper(iterable, n, fillvalue=None):
... '''Collect data into fixed-length chunks or blocks'''
... args = [iter(iterable)] * n
... return itertools.zip_longest(*args, fillvalue=fillvalue)

>>> list(grouper('ABCDEFG', 3, 'x'))
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]

This code is a very nice example of how easy it is to chunk your data, but it has to hold the entire chunk
in memory. To work around that, we can create a version that generates sub-generators for the chunks:

>>> def chunker(iterable, chunk_size):
... # Make sure 'iterable' is an iterator
... iterable = iter(iterable)
...
... def chunk(value):
... # Make sure not to skip the given value
... yield value
... # We already yielded a value so reduce the chunk_size
... for _ in range(chunk_size - 1):
... try:
... yield next(iterable)
... except StopIteration:
... break
...
... while True:
... try:
... # Check if we're at the end by using 'next()'
... yield chunk(next(iterable))
... except StopIteration:
... break

>>> for chunk in chunker('ABCDEFG', 3):
... for value in chunk:
... print(value, end=', ')
... print()
A, B, C,

https://docs.python.org/3/library/itertools.html?highlight=chunk#itertools-recipes

Generators and Coroutines – Infinity, One Step at a Time202

D, E, F,
G,

Because we need to catch the StopIteration exceptions, this example does not look very pretty in
my opinion. Part of the code could be improved by using itertools.islice() (which is covered
next) but that will still leave us with the problem that we cannot know when we have reached the end.

If you are interested, an implementation using itertools.islice() and itertools.chains() can be
found on this book’s GitHub: https://github.com/mastering-python/code_2.

itertools.islice – Slicing iterables
One limitation of generators is that they cannot be sliced. You can work around this by converting
the generator into a list before slicing, but that is not possible with infinite generators, and it can be
inefficient if you only need a few values.

To solve this, the itertools library has an islice() function, which can slice any iterable object. The
function is the generator version of the slicing operators and similarly to slicing supports a start, stop,
and step parameter. The following illustrates how regular slicing and itertools.islice() compare:

>>> import itertools

>>> some_list = list(range(1000))
>>> some_list[:5]
[0, 1, 2, 3, 4]
>>> list(itertools.islice(some_list, 5))
[0, 1, 2, 3, 4]

>>> some_list[10:20:2]
[10, 12, 14, 16, 18]
>>> list(itertools.islice(some_list, 10, 20, 2))
[10, 12, 14, 16, 18]

It is very important to note that while the output is identical, these methods are far from equivalent
internally. Regular slicing only works on objects that are sliceable; effectively, this means the object
has to implement the __getitem__(self, slice) method.

Additionally, we expect that slicing objects is a fast and efficient operation. For list and tuple this is
certainly the case, but for a given generator this might not be the case.

If for a list with size n=1000 we take any slice of any k=10 elements, we can expect the time com-
plexity of that to be only O(k); that is, 10 steps. It doesn’t matter whether we do some_list[:10] or
some_list[900:920:2].

https://github.com/mastering-python/code_2

Chapter 7 203

For itertools.islice() this is not the case because the only assumption it makes is that the input is
iterable. That means that getting the first 10 items is easy; simply loop through the items, return the
first 10, and stop. So itertools.islice(some_list, 10) also takes 10 steps. Getting items 900 to 920,
however, means walking through and discarding the first 900 items, and only returning 10 of the next
20 items. So that is 920 steps instead.

To illustrate this, here’s a slightly simplified implementation of itertools.islice() that expects to
always have a stop available:

>>> def islice(iterable, start, stop=None, step=1):
... # 'islice' has signatures: 'islice(iterable, stop)' and:
... # 'islice(iterable, start, stop[, step])'
... # 'fill' stop with 'start' if needed
... if stop is None and step == 1 and start is not None:
... start, stop = 0, start
...
... # Create an iterator and discard the first 'start' items
... iterator = iter(iterable)
... for _ in range(start):
... next(iterator)
...
... # Enumerate the iterator making 'i' start at 'start'
... for i, item in enumerate(iterator, start):
... # Stop when we've reached 'stop' items
... if i >= stop:
... return
... # Use modulo 'step' to discard non-matching items
... if i % step:
... continue
... yield item

>>> list(islice(range(1000), 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(islice(range(1000), 900, 920, 2))
[900, 902, 904, 906, 908, 910, 912, 914, 916, 918]

>>> list(islice(range(1000), 900, 910))
[900, 901, 902, 903, 904, 905, 906, 907, 908, 909]

As you can see, both the start and the step sections discard items that are not needed. This does not
mean you should not use itertools.islice(), but be wary of the internals. Also, as you might expect,
this generator does not support negative values for the indices and expects all values to be positive.

Generators and Coroutines – Infinity, One Step at a Time204

itertools.chain – Concatenating multiple iterables
The itertools.chain() generator is one of the simplest yet one of the most useful generators in the
Python library. It simply returns every item from every passed iterable in sequential order and can
be implemented in just three lines:

>>> def chain(*iterables):
... for iterable in iterables:
... yield from iterable

>>> a = 1, 2, 3
>>> b = [4, 5, 6]
>>> c = 'abc'
>>> list(chain(a, b, c))
[1, 2, 3, 4, 5, 6, 'a', 'b', 'c']

>>> a + b + c
Traceback (most recent call last):
 ...
TypeError: can only concatenate tuple (not "list") to tuple

As you might notice, this also introduces a feature not yet discussed: the yield from expression. yield
from does exactly what you can expect from the name and yields all items from the given iterable. So
itertools.chain() can also be replaced with the slightly more verbose:

>>> def chain(*iterables):
... for iterable in iterables:
... for i in iterable:
... yield i

Interestingly, this method is more powerful than adding the collections because it doesn’t care about
the types as long as they are iterable—duck typing at its finest.

itertools.tee – Using an output multiple times
As mentioned before, one of the biggest disadvantages of generators is that the results are usable only
once. Luckily, Python has a function that allows you to copy the output to several generators. The
name tee might be familiar to you if you are used to working in a Linux/Unix command-line shell.
The tee program allows you to write outputs to both the screen and a file, so you can store an output
while still maintaining a live view of it.

The Python version, itertools.tee(), does a similar thing except that it returns several iterators,
allowing you to process the results separately.

By default, tee will split your generator into a tuple containing two different generators, which is why
tuple unpacking works nicely here. By passing along the n parameter, you can tell itertools.tee()
to create more than two generators. Here is an example:

Chapter 7 205

>>> import itertools

>>> def spam_and_eggs():
... yield 'spam'
... yield 'eggs'

>>> a, b = itertools.tee(spam_and_eggs())
>>> next(a)
'spam'
>>> next(a)
'eggs'
>>> next(b)
'spam'
>>> next(b)
'eggs'
>>> next(b)
Traceback (most recent call last):
 ...
StopIteration

After seeing this code, you might be wondering about the memory usage of tee. Does it need to store
the entire list for you? Luckily, no. The tee function is pretty smart in handling this. Assume you have
a generator that contains 1,000 items, and you read the first 100 items from a and the first 75 items
from b simultaneously. Then tee will only keep the difference (100 - 75 = 25 items) in memory and
drop the rest while you are iterating the results.

Whether tee is the best solution in your case or not depends, of course. If instance a is read from the
beginning to (nearly) the end before instance b is read, then it would not be a great idea to use tee.
Simply converting the generator into a list would be faster since it involves much fewer operations.

contextlib.contextmanager – Creating context managers
You have already seen context managers in Chapter 5, Functional Programming – Readability Versus
Brevity, and Chapter 6, Decorators – Enabling Code Reuse by Decorating, but there are many more useful
things to be done with context managers. While the contextlib.contextmanager() generator is not
meant to be a result-generating generator like the examples you saw earlier in this chapter, it does
use yield, so it’s a nice example of non-standard generator usage.

Some useful examples to log your output to a file and measure function execution time are:

>>> import time
>>> import datetime
>>> import contextlib

Context manager that shows how long a context was active

Generators and Coroutines – Infinity, One Step at a Time206

>>> @contextlib.contextmanager
... def timer(name):
... start_time = datetime.datetime.now()
... yield
... stop_time = datetime.datetime.now()
... print('%s took %s' % (name, stop_time - start_time))

>>> with timer('basic timer'):
... time.sleep(0.1)
basic timer took 0:00:00.1...

Write standard print output to a file temporarily
>>> @contextlib.contextmanager
... def write_to_log(name):
... with open(f'{name}.txt', 'w') as fh:
... with contextlib.redirect_stdout(fh):
... with timer(name):
... yield

Using as a decorator also works in addition to with-statements
>>> @write_to_log('some_name')
... def some_function():
... print('This will be written to 'some_name.txt'')

>>> some_function()

This all works perfectly, but the code could be prettier. Having three levels of context managers tends
to get a bit unreadable, which is something you could generally solve using decorators, as covered in
Chapter 6. In this case, however, we need the output from one context manager as the input for the
next, which would make for a more complicated decorator setup.

That’s where the ExitStack context manager comes in. It allows the easy combining of multiple con-
text managers without increasing the indentation level:

>>> import contextlib

>>> @contextlib.contextmanager
... def write_to_log(name):
... with contextlib.ExitStack() as stack:
... fh = stack.enter_context(open(f'{name}.txt', 'w'))
... stack.enter_context(contextlib.redirect_stdout(fh))

Chapter 7 207

... stack.enter_context(timer(name))

... yield

>>> @write_to_log('some_name')
... def some_function():
... print('This will be written to 'some_name.txt'')

>>> some_function()

Looks a bit simpler, doesn’t it? While this example is still reasonably legible without the ExitStack
context manager, the convenience of ExitStack becomes quickly apparent when you need to do
specific teardowns. In addition to the automatic handling, as seen before, it’s also possible to transfer
the contexts to a new ExitStack to manually handle the closing:

>>> import contextlib

>>> with contextlib.ExitStack() as stack:
... fh = stack.enter_context(open('file.txt', 'w'))
... # Move the context(s) to a new ExitStack
... new_stack = stack.pop_all()

>>> bytes_written = fh.write('fh is still open')

After closing we can't write anymore
>>> new_stack.close()
>>> fh.write('cant write anymore')
Traceback (most recent call last):
 ...
ValueError: I/O operation on closed file.

Most of the contextlib functions have extensive documentation available in the Python man-
ual. ExitStack in particular is documented using many examples at https://docs.python.
org/3/library/contextlib.html#contextlib.ExitStack. I recommend keeping an eye on
the contextlib documentation as it is improving greatly with every Python version.

Now that we have covered regular generators, it is time to continue with coroutines.

Coroutines
Coroutines are subroutines that offer non-pre-emptive multitasking through multiple entry points.
The basic premise is that coroutines allow two functions to communicate with each other while run-
ning within a single thread. Normally, this type of communication is reserved only for multitasking
or multithreading solutions, but coroutines offer a relatively simple way of achieving this at almost
no added performance cost.

https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack
https://docs.python.org/3/library/contextlib.html#contextlib.ExitStack

Generators and Coroutines – Infinity, One Step at a Time208

Since generators are lazy by default, you might be able to guess how coroutines function. Until a result
is consumed, the generator sleeps; but while consuming a result, the generator becomes active. The
difference between regular generators and coroutines is that with coroutines the communication goes
both ways; the coroutine can receive values as well as yield them to the calling function.

If you are familiar with asyncio you might notice a strong similarity between asyncio and coroutines.
That is because asyncio is built on the idea of coroutines and has evolved from a little bit of syntactic
sugar into a whole ecosystem. For practical purposes I would suggest using asyncio instead of the
coroutine syntax explained here; for educational purposes, however, it is very useful to understand how
they work. The asyncio module is under very active development and has a much less awkward syntax.

A basic example
In the previous sections, you saw how regular generators can yield values. But generators can do
more; they can actually receive values through yield as well. The basic usage is fairly simple:

>>> def generator():
... value = yield 'value from generator'
... print('Generator received:', value)
... yield f'Previous value: {value!r}'

>>> g = generator()
>>> print('Result from generator:', next(g))
Result from generator: value from generator

>>> print(g.send('value from caller'))
Generator received: value from caller
Previous value: 'value from caller'

And that’s all there is to it. The function is frozen until the send method is called, at which point it will
process up to the next yield statement. One limitation you can see from this is that the coroutine can’t
wake up by itself. The value exchanges can only happen when the calling code runs next(generator)
or generator.send().

Priming
Since generators are lazy, you can’t just send a value to a brand-new generator. Before a value can
be sent to the generator, either a result must be fetched using next() or a send(None) has to be issued
so that the code is actually reached. This is understandable, but a bit tedious at times. Let’s create a
simple decorator to omit the need for this:

>>> import functools

>>> def coroutine(function):
... # Copy the 'function' description with 'functools.wraps'

Chapter 7 209

... @functools.wraps(function)

... def _coroutine(*args, **kwargs):

... active_coroutine = function(*args, **kwargs)

... # Prime the coroutine and make sure we get no values

... assert not next(active_coroutine)

... return active_coroutine

...

... return _coroutine

>>> @coroutine
... def our_coroutine():
... while True:
... print('Waiting for yield...')
... value = yield
... print('our coroutine received:', value)

>>> generator = our_coroutine()
Waiting for yield...

>>> generator.send('a')
our coroutine received: a
Waiting for yield...

As you’ve probably noticed, even though the generator is still lazy, it now automatically executes all
of the code until it reaches the yield statement again. At that point, it will stay dormant until new
values are sent.

Closing and throwing exceptions
Unlike regular generators, which simply exit as soon as the input sequence is exhausted, coroutines
generally employ infinite while loops, which means that they won’t be torn down the normal way.
That’s why coroutines also support both the close and throw methods, which will exit the function.
The important thing here is not the closing but the possibility of adding a teardown method. Essentially,
it is very comparable to how context wrappers function with an __enter__ and __exit__ method, but
with coroutines in this case.

Note that the coroutine decorator will be used throughout this chapter from this point
onward. For brevity, the coroutine function definition will be omitted from the following
examples.

Generators and Coroutines – Infinity, One Step at a Time210

The following example shows a coroutine with normal and exception exit cases using the coroutine
decorator from the previous paragraph:

>>> from coroutine_decorator import coroutine

>>> @coroutine
... def simple_coroutine():
... print('Setting up the coroutine')
... try:
... while True:
... item = yield
... print('Got item:', item)
... except GeneratorExit:
... print('Normal exit')
... except Exception as e:
... print('Exception exit:', e)
... raise
... finally:
... print('Any exit')

This simple_coroutine() function can show us some of the internal flow of coroutines and how they
are interrupted. The try/finally behavior might surprise you in particular:

>>> active_coroutine = simple_coroutine()
Setting up the coroutine
>>> active_coroutine.send('from caller')
Got item: from caller
>>> active_coroutine.close()
Normal exit
Any exit

>>> active_coroutine = simple_coroutine()
Setting up the coroutine
>>> active_coroutine.throw(RuntimeError, 'caller sent an error')
Traceback (most recent call last):
 ...
RuntimeError: caller sent an error

>>> active_coroutine = simple_coroutine()
Setting up the coroutine
>>> try:
... active_coroutine.throw(RuntimeError, 'caller sent an error')
... except RuntimeError as exception:

Chapter 7 211

... print('Exception:', exception)
Exception exit: caller sent an error
Any exit
Exception: caller sent an error

Most of this output is as you would expect, but as was the case with the StopIteration in generators,
you have to catch the exception to be sure the teardown is handled correctly.

Mixing generators and coroutines
While generators and coroutines appear to be very similar due to the yield statements, they are
somewhat different beasts. Let’s create a two-way pipeline to process the given input and pass this
along to multiple coroutines along the way:

The decorator from the Priming section in this chapter
>>> from coroutine_decorator import coroutine

>>> lines = 'some old text', 'really really old', 'old old old'

>>> @coroutine
... def replace(search, replace):
... while True:
... item = yield
... print(item.replace(search, replace))

>>> old_replace = replace('old', 'new')
>>> for line in lines:
... old_replace.send(line)
some new text
really really new
new new new

Given this example, you might be wondering why we are now printing the value instead of yielding it.
We can yield the value, but remember that generators freeze until a value is yielded. Let’s see what
will happen if we simply yield the value instead of calling print. By default, you might be tempted
to do this:

>>> @coroutine
... def replace(search, replace):
... while True:
... item = yield
... yield item.replace(search, replace)

>>> old_replace = replace('old', 'new')
>>> for line in lines:

Generators and Coroutines – Infinity, One Step at a Time212

... old_replace.send(line)
'some new text'
'new new new'

Half of the values have disappeared now; our “really really new" line has disappeared. Notice that
the second yield isn’t storing the results, and that yield effectively makes this a generator and not a
coroutine. We need to store the results from that yield as well:

>>> @coroutine
... def replace(search, replace):
... item = yield
... while True:
... item = yield item.replace(search, replace)

>>> old_replace = replace('old', 'new')
>>> for line in lines:
... old_replace.send(line)
'some new text'
'really really new'
'new new new'

But even this is far from optimal. We are essentially using coroutines to mimic the behavior of gen-
erators right now. It works, but it is a bit pointless and offers no real benefit.

Let’s make a real pipeline this time where the coroutines send the data to the next coroutine or
coroutines. This demonstrates the real power of coroutines, which is being able to chain multiple
coroutines together:

>>> @coroutine
... def replace(target, search, replace):
... while True:
... target.send((yield).replace(search, replace))

Print will print the items using the provided formatstring
>>> @coroutine
... def print_(formatstring):
... count = 0
... while True:
... count += 1
... print(count, formatstring.format((yield)))
tee multiplexes the items to multiple targets
>>> @coroutine

Chapter 7 213

... def tee(*targets):

... while True:

... item = yield

... for target in targets:

... target.send(item)

Now that we have our coroutine functions, let’s see how we can link these together:

Because we wrap the results we need to work backwards from the
inner layer to the outer layer.

First, create a printer for the items:
>>> printer = print_('print: {}')

Create replacers that send the output to the printer
>>> old_replace = replace(printer, 'old', 'new')
>>> current_replace = replace(printer, 'old', 'current')

Send the input to both replacers
>>> branch = tee(old_replace, current_replace)

Send the data to the tee routine for processing
>>> for line in lines:
... branch.send(line)
1 print: some new text
2 print: some current text
3 print: really really new
4 print: really really current
5 print: new new new
6 print: current current current

This makes the code much simpler and more readable and shows how you can send a single input
source to multiple destinations simultaneously. At first glance, this example does not look that exciting,
but the exciting part is that even though we split the input using tee() and processed it through two
separate replace() instances, we still ended up at the same print_() function with the same state.
This means that it’s possible to route and modify your data along whichever way is convenient for you
while still having it end up at the same endpoint with no effort whatsoever.

For now, the most important takeaway is that mixing generators and coroutines is not a good idea
in most cases since it can have very strange side effects if used incorrectly. Even though both use
the yield statement, they are significantly different creatures with different behavior. The next section
will demonstrate one of the few cases where mixing coroutines and generators can be useful.

Generators and Coroutines – Infinity, One Step at a Time214

Using the state
Now that you know how to write basic coroutines and which pitfalls you have to take care of, how
about writing a function where remembering the state is required? That is, a function that always gives
you the average value of all sent values. This is one of the few cases where it is still relatively safe and
useful to combine the coroutine and generator syntax:

>>> import itertools

>>> @coroutine
... def average():
... total = yield
... for count in itertools.count(start=1):
... total += yield total / count

>>> averager = average()
>>> averager.send(20)
20.0
>>> averager.send(10)
15.0

It still requires some extra logic to work properly, though. We need to prime our coroutine using yield,
but we don’t send any data at that point because the first yield is the primer and is executed before
we get the value. Once that’s all set up, we can easily yield the average value while summing. It’s not
all that bad, but the pure coroutine version is slightly simpler to understand since we only have a
single execution path because we don’t have to worry about priming. To illustrate this, here is the
pure coroutine version:

>>> import itertools

>>> @coroutine
... def print_(formatstring):
... while True:
... print(formatstring.format((yield)))

>>> @coroutine
... def average(target):
... total = 0
... for count in itertools.count(start=1):
... total += yield
... target.send(total / count)

>>> printer = print_('{:.1f}')

Chapter 7 215

>>> averager = average(printer)
>>> averager.send(20)
20.0
>>> averager.send(10)
15.0

While that example is a few lines longer than the version that includes a generator, it is much easier
to understand. Let’s analyze it to make sure the workings are clear:

1.	 We set total to 0 to start counting.
2.	 We keep track of the measurement count by using itertools.count(), which we configure

to start counting from 1.
3.	 We fetch the next value using yield.
4.	 We send the average to the given coroutine instead of returning the value to make the code

less confusing.

Another nice example is itertools.groupby, which is also quite simple to recreate using coroutines.
For comparison, I will once again show both the generator coroutine and the pure coroutine version:

>>> @coroutine
... def groupby():
... # Fetch the first key and value and initialize the state
... # variables
... key, value = yield
... old_key, values = key, []
... while True:
... # Store the previous value so we can store it in the
... # list
... old_value = value
... if key == old_key:
... key, value = yield
... else:
... key, value = yield old_key, values
... old_key, values = key, []
... values.append(old_value)

>>> grouper = groupby()
>>> grouper.send('a1')
>>> grouper.send('a2')
>>> grouper.send('a3')
>>> grouper.send('b1')
('a', ['1', '2', '3'])
>>> grouper.send('b2')

Generators and Coroutines – Infinity, One Step at a Time216

>>> grouper.send('a1')
('b', ['1', '2'])
>>> grouper.send('a2')
>>> grouper.send((None, None))
('a', ['1', '2'])

As you can see, this function uses a few tricks. Firstly, we store the previous key and value so that we
can detect when the group (key) changes. Secondly, we obviously cannot recognize a group until the
group has changed, so only after the group has changed will the results be returned. This means that
the last group will be sent only if a different group is sent after it, hence the (None, None).

Now here is the pure coroutine version:

>>> @coroutine
... def print_(formatstring):
... while True:
... print(formatstring.format(*(yield)))

>>> @coroutine
... def groupby(target):
... old_key = None
... while True:
... key, value = yield
... if old_key != key:
... # A different key means a new group so send the
... # previous group and restart the cycle.
... if old_key and values:
... target.send((old_key, values))
... values = []
... old_key = key
... values.append(value)

>>> grouper = groupby(print_('group: {}, values: {}'))
>>> grouper.send('a1')
>>> grouper.send('a2')
>>> grouper.send('a3')
>>> grouper.send('b1')
group: a, values: ['1', '2', '3']

The example uses tuple unpacking for the string, splitting 'a1' into group 'a' and value
'1'. Alternatively, you could also use grouper.send(('a', 1)).

Chapter 7 217

>>> grouper.send('b2')
>>> grouper.send('a1')
group: b, values: ['1', '2']
>>> grouper.send('a2')
>>> grouper.send((None, None))
group: a, values: ['1', '2']

While the functions are fairly similar, the coroutine version has a less complex control path and
only needs to yield in one spot. This is because we don’t have to think about priming and potentially
losing values.

Exercises
Generators have a multitude of uses so you can probably start using them in your own code right away.
Nevertheless, the following exercises might help you understand the features and the limitations a
bit better:

•	 Create a generator similar to itertools.islice() that allows for a negative step so you can
execute some_list[20:10:-1].

•	 Create a class that wraps a generator so it becomes sliceable by using itertools.islice()
internally.

•	 Write a generator for the Fibonacci numbers.
•	 Write a generator that uses the sieve of Eratosthenes to generate prime numbers.

Summary
This chapter showed you how to create generators and both the strengths and weaknesses that they
possess. Additionally, it should now be clear how to work around their limitations and the implica-
tions of doing so.

In general, I would always recommend the use of generators over traditional collection-generating
functions. They are easier to write, consume less memory, and, if needed, the downsides can be mit-
igated by replacing some_generator() with list(some_generator()), or a decorator that handles
that for you.

While the paragraphs about coroutines provided some insights into what they are and how they can
be used, they were just a mild introduction to coroutines. Both the pure coroutines and the coroutine
generator combinations are still somewhat clunky, which is why the asyncio library was created.
Chapter 13, - asyncio – Multithreading without Threads, covers asyncio in detail and also introduces the
async and await statements, which make coroutine usage much more intuitive compared to yield.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Generators and Coroutines – Infinity, One Step at a Time218

In the previous chapter, you saw how we can modify classes using class decorators. In the next chapter,
we will cover the creation of classes using metaclasses. Using metaclasses, you can modify classes
during the creation of the class itself. Note that I am not talking about the instances of the class, but
the actual class object. Using this technique, you can create automatically registering plugin systems,
add extra attributes to classes, and more.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

8
Metaclasses – Making Classes
(Not Instances) Smarter

The previous chapters have already shown us how to modify classes and functions using decorators.
But that’s not the only option to modify or extend a class. An even more advanced technique for mod-
ifying your classes before creation is the usage of metaclasses. The name already gives you a hint as
to what it could be; a metaclass is a class containing meta information about a class.

The basic premise of a metaclass is a class that generates another class for you at definition time, so
generally you wouldn’t use it to change the class instances, but only the class definitions. By changing
the class definitions, it is possible to automatically add some properties to a class, validate whether
certain properties are set, change inheritance, automatically register the class with a manager, and
many other things.

Although metaclasses are generally considered to be a more powerful technique than (class) decora-
tors, effectively they don’t differ too much in possibilities. The choice usually comes down to either
convenience or personal preference.

In this chapter, we will cover the following topics:

•	 Basic dynamic class creation
•	 Metaclasses with arguments
•	 Abstract base classes, examples, and inner workings
•	 Automatic plugin systems using metaclasses
•	 Internals of class creation and the order of operations
•	 Storing the definition order of class attributes

Dynamically creating classes
Metaclasses are the factories that create new classes in Python. In fact, even though you may not be
aware of it, Python will always execute the type metaclass whenever you create a class.

Metaclasses – Making Classes (Not Instances) Smarter220

A few common examples where metaclasses are used internally are abc (abstract base classes),
dataclasses, and the Django framework, which heavily relies on metaclasses for the Model class.

When creating classes in a procedural way, the type metaclass is used as a function that takes three
arguments: name, bases, and dict.name will become the __name__ attribute, bases is the list of inher-
ited base classes and will be stored in __bases__, and dict is the namespace dictionary that contains
all variables and will be stored in __dict__.

It should be noted that the type() function has another use as well. Given the arguments documented
above, it will create a class with those specifications. Given a single argument with the instance of a
class (for example, type(spam)), it will return the class object/definition.

Your next question might be, what happens if I call type() on a class definition instead of a class
instance? Well, that returns the metaclass for the class, which is type by default.

Let’s clarify this using a few examples:

>>> class Spam(object):
... eggs = 'my eggs'

>>> Spam = type('Spam', (object,), dict(eggs='my eggs'))

The above two definitions of Spam are completely identical; they both create a class with an instantiat-
ed property of eggs and object as a base. Let’s test whether this actually works as you would expect:

>>> class Spam(object):
... eggs = 'my eggs'

>>> spam = Spam()
>>> spam.eggs
'my eggs'
>>> type(spam)
<class ' ...Spam'>
>>> type(Spam)
<class 'type'>

>>> Spam = type('Spam', (object,), dict(eggs='my eggs'))

>>> spam = Spam()
>>> spam.eggs
'my eggs'
>>> type(spam)
<class '...Spam'>
>>> type(Spam)
<class 'type'>

Chapter 8 221

As expected, the results for the two are the same. When creating a class, Python will silently add the
type metaclass, and custom metaclasses are classes that inherit type. A simple class definition has a
silent metaclass, making a simple definition such as:

class Spam(object):
 pass

essentially identical to:

class Spam(object, metaclass=type):
 pass

This raises the question: if every class is created by a (silent) metaclass, what is the metaclass of type?
This is a recursive definition; the metaclass of type is type. That is the essence of what a custom
metaclass is: a class that inherits type to allow class modification without needing to modify the class
definition itself.

A basic metaclass
Since metaclasses can modify any class attribute, you can do absolutely anything you wish. Before we
continue with more advanced metaclasses, let’s create a metaclass that does the following:

1.	 Makes the class inherit int
2.	 Adds a lettuce attribute to the class
3.	 Changes the name of the class

First we create the metaclass. After that, we create a class both with and without the metaclass:

The metaclass definition, note the inheritance of type instead
of object
>>> class MetaSandwich(type):
... # Notice how the __new__ method has the same arguments
... # as the type function we used earlier?
... def __new__(metaclass, name, bases, namespace):
... name = 'SandwichCreatedByMeta'
... bases = (int,) + bases
... namespace['lettuce'] = 1
... return type.__new__(metaclass, name, bases, namespace)

First, the regular Sandwich:

>>> class Sandwich(object):
... pass

>>> Sandwich.__name__
'Sandwich'

Metaclasses – Making Classes (Not Instances) Smarter222

>>> issubclass(Sandwich, int)
False
>>> Sandwich.lettuce
Traceback (most recent call last):
 ...
AttributeError: type object 'Sandwich' has no attribute 'lettuce'

Now, the meta-Sandwich:

>>> class Sandwich(object, metaclass=MetaSandwich):
... pass

>>> Sandwich.__name__
'SandwichCreatedByMeta'
>>> issubclass(Sandwich, int)
True
>>> Sandwich.lettuce
1

As you can see, the class with the custom metaclass now inherits int, has the lettuce attribute, and
has a different name.

With metaclasses, you can modify any aspect of the class definition. That makes them a tool that is
both very powerful and potentially very confusing. With just a few small modifications, you can cause
the strangest of bugs in your (or others’) code.

Arguments to metaclasses
The possibility of adding arguments to a metaclass is a little-known feature, but very useful nonetheless.
In many cases, simply adding attributes or methods to a class definition is enough to detect what to
do, but there are cases where it is useful to be more specific:

>>> class AddClassAttributeMeta(type):
... def __init__(metaclass, name, bases, namespace, **kwargs):
... # The kwargs should not be passed on to the
... # type.__init__
... type.__init__(metaclass, name, bases, namespace)
...
... def __new__(metaclass, name, bases, namespace, **kwargs):
... for k, v in kwargs.items():
... # setdefault so we don't overwrite attributes
... namespace.setdefault(k, v)
...

Chapter 8 223

... return type.__new__(metaclass, name, bases, namespace)

>>> class WithArgument(metaclass=AddClassAttributeMeta, a=1234):
... pass

>>> WithArgument.a
1234
>>> with_argument = WithArgument()
>>> with_argument.a
1234

This simplistic example may not be useful, but the possibilities are. For example, a metaclass that
automatically registers a plugin in a plugin registry could use this to specify plugin name aliases.

With this feature, instead of having to include all class-creating parameters as attributes and methods
on the class, you can pass these arguments without polluting your class. The only thing you need to
keep in mind is that both the __new__ and __init__ methods need to be extended in order for this to
work because the arguments are passed to the metaclass constructor (__init__).

Since Python 3.6, however, we have had a simpler alternative to get this effect. Python 3.6 introduced
the __init_subclass__ magic method, which allows for similar modifications in a slightly easier way:

>>> class AddClassAttribute:
... def __init_subclass__(cls, **kwargs):
... super().__init_subclass__()
...
... for k, v in kwargs.items():
... setattr(cls, k, v)

>>> class WithAttribute(metaclass=AddClassAttributeMeta, a=1234):
... pass

>>> WithAttribute.a
1234
>>> with_attribute = WithAttribute()
>>> with_attribute.a
1234

Several of the metaclasses in this chapter could be replaced with the __init_subclass__ method,
and it is a very useful option for small modifications. For larger changes, I would recommend using
a full metaclass instead to make the distinction between the regular class and the metaclass slightly
more obvious.

Metaclasses – Making Classes (Not Instances) Smarter224

Accessing metaclass attributes through classes
When using metaclasses, it might be confusing that the class actually does more than simply construct
the class; it’s actually inheriting the class during the creation. To illustrate:

>>> class Meta(type):
... @property
... def some_property(cls):
... return 'property of %r' % cls
...
... def some_method(self):
... return 'method of %r' % self

>>> class SomeClass(metaclass=Meta):
... pass

Accessing through the class definition
>>> SomeClass.some_property
"property of <class '...SomeClass'>"
>>> SomeClass.some_method
<bound method Meta.some_method of <class '__main__.SomeClass'>>
>>> SomeClass.some_method()
"method of <class '__main__.SomeClass'>"

Accessing through an instance
>>> some_class = SomeClass()
>>> some_class.some_property
Traceback (most recent call last):
 ...
AttributeError: 'SomeClass' object has no attribute 'some_property'
>>> some_class.some_method
Traceback (most recent call last):
 ...
AttributeError: 'SomeClass' object has no attribute 'some_method'

As can be seen in the preceding example, these methods are only available for the class objects and
not the instances. The some_property and some_method are not accessible through the instance, while
they are accessible through the class. This can be useful for making some functions class- (as opposed
to instance-) only, and it keeps your class namespace cleaner.

Chapter 8 225

In the general case, however, I suspect this only adds confusion, so I would typically recommend
against it.

Abstract classes using collections.abc
The abstract base classes (also known as interface classes) module is one of the most useful and most
widely used examples of metaclasses in Python, as it makes it easy to ensure that a class adheres to
a certain interface without a lot of manual checks. We have already seen some examples of abstract
base classes in previous chapters, but now we will also look at their inner workings and some more
advanced features, such as custom abstract base classes (ABCs).

Internal workings of the abstract classes
First, let’s demonstrate the usage of the regular abstract base class:

>>> import abc

>>> class AbstractClass(metaclass=abc.ABCMeta):
... @abc.abstractmethod
... def some_method(self):
... raise NotImplemented()

>>> class ConcreteClass(AbstractClass):
... pass

>>> ConcreteClass()
Traceback (most recent call last):
 ...
TypeError: Can't instantiate abstract class ConcreteClass with
abstract methods some_method

>>> class ImplementedConcreteClass(ConcreteClass):
... def some_method():
... pass

>>> instance = ImplementedConcreteClass()

As you can see, the abstract base class blocks us from instantiating the classes until all abstract methods
have been inherited. This is really useful when your code expects certain properties or methods to
be available, but a sane default value is not an option. A common example of this is with base classes
for plugins and data models.

Metaclasses – Making Classes (Not Instances) Smarter226

In addition to regular methods, property, staticmethod, and classmethod are also supported:

>>> import abc

>>> class AbstractClass(object, metaclass=abc.ABCMeta):
... @property
... @abc.abstractmethod
... def some_property(self):
... raise NotImplemented()
...
... @classmethod
... @abc.abstractmethod
... def some_classmethod(cls):
... raise NotImplemented()
...
... @staticmethod
... @abc.abstractmethod
... def some_staticmethod():
... raise NotImplemented()
...
... @abc.abstractmethod
... def some_method():
... raise NotImplemented()

So what does Python do internally? You could, of course, read the abc.py source code, but I think a
simple explanation would be better.

First, the abc.abstractmethod sets the __isabstractmethod__ property on the function to True. So
if you don’t want to use the decorator, you could simply emulate the behavior by doing something
along the lines of:

some_method.__isabstractmethod__ = True

After that, the abc.ABCMeta metaclass walks through all of the items in the namespace and looks for
objects where the __isabstractmethod__ attribute evaluates to True. In addition to that, it will walk
through all bases and check the __abstractmethods__ set for every base class, in case the class in-
herits an abstract class. All of the items where __isabstractmethod__ still evaluates to True will be
added to the __abstractmethods__ set that is stored in the class as a frozenset.

Note that we don’t use abc.abstractproperty, abc.abstractclassmethod, and abc.
abstractstaticmethod. Since Python 3.3, these have been deprecated as the classmethod,
staticmethod, and property decorators are recognized by abc.abstractmethod, so a
simple property decorator followed by an abc.abstractmethod is recognized as well.
Take care when ordering the decorators; abc.abstractmethod needs to be the innermost
decorator for this to work properly.

Chapter 8 227

The next question now is where the actual checks come in, the checks to see whether the classes are
completely implemented. This actually functions through a few Python internals:

>>> class AbstractMeta(type):
... def __new__(metaclass, name, bases, namespace):
... cls = super().__new__(metaclass, name, bases,
... namespace)
... cls.__abstractmethods__ = frozenset(('something',))
... return cls

>>> class ConcreteClass(metaclass=AbstractMeta):
... pass

>>> ConcreteClass()
Traceback (most recent call last):
 ...
TypeError: Can't instantiate abstract class ConcreteClass with
abstract methods something

We can easily emulate the same behavior with a metaclass ourselves, but it should be noted that abc.
ABCMeta actually does more, which we will demonstrate in the next section. To illustrate the behavior
as described above, let’s create an abstract base metaclass that mimics abc.ABCMeta:

>>> import functools

>>> class AbstractMeta(type):
... def __new__(metaclass, name, bases, namespace):
... # Create the class instance
... cls = super().__new__(metaclass, name, bases,
... namespace)
...
... # Collect all local methods marked as abstract
... abstracts = set()
... for k, v in namespace.items():
... if getattr(v, '__abstract__', False):
... abstracts.add(k)
...
... # Look for abstract methods in the base classes and
... # add them to the list of abstracts
... for base in bases:
... for k in getattr(base, '__abstracts__', ()):
... v = getattr(cls, k, None)
... if getattr(v, '__abstract__', False):

Metaclasses – Making Classes (Not Instances) Smarter228

... abstracts.add(k)

...

... # Store the abstracts in a frozenset so they cannot be

... # modified

... cls.__abstracts__ = frozenset(abstracts)

...

... # Decorate the __new__ function to check if all

... # abstract functions were implemented

... original_new = cls.__new__

... @functools.wraps(original_new)

... def new(self, *args, **kwargs):

... for k in self.__abstracts__:

... v = getattr(self, k)

... if getattr(v, '__abstract__', False):

... raise RuntimeError(

... '%r is not implemented' % k)

...

... return original_new(self, *args, **kwargs)

...

... cls.__new__ = new

... return cls

Create a decorator that sets the '__abstract__' attribute
>>> def abstractmethod(function):
... function.__abstract__ = True
... return function

Now that we have the metaclass and decorator for creating abstract classes, let’s see if it works as
expected:

>>> class ConcreteClass(metaclass=AbstractMeta):
... @abstractmethod
... def some_method(self):
... pass

Instantiating the function, we can see that it functions as the
regular ABCMeta does
>>> ConcreteClass()
Traceback (most recent call last):
 ...
RuntimeError: 'some_method' is not implemented

Chapter 8 229

The actual implementation is much more complicated since it needs to handle decorators such as
property, classmethod, and staticmethod. It also has some caching to features, but this code covers
the most useful part of the implementation. One of the most important tricks to note here is that the
actual check is executed by decorating the __new__ function of the actual class. This method is only
executed once within a class, so we can avoid the overhead of these checks for multiple instantiations.

Custom type checks
Defining your own interfaces using abstract base classes is great, of course. But it can also be very
convenient to tell Python what your class actually resembles and what kind of types are similar. For
that, abc.ABCMeta offers a register function that allows you to specify which types are similar. For
example, a custom list that sees the list type as similar:

>>> import abc

>>> class CustomList(abc.ABC):
... '''This class implements a list-like interface'''

>>> class CustomInheritingList(list, abc.ABC):
... '''This class implements a list-like interface'''

>>> issubclass(list, CustomList)
False
>>> issubclass(list, CustomInheritingList)
False

>>> CustomList.register(list)
<class 'list'>

We can't make it go both ways, however
>>> CustomInheritingList.register(list)
Traceback (most recent call last):
 ...
RuntimeError: Refusing to create an inheritance cycle

>>> issubclass(list, CustomList)
True
>>> issubclass(list, CustomInheritingList)

The actual implementation of the abstract methods can be found by looking for __
isabstractmethod__ in the Python source code in the following files: Objects/
descrobject.c, Objects/funcobject.c, and Objects/object.c. The Python part of
the implementation can be found in Lib/abc.py.

Metaclasses – Making Classes (Not Instances) Smarter230

False

We need to inherit list to make it work the other way around
>>> issubclass(CustomList, list)
False
>>> isinstance(CustomList(), list)
False
>>> issubclass(CustomInheritingList, list)
True
>>> isinstance(CustomInheritingList(), list)
True

As demonstrated by the last eight lines, this is a one-way relationship. The other way around re-
quires inheriting list, but due to inheritance cycles, it can’t be done both ways. Otherwise,
CustomInheritingList would inherit list and list would inherit CustomInheritingList, which
could recurse forever during the issubclass() call.

To be able to handle cases like these, there is another useful feature in abc.ABCMeta. When subclassing
abc.ABCMeta, the __subclasshook__ method can be extended to customize the behavior of issubclass
and with that, isinstance:

>>> import abc

>>> class UniversalClass(abc.ABC):
... @classmethod
... def __subclasshook__(cls, subclass):
... return True

>>> issubclass(list, UniversalClass)
True
>>> issubclass(bool, UniversalClass)
True
>>> isinstance(True, UniversalClass)
True
>>> issubclass(UniversalClass, bool)
False

The __subclasshook__ should return True, False, or NotImplemented, which results in issubclass
returning True, False, or the usual behavior when NotImplemented is returned.

Automatically registering plugin systems
One very useful way to use metaclasses is to have classes automatically register themselves as plugins/
handlers.

Chapter 8 231

Instead of manually adding a register call after creating the class or by adding a decorator, you can
make it completely automatic for the user. That means that the user of your library or plugin system
cannot accidentally forget to add the register call.

Examples of these can be seen in many projects such as web frameworks. The Django web framework,
for example, uses metaclasses for its database models (effectively tables) to automatically generate
the table and column names based on the class and attribute names.

The actual code base of projects like these is too extensive to usefully explain here though. Hence, we’ll
show a simpler example that demonstrates the power of metaclasses as a self-registering plugin system:

>>> import abc

>>> class Plugins(abc.ABCMeta):
... plugins = dict()
...
... def __new__(metaclass, name, bases, namespace):
... cls = abc.ABCMeta.__new__(metaclass, name, bases,
... namespace)
... if isinstance(cls.name, str):
... metaclass.plugins[cls.name] = cls
... return cls
...
... @classmethod
... def get(cls, name):
... return cls.plugins[name]

>>> class PluginBase(metaclass=Plugins):
... @property
... @abc.abstractmethod
... def name(self):
... raise NotImplemented()

>>> class PluginA(PluginBase):
... name = 'a'

>>> class PluginB(PluginBase):
... name = 'b'

Note the distinction between registering and importing. While this first example shows
automatic registering, automatic importing is covered in later sections.

Metaclasses – Making Classes (Not Instances) Smarter232

>>> Plugins.get('a')
<class '...PluginA'>

>>> Plugins.plugins
{'a': <class '...PluginA'>,
 'b': <class '...PluginB'>}

This example is a tad simplistic of course, but it’s the basis for many plugin systems.

The following examples will use the following file structure to get reproducible results. All files will
be contained in a plugins directory. Note that all the code for this book, including this example, can
be found on GitHub: https://github.com/mastering-python/code_2.

The __init__.py file is used to create shortcuts, so a simple import plugins will result in having
plugins.Plugins available, instead of requiring the import of plugins.base explicitly:

plugins/__init__.py
from .base import Plugin
from .base import Plugins

__all__ = ['Plugin', 'Plugins']

Here’s the base.py file containing the Plugins collection and the Plugin base class:

plugins/base.py
import abc

class Plugins(abc.ABCMeta):
 plugins = dict()

 def __new__(metaclass, name, bases, namespace):
 cls = abc.ABCMeta.__new__(
 metaclass, name, bases, namespace)
 metaclass.plugins[name.lower()] = cls
 return cls

 @classmethod
 def get(cls, name):

While metaclasses run at definition time, the module still needs to be imported to work.
There are several options for doing this; loading on-demand through the get method
would have my vote if possible, as that also doesn’t add load time if the plugin is not used.

https://github.com/mastering-python/code_2

Chapter 8 233

 return cls.plugins[name]

class Plugin(metaclass=Plugins):
 pass

And two simple plugins, a.py and b.py (omitted since it’s functionally identical to a.py):

from . import base

class A(base.Plugin):
 pass

Now that we have set up the plugins and the automatic registering, we need to take care of the loading
of a.py and b.py. While A and B will automatically register within Plugins, if you forget to import them,
they will not be registered. To solve this, we have several options; first we will look at on-demand loading.

Importing plugins on-demand
The first of the solutions for the import problem is simply taking care of it in the get method of the
Plugins metaclass. Whenever the plugin is not found in the registry, the get method should automat-
ically import the module from the plugins directory.

The advantages of this approach are that the plugins don’t explicitly need to be preloaded, but also that
the plugins are only loaded when the need is there. Unused plugins won’t be touched, so this method
can help in reducing your applications’ load times.

The downsides are that the code will not be run or tested, so it might be completely broken and you
won’t know about it until it is finally loaded. Solutions for this problem will be covered in the chapter
on testing, Chapter 10. The other problem is that if the code self-registers into other parts of an ap-
plication, then that code won’t be executed either, unless you add the required import in other parts
of the code, that is.

Modifying the Plugins.get method, we get the following:

import importlib

Plugins class omitted for brevity
class PluginsOnDemand(Plugins):
 @classmethod
 def get(cls, name):
 if name not in cls.plugins:
 print('Loading plugins from plugins.%s' % name)
 importlib.import_module('plugins.%s' % name)
 return cls.plugins[name]

Metaclasses – Making Classes (Not Instances) Smarter234

Now we run this from a Python file:

import plugins

print(plugins.PluginsOnDemand.get('a'))
print(plugins.PluginsOnDemand.get('a'))

Which results in:

Loading plugins from plugins.a
<class 'plugins.a.A'>
<class 'plugins.a.A'>

As you can see, this approach only results in running the import once; the second time, the plugin
will be available in the plugins dictionary, so no loading will be necessary.

Importing plugins through configuration
While only loading the required plugins is useful because it reduces your initial load time and memory
overhead, there is something to be said about preloading the plugins you will likely need. As dictated
by the Zen of Python, explicit is better than implicit, so an explicit list of plugins to load is generally a
good solution. The added advantages of this method are that you are able to make the registration a bit
more advanced as you are guaranteed it is run, and that you can load plugins from multiple packages.
The disadvantage is, of course, that you need to explicitly define which plugins to load, which could
be considered a violation of the DRY (Don’t Repeat Yourself) principle.

Instead of importing in the get method, we will add a load method this time, which imports all the
given module names:

PluginsOnDemand class omitted for brevity
class PluginsThroughConfiguration(PluginsOnDemand):
 @classmethod
 def load(cls, *plugin_names):
 for plugin_name in plugin_names:
 cls.get(plugin_name)

Which can be called using the following code:

import plugins

plugins.PluginsThroughConfiguration.load(
 'a',
 'b',
)

print('After load')

Chapter 8 235

print(plugins.PluginsThroughConfiguration.get('a'))
print(plugins.PluginsThroughConfiguration.get('a'))

This results in the following output:

Loading plugins from plugins.a
Loading plugins from plugins.b
After load
<class 'plugins.a.A'>
<class 'plugins.a.A'>

A fairly simple and straightforward system to load the plugins based on settings, this could easily
be combined with any type of settings system to fill the load method. An example of this method is
INSTALLED_APPS in Django.

Importing plugins through the filesystem
The most convenient method of loading plugins is one you don’t have to think about because it happens
automatically. While this is very convenient, very important caveats should be considered.

First, they often make debugging much more difficult. Similar automatic import systems in Django
have caused me a fair share of headaches, as they tend to obfuscate errors or even completely hide
them, making you debug for hours.

Second, it can be a security risk. If someone has write access to one of your plugin directories, they
can effectively execute code within your application.

Having that said, especially for beginners and/or new users of your framework, automatic plugin
loading can be very convenient and certainly warrants a demonstration.

This time, we inherit the PluginsThroughConfiguration class we created in the previous example,
and add an autoload method to detect available plugins.

import re
import pathlib
import importlib

CURRENT_FILE = pathlib.Path(__file__)
PLUGINS_DIR = CURRENT_FILE.parent
MODULE_NAME_RE = re.compile('[a-z][a-z0-9_]*', re.IGNORECASE)

class PluginsThroughFilesystem(PluginsThroughConfiguration):
 @classmethod
 def autoload(cls):
 for filename in PLUGINS_DIR.glob('*.py'):
 # Skip __init__.py and other non-plugin files
 if not MODULE_NAME_RE.match(filename.stem):

Metaclasses – Making Classes (Not Instances) Smarter236

 continue
 cls.get(filename.stem)

 # Skip this file
 if filename == CURRENT_FILE:
 continue

 # Load the plugin
 cls.get(filename.stem)

Now, let’s give this code a try:

import pprint
import plugins

plugins.PluginsThroughFilesystem.autoload()

print('After load')
pprint.pprint(plugins.PluginsThroughFilesystem.plugins)

This results in:

Loading plugins from plugins.a
Loading plugins from plugins.b
After load
{'a': <class 'plugins.a.A'>,
 'b': <class 'plugins.b.B'>,
 'plugin': <class 'plugins.base.Plugin'>}

Now every file in the plugins directory will automatically be loaded. But note that it can obscure
certain errors. For example, if one of your plugins imports a library that you do not have installed,
you will get the ImportError from the plugin, not the actual library.

To make this system a bit smarter (even importing packages outside of your Python path), you can
create a plugin loader using the abstract base classes in importlib.abc; note that you will most likely
still need to somehow list the files and/or directories though. To improve this, you could also take a
look at the loaders in importlib. Using these loaders, you can load plugins from ZIP files and other
sources as well.

Now that we are done with plugin systems, it is time to look at how dataclasses could be implemented
using metaclasses instead of decorators.

Dataclasses
In Chapter 4, Pythonic Design Patterns, we already saw the dataclasses module, which makes it possible
to implement easy type hinting and even enforce some structure in your classes.

Chapter 8 237

Now let’s look at how we can implement our own version using a metaclass. The actual dataclasses
module mostly relies on a class decorator, but that is no issue. Metaclasses can be seen as a more pow-
erful version of a class decorator, so they will work fine. With metaclasses, you can use inheritance to
reuse them, or make the class inherit other classes, but above all, they allow you to modify the class
object, instead of the instance with decorators.

The dataclasses module has several tricks up its sleeve that are non-trivial to replicate. Beyond adding
documentation and some utility methods, it also generates an __init__ method with a signature that
matches the fields of the dataclass. Since the entire dataclasses module is roughly 1,300 lines, we
will not get close with our implementation. So we will implement the __init__() method, including a
generated signature and __annotations__ for type hinting, and a __repr__ method to show the results:

import inspect

class Dataclass(type):
 def _get_signature(namespace):
 # Get the annotations from the class
 annotations = namespace.get('__annotations__', dict())

 # Signatures are immutable so we need to build the
 # parameter list before creating the signature
 parameters = []
 for name, annotation in annotations.items():
 # Create Parameter shortcut for readability
 Parameter = inspect.Parameter

 # Create the parameter with the correct type
 # annotation and default. You could also choose to
 # make the arguments keyword/positional only here
 parameters.append(Parameter(
 name=name,
 kind=Parameter.POSITIONAL_OR_KEYWORD,
 default=namespace.get(name, Parameter.empty),
 annotation=annotation,
))

 return inspect.Signature(parameters)

 def _create_init(namespace, signature):
 # If init exists we don't need to do anything
 if '__init__' in namespace:
 return

Metaclasses – Making Classes (Not Instances) Smarter238

 # Create the __init__ method and use the signature to
 # process the arguments
 def __init__(self, *args, **kwargs):
 bound = signature.bind(*args, **kwargs)
 bound.apply_defaults()

 for key, value in bound.arguments.items():
 # Convert to the annotation to enforce types
 parameter = signature.parameters[key]
 # Set the casted value
 setattr(self, key, parameter.annotation(value))

 # Override the signature for __init__ so help() works
 __init__.__signature__ = signature

 namespace['__init__'] = __init__

 def _create_repr(namespace, signature):
 def __repr__(self):
 arguments = []
 for key, value in vars(self).items():
 arguments.append(f'{key}={value!r}')
 arguments = ', '.join(arguments)
 return f'{self.__class__.__name__}({arguments})'

 namespace['__repr__'] = __repr__

 def __new__(metaclass, name, bases, namespace):
 signature = metaclass._get_signature(namespace)
 metaclass._create_init(namespace, signature)
 metaclass._create_repr(namespace, signature)

 cls = super().__new__(metaclass, name, bases, namespace)

 return cls

At first glance, this might look complicated, but the general process is actually fairly simple:

1.	 We generate a signature from the __annotations__ and defaults in the class.
2.	 We generate an __init__ method based on the signature.
3.	 We make the __init__ method use the signature to automatically bind the arguments passed

to the function and apply those to the instance.

Chapter 8 239

4.	 We generate a __repr__ method, which simply prints the class name and the values stored
in the instance. Note that this method is rather limited and will show anything you’ve added
to the class.

Note that as an extra little touch, we have a cast to the annotated type to enforce the type correctly.

Let’s see if it works as expected by using the dataclass example from Chapter 4 with a few small ad-
ditions to test the type conversions:

>>> from T_10_dataclasses import Dataclass

>>> class Sandwich(metaclass=Dataclass):
... spam: int
... eggs: int = 3

>>> Sandwich(1, 2)
Sandwich(spam=1, eggs=2)

>>> sandwich = Sandwich(4)
>>> sandwich
Sandwich(spam=4, eggs=3)
>>> sandwich.eggs
3

>>> help(Sandwich.__init__)
Help on function __init__ in ...
<BLANKLINE>
__init__(spam: int, eggs: int = 3)
<BLANKLINE>

>>> Sandwich('a')
Traceback (most recent call last):
 ...
ValueError: invalid literal for int() with base 10: 'a'

>>> Sandwich('1234', 56.78)
Sandwich(spam=1234, eggs=56)

That all functions as expected, with similar output to the original dataclass. Naturally, it’s far more
limited in features, but it shows how you can generate your own classes and functions dynamically,
and how easy it is to add automatic annotation-based type casting to your code.

Next up is a deep dive into the creation and instantiation of classes.

Metaclasses – Making Classes (Not Instances) Smarter240

Order of operations when instantiating classes
The order of operations during class instantiation is very important to keep in mind when debugging
issues with dynamically created and/or modified classes. Assuming an incorrect order can cause
difficult-to-trace bugs. The instantiation of a class happens in the following order:

1.	 Finding the metaclass
2.	 Preparing the namespace
3.	 Executing the class body
4.	 Creating the class object
5.	 Executing the class decorators
6.	 Creating the class instance

We will go through each of these now.

Finding the metaclass
The metaclass comes from either the explicitly given metaclass on the class or bases, or by using the
default type metaclass.

For every class, the class itself and the bases, the first matching of the following will be used:

•	 Explicitly given metaclass
•	 Explicit metaclass from bases
•	 type()

Preparing the namespace
The class namespace is prepared through the metaclass selected above. If the metaclass has a __
prepare__ method, it will be called as namespace = metaclass.__prepare__(names, bases, **kwargs)
where the **kwargs originate from the class definition. If no __prepare__ method is available, the
result will be namespace = dict().

Note that there are multiple ways of achieving custom namespaces. As we saw in the previous section,
the type() function call also takes a dict argument, which can be used to alter the namespace as well.

Executing the class body
The body of the class is executed very similarly to normal code execution with one key difference: the
separate namespace. Since a class has a separate namespace, which shouldn’t pollute the globals()/
locals() namespaces, it is executed within that context. The resulting call looks something like this:

exec(body, globals(), namespace)

 Note that if no metaclass is found that is a subtype of all of the candidate metaclasses, a
TypeError will be raised. This scenario is not that likely to occur, but is certainly a pos-
sibility when using multiple inheritance/mixins with metaclasses.

Chapter 8 241

where the namespace is the previously produced namespace.

Creating the class object (not instance)
Now that we have all components ready, the actual class object can be produced. This is done through
the class_ = metaclass(name, bases, namespace, **kwargs) call, which is, as you can see, actually
identical to the type() call previously discussed. The **kwargs here are the same as the ones passed
to the __prepare__ method earlier.

It might be useful to note that this is also the object that will be referenced from the super() call
without arguments.

Executing the class decorators
Now that the class object is actually done already, the class decorators will be executed. Since this
is only executed after everything else in the class object has already been constructed, it becomes
difficult to modify class attributes such as which classes are being inherited and the name of the class.
By modifying the __class__ object, you can still modify or overwrite these, but it is, at the very least,
more difficult.

Creating the class instance
From the class object produced above, we can now finally create the actual instances as you normally
would with a class. It should be noted that, unlike the steps above, this step and the class decorators
step, are the only ones that are executed every time you instantiate a class. The steps before these two
are only executed once per class definition.

Example
Enough theory – let’s illustrate the creation and instantiation of the class objects so we can check the
order of operations:

>>> import functools

>>> def decorator(name):
... def _decorator(cls):
... @functools.wraps(cls)
... def __decorator(*args, **kwargs):
... print('decorator(%s)' % name)
... return cls(*args, **kwargs)
...
... return __decorator
...
... return _decorator

>>> class SpamMeta(type):
... @decorator('SpamMeta.__init__')

Metaclasses – Making Classes (Not Instances) Smarter242

... def __init__(self, name, bases, namespace, **kwargs):

... print('SpamMeta.__init__()')

... return type.__init__(self, name, bases, namespace)

...

... @staticmethod

... @decorator('SpamMeta.__new__')

... def __new__(cls, name, bases, namespace, **kwargs):

... print('SpamMeta.__new__()')

... return type.__new__(cls, name, bases, namespace)

...

... @classmethod

... @decorator('SpamMeta.__prepare__')

... def __prepare__(cls, names, bases, **kwargs):

... print('SpamMeta.__prepare__()')

... namespace = dict(spam=5)

... return namespace

With the created class and decorator, we can now illustrate when methods such as __prepare__ and
__new__ are called:

>>> @decorator('Spam')
... class Spam(metaclass=SpamMeta):
... @decorator('Spam.__init__')
... def __init__(self, eggs=10):
... print('Spam.__init__()')
... self.eggs = eggs
decorator(SpamMeta.__prepare__)
SpamMeta.__prepare__()
decorator(SpamMeta.__new__)
SpamMeta.__new__()
decorator(SpamMeta.__init__)
SpamMeta.__init__()

Testing with the class object
>>> spam = Spam
>>> spam.spam
5
>>> spam.eggs
Traceback (most recent call last):
 ...
 File "<doctest T_11_order_of_operations.rst[6]>", line 1, in ...
AttributeError: 'function' object has no attribute 'eggs'

Chapter 8 243

Testing with a class instance
>>> spam = Spam()
decorator(Spam)
decorator(Spam.__init__)
Spam.__init__()
>>> spam.spam
5
>>> spam.eggs
10

The example clearly shows the creation order of the class:

1.	 Preparing the namespace through __prepare__
2.	 Creating the class body using __new__
3.	 Initializing the metaclass using __init__ (note: this is not the class __init__)
4.	 Initializing the class through the class decorator
5.	 Initializing the class through the class __init__ function

One thing we can note from this is that class decorators are executed each and every time the class is
actually instantiated and not before that. This can be both an advantage and a disadvantage, of course,
but if you wish to build a register of all subclasses, it is definitely more convenient to use a metaclass
since the decorator will not register until you instantiate the class.

In addition to this, having the power to modify the namespace before actually creating the class object
(not the instance) can be very powerful as well. This can be convenient for sharing a certain scope
between several class objects, for example, or to easily ensure that certain items are always available
in the scope.

Storing class attributes in definition order
There are cases where the definition order makes a difference. For example, let’s assume we are cre-
ating a class that represents a CSV (Comma-Separated Values) format. The CSV format expects fields
to have a particular order. In some cases, this will be indicated by a header, but it’s still useful to have
a consistent field order. Similar systems are used in ORM systems such as SQLAlchemy to store the
column order for table definitions, and for the input field order within forms in Django.

The classic solution without metaclasses
An easy way to store the order of the fields is by giving the field instances a special __init__ method
that increments for every definition, so the fields have an incrementing index property. This solution
could be considered the classic solution, as it would also work in Python 2:

>>> import itertools

>>> class Field(object):

Metaclasses – Making Classes (Not Instances) Smarter244

... counter = itertools.count()

...

... def __init__(self, name=None):

... self.name = name

... self.index = next(Field.counter)

...

... def __repr__(self):

... return '<%s[%d] %s>' % (

... self.__class__.__name__,

... self.index,

... self.name,

...)

>>> class FieldsMeta(type):
... def __new__(metaclass, name, bases, namespace):
... cls = type.__new__(metaclass, name, bases, namespace)
... fields = []
... for k, v in namespace.items():
... if isinstance(v, Field):
... fields.append(v)
... v.name = v.name or k
...
... cls.fields = sorted(fields, key=lambda f: f.index)
... return cls

>>> class Fields(metaclass=FieldsMeta):
... spam = Field()
... eggs = Field()

>>> Fields.fields
[<Field[0] spam>, <Field[1] eggs>]

>>> fields = Fields()
>>> fields.eggs.index
1
>>> fields.spam.index
0
>>> fields.fields
[<Field[0] spam>, <Field[1] eggs>]

For convenience, and to make things prettier, we have added the FieldsMeta class.

Chapter 8 245

It is not strictly required here, but it automatically takes care of filling in the name if needed, and adds
the fields list, which contains a sorted list of fields.

Using metaclasses to get a sorted namespace
The previous solution is a bit more straightforward and supports Python 2 as well, but with Python 3 we
have more options. As you have seen in the previous section, Python 3 gave us the __prepare__ method,
which returns the namespace. From Chapter 4, you might remember collections.OrderedDict, so
let’s see what happens when we combine them:

>>> import collections

>>> class Field(object):
... def __init__(self, name=None):
... self.name = name
...
... def __repr__(self):
... return '<%s %s>' % (
... self.__class__.__name__,
... self.name,
...)

>>> class FieldsMeta(type):
... @classmethod
... def __prepare__(metaclass, name, bases):
... return collections.OrderedDict()
...
... def __new__(metaclass, name, bases, namespace):
... cls = type.__new__(metaclass, name, bases, namespace)
... cls.fields = []
... for k, v in namespace.items():
... if isinstance(v, Field):
... cls.fields.append(v)
... v.name = v.name or k
...
... return cls

>>> class Fields(metaclass=FieldsMeta):
... spam = Field()
... eggs = Field()

>>> Fields.fields

Metaclasses – Making Classes (Not Instances) Smarter246

[<Field spam>, <Field eggs>]
>>> fields = Fields()
>>> fields.fields
[<Field spam>, <Field eggs>]

As you can see, the fields are indeed in the order we defined them. Spam first, eggs after that. Since the
class namespace is now a collections.OrderedDict instance, we know that the order is guaranteed.
It should be noted that, since Python 3.6, the order of the regular dict is also consistent, but the usage
example of __prepare__ is still useful. It demonstrates how convenient metaclasses can be to extend
your classes in a generic way. Another big advantage of metaclasses instead of a custom __init__
method is that users won’t lose the functionality if they forget to call the parent __init__ method. The
metaclass will always be executed, unless a different metaclass is added, that is.

Exercises
The most important point of this chapter is to teach you how metaclasses work internally: a metaclass
is just a class that creates a class, which, in turn, is created by another metaclass (eventually ending
up recursively at type). If you want to challenge yourself, however, there is more you can do with
metaclasses:

•	 Validation is one of the most prominent examples of where metaclasses can be useful. You
can validate to check if attributes/methods are available, you can check if required classes are
inherited, and so on. The possibilities are endless.

•	 Build a metaclass that wraps every method with a decorator (could be useful for logging/de-
bugging purposes), something with a signature like this:

class SomeClass(metaclass=WrappingMeta, wrapper=some_wrapper):

Summary
The Python metaclass system is something every Python programmer uses all the time, perhaps
without even knowing about it. Every class is created through some (subclass of) type, which allows
for endless customization and magic.

Instead of statically defining your class, you can now have it created as you normally would and dy-
namically add, modify, or remove attributes from your class during definition; very magical but very
useful. The magic component, however, is also the reason why metaclasses should be used with a
lot of caution. While they can be used to make your life much easier, they are also among the easiest
ways of producing completely incomprehensible code.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Chapter 8 247

Regardless, there are some great use cases for metaclasses, and many libraries such as SQLAlchemy
and Django use metaclasses to make your code work much more easily and arguably better. Actually
comprehending the magic that is used inside is generally not needed for the usage of these libraries,
which makes the cases defendable.

The question becomes whether a much better experience for beginners is worth some dark magic
internally, and looking at the success of these libraries, I would say yes in this case.

To conclude, when thinking about using metaclasses, keep in mind what Tim Peters once said:

With the introduction of class decorators and methods such as __init_subclass__ and __set_name__,
the need for metaclasses has dwindled even further. So when in doubt, you probably have no real
need for them.

Now we will continue with a solution to remove some of the magic that metaclasses generate – docu-
mentation. The next chapter will show us how your code can be documented, how that documentation
can be tested, and most importantly, how the documentation can be made smarter by annotating types.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

 “Metaclasses are deeper magic than 99% of users should ever worry about.
If you wonder whether you need them, you don’t.”

https://discord.gg/QMzJenHuJf

9
Documentation – How to Use
Sphinx and reStructuredText

Documenting code can be both fun and useful! I will admit that many programmers have a strong
dislike for documenting code and understandably so. Writing documentation can be a boring job
and, traditionally, only others reap the benefits of that effort. The tools available for Python, however,
make it almost trivial to generate useful and up-to-date documentation with little to no effort at all.
Generating documentation has actually become so easy that I often create and generate documentation
before using a Python package. Assuming it wasn’t available already, that is.

In addition to simple text documentation explaining what a function does, it is also possible to add
metadata, such as type hints. These type hints can be used to make the arguments and return types
of a function or class clickable in the documentation. But more importantly, many modern IDEs and
editors, such as VIM, have plugins available that parse the type hints and use them for intelligent
autocompletion. So if you type 'some_string.', your editor will automatically complete the specific
attributes and methods of a string object, something that is traditionally only viable with statically
typed languages such as Java, C, and C++.

This chapter will explain the types of documentation available in Python and how easily a full set
of documentation can be created. With the amazing tools that Python provides, you can have fully
functioning documentation within minutes.

The topics covered in this chapter are as follows:

•	 Type hinting
•	 The reStructuredText syntax
•	 The Markdown syntax
•	 Setting up documentation using Sphinx
•	 Sphinx-, Google-, and NumPy-style docstrings

Documentation – How to Use Sphinx and reStructuredText250

Type hinting
Since Python 3.5, we’ve had a feature called type hinting, which is arguably one of the most useful
additions to Python 3. It allows you to specify the types of variables and return values, which means
your editor will be able to give you smart autocompletion. This makes it useful for all Python pro-
grammers, regardless of level, and can make your life much easier when paired with a good editor.

Basic example
Most editors are already smart enough to recognize basic types in regular variables such as these:

>>> a = 123
>>> b = 'test'
>>> c = True

It becomes a lot harder for an editor when, instead of a = 123, we have something like a =
some_function(). In some cases, the return type of a function is obvious (i.e. return True), but if
the return type depends on the input variables or is not consistent, it becomes much harder for the
editor to understand what is happening.

As the Zen of Python tells us, explicit is better than implicit. In the case of function return types, this
is often the case and can be implemented with very little effort:

>>> def pow(base: int, exponent: int) -> int:
... return base ** exponent

>>> help(pow)
Help on function pow in module __main__:
<BLANKLINE>
pow(base: int, exponent: int) -> int
<BLANKLINE>

>>> pow.__annotations__
{'base': <class 'int'>,
 'exponent': <class 'int'>,
 'return': <class 'int'>}

>>> pow(2, 10)
1024
>>> pow(pow(9, 2) + pow(19, 2) / 22, 0.25)
3.1415926525826463

That works as expected. With a simple -> type, you can specify the function return type, which is
automatically reflected in the __annotations__, which is also visible in the help(). And the arguments
(and variables) can be type-specified using name: type.

Chapter 9 251

In this case, you may notice that even though we specified the function to return an int, it can actually
return a float as well, since Python only has type hints, not type constraints/enforcements.

While basic types such as int, float, str, dict, list, and set can be specified with variable: int
alone, for more advanced types, we need the typing module.

The typing module contains types such as typing.Any to allow everything, typing.Optional to allow
for None, and typing.Union to specify multiple allowed types, which we will now demonstrate:

>>> import typing

>>> int_or_float = typing.Union[int, float]

>>> def pow(base: int, exponent: int) -> int_or_float:
... return base ** exponent

>>> help(pow)
Help on function pow in module __main__:
<BLANKLINE>
pow(base: int, exponent: int) -> Union[int, float]
<BLANKLINE>

With typing.Union, we can specify a list of types that apply. Similarly, an optional type can be speci-
fied using typing.Optional[int] to indicate that the type can be either int or None, effectively being
equivalent to typing.Union[int, None]. Additionally, since Python 3.10 we can write this as int | None.

Custom types
Since regular Python objects are their own type, you usually don’t even have to think about what type
they are. Simply specify the object and it will work:

>>> class Sandwich:
... pass

>>> def get_sandwich() -> Sandwich:
... return Sandwich()

Since Python 3.9, you can use variable: list[int]. For older versions of Python, you
need to use variable: typing.List[int] for all collection types such as dict/list/
set that require the getitem ([]) operator.

Documentation – How to Use Sphinx and reStructuredText252

But what would happen with circular definitions or other circumstances where you do not have the
type available yet? In that case, you can work around the issue by specifying the type as a string:

>>> class A:
... @staticmethod
... def get_b() -> 'B':
... return B()

>>> class B:
... @staticmethod
... def get_a() -> A:
... return A()

Whenever possible, I would recommend against this method because it gives you no guarantee that
the type can actually be resolved:

Works without an issue
>>> some_variable: 'some_non_existing_type'

Error as expected
>>> some_variable: some_non_existing_type
Traceback (most recent call last):
 ...
NameError: name 'some_non_existing_type' is not defined

Naturally, this will only check whether the type actually exists. For proper type checking, we can use
tools such as mypy, which will be covered in the next section. To make sure that your type checker can
resolve the type, you can encase your imports in an if typing.TYPE_CHECKING block like so:

>>> if typing.TYPE_CHECKING:
... # Add your import for some_non_existing_type here
... ...

The typing.TYPE_CHECKING constant is not normally set, but can be set by type checkers such as mypy
to make sure all types are working correctly.

In the examples above, we have seen custom classes as custom types, but what if we want to create a
custom type out of an existing built-in type? That is also possible using typing.NewType, which creates
a new type that behaves like the base type, but can be checked by static type checkers:

>>> import typing

>>> Username = typing.NewType('Username', str)

>>> rick = Username('Rick')

>>> type(rick)
<class 'str'>

Chapter 9 253

Here we created a type called Username, which is treated as a subclass of str in this case.

Generics
In some cases, you don’t want to statically specify the type of a function, but make it depend on the
input instead. For this reason, the Python type system supports generics. If you’re familiar with Java,
C++, or C#, you might be familiar with them.

Generics allow you to create a generic type whose only constraint is that it is the same in all cases.
This means that if you specify a generic type as both the input and the output for a function, it will be
assumed to be the same; if you input an int into a function, you will receive an int.

First, we need to specify a generic type and, after that, we can specify it as parameters for our functions:

>>> import typing

>>> T = typing.TypeVar('T', int, str)

>>> def add(a: T, b: T) -> T:
... return a + b

>>> add(1, 2)
3
>>> add('a', 'b')
'ab'

In this case, we created a generic type with the constraint that it needs to be either int or str. When
the type checker runs, it will check if a, b, and the return value have the same type. This means that
even though an int is valid for type T, if you make a a str, b and the output have to be str as well.

Type checking
Now that we know how to specify and create type hints, it’s time to run a type checker. The reference
implementation for type checking is the mypy tool. It can thoroughly check your code and warn about
potential problems.

First, we need to install mypy – luckily, that’s easy enough with pip:

$ pip3 install -U mypy

Now we will use mypy to check some of the earlier examples with a few errors added:

import typing

def pow(base: int, exponent: int) -> int:
 return base ** exponent

pow(2.5, 10)

Documentation – How to Use Sphinx and reStructuredText254

Since we hinted base to be an int, 2.5 is not a valid value since it is a float:

$ mypy T_01_type_hinting.py
T_01_type_hinting.py:8: error: Argument 1 to "pow" has incompatible type
"float"; expected "int"

Now an example with a custom type:

Username = typing.NewType('Username', str)

rick = Username('Rick')

def print_username(username: Username):
 print(f'Username: {username}')

print_username(rick)
print_username(str(rick))

Here we specified that print_username() should receive a Username type. Even though Username
inherits str, it is not considered valid:

$ mypy T_01_type_hinting.py
T_01_type_hinting.py:22: error: Argument 1 to "print_username" has incompatible
type "str"; expected "Username"

Lastly, we will create a generic type:

T = typing.TypeVar('T')

def to_string(value: T) -> T:
 return str(value)

to_string(1)

Since to_string() received an int, it should return an int, which is not the case. Let’s run mypy to
see what’s wrong:

error: Incompatible return value type (got "str", expected "T")

While writing code, mypy can save you a lot of debugging by warning you about incorrect type usage.

Python type interface files
Python type hint files (.pyi), also called stub files, are files that allow you to specify all type hints for
a file without touching the original file. This is useful for libraries that you do not have write access
to, or if you do not want to clutter your files with type hints.

Chapter 9 255

The files use the regular Python syntax, but the functions are not meant to contain anything beyond
stubs that only hint the types. An example stub for the print_username() function mentioned above
could be:

import typing

Username = typing.NewType('Username', str)

def print_username(username: Username): ...

The files are nothing special, but they can be especially useful when interacting with libraries that
lack type hinting. If your regular file is named test.py, the pyi file would be named test.pyi.

Type hinting conclusion
Within this section, you have seen a few very basic examples of how type hinting can be applied and
how the types can be checked. The Python typing module is still getting enhanced quite a lot and mypy
has really extensive documentation that can be useful if you are applying this to your own code. Make
sure to look at the documentation if you have any specific issues; it is high quality and very useful.

When it comes to using type hinting in your own projects, my suggestion is to use it wherever it en-
hances your workflow but not to go overboard. In many cases, your editor will be smart enough to
figure out the arguments automatically, or it won’t really matter too much. But when passing along
more advanced classes where you tend to forget the methods available for that class, it becomes a
really useful feature. Having smart autocompletion can really save you a lot of time.

Now that we have type hints covered, it is time to continue with documenting our code and the markup
languages available for that task.

reStructuredText and Markdown
The reStructuredText format (also known as RST, ReST, or reST) was developed in 2002 as a language
that implements enough markup to be usable, but is simple enough to be readable as plain text. These
two features make it readable enough to use in code, yet still versatile enough to generate pretty and
useful documentation.

The Markdown format is really similar to reStructuredText and largely comparable. While reStruc-
turedText is slightly older (2012) than Markdown (2014), the Markdown format has gained a bit more
popularity because it’s a bit simpler and less Python-focused. Both standards are excellent for writing
text that is legible straightaway and can easily be converted to other formats such as HTML or PDF files.

The main advantages of reST are:

•	 A very extensive feature set
•	 A strictly defined standard
•	 Easy extensibility

Documentation – How to Use Sphinx and reStructuredText256

The main advantages of Markdown are:

•	 It is less Python-centric, which caused it to gain more widespread adoption
•	 A more forgiving and less strict parser, which makes it easier to write

The greatest thing about both reStructuredText and Markdown is that they are very intuitive to write
and natively supported by most (social) coding platforms such as GitHub, GitLab, BitBucket, and PyPI.

Even without knowing anything about the standard, you can easily write documentation in this style.
However, more advanced techniques, such as images and links, do require some explanation.

For Python documentation itself, reStructuredText is the most convenient standard since it’s well sup-
ported by tools such as Sphinx and docutils. For readme files on sites such as GitHub and the Python
Package Index, the Markdown standard is generally better supported.

The basic syntax reads just like text and the next few paragraphs will show some of the more advanced
features. However, let us start with a simple example demonstrating how simple a reStructuredText
or Markdown file can be:

Documentation, how to use Sphinx and reStructuredText
##

Documenting code can be both fun and useful! ...

Additionally, adding ...

... So that typing 'some_string.' will automatically ...

Topics covered in this chapter are as follows:

 - The reStructuredText syntax
 - Setting up documentation using Sphinx
 - Sphinx style docstrings
 - Google style docstrings
 - NumPy style docstrings

The reStructuredText syntax
**

The reStructuredText format (also known as ...

To easily convert between formats such as reStructuredText and Markdown, use the Pandoc
tool, available at https://pandoc.org/.

https://pandoc.org/

Chapter 9 257

That’s how easy it is to convert the text of this chapter so far to reStructuredText or Markdown. The
example above works in both. But for the Markdown file to look similar, we need to modify the head-
ers slightly:

Documentation, how to use Sphinx and reStructuredText

...

The reStructuredText syntax

...

The following paragraphs will cover the following features:

1.	 Inline markup (italic, bold, code, and links)
2.	 Lists
3.	 Headers
4.	 Advanced links
5.	 Images
6.	 Substitutions
7.	 Blocks containing code, math, and others

Getting started with reStructuredText
To quickly convert a reStructuredText file to HTML, we can use the docutils library. The sphinx li-
brary discussed later in this chapter actually uses the docutils library internally, but has some extra
features that we won’t need initially. To get started, we just need to install docutils:

$ pip3 install docutils

After that, we can easily convert reStructuredText into PDF, LaTeX, HTML, and other formats. For the
examples in this paragraph, we’ll use the HTML format, which is easily generated using the following
command:

$ rst2html.py file.rst file.html

The reStructuredText language has two basic components:

•	 Roles that allow for inline modifications of the output, such as :code:, :math:, :emphasis:,
and :literal:.

•	 Directives that generate markup blocks, such as code samples with multiple lines. These look
like this:

.. code:: python

 print('Hello world')

Documentation – How to Use Sphinx and reStructuredText258

Within pure reStructuredText, the directives are the most important, but we will see many uses for
the roles in the section on Sphinx roles later in this chapter.

Getting started with Markdown
To quickly convert a Markdown file to HTML we have many options available. But, because we are
using Python, we will use the markdown package:

$ pip3 install markdown

Now we can convert our file to HTML with the following command:

$ markdown_py file.md -f file.html

It should be noted that this converter only supports plain Markdown, not the GitHub flavored Mark-
down, which also supports code syntax highlighting.

Inline markup
Inline markup is the markup that is used within a regular line of text. Examples of these are emphasis,
inline code examples, links, images, and bullet lists.

Emphasis, for example, can be added by encapsulating the words between one or two asterisk signs.
This sentence, for example, could add a little bit of *emphasis* by adding a single asterisk on both
sides, or a lot of **emphasis** by adding two asterisks on both sides. There are many different inline
markup directives so we will list only the most common ones. A full list can always be found through
the reStructuredText home page at https://docutils.sourceforge.io/docs/ and the Markdown
home page at https://daringfireball.net/projects/markdown/syntax, respectively.

The following are some examples that work for both reST and Markdown:

•	 Emphasis (italic) text: *emphasis for this phrase*.
•	 Extra emphasis (bold) text: **extra emphasis for this phrase**.
•	 For lists without numbers, a simple dash with a space after it:

•	 - item 1

The grip (GitHub Readme Instant Preview) Python package supports live rendering of
GitHub flavored Markdown by using the GitHub servers and can be useful while writing
Markdown.

Within reStructuredText, these are implemented through roles, but often have useful
shorthands. Instead of :emphasis:'text', you can also use *text*.

https://docutils.sourceforge.io/docs/
https://daringfireball.net/projects/markdown/syntax

Chapter 9 259

•	 - item 2

•	 For lists with numbers, the number followed by a period and a space:

•	 1. item 1

•	 2. item 2

•	 For numbered lists, the period after the number is required.
•	 Interpreted text: These are domain-specific. Within Python documentation, the default role

is code, which means that surrounding text with backticks will convert your code to use code
tags, for example, 'if spam and eggs:'.

•	 Inline literals: This is formatted with a monospace font, which makes it ideal for inline code.
Just add two backticks to ''add some code''. For Markdown, there is no noticeable difference
between single and double backticks in output, but it can be used to escape single backticks:
''some code ' with backticks''.

•	 Escaping in reST can be done using a \, similar to escaping in Python: ''some code \' with
backticks''.

For reStructuredText, there are a few extra options using roles, similar to the interpreted text role we
saw earlier. These roles can be set through role prefixes or suffixes depending on your preference; for
example, :math:'E=mc^2' to show mathematical equations.

References can be added through a trailing underscore. They can point to headers, links, labels, and
more. The next section will cover more about these, but the basic syntax is simply reference_, or
enclosed in backticks when the reference contains spaces – 'some reference link'_.

There are many more available, but these are the ones you will use the most when writing reStruc-
turedText.

Headers
The headers are used to indicate the start of a document, section, chapter, or paragraph. It is therefore
the first structure you need in a document. While not strictly needed, its usage is highly recommended
as it serves several purposes:

1.	 The headers are consistently formatted according to their level.
2.	 A table of contents (TOC) tree can be generated from the headers.
3.	 All headers automatically function as labels, which means you can create links to them.

The format required to make headers overlaps a little between reST and Markdown, but for clarity,
we will cover them separately.

Note

The space after the dash is required for reStructuredText to recognize
the list.

Documentation – How to Use Sphinx and reStructuredText260

Headers with reStructuredText
When creating headers, consistency is one of the few constraints; the number of characters used is
fairly arbitrary, as is the number of levels.

Personally, I default to a simple system with a fixed-size header, but I recommend at least following
the default of the Python documentation in terms of the parts, chapters, sections, subsections, sub-
subsections, and paragraphs, something along the lines of the following:

Part
##

Chapter
**

Section
==

Subsection
--

Subsubsection
^^

Paragraph
""

Content

This creates the following output:

Figure 9.1: Headers with reStructuredText

Chapter 9 261

That is just the common usage of the headers, but the main idea of reStructuredText is that you can
use just about anything that feels natural to you, which means that you can use any of the following
characters: = - ' : ' " ~ ^ _ * + # <>. It also supports both underlines and overlines, so if you
prefer that, they are options as well:

##
Part
##

**
Chapter
**

==
Section
==

--
Subsection
--

^^
Subsubsection
^^

""
Paragraph
""

Content

While I try to keep the number of characters fixed to 78 characters as PEP8 (Chapter 3, Pythonic Syntax
and Common Pitfalls) recommends for Python, the number of characters used is mostly arbitrary, but
it does have to be at least as long as the text of the header. This allows it to accept the following result:

Section
=======

But not this:

Section
====

Documentation – How to Use Sphinx and reStructuredText262

Headers with Markdown
With Markdown, you have several options for headers depending on what you feel like. Similar to
reST, you can use the = and – characters to underline, but only those, and the length and blank lines
after them do not matter:

Part
=
Chapter
-

If you want more levels, you can use up to 6 levels by using the # prefix and optional suffixes:

Part
Chapter
Section
Subsection
Subsubsection
Paragraph
Content
Paragraph with suffix
Content

This results in:

Figure 9.2: Headers in Markdown

Chapter 9 263

As you can see, Markdown is slightly less flexible than reStructuredText when it comes to headers, but
in most cases, it offers enough features to be perfectly usable.

Lists
The reStructuredText format has several styles of lists:

1.	 Enumerated
2.	 Bulleted
3.	 Options
4.	 Definitions

The simplest forms of lists were already displayed in the introduction section, but it’s actually possible
to use many different characters, such as letters, Roman numerals, and others, for enumeration. After
demonstrating the basic list types, we will continue with the nesting of lists and structures, which
makes them even more powerful. Care must be taken with the amount of whitespace, as one space
too many can cause a structure to be recognized as regular text instead of a structure.

Enumerated lists
Enumerated lists are convenient for all sorts of enumerations. The basic premise for enumerated lists
is an alphanumeric character followed by a period, a right parenthesis, or parentheses on both sides.
Additionally, the # character functions as an automatic enumeration. For example:

1. With
2. Numbers

a. With
#. letters

i. Roman
#. numerals

(1) With
(2) Parenthesis

Documentation – How to Use Sphinx and reStructuredText264

The output is perhaps a bit simpler than you would expect. The reason is that it depends on the output
format. The following figure shows the rendered HTML output, which has no support for parentheses.
If you output LaTeX, for example, the difference can be made visible.

Figure 9.3: Enumerated lists generated with the HTML output format

Markdown also supports enumerated lists, but it is a bit more limited in its options. It only supports
regular numbered lists. It’s more convenient in how it supports them though; there is no need for
explicit numbering, and repeating 1. works without a problem:

1. With
1. Numbers

Bulleted lists
If the order of the list is not relevant and you simply need a list of items without enumeration, then
the bulleted list is what you should use. To create a simple list using bullets only, the bulleted items
need to start with a *, +, -, •, ‣, or ⁃. This list is mostly arbitrary and can be modified by extending
Sphinx or Docutils. For example:

- dashes
- and more dashes

* asterisk
* stars

+ plus
+ and plus

As you can see in the following figure, with the HTML output, all bullets again look identical.

Chapter 9 265

When generating documentation as LaTeX (and consecutively, PDF or Postscript), these can differ.

Since web-based documentation is by far the most common output format for Sphinx, we default to
that output instead. The rendered HTML output is as follows:

Figure 9.4: Bulleted lists with HTML output

As you can see, all bulleted lists are rendered the same in this case. This is dependent on the renderer,
however, so it’s a good idea to check the output to see if it matches your preference.

Option lists
The option list is one meant specifically for documenting the command-line arguments of a program.
The only special thing about the syntax is that the comma space is recognized as a separator for options:

-s, --spam This is the spam option
--eggs This is the eggs option

The following is the output:

Figure 9.5: Option list

In Markdown, there is no support for option lists, but you can achieve similar results by creating a table:

Argument	Help
'-s, --spam'	This is the spam option
'--eggs'	This is the eggs option

Documentation – How to Use Sphinx and reStructuredText266

Note that in most Markdown implementations, the headers for a table are required. But the header
alignment as is done here is optional, and the following would render the same:

Argument	Help
'-s, --spam'	This is the spam option
'--eggs'	This is the eggs option

Definition lists (reST only)
The definition list is a bit more obscure than the other types of lists, since the actual structure consists
of whitespace only. It’s therefore pretty straightforward to use, but not always as easy to identify in a
file, and it is only supported by reST:

spam
 Spam is a canned pork meat product
eggs
 Is, similar to spam, also food

The following is the output:

Figure 9.6: Definitions list

The definition list is especially useful when explaining the meaning of certain keywords in your
documentation.

Nested lists
Nesting items is actually not limited to lists and can be done with multiple types of blocks, but the
idea is the same. You could nest a code block within a bulleted list, for example. Just be careful to
keep the indenting at the correct level. If you don’t, it either won’t be recognized as a separate level
or you will get an error:

1. With
2. Numbers

 (food) food

 spam
 Spam is a canned pork meat product

Chapter 9 267

 eggs
 Is, similar to spam, also food

 (other) non-food stuff

The following figure shows the output:

Figure 9.7: Nested lists

For Markdown, the same kind of nesting is possible, as long as the right list types are used.

Links, references, and labels
The links syntax is quite different between Markdown and reStructuredText, but they offer similar
features. Both support inline links and links using a list of references.

The simplest links with protocols such as http://python.org will automatically be recognized by
most parsers for both Markdown and reStructuredText. For custom labels, the syntax is a bit different:

•	 reStructuredText: 'Python <http://python.org>'_
•	 Markdown: [Python](http://python.org)

Both of these are nice for simple links that won’t be repeated too often, but generally, it’s more conve-
nient to attach labels to links so they can be reused and don’t clog up the text too much.

For example, refer to the following reStructuredText example:

The switch to reStructuredText and Sphinx was made with the
'Python 2.6 <https://docs.python.org/whatsnew/2.6.html>'_
release.

Now compare it with the following:

The switch to reStructuredText and Sphinx was made with the
'python 2.6'_ release.

http://python.org

Documentation – How to Use Sphinx and reStructuredText268

.. _'Python 2.6': https://docs.python.org/whatsnew/2.6.html

The output is as follows:

Figure 9.8: Link with a custom label

And the Markdown equivalents:

The switch to reStructuredText and Sphinx was made with the [Python 2.6]
(https://docs.python.org/whatsnew/2.6.html) release.

The switch to reStructuredText and Sphinx was made with the [Python 2.6]
release.

[Python 2.6]: https://docs.python.org/whatsnew/2.6.html

Using labels, you can easily have a list of references at a designated location without making the
actual text harder to read.

For reStructuredText, these labels can be used for more than external links, however. Similar to
the GOTO statements found in older programming languages, you can create labels and refer to them
from other parts of the documentation:

.. _label:

Within HTML or PDF output, this can be used to create a clickable link from anywhere in the text using
the underscore links. Creating a clickable link to the label is as simple as having label_ in the text.

Note that reStructuredText ignores case differences, so both uppercase and lowercase links work just
fine. Even though we’re not likely to make this mistake, having the same label in a single document
with only case differences results in an error, to make sure that duplicates never occur.

The usage of references in conjunction with the headers works in a very natural way; you can just
refer to them as you normally would and add an underscore to make it a link:

The introduction section
==

This section contains:

- 'chapter 1'_
- :ref:'chapter2'

 1. my_label_

 2. 'And a label link with a custom title <my_label>'_

Chapter 9 269

Chapter 1
--

Jumping back to the beginning of 'chapter 1'_ is also possible.
Or jumping to :ref:'Chapter 2 <chapter2>'

.. _chapter2:

Chapter 2 With a longer title
--

The next chapter.

.. _my_label:

The label points here.

Back to 'the introduction section'_

The output is as follows:

Figure 9.9: Links, labels, and references

Documentation – How to Use Sphinx and reStructuredText270

For Markdown, you can partially get similar results depending on the renderer that is used. In the
case of the GitHub parser, all headers are automatically converted to HTML anchors, so a header like
Some header can be linked to by using [name of the link](#some-header).

While this method is convenient for simple cases, it comes with a number of drawbacks:

•	 When the header changes, all links to it are broken
•	 When multiple headers have the same name, only the first one can be linked to
•	 Only headers can be linked to

Images
Images is a feature that is implemented quite differently between reStructuredText and Markdown.

Images with reStructuredText
In reStructuredText, the image directive looks very similar to the label syntax. They’re actually a bit
different, but the pattern is quite similar. The image directive is just one of the many directives that
are supported by reStructuredText. We will see more about that later on when we cover Sphinx and
reStructuredText extensions. For the time being, it is enough to know that the directives start with
two periods followed by a space, the name of the directive, and two colons:

 .. name_of_directive::

In the case of the image, the directive is called image of course:

.. image:: python.png

Here is the scaled output, as the actual image is much larger:

Figure 9.10: Image output with reStructuredText

Note the double colon after the directives.

Chapter 9 271

But how about specifying the size and other properties? The image directive has many other options
(as do most other directives) that can be used: https://docutils.sourceforge.io/docs/ref/rst/
directives.html#images; they are mostly fairly obvious, however. To specify the width and height
or the scale (in percent) of the image:

.. image:: python.png
 :width: 150
 :height: 100

.. image:: python.png
 :scale: 10

The following is the output:

Figure 9.11: Scaled image with reStructuredText

In addition to the image directive, there is also the figure directive. The difference is that figure adds
a caption to the image. Beyond that, the usage is the same as image:

.. figure:: python.png
 :scale: 10

 The Python logo

The scale option uses the width and height options if available and falls back to the PIL
(Python Imaging Library) or Pillow library to detect the image. If neither width/height
nor PIL/Pillow are available, the scale option will be ignored silently.

https://docutils.sourceforge.io/docs/ref/rst/directives.html#images
https://docutils.sourceforge.io/docs/ref/rst/directives.html#images

Documentation – How to Use Sphinx and reStructuredText272

The output is as follows:

Figure 9.12: Adding a figure caption with reStructuredText

Now, let’s compare what we’ve just seen with how to deal with images using Markdown.

Images with Markdown
The support for images in Markdown is similar to the support for links, but you need to add a ! in
front of it:

![python](python.png)

As is the case with links, you can also use references:

![python]

[python]: python.png

However, changing other properties such as the size is not supported by most Markdown implemen-
tations.

Substitutions
When writing documentation, you will often have to use the same images and links over and over
again. While you can add those inline, it is often very verbose, tedious, and hard to maintain.

Within reStructuredText pages, we already have the internal labeling system that handles a lot of cas-
es for us. For external links and images, however, we need to use one of the other reStructuredText
features. With substitution definitions, you can shorten directives so they can easily be re-used. In
the common Markdown implementations, there is no equivalent feature for this.

Let’s assume we have a logo that we use quite often within a bit of text. Instead of typing the entire ..
image:: <url>, it would be very handy to have a shorthand to make it easier. That’s where the sub-
stitutions are very useful:

Chapter 9 273

.. |python| image:: python.png
 :scale: 1

The Python programming language uses the logo: |python|

As you can see, you can use the pipe character to create and use substitutions anywhere in your text.
As is usual in most languages, you can escape the character with a backslash (\) if you need to use a
pipe outside of substitutions.

The output is as follows:

Figure 9.13: Rendered reStructuredText using a substitution for an image directive

These substitutions can be used with many directives, though they are particularly useful for outputting
a variable in many places of a document. For example:

.. |author| replace:: Rick van Hattem

This book was written by |author|

The following is the output:

Figure 9.14: Rendered reStructuredText using a text substitution for an author’s name

These types of substitutions are really useful while writing documentation because they make your
reStructuredText files more readable, but they also allow you to change your entire documentation by
updating a single variable. As opposed to a search/replace, which is generally an error-prone operation.

While writing this chapter, a substitution for |rest| to return reStructuredText would have been
very useful.

Blocks, code, math, comments, and quotes
When writing documentation, a common scenario is the need for blocks that contain different types of
content, explanations with mathematical formulae, code examples, and more.

The usage of these directives is similar to the image directive. The following is an example of a code
block:

.. code:: python

 def spam(*args):
 print('spam got args', args)

Documentation – How to Use Sphinx and reStructuredText274

The output is as follows:

Figure 9.15: Code block output

This is one of the cases where Markdown is a bit simpler to use. With plain Markdown, a code block
only requires indenting:

Code below:

 def spam(*args):
 print('spam got args', args)

Or with the GitHub flavored Markdown with syntax highlighting:

'''python
def spam(*args):
 print('spam got args', args)
'''

With reStructuredText you have more options, however. You can also display mathematical formulae
using the LaTeX syntax. Here’s the fundamental theorem of calculus, for example:

.. math::

 \int_a^b f(x)\,dx = F(b) - F(a)

The following is the output:

Figure 9.16: Mathematical formula output

Commenting a bunch of text/commands is easily achieved by using the “empty” directive followed by
an indent. Effectively, this means two dots, as is the case with any directive, but with the directive::
bit omitted:

Before comments

.. Everything here will be commented

 And this as well
 .. code:: python
 def even_this_code_sample():

Chapter 9 275

 pass # Will be commented

After comments

The output is as follows:

Figure 9.17: Output (with hidden comments)

With Markdown, you have no real method of adding comments, but you can use links as a hack around
this limitation in a few limited cases:

[_]: <> (this will not be shown)

While this method works, it is still far from pretty, of course. Often, you are better off moving the con-
tents to a separate scratch file, or removing the content instead of commenting it and using a version
control system such as Git to retrieve the data if you need it later.

Quoting text is supported by both reStructuredText and Markdown, but the syntax conflicts. Within
reStructuredText, you can create a block quote using indentation, which would result in code format-
ting in Markdown:

Normal text

 Quoted text

The output is as follows:

Figure 9.18: Quoting text

Within Markdown, the format is comparable to how text-based email clients generally quote replies:

Normal text
> Quoted text

Conclusion
Both reStructuredText and Markdown are very useful languages for creating some documentation. A
large portion of the syntax comes naturally when writing plain text notes. A full guide to all the intri-
cacies of reST, however, could fill a separate book. The previous demonstrations should have given
enough of an introduction to do at least 90 percent of the work you will need when documenting your
projects. Beyond that, Sphinx will help a lot, as we will see in the next sections.

Documentation – How to Use Sphinx and reStructuredText276

In general, I would suggest using reStructuredText for actual documentation because it has many more
features than Markdown. However, Markdown is generally more convenient for the basic readme files
on PyPI and GitHub, mainly because you can use the same readme file for both cases, and GitHub
supports Markdown slightly better than reStructuredText.

The Sphinx documentation generator
The Sphinx documentation generator was created in 2008 for the Python 2.6 release to replace the old
LaTeX documentation for Python. It’s a generator that makes it almost trivial to generate documentation
for programming projects, but even outside of the programming world, it can be easily used. Within
programming projects, there is specific support for the following domains (programming languages):

•	 Python
•	 C
•	 C++
•	 JavaScript
•	 reStructuredText

Outside of these languages, there are extensions available for many other languages, such as Cof-
feeScript, MATLAB, PHP, Ruby Lisp, Go, and Scala. And if you’re simply looking for snippet code
highlighting, the Pygments highlighter, which is used internally, supports over 120 languages and is
easily extendible for new languages if needed.

The most important advantage of Sphinx is that almost everything can be automatically generated
from your source code. The result is that your documentation is always up to date.

Getting started with Sphinx
First of all, we have to make sure we install Sphinx. Even though the Python core documentation is
written using Sphinx, it is still a separately maintained project and must be installed separately. Luckily,
that’s easy enough using pip:

$ pip3 install sphinx

After installing Sphinx, there are two ways of getting started with a project: the sphinx-quickstart script,
and the sphinx-apidoc script.

If you want to create and customize an entire Sphinx project, then I would recommend the sphinx-
quickstart command, as it assists you in configuring a fully featured Sphinx project.

If you want to start quickly and generate some API documentation for an existing Python project,
then sphinx-apidoc might be better suited since it takes a single command and no further input
to create a project. After running it, you will have fully functioning documentation based on your
Python source.

In the end, both are valid options for creating Sphinx projects, and personally I usually end up gener-
ating the initial configuration using sphinx-quickstart and call the sphinx-apidoc command every
time I add a Python module to add the new module.

Chapter 9 277

The sphinx-apidoc command does not overwrite any files by default, making it a safe operation to
run repeatedly.

Using sphinx-quickstart
The sphinx-quickstart script interactively asks you about the most important decisions in your
Sphinx project. There is no need to worry about typos; the configuration is stored in a conf.py file
and can be modified like a regular Python file.

Usage is easy enough. As a default, I would recommend creating the documentation in a separate
docs directory, as is the convention for many projects. The output uses the following conventions:

•	 Inline comments start with #
•	 User input lines start with >
•	 Cropped output is indicated with ... and all questions skipped in between use the default

settings

Note the docs after the command:

$ sphinx-quickstart docs
Welcome to the Sphinx 3.2.1 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Selected root path: docs

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]:

The project name will occur in several places in the built documentation.
> Project name: Mastering Python
> Author name(s): Rick van Hattem
> Project release []:

...

You should now populate your master file, docs/index.rst, and create other documentation source
files. Use the Makefile to build the docs, like so:

$ make <builder>

Documentation – How to Use Sphinx and reStructuredText278

Where “<builder>" is one of the supported builders, for example, html, latex, or linkcheck. After
running this, we should have a docs directory containing the Sphinx project. Let’s see what the com-
mand actually created for us:

$ find docs
docs
docs/index.rst
docs/_templates
docs/Makefile
docs/conf.py
docs/_static
docs/make.bat
docs/_build

The _build, _static, and _templates directories are initially empty and can be ignored for now.
The _build directory is used to output the generated documentation, whereas the _static directory
can be used to easily include custom CSS files and such. The _templates directory makes it possible
to style the HTML output to your liking as well. Examples of these can be found in the Sphinx Git
repository at https://www.sphinx-doc.org/en/master/usage/theming.html#builtin-themes.

Makefile and make.bat can be used to generate the documentation output. Makefile can be used
for any operating system that supports the make utility, and make.bat is there to support Windows
systems out of the box. Now let’s look at the index.rst source:

Welcome to Mastering Python's documentation!
==

.. toctree::
 :maxdepth: 2
 :caption: Contents:

Indices and tables
==================

* :ref:'genindex'
* :ref:'modindex'
* :ref:'search'

We see the document title as expected, followed by toctree (table of contents tree; more about that
later in this chapter), and the links to the indices and search. toctree automatically generates a tree
out of the headers of all available documentation pages.

https://www.sphinx-doc.org/en/master/usage/theming.html#builtin-themes

Chapter 9 279

The indices and tables are automatically generated Sphinx pages, which are very useful, but nothing
we need to worry about in terms of settings.

Now it’s time to generate the HTML output:

$ cd docs
$ make html

The make html command generates the documentation for you and the result is placed in _build/
html/. Just open index.html in your browser to see the results. You should now have something
looking similar to the following:

Figure 9.19: Viewing index.html

With just that single command and by answering a few questions, we now have a documentation
project with an index, search, and table of contents on all the pages.

In addition to the HTML output, there are quite a few other formats supported by default, although
some require external libraries to actually work:

$ make help
Sphinx v3.2.1
Please use 'make target' where target is one of
 html to make standalone HTML files
 dirhtml to make HTML files named index.html in directories
 singlehtml to make a single large HTML file
 pickle to make pickle files
 json to make JSON files
 htmlhelp to make HTML files and an HTML help project
 qthelp to make HTML files and a qthelp project
 devhelp to make HTML files and a Devhelp project
 epub to make an epub
 latex to make LaTeX files, you can set PAPER=a4 or ...
 latexpdf to make LaTeX and PDF files (default pdflatex)
 latexpdfja to make LaTeX files and run them through platex/...
 text to make text files
 man to make manual pages
 texinfo to make Texinfo files

Documentation – How to Use Sphinx and reStructuredText280

 info to make Texinfo files and run them through makeinfo
 gettext to make PO message catalogs
 changes to make an overview of all changed/added/... items
 xml to make Docutils-native XML files
 pseudoxml to make pseudoxml-XML files for display purposes
 linkcheck to check all external links for integrity
 doctest to run all doctests embedded in the documentation
 coverage to run coverage check of the documentation

Using sphinx-apidoc
The sphinx-apidoc command is generally used together with sphinx-quickstart. It is possible to
generate an entire project with the --full parameter, but it’s generally a better idea to generate the
entire project using sphinx-quickstart and simply add the API documentation using sphinx-apidoc.

To properly demonstrate the sphinx-apidoc command, we need some Python files, so we’ll create
two files within a project called apidoc_example.

The first one is apidoc_example/a.py, containing a class called A with some methods:

class A(object):
 def __init__(self, arg, *args, **kwargs):
 pass

 def regular_method(self, arg):
 pass

 @classmethod
 def decorated_method(self, arg):
 pass

 def _hidden_method(self):
 pass

Next, we have apidoc_example/b.py containing a B class that inherits A:

from . import a

class B(a.A):
 def regular_method(self):
 '''This regular method overrides
 :meth:'a.A.regular_method'
 '''
 pass

Chapter 9 281

Now that we have our source files, it’s time to generate the actual API documentation:

$ sphinx-apidoc apidoc_example -o docs
Creating file docs/apidoc_example.rst.
Creating file docs/modules.rst.

This alone is not enough to include the API in the documentation. It needs to be added to toctree.
Luckily, that’s as simple as adding modules to toctree in the index.rst file to look something like this:

.. toctree::
 :maxdepth: 2

 modules

The toctree directive is discussed in further detail later in this chapter.

We also have to make sure that the modules can be imported, otherwise Sphinx won’t be able to read
the Python files. To do that, we simply add the parent directory (as seen from the docs directory) to
sys.path; this can be put anywhere in the conf.py file:

import os
import sys

sys.path.insert(0, os.path.abspath('..'))

Additionally, the autodoc module needs to be enabled in conf.py:

extensions = [
 'sphinx.ext.autodoc',
]

Now it’s time to generate the documentation again by using the html builder:

$ make html
Running Sphinx v3.2.1
making output directory... done
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 3 source files that are out of date
updating environment: [new config] 3 added, 0 changed, 0 removed
reading sources... [100%] modules
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [100%] modules
generating indices... genindex py-modindexdone
writing additional pages... searchdone

Documentation – How to Use Sphinx and reStructuredText282

copying static files... ... done
copying extra files... done
dumping search index in English (code: en)... done
dumping object inventory... done
build succeeded.

The HTML pages are in _build/html.

Open the docs/_build/index.html file again. For the sake of brevity, the repeated parts of the docu-
ment will be omitted from the screenshots. The cropped output is as follows:

Figure 9.20: Viewing the Contents

But it actually generated quite a bit more. When running the sphinx-apidoc command, it looks at all
the Python modules in the specified directory recursively and generates an rst file for each of them.
After generating all those files, it adds all of them to a file called modules.rst, which makes it easy to
add them to your documentation.

The modules.rst file is really straight to the point; nothing more than a list of modules with the
package name as the title:

apidoc_example
==============

.. toctree::
 :maxdepth: 4

 apidoc_example

Chapter 9 283

The apidoc_example page output is as follows:

Figure 9.21: The apidoc_example page

The apidoc_example.rst file simply lists all the documented modules in automodule directives with
a few settings:

apidoc_example package
=======================

Submodules

apidoc_example.a module

Documentation – How to Use Sphinx and reStructuredText284

.. automodule:: apidoc_example.a
 :members:
 :undoc-members:
 :show-inheritance:

apidoc_example.b module

.. automodule:: apidoc_example.b
 :members:
 :undoc-members:
 :show-inheritance:

Module contents

.. automodule:: apidoc_example
 :members:
 :undoc-members:
 :show-inheritance:

But as you have seen in the previous screenshot, it does not include hidden or magic methods. By
adding some extra arguments to the automodule directive, we can change this:

apidoc_example package
=======================

Submodules

apidoc_example.a module

Chapter 9 285

.. automodule:: apidoc_example.a
 :members:
 :undoc-members:
 :show-inheritance:
 :private-members:
 :special-members:
 :inherited-members:

apidoc_example.b module

.. automodule:: apidoc_example.b
 :members:
 :undoc-members:
 :show-inheritance:
 :private-members:
 :special-members:
 :inherited-members:

Module contents

.. automodule:: apidoc_example
 :members:
 :undoc-members:
 :show-inheritance:
 :private-members:
 :special-members:
 :inherited-members:

Documentation – How to Use Sphinx and reStructuredText286

With these extra settings (private-members, special-members, and inherited-members), we get a lot
of extra and arguably useful documentation:

Figure 9.22: The updated apidoc_example page

Which of these settings are useful for you depends on your use case, of course. But it shows how easily
we can generate full documentation for classes with barely any effort. And all references such as the
bases and the overridden methods are clickable as well.

New files won’t be added to your docs automatically. It is safe to rerun the sphinx-
apidoc command to add the new files, but it won’t update your existing files. Even though
the --force option can be used to force overwriting the files, within existing files I rec-
ommend manually editing them instead. As we will see in the next sections, there are
quite a few reasons to manually modify the generated files afterward.

Chapter 9 287

Sphinx directives
Sphinx adds a few directives on top of the default ones in reStructuredText and an easy API to add new
directives yourself. Most of them are generally not that relevant to modify but, as one would expect,
Sphinx has pretty good documentation in case you need to know more about them.

We have already seen the labels, images, math, substitutions, code, and comment reST directives.
But there are also quite a few Sphinx-specific directives. Most of them are not too important to talk
about, but perhaps interesting to take a look at: https://www.sphinx-doc.org/en/master/usage/
restructuredtext/directives.html.

We’ve already covered the most important one of all, the autodoc module, which is used by the
automodule directive. There is another one that requires a tiny bit of coverage, however: the toctree
directive. We have already seen it in use earlier, but it has a few interesting configuration options that
are really useful for larger projects.

The toctree directive is one of the most important directives in Sphinx; it generates the table of
contents tree. The toctree directive has a couple of options, but the most important one is prob-
ably maxdepth, which specifies how deep the tree needs to go. The top level of toctree has to be
specified manually by specifying the files to be read, but beyond that, every level within a document
(section, chapter, paragraph, and so on) can be another level in toctree, depending on the depth, of
course. Even though the maxdepth option is optional, without it all the available levels will be shown,
which is usually more than required. In most cases, a maxdepth of 2 is a good default value, which
makes the basic example look like this:

.. toctree::
 :maxdepth: 2

The items in toctree are the .rst files in the same directory without the extension. This can include
subdirectories, in which case the directories are separated with a . (period):

.. toctree::
 :maxdepth: 2

 module.a
 module.b
 module.c

Another very useful option is the glob option. It tells toctree to use the glob module in Python to
automatically add all the documents matching a pattern. By simply adding a directory with a glob pat-
tern, you can add all the files in that directory. This makes the toctree we had before as simple as:

.. toctree::
 :maxdepth: 2
 :glob:

 module.*

https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html

Documentation – How to Use Sphinx and reStructuredText288

If, for some reason, the document title is not as you would have liked, you can easily change the title
to something customized:

.. toctree::
 :maxdepth: 2

 The A module <module.a>

Sphinx roles
We have seen Sphinx directives, which are separate blocks. Now we will discuss Sphinx roles, which
can be used inline. A role allows you to tell Sphinx how to parse some input. Examples of these roles
are links, math, code, and markup. But the most important ones are the roles within the Sphinx do-
mains for referencing other classes, even for external projects. Within Sphinx, the default domain
is the Python one, so a role such as :py:meth: can be used as :meth: as well. These roles are really
useful to link to different packages, modules, classes, methods, and other objects. The basic usage is
simple enough. To link to a class, use the following:

Spam: :class:'spam.Spam'

The output is:

Figure 9.23: Linking to a class

The same goes for just about any other object, functions, exceptions, attributes, and so on. The
Sphinx documentation offers a list of supported objects: https://www.sphinx-doc.org/domains.
html#cross-referencing-python-objects.

One of the nicer features of Sphinx is that these references can extend beyond your project. Similar
to how we added a link to the class above, adding a reference to the int object in the standard Python
documentation is easily possible using :obj:'int'. Adding references to your own projects in other
documentation sets and on other websites is done in a similar fashion.

For inter-project links, you will need to enable the intersphinx module in conf.py:

extensions = [
 'sphinx.ext.autodoc',
 'sphinx.ext.intersphinx',
]

After that, we need to tell intersphinx where it can find the documentation of the other projects by
adding intersphinx_mapping to conf.py:

intersphinx_mapping = {
 'python': ('https://docs.python.org/', None),

https://www.sphinx-doc.org/domains.html#cross-referencing-python-objects
https://www.sphinx-doc.org/domains.html#cross-referencing-python-objects

Chapter 9 289

 'sphinx': ('https://www.sphinx-doc.org/', None),
}

Now we can easily link to the documentation on the Sphinx home page:

Link to the intersphinx module: :mod:'sphinx.ext.intersphinx'

The following is the output:

Figure 9.24: Linking to another project

This links to https://www.sphinx-doc.org/en/master/ext/intersphinx.html.

Now that we know how to use Sphinx to generate documentation from our code, let’s enhance that
documentation to be even more useful.

Documenting code
There are currently three different documentation styles supported by Sphinx: the original Sphinx
style and the more recent NumPy and Google styles. The differences between them are mainly in style,
but it’s actually slightly more than that.

The Sphinx style was developed using a bunch of reStructuredText roles, a very effective method, but
it can be detrimental for readability when used a lot. You can probably tell what the following does,
but it’s not the nicest syntax:

:param number: The number of eggs to return
:type number: int

The Google style was (as the name suggests) developed by Google. The goal was to have a simple/
readable format that works both as in-code documentation and is parseable for Sphinx. In my opinion,
it comes closer to the original idea of reStructuredText, a format that’s very close to how you would
document instinctively. This example has the same meaning as the Sphinx style example shown earlier:

Args:
 number (int): The number of eggs to return

The NumPy style was created specifically for the NumPy project. The NumPy project has many func-
tions, with a huge amount of documentation, and generally a lot of documentation per argument. It
is slightly more verbose than the Google format, but quite easy to read as well:

Parameters

number : int
 The number of eggs to return

https://www.sphinx-doc.org/en/master/ext/intersphinx.html

Documentation – How to Use Sphinx and reStructuredText290

Documenting a class with the Sphinx style
First of all, let’s look at the traditional style, the Sphinx style. While it’s easy to understand what all
the parameters mean, it’s a bit verbose, which reduces the readability somewhat. Nonetheless, the
meaning is immediately clear and it is definitely not a bad style to use:

class Eggs:
 pass

class Spam(object):
 '''
 The Spam object contains lots of spam

 :param arg: The arg is used for ...
 :type arg: str
 :param '*args': The variable arguments are used for ...
 :param '**kwargs': The keyword arguments are used for ...
 :ivar arg: This is where we store arg
 :vartype arg: str
 '''

 def __init__(self, arg: str, *args, **kwargs):
 self.arg: str = arg

 def eggs(self, number: int, cooked: bool) -> Eggs:
 '''We can't have spam without eggs, so here are the eggs

 :param number: The number of eggs to return
 :type number: int
 :param bool cooked: Should the eggs be cooked?
 :raises: :class:'RuntimeError': Out of eggs

 :returns: A bunch of eggs
 :rtype: Eggs
 '''
 pass

With the type hint annotations introduced in Python 3.5, at least the argument type part
of these syntaxes has become less useful. Since Sphinx 3.0 you can tell Sphinx to use the
type hints instead of manually adding the type by adding this line to your Sphinx conf.py:

autodoc_typehints = 'description'

Chapter 9 291

The output looks like this:

Figure 9.25: The Sphinx style documentation

This is a very useful output indeed, with documented functions, classes, and arguments. And, more
importantly, the types are documented as well, resulting in a clickable link to the actual type. An
added advantage of specifying the type is that many editors understand the documentation and will
provide autocompletion based on the given types.

You might have also noticed that we specified the variable types both as documentation and using
type hinting. While this is technically not needed, they apply to different parts of the documentation.
The types shown in the function itself are done through type hinting: eggs(number: int, cooked:
bool) -> 13_sphinx_style.Eggs. The Parameters and Return type are specified through the :type
in the documentation.

To explain what’s actually happening here, Sphinx has a few roles within the docstrings that offer
hints as to what we are documenting.

The param role paired with a name sets the documentation for the parameter with that name.
The type role paired with a name tells Sphinx the data type of the parameter. Both the roles are optional
and the parameter simply won’t have any added documentation if they are omitted, but the param role
is always required for any documentation to show. Simply adding the type role without the param role
will result in no output whatsoever, so take note to always pair them.

The returns role is similar to the param role with regards to documenting. While the param role doc-
uments a parameter, the returns role documents the returned object. They are slightly different,
however. As opposed to the param role, the returns role is not dependent on the rtype role, or vice
versa. They both work independently of each other, making it possible to use either or both of the roles.

Documentation – How to Use Sphinx and reStructuredText292

The rtype, as you can expect, tells Sphinx (and several editors) what type of object is returned from
the function. With the introduction of type hinting, however, the rtype role is pretty useless since
you have an easier way of specifying the return type.

Documenting a class with the Google style
The Google style is just a more legible version of the Sphinx style documentation. It doesn’t actually
support more or less, but it’s a lot more intuitive to use. Here’s the Google style version of the Spam class:

class Eggs:
 pass

class Spam(object):
 r'''
 The Spam object contains lots of spam

 Args:
 arg: The arg is used for ...
 *args: The variable arguments are used for ...
 **kwargs: The keyword arguments are used for ...

 Attributes:
 arg: This is where we store arg,
 '''

 def __init__(self, arg: str, *args, **kwargs):
 self.arg: str = arg

 def eggs(self, number: int, cooked: bool) -> Eggs:
 '''We can't have spam without eggs, so here are the eggs

 Args:
 number (int): The number of eggs to return
 cooked (bool): Should the eggs be cooked?

 Raises:
 RuntimeError: Out of eggs

 Returns:
 Eggs: A bunch of eggs
 '''
 pass

Chapter 9 293

This is easier on the eyes than the Sphinx style and has the same number of possibilities. For longer
argument documentation, it’s less than convenient though. Just imagine how a multiline description
of number would look. That is why the NumPy style was developed, providing a lot of documentation
for its arguments.

Documenting a class with the NumPy style
The NumPy style is meant for having a lot of documentation. Honestly, most people are too lazy for
that, so for most projects it would not be a good fit. If you do plan to have extensive documentation
of your functions and all their parameters, the NumPy style might be a good option for you. It’s a bit
more verbose than the Google style, but it’s very legible, especially with more detailed documentation.
The following is the NumPy version of the Spam class:

class Eggs:
 pass

class Spam(object):
 r'''
 The Spam object contains lots of spam

 Parameters

 arg : str
 The arg is used for ...
 *args
 The variable arguments are used for ...
 **kwargs
 The keyword arguments are used for ...
 Attributes

 arg : str
 This is where we store arg,
 '''

 def __init__(self, arg, *args, **kwargs):
 self.arg = arg

 def eggs(self, number, cooked):
 '''We can't have spam without eggs, so here are the eggs

 Parameters

 number : int

Documentation – How to Use Sphinx and reStructuredText294

 The number of eggs to return
 cooked : bool
 Should the eggs be cooked?

 Raises

 RuntimeError
 Out of eggs

 Returns

 Eggs
 A bunch of eggs
 '''
 pass

While the NumPy style definitely isn’t bad, it’s just very verbose. This example alone is about 1.5 times
as long as the alternatives. So, for longer and more detailed documentation it’s a very good choice, but
if you’re planning to have short documentation anyhow, just use the Google style instead.

Which style to choose
For most projects, the Google style is the best choice since it is readable but not too verbose. If you
are planning to use large amounts of documentation per parameter, then the NumPy style might be
a good option as well.

The only reason for choosing the Sphinx style is legacy. Even though the Google style might be more
legible, consistency is more important.

Exercises
To practice a little with Python type hinting, it would be good to add some of this documentation to
your own projects.

Some examples of less trivial type hints would be:

•	 Dictionaries
•	 Nested or even recursive types
•	 Generating stubs for documenting external projects that don’t have type hinting

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Chapter 9 295

Summary
In this chapter, you have learned how to add, use, and test type hinting in your code using both the
built-in types and your own custom types. You learned how to write Markdown and reStructuredText
to document your projects and your code itself. Lastly, you learned how to use the Sphinx documen-
tation generator to generate fully functioning documentation for your projects.

Documentation can help greatly in a project’s popularity, and bad documentation can kill productivity.
I think there are few aspects of a library that have more impact on the usage by third parties than
documentation. Thus, in many cases, documentation is a more important factor in deciding the usage
of a project than the actual code quality. That’s why it is very important to always try to have good
documentation available. Sphinx is a great help in this case because it makes it much easier to keep
your documentation up to date and matching your code. The only thing worse than no documentation
is incorrect and/or out-of-date documentation.

With Sphinx, it is easy to generate documentation. With just a few minutes of your time, you can
have a fully functioning website with documentation available, or a PDF, or ePub, or one of the many
other output formats. There really is no excuse for having no documentation anymore. And even if
you don’t use the documentation that much yourself, offering type hints to your editor can help a lot
with productivity as well. Making your editor smarter should always help with productivity. I, for one,
have added type hints to several external projects simply to increase my productivity.

The next chapter will explain how code can be tested in Python and some part of the documentation
will return there. Using doctest, it is possible to have example code, documentation, and tests in one.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

10
Testing and Logging – Preparing
for Bugs

When programming, most developers plan a bit and immediately start writing code. After all, we all
expect to write bug-free code! Unfortunately, we don’t. At some point, an incorrect assumption, a
misinterpretation, or just a silly mistake is bound to happen. Debugging (covered in Chapter 11, De-
bugging – Solving the Bugs) will always be required at some point, but there are several methods that
you can use to prevent bugs or, at the very least, make it much easier to solve them when they do occur.

To prevent bugs from occurring in the first place, test-driven development or, at the very least, function-
al/regression/unit tests, are very useful. The standard Python installation alone offers several options
such as the doctest, unittest, and test modules. The doctest module allows you to combine tests
with example documentation. The unittest module allows you to easily write regression tests. The
test module is meant for internal usage only, so unless you are planning to modify the Python core,
you probably won’t need this one.

The test modules we will discuss in this chapter are:

•	 doctest

•	 py.test (and why it’s more convenient than unittest)
•	 unittest.mock

The py.test module has roughly the same purpose as the unittest module, but it’s much more con-
venient to use and has many more options and plugins available.

After learning how to avoid the bugs, it’ll be time to take a look at logging so that we can inspect what
is happening in our program and why. The logging module in Python is highly configurable and can
be adjusted for just about any use case. If you’ve ever written Java code, you should feel right at home
with the logging module, as its design is largely based on the log4j module and is very similar in
both implementation and naming. The latter makes it a bit of an odd module in Python as well, as it
is one of the few modules that does not follow the pep8 naming standards.

Testing and Logging – Preparing for Bugs298

This chapter will explain the following topics:

•	 Combining documentation with tests using doctest
•	 Regression and unit tests using py.test and unittest
•	 Testing with fake objects using unittest.mock
•	 Testing multiple environments using tox
•	 Using the logging module effectively
•	 Combining logging and py.test

Using documentation as tests with doctest
The doctest module is one of the most useful modules within Python. It allows you to combine doc-
umenting your code with tests to make sure that it keeps working as it is supposed to.

By now the format should be very familiar to you; most of the code samples in this book use the doctest
format, which offers the advantage that both the input and the output are shown intertwined. Especially
in demonstrations, this is much more convenient than having a block of code followed by the output.

A simple doctest example
Let’s start with a quick example: a function that squares the input. The following example is a fully
functional command-line application, containing not only code but also functioning tests. The first
few tests cover how the function is supposed to behave when executing normally, followed by a few
tests to demonstrate the expected errors:

def square(n: int) -> int:
 '''
 Returns the input number, squared

 >>> square(0)
 0
 >>> square(1)
 1
 >>> square(2)
 4
 >>> square(3)
 9
 >>> square()
 Traceback (most recent call last):
 ...
 TypeError: square() missing 1 required positional argument: 'n'
 >>> square('x')
 Traceback (most recent call last):
 ...
 TypeError: can't multiply sequence by non-int of type 'str'

Chapter 10 299

 Args:
 n (int): The number to square

 Returns:
 int: The squared result
 '''
 return n * n

if __name__ == '__main__':
 import doctest
 doctest.testmod()

It can be executed as any Python script, but the regular command won’t give any output as all tests
are successful. The doctest.testmod function takes verbosity parameters, luckily:

$ python3 T_00_simple_doctest.py -v
Trying:
 square(0)
Expecting:
 0
ok
Trying:
 square(1)
Expecting:
 1
ok
Trying:
 square(2)
Expecting:
 4
ok
Trying:
 square(3)
Expecting:
 9
ok
Trying:
 square()
Expecting:
 Traceback (most recent call last):
 ...

Testing and Logging – Preparing for Bugs300

 TypeError: square() missing 1 required positional argument: 'n'
ok
Trying:
 square('x')
Expecting:
 Traceback (most recent call last):
 ...
 TypeError: can't multiply sequence by non-int of type 'str'
ok
1 items had no tests:
 __main__
1 items passed all tests:
 6 tests in __main__.square
6 tests in 2 items.
6 passed and 0 failed.
Test passed.

Additionally, since it uses the Google syntax (as discussed in Chapter 9, Documentation – How to Use
Sphinx and reStructuredText, the documentation chapter), we can generate pretty documentation using
Sphinx:

Figure 10.1: Documentation generated using Sphinx

Chapter 10 301

However, the code is not always correct, of course. What will happen if we modify the code so that
the tests do not pass anymore?

This time, instead of n * n, we use n ** 2. Both square a number, so the results must be identical.
Right? These are the types of assumptions that create bugs, and the types of assumptions that are trivial
to catch using a few basic tests. Since most results are the same we will skip them in the example, but
one test has different results now:

def square(n: int) -> int:
 '''
 >>> square('x')
 Traceback (most recent call last):
 ...
 TypeError: unsupported operand type(s) for ** or pow(): ...
 '''
 return n ** 2

if __name__ == '__main__':
 import doctest
 doctest.testmod(optionflags=doctest.ELLIPSIS)

The only modification we made to the code was replacing n * n with n ** 2, which translates to the
power function. Since multiplication is not the same as taking the power of a number, the results are
slightly different, but similar enough in practice that most programmers wouldn’t notice the difference.

Because of that difference, however, the error changed from can't multiply sequence ... to
unsupported operand type(s) for ** or pow(): It’s an innocent mistake, but a quick opti-
mization by a programmer could have changed this unintentionally with possibly wrong results. If
the __pow__ method was overloaded with different behavior, for example, this could result in bigger
problems.

This example has shown us how useful these tests can be. When rewriting or optimizing code, an in-
correct assumption is easily made, and that is where tests are very useful—knowing you are breaking
code as soon as you break it instead of finding out months later.

Writing doctests
Perhaps you have noticed from the preceding examples that the syntax is very similar to the regular
Python console, and that is because it is. The doctest input is nothing more than the output of a
regular Python shell session. This is what makes testing with this module so intuitive; simply write
the code in the Python console and copy the output into a docstring to get tests. Here is an example:

$ python3
>>> from square import square

>>> square(5)

Testing and Logging – Preparing for Bugs302

25
>>> square()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: square() missing 1 required positional argument: 'n'

That’s why this is probably the easiest way to test code. With almost no effort, you can check wheth-
er your code is working as you would expect it, add tests, and add documentation at the same time.
Simply copy the output from the interpreter to your function or class documentation and you have
functioning doctests.

Testing with documentation
The docstrings in functions, classes, and modules are usually the most obvious way to add doctests to
your code, but they are not the only way. The Sphinx documentation, as we discussed in the previous
chapter, also supports the doctest module.

To enable doctest support in Sphinx, you need to add the sphinx.ext.doctest extension in Sphinx,
which tells Sphinx to run those tests as well. Since not all the examples in the code are useful, let’s see
whether we can split them into the ones that are actually useful and the ones that are only relevant for
documentation. Moreover, to see the results, we will add an error to the documentation.

square.py

def square(n: int) -> int:
 '''
 Returns the input number, squared

 >>> square(2)
 4

 Args:
 n (int): The number to square

 Returns:
 int: The squared result
 '''
 return n * n

if __name__ == '__main__':
 import doctest
 doctest.testmod()

Chapter 10 303

square.rst

square module
=============

.. automodule:: square
 :members:
 :undoc-members:
 :show-inheritance:

Examples:

.. testsetup::

 from square import square

.. doctest::

 # pytest does not recognize testsetup
 >>> from square import square

 >>> square(100)
 10000
 >>> square(0)
 0
 >>> square(1)
 1
 >>> square(3)
 9
 >>> square()
 Traceback (most recent call last):
 ...
 TypeError: square() missing 1 required positional argument: 'n'

 >>> square('x')
 Traceback (most recent call last):
 ...
 TypeError: can't multiply sequence by non-int of type 'str'

Testing and Logging – Preparing for Bugs304

Now, it’s time to execute the tests. In the case of Sphinx, there is a specific command for this:

$ make doctest
Running Sphinx v3.2.1
loading pickled environment... done
building [mo]: targets for 0 po files that are out of date
building [doctest]: targets for 2 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found
running tests...

Document: square

1 items passed all tests:
 8 tests in default
8 tests in 1 items.
8 passed and 0 failed.
Test passed.

Doctest summary
===============
 8 tests
 0 failures in tests
 0 failures in setup code
 0 failures in cleanup code
build succeeded.

Testing of doctests in the sources finished, look at the results in _build/
doctest/output.txt.

As expected, we are getting an error for the incomplete doctest, but beyond that, all tests executed
correctly. To make sure that the tests know what square is, we had to add the testsetup directive, and
this still generates a pretty output:

Chapter 10 305

Figure 10.2: Rendered Sphinx output

Sphinx nicely renders both the documentation for the code and the highlighted code samples.

The doctest flags
The doctest module features several option flags that affect how doctest processes the tests. These
option flags can be passed globally using your test suite, through command-line parameters while
running the tests, and through inline commands. For this book, I have globally enabled the following
option flags through a pytest.ini file (we will cover more about py.test later in this chapter):

doctest_optionflags = ELLIPSIS NORMALIZE_WHITESPACE

Testing and Logging – Preparing for Bugs306

Without these option flags, some of the examples in this book will not function properly. This is be-
cause they have to be reformatted to fit. The next few paragraphs will cover the following option flags:

•	 DONT_ACCEPT_TRUE_FOR_1

•	 NORMALIZE_WHITESPACE

•	 ELLIPSIS

There are several other option flags available with varying degrees of usefulness, but these are better
left to the Python documentation: https://docs.python.org/3/library/doctest.html#option-flags

True and False versus 1 and 0
Having True evaluating to 1 and False evaluating to 0 is useful in most cases, but it can give unex-
pected results if you were actually expecting a bool instead of an int. To demonstrate the difference,
we have these lines:

'''
>>> False
0
>>> True
1
'''
if __name__ == '__main__':
 import doctest
 doctest.testmod()
 doctest.testmod(optionflags=doctest.DONT_ACCEPT_TRUE_FOR_1)

When we run this, it will run the tests both without and with the DONT_ACCEPT_TRUE_FOR_1 flag:

$ python3 T_03_doctest_true_for_1_flag.py -v
Trying:
 False
Expecting:
 0
ok
Trying:
 True
Expecting:
 1
ok
1 items passed all tests:
 2 tests in __main__
2 tests in 1 items.
2 passed and 0 failed.
Test passed.

https://docs.python.org/3/library/doctest.html#option-flags

Chapter 10 307

Trying:
 False
Expecting:
 0
**
File "T_03_doctest_true_for_1_flag.py", line 2, in __main__
Failed example:
 False
Expected:
 0
Got:
 False
Trying:
 True
Expecting:
 1
**
File "T_03_doctest_true_for_1_flag.py", line 4, in __main__
Failed example:
 True
Expected:
 1
Got:
 True
**
1 items had failures:
 2 of 2 in __main__
2 tests in 1 items.
0 passed and 2 failed.
Test Failed 2 failures.

As you can see, the DONT_ACCEPT_TRUE_FOR_1 flag makes doctest reject 1 as a valid response for True
as well as 0 for False.

Normalizing whitespace
Since doctests are used for both documentation and test purposes, it is pretty much a requirement
to keep them readable. Without normalizing whitespace, this can be tricky, however. Consider the
following example:

>>> [list(range(5)) for i in range(3)]
[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

Testing and Logging – Preparing for Bugs308

While not all that bad, this output isn’t the best for readability. With whitespace normalizing, here is
what we can do instead:

>>> # doctest: +NORMALIZE_WHITESPACE
... [list(range(5)) for i in range(3)]
[[0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4]]

Formatting the output in this manner is both more readable and convenient for keeping your lines
shorter.

Ellipsis
The ELLIPSIS flag is very useful but also a bit dangerous, as it can easily lead to incorrect matches.
It makes ... match any substring, which is very useful for exceptions but dangerous in other cases:

>>> {10: 'a', 20: 'b'} # doctest: +ELLIPSIS
{...}
>>> [True, 1, 'a'] # doctest: +ELLIPSIS
[...]
>>> True, # doctest: +ELLIPSIS
(...)
>>> [1, 2, 3, 4] # doctest: +ELLIPSIS
[1, ..., 4]
>>> [1, 0, 0, 0, 0, 0, 4] # doctest: +ELLIPSIS
[1, ..., 4]

These cases are not too useful in real scenarios, but they demonstrate how the ELLIPSIS option flag
functions. They also indicate the danger. Both [1, 2, 3, 4] and [1, 0, ... , 4] match the [1, ...,
4] test, which is probably unintentional, so be very careful while using ELLIPSIS.

A more useful case is when documenting class instances:

>>> class Spam(object):
... pass

>>> Spam() # doctest: +ELLIPSIS
<__main__.Spam object at 0x...>

Without the ELLIPSIS flag, the memory address (the 0x... part) would never be what you expect. Let’s
demonstrate an actual run in a normal CPython instance:

Failed example:
 Spam()
Expected:
 <__main__.Spam object at 0x...>
Got:

Chapter 10 309

 <__main__.Spam object at 0x10d9ad160>

Doctest quirks
The three option flags discussed earlier take care of quite a few quirks found in doctests, but there are
several more cases that require care. In these cases, you just need to be a bit careful and work around
the limitations of the doctest module. The doctest module effectively uses the representation string,
and those are not always consistent.

The most important cases are floating-point inaccuracies, and random values, such as timers. With
the following example, the floating-point example will return consistent results for your system, but
on a different system it is likely to fail. The time example will almost certainly always fail:

>>> 1./7.
0.14285714285714285

>>> import time

>>> time.time() - time.time()
-9.5367431640625e-07

All the problems have several possible solutions, which differ mostly in style and your personal pref-
erence.

Testing dictionaries
Since the implementation of dictionaries has changed in recent Python versions, this exact issue
is probably one you will not encounter anymore. However, there are still situations where similar
solutions are useful.

The problem with dictionaries used to be that they had an effectively random representation order.
Since the doctest system requires a representation string that is identical in meaning (save for certain
doctest flags, of course) to the docstring, this does not work. Naturally, there are several workaround
options available and all have some advantages and disadvantages.

The first is using the pprint (pretty print) library to format the dictionary in a pretty and consistent way:

>>> import pprint

>>> data = dict.fromkeys('spam')
>>> pprint.pprint(data)
{'a': None, 'm': None, 'p': None, 's': None}

The representation string can be generated using repr(object) and uses the __repr__
magic method internally. On regular classes without a specific __repr__ method, this will
look like <module.className instance at 0x....>, where the 0x... is the memory
address of the object, which changes with each run and each object.

Testing and Logging – Preparing for Bugs310

Since the pprint library always sorts the items before outputting, this solves the problem with ran-
dom representation orders. However, it does require an extra import and function call, which some
people prefer to avoid.

Another option is manual sorting of the items:

>>> data = dict.fromkeys('spam')
>>> sorted(data.items())
[('a', None), ('m', None), ('p', None), ('s', None)]

The downside here is that it is not visible from the output that data is a dictionary, which makes the
output less readable.

Lastly, comparing the dict with a different dict comprising the same elements works as well:

>>> data = dict.fromkeys('spam')
>>> data == {'a': None, 'm': None, 'p': None, 's': None}
True

A perfectly okay solution, of course! But True is not really the clearest output, especially if the com-
parison doesn’t work:

Failed example:
 data == {'a': None, 'm': None, 'p': None}
Expected:
 True
Got:
 False

On the other hand, the other options presented previously show both the expected value and the
returned value correctly:

Failed example:
 sorted(data.items())
Expected:
 [('a', None), ('m', None), ('p', None)]
Got:
 [('a', None), ('m', None), ('p', None), ('s', None)]

Failed example:
 pprint.pprint(data)
Expected:
 {'a': None, 'm': None, 'p': None}
Got:
 {'a': None, 'm': None, 'p': None, 's': None}

Chapter 10 311

Personally, out of the solutions presented, I would recommend using pprint, as I find it the most
readable solution, but all the solutions have some merits to them.

Testing floating-point numbers
For the same reason a floating-point comparison can be problematic (that is, 1/3 == 0.333), a rep-
resentation string comparison is also problematic. The easiest solution is to round or clip the value,
but the ELLIPSIS flag is also an option here. Here is a list of several solutions:

>>> 1/3 # doctest: +ELLIPSIS
0.333...
>>> '%.3f' % (1/3)
'0.333'
>>> '{:.3f}'.format(1/3)
'0.333'
>>> round(1/3, 3)
0.333
>>> 0.333 < 1/3 < 0.334
True

Which solution you choose should depend on your own preference or consistency with the project
you are working on. In general, my choice would be to enable the ELLIPSIS option flag globally and
go for that solution, as it looks the cleanest to me.

Times and durations
For timings, the problems that you will encounter are quite similar to the floating-point issues. When
measuring the execution time of a code snippet, there will always be some variation present. That’s
why limiting the precision is the easiest solution for time dependent tests. To achieve this we can check
whether the delta (difference) between the two times is smaller than a certain number:

>>> import time

>>> a = time.time()
>>> b = time.time()
>>> (b - a) < 0.01
True

For the timedelta objects, however, it’s slightly more complicated. Yet, this is where the ELLIPSIS
flag definitely comes in handy again:

>>> import datetime

>>> a = datetime.datetime.now()
>>> b = datetime.datetime.now()
>>> str(b - a) # doctest: +ELLIPSIS
'0:00:00.000...

Testing and Logging – Preparing for Bugs312

The alternative to the ELLIPSIS option flag would be comparing the days, hours, minutes, and micro-
seconds in timedelta separately. Or you can use timedelta.total_seconds() to convert the timedelta
into seconds and use a regular floating-point comparison.

In a later paragraph, we will see a completely stable solution for problems like these using mock
objects. For doctests, however, that is generally overkill.

Now that we are done with doctest, it is time to continue with more explicit tests using py.test.

Testing with py.test
The py.test tool makes it very easy to write tests and run them. There are a few other options such
as nose2 and the bundled unittest module available, but the py.test library offers a very good
combination of usability and active development. In the past, I was an avid nose user but have since
switched to py.test as it tends to be easier to use and has better community support, in my experience
at least. Regardless, nose2 is still a good choice, and if you’re already using either nose or nose2, there
is little reason to switch and rewrite all of your tests. When writing tests for a new project, however,
py.test can be much more convenient.

Now, we will run the doctests from the previously discussed square.py file using py.test.

First, start by installing py.test, of course:

$ pip3 install pytest pytest-flake8

Now you can do a test run, so let’s give the doctests we have in square.py a try:

$ py.test --doctest-modules -v square.py
===================== test session starts ======================
collected 2 items

square.py::square.square PASSED [100%]

====================== 1 passed in 0.03s =======================

We can see that py.test was able to find two tests for the given file: the test in square.square itself,
and a flake8 test from the pytest-flake8 plugin that we will see later in this chapter.

The difference between the unittest and py.test output
We have the doctests in square.py. Let’s create a new class called cube and create a proper set of tests
outside of the code.

We also installed pytest-flake8 here because the default pytest.ini for this project
depends on it. We will discuss what it does and how it can be configured later in this chapter.

Chapter 10 313

First of all, we have the code of cube.py, similar to square.py but minus the doctests, since they
mostly won’t work anyway:

def cube(n: int) -> int:
 '''
 Returns the input number, cubed

 Args:
 n (int): The number to cube

 Returns:
 int: The cubed result
 '''
 return n ** 3

Now let’s start with the unittest example, T_09_test_cube.py:

import cube
import unittest

class TestCube(unittest.TestCase):
 def test_0(self):
 self.assertEqual(cube.cube(0), 0)

 def test_1(self):
 self.assertEqual(cube.cube(1), 1)

 def test_2(self):
 self.assertEqual(cube.cube(2), 8)

 def test_3(self):
 self.assertEqual(cube.cube(3), 27)

 def test_no_arguments(self):
 with self.assertRaises(TypeError):
 cube.cube()

 def test_exception_str(self):
 with self.assertRaises(TypeError):
 cube.cube('x')

if __name__ == '__main__':
 unittest.main()

Testing and Logging – Preparing for Bugs314

This can be executed by executing the file itself:

$ python3 T_09_test_cube.py -v
test_0 (__main__.TestCube) ... ok
test_1 (__main__.TestCube) ... ok
test_2 (__main__.TestCube) ... ok
test_3 (__main__.TestCube) ... ok
test_exception_str (__main__.TestCube) ... ok
test_no_arguments (__main__.TestCube) ... ok

--
Ran 6 tests in 0.000s

OK

Alternatively, it can be done through the unittest module:

$ python3 -m unittest -v T_09_test_cube.py
...

But it also works with other tools such as py.test:

$ py.test -v T_09_test_cube.py
===================== test session starts ======================
collected 7 items

T_09_test_cube.py::FLAKE8 SKIPPED [14%]
T_09_test_cube.py::TestCube::test_0 PASSED [28%]
T_09_test_cube.py::TestCube::test_1 PASSED [42%]
T_09_test_cube.py::TestCube::test_2 PASSED [57%]
T_09_test_cube.py::TestCube::test_3 PASSED [71%]
T_09_test_cube.py::TestCube::test_exception_str PASSED [85%]
T_09_test_cube.py::TestCube::test_no_arguments PASSED [100%]

================= 6 passed, 1 skipped in 0.08s =================

And other tools such as nose are also possible. First, we need to install it using pip:

$ pip3 install nose

After that, we can use the nosetests command to run:

$ nosetests -v T_09_test_cube.py
test_0 (T_09_test_cube.TestCube) ... ok
test_1 (T_09_test_cube.TestCube) ... ok

Chapter 10 315

test_2 (T_09_test_cube.TestCube) ... ok
test_3 (T_09_test_cube.TestCube) ... ok
test_exception_str (T_09_test_cube.TestCube) ... ok
test_no_arguments (T_09_test_cube.TestCube) ... ok

Ran 6 tests in 0.001s

OK

As long as all the results are successful, the differences between the output from unittest and py.test
are slim. This time around, however, we are going to break the code to show the difference when it
actually matters. Instead of the cube code, we will add the square code, returning n ** 2 from square,
instead of n ** 3.

To reduce the amount of output, we will not be running the verbose variants of the commands here.

First of all, we have the regular unittest output:

$ python3 T_09_test_cube.py
..FF..
==
FAIL: test_2 (__main__.TestCube)
--
Traceback (most recent call last):
 File " T_09_test_cube.py", line 14, in test_2
 self.assertEqual(cube.cube(2), 8)
AssertionError: 4 != 8

==
FAIL: test_3 (__main__.TestCube)
--
Traceback (most recent call last):
 File " T_09_test_cube.py", line 17, in test_3
 self.assertEqual(cube.cube(3), 27)
AssertionError: 9 != 27

--
Ran 6 tests in 0.001s

FAILED (failures=2)

Testing and Logging – Preparing for Bugs316

Not all that bad, as each test returns a nice stack trace that includes the values and everything. Yet, we
can observe a small difference here when compared with the py.test run:

$ py.test T_09_test_cube.py
===================== test session starts ======================
collected 7 items

T_09_test_cube.py s..FF.. [100%]

=========================== FAILURES ===========================
_______________________ TestCube.test_2 ________________________

self = <T_09_test_cube.TestCube testMethod=test_2>

 def test_2(self):
> self.assertEqual(cube.cube(2), 8)
E AssertionError: 4 != 8

T_09_test_cube.py:14: AssertionError
_______________________ TestCube.test_3 ________________________

self = <T_09_test_cube.TestCube testMeth
od=test_3>

 def test_3(self):
> self.assertEqual(cube.cube(3), 27)
E AssertionError: 9 != 27

T_09_test_cube.py:17: AssertionError
=================== short test summary info ====================
FAILED T_09_test_cube.py::TestCube::test_2 - AssertionError: 4..
FAILED T_09_test_cube.py::TestCube::test_3 - AssertionError: 9..
============ 2 failed, 4 passed, 1 skipped in 0.17s ============

In small cases such as these, the difference is not all that apparent, but when testing complicated
code with large stack traces, it becomes even more useful. However, for me personally, seeing the
surrounding test code is a big advantage.

In the example that was just discussed, the self.assertEqual(...) line shows the entire test, but
in many other cases, you will need more information. The difference between the regular unittest
module and the py.test module is that with py.test you can see the entire function with all of the
code and the output. Later in this chapter, we will see how powerful this can be when writing more
advanced tests.

Chapter 10 317

To truly appreciate the py.test output, we need colors as well. Unfortunately, that is not possible
within the constraints of this book, but I strongly encourage you to give py.test a try if you aren’t
using it already.

Perhaps you are wondering now, “Is that all? The only difference between py.test and unittest is
a bit of color and a slightly different output?” Well, far from it; there are many other differences, but
this alone is enough reason to give it a try.

The difference between unittest and py.test tests
The improved output does help a bit, but the combination of improved output and a much easier way
to write tests is what makes py.test so useful. There are quite a few methods for making the tests
simpler and more legible, and in many cases, you can choose which you prefer. As always, readability
counts, so choose wisely and try not to over-engineer the solutions.

Simplifying assertions
Where the unittest library requires the usage of self.assertEqual to compare variables, py.test
allows the use of a regular assert statement while still understanding the comparison between the
variables.

The following test file contains three styles of tests, so they can be compared easily:

import unittest
import cube

n = 2
expected = 8

Regular unit test
class TestCube(unittest.TestCase):
 def test_2(self):
 self.assertEqual(cube.cube(n), expected)

 def test_no_arguments(self):
 with self.assertRaises(TypeError):
 cube.cube()

py.test class
class TestPyCube:
 def test_2(self):
 assert cube.cube(n) == expected

py.test functions
def test_2():
 assert cube.cube(n) == expected

Testing and Logging – Preparing for Bugs318

To convert to py.test, we simply replaced self.assertEqual with assert ... == A minor im-
provement indeed, but the actual benefit is seen in the failure output. The first two use the unittest
style and the latter two use the py.test style both inside a class and as separate functions:

$ py.test T_10_simplifying_assertions.py
...
=========================== FAILURES ===========================
_______________________ TestCube.test_2 ________________________

self = <TestCube testMethod=test_2>

 def test_2(self):
> self.assertEqual(cube.cube(n), expected)
E AssertionError: 4 != 8

T_10_simplifying_assertions.py:12: AssertionError
______________________ TestPyCube.test_2 _______________________

self = <TestPyCube object at 0x...>

 def test_2(self):
> assert cube.cube(n) == expected
E assert 4 == 8
E + where 4 = <function cube at 0x...>(2)
E + where <function cube at 0x...> = cube.cube

T_10_simplifying_assertions.py:23: AssertionError
____________________________ test_2 ____________________________

 def test_2():
> assert cube.cube(n) == expected
E assert 4 == 8
E + where 4 = <function cube at 0x...>(2)
E + where <function cube at 0x...> = cube.cube

T_10_simplifying_assertions.py:28: AssertionError
=================== short test summary info ====================
FAILED T_10_simplifying_assertions.py::TestCube::test_2 - Ass...
FAILED T_10_simplifying_assertions.py::TestPyCube::test_2 - a...
FAILED T_10_simplifying_assertions.py::test_2 - assert 4 == 8
============ 3 failed, 1 passed, 1 skipped in 0.15s ============

Chapter 10 319

In addition to seeing the values that were compared, we can actually see the function that was called
and which input parameters it received. With the regular unittest we have no way of knowing that
2 was entered as a parameter to the cube() function.

The standard py.test behavior works for most test cases, but it may not be enough for some custom
types. For example, let’s say that we have a User object with a name attribute that should be compared
with the name attribute on another object. This part can easily be achieved by implementing the __eq__
method on User, but it does not improve clarity. Since name is the attribute that we compare, it would
be useful if the tests showed name when errors were displayed.

First is the class with two tests, one working and one broken to demonstrate the regular output:

T_11_representing_assertions.py

class User:
 def __init__(self, name):
 self.name = name

 def __eq__(self, other):
 return self.name == other.name

def test_user_equal():
 a = User('Rick')
 b = User('Guido')

 assert a == b

And here is the regular py.test output:

_______________________ test_user_equal ________________________

 def test_user_equal():
 a = User('Rick')
 b = User('Guido')

> assert a == b
E assert <T_11_representing_assertions.User object at 0x...> == <T_11_
representing_assertions.User object at 0x...>

T_11_representing_assertions.py:13: AssertionError
=================== short test summary info ====================
FAILED T_11_representing_assertions.py::test_user_equal - asse...
================= 1 failed, 1 skipped in 0.17s =================

Testing and Logging – Preparing for Bugs320

The default test output is still usable since the function is fairly straightforward, and the value for
name is visible due to it being available in the constructor. However, it would have been more useful
if we could explicitly see the value of name. By adding a pytest_assertrepr_compare function to the
conftest.py file, we can modify the behavior of the assert statements.

conftest.py

from T_12_assert_representation import User

def is_user(value):
 return isinstance(value, User)

def pytest_assertrepr_compare(config, op, left, right):
 if is_user(left) and is_user(right) and op == '==':
 return [
 'Comparing User instances:',
 f' name: {left.name} != {right.name}',
]

The preceding function will be used as the output for our test. So when it fails, this time we get our
own, slightly more useful, output:

 def test_user_equal():
 a = User('Rick')
 b = User('Guido')

> assert a == b
E assert Comparing User instances:
E name: Rick != Guido

T_12_assert_representation.py:13: AssertionError

In this case, we could have easily changed the __repr__ function of User as well, but there are many
cases where modifying the py.test output can be useful – if you need more debug output, for example.
Similar to this, there is specific support for many types, such as sets, dictionaries, and texts.

Parameterizing tests
So far, we have specified every test separately, but we can simplify tests a lot by parameterizing them.
The square and cube tests are very similar; a certain input gave a certain output.

The conftest.py file is a special file for py.test that can be used to override or extend
py.test. Note that this file will automatically be loaded by every test run in that direc-
tory, so we need to test the types of both the left-hand side and the right-hand side of the
operator. In this case, it’s a and b.

Chapter 10 321

You could solve this by creating a loop in a test, but a loop in a test will be executed as a single test. This
means that it will fail in its entirety if a single test iteration of the loop fails, which means you can’t
easily see what exactly broke if you compare older and newer test output. In this example with the
numbers, the result is obvious, but if you were to apply a list of filenames to a complicated processing
test, it would be far less obvious what happened.

In these cases, parameterized tests can help a lot. After creating a list of parameters and the expected
output data, you can make it run the test function for every parameter combination separately:

import cube
import pytest

cubes = (
 (0, 0),
 (1, 1),
 (2, 8),
 (3, 27),
)

@pytest.mark.parametrize('n,expected', cubes)
def test_cube(n, expected):
 assert cube.cube(n) == expected

This outputs the following, as you might have already expected:

=========================== FAILURES ===========================
________________________ test_cube[2-8] ________________________

n = 2, expected = 8
 @pytest.mark.parametrize('n,expected', cubes)
 def test_cube(n, expected):
> assert cube.cube(n) == expected
E assert 4 == 8
E + where 4 = <function cube at 0x...>(2)
E + where <function cube at 0x...> = cube.cube

T_13_parameterizing_tests.py:15: AssertionError
_______________________ test_cube[3-27] ________________________

n = 3, expected = 27

 @pytest.mark.parametrize('n,expected', cubes)
 def test_cube(n, expected):

Testing and Logging – Preparing for Bugs322

> assert cube.cube(n) == expected
E assert 9 == 27
E + where 9 = <function cube at 0x...>(3)
E + where <function cube at 0x...> = cube.cube

T_13_parameterizing_tests.py:15: AssertionError
=================== short test summary info ====================
FAILED T_13_parameterizing_tests.py::test_cube[2-8] - assert ...
FAILED T_13_parameterizing_tests.py::test_cube[3-27] - assert...
============ 2 failed, 2 passed, 1 skipped in 0.16s ============

With the parameterized tests, we can see the parameters clearly, which means we can see all inputs
and outputs without any extra effort.

Generating the list of tests dynamically at runtime is also possible with a global function. Similar
to the pytest_assertrepr_compare function that we added to conftest.py earlier, we can add a
pytest_generate_tests function, which generates tests.

Creating the pytest_generate_tests function can be useful only to test a subset of options depending
on the configuration options. If possible, however, I recommend trying to configure selective tests using
fixtures instead, as they are somewhat more explicit. We will cover this in the following section. The
problem with functions such as pytest_generate_tests is that they are global and don’t discriminate
between specific tests, resulting in strange behavior if you are not expecting that.

Automatic arguments using fixtures
The py.test fixture system is one of the most magical features of py.test. It magically executes a
fixture function with the same name as your arguments. Let’s create a basic fixture to demonstrate this:

import pytest

@pytest.fixture
def name():
 return 'Rick'

def test_something(name):
 assert name == 'Rick'

When the test_something() test is executed, the name argument will be filled with the output from
the name() function automatically.

Because arguments are automatically filled by fixtures, the naming of the arguments becomes very
important, as fixtures can easily collide with other fixtures. To prevent collisions, the scope is set to
function by default. However, class, module, and session are also valid options for the scope. There
are several fixtures available by default, some of which you will use often, and others most likely never.
A complete list can always be generated with the following command:

Chapter 10 323

$ py.test --quiet --fixtures
...
capsys
 enables capturing of writes to sys.stdout/sys.stderr and
 makes captured output available via ''capsys.readouterr()''
 method calls which return a ''(out, err)'' tuple.
...
monkeypatch
 The returned ''monkeypatch'' funcarg provides these helper
 methods to modify objects, dictionaries or os.environ::

 monkeypatch.setattr(obj, name, value, raising=True)
 monkeypatch.delattr(obj, name, raising=True)
 monkeypatch.setitem(mapping, name, value)
 monkeypatch.delitem(obj, name, raising=True)
 monkeypatch.setenv(name, value, prepend=False)
 monkeypatch.delenv(name, value, raising=True)
 monkeypatch.syspath_prepend(path)
 monkeypatch.chdir(path)

 All modifications will be undone after the requesting
 test function has finished. The ''raising''
 parameter determines if a KeyError or AttributeError
 will be raised if the set/deletion operation has no target.
...
tmpdir
 return a temporary directory path object which is unique to
 each test function invocation, created as a sub directory of
 the base temporary directory. The returned object is a
 'py.path.local'_ path object.

The next few paragraphs demonstrate some fixture usage, and the monkeypatch fixture is covered
later in the chapter.

cache
The cache fixture is as simple as it is useful; there is a get function and a set function, and the cache
state remains between separate py.test runs. To illustrate how to get and set values from cache:

 def test_cache(cache):
 counter = cache.get('counter', 0) + 1
 assert counter
 cache.set('counter', counter)

Testing and Logging – Preparing for Bugs324

The cache can be cleared through the --cache-clear command-line parameter, and all caches can be
shown through --cache-show. Internally, the cache fixture uses the json module to encode/decode
the values, so anything JSON encodable will work.

Custom fixtures
Bundled fixtures are quite useful, but within most projects, you will want to create your own fixtures
to make things easier. Fixtures make it trivial to repeat code that is needed more often. You are most
likely wondering how this is different from a regular function, context wrapper, or something else, but
the special thing about fixtures is that they themselves can accept fixtures as well. So, if your function
needs the pytestconfig variables, it can ask for them without needing to modify the calling functions.

You can create a fixture out of anything that would be useful to reuse. The basic premise is simple
enough: a function with the pytest.fixture decorator, which returns a value that will be passed along
as an argument. Also, the function can take parameters and fixtures just as any test can.

The only notable variation is pytest.yield_fixture. This fixture variation has one small difference:
the actual test will be executed at the yield (more than one yield results in errors) and the code
before/after functions as setup/teardown code, which is useful for things like database connections
and file handles. A basic example of a fixture and a yield_fixture looks like this:

import pytest

@pytest.yield_fixture
def some_yield_fixture():
 with open(__file__ + '.txt', 'w') as fh:
 # Before the function
 yield fh
 # After the function

@pytest.fixture
def some_regular_fixture():
 # Do something here
 return 'some_value_to_pass_as_parameter'

def some_test(some_yield_fixture, some_regular_fixture):
 some_yield_fixture.write(some_regular_fixture)

The default value (0 in this case) is required for the cache.get function.

Chapter 10 325

These fixtures take no parameters and simply pass a parameter to the py.test functions. A more
useful example would be setting up a database connection and executing a query in a transaction:

import pytest
import sqlite3

@pytest.fixture(params=[':memory:'])
def connection(request):
 return sqlite3.connect(request.param)

@pytest.yield_fixture
def transaction(connection):
 with connection:
 yield connection

def test_insert(transaction):
 transaction.execute('create table test (id integer)')
 transaction.execute('insert into test values (1), (2), (3)')

First we have the connection() fixture, which uses the special parameter params. Instead of using
the :memory: database in sqlite3, we can use a different database name or multiple names as well.
That is why params is a list; the test will be executed for each value in params.

The transaction() fixture uses the connection() to open the database connection, yield it to the
user of that fixture, and take care of the cleanup after. This could easily have been omitted and done
in transation() immediately, but it saves an indentation level and it allows you to further customize
the connection at a single location if needed.

Lastly, the test_insert() function uses the transaction() fixture to execute the queries on the da-
tabase. It is important to note that if we had passed more values to params, this test would have been
executed for each value.

Print statements and logging
Even though print statements are generally not the most optimal way to debug code, I admit that it is
still my default method of debugging. This means that when running and trying tests, I will include
many print statements. However, let’s see what happens when we try this with py.test. Here is the
testing code:

import os
import sys
import logging

def test_print():
 print('Printing to stdout')

Testing and Logging – Preparing for Bugs326

 print('Printing to stderr', file=sys.stderr)
 logging.debug('Printing to debug')
 logging.info('Printing to info')
 logging.warning('Printing to warning')
 logging.error('Printing to error')
 # We don't want to display os.environ so hack around it
 fail = 'FAIL' in os.environ
 assert not fail

The following is the actual output:

$ py.test -v T_15_print_statements_and_logging.py
T_15_print_statements_and_logging.py::test_print PASSED [100%]

================= 1 passed, 1 skipped in 0.06s =================

So, all of our print statements and logging got trashed? Well, not really. In this case, py.test assumed
that it wouldn’t be relevant to you, so it ignored the output. But what about the same run with an error?

$ FAIL=true py.test -v T_15_print_statements_and_logging.py
=========================== FAILURES ===========================
__________________________ test_print __________________________

 def test_print():
 print('Printing to stdout')
 print('Printing to stderr', file=sys.stderr)
 logging.debug('Printing to debug')
 logging.info('Printing to info')
 logging.warning('Printing to warning')
 logging.error('Printing to error')
 # We don't want to display os.environ so hack around it
 fail = 'FAIL' in os.environ
> assert not fail
E assert not True

T_15_print_statements_and_logging.py:15: AssertionError
--------------------- Captured stdout call ---------------------
Printing to stdout
--------------------- Captured stderr call ---------------------
Printing to stderr
---------------------- Captured log call -----------------------
WARNING root:T_15_print_statements_and_logging.py:11 Printing t
o warning
ERROR root:T_15_print_statements_and_logging.py:12 Printing t

Chapter 10 327

o error
=================== short test summary info ====================
FAILED T_15_print_statements_and_logging.py::test_print - ass...
================= 1 failed, 1 skipped in 0.16s =================

As we see here, when it’s actually useful, we do get the stdout and stderr output. Additionally, logging
with a level of WARNING or higher is visible now. DEBUG and INFO still won’t be visible, but we’ll see more
about that later in this chapter, in the Logging section.

There is one big caveat to using print statements for debugging, however: since they write to stdout
they can break quickly break your doctests. Because doctest looks at all generated output, your print
statements will be included as expected output.

Plugins
One of the most powerful features of py.test is the plugin system. Within py.test, nearly everything
can be modified using the available hooks; the result of this is that writing plugins is almost simple.
Actually, if you’ve been typing along, you already wrote a few plugins in the previous paragraphs with-
out realizing it. By packaging conftest.py in a different package or directory, it becomes a py.test
plugin. We will explain more about packaging in Chapter 18, Packaging – Creating Your Own Libraries
or Applications.

Generally, it won’t be required to write your own plugin because the odds are that the plugins you seek
are already available. A small list of plugins can be found on the py.test website at https://pytest.
org/latest/plugins.html, an automatically generated list with plugins here: https://docs.pytest.
org/en/latest/reference/plugin_list.html, and a longer completely uncurated list (currently over
8,000) can be found through the Python Package Index at https://pypi.org/search/?q=pytest-.

By default, py.test does cover quite a bit of the desirable features, so you can easily do without plugins,
but within the packages that I write myself, I generally default to the following list:

•	 pytest-cov

•	 pytest-flake8

•	 pytest-mypy

By using these plugins, it becomes much easier to maintain the code quality of your project. In order
to understand why, we will take a closer look at these packages in the following paragraphs.

pytest-cov
Using the pytest-cov package, you can see whether your code is properly covered by tests or not.
Internally, it uses the coverage package to detect how much of the code is being tested.

Make sure you have pytest-cov installed:

$ pip3 install pytest-cov

https://pytest.org/latest/plugins.html
https://pytest.org/latest/plugins.html
https://docs.pytest.org/en/latest/reference/plugin_list.html
https://docs.pytest.org/en/latest/reference/plugin_list.html
https://pypi.org/search/?q=pytest-

Testing and Logging – Preparing for Bugs328

To demonstrate the principle, we will check the coverage of a cube_root function.

First of all, let’s create a .coveragerc file with some useful defaults:

[report]
The test coverage you require. Keeping to 100% is not easily
possible for all projects but it's a good default for new projects.
fail_under = 100

These functions are generally only needed for debugging and/or
extra safety so we want to ignore them in the coverage
requirements
exclude_lines =
 # Make it possible to ignore blocks of code
 pragma: no cover

 # Generally only debug code uses this
 def __repr__

 # If a debug setting is set, skip testing
 if self\.debug:
 if settings.DEBUG

 # Don't worry about safety checks and expected errors
 raise AssertionError
 raise NotImplementedError

 # Do not complain about code that will never run
 if 0:
 if __name__ == .__main__.:
 @abc.abstractmethod

[run]
Make sure we require that all branches of the code are covered.
So both the if and the else
branch = True

No need to require coverage of testing code
omit =
 test_*.py

Chapter 10 329

Which defaults are good for your project is of course a personal decision, but I find the defaults above
quite useful. Be sure to read through these instead of blindly copying them, however; perhaps you
want to make sure all of your AssertionErrors are tested instead of silently ignoring them from the
coverage output.

Here is the cube_root.py code:

 def cube_root(n: int) -> int:
 '''
 Returns the cube root of the input number

 Args:
 n (int): The number to cube root

 Returns:
 int: The cube root result
 '''
 if n >= 0:
 return n ** (1 / 3)
 else:
 raise ValueError('A number larger than 0 was expected')

And the T_16_test_cube_root.py code:

import pytest
import cube_root

cubes = (
 (0, 0),
 (1, 1),
 (8, 2),
 (27, 3),
)

@pytest.mark.parametrize('n,expected', cubes)
def test_cube_root(n, expected):
 assert cube_root.cube_root(n) == expected

Since Linux and Mac systems hide files starting with a . (such as .coveragerc), the file-
name in the GitHub repository is _coveragerc. To use the file, you can either choose to
copy/rename it, or set the COVERAGE_RCFILE environment variable to override the filename.

Testing and Logging – Preparing for Bugs330

Now, let’s see what happens when we run this with coverage enabled:

$ py.test --cov-report=html --cov-report=term-missing \
 --cov=cube_root --cov-branch T_16_test_cube_root.py
Name Stmts Miss Branch BrPart Cover Missing
--
cube_root.py 4 1 2 1 67% 14
Coverage HTML written to dir htmlcov
================= 4 passed, 1 skipped in 0.12s =================

What happened here? It looks like we forgot to test some part of the code: line 14 and the branch
that goes from line 11 to line 14. This output isn’t all that readable, and that’s why we added --cov-
report=html to get easily readable HTML output in the htmlcov directory as well:

Figure 10.3: Coverage report generated by --cov-report=html

Perfect! So now we know – we forgot to test for values smaller than 0.

The yellow line (line 11) indicates that only one part of the branch was executed ((n >= 0) == True)
and not the other ((n >= 0) == False). This occurs with if statements, loops, and other things where
at least one of the branches is not covered. For example, if a loop over an empty array is an impossible
scenario, then the test can be partially skipped using a comment:

for i in range(10): # pragma: no branch

But since we know the problem, that is, the missing test for ValueError, let’s add the test case:

Previous test cases omitted
...

Chapter 10 331

def test_cube_root_below_zero():
 with pytest.raises(ValueError):
 cube_root.cube_root(-1)

Then we run the test again:

$ py.test --cov-report=html --cov-report=term-missing \
 --cov=cube_root --cov-branch T_17_test_cube_root_subzero.py
Name Stmts Miss Branch BrPart Cover Missing
--
cube_root.py 4 0 2 0 100%
Coverage HTML written to dir htmlcov
================= 5 passed, 1 skipped in 0.12s =================

Perfect! Now we have 100% test coverage of our function. At least, in theory. I can think of several
other test cases with different types of values that are not covered. So keep in mind that 100% test
coverage is still no guarantee for bug-free code.

But what if we have a branch that really doesn’t need testing because it is intentionally not implement-
ed? If we raise a NotImplementedError instead of raising a ValueError for values below 0, we also get
100% test coverage without adding that test.

This is because we added raise NotImplementedError to the ignore list in the .coveragerc file. Even
if we were to test for the NotImplementedError in the test file, the coverage report would still ignore
the line.

pytest-flake8
Code quality testing tools are very useful for making your code readable, consistent, and pep8 compli-
ant. The pytest-flake8 plugin automatically executes these checks before running the actual tests.
To install it, simply execute this line:

$ pip3 install pytest-flake8

Now we’ll create some bad code:

import os
def test(a,b):
 return c

We already installed pytest-flake8 earlier in this chapter because the default configu-
ration for the code in this book depends on it.

Testing and Logging – Preparing for Bugs332

After that, we can check the code using the pytest-flake8 plugin by adding it to the pytest.ini, or
by running py.test like this:

$ py.test --flake8 T_18_bad_code.py
=========================== FAILURES ===========================
____________ FLAKE8-check(ignoring W391 E402 F811) _____________
T_18_bad_code.py:1:1: F401 'os' imported but unused
T_18_bad_code.py:2:1: E302 expected 2 blank lines, found 0
T_18_bad_code.py:2:11: E231 missing whitespace after ','
T_18_bad_code.py:3:12: F821 undefined name 'c'

---------------------- Captured log call -----------------------
WARNING flake8.options.manager:manager.py:207 option --max-complexity: please
update from optparse string 'type=' to argparse callable 'type=' -- this will
be an error in the future
WARNING flake8.checker:checker.py:119 The multiprocessing module is not
available. Ignoring --jobs arguments.

The output of pytest-flake8 is, as expected, very similar to the output from the flake8 command
that is called internally and combines the pyflakes and pep8 commands to test code quality.

Depending on your situation, you might opt for having the code quality tests before you commit to
the repository, or you could only run it on-demand if code quality isn’t that important to you. After all,
while code quality considerations are important, it does not mean the code does not function without
them, and a good editor will already notify you of code quality issues while typing.

pytest-mypy
The pytest-mypy plugin runs the mypy static type checker, which uses the type hints to check if the
input and output are as expected. First, we need to install it using pip:

$ pip3 install pytest-mypy

When we apply this to our cube_root.py file, we can already see a possible error:

$ py.test --mypy cube_root.py
=========================== FAILURES ===========================
_________________________ cube_root.py _________________________
12: error: Incompatible return value type (got "float", expected
 "int")

As opposed to the cube.py file, which will return an int when given an int, the cube root of a number
does not have to be an integer when an integer is passed. While the cube root of 8 is 2, the cube root
of 4 returns a floating-point number of approximately 1.587.

This is an error that is easily overlooked without a tool such as mypy.

Chapter 10 333

Configuring plugins
To make sure that all the plugins get executed and to configure them, simply add the settings to the
pytest.ini file. The following example can be a reasonable default for development, but for produc-
tion releases, you will probably want to take care of the UnusedImport warnings.

pytest.ini

[pytest]
python_files =
 your_project_source/*.py
 tests/*.py

addopts =
 --doctest-modules
 --cov your_project_source
 --cov-report term-missing
 --cov-report html
 --flake8
 --mypy

W391 is the error about blank lines at the end of a file
flake8-ignore =
 *.py W391

Using the addopts setting in the pytest.ini, you can add options to the py.test command as if you
had added them to the command while running.

Now that we have a good understanding of the py.test possibilities, it is time to continue writing
tests. Next up is the subject of faking objects using mock.

Mock objects
When writing tests, you will often find that you are not only testing your own code, but also the inter-
action with external resources, such as hardware, databases, web hosts, servers, and others. Some of
these can be run safely, but certain tests are too slow, too dangerous, or even impossible to run. In
those cases, mock objects are your friends; they can be used to fake anything, so you can be certain
that your code still returns the expected results without having any variation from external factors.

When debugging to find out why a test is failing, it can be useful to simply look at the first
test that fails. The py.test module offers both a -x/--exitfirst flag to stop after the
first failure and --maxfail=n to stop after n failures.

Additionally, the --ff/--failed-first option is useful to run the previously failed tests
first.

Or you can use the --lf/--last-failed option to only run previously failed tests.

Testing and Logging – Preparing for Bugs334

Using unittest.mock
The unittest.mock library provides two base objects, Mock and MagicMock, to easily mock any external
resources. The Mock object is just a general generic mock object and MagicMock is mostly the same,
but it has all the Python magic methods such as __contains__ and __len__ defined. In addition to
this, it can make your life even easier. This is because in addition to creating mock objects manually,
it is possible to patch objects directly using the patch decorator/context manager.

The following function uses random to return True or False with probabilities governed by a certain
probability distribution. Due to the random nature of a function like this, it is notoriously difficult to
test, but not with unittest.mock. With the use of unittest.mock, it’s easy to get repeatable results:

from unittest import mock
import random

@mock.patch('random.random')
def test_random(mock_random):
 # Specify our mock return value
 mock_random.return_value = 0.1
 # Test for the mock return value
 assert random.random() == 0.1
 assert mock_random.call_count == 1

def test_random_with():
 with mock.patch('random.random') as mock_random:
 mock_random.return_value = 0.1
 assert random.random() == 0.1

Wonderful, isn’t it? Without having to modify the original code, we can make sure that random.random()
now returns 0.1 instead of some random number. If you have an if statement in your code so it only
runs 10% of the time (if random.random() < 0.1), you can now test explicitly what happens in both
cases of the if.

The possibilities with mock objects are nearly endless. They vary from raising exceptions on access to
faking entire APIs and returning different results on multiple calls. For example, let’s fake deleting a file:

import os
from unittest import mock

def delete_file(filename):
 while os.path.exists(filename):
 os.unlink(filename)

Chapter 10 335

@mock.patch('os.path.exists', side_effect=(True, False, False))
@mock.patch('os.unlink')
def test_delete_file(mock_exists, mock_unlink):
 # First try:
 delete_file('some non-existing file')

 # Second try:
 delete_file('some non-existing file')

Quite a bit of magic in this example! The side_effect parameter tells mock to return those values in
that sequence, making sure that the first call to os.path.exists returns True and the other two return
False. The mock.patch call without specific arguments simply returns a callable that does nothing
and accepts anything.

Using py.test monkeypatch
The monkeypatch object in py.test is a fixture that allows mocking as well. While it may seem useless
after seeing the possibilities with unittest.mock, in summary, it’s not. Some of the functionality does
overlap, but while unittest.mock focuses on controlling and recording the actions of an object, the
monkeypatch fixture focuses on simple and temporary environmental changes. Some examples of
these are given in the following list:

•	 Setting and deleting attributes using monkeypatch.setattr and monkeypatch.delattr
•	 Setting and deleting dictionary items using monkeypatch.setitem and monkeypatch.delitem
•	 Setting and deleting environment variables using monkeypatch.setenv and monkeypatch.

delenv

•	 Inserting an extra path to sys.path before all others using monkeypatch.syspath_prepend
•	 Changing the directory using monkeypatch.chdir

To undo all modifications, simply use monkeypatch.undo. Naturally, at the end of your test function,
monkeypatch.undo() will be called automatically.

For example, let’s say that for a certain test, we need to work from a different directory. With mock,
your options would be to mock pretty much all file functions, including the os.path functions, and
even in that case, you will probably forget about a few. So, it’s definitely not useful in this case. Anoth-
er option would be to put the entire test into a try...finally block and just do an os.chdir before
and after the testing code. This is quite a good and safe solution, but it’s a bit of extra work, so let’s
compare the two methods:

import os

def test_chdir_monkeypatch(monkeypatch):
 monkeypatch.chdir('/')
 assert os.getcwd() == '/'

Testing and Logging – Preparing for Bugs336

def test_chdir():
 original_directory = os.getcwd()
 try:
 os.chdir('/')
 assert os.getcwd() == '/'
 finally:
 os.chdir(original_directory)

They effectively do the same, but one needs a single line of code to temporarily change directory where-
as the other needs four, or five if you count the os import as well. All of these can easily be worked
around with a few extra lines of code, of course, but the simpler the code is, the fewer mistakes you
can make and the more readable it is.

Now that we know how to fake objects, let’s look at how we can run our tests on multiple platforms
simultaneously using tox.

Testing multiple environments with tox
Now that we have written our tests and are able to run them for our own environment, it’s time to make
sure that others can easily run the tests too. tox can create sandboxed environments for all specified
Python versions (assuming they are installed) and runs them automatically and in parallel if needed.
This is especially useful to test if your dependency specification is up to date. While you may have
a lot of packages installed in your local environment, someone else might not have those packages.

Getting started with tox
Before we can do anything, we need to install the tox command. A simple pip install will suffice:

$ pip3 install --upgrade tox

After the install, we can start by creating a tox.ini file to specify what we want to run. The easiest way
is by using tox-quickstart, but if you already have a functioning tox.ini from a different project
you can easily copy and modify that:

$ tox-quickstart
Welcome to the tox 3.20.1 quickstart utility.
This utility will ask you a few questions and then generate a simple
configuration file to help get you started using tox.
Please enter values for the following settings (just press Enter to accept a
default value, if one is given in brackets).

What Python versions do you want to test against?
 [1] py37
 [2] py27, py37
 [3] (All versions) py27, py35, py36, py37, pypy, jython
 [4] Choose each one-by-one

Chapter 10 337

> Enter the number of your choice [3]: 1
What command should be used to test your project? Examples:
 - pytest
 - python -m unittest discover
 - python setup.py test
 - trial package.module
> Type the command to run your tests [pytest]:
What extra dependencies do your tests have?
default dependencies are: ['pytest']
> Comma-separated list of dependencies: pytest-flake8,pytest-mypy,pytest-cov
Finished: ./tox.ini has been created. For information on this file, see
https://tox.readthedocs.io/en/latest/config.html
Execute 'tox' to test your project.

Now we have our first tox configuration finished. The tox-quickstart command has made a tox.
ini file with a few sane defaults.

The tox.ini config file
The tox.ini file is very basic by default:

[tox]
envlist = py37

[testenv]
deps =
 pytest-flake8
 pytest-mypy
 pytest-cov
 pytest
commands =
 pytest

The tox.ini file usually consists of two main types of sections, the tox and testenv sections.

When looking at the output of tox-quickstart, you might be wondering why newer
Python versions are not listed. The reason is that the Python versions are hardcoded in the
tox-quickstart command at the time of writing. This issue is expected to be solved in
the near future but should not be a big issue in either case, as the versions can be changed
in the tox.ini file quite easily.

Testing and Logging – Preparing for Bugs338

The tox section configures the tox command itself and specifies options such as:

•	 envlist: Specifies the default list of environments to run, can be overridden by running tox
-e <env>.

•	 requires: Specifies which packages (and specific versions) are required alongside tox. This can
be useful for specifying a specific setuptools version so your package can be installed correctly.

•	 skip_missing_interpreters: A very useful feature that allows you to test all available envi-
ronments on your system but skip the ones that are not installed.

The testenv section configures your actual environment. Some of the most useful options are:

•	 basepython: The Python executable to run, useful if your Python binary has a non-standard
name but more commonly useful when using custom environment names.

•	 commands: Commands to run when testing, in our case pytest.
•	 install_command: Command to run to install the package, defaults to python -m pip install

{opts} {packages}(ARGV).
•	 allowlist_externals: Which external commands such as make, rm, ls, and cd to allow so they

can be run from the package or the scripts.
•	 changedir: Switch to a specific directory before running tests; to the directory containing the

tests, for example.
•	 deps: Which Python packages to install, uses the pip command syntax. A requirements.txt

file can be specified through -rrequirements.txt.
•	 platform: Restrict the environment to a specific value of sys.platform.
•	 setenv: Set environment variables, very useful to let tests know that they are being run from

tox, for example.
•	 skipsdist: With this flag enabled, you can test a regular directory instead of only installable

Python packages.

The most interesting part of the configuration is the testenv section prefix. While the testenv options
above can be configured globally for all environments, you can use a section such as [testenv:my_
custom_env] to only apply to your custom environment. In those cases, you will need to specify the
basepython option so tox knows what to execute.

Additionally to a single environment, you can also expand the pattern to configure multiple environ-
ments simultaneously with a pattern such as [testenv:py{27,38}] to specify both the py27 and py38
environments.

Expansions such as py{27,38} are also possible for all other options, so to specify a whole list of
Python environments, you could do:

envlist = py27, py3{7,8,9}, docs, coverage, flake8

Chapter 10 339

Furthermore, all options in the tox.ini also allow for variable interpolation based on a whole range
of available variables, such as {envname}, but also based on options from other environments. The
next example shows how to copy the basepython variable from the py39 environment:

[testenv:custom_env]
basepython = {[py39]basepython}

Naturally, interpolating from environment variables is also possible:

{env:NAME_OF_ENV_VARIABLE}

With an optional default:

{env:NAME_OF_ENV_VARIABLE:some default value}

Running tox
Now that we know some of the basic config options for tox, let’s run a simple test to illustrate how
convenient it can be.

First we need to create a tox.ini file to configure tox:

[tox]
envlist = py3{8,9}
skipsdist = True

[testenv]
deps =
 pytest
commands =
 pytest test.py

Next, we will create a test.py file containing the Python 3.9 dict merge operator:

def test_dict_merge():
 a = dict(a=123)
 b = dict(b=456)
 assert a | b

Now when running tox, it will show us that this syntax failed on Python 3.8 and works on Python 3.9
as expected:

$ tox
py38 installed: ...
py38 run-test: commands[0] | pytest test.py
===================== test session starts ======================
=========================== FAILURES ===========================
_______________________ test_dict_merge ________________________

Testing and Logging – Preparing for Bugs340

 def test_dict_merge():
 a = dict(a=123)
 b = dict(b=456)
> assert a | b
E TypeError: unsupported operand type(s) for |: 'dict' and 'dict'
...
ERROR: py38: commands failed
 py39: commands succeeded

That all looks good – an error for Python 3.8 and a fully working Python 3.9 run. This is where tox is
really useful; you can easily test multiple Python versions and multiple environments simultaneously,
even in parallel if you use the tox -p<processes> parameter. And best of all, since it creates a com-
pletely blank Python environment, you are testing your requirements specification as well.

Now that we know how to run our tests on multiple Python environments simultaneously, it is time
to continue with logging, the last section of this chapter. While a simple print statement can be very
useful in debugging, when working on larger or distributed systems it is often not the most convenient
option anymore. This is where the logging module can help you greatly to debug your issues.

Logging
The Python logging module is one of those modules that are extremely useful, but it tends to be very
difficult to use correctly. The result is often that people just disable logging completely and use print
statements instead. While it is somewhat understandable, this is a waste of the very extensive logging
system in Python.

The Python logging module is largely based on the Java log4j library so it might be familiar to you
if you’ve written Java before. That is also one of the biggest problems with the logging module in my
opinion; Python is not Java and the logging module feels pretty un-Pythonic because of it. That does
not make it a bad library, but it takes a little effort to get used to its design.

The most important objects of the logging module are the following:

•	 Logger: The actual logging interface
•	 Handler: This processes the log statements and outputs them
•	 Formatter: This formats the input data into a string
•	 Filter: This allows filtering of certain messages

Within these objects, you can set the logging levels to one of the default levels:

•	 CRITICAL: 50

•	 ERROR: 40

•	 WARNING: 30

•	 INFO: 20

•	 DEBUG: 10

•	 NOTSET: 0

Chapter 10 341

The numbers are the numeric values of these log levels. While you can generally ignore them, the
order is obviously important while setting the minimum level. Also, when defining custom levels, you
will have to overwrite existing levels if they have the same numeric value.

Configuration
There are several ways to configure the logging system, ranging from pure code to JSON files or even
remote configuration. The examples will use parts of the logging module discussed later in this
chapter, but the usage of the config system is all that matters here. If you are not interested in the
internal workings of the logging module, you should be able to get by with just this paragraph of the
Logging section.

Basic logging configuration
The most basic logging configuration is, of course, no configuration, but that will not get you much
useful output:

import logging

logging.debug('debug')
logging.info('info')
logging.warning('warning')
logging.error('error')
logging.critical('critical')

With the default log level, you will only see a WARNING and up:

$ python3 T_23_logging_basic.py
WARNING:root:warning
ERROR:root:error
CRITICAL:root:critical

A quick and easy start for a configuration is logging.basicConfig(). I recommend using this if you
just need some quick logging for a script you’re writing, but not for a full-blown application. While
you can configure pretty much anything you wish, once you get a more complicated setup, there are
usually more convenient options. We will talk more about that in later paragraphs, but first, we have
logging.basicConfig(), which creates a logging.StreamHandler that is added to the root logger and
configured to write all output to sys.stderr (standard error). Note that if the root logger already has
handlers, the logging.basicConfig() function does nothing (unless force=True).

If no log handlers are configured for the root logger, the logging functions (debug(), info(),
warning(), error(), and critical()) will automatically call logging.basicConfig()
to set up a logger for you. This means that if you have a log statement before your logging.
basicConfig() call, it will be ignored.

Testing and Logging – Preparing for Bugs342

To illustrate the usage of basicConfig() with a few customizations:

import logging

log_format = '%(levelname)-8s %(name)-12s %(message)s'

logging.basicConfig(
 filename='debug.log',
 format=log_format,
 level=logging.DEBUG,
)

formatter = logging.Formatter(log_format)
handler = logging.StreamHandler()
handler.setLevel(logging.WARNING)
handler.setFormatter(formatter)
logging.getLogger().addHandler(handler)

Now we can test the code:

logging.debug('debug')
logging.info('info')
some_logger = logging.getLogger('some')
some_logger.warning('warning')
some_logger.error('error')
other_logger = some_logger.getChild('other')
other_logger.critical('critical')

This will give us the following output on our screen:

$ python3 T_24_logging_basic_formatted.py
WARNING some warning
ERROR some error
CRITICAL some.other critical

And here is the output in the debug.log file:

DEBUG root debug
INFO root info
WARNING some warning
ERROR some error
CRITICAL some.other critical

Chapter 10 343

This configuration shows how log outputs can be configured with separate configurations, log levels,
and, if you choose so, formatting. It tends to become unreadable though, which is why it’s usually a
better idea to use basicConfig only for simple configurations that don’t involve multiple handlers.

Dictionary configuration
dictConfig makes it possible to name all parts so that they can be reused easily, for example, a single
formatter for multiple loggers and handlers. Let’s rewrite our previous configuration using dictConfig:

from logging import config

config.dictConfig({
 'version': 1,
 'formatters': {
 'standard': {
 'format': '%(levelname)-8s %(name)-12s %(message)s',
 },
 },
 'handlers': {
 'file': {
 'filename': 'debug.log',
 'level': 'DEBUG',
 'class': 'logging.FileHandler',
 'formatter': 'standard',
 },
 'stream': {
 'level': 'WARNING',
 'class': 'logging.StreamHandler',
 'formatter': 'standard',
 },
 },
 'loggers': {
 '': {
 'handlers': ['file', 'stream'],
 'level': 'DEBUG',
 },
 },
})

You can probably see the similarities with the logging.basicConfig() call we used earlier. It is merely
a different syntax for a logging configuration.

The nice thing about the dictionary configuration is that it’s very easy to extend and/or overwrite the
logging configuration. For example, if you want to change the formatter for all of your logging, you
can simply change the standard formatter or even loop through handlers.

Testing and Logging – Preparing for Bugs344

JSON configuration
Since dictConfig takes any type of dictionary, it is actually quite simple to implement a different type
of reader employing JSON or YAML files. This is especially useful as they tend to be a bit friendlier
toward non-Python programmers. As opposed to Python files, they are easily readable and writable
from outside of Python.

Let’s assume that we have a T_26_logging_json_config.json file such as the following:

{
 "version": 1,
 "formatters": {
 "standard": {
 "format": "%(levelname)-8s %(name)-12s %(message)s"
 }
 },
 "handlers": {
 "file": {
 "filename": "debug.log",
 "level": "DEBUG",
 "class": "logging.FileHandler",
 "formatter": "standard"
 },
 "stream": {
 "level": "WARNING",
 "class": "logging.StreamHandler",
 "formatter": "standard"
 }
 },
 "loggers": {
 "": {
 "handlers": ["file", "stream"],
 "level": "DEBUG"
 }
 }
}

We can simply use this code to read the config:

import json
from logging import config

with open('T_26_logging_json_config.json') as fh:
 config.dictConfig(json.load(fh))

Chapter 10 345

Naturally, you could use any source that can generate a dict, but be mindful of the source. Since the
logging module will import the specified class, it can be a potential security risk.

ini file configuration
The file configuration is probably the most readable format for non-programmers. It uses the ini-
style configuration format and uses the configparser module internally. The downside is that it is
perhaps a little verbose, but it is clear enough and makes it easy to combine several configuration
files without us having to worry too much about overwriting other configurations. Having said that, if
dictConfig is an option, then it is most likely a better option. This is because fileConfig is slightly
limited and awkward at times. Just look at the handlers as an example:

[formatters]
keys=standard

[handlers]
keys=file,stream

[loggers]
keys=root

[formatter_standard]
format=%(levelname)-8s %(name)-12s %(message)s

[handler_file]
level=DEBUG
class=FileHandler
formatter=standard
args=('debug.log',)

[handler_stream]
level=WARNING
class=StreamHandler
formatter=standard
args=(sys.stderr,)

[logger_root]
handlers=file,stream
level=DEBUG

Reading the files is extremely easy though:

from logging import config

config.fileConfig('T_27_logging_ini_config.ini')

Testing and Logging – Preparing for Bugs346

One thing to make note of, however, is that if you look carefully, you will see that this config is slightly
different from the other configs. With fileConfig you can’t just use keyword arguments alone. The
args is required for both FileHandler and StreamHandler.

The network configuration
The network configuration is a rarely used but very convenient way to configure your loggers across
multiple processes. This type of configuration is quite esoteric and if you have no use for such a setup,
feel free to skip to the Logger section.

The major caveat of the network configuration is that it can be dangerous because it allows you to
configure your logger on the fly while your application/script is still running. The dangerous part
is that the config is (partially) read by using the eval function, which allows people to potentially
execute code within your application remotely. Even though logging.config.listen only listens to
local connections, it can still be dangerous if you execute the code on a shared/unsafe host where
others can run code as well.

If your system is unsafe, you can pass verify as a callable argument to listen(), which could imple-
ment signature verification or encryption of the configurations before they are evaluated. By default,
the verify function is analogous to lambda config: config. As the most simple verification method,
you could use something along these lines:

def verify(config):
 if config.pop('secret', None) != 'some secret':
 raise RuntimeError('Access denied')
 return config

To show the workings of the network configuration, we need two scripts. One script will continuously
print a few messages to the loggers and the other will change the logging configuration. We will start
with the same test code that we had before, but keep it running in an endless loop with a sleep in
between:

import sys

def receive():
 import time
 import logging
 from logging import config

 listener = config.listen()
 listener.start()

 try:
 while True:
 logging.debug('debug')
 logging.info('info')

Chapter 10 347

 some_logger = logging.getLogger('some')
 some_logger.warning('warning')
 some_logger.error('error')
 other_logger = some_logger.getChild('other')
 other_logger.critical('critical')

 time.sleep(5)

 except KeyboardInterrupt:
 # Stop listening and finish the listening thread
 config.stopListening()
 listener.join()

def send():
 import os
 import struct
 import socket
 from logging import config

 ini_filename = os.path.splitext(__file__)[0] + '.ini'
 with open(ini_filename, 'rb') as fh:
 data = fh.read()

 # Open the socket
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 # Connect to the server
 sock.connect(('127.0.0.1',
 config.DEFAULT_LOGGING_CONFIG_PORT))
 # Send the magic logging packet
 sock.send(struct.pack('>L', len(data)))
 # Send the config
 sock.send(data)
 # And close the connection again
 sock.close()

if __name__ == '__main__':
 if sys.argv[-1] == 'send':
 send()
 elif sys.argv[-1] == 'receive':

Testing and Logging – Preparing for Bugs348

 receive()
 else:
 print(f'Usage: {sys.argv[0]} [send/receive]')

Now we need to run both of the scripts at the same time. First, we start the receive script, which will
start outputting data:

$ python3 T_28_logging_network_config.py receive
WARNING:some:warning
ERROR:some:error
CRITICAL:some.other:critical
The send command was run here
WARNING some warning
ERROR some error
CRITICAL some.other critical

In the meantime, we run the send command:

$ python3 T_28_logging_network_config.py send

As you can see, the logging configuration was updated while the code was still running. This can be
very useful for long-running scripts that you need to debug but don’t want to restart.

In addition to the output on the screen, the extra output was sent to the debug.log file, which looks
something like this now:

DEBUG root debug
INFO root info
WARNING some warning
ERROR some error
CRITICAL some.other critical

This allows you to redirect mostly useless debug output to a separate log file while still keeping the
most important messages on the screen.

Logger
The main object that you will be using all the time with the logging module is the Logger object. This
object contains all the APIs that you will need to do the actual logging. Most are simple enough but
some require attention.

First of all, loggers inherit the parent settings by default. As we have seen previously, with the propagate
setting, by default, all settings will propagate from the parent. This is really useful when incorporating
loggers within your files.

Chapter 10 349

Assuming your modules are using sane names and import paths, I recommend the following style of
naming your loggers:

import logging

logger = logging.getLogger(__name__)

class MyClass(object):
 def __init__(self, count):
 self.logger = logger.getChild(self.__class__.__name__)

By using this style, your loggers will get names such as main_module.sub_module.ClassName. Not
only does this make your logs easier to read, but also it is easily possible to enable or disable logging
per module with the propagation of log settings. To create a new log file that logs everything from
main_module.sub_module, we can simply do this:

import logging

logger = logging.getLogger('main_module.sub_module')
logger.addHandler(logging.FileHandler('sub_module.log'))

Alternatively, you can configure it using your chosen configuration option, of course. The relevant
point is that with sub-loggers, you have very fine-grained control over your loggers.

This includes increasing the log level:

import logging

logger = logging.getLogger('main_module.sub_module')
logger.setLevel(logging.DEBUG)

Usage
The usage of the Logger object is mostly identical to that of the bare logging module, but Logger
actually supports a bit more. This is because the bare logging module just calls the functions on the
root logger. The Logger object has a few very useful properties, although most of these are undocu-
mented in the library:

•	 propagate: Whether to pass events to this logger or to the handlers of the parent loggers. With-
out this, a log message to main_module.sub_module won’t be logged by main_module.

•	 The handle method will keep looking for parent handlers as long as those loggers have
propagate set to true, which is the default.

•	 filters: These are the filters attached to the logger. They can be set through addFilter and
removeFilter. To see whether a message will be filtered, the filter method can be used.

Testing and Logging – Preparing for Bugs350

•	 disabled: By setting this property, it’s possible to disable a certain logger. The regular API only
allows the disabling of all loggers below a certain level. This offers some fine-grained control.

•	 handlers: These are the handlers attached to the logger. They can be added through addHandler
and removeHandler. The existence of any (inherited) handlers can be checked through the
hasHandlers function.

•	 level: This is really an internal one as it simply has a numeric value and not a name. But be-
yond that, it doesn’t take inheritance into account, so it’s better to avoid the property and use
the getEffectiveLevel function instead. To check whether the setting is enabled for a DEBUG,
for example, you can simply do logger.isEnabledFor(logging.DEBUG). Setting the property
is possible through the setLevel function, of course.

•	 name: As this property’s name suggests, it is very useful for your own reference, of course.

Now that you know about the properties, it is time to discuss the logging functions themselves. The
functions you will use most often are the log, debug, info, warning, error, and critical log func-
tions. They can be used quite simply, but they support string formatting as well, which is very useful:

import logging

logger = logging.getLogger()
exception = 'Oops...'
logger.error('Some horrible error: %r', exception)

Formatting
When seeing the previous examples, you might wonder why we use logger.error('error: %r',
error) instead of regular string formatting with f-strings, %, or string.format instead. The reason is
that when parameters are used instead of preformatted strings, the handler gets them as parameters.
The result is that you can group log messages by the original string, which is what tools such as Sentry
(https://github.com/getsentry/sentry) use.

There is more to it, however. In terms of parameters, *args are only for string formatting, but it’s
possible to add extra parameters to a log object using the extra keyword parameter:

import logging

logger = logging.getLogger()
logger.error('simple error', extra=dict(some_variable='my value'))

These extra parameters can be used in the logging formatter to display extra information just like
the standard formatting options:

import logging

logging.basicConfig(format='%(some_variable)s: %(message)s')
logger = logging.getLogger()
logger.error('the message', extra=dict(some_variable='my value'))

https://github.com/getsentry/sentry

Chapter 10 351

This results in the following:

$ python3 T_30_formatting.py
simple error
my value: the message

However, one of the most useful features is the support for exceptions:

import logging

logging.basicConfig()
logger = logging.getLogger()

try:
 raise RuntimeError('some runtime error')
except Exception as exception:
 logger.exception('Got an exception: %s', exception)

logger.error('And an error')

This results in a stack trace for the exception, but it will not kill the code:

$ python3 T_31_exception.py
ERROR:root:Got an exception: some runtime error
Traceback (most recent call last):
 File "T_31_exception.py", line 7, in <module>
 raise RuntimeError('some runtime error')
RuntimeError: some runtime error
ERROR:root:And an error

Modern formatting using f-strings and str.format
The Python logging module is still largely based on the “old” formatting syntax and doesn’t have much
support for str.format. For the Formatter itself, you can easily use the new style formatting, but
that’s ultimately mostly useless since you rarely modify the Formatter and mainly need formatting
when logging messages instead.

Regardless, the syntax is simple enough to enable:

import logging

formatter = logging.Formatter('{levelname} {message}', style='{')
handler = logging.StreamHandler()
handler.setFormatter(formatter)

logging.error('formatted message?')

Testing and Logging – Preparing for Bugs352

Which results in:

$ python3 T_32_str_format.py
ERROR:root:formatted message?

For actual messages requiring formatting, we need to implement something ourselves, however. A
logging adapter is the easiest solution:

import logging

class FormattingMessage:
 def __init__(self, message, kwargs):
 self.message = message
 self.kwargs = kwargs

 def __str__(self):
 return self.message.format(**self.kwargs)

class FormattingAdapter(logging.LoggerAdapter):
 def process(self, msg, kwargs):
 msg, kwargs = super().process(msg, kwargs)
 return FormattingMessage(msg, kwargs), dict()

logger = FormattingAdapter(logging.root, dict())
logger.error('Hi {name}', name='Rick')

When executing the code, this results in the following output:

$ python3 T_33_logging_format.py
Hi Rick

The solution still doesn’t look that pretty in my opinion, but it works. Because the formatting of log mes-
sages cannot be overridden easily in the logging module, we have created a separate FormattingMessage
that formats itself whenever str(message) is called. This way we can override the formatting using
a simple logging.LoggerAdapter without having to replace large portions of the logging library.

Please note that if you want to send the value of kwargs to a logger such as Sentry, you will need to
make sure the order of operations is correct, since this method cannot pass the kwargs along or the
standard log formatter would complain.

Additionally, you might be wondering why we used the FormattingMessage instead of running msg.
format(**kwargs) in the process() method. The reason is that we want to avoid string formatting
for as long as possible.

Chapter 10 353

If the logger doesn’t have an active handler or the handler ignores messages of this level, it means we
would have done useless work. Depending on the implementation, string formatting can be a very
heavy operation and the logging system is meant to be as light as possible until enabled.

Logging pitfalls
The logging propagation is one of the most useful features and also the biggest problem with the
logging module. We have already seen how logging settings are inherited from parent loggers, but
what if you override them? Well, let’s find out:

import logging

a = logging.getLogger('a')
ab = logging.getLogger('a.b')

ab.error('before setting level')
a.setLevel(logging.CRITICAL)
ab.error('after setting level')

When we run this code, we get this output:

$ python3 T_34_logging_pitfalls.py
before setting level

In this case it’s obvious that the a.setLevel(...) caused the issue, but if that happens in some external
code that you didn’t know about, you could be searching for a long time.

And the reverse can also happen; an explicit level on a logger will ignore your parent level:

import logging

a = logging.getLogger('a')
ab = logging.getLogger('a.b')
ab.setLevel(logging.ERROR)

ab.error('before setting level')
a.setLevel(logging.CRITICAL)
ab.error('after setting level')

When we execute this, we notice that setting the level is completely ignored:

$ python3 T_35_logging_propagate_pitfalls.py
before setting level
after setting level

Once again, not a problem in this case, but if that happens in some external library without your
knowledge it can certainly cause a headache.

Testing and Logging – Preparing for Bugs354

Debugging loggers
The most important rule about loggers is that they inherit the settings from the parent loggers unless
you override them. If your logging isn’t working as you expect it, most of the time it’s caused by some
inheritance issue and that can be difficult to debug.

The logging flow according to the Python manual looks like this:

Figure 10.4: Logging flow. Copyright © 2001-2021 Python Software Foundation; All Rights Reserved

Now that we know how the logging flow is supposed to go, we can start creating a method to show our
current logger structure and the settings:

import logging

def get_handlers(logger):
 handlers = []
 # Walk through the loggers and their parents recursively to
 # fetch the handlers

Chapter 10 355

 while logger:
 handlers += logger.handlers

 if logger.propagate:
 logger = logger.parent
 else:
 break

 # Python has a lastResort handler in case no handlers are
 # defined
 if not handlers and logging.lastResort:
 handlers.append(logging.lastResort)

 return handlers

def debug_loggers():
 logger: logging.Logger
 for name, logger in logging.root.manager.loggerDict.items():
 # Placeholders are loggers without settings
 if isinstance(logger, logging.PlaceHolder):
 print('skipping', name)
 continue

 level = logging.getLevelName(logger.getEffectiveLevel())
 handlers = get_handlers(logger)
 print(f'{name}@{level}: {handlers}')

if __name__ == '__main__':
 a = logging.getLogger('a')
 a.setLevel(logging.INFO)

 handler = logging.StreamHandler()
 handler.setLevel(logging.INFO)
 ab = logging.getLogger('a.b')
 ab.setLevel(logging.DEBUG)
 ab.addHandler(handler)

 debug_loggers()

The get_handlers() function recursively walks through a logger and all of its parents to collect all
propagated handlers. The debug_loggers() function walks through the internal config of the logging
module to list all configured loggers and fetch the matching handlers through get_handlers().

Testing and Logging – Preparing for Bugs356

This is just a basic debugging function of course, but it can really help you when you’re wondering
why your logging is not working as expected. The output looks something like this:

$ python3 T_36_logger_debugging.py
a@INFO: [<_StderrHandler <stderr> (WARNING)>]
a.b@DEBUG: [<StreamHandler <stderr> (INFO)>]

Now we can see that the a logger has level INFO but only has a handler at a WARNING level. So, none of
our INFO messages will show. Similarly, the a.b logger has a DEBUG level but a handler at level INFO so
it will only show INFO and higher levels.

Exercises
Now that you have seen several testing and logging options, it’s time to try it yourself.

A few challenges:

•	 Create a function that tests the doctests of a given function/class.
•	 For a greater challenge, create a function that recursively tests all doctests of every function

and class in a given module.
•	 Create a py.test plugin that checks if all tested files have file-level documentation. Hint: use

pytest_collect_file.
•	 Create a custom tox environment to run flake8 or mypy on your project.
•	 Create a LoggerAdapter that combines multiple messages into a single message based on some

task ID. This can be useful when debugging long-running tasks.
•	

Summary
This chapter showed us how to write doctests, make use of the shortcuts provided by py.test, and
use the logging module. With testing, there is never a one-size-fits-all solution. While the doctest
system is very useful in many cases for providing both documentation and tests at the same time, in
many functions there are edge cases that simply don’t matter for documentation but still need to be
tested. This is where regular unit tests come in and where py.test helps a lot.

We have also seen how we can use tox to run tests in multiple sandboxed environments. If you ever
have a project that also has to run on different computers or even on different Python versions, I
would highly encourage you to use it.

The logging module is extremely useful when configured correctly and if your project becomes
somewhat larger, it quickly becomes useful to do so. The usage of the logging system should be clear
enough for most of the common use cases now, and as long as you keep the propagate parameter in
check, you should be fine when implementing a logging system.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

Chapter 10 357

Next up is debugging, where testing helps prevent bugs. We will see how to solve them effectively. In
addition, the logging that we added in this chapter will help a lot in that area.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

11
Debugging – Solving the Bugs

The previous chapter showed you how to add logging and tests to your code, but no matter how many
tests you have, you will always have bugs. The biggest problem will always be external variables such
as user input and different environments. At some point sooner or later, we will need to debug issues
with our code, or worse, the code that was written by someone else.

There are many debugging techniques and, most certainly, you have already used a few of them. Within
this chapter, we are going to focus on print/trace debugging and interactive debugging.

Debugging using print statements, stack traces, and logging is one of the most versatile methods to
work with, and it is most likely the first type of debugging you ever used. Even a print('Hello world')
can be considered this type, as the output will show you that your code is being executed correctly.
There is obviously no point in explaining how and where to place print statements to debug your code,
but there are quite a few nice tricks using decorators and other Python modules that render this type
of debugging a lot more useful, such as faulthandler.

Interactive debugging is a more complicated debugging method. It allows you to debug a program
while it’s still running. Using this method, it’s even possible to change variables while the application
is running and pause the application at any point desired. The downside is that it requires some
knowledge about the debugger commands to be really useful.

To summarize, we will cover the following topics:

•	 Non-interactive debugging using print, trace, logging, and faulthandler
•	 Interactive debugging using pdb, ipython, jupyter, and other debuggers and debugging ser-

vices

Non-interactive debugging
The most basic form of debugging is adding a simple print statement into your code to see what is still
working and what isn’t. This is useful in a variety of cases and likely to help solve most of your issues.

Debugging – Solving the Bugs360

Later in this chapter, we will show some interactive debugging methods, but those are not always
suitable. Interactive debugging tends to become difficult or even impossible in cases such as:

•	 Multithreaded environments
•	 Multiple servers
•	 Bugs that are hard (or take a long time) to reproduce
•	 Closed-off remote servers such as Google App Engine or Heroku

Both interactive and non-interactive debugging methods have their merits, but I personally opt for
non-interactive debugging 90% of the time, since a simple print/log statement is usually enough to
analyze the cause of a problem. I find interactive debugging to be mostly helpful when writing code
which uses large and complicated external libraries, where it can be hard to analyze which attributes,
properties, and methods are available for objects.

A basic example of this (I’ve been known to do similar) with a generator can be as follows:

>>> def hiding_generator():
... print('a')
... yield 'first value'
... print('b')
... yield 'second value'
... print('c')

>>> generator = hiding_generator()

>>> next(generator)
a
'first value'

>>> next(generator)
b
'second value'

>>> next(generator)
Traceback (most recent call last):
...
StopIteration

This shows exactly where the code does, and consequently, does not reach. Without this example, you
might have expected the first print to come immediately after the hiding_generator() call. Since it’s
a generator, however, nothing will be executed until we yield an item. Assuming you would have some
setup code before the first yield, it won’t run until next is actually called. Additionally, print('c')
is never executed and can be considered unreachable code.

Chapter 11 361

Although this is one of the simplest ways to debug functions using print calls, it’s not always the most
convenient way. We can start by making an auto-print function that prints the line of code that it’s
going to execute:

>>> import os
>>> import inspect
>>> import linecache

>>> def print_code():
... while True:
... info = inspect.stack()[1]
... lineno = info.lineno + 1
... function = info.function
... # Fetch the next line of code
... code = linecache.getline(info.filename, lineno)
... print(f'{lineno:03d} {function}: {code.strip()}')
... yield

Always prime the generator
>>> print_code = print_code()

>>> def some_test_function(a, b):
... next(print_code)
... c = a + b
... next(print_code)
... return c

>>> some_test_function('a', 'b')
003 some_test_function: c = a + b
005 some_test_function: return c
'ab'

As you can see, it automatically prints the line number, the name of the function, and the line of code
it will execute next for you. That way, if you have a slow bit of code, you can see which line is stalling
because it will be printed before execution.

With this specific instance, there’s no real use for a generator, but you could easily incorporate some
timings so you can see the delay between two next(print_code) statements. Or perhaps a counter
to see how often this particular bit of code has been run.

Debugging – Solving the Bugs362

Inspecting your script using trace
Simple print statements are useful in a lot of cases since you can easily incorporate print statements in
nearly every application. It does not matter whether it’s remote or local, threaded or using multipro-
cessing. It works almost everywhere, making it the most universal solution available – in addition to
logging, that is. The general solution is often not the best solution for every situation, however. A nice
alternative to our previous function is the trace module. It offers you a way to trace every executed
line, including the runtime. The downside of tracing so much data is that it can quickly become overly
verbose, as we will see in the next example.

To demonstrate, we will use our previous code but without print statements:

def some_test_function(a, b):
 c = a + b
 return c

print(some_test_function('a', 'b'))

Now we execute the code with the trace module:

$ python3 -m trace --trace --timing T_01_trace.py
 --- modulename: T_01_trace, funcname: <module>
0.00 T_01_trace.py(1): def some_test_function(a, b):
0.00 T_01_trace.py(6): print(some_test_function('a', 'b'))
 --- modulename: T_01_trace, funcname: some_test_function
0.00 T_01_trace.py(2): c = a + b
0.00 T_01_trace.py(3): return c
ab

The trace module shows you exactly which line is being executed with function names and, more
importantly, which line was caused by which statement (or statements). Additionally, it shows you at
what time it was executed relative to the start time of the program. This is due to the --timing flag.

And it still seems fairly reasonable in terms of output, right? Within this example, it does because this
is about the most basic code there is. As soon as you add an import, for example, your screen will be
flooded with output. In spite of the fact that you can opt to ignore specific modules and directories by
using command-line parameters, it is still too verbose in many cases.

We can also enable the trace module selectively with a little bit of effort:

import sys
import trace as trace_module
import contextlib

@contextlib.contextmanager
def trace(count=False, trace=True, timing=True):

Chapter 11 363

 tracer = trace_module.Trace(
 count=count, trace=trace, timing=timing)
 sys.settrace(tracer.globaltrace)
 yield tracer
 sys.settrace(None)

 result = tracer.results()
 result.write_results(show_missing=False, summary=True)

def some_test_function(a, b):
 c = a + b
 return c

with trace():
 print(some_test_function('a', 'b'))

This code shows a context manager that temporarily enables and disables the trace module to selec-
tively trace code. In this example, we used sys.settrace with tracer.globaltrace as an argument,
but you could also hook to your own tracing functions to customize the output.

When executing this, we get this output:

$ python3 T_02_selective_trace.py
 --- modulename: T_02_selective_trace, funcname: some_test_function
0.00 T_02_selective_trace.py(19): c = a + b
0.00 T_02_selective_trace.py(20): return c
ab
 --- modulename: contextlib, funcname: __exit__
0.00 contextlib.py(122): if type is None:
0.00 contextlib.py(123): try:
0.00 contextlib.py(124): next(self.gen)
 --- modulename: T_02_selective_trace, funcname: trace
0.00 T_02_selective_trace.py(12): sys.settrace(None)

Now, to illustrate, if we were to run the same code with the trace module enabled, we would get a lot
of output:

$ python3 -m trace --trace --timing T_02_selective_trace.py | wc
 256 2940 39984

The wc (word count) command shows us that this command gave us 252 lines, 2881 words, or 38716
characters of output, so I would generally recommend using the context decorator instead. Executing
a trace on any reasonably sized script will generate a scary amount of output.

Debugging – Solving the Bugs364

In addition to the arguments we already passed to trace, we can easily change the output or add extra
filters by wrapping or replacing tracer.globaltrace as the sys.settrace() argument. As arguments,
the function needs to accept frame, event, and arg.

The frame is a Python stack frame that contains references to the code and the filename and can be
used to inspect the scope at that point in the stack. This is the same frame you can extract when using
the traceback module.

The event argument is a string that can have the following values (from the standard Python docu-
mentation):

Parameter Description

call A function is called (or some other code block entered). The global trace function is
called; arg is None. The return value specifies the local trace function.

line

The interpreter is about to execute a new line of code or re-execute the condition of
a loop. The local trace function is called; arg is None; the return value specifies the
new local trace function. See Objects/lnotab_notes.txt (in the Python source
repository) for a detailed explanation of how this works. Per-line events may be
disabled for a frame by setting f_trace_lines to False on that frame.

return
A function (or another code block) is about to return. The local trace function is
called; arg is the value that will be returned, or None if the event is caused by an
exception being raised. The trace function’s return value is ignored.

exception
This means an exception has occurred. The local trace function is called; arg is a
tuple (exception, value, traceback). The return value specifies the new local trace
function.

opcode

The interpreter is about to execute a new opcode (see the dis module for opcode
details). The local trace function is called; arg is None; the return value specifies the
new local trace function. Per-opcode events are not emitted by default: they must be
explicitly requested by setting f_trace_opcodes to True on the frame.

Lastly, the arg argument depends on the event argument as illustrated by the documentation above.
In general, if arg is None, the return value of this function will be used as the local trace function,
allowing you to override this for a specific scope. With exception events, it will be a tuple containing
exception, value, and traceback.

Now let’s create a little snippet that can selectively trace our code by filtering on filename:

import sys
import trace as trace_module

There are a few extra options with the trace module, such as showing which code is (not)
executed, which can be useful to detect code coverage.

Chapter 11 365

import contextlib

@contextlib.contextmanager
def trace(filename):
 tracer = trace_module.Trace()

 def custom_trace(frame, event, arg):
 # Only trace for the given filename
 if filename != frame.f_code.co_filename:
 return custom_trace

 # Let globaltrace handle the rest
 return tracer.globaltrace(frame, event, arg)

 sys.settrace(custom_trace)
 yield tracer
 sys.settrace(None)

 result = tracer.results()
 result.write_results(show_missing=False, summary=True)

def some_test_function(a, b):
 c = a + b
 return c

Pass our current filename as '__file__'
with trace(filename=__file__):
 print(some_test_function('a', 'b'))

By using the frame argument, we can retrieve the code we are currently executing, and from that, the
filename the code currently exists in. Naturally, you could also filter for different functions or only
filter to a specific depth. Since we hand the tracing and outputting off to tracer.globaltrace(), we
only check the filename for a place up in the stack. You could return trace() instead and handle the
print() yourself.

When executing this code, you should get:

$ python3 T_03_filename_trace.py
 --- modulename: T_03_filename_trace, funcname: some_test_function
T_03_filename_trace.py(27): c = a + b
T_03_filename_trace.py(28): return c
ab
 --- modulename: T_03_filename_trace, funcname: trace

Debugging – Solving the Bugs366

T_03_filename_trace.py(20): sys.settrace(None)
lines cov% module (path)
 3 100% T_03_filename_trace (T_03_filename_trace.py)

As you can see, this excludes the code from contextlib, which we saw in the earlier example.

Debugging using logging
In Chapter 10, Testing and Logging – Preparing for Bugs, we saw how to create custom loggers, set the
levels for them, and add handlers to specific levels. We are going to use the logging.DEBUG level to
log now, which is nothing special by itself, but with a few decorators, we can add some very useful
debug-only code.

Whenever I’m debugging, I always find it very useful to know the input and output for a function. The
basic version with a decorator is simple enough to write; just print the args, kwargs, and return value
and you are done. The following example goes a little further. By using the inspect module, we can
retrieve the default arguments as well, making it possible to show all arguments with the argument
names and values in all cases, even if the argument was not specified:

import pprint
import inspect
import logging
import functools

def debug(function):
 @functools.wraps(function)
 def _debug(*args, **kwargs):
 # Make sure 'result' is always defined
 result = None
 try:
 result = function(*args, **kwargs)
 return result
 finally:
 # Extract the signature from the function
 signature = inspect.signature(function)
 # Fill the arguments
 arguments = signature.bind(*args, **kwargs)
 # NOTE: This only works for Python 3.5 and up!
 arguments.apply_defaults()
 logging.debug('%s(%s): %s' % (
 function.__qualname__,
 ', '.join('%s=%r' % (k, v) for k, v in
 arguments.arguments.items()),
 pprint.pformat(result),

Chapter 11 367

))

 return _debug

@debug
def add(a, b=123):
 return a + b

if __name__ == '__main__':
 logging.basicConfig(level=logging.DEBUG)

 add(1)
 add(1, 456)
 add(b=1, a=456)

Let’s analyze how this code executes:

1.	 The decorator executes function() as normal with the given *args and **kwargs passed along
unmodified, while storing the result to both display and return later.

2.	 The finally section of the try/finally generates an inspect.Signature() object from
function().

3.	 Now we generate an inspect.BoundArguments() object by binding *args and **kwargs using
the previously generated signature.

4.	 Now we can tell the inspect.BoundArguments() object to apply the default arguments so we
can see the value of arguments not passed in *args and **kwargs.

5.	 Lastly, we output the full function name, the formatted arguments, and the result.

When we execute the code, we should see the following:

$ python3 T_04_logging.py
DEBUG:root:add(a=1, b=123): 124
DEBUG:root:add(a=1, b=456): 457
DEBUG:root:add(a=456, b=1): 457

Very nice of course, as we have a clear sight of when the function is called, which parameters were
used, and what is returned. However, this is something you will probably only execute when you are
actively debugging your code.

You can also make the regular logging.debug statements in your code quite a bit more useful by
adding a debug-specific logger, which shows more information. Simply replace the logging config of
the preceding example with this:

import logging

log_format = (

Debugging – Solving the Bugs368

 '[%(relativeCreated)d %(levelname)s] '
 '%(filename)s:%(lineno)d:%(funcName)s: %(message)s'
)
logging.basicConfig(level=logging.DEBUG, format=log_format)

Then your result will be something like this:

$ python3 T_05_logging_config.py
[DEBUG] T_05_logging_config.py:20:_debug: add(a=1, b=123): 124
[DEBUG] T_05_logging_config.py:20:_debug: add(a=1, b=456): 457
[DEBUG] T_05_logging_config.py:20:_debug: add(a=456, b=1): 457

It shows the time relative to the start of the application in milliseconds and the log level. This is followed
by an identification block that shows the filename, line number, and function name that originated
the logs. Of course, there is a message at the end, which contains the result of our log call.

Showing the call stack without exceptions
When looking at how and why a piece of code is being run, it’s often useful to see the entire stack trace.
Simply raising an exception is, of course, an option. However, that will kill the current code execution,
which is generally not something we are looking for. This is where the traceback module comes in
handy. With just a simple call to traceback.print_stack(), we get a full stack list:

import sys
import traceback

class ShowMyStack:
 def run(self, limit=None):
 print('Before stack print')
 traceback.print_stack(limit=limit)
 print('After stack print')

class InheritShowMyStack(ShowMyStack):
 pass

if __name__ == '__main__':
 show_stack = InheritShowMyStack()

 print('Stack without limit')
 show_stack.run()
 print()

 print('Stack with limit 1')
 show_stack.run(1)

Chapter 11 369

The ShowMyStack.run() function shows a regular traceback.print_stack() call, which shows the
entire stack trace to that point in the stack. You could place traceback.print_stack() anywhere in
your code to see where it is being called from.

Since the full stack trace can be quite large, it is often useful to use the limit argument to only show
a few levels, which is what we do in the second run.

This results in the following:

$ python3 T_06_stack.py
Stack without limit
Before stack print
 File "T_06_stack.py", line 20, in <module>
 show_stack.run()
 File "T_06_stack.py", line 8, in run
 traceback.print_stack(limit=limit)
After stack print

Stack with limit 1
Before stack print
 File "T_06_stack.py", line 8, in run
 traceback.print_stack(limit=limit)
After stack print

As you can see, the traceback simply prints without any exceptions. The traceback module actually
has quite a few other methods for printing tracebacks based on exceptions and such, but you probably
won’t need them often. The most useful one is probably the limit parameter we’ve demonstrated. A
positive limit number shows you only a specific number of frames. In most cases, you don’t need a
full stack trace, so this can be quite useful to limit the output.

Alternatively, we can also specify a negative limit, which trims the stack from the other side. This is
mostly useful when printing the stack from a decorator where you want to hide the decorator from the
trace. If you want to limit both sides, you will have to do it manually using format_list(stack) with
a stack from extract_stack(f, limit), the usage of which is similar to the print_stack() function.

Handling crashes using faulthandler
The faulthandler module helps when debugging really low-level crashes, that is, crashes that should
only be possible when using low-level access to memory, such as C extensions.

The negative limit support was added in Python 3.5. Before that, only positive limits were
supported.

Debugging – Solving the Bugs370

For example, here’s a bit of code that will cause your Python interpreter to crash:

import ctypes

Get memory address 0, your kernel shouldn't allow this:
ctypes.string_at(0)

It results in something similar to the following:

$ python3 T_07_faulthandler.py
zsh: segmentation fault python3 T_07_faulthandler.py

That’s quite an ugly response, of course, and gives you no possibility to handle the error. Just in case
you are wondering, having a try/except structure won’t help you in these cases either. The following
code will crash in exactly the same way:

import ctypes

try:
 # Get memory address 0, your kernel shouldn't allow this:
 ctypes.string_at(0)
except Exception as e:
 print('Got exception:', e)

This is where the faulthandler module helps. It will still cause your interpreter to crash, but at least
you will see a proper error message raised, so it’s a good default if you (or any of the sub-libraries)
have any interaction with raw memory:

import ctypes
import faulthandler

faulthandler.enable()

Get memory address 0, your kernel shouldn't allow this:
ctypes.string_at(0)

It results in something along these lines:

$ python3 T_09_faulthandler_enabled.py
Fatal Python error: Segmentation fault

Current thread 0x0000000110382e00 (most recent call first):
 File python3.9/ctypes/__init__.py", line 517 in string_at
 File T_09_faulthandler.py", line 7 in <module>
zsh: segmentation fault python3 T_09_faulthandler_enabled.py

Chapter 11 371

Obviously, it’s not desirable to have a Python application exit in this manner as the code won’t exit
with a normal cleanup. Resources won’t be closed cleanly and your exit handler won’t be called. If
you somehow need to catch this behavior, your best bet is to wrap the Python executable in a separate
script using something like subprocess.run([sys.argv[0], ' T_09_faulthandler_enabled.py']).

Interactive debugging
Now that we have discussed basic debugging methods that will always work, we will look at interactive
debugging for some more advanced debugging techniques. The previous debugging methods made
variables and stacks visible through modifying the code and/or foresight. This time around, we will
look at a slightly smarter method, which constitutes doing the same thing interactively, but once the
need arises.

Console on demand
When testing some Python code, you may have used the interactive console a couple of times, since
it’s a simple yet effective tool for testing your Python code. What you might not have known is that it
is actually simple to start your own shell from within your code. So, whenever you want to drop into
a regular shell from a specific point in your code, that’s easily possible:

import code

def start_console():
 some_variable = 123
 print(f'Launching console, some_variable: {some_variable}')
 code.interact(banner='console:', local=locals())
 print(f'Exited console, some_variable: {some_variable}')

if __name__ == '__main__':
 start_console()

When executing that, we will drop into an interactive console halfway:

$ python3 T_10_console.py
Launching console, some_variable: 123
console:
>>> some_variable = 456
>>>
now exiting InteractiveConsole...
Exited console, some_variable: 123

To exit this console, we can use ̂ d (Ctrl + D) on Linux/Mac systems and ̂ z (Ctrl + Z) on Windows systems.

One important thing to note here is that the local scope is not shared between the two. Even though we
passed along locals() to share the local variables for convenience, this relation is not bidirectional.

Debugging – Solving the Bugs372

The result is that even though we set some_variable to 456 in the interactive session, it does not carry
over to the outside function. You can modify variables in the outside scope through direct manipulation
(for example, setting the properties) if you wish, but all variables declared locally will remain local.

Naturally, modifying mutable variables will affect both scopes.

Debugging using Python debugger (pdb)
When it comes to actually debugging code, the regular interactive console just isn’t suited. With a bit
of effort, you can make it work, but it’s just not all that convenient for debugging since you can only
see the current scope and can’t jump around the stack easily. With pdb (Python debugger), this is easily
possible. So, let’s look at a simple example of using pdb:

import pdb

def go_to_debugger():
 some_variable = 123
 print('Starting pdb trace')
 pdb.set_trace()
 print(f'Finished pdb, some_variable: {some_variable}')

if __name__ == '__main__':
 go_to_debugger()

This example is pretty much identical to the one in the previous paragraph, except that this time we end
up in the pdb console instead of a regular interactive console. So let’s give the interactive debugger a try:

$ python3 T_11_pdb.py
Starting pdb trace
> T_11_pdb.py(8)go_to_debugger()
-> print(f'Finished pdb, some_variable: {some_variable}')
(Pdb) some_variable
123
(Pdb) some_variable = 456
(Pdb) continue
Finished pdb, some_variable: 456

As you can see, we’ve actually modified the value of some_variable now. In this case, we used the
full continue command, but all the pdb commands have short versions as well. So, using c instead
of continue gives the same result. Just typing some_variable (or any other variable) will show the
contents and setting the variable will simply set it, just as we would expect from an interactive session.

To get started with pdb, first of all, a list of the most useful (full) stack movement and manipulation
commands with shorthands is shown here:

Chapter 11 373

Command Explanation

h(elp) This shows the list of commands (this list).

h(elp) command This shows the help for the given command.

w(here) Current stack trace with an arrow at the current frame.

d(own) Move down/to a newer frame in the stack.

u(p) Move up/to an older frame in the stack.

s(tep) Execute the current line and stop as soon as possible.

n(ext) Execute the current line and stop at the next line within the current
function.

r(eturn) Continue execution until the function returns.

c(ont(inue)) Continue execution up to the next breakpoint.

l(ist) [first[, last]] List the lines of source code (by default, 11 lines) around the current line.

ll | longlist List all of the source code for the current function or frame.

source expression List the source code for the given object. This is similar to longlist.

a(rgs) Print the arguments for the current function.

pp expression Pretty-print the given expression.

! statement
Execute the statement at the current point in the stack. Normally, the
! sign is not needed, but this can be useful if there are collisions with
debugger commands. For example, try b = 123.

interact Open an interactive Python shell session similar to the previous para-
graph.

Many more commands are available and some of them will be covered by the following paragraphs.
All commands are covered by the built-in help, however, so be sure to use the h/help [command]
command if needed.

Breakpoints
Breakpoints are points where the debugger will halt the code execution and allow you to debug from
that point. We can create breakpoints using either code or commands. First, let’s enter the debugger
using pdb.set_trace(). This is effectively a hardcoded breakpoint:

import pdb

def print_value(value):
 print('value:', value)

if __name__ == '__main__':

Debugging – Solving the Bugs374

 pdb.set_trace()
 for i in range(5):
 print_value(i)

So far, nothing new has happened, but let’s now open the interactive debugging session and try a few
breakpoint commands. Here’s a list of the most useful breakpoint commands before we start:

Command Explanation

b(reak) Show the list of breakpoints.
b(reak) [filename:]
lineno Place a breakpoint at the given line number and, optionally, file.

b(reak) function[,
condition]

Place a breakpoint at the given function. The condition is an expression
that must evaluate to True for the breakpoint to work.

cl(ear) [filename:]
lineno Clear the breakpoint (or breakpoints) at this line.

cl(ear) breakpoint
[breakpoint ...] Clear the breakpoint (or breakpoints) with these numbers.

Now let’s execute this code and enter the interactive debugger to try the commands:

$ python3 T_12_pdb_loop.py
> T_12_pdb_loop.py (10)<module>()
-> for i in range(5):
(Pdb) source print_value # View the source of print_value
 4 def print_value(value):
 5 print('value:', value)
(Pdb) b 5 # Add a breakpoint to line 5
Breakpoint 1 at T_12_pdb_loop.py:5
(Pdb) w # Where shows the current line
> T_12_pdb_loop.py (10)<module>()
-> for i in range(5):
(Pdb) c # Continue (until the next breakpoint or exception)
> T_12_pdb_loop.py(5)print_value()
-> print('value:', value)
(Pdb) w # Where shows the current line and the calling functions
 T_12_pdb_loop.py(11)<module>()
-> print_value(i)
> T_12_pdb_loop.py(5)print_value()
-> print('value:', value)
(Pdb) ll # List the lines of the current function
 4 def print_value(value):

Chapter 11 375

 5 B-> print('value:', value)
(Pdb) b # Show the breakpoints
Num Type Disp Enb Where
1 breakpoint keep yes at T_12_pdb_loop.py:5
 breakpoint already hit 1 time
(Pdb) cl 1 # Clear breakpoint 1
Deleted breakpoint 1 at T_12_pdb_loop.py:5
(Pdb) c # Continue the application until the end
value: 0
value: 1
value: 2
value: 3
value: 4

That was a lot of output, but it’s actually not as complex as it seems:

1.	 First, we used the source print_value command to see the source for the print_value
function.

2.	 After that, we knew the line number of the first print statement, which we used to place a
breakpoint (b 5) at line 5.

3.	 To check whether we were still at the right position, we used the w command.
4.	 Since the breakpoint was set, we used c to continue up to the next breakpoint.
5.	 Having stopped at the breakpoint at line 5, we used w again to confirm that and show the

current stack.
6.	 We listed the code of the current function using ll.
7.	 We listed the breakpoints using b.
8.	 We removed the breakpoint again using cl 1 with the breakpoint number from the previous

command.
9.	 We continued (c) until the program exits or reaches the next breakpoint if available.

It all seems a bit complicated in the beginning, but you’ll see that it’s actually a very convenient way
of debugging once you’ve tried a few times.

To make it even better, this time we will execute the breakpoint only when value = 3:

$ python3 T_12_pdb_loop.py
> T_12_pdb_loop.py(10)<module>()
-> for i in range(5):
print the source to find the variable name and line number:
(Pdb) source print_value
 4 def print_value(value):
 5 print('value:', value)
(Pdb) b 5, value == 3 # add a breakpoint at line 5 when value=3

Debugging – Solving the Bugs376

Breakpoint 1 at T_12_pdb_loop.py:5
(Pdb) c # continue until breakpoint
value: 0
value: 1
value: 2
> T_12_pdb_loop.py(5)print_value()
-> print('value:', value)
(Pdb) a # show the arguments for the function
value = 3
(Pdb) value = 123 # change the value before the print
(Pdb) c # continue, we see the new value now
value: 123
value: 4

To list what we have done:

1.	 First, using source print_value, we looked for the line number and variable name.
2.	 After that, we placed a breakpoint with the value == 3 condition.
3.	 Then we continued execution using c. As you can see, the values 0, 1, and 2 are printed as

normal.
4.	 The breakpoint was reached at value 3. To verify, we used a to see the function arguments.
5.	 We changed the variable before print() was executed.
6.	 We continued to execute the rest of the code.

Catching exceptions
All of these have been manual calls to the pdb.set_trace() function, but in general, you are just
running your application and not really expecting issues. This is where exception catching can be
very handy. In addition to importing pdb yourself, you can run scripts through pdb as a module as well.
Let’s examine this bit of code, which dies as soon as it reaches zero division:

print('This still works')
1 / 0
print('We will never reach this')

If we run it through the pdb module, we can end up in the Python debugger whenever it crashes:

$ python3 -m pdb T_13_pdb_catching_exceptions
> T_13_pdb_catching_exceptions(1)<module>()
-> print('This still works')
(Pdb) w # Where
 bdb.py(431)run()
-> exec(cmd, globals, locals)

Chapter 11 377

 <string>(1)<module>()
> T_13_pdb_catching_exceptions(1)<module>()
-> print('This still works')
(Pdb) s # Step into the next statement
This still works
> T_13_pdb_catching_exceptions(2)<module>()
-> 1/0
(Pdb) c # Continue
Traceback (most recent call last):
 File "pdb.py", line 1661, in main
 pdb._runscript(mainpyfile)
 File "pdb.py", line 1542, in _runscript
 self.run(statement)
 File "bdb.py", line 431, in run
 exec(cmd, globals, locals)
 File "<string>", line 1, in <module>
 File "T_13_pdb_catching_exceptions", line 2, in <module>
 1/0
ZeroDivisionError: division by zero
Uncaught exception. Entering post mortem debugging
Running 'cont' or 'step' will restart the program
> T_13_pdb_catching_exceptions(2)<module>()
-> 1/0

Aliases
Aliases can be a really useful feature to make your life easier. If you “live” in a Linux/Unix shell like
I do, you are probably already familiar with them, but essentially an alias is just a shorthand to save
you from having to type (or even remember) a long and complicated command.

Which aliases are useful for you depends on your preferences of course, but I personally like an
alias for the pprint (pretty print) module. Within my projects, I often use pf=pprint.pformat and
pp=pprint.pprint as aliases, but the same goes for pdb where I find pd a useful shorthand for pretty
printing the __dict__ for a given object.

A useful little trick within pdb is to use the Enter button, which, by default, will execute
the previously executed command again. This is very useful when stepping through the
program.

Debugging – Solving the Bugs378

The pdb commands for aliases are relatively straightforward and very easy to use:

alias List all aliases.

alias name command

Create an alias. The command can be any valid Python expression, so you
can do the following to print all properties for an object:

alias pd pp %1.__dict__

unalias name Remove an alias.

Make sure to use these to your advantage. Within Linux/Unix systems, you have probably noticed
that many commands (ls, rm, cd) are very short to save you some typing; you can do the same with
these aliases.

commands
The commands command is a little complicated but very useful. It allows you to execute commands
whenever a specific breakpoint is encountered. To illustrate this, let’s start from a simple example again:

def do_nothing(i):
 pass

for i in range(10):
 do_nothing(i)

The code is simple enough, so now we’ll add the breakpoint and the commands, as follows:

$ python3 -m pdb T_14_pdb_commands.py
> T_14_pdb_commands.py(1)<module>()
-> def do_nothing(i):
(Pdb) b do_nothing # Add a breakpoint to function do_nothing
Breakpoint 1 at T_14_pdb_commands.py:1
(Pdb) commands 1 # add command to breakpoint 1
(com) print(f'The passed value: {i}')
(com) end # end command
(Pdb) c # continue
The passed value: 0
> 16_pdb_commands.py(2)do_nothing()
-> pass
(Pdb) q # quit

As you can see, we can easily add commands to the breakpoint. After removing the breakpoint, these
commands won’t be executed anymore because they are linked to the breakpoint.

These can be really useful to add some automatic debug print statements to your breakpoint; for
example, to see the value of all of the variables in the local scope. You can always manually do a
print(locals()) of course, but these can save you a lot of time while debugging.

Chapter 11 379

Debugging with IPython
While the generic Python console is useful, it can be a little rough around the edges. The IPython
console offers a whole new world of extra features, which make it a much nicer console to work with.
One of those features is a more convenient debugger.

First, make sure you have ipython installed:

$ pip3 install ipython

Next, let’s try the debugger with a very basic script:

def print_value(value):
 print('value:', value)

if __name__ == '__main__':
 for i in range(5):
 print_value(i)

Next, we run IPython and tell it to run the script in debug mode:

$ ipython
Python 3.10.0
Type 'copyright', 'credits' or 'license' for more information
IPython 7.19.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: %run -d T_15_ipython.py
Breakpoint 1 at T_15_ipython.py:1
NOTE: Enter 'c' at the ipdb> prompt to continue execution.
> T_15_ipython.py(1)<module>()
1---> 1 def print_value(value):
 2 print('value:', value)
 3
 4
 5 if __name__ == '__main__':

ipdb> b print_value, value == 3 # Add a breakpoint when value=3
Breakpoint 2 at T_15_ipython.py:1
ipdb> c
value: 0
value: 1
value: 2
> T_15_ipython.py(2)print_value()
2 1 def print_value(value):
----> 2 print('value:', value)

Debugging – Solving the Bugs380

 3
 4
 5 if __name__ == '__main__':

ipdb> value
3
ipdb> value = 123 # Change the value
ipdb> c # Continue
value: 123
value: 4

As you can see, not all that different from pdb. But it automatically shows the surrounding code in a
readable format, which is very useful. Additionally, the shown code has syntax highlighting, which
helps with readability as well.

Debugging with Jupyter
Jupyter is amazing for ad hoc development and makes it really easy to see what’s going on in your code
for small scripts. For larger scripts, it can quickly become more difficult because you normally only
get the non-interactive stack trace and have to resort to a different method for changing external code.

Since 2020, however, Jupyter has added a (currently experimental) visual debugger to make it possi-
ble to debug your code as it happens in a very convenient way. To get started, make sure you have a
recent version of Jupyter and install both the @jupyterlab/debugger extension and the xeus-python
(XPython) kernel for Jupyter. To make sure everything works without too much effort, I strongly rec-
ommend using conda for this operation:

$ conda create -n jupyter-debugger -c conda-forge xeus-python=0.8.6 notebook=6
jupyterlab=2 ptvsd nodejs
...
Package Plan

 added / updated specs:
 - jupyterlab=2
 - nodejs
 - notebook=6

If you install the ipdb module, you get features similar to the pdb module, which allow
for triggering breakpoints from your code.

Chapter 11 381

 - ptvsd
 - xeus-python=0.8.6
...
$ conda activate jupyter-debugger

(jupyter-debugger) $ jupyter labextension install @jupyterlab/debugger

Building jupyterlab assets (build:prod:minimize)

Now we can start jupyter lab as normal:

(jupyter-debugger) $ jupyter lab
[I LabApp] JupyterLab extension loaded from jupyterlab
[I LabApp] Jupyter Notebook 6.1.4 is running at:
[I LabApp] http://localhost:8888/?token=...
[I LabApp] Use Control-C to stop this server and shut down all kernels (twice
to skip confirmation).

If everything is working as expected, you should see the JupyterLab launcher now, with both Python
3 and the XPython kernels available:

Figure 11.1: JupyterLab Python and XPython kernels

The current installation instructions for Conda can be found on the JupyterLab debugger
GitHub page: https://jupyterlab.readthedocs.io/en/latest/user/debugger.html

For a regular Python virtual environment, you can try the binary wheel (.whl) packages
so you don’t have to compile anything. Due to the currently experimental nature of this
feature, it is not supported in all environments yet. At the time of writing, binary wheels
are available for Python 3.6, 3.7 and 3.8 for OS X, Linux, and Windows. A list of available
versions can be found here: https://pypi.org/project/xeus-python/#files

https://jupyterlab.readthedocs.io/en/latest/user/debugger.html
https://pypi.org/project/xeus-python/#files

Debugging – Solving the Bugs382

Since only xeus-python (XPython) currently supports debugging, we will have to open that one. Now
we will add our script from before so we can demonstrate the debugger. If everything is working
correctly, you should see the debug buttons at the top-right part of your screen:

Figure 11.2: Regular Jupyter console output

Now we can start debugging by following these steps:

1.	 Enable the debug toggle at the top right.
2.	 Click on a line to add a breakpoint.
3.	 Run the code.

If everything is set up correctly, it should look something like this:

Figure 11.3: Debugging using Jupyter

From this point on, you can use the buttons in the debugging pane on the right to step over/in/out of
the next statement to walk through the code.

Other debuggers
The pdb debugger is simply the Python default, but far from the only option to debug Python code.
Some of the currently noteworthy debuggers are as follows:

•	 ipdb: The pdb debugger wrapped in an IPython shell
•	 pudb: A full-screen command-line debugger

Chapter 11 383

•	 pdbpp (pdb++): An extension to the regular pdb module, which adds tab completion, syntax
highlighting, and a few other useful features to pdb

•	 Werkzeug: A web-based debugger that allows debugging of web applications while they are
running

There are many others, of course, and there isn’t a single one that’s the absolute best. As is the case
with all tools, they all have their advantages and their flaws, and the one that is best for your current
purpose can be properly decided only by you. Chances are that your current Python IDE already has
an integrated debugger. The PyCharm IDE, for example, even offers built-in remote debugging so you
can debug applications running on cloud providers from your local graphical interface.

Debugging services
In addition to debugging when you encounter a problem, there are times when you simply need to
keep track of errors for later debugging. This can be especially difficult if your application is running
on remote servers or on computers not controlled by you. For this type of error tracking, there are a
few very useful open-source packages available.

Elastic APM
Elastic APM is part of the Elastic Stack and can keep track of errors, performance, logs, and other data
for you. This system can help you track not only Python applications but supports a whole range of
other languages and applications as well. The Elastic Stack (which is built around Elasticsearch) is an
extremely versatile and very well-maintained stack of software which I highly recommend.

The only downside of the Elastic Stack is that it is a very heavy set of applications, which quickly
requires a number of dedicated servers to maintain reasonable performance. It does scale very well,
however; if you ever need more processing power, you can simply add a new machine to your cluster
and everything will automatically rebalance for you.

Sentry
Sentry is an open-source error management system that allows you to collect errors from a wide range
of languages and frameworks. Some notable features are:

•	 Grouping of errors so you only get one (or a configurable number of) notification of errors
per type of error

•	 Being able to mark an error as “fixed” so it re-alerts you when it occurs again while still showing
you the previous occurrences

•	 Showing a full stack trace including surrounding code
•	 Keeping track of code versions/releases so you know which version (re-)introduced an error
•	 Assign errors to a specific developer to fix

While the Sentry application is mainly focused on web applications, it can easily be used for regular
applications and scripts as well.

Debugging – Solving the Bugs384

Historically, Sentry started as a small error-grouping application that could be used as an app within
an existing Django application, or as a separate installation depending on your needs. Since that time,
very little of that lightweight structure remains; it has grown into a fully fledged error tracking system
that has native support for many programming languages and frameworks.

Over time, Sentry has gravitated more and more toward the commercial hosted platform, however,
so hosting the application yourself has become more difficult with that. The time that a simple pip
install sentry was enough to get it running is long gone. These days, Sentry is a heavy application
that relies on the following running services:

•	 PostgreSQL
•	 Redis
•	 Memcached
•	 Symbolicator
•	 Kafka
•	 Snuba

So if you wish to try Sentry, I would recommend trying the free tier of the hosted Sentry to see if you
like it first. Manually installing is not really a valid option anymore, so if you wish to run it self-hosted,
your only realistic option is to use the docker-compose files provided.

When self-hosting, you should keep in mind that it is a heavy application that requires a significant
amount of resources to run and can easily fill a decently sized dedicated server. It is still lighter than
Elastic APM, however.

Exercises
For local development, a few small utility functions can make your life much easier. We have already
seen an example of this with the print_code generator and the trace context wrapper. See if you can
extend one of these to:

•	 Execute code with a timeout so you can see where your application is stalling
•	 Measure the duration of the execution
•	 Show how often that specific bit of code has been executed
•	

In my experience, you need at least about 2-3 GiB of RAM and about 2 CPU cores to run
current versions of Sentry. Depending on your load, you might need something much
heavier, but that is the bare minimum.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

Chapter 11 385

Summary
This chapter explained a few different debugging techniques and gotchas. There is, of course, much
more that can be said about debugging, but I hope you have acquired a nice vantage point for debug-
ging your Python code now. Interactive debugging techniques are very useful for single-threaded
applications and locations where interactive sessions are available.

But since that’s not always the case, we also discussed some non-interactive options.

To recap, in this chapter, we talked about non-interactive debugging with print statements, logging,
trace, traceback, asyncio, and faulthandler. We also explored interactive debugging with the Python
debugger, IPython, and Jupyter, as well as learning about alternative debuggers.

In the next chapter, we will see how to monitor and improve both CPU and memory performance, as
well as finding and fixing memory leaks.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

12
Performance – Tracking and
Reducing Your Memory and
CPU Usage

Before we talk about performance, there is a quote by Donald Knuth you need to consider first:

As long as you pick the correct data structures with the right algorithms, performance should not
be something to worry about. That does not mean you should ignore performance entirely, but just
make sure you pick the right battles and optimize only when it is actually needed. Micro/premature
optimizations can definitely be fun, but are only very rarely useful.

We have seen the performance characteristics of many data structures in Chapter 2, Pythonic Syntax
and Common Pitfalls, already, so we won’t discuss that, but we will show you how performance can
be measured and how problems can be detected. There are cases where micro optimizations make a
difference, but you won’t know until you measure the performance.

Within this chapter, we will cover:

•	 Profiling CPU usage
•	 Profiling memory usage

 “The real problem is that programmers have spent far too much time worrying about
efficiency in the wrong places and at the wrong times; premature optimization is the
root of all evil (or at least most of it) in programming”.

Donald Knuth is often called the father of algorithm analysis. His book series, The Art of
Computer Programming, can be considered the Bible of all fundamental algorithms.

Performance – Tracking and Reducing Your Memory and CPU Usage388

•	 Learning how to correctly compare performance metrics
•	 Optimizing performance
•	 Finding and fixing memory leaks

Globally, the chapter is split between CPU usage and/or CPU time, and memory usage. The first half
of the chapter mainly concerns CPU/time; the second half covers memory usage.

What is performance?
Performance is a very broad term. It has many different meanings and, in many cases, it is defined
incorrectly. Within this chapter, we will attempt to measure and improve performance in terms of CPU
usage/time and memory usage. Many of the examples here are a trade-off between execution time and
memory usage. Note that a fast algorithm that can only use a single CPU core can be outperformed
in terms of execution time by a slower algorithm that is easily parallelizable given enough CPU cores.

When it comes to incorrect statements about performance, you have probably heard statements similar
to “Language X is faster than Python.” That statement is inherently wrong. Python is neither fast nor
slow; Python is a programming language, and a language has no performance metrics whatsoever.
If you were to say that the CPython interpreter is faster or slower than interpreter Y for language X,
that would be possible. The performance characteristics of code can vary greatly between different
interpreters. Just take a look at this small test (which uses ZSH shell script):

$ export SCRIPT='"".join(str(i) for i in range(10000))'

$ for p in pypy3 pyston python3.{8..10}; do echo -n "$p: "; $p -m timeit
"$SCRIPT"; done
pypy3: ... 2000 loops, average of 7: 179 +- 6.05 usec per loop ...
pyston: 500 loops, best of 5: 817 usec per loop
python3.8: 200 loops, best of 5: 1.21 msec per loop
python3.9: 200 loops, best of 5: 1.64 msec per loop
python3.10: 200 loops, best of 5: 1.14 msec per loop

Five different Python interpreters, each with a different performance! All are Python, but the inter-
preters obviously vary.

You might not have heard of the PyPy3 and Pyston interpreters yet.

The PyPy3 interpreter is an alternative Python interpreter that uses JIT (Just-In-Time)
compiling to perform much better than CPython in many, but certainly not all, cases. The
big caveat of PyPy3 is that code that has speedups in C and depends on CPython extensions
(which is a large portion of performance-critical libraries) either does not support PyPy3
or suffers a performance hit.

Pyston attempts to be a drop-in replacement for CPython with JIT compiling added to it.
While JIT compiling might be added to CPython pretty soon, as of Python 3.10, that is not
the case yet. This is why Pyston can offer a great performance benefit over CPython. The
downside is that it is currently only supported on Unix/Linux systems.

Chapter 12 389

Looking at this benchmark, you might be tempted to drop the CPython interpreter completely and
only use PyPy3. The danger with benchmarks such as these is that they rarely offer any meaningful
results. For this limited example, the Pypy interpreter was about 200 times faster than the CPython3.10
interpreter, but that has very little relevance for the general case. The only conclusion that can safely
be drawn here is that this specific version of the PyPy3 interpreter is much faster than this specific
version of CPython3 for this exact test. For any other test and interpreter version, the results could
be vastly different.

Measuring CPU performance and execution time
When talking about performance you can measure a great number of things. When it comes to CPU
performance, we can measure:

•	 The “wall time” (the absolute time on the clock).
•	 Relative time (when comparing multiple runs or multiple functions)
•	 Used CPU time. Due to multithreading, multiprocessing, or asynchronous processing, this can

be vastly different from the wall time.
•	 When inspecting really low-level performance, measuring the number of CPU cycles and

loop counts.

In addition to all these different measurement options, you should also consider the observer effect.
Simply put, measuring takes time, and depending on how you are measuring the performance, the
impact can be huge.

Within this section, we will be exploring several methods to inspect the CPU performance and execution
time of your code. Tricks to improve your performance after measuring will come later in the chapter.

Timeit – comparing code snippet performance
Before we can start improving execution/CPU times, we need a reliable method to measure them.
Python has a really nice module (timeit) with the specific purpose of measuring the execution times
of bits of code. It executes a bit of code many times to make sure there is as little variation as possible
and to make the measurement fairly clean. It’s very useful if you want to compare a few code snippets.
Following are some example executions:

$ python3 -m timeit 'x=[]; [x.insert(0, i) for i in range(10000)]'
10 loops, best of 3: 30.2 msec per loop
$ python3 -m timeit 'x=[]; [x.append(i) for i in range(10000)]'
1000 loops, best of 3: 1.01 msec per loop
$ python3 -m timeit 'x=[i for i in range(10000)]'
1000 loops, best of 3: 381 usec per loop
$ python3 -m timeit 'x=list(range(10000))'
10000 loops, best of 3: 212 usec per loop

Performance – Tracking and Reducing Your Memory and CPU Usage390

These few examples demonstrate the performance difference between list.insert, list.append, a
list comprehension, and the list function. As we have seen in Chapter 4, doing list.insert is very
inefficient and that quickly shows here, in this case being 30 times slower than list.append.

More importantly, however, the code demonstrates how we can use the timeit module and how it
works. As you can see in the output, the list.append variant was executed only 10 times, whereas
the list call was executed 10000 times. That is one of the most convenient features of the timeit
module: it automatically figures out some useful parameters for you, and it shows the “best of 3” to
try and reduce the amount of variance in your tests.

Naturally, the command can be used with regular scripts as well, but that won’t automatically determine
the number of repetitions like the command-line interface does. So we will have to do that ourselves:

import timeit

def test_list():
 return list(range(10000))

def test_list_comprehension():
 return [i for i in range(10000)]

def test_append():
 x = []
 for i in range(10000):
 x.append(i)

 return x

def test_insert():
 x = []
 for i in range(10000):
 x.insert(0, i)

 return x

def benchmark(function, number=100, repeat=10):
 # Measure the execution times. Passing the globals() is an

The timeit module is great at comparing the performance of similar bits of code within
a code base. Comparing the execution time between different Python interpreters using
timeit is generally useless because it is rarely representative of the performance of your
whole application.

Chapter 12 391

 # easy way to make the functions available.
 times = timeit.repeat(function, number=number,
 globals=globals())
 # The repeat function gives 'repeat' results so we take the
 # min() and divide it by the number of runs
 time = min(times) / number
 print(f'{number} loops, best of {repeat}: {time:9.6f}s :: ',
 function.__name__)

if __name__ == '__main__':
 benchmark(test_list)
 benchmark(test_list_comprehension)
 benchmark(test_append)
 benchmark(test_insert)

When executing this, you will get something along the following lines:

$ python3 T_00_timeit.py
100 loops, best of 10: 0.000168s :: test_list
100 loops, best of 10: 0.000322s :: test_list_comprehension
100 loops, best of 10: 0.000573s :: test_append
100 loops, best of 10: 0.027552s :: test_insert

As you may have noticed, this script is still a bit basic. While the command-line version of timeit keeps
trying until it reaches 0.2 seconds or more, this script just has a fixed number of executions. Since
Python 3.6, we do have the option of using timeit.Timer.autorange to replicate this behavior, but
it is a bit less convenient to use and would produce a lot more output in our current case. Depending
on your use case, however, it could be useful to try this benchmark code instead:

def autorange_benchmark(function):
 def print_result(number, time_taken):
 # The autorange function keeps trying until the total
 # runtime (time_taken) reaches 0.2 seconds. To get the
 # time per run we need to divide it by the number of runs
 time = time_taken / number
 name = function.__name__
 print(f'{number} loops, average: {time:9.6f}s :: {name}')

 # Measure the execution times. Passing the globals() is an
 # easy way to make the functions available.
 timer = timeit.Timer(function, globals=globals())
 timer.autorange(print_result)

Performance – Tracking and Reducing Your Memory and CPU Usage392

If you want to use timeit interactively, I would recommend using IPython, since it has a magic %timeit
command that shows even more useful output:

$ ipython
In [1]: %timeit x=[]; [x.insert(0, i) for i in range(100000)]
2.5 s ± 112 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [2]: %timeit x=[]; [x.append(i) for i in range(100000)]
6.67 ms ± 252 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In this case, IPython automatically takes care of the string wrapping and passing of globals(). Still,
this is all very limited and useful only for comparing multiple methods of doing the same thing. When it
comes to full Python applications, there are more methods available, as we will see later in this chapter.

The easiest way you can implement a function similar to the %timeit function is to call timeit.main:

import timeit

timeit.main(args=['[x for x in range(1000000)]'])

This effectively does the same as:

$ python3 -m timeit '[x for x in range(1000000)]'

The internals of the timeit module are nothing too special, but take care to minimize a few sources
of inaccuracy, such as the setup and the teardown code. Additionally, the module reports the fastest
run because other processes on your system can interfere with the measurement.

A basic version can be implemented with a few calls to time.perf_counter (the highest resolution
timer available in Python), which is also used by timeit internally. The timeit.default_timer func-
tion is simply a reference to time.perf_counter. This basic implementation of the timeit function
is comparable to the internals of the timeit module:

import gc
import time
import functools

assert time

TIMEIT_TEMPLATE = '''

To view the source of both IPython functions and regular modules, entering object?? in
the IPython shell returns the source. In this case, just enter timeit?? to view the timeit
IPython function definition.

Chapter 12 393

def run(number):
 {setup}
 start = time.perf_counter()
 for i in range(number):
 {statement}
 stop = time.perf_counter()
 return stop - start
'''

def timeit(statement, setup='', number=1000000, globals_=None):
 # Get or create globals
 globals_ = globals() if globals_ is None else globals_

 # Create the test code so we can separate the namespace
 src = TIMEIT_TEMPLATE.format(
 statement=statement,
 setup=setup,
 number=number,
)
 # Compile the source
 code = compile(src, '<source>', 'exec')

 # Define locals for the benchmarked code
 locals_ = {}

 # Execute the code so we can get the benchmark fuction
 exec(code, globals_, locals_)

 # Get the run function from locals() which was added by 'exec'
 run = functools.partial(locals_['run'], number=number)

 # Disable garbage collection to prevent skewing results
 gc.disable()
 try:
 result = run()
 finally:
 gc.enable()

 return result

Performance – Tracking and Reducing Your Memory and CPU Usage394

The actual timeit code is a bit more advanced in terms of checking the input, but this example roughly
shows how the timeit.timeit function can be implemented, including several of the features added
for more precision:

•	 First, we can see that the code has a number parameter that defaults to 1 million. This has been
done to reduce the result variance a little, as we will see when running the code.

•	 Second, the code disables the Python garbage collector so we don’t get any slowdowns from
Python deciding to clean up its memory.

When we actually call this code, we will see why a high value for number can be important:

>>> from T_02_custom_timeit import timeit

>>> statement = '[x for x in range(100)]'

>>> print('{:.7f}'.format(timeit(statement, number=1)))
0.0000064
>>> print('{:.7f}'.format(timeit(statement) / 1000000))
0.0000029
>>> print('{:.7f}'.format(timeit(statement, number=1)))
0.0000287
>>> print('{:.7f}'.format(timeit(statement) / 1000000))
0.0000029

Even though we called the exact same code each time, the single repetition took more than two times
as long in the first run and more than 10 times as long in the second run compared to the 1 million
repetitions version. To make your results more consistent and reliable between runs, it is always good
to repeat your tests several times and timeit can certainly help with that.

The timeit.repeat function simply calls the timeit.timeit function several times and can be em-
ulated using a list comprehension:

[timeit(statement) for _ in range(repeat)]

Now that we know how to test simple code statements, let’s look at how to find slow statements in
our code.

cProfile – Finding the slowest components
The profile and cProfile modules make it easily possible to analyze the relative CPU cycles used in
a script/application. Be very careful not to compare these with the results from the timeit module.
The timeit module tries as best as possible to give an accurate benchmark of the absolute amount
of time it takes to execute a code snippet; the profile/cProfile modules are only useful for relative
results because profiling increases the runtime. There are ways to make the results more accurate,
but more about that later.

Chapter 12 395

First profiling run
Let’s profile our Fibonacci function from Chapter 6, Decorators – Enabling Code Reuse by Decorating, both
with and without the cache function. First, the code:

import sys
import functools

@functools.lru_cache()
def fibonacci_cached(n):
 if n < 2:
 return n
 else:
 return fibonacci_cached(n - 1) + fibonacci_cached(n - 2)

def fibonacci(n):
 if n < 2:
 return n
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

if __name__ == '__main__':
 n = 30
 if sys.argv[-1] == 'cache':
 fibonacci_cached(n)
 else:
 fibonacci(n)

The profile and cProfile modules offer the exact same interface, but the latter is writ-
ten in C and is much faster. I would recommend using cProfile if it is available on your
system. If not, you can safely replace any occurrence of cProfile with profile in the
following examples.

For the sake of readability, all cProfile statistics will be stripped of the percall columns
in all cProfile outputs. These columns contain the duration per function call, which is
irrelevant for these examples since they will be either 0 or identical to the cumtime (cu-
mulative time) column in nearly all cases.

Performance – Tracking and Reducing Your Memory and CPU Usage396

First, we’ll execute the function without cache:

$ python3 -m cProfile T_03_profile_fibonacci.py no_cache
 2692557 function calls (21 primitive calls) in 0.596 seconds

 Ordered by: standard name

 ncalls tottime cumtime filename:lineno(function)
 1 0.000 0.596 T_03_profile_fibonacci.py:1(<module>)
2692537/1 0.596 0.596 T_03_profile_fibonacci.py:13(fibonacci)
 1 0.000 0.000 functools.py:35(update_wrapper)
 1 0.000 0.000 functools.py:479(lru_cache)
 1 0.000 0.000 functools.py:518(decorating_function)
 1 0.000 0.596 {built-in method builtins.exec}
 7 0.000 0.000 {built-in method builtins.getattr}
 1 0.000 0.000 {built-in method builtins.isinstance}
 5 0.000 0.000 {built-in method builtins.setattr}
 1 0.000 0.000 {method 'disable' of '_lsprof.Profile...
 1 0.000 0.000 {method 'update' of 'dict' objects}

We see 2692557 calls in total, which is quite a lot of calls. We called the test_fibonacci function
nearly 3 million times. That is where the profiling modules provide a lot of insight. Let’s analyze the
metrics a bit further, in the order they appear:

•	 ncalls: The number of calls that were made to the function.
•	 tottime: The total time spent in this function, excluding the sub-functions.
•	 percall: The time per call without sub-functions: tottime / ncalls.
•	 cumtime: The total time spent in this function, including sub-functions.
•	 percall: The time per call including sub-functions: cumtime / ncalls. This is distinct from

the percall metric above, despite having the same name.

Which is the most useful depends on your use case. It’s quite simple to change the sort order using the
-s parameter within the default output. But now let’s see what the result is with the cached version.
Once again, with stripped output:

$ python3 -m cProfile T_03_profile_fibonacci.py cache
 51 function calls (21 primitive calls) in 0.000 seconds

 Ordered by: standard name

ncalls tottime cumtime filename:lineno(function)
 1 0.000 0.000 T_03_profile_fibonacci.py:1(<module>)
 31/1 0.000 0.000 T_03_profile_fibonacci.py:5(fibonacci_cached)

Chapter 12 397

 1 0.000 0.000 functools.py:35(update_wrapper)
 1 0.000 0.000 functools.py:479(lru_cache)
 1 0.000 0.000 functools.py:518(decorating_function)
 1 0.000 0.000 {built-in method builtins.exec}
 7 0.000 0.000 {built-in method builtins.getattr}
 1 0.000 0.000 {built-in method builtins.isinstance}
 5 0.000 0.000 {built-in method builtins.setattr}
 1 0.000 0.000 {method 'disable' of '_lsprof.Profiler' ...}
 1 0.000 0.000 {method 'update' of 'dict' objects}

This time, we see a tottime of 0.000 because it’s just too fast to measure. But also, while the fibonacci_
cached function is still the most executed function, it’s only being executed 31 times instead of 3
million times.

Calibrating your profiler
To illustrate the difference between profile and cProfile, let’s try the uncached run again with the
profile module instead. Just a heads up: this is much slower, so don’t be surprised if it stalls a little:

$ python3 -m profile T_03_profile_fibonacci.py no_cache
 2692558 function calls (22 primitive calls) in 4.541 seconds

 Ordered by: standard name

 ncalls tottime cumtime filename:lineno(function)
 1 0.000 4.530 :0(exec)
 7 0.000 0.000 :0(getattr)
 1 0.000 0.000 :0(isinstance)
 5 0.000 0.000 :0(setattr)
 1 0.010 0.010 :0(setprofile)
 1 0.000 0.000 :0(update)
 1 0.000 4.530 T_03_profile_fibonacci.py:1(<module>)
2692537/1 4.530 4.530 T_03_profile_fibonacci.py:13(fibonacci)
 1 0.000 0.000 functools.py:35(update_wrapper)
 1 0.000 0.000 functools.py:479(lru_cache)
 1 0.000 0.000 functools.py:518(decorating_function)
 1 0.000 4.541 profile:0(<code object <module> at ...
 0 0.000 0.000 profile:0(profiler)

The code now runs nearly 10 times more slowly, and the only difference is using the pure Python
profile module instead of the cProfile module. This does indicate a big problem with the profile
module. The overhead from the module itself is great enough to skew the results, which means we
should account for that offset.

Performance – Tracking and Reducing Your Memory and CPU Usage398

That’s what the Profile.calibrate() function takes care of, as it calculates the performance bias
incurred by the profile module. To calculate the bias, we can use the following script:

import profile

if __name__ == '__main__':
 profiler = profile.Profile()
 for i in range(10):
 print(profiler.calibrate(100000))

The numbers will vary slightly, but you should be able to get a fair estimate of the performance bias
that the profile module introduces to your code. It effectively runs a bit of code both with and with-
out profiling enabled and calculates a multiplier to apply to all results so they are closer to the actual
duration.

This type of calibration only works for the profile module and should help a lot in achieving more
accurate results. The bias can be set globally for all newly created profilers:

import profile

The number here is bias calculated earlier
profile.Profile.bias = 9.809351906482531e-07

Or for a specific Profile instance:

import profile

profiler = profile.Profile(bias=9.809351906482531e-07)

Note that in general, a smaller bias is better to use than a large one because a large bias could cause
very strange results. If the bias is large enough, you will even get negative timings. Let’s give it a try
for our Fibonacci code:

import sys
import pstats

If the numbers still vary a lot, you can increase the trials from 100000 to something even
larger.

Note that with many modern processors, the burst CPU performance (the first few seconds)
can vary greatly from the sustained CPU performance (2 minutes or more).

The CPU performance is also highly temperature-dependent, so if your system has a large
CPU cooler or is water-cooled, it can take up to 20 minutes at 100% CPU load before the
CPU performance becomes consistent. The bias after that 20 minutes would be completely
unusable as a bias for a cold CPU.

Chapter 12 399

import profile

...

if __name__ == '__main__':
 profiler = profile.Profile(bias=9.809351906482531e-07)
 n = 30

 if sys.argv[-1] == 'cache':
 profiler.runcall(fibonacci_cached, n)
 else:
 profiler.runcall(fibonacci, n)

 stats = pstats.Stats(profiler).sort_stats('calls')
 stats.print_stats()

While running it, it indeed appears that we’ve used a bias that’s too large:

$ python3 T_05_profiler_large_bias.py
 2692539 function calls (3 primitive calls) in -0.746 seconds

 Ordered by: call count

 ncalls tottime cumtime filename:lineno(function)
2692537/1 -0.747 -0.747 T_05_profiler..._bias.py:15(fibonacci)
 1 0.000 -0.746 profile:0(<function fibonacci at ...>)
 1 0.000 0.000 :0(setprofile)
 0 0.000 0.000 profile:0(profiler)

Still, it shows how the code can be used properly. You can even incorporate the bias calculation within
the script using a snippet like this:

import profile

if __name__ == '__main__':
 profiler = profile.Profile()
 profiler.bias = profiler.calibrate(100000)

It is not a bad idea to always have a snippet like this enabled when using the profile module. The
only cost is the duration of the calibrate() run, and with a small number of trials (say, 10000), it
only takes about 0.2 seconds on my current system while still greatly increasing the accuracy of the
results. Because of this properly calculated bias, the results can actually be more accurate than the
cProfile module.

Performance – Tracking and Reducing Your Memory and CPU Usage400

Selective profiling using decorators
Calculating simple timings is easy enough using decorators, but profiling can show a lot more and can
also be applied selectively using decorators or context wrappers. Let’s look at a timer and a profiler
decorator:

import cProfile
import datetime
import functools

def timer(function):
 @functools.wraps(function)
 def _timer(*args, **kwargs):
 start = datetime.datetime.now()
 try:
 return function(*args, **kwargs)
 finally:
 end = datetime.datetime.now()
 print(f'{function.__name__}: {end - start}')

 return _timer

def profiler(function):
 @functools.wraps(function)
 def _profiler(*args, **kwargs):
 profiler = cProfile.Profile()
 try:
 profiler.enable()
 return function(*args, **kwargs)
 finally:
 profiler.disable()
 profiler.print_stats()

 return _profiler

Now that we have created the decorators, we can profile and time our functions with them:

@profiler
def profiled_fibonacci(n):
 return fibonacci(n)

@timer
def timed_fibonacci(n):
 return fibonacci(n)

Chapter 12 401

def fibonacci(n):
 if n < 2:
 return n
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

if __name__ == '__main__':
 timed_fibonacci(32)
 profiled_fibonacci(32)

The code is simple enough: just a basic timer and profiler decorator printing some default statistics.
Which functions best for you depends on your use case, of course. The timer() decorator is very useful
for quick performance tracking and/or a sanity check while developing. The profiler() decorator is
great while you are actively working on the performance characteristics of a function.

The added advantage of this selective profiling is that the output is more limited, which helps with
readability, albeit still much more verbose than the timer() decorator:

$ python3 T_06_selective_profiling.py
timed_fibonacci: 0:00:00.744912
 7049157 function calls (3 primitive calls) in 1.675 seconds

 Ordered by: standard name

 ncalls tottime cumtime filename:lineno(function)
 1 0.000 1.675 T_06_select...py:31(profiled_fibonacci)
7049155/1 1.675 1.675 T_06_selec...profiling.py:41(fibonacci)
 1 0.000 0.000 {method 'disable' of '_lsprof.Profil...

As you can see, the profiler still makes the code about twice as slow, but it’s definitely usable.

Using profile statistics
To get slightly more interesting profiling results, we will profile using the pyperformance.benchmarks.
bm_float script.

It can be installed through pip:

$ pip3 install pyperformance

The pyperformance library is the official Python benchmarks library optimized for the
CPython interpreter. It contains a large (ever-growing) list of benchmarks to monitor the
performance of the CPython interpreter under many scenarios.

Performance – Tracking and Reducing Your Memory and CPU Usage402

First, let’s create the statistics using this script:

import sys
import pathlib
import pstats
import cProfile

import pyperformance

pyperformance doesn't expose the benchmarks anymore so we need
to manually add the path
pyperformance_path = pathlib.Path(pyperformance.__file__).parent
sys.path.append(str(pyperformance_path / 'data-files'))

Now we can import the benchmark
from benchmarks.bm_float import run_benchmark as bm_float # noqa

def benchmark():
 for i in range(10):
 bm_float.benchmark(bm_float.POINTS)

if __name__ == '__main__':
 profiler = cProfile.Profile()
 profiler.runcall(benchmark)
 profiler.dump_stats('bm_float.profile')

 stats = pstats.Stats('bm_float.profile')
 stats.strip_dirs()
 stats.sort_stats('calls', 'cumtime')
 stats.print_stats(10)

When executing the script, you should get something like this:

$ python3 T_07_profile_statistics.py
Sun May 1 06:14:26 2022 bm_float.profile

 6000012 function calls in 2.501 seconds

Chapter 12 403

 Ordered by: call count, cumulative time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1000000 0.446 0.000 0.682 0.000 run_benchmark.py:15(__init__)
 1000000 0.525 0.000 0.599 0.000 run_benchmark.py:23(normalize)
 1000000 0.120 0.000 0.120 0.000 {built-in method math.cos}
 1000000 0.116 0.000 0.116 0.000 {built-in method math.sin}
 1000000 0.073 0.000 0.073 0.000 {built-in method math.sqrt}
 999990 0.375 0.000 0.375 0.000 run_benchmark.py:32(maximize)
 10 0.625 0.063 2.446 0.245 run_benchmark.py:46(benchmark)
 10 0.165 0.017 0.540 0.054 run_benchmark.py:39(maximize)
 1 0.055 0.055 2.501 2.501 T_07_profile_statistics.
py:17(benchmark)
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.
Profiler' objects}

After running the script, you should have a bm_float.profile file containing the profiling results. As
we can see in the script, these statistics can be viewed through the pstats module.

In some cases, it can be interesting to combine the results from multiple measurements. That is
possible by specifying multiple files or by using stats.add(*filenames).

The main advantage of saving these profile results to files is that several applications support this output
and can visualize it in a clearer way. One option is SnakeViz, which uses your web browser to render
the profile results interactively. Also, we have QCacheGrind, a very nice visualizer for profile statistics,
but which requires some manual compiling to get running or some searching for binaries of course.

Let’s look at the output from QCacheGrind. In the case of Windows, the QCacheGrindWin package
provides a binary, whereas within Linux it is most likely available through your package manager, and
with OS X you can try brew install qcachegrind.

However, there is one more package you will require: the pyprof2calltree package. It transforms
the profile output into a format that QCacheGrind understands. So, after a simple pip install
pyprof2calltree, we can now convert the profile file into a callgrind file:

$ pyprof2calltree -i bm_float.profile -o bm_float.callgrind
writing converted data to: bm_float.callgrind
$ qcachegrind bm_float.callgrind

Performance – Tracking and Reducing Your Memory and CPU Usage404

This results in the running of the QCacheGrind application. After switching to the appropriate tabs,
you should see something like the following screenshot:

Figure 12.1: QCacheGrind

For a simple script such as this, pretty much all output works. However, with full applications, a tool
such as QCacheGrind is invaluable. Looking at the output generated by QCacheGrind, it is immediately
obvious which process took the most time. The structure at the top right shows bigger rectangles if
the amount of time taken was greater, which is a very useful visualization of the chunks of CPU time
that were used. The list at the left is very similar to cProfile and therefore nothing new. The tree at
the bottom right can be very valuable or very useless, as it is in this case. It shows you the percentage
of CPU time taken in a function and, more importantly, the relationship of that function with the
other functions.

Because these tools scale depending on the input, the results are useful for just about any application.
Whether a function takes 100 milliseconds or 100 minutes makes no difference – the output will show
a clear overview of the slow parts, which is what we will try to fix.

Line profiler – Tracking performance per line
line_profiler is actually not a package that’s bundled with Python, but it’s far too useful to ignore.
While the regular profile module profiles all (sub)functions within a certain block, line_profiler
allows for profiling line per line within a function. The Fibonacci function is not best suited here, but
we can use a prime number generator instead. But first, install line_profiler:

Chapter 12 405

$ pip3 install line_profiler

Now that we have installed the line_profiler module (and with that the kernprof command), let’s
test line_profiler:

import itertools

@profile
def primes():
 n = 2
 primes = set()
 while True:
 for p in primes:
 if n % p == 0:
 break
 else:
 primes.add(n)
 yield n
 n += 1

if __name__ == '__main__':
 total = 0
 n = 2000
 for prime in itertools.islice(primes(), n):
 total += prime

 print('The sum of the first %d primes is %d' % (n, total))

You might be wondering where the profile decorator is coming from. It originates from the line_
profiler module, which is why we have to run the script with the kernprof command:

$ kernprof --line-by-line T_08_line_profiler.py
The sum of the first 2000 primes is 16274627
Wrote profile results to T_08_line_profiler.py.lprof

As the command says, the results have been written to the T_08_line_profiler.py.lprof file, so we
can now look at the output of that file. For readability, we’ve skipped the Line # column:

$ python3 -m line_profiler T_08_line_profiler.py.lprof
Timer unit: 1e-06 s

Total time: 1.34623 s
File: T_08_line_profiler.py
Function: primes at line 4

Performance – Tracking and Reducing Your Memory and CPU Usage406

 Hits Time Per Hit % Time Line Contents
===
 @profile
 def primes():
 1 3.0 3.0 0.0 n = 2
 1 1.0 1.0 0.0 primes = set()
 while True:
2055131 625266.0 0.3 46.4 for p in primes:
2053131 707403.0 0.3 52.5 if n % p == 0:
 15388 4893.0 0.3 0.4 break
 else:
 2000 1519.0 0.8 0.1 primes.add(n)
 2000 636.0 0.3 0.0 yield n
 17387 6510.0 0.4 0.5 n += 1

Wonderful output, isn’t it? It makes it trivial to find the slow part within a bit of code. Within this code,
the slowness is obviously originating from the loop, but within other code it might not be that clear.

We have seen several methods of measuring CPU performance and execution time. Now it’s time to
look at how to improve performance. Since this largely applies to CPU performance and not memory
performance, we will cover that first. Later in this chapter, we will take a look at memory usage and
leaks.

Improving execution time
Much can be said about performance optimization, but truthfully, if you have read the entire book
up to this point, you know most of the Python-specific techniques for writing fast code. The most
important factor in overall application performance will always be the choice of algorithms and, by
extension, the data structures. Searching for an item within a list (O(n)) is almost always a worse
idea than searching for an item in a dict or set (O(1)), as we have seen in Chapter 4.

Naturally, there are more factors and tricks that can help make your application faster. The extremely
abbreviated version of all performance tips is quite simple, however: do as little as possible. No matter
how fast you make your calculations and operations, doing nothing at all will always be faster. The
following sections cover some of the most common performance bottlenecks in Python and test a
few common assumptions about performance, such as the performance of try/except blocks versus
if statements, which can have a huge impact in many languages.

This module can be added as an IPython extension as well, which enables the %lprun
command within IPython. To load the extension, the load_ext command can be used
from the IPython shell, %load_ext line_profiler.

Chapter 12 407

Some of the tricks in this section will be a trade-off between memory and execution time; others will
trade readability with performance. When in doubt, go for readability by default and only improve
performance if you have to.

Using the right algorithm
Within any application, the right choice of algorithm is by far the most important performance charac-
teristic, which is why I am repeating it to illustrate the results of a bad choice. Consider the following:

In [1]: a = list(range(1000000))

In [2]: b = dict.fromkeys(range(1000000))

In [3]: %timeit 'x' in a
12.2 ms ± 245 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [4]: %timeit 'x' in b
40.1 ns ± 0.446 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

Checking whether an item is within a list is an O(n) operation, and checking whether an item is
within a dict is an O(1) operation. This makes a huge difference when n=1000000; in this simple test,
we can see that for 1 million items, it’s 300,000 times faster.

All other performance tips combined might make your code twice as fast, but using the right algorithm
for the job can cause a much greater improvement. Using an algorithm that takes O(n) time instead
of O(n2) time will make your code 1000 times faster for n=1000, and with a larger n, the difference
only grows further.

Global interpreter lock
One of the most obscure components of the CPython interpreter is the global interpreter lock (GIL),
a mutual exclusion lock (mutex) required to prevent memory corruption. The Python memory man-
ager is not thread-safe, which is why the GIL is needed. Without the GIL, multiple threads might alter
memory at the same time, causing all sorts of unexpected and potentially dangerous results. The GIL
is covered in much more detail in Chapter 14.

What is the impact of the GIL in a real-life application? Within single-threaded applications, it makes
no difference whatsoever and is actually an extremely fast method for memory consistency.

The big-O notation (O(...)) is covered in more detail in Chapter 4, but we can provide
a quick recap.

O(n) means that for a list with len(some_list) = n, it will take n steps to perform the
operation. Consequently, O(1) means that it takes a constant amount of time regardless
of the size of the collection.

Performance – Tracking and Reducing Your Memory and CPU Usage408

Within multithreaded applications, however, it can slow your application down a bit because only a
single thread can access the GIL at a time. If your code has to access the GIL a lot, it might benefit
from some restructuring.

Luckily, Python offers a few other options for parallel processing. The asyncio module, which we
will see in Chapter 13, can help a lot by switching tasks whenever you are waiting for a slow operation.
In Chapter 14, we will see the multiprocessing library, which allows us to use multiple processors
simultaneously.

try versus if
In many languages, a try/except type of block incurs quite a performance hit, but within Python,
this is not the case as long as you don’t hit the except block. If you do hit an except, it will be slightly
heavier than an if statement, but not enough to be noticeable in most cases.

It’s not that an if statement is heavy, but if you expect your try/except to succeed most of the time
and only fail in rare cases, it is definitely a valid alternative. As always though, focus on readability
and conveying the purpose of the code. If the intention of the code is clearer using an if statement,
use the if statement. If try/except conveys the intention in a better way, use that.

Most programming languages depend on the use of the Look Before You Leap (LBYL) ideology. This
means that you always check before you try, so if you are getting some_key from a dict, you use:

if some_key in some_dict:
 process_value(some_dict[some_key])

Because you are always doing the if, it hints that some_key is usually not part of some_dict.

Within Python, it is common to use the Easier to Ask for Forgiveness than Permission (EAFP) ideolo-
gy when applicable. This means that the code assumes everything will work, but still catches errors:

try:
 process_value(some_dict[some_key])
except KeyError:
 pass

These two examples function mostly the same, but the latter gives the idea that you expect the key to
be available and will catch errors if needed. This is one of the cases where the Zen of Python (explicit
is better than implicit) applies.

The only caveat of the code above is that you might accidentally catch a KeyError from process_
value(), so if you want to avoid that you should use the following code instead:

try:
 value = some_dict[some_key]
except KeyError:
 pass
else:
 process_value(value)

Chapter 12 409

Which one you use comes mostly down to personal preference, but the takeaway should be that, with
Python, both options are perfectly valid and will perform similarly.

Lists versus generators
Evaluating code lazily using generators is almost always a better idea than calculating the entire dataset.
The most important rule of performance optimization is probably that you shouldn’t calculate anything
you’re not going to use. If you’re not sure that you are going to need it, don’t calculate it.

Don’t forget that you can easily chain multiple generators, so everything is calculated only when it’s
actually needed. Do be careful that this won’t result in recalculation though; itertools.tee() is
generally a better idea than recalculating your results completely.

To recap itertools.tee() from Chapter 7, a regular generator can only be consumed once, so if you
need to process the results two or more times, you can use itertools.tee() to store the intermediate
results:

>>> import itertools

Without itertools.tee:
>>> generator = itertools.count()
>>> list(itertools.islice(generator, 5))
[0, 1, 2, 3, 4]
>>> list(itertools.islice(generator, 5))
[5, 6, 7, 8, 9]

>>> generator_a, generator_b = itertools.tee(itertools.count())
>>> list(itertools.islice(generator_a, 5))
[0, 1, 2, 3, 4]
>>> list(itertools.islice(generator_b, 5))
[0, 1, 2, 3, 4]

As you can see, if you forget to use itertools.tee() here, you would only process the results once,
and both would process different values. The alternative fix is to use list() and store the intermediate
results, but this can cost much more memory, and you are required to pre-calculate all items without
knowing whether you actually need them all.

String concatenation
You might have seen benchmarks saying that using += is much slower than joining strings because
the str object (as is the case with bytes) is immutable. The result is that every time you do += on a
string, it will have to create a new object. At one point, this made quite a lot of difference indeed. With
Python 3, however, most of the differences have vanished:

In [1]: %%timeit
 ...: s = ''

Performance – Tracking and Reducing Your Memory and CPU Usage410

 ...: for i in range(1000000):
 ...: s += str(i)
 ...:
1 loops, best of 3: 362 ms per loop

In [2]: %%timeit
 ...: ss = []
 ...: for i in range(1000000):
 ...: ss.append(str(i))
 ...: s = ''.join(ss)
 ...:
1 loops, best of 3: 332 ms per loop

In [3]: %timeit ''.join(str(i) for i in range(1000000))
1 loops, best of 3: 324 ms per loop

In [4]: %timeit ''.join([str(i) for i in range(1000000)])
1 loops, best of 3: 294 ms per loop

There are still some differences, of course, but they are so small that I recommend you simply ignore
them and choose the most readable option instead.

Addition versus generators
As is the case with string concatenation, addition from a loop was significantly slower with older
Python versions, but the difference is now too small to consider:

In [1]: %%timeit
 ...: x = 0
 ...: for i in range(1000000):
 ...: x += i
 ...:
10 loops, best of 3: 73.2 ms per loop

In [2]: %timeit x = sum(i for i in range(1000000))
10 loops, best of 3: 75.3 ms per loop

In [3]: %timeit x = sum([i for i in range(1000000)])
10 loops, best of 3: 71.2 ms per loop

In [4]: %timeit x = sum(range(1000000))
10 loops, best of 3: 25.6 ms per loop

Chapter 12 411

What does help, though, is letting Python handle everything internally using native functions, as can
be seen in the last example.

Map versus generators and list comprehensions
Once again, readability generally counts more than performance, so only rewrite for performance
if it really makes a difference. There are a few cases where map() is faster than list comprehensions
and generators, but only if the map() function can use a predefined function. As soon as you need to
whip out lambda, it’s actually slower. Not that it matters much, since readability should be key anyhow.
If map() makes your code more readable than a generator or list comprehension, feel free to use it.
Otherwise, I would not recommend it:

In [1]: %timeit list(map(lambda x: x/2, range(1000000)))
10 loops, best of 3: 182 ms per loop

In [2]: %timeit list(x/2 for x in range(1000000))
10 loops, best of 3: 122 ms per loop

In [3]: %timeit [x/2 for x in range(1000000)]
10 loops, best of 3: 84.7 ms per loop

As you can see, the list comprehension is quite a bit faster than the generator. In many cases, I would
still recommend the generator over the list comprehension, though, if only because of the memory
usage and the potential laziness.

If, for some reason, you are only going to use the first 10 items when generating 1,000 items, you’re
still wasting a lot of resources by calculating the full list of items.

Caching
We have already covered the functools.lru_cache decorator in Chapter 6, Decorators – Enabling Code
Reuse by Decorating, but its importance should not be underestimated. Regardless of how fast and smart
your code is, not having to calculate results is always better and that’s what caching does. Depending
on your use case, there are many options available. Within a simple script, functools.lru_cache is
a very good contender, but between multiple executions of an application, the cPickle module can
be a lifesaver as well.

There are several scenarios where you need a more powerful solution, however:

•	 If you need caching between multiple executions of a script
•	 If you need caching shared across multiple processes

We have already seen the effects of this with the fibonacci_cached function in the
cProfile section of this chapter, which uses functools.lru_cache().

Performance – Tracking and Reducing Your Memory and CPU Usage412

•	 If you need caching shared across multiple servers

At least for the first two scenarios, you could write the cache to a local pickle/CSV/JSON/YAML/DBM/
etc. file. This is a perfectly valid solution that I use often.

If you need a more powerful solution, however, I can highly recommend taking a look at Redis. The
Redis server is a fully in-memory server that is extremely fast and has many useful data structures
available. If you see articles or tutorials about improving performance using Memcached, simply
replace Memcached with Redis everywhere. Redis is superior to Memcached in every way and, in its
most basic form, the API is compatible.

Lazy imports
A common problem in application load times is that everything is loaded immediately at the start
of the program while, with many applications, this is actually not needed and certain parts of the
application only require loading when they are actually used. To facilitate this, you can occasionally
move the imports inside of functions so they can be loaded on demand.

While it’s a valid strategy in some cases, I don’t generally recommend it for two reasons:

•	 It makes your code less clear; having all imports in the same style at the top of the file improves
readability.

•	 It doesn’t make the code faster as it just moves the load time to a different part.

Using slots
The __slots__ feature was written by Guido van Rossum to enhance Python performance. Effectively
what the __slots__ feature does is specify a fixed list of attributes for a class. When __slots__ are
used, several changes are made to a class and several (side-)effects must be considered:

•	 All attributes must be explicitly named in the __slots__. It is not possible to do some_instance.
some_variable = 123 if some_variable is not in __slots__.

•	 Because the list of attributes is fixed in __slots__, there is no longer any need for a __dict__
attribute, which saves memory.

•	 Attribute access is faster because there is no intermediate lookup through __dict__.
•	 It is not possible to use multiple inheritance if both parents have defined __slots__.

So, how much performance benefit can __slots__ give us? Well, let’s give it a test:

import timeit
import functools

class WithSlots:
 __slots__ = 'eggs',

class WithoutSlots:
 pass

Chapter 12 413

with_slots = WithSlots()
no_slots = WithoutSlots()

def test_set(obj):
 obj.eggs = 5

def test_get(obj):
 return obj.eggs

timer = functools.partial(
 timeit.timeit,
 number=20000000,
 setup='\n'.join((
 f'from {__name__} import with_slots, no_slots',
 f'from {__name__} import test_get, test_set',
)),
)
for function in 'test_set', 'test_get':
 print(function)
 print('with slots', timer(f'{function}(with_slots)'))
 print('with slots', timer(f'{function}(no_slots)'))

When we actually run this code, we can definitely see some improvements from using __slots__:

$ python3 T_10_slots_performance.py
test_set
with slots 1.748628467
with slots 2.0184642979999996
test_get
with slots 1.5832197570000002
with slots 1.6575410809999997

In most cases, I would argue that the 5-15% difference in performance isn’t going to help you that
much. However, if it’s applied to a bit of code that is near the core of your application and executed
very often, it can help.

Don’t expect miracles from this method, but use it when you need it.

Using optimized libraries
This is actually a very broad tip, but useful nonetheless. If there’s a highly optimized library that suits
your purpose, you most likely won’t be able to beat its performance without a significant amount of
effort. Libraries such as numpy, pandas, scipy, and sklearn are highly optimized for performance
and their native operations can be incredibly fast. If they suit your purpose, be sure to give them a try.

Performance – Tracking and Reducing Your Memory and CPU Usage414

Just to illustrate how fast numpy can be compared to plain Python, refer to the following:

In [1]: import numpy

In [2]: a = list(range(1000000))

In [3]: b = numpy.arange(1000000)

In [4]: %timeit c = [x for x in a if x > 500000]
10 loops, best of 3: 44 ms per loop

In [5]: %timeit d = b[b > 500000]
1000 loops, best of 3: 1.61 ms per loop

The numpy code does exactly the same as the Python code, except that it uses numpy arrays instead of
Python lists. This little difference has made the code more than 25 times faster.

Just-in-time compiling
Just-in-time (JIT) compiling is a method of dynamically compiling (parts of) an application during
runtime. Because there is much more information available at runtime, this can have a huge effect
and make your application much faster.

When it comes to JIT compiling, you currently have three options:

•	 Pyston: An alternative, currently Linux only, CPython-compatible Python interpreter.
•	 Pypy: A really fast alternative Python interpreter without full CPython compatibility.
•	 Numba: A package that allows for JIT compiling per function and execution on either the

CPU or the GPU.
•	 CPython 3.12 and 3.13? At the time of writing, there is little concrete data about the upcoming

Python releases, but there are plans to greatly increase the CPython interpreter performance.
How much will be achieved and how well it will work is currently unknown, but the ambitious
plan is to make CPython 5x faster over the next 5 releases (with 3.10 being the first in the se-
ries). The expectation is to add JIT compiling in CPython 3.12 and extend that further in 3.13.

If you are looking for global JIT compiling in existing projects, I can currently recommend trying
Pyston. It is a CPython fork that promises about a 30% performance increase without having to change
any code. In addition, because it is CPython-compatible, you can still use regular CPython modules.

Before you can use numpy, you need to install it: pip3 install numpy.

Chapter 12 415

The downside is that it currently only supports Linux systems and, as will always be the case with forks,
it’s behind the current Python version. At the time of writing, CPython is at Python 3.10.1, whereas
Pyston is at Python 3.8.

If compatibility with all CPython modules is not a requirement for you and you don’t require Python
features that are too recent, PyPy3 can also offer amazing performance in many cases. They are up
to Python 3.7, whereas the main Python release is at 3.10.1 at the time of writing. That makes PyPy
roughly 2-3 years behind CPython in terms of features, but I doubt this is a big issue. The differenc-
es between Python 3.7, 3.8, 3.9, and 3.10 are largely incremental and Python 3.7 is already a very
well-rounded Python version.

The numba package provides selective JIT compiling for you, allowing you to mark the functions that
are JIT compiler-compatible. Essentially, if your functions follow the functional programming para-
digm of basing the calculations only on the input, then it will most likely work with the JIT compiler.

Here is a basic example of how the numba JIT compiler can be used:

import numba

@numba.jit
def sum(array):
 total = 0.0
 for value in array:
 total += value
 return value

If you are using numpy or pandas, you will most likely benefit from looking at numba.

Another very interesting fact to note is that numba supports not only CPU-optimized execution, but
GPU as well. This means that for certain operations you can use the fast processor in your video card
to process the results.

Converting parts of your code to C
We will see more about this in Chapter 17, Extensions in C/C++, System Calls, and C/C++ Libraries, but if
high performance is really required, then a native C function can help quite a lot. This doesn’t even
have to be that difficult; the Cython module makes it trivial to write parts of your code with perfor-
mance very close to native C code.

The following is an example from the Cython manual to approximate the value of pi:

cdef inline double recip_square(int i):
 return 1./(i*i)

def approx_pi(int n=10000000):
 cdef double val = 0.

Performance – Tracking and Reducing Your Memory and CPU Usage416

 cdef int k
 for k in range(1,n+1):
 val += recip_square(k)
 return (6 * val)**.5

While there are some small differences, such as cdef instead of def and type definitions such as int
i instead of just i for the values and parameters, the code is largely the same as regular Python would
be, but certainly much faster.

Memory usage
So far, we have simply looked at the execution times and largely ignored the memory usage of the
scripts. In many cases, the execution times are the most important, but memory usage should not be
ignored. In almost all cases, CPU and memory are traded; an algorithm either uses a lot of CPU time
or a lot of memory, which means that both do matter a lot.

Within this section, we are going to look at:

•	 Analyzing memory usage
•	 When Python leaks memory and how to avoid these scenarios
•	 How to reduce memory usage

tracemalloc
Monitoring memory usage used to be something that was only possible through external Python
modules such as Dowser or Heapy. While those modules still work, they are partially obsolete now
because of the tracemalloc module. Let’s give the tracemalloc module a try to see how easy memory
usage monitoring is nowadays:

import tracemalloc

if __name__ == '__main__':
 tracemalloc.start()

 # Reserve some memory
 x = list(range(1000000))

 # Import some modules
 import os
 import sys
 import asyncio

 # Take a snapshot to calculate the memory usage
 snapshot = tracemalloc.take_snapshot()

Chapter 12 417

 for statistic in snapshot.statistics('lineno')[:10]:
 print(statistic)

This results in:

$ python3 T_11_tracemalloc.py
T_11_tracemalloc.py:8: size=34.3 MiB, count=999746, average=36 B
<frozen importlib._bootstrap_external>:587: size=1978 KiB, coun...
<frozen importlib._bootstrap>:228: size=607 KiB, count=5433, av...
abc.py:85: size=32.6 KiB, count=155, average=215 B
enum.py:172: size=26.2 KiB, count=134, average=200 B
collections/__init__.py:496: size=24.1 KiB, count=117, average=...
enum.py:225: size=23.3 KiB, count=451, average=53 B
enum.py:391: size=15.0 KiB, count=21, average=729 B
<frozen importlib._bootstrap_external>:64: size=14.3 KiB, count...
enum.py:220: size=12.2 KiB, count=223, average=56 B

You can easily see how every part of the code allocated memory and where it might be wasted. While
it might still be unclear which part was actually causing the memory usage, there are options for that
as well, as we will see in the following sections.

Memory Profiler
The memory_profiler module is very similar to line_profiler discussed earlier, but for memory usage
instead. Installing it is as easy as pip install memory_profiler, but the optional pip install psutil
is also highly recommended (and required in the case of Windows) as it increases your performance
by a large amount. To test memory_profiler, we will use the following script:

import memory_profiler

@memory_profiler.profile
def main():
 n = 100000
 a = [i for i in range(n)]
 b = [i for i in range(n)]
 c = list(range(n))
 d = list(range(n))
 e = dict.fromkeys(a, b)
 f = dict.fromkeys(c, d)

if __name__ == '__main__':
 main()

Performance – Tracking and Reducing Your Memory and CPU Usage418

Note that we actually import memory_profiler here although that is not strictly required. It can also
be executed through python3 -m memory_profiler your_scripts.py:

Filename: CH_12_performance/T_12_memory_profiler.py

Mem usage Increment Occurrences Line Contents
===
 14.7 MiB 14.7 MiB 1 @memory_profiler.profile
 def main():
 14.7 MiB 0.0 MiB 1 n = 100000
 18.5 MiB 3.8 MiB 100003 a = [i for i in range(n)]
 22.4 MiB 3.9 MiB 100003 b = [i for i in range(n)]
 26.3 MiB 3.9 MiB 1 c = list(range(n))
 30.2 MiB 3.9 MiB 1 d = list(range(n))
 39.9 MiB 9.8 MiB 1 e = dict.fromkeys(a, b)
 44.9 MiB 5.0 MiB 1 f = dict.fromkeys(c, d)
 44.9 MiB 0.0 MiB 1 assert e
 44.9 MiB 0.0 MiB 1 assert f

Even though everything runs as expected, you might be wondering about the varying amounts of
memory used by the lines of code here.

Why does e take 9.8 MiB and f 5.0 MiB? This is caused by the Python memory allocation code; it
reserves memory in larger blocks, which is subdivided and reused internally. Another problem is that
memory_profiler takes snapshots internally, which results in memory being attributed to the wrong
variables in some cases. The variations should be small enough not to make a large difference in the
end, but some changes are to be expected.

Memory leaks
The usage of these modules will generally be limited to the search for memory leaks. In particular,
the tracemalloc module has a few features to make that fairly easy. The Python memory manage-
ment system is fairly straightforward; it has a simple reference counter to see whether an object is
(still) used. While this works great in most cases, it can easily introduce memory leaks when circular
references are involved. The basic premise of a memory leak with leak detection code looks like this:

This module can be added as an IPython extension as well, which enables the %mprun
command within IPython. To load the extension, the load_ext command can be used
from the IPython shell: %load_ext memory_profiler. Another very useful command
is %memit, which is the memory equivalent of the %timeit command.

Chapter 12 419

 1 import tracemalloc
 2
 3
 4 class SomeClass:
 5 pass
 6
 7
 8 if __name__ == '__main__':
 9 # Initialize some variables to ignore them from the leak
 10 # detection
 11 n = 100000
 12
 13 tracemalloc.start()
 14 # Your application should initialize here
 15
 16 snapshot_a = tracemalloc.take_snapshot()
 17 instances = []
 18
 19 # This code should be the memory leaking part
 20 for i in range(n):
 21 a = SomeClass()
 22 b = SomeClass()
 23 # Circular reference. a references b, b references a
 24 a.b = b
 25 b.a = a
 26 # Force Python to keep the object in memory for now
 27 instances.append(a)
 28
 29 # Clear the list of items again. Now all memory should be
 30 # released, right?
 31 del instances
 32 snapshot_b = tracemalloc.take_snapshot()
 33
 34 statistics = snapshot_b.compare_to(snapshot_a, 'lineno')
 35 for statistic in statistics[:10]:
 36 print(statistic)

The line numbers in the code above are provided as a reference for the tracemalloc
output and are not functionally part of the code.

Performance – Tracking and Reducing Your Memory and CPU Usage420

The big problem in this code is that we have two objects that are referencing each other. As we can see,
a.b is referencing b, and b.a is referencing a. This loop makes it so that Python doesn’t immediately
understand that the objects can be safely deleted from memory.

Let’s see how badly this code is actually leaking:

$ python3 T_12_memory_leaks.py
T_12_memory_leaks.py:25: size=22.1 MiB (+22.1 MiB), count=199992 (+199992),
average=116 B
T_12_memory_leaks.py:24: size=22.1 MiB (+22.1 MiB), count=199992 (+199992),
average=116 B
T_12_memory_leaks.py:22: size=4688 KiB (+4688 KiB), count=100000 (+100000),
average=48 B
T_12_memory_leaks.py:21: size=4688 KiB (+4688 KiB), count=100000 (+100000),
average=48 B
tracemalloc.py:423: size=88 B (+88 B), count=2 (+2), average=44 B
tracemalloc.py:560: size=48 B (+48 B), count=1 (+1), average=48 B
tracemalloc.py:315: size=40 B (+40 B), count=1 (+1), average=40 B
T_12_memory_leaks.py:20: size=28 B (+28 B), count=1 (+1), average=28 B

This example shows a leak of 22.1 megabytes due to the nearly 200,000 instances of SomeClass. Python
correctly lets us know that this memory was allocated at lines 24 and 25, which can really help when
trying to ascertain what is causing the memory usage in your application.

The Python garbage collector (gc) is smart enough to clean circular references like these eventually,
but it won’t clean them until a certain limit is reached. More about that soon.

Circular references
Whenever you want to have a circular reference that does not cause memory leaks, the weakref module
is available. It creates references that don’t count toward the object reference count. Before we look
at the weakref module, let’s take a look at the object references themselves through the eyes of the
Python garbage collector (gc):

import gc

class SomeClass(object):
 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return f'<{self.__class__.__name__}: {self.name}'

Create the objects
a = SomeClass('a')
b = SomeClass('b')

Chapter 12 421

Add some circular references
a.b = a
b.a = b

Remove the objects
del a
del b

See if the objects are still there
print('Before manual collection:')
for object_ in gc.get_objects():
 if isinstance(object_, SomeClass):
 print('\t', object_, gc.get_referents(object_))

print('After manual collection:')
gc.collect()
for object_ in gc.get_objects():
 if isinstance(object_, SomeClass):
 print('\t', object_, gc.get_referents(object_))

print('Thresholds:', gc.get_threshold())

First, we create two instances of SomeClass and add some circular references between them. Once
that is done, we delete them from memory, except that they are not actually deleted until the garbage
collector runs.

To verify this, we inspect the objects in memory through gc.get_objects(), and until we tell the
garbage collector to manually collect, they stay in memory.

Once we do run gc.collect() to manually call the garbage collector, the objects are gone from memory:

$ python3 T_14_garbage_collection.py
Before manual collection:
 <SomeClass: a> [{'name': 'a', 'b': <SomeClass: a>}, <class '__main__.
SomeClass'>]
 <SomeClass: b> [{'name': 'b', 'a': <SomeClass: b>}, <class '__main__.
SomeClass'>]
After manual collection:
Thresholds: (700, 10, 10)

Now, you might wonder, are you always required to manually call gc.collect() to remove these
references? No, that is not needed, as the Python garbage collector will automatically collect once
thresholds have been reached.

Performance – Tracking and Reducing Your Memory and CPU Usage422

By default, the thresholds for the Python garbage collector are set to 700, 10, 10 for the three genera-
tions of collected objects. The collector keeps track of all the memory allocations and deallocations in
Python, and as soon as the number of allocations minus the number of deallocations reaches 700, the
object is either removed if it’s not referenced anymore, or it is moved to the next generation if it still
has a reference. The same is repeated for generations 2 and 3, albeit with the lower thresholds of 10.

This begs the question: where and when is it useful to manually call the garbage collector? Since the
Python memory allocator reuses blocks of memory and only rarely releases it, for long-running scripts
the garbage collector can be very useful. That’s exactly where I recommend its usage: long-running
scripts in memory-strapped environments and, specifically, right before you allocate a large amount
of memory. If you call the garbage collector before doing a memory-intensive operation, you can
maximize the amount of reuse of the memory that Python has previously reserved.

Analyzing memory usage using the garbage collector
The gc module can help you a lot when looking for memory leaks as well. The tracemalloc module
can show you the parts that take the most memory in bytes, but the gc module can help you find the
most commonly occurring object types (for example, SomeClass, int, and list). Just be careful when
setting the garbage collector debug settings such as gc.set_debug(gc.DEBUG_LEAK); this returns a
large amount of output even if you don’t reserve any memory yourself. Let’s see the output for one of
the most basic scripts you can get:

import gc
import collections
if __name__ == '__main__':
 objects = collections.Counter()
 for object_ in gc.get_objects():
 objects[type(object_)] += 1

 print(f'Different object count: {len(objects)}')
 for object_, count in objects.most_common(10):
 print(f'{count}: {object_}')

Now, when we run the code, you can see a bit of what has been added to our memory with such a
simple script:

$ python3 T_15_garbage_collection_viewing.py
Different object count: 42
1058: <class 'wrapper_descriptor'>
887: <class 'function'>
677: <class 'method_descriptor'>
652: <class 'builtin_function_or_method'>
545: <class 'dict'>
484: <class 'tuple'>
431: <class 'weakref'>

Chapter 12 423

251: <class 'member_descriptor'>
238: <class 'getset_descriptor'>
76: <class 'type'>

As you can see, there are actually 42 different types of objects that should have been shown here, but
even without that, the number of different objects in memory is impressive, if you ask me. With just a
little bit of extra code, the output can quickly explode and become unusable without significant filtering.

Weak references
An easy method to make the work easier for the garbage collector is to use weak references. These
are references to variables that are not included when counting the references to a variable. Since
the garbage collector removes an object from memory when its reference count gets to zero, this can
help a lot with memory leaks.

In the earlier example, we saw that the objects weren’t removed until we manually called gc.collect().
Now we will see what happens if we use the weakref module instead:

import gc
import weakref
class SomeClass(object):
 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return '<%s: %s>' % (self.__class__.__name__, self.name)

def print_mem(message):
 print(message)
 for object_ in gc.get_objects():
 if isinstance(object_, SomeClass):
 print('\t', object_, gc.get_referents(object_))

Create the objects
a = SomeClass('a')
b = SomeClass('b')

Add some weak circular references
a.b = weakref.ref(a)
b.a = weakref.ref(b)

print_mem('Objects in memory before del:')

Remove the objects

Performance – Tracking and Reducing Your Memory and CPU Usage424

del a
del b

See if the objects are still there
print_mem('Objects in memory after del:')

Now let’s see what remained this time:

$ python3 T_16_weak_references.py
Objects in memory before del:
 <SomeClass: a> [{'name': 'a', 'b': ...}, ...]
 <SomeClass: b> [{'name': 'b', 'a': ...}, ...]
Objects in memory after del:

Perfect – no instances of SomeClass exist in memory after del, which is exactly what we had hoped for.

Weakref limitations and pitfalls
You might be wondering what happens when you still try to reference a since-removed weakref. As
you would expect, the object is gone now, so you can no longer use it. What is more, not all objects
can be used through weak references directly:

>>> import weakref

>>> weakref.ref(dict(a=123))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot create weak reference to 'dict' object

>>> weakref.ref([1, 2, 3])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot create weak reference to 'list' object

>>> weakref.ref('test')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot create weak reference to 'str' object

>>> weakref.ref(b'test')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot create weak reference to 'bytes' object

>>> a = weakref.WeakValueDictionary(a=123)

Chapter 12 425

Traceback (most recent call last):
 ...
TypeError: cannot create weak reference to 'int' object

We can use weakref for custom classes though, so we can subclass the types before we create the
weakref:

>>> class CustomDict(dict):
... pass

>>> weakref.ref(CustomDict())
<weakref at 0x...; dead>

For dict and set instances, the weakref library also has the weakref.WeakKeyDictionary, weakref.
WeakValueDictionary, and weakref.WeakSet classes. These behave similarly to the regular instances
of dict and set, but remove the values based on the key or value.

We need to be careful when using a weakref, of course. As soon as all regular references are deleted,
the object will be inaccessible:

>>> class SomeClass:
... def __init__(self, name):
... self.name = name

>>> a = SomeClass('a')
>>> b = weakref.proxy(a)
>>> b.name
'a'
>>> del a
>>> b.name
Traceback (most recent call last):
 ...
ReferenceError: weakly-referenced object no longer exists

After deleting a, which is the only real reference to the SomeClass instance, we cannot use the instance
anymore. While this is to be expected, you should be wary of this problem if your main reference has
a chance to disappear.

Whenever you are working with large self-referencing data structures, it can be a good idea to use the
weakref module. However, don’t forget to check if your instance still exists before using it.

Reducing memory usage
In general, memory usage probably won’t be your biggest problem in Python, but it can still be useful
to know what you can do to reduce it. When trying to reduce memory usage, it’s important to under-
stand how Python allocates memory.

Performance – Tracking and Reducing Your Memory and CPU Usage426

There are four concepts that you need to know about within the Python memory manager:

•	 First, we have the heap. The heap is the collection of all Python-managed memory. Note that
this is separate from the regular heap and mixing the two could result in corrupt memory
and crashes.

•	 Second are the arenas. These are the chunks that Python requests from the system. These
chunks have a fixed size of 256 KiB each and they are the objects that make up the heap.

•	 Third we have the pools. These are the chunks of memory that make up the arenas. These
chunks are 4 KiB each. Since the pools and arenas have fixed sizes, they are simple arrays.

•	 Fourth and last, we have the blocks. The Python objects get stored within these and every
block has a specific format depending on the data type. Since an integer takes up more space
than a character, for efficiency, a different block size is used.

Now that we know how the memory is allocated, we can also understand how it can be returned to
the operating system and why this is often very hard to do.

Releasing a block back to the pool is easy enough: a simple del some_variable followed by a
gc.collect() should do the trick. The problem is that this is no guarantee that the memory will be
released back to the operating system yet.

To illustrate what needs to happen in order for the memory to release to the operating system:

•	 All blocks in a pool need to be released before the pool can be released
•	 All pools in an arena need to be released before the arena can be released
•	 Once the arena has been released to the heap, memory might be released to the operating

system, but that depends on the C runtime and/or operating system

That is why I would always recommend running gc.collect() in long-running scripts right before
you start allocating large blocks of memory.

Let’s illustrate the effects of allocating and releasing memory by allocating and releasing twice:

import os
import psutil

def print_usage(message):
 process = psutil.Process(os.getpid())
 usage = process.memory_info().rss / (1 << 20)
 print(f'Memory usage {message}: {usage:.1f} MiB')

def allocate_and_release():

It is a common and incorrect misconception that Python never releases any memory to
the system. Before Python 2.5, this was indeed the case because arenas were never freed
to the heap.

Chapter 12 427

 # Allocate large block of memory
 large_list = list(range(1000000))
 print_usage('after allocation')

 del large_list
 print_usage('after releasing')

print_usage('initial')
allocate_and_release()
allocate_and_release()

You might expect that the memory usage after the second block has been released will be near identi-
cal to after the first block has been released, or even back to the original state. Let’s see what actually
happens:

$ python3 T_18_freeing_memory.py
Memory usage initial: 9.4 MiB
Memory usage after allocation: 48.1 MiB
Memory usage after releasing: 17.3 MiB
Memory usage after allocation: 55.7 MiB
Memory usage after releasing: 25.0 MiB

That’s odd, isn’t it? The memory usage has grown between the two allocations. The truth is that I
cherry-picked the result somewhat and that the output changes between each run, because releasing
memory back to the operating system is not a guarantee that the operating system will immediately
handle it. In some other cases, the memory had properly returned to 17 MiB.

The astute among you might wonder if the results are skewed because I forgot the gc.collect(). In
this case, the answer is no because the memory allocation is large enough to immediately trigger the
garbage collector by itself and the difference is negligible.

This is roughly the best case, however – just a few contiguous blocks of memory. The real challenge is
when you have many variables so only parts of the pools/arenas are used. Python uses some heuristics
to find space in an empty arena so it doesn’t have to allocate new arenas when you are storing new
variables, but that does not always succeed, of course. This is a case where running gc.collect()
before allocation can help because it can tell Python which pools are now free.

It is important to note that the regular heap and Python heap are maintained separately,
as mixing them can result in corruption and/or the crashing of applications. Unless you
write your own Python extensions in C/C++, you will probably never have to worry about
manual memory allocation though.

Performance – Tracking and Reducing Your Memory and CPU Usage428

Generators versus lists
The most important tip is to use generators whenever possible. Python 3 has come a long way in re-
placing lists with generators already, but it really pays to keep that in mind as it saves not only memory,
but CPU as well, when not all of that memory needs to be kept at the same time.

To illustrate the difference:

Line # Mem usage Increment Line Contents
==
 4 11.0 MiB 0.0 MiB @memory_profiler.profile
 5 def main():
 6 11.0 MiB 0.0 MiB a = range(1000000)
 7 49.7 MiB 38.6 MiB b = list(range(1000000))

The range() generator takes such little memory that it doesn’t even register, whereas the list of num-
bers takes 38.6 MiB.

Recreating collections versus removing items
One very important detail about collections in Python is that many of them can only grow; they won’t
just shrink by themselves. To illustrate:

Mem usage Increment Line Contents
======================================
 11.5 MiB 0.0 MiB @memory_profiler.profile
 def main():
 # Generate a huge dict
 26.3 MiB 14.8 MiB a = dict.fromkeys(range(100000))

 # Remove all items
 26.3 MiB 0.0 MiB for k in list(a.keys()):
 26.3 MiB 0.0 MiB del a[k]

 # Recreate the dict
 23.6 MiB -2.8 MiB a = dict((k, v) for k, v in a.items())

Even after removing all items from the dict, the memory usage remains the same. This is one of the
most common memory usage mistakes made with lists and dictionaries. The only way to reclaim the
memory is by recreating the object. Or, never allocate the memory at all by using generators.

Using slots
In addition to the performance benefits of using __slots__ that we saw earlier in this chapter, __slots__
can also help to reduce memory usage. As a recap, __slots__ allows you to specify which fields you
want to store in a class and it skips all the others by not implementing instance.__dict__.

Chapter 12 429

While this method does save a little bit of memory in your class definitions, the effect is often limited.
For a nearly empty class with just a single/tiny attribute such as a bool or byte, this can make quite a
bit of difference. For classes that actually store a bit of data, the effect can diminish quickly.

The biggest caveat of __slots__ is that multiple inheritance is impossible if both parent classes have
__slots__ defined. Beyond that, it can be used in nearly all cases.

You might wonder if __slots__ will limit dynamic attribute assignments, effectively blocking you from
doing Spam.eggs = 123 if eggs was not part of __slots__. And you are right – partially, at least. With
a standard fixed list of attributes in __slots__, you cannot dynamically add new attributes – but you
can if you add __dict__ to __slots__.

I’m embarrassed to say that it took me about 15 years before I found out about this feature, but knowing
about this feature makes __slots__ so much more versatile that I really feel like I should mention it.

Let’s now illustrate the difference in memory usage:

import memory_profiler

class Slots(object):
 __slots__ = 'index', 'name', 'description'

 def __init__(self, index):
 self.index = index
 self.name = 'slot %d' % index
 self.description = 'some slot with index %d' % index

class NoSlots(object):
 def __init__(self, index):
 self.index = index
 self.name = 'slot %d' % index
 self.description = 'some slot with index %d' % index

@memory_profiler.profile
def main():
 slots = [Slots(i) for i in range(25000)]
 no_slots = [NoSlots(i) for i in range(25000)]
 return slots, no_slots

if __name__ == '__main__':
 main()

Performance – Tracking and Reducing Your Memory and CPU Usage430

And the memory usage:

Mem usage Increment Occurrences Line Contents
==
38.4 MiB 38.4 MiB 1 @memory_profiler.profile
 def main():
44.3 MiB 5.9 MiB 25003 slots = [Slots(i) for i in range(25000)]
52.4 MiB 8.1 MiB 25003 no_slots = [NoSlots(i) for i in range(25000)]
52.4 MiB 0.0 MiB 1 return slots, no_slots

You might argue that this is not a fair comparison since they both store a lot of data, which skews
the results. And you would indeed be right because the “bare” comparison, storing only index and
nothing else, gives 2 MiB versus 4.5 MiB. But, let’s be honest, if you’re not going to store data, then
what’s the point in creating class instances? I’m not saying that __slots__ have no purpose, but don’t
go overboard because the advantages are generally limited.

There is one more structure that’s even more memory-efficient: the array module. It stores the data
in pretty much the same way a bare memory array in C would do. Note that this is generally slower
than lists and much less convenient to use. If you need to store large amounts of numbers, I would
suggest looking at numpy.array or scipy.sparse instead.

Performance monitoring
So far, we have seen how to measure and improve both CPU and memory performance, but there
is one part we have completely skipped over. Performance changes due to external factors such as
growing amounts of data are very hard to predict. In real-life applications, bottlenecks aren’t constant.
They change all the time and code that was once extremely fast might bog down as soon as more load
is applied.

Because of that, I recommend implementing a monitoring solution that tracks the performance of
anything and everything over time. The big problem with performance monitoring is that you can’t
know what will slow down in the future and what the cause is going to be. I’ve even had websites slow
down because of Memcached and Redis calls. These are memory-only caching servers that respond
well within a millisecond, which makes slowdowns highly unlikely, until you do over 100 cache calls
and the latency toward the cache server increases from 0.1 milliseconds to 2 milliseconds, and all of a
sudden those 100 calls take 200 milliseconds instead of 10 milliseconds. Even though 200 milliseconds
still sounds like very little, if your total page load time is generally below 100 milliseconds, that is, all
of a sudden, an enormous increase and definitely noticeable.

To monitor performance and to be able to track changes over time and find the responsible compo-
nents, I can personally recommend several systems for monitoring performance:

•	 For simple short-term (up to a few weeks) application performance tracking, the Prometheus
monitoring system is very easy to set up and when paired with Grafana, you can create the
prettiest charts to monitor your performance.

Chapter 12 431

•	 If you want a more long-term performance tracking solution that scales well to large numbers
of variables, you might be interested in InfluxDB instead. It can also be paired with Grafana
for really useful interactive charting:

Figure 12.2: Grafana heatmap of response times

Figure 12.3: Grafana chart of request latency

To enter data into systems like these, you have several options. You can use the native APIs, but you
can also use an intermediate system such as StatsD. The StatsD system doesn’t store data itself, but it
makes it really easy to fire and forget performance metrics from your system without having to worry
whether the monitoring system is still up and running. Because the system commonly uses UDP to
send the information, even if the monitoring server is completely down and unreachable, your ap-
plication won’t notice the difference.

To be able to use these, you will have to send the metrics from your application to the StatsD server.
To do just that, I have written the Python-StatsD (https://pypi.org/project/python-statsd/) and
Django-StatsD (https://pypi.org/project/django-statsd/) packages. These packages allow you to
monitor your application from beginning to end and, in the case of Django, you will be able to monitor
your performance per application or view, and within those see all of the components, such as the
database, template, and caching layers. This way, you know exactly what is causing the slowdowns in
your website (or application). And best of all, it is in (near) real time.

Exercises
Now that you have learned about many of the available tools for performance measuring and optimi-
zation, try and create a few useful decorators or context wrappers that will help you prevent issues:

•	 Try to create a decorator that monitors each run of a function and warns you if the memory
usage grows each run.

https://pypi.org/project/python-statsd/
https://pypi.org/project/django-statsd/

Performance – Tracking and Reducing Your Memory and CPU Usage432

•	 Try to create a decorator that monitors the runtime of a function and warns you if it deviates
too much from the previous run. Optionally, you could make the function generate a (running)
average runtime as well.

•	 Try to create a memory manager for your classes that warns you when more than a configured
number of instances remain in memory. If you never expect more than 5 instances of a certain
class, you can warn the user when that number is exceeded.

•	

Summary
When it comes to performance, there is no holy grail, no single thing you can do to ensure peak
performance in all cases. This shouldn’t worry you, however, as in most cases, you will never need to
tune the performance and, if you do, a single tweak could probably fix your problem. You should be
able to find performance problems and memory leaks in your code now, which is what matters most,
so just try to contain yourself and only tweak when it’s actually needed.

Here is a quick recap of the tools in this chapter:

•	 Measuring CPU performance: timeit, profile/cProfile, and line_profiler
•	 Analyzing profiling results: SnakeViz, pyprof2calltree, and QCacheGrind
•	 Measuring memory usage: tracemalloc, memory_profiler
•	 Reducing memory usage and leaks: weakref and gc (garbage collector)

If you know how to use these tools, you should be able to track down and fix most performance issues
in your code.

The most important takeaways from this chapter are:

•	 Test before you invest any effort. Making some functions faster seems like a great achievement,
but it is only rarely needed.

•	 Choosing the correct data structure/algorithm is much more effective than any other perfor-
mance optimization.

•	 Circular references drain the memory until the garbage collector starts cleaning.
•	 Slots come with several caveats, so I would recommend limited usage.

The next chapter will properly introduce us to working asynchronously using the asyncio module.
This module makes it possible to “background” the waiting for external I/O. Instead of keeping your
foreground thread busy, it can switch to a different thread when your code is waiting for endpoints
such as TCP, UDP, files, and processes.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

Chapter 12 433

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

13
asyncio – Multithreading
without Threads

The previous chapter showed us how to track our application performance. In this chapter, we will use
asynchronous programming to switch between functions whenever we have to wait for input/output
(I/O) operations. This effectively fakes the effects of multiple threads or processes without introducing
the overhead that comes with those solutions. In the next chapter, we will also cover multiple threads
and processes for the cases where I/O is not your bottleneck or where asyncio is not an option.

Whenever you are dealing with external resources such as reading/writing files, interacting with APIs
or databases, and other I/O operations, you can achieve great benefits from using asyncio. Where
normally a single stalling remote connection can make your entire process hang, with asyncio, it
will simply switch to a different part of your code.

This chapter will explain how asynchronous functions can be used in Python and how code can be
restructured in such a way that it still functions, even though it doesn’t follow the standard procedural
coding pattern of returning the values. The potential downside is that, similar to working with multiple
threads and multiple processes, the possibility exists of your code executing in an unexpected order.

The following topics are covered:

•	 Introduction to asyncio
•	 asyncio basic concepts, including coroutines, event loops, futures, and tasks
•	 Functions using async def, async for, async with, and await
•	 Parallel execution
•	 Examples of implementation with asyncio, including clients and servers
•	 Debugging asyncio

asyncio – Multithreading without Threads436

Introduction to asyncio
The asyncio library was created to make using asynchronous processing much easier and more
predictable. It was meant as a replacement for the asyncore module, which has been available for a
very long time (since Python 1.5 even) but was not all that usable. The asyncio library was officially
introduced for Python 3.4 and has seen many improvements with each newer Python release since.

In a nutshell, the asyncio library allows you to switch to the execution of a different function whenever
you need to wait for I/O operations. So instead of Python waiting for your operating system to finish
reading a file for you, blocking the entire application in the process, it can do something useful in a
different function in the meantime.

Backward compatibility and async/await statements
Before we continue with any examples, it is important to know how asyncio has changed within Py-
thon versions. Even though the asyncio library was only introduced in Python 3.4, a large portion of
the generic syntax has been replaced in Python 3.5. Using the old Python 3.4 syntax is still possible,
but an easier and therefore recommended syntax using await has been introduced.

This chapter will assume Python 3.7 or newer in all examples unless specified differently. If you are
still running an older version, however, please look at the following sections, which illustrate how to
run asyncio on older systems. If you have Python 3.7+, feel free to skip to the section titled A basic
example of parallel execution.

Python 3.4
For the traditional Python 3.4 usage, a few things need to be considered:

•	 Functions should be declared using the asyncio.coroutine decorator
•	 Asynchronous results should be fetched using yield from coroutine()
•	 Asynchronous loops are not directly supported, but can be emulated using a while True:

yield from coroutine()

Example:

import asyncio

@asyncio.coroutine
def main():
 print('Hello from main')
 yield from asyncio.sleep(1)

loop = asyncio.new_event_loop()
loop.run_until_complete(main())
loop.close()

Chapter 13 437

Python 3.5
The Python 3.5 syntax is much more obvious than the Python 3.4 version. While the yield from is
understandable given the origins of coroutines in earlier Python versions, it is actually the wrong
name for the job. Let yield be used for generators and await be used in coroutines.

•	 Functions should be declared using async def instead of def
•	 Asynchronous results should be fetched using await coroutine()
•	 Asynchronous loops can be created using async for ... in ...

Example:

import asyncio

async def main():
 print('Hello from main')
 await asyncio.sleep(1)

loop = asyncio.new_event_loop()
loop.run_until_complete(main())
loop.close()

Python 3.7
Since Python 3.7 it has become slightly easier and more obvious to run asyncio code. If you have the
luxury of a newer Python version, you can use the following to run your async function:

import asyncio

async def main():
 print('Hello from main')
 await asyncio.sleep(1)

asyncio.run(main())

With older Python versions, we need a fairly advanced bit of code to properly replace asyncio.run(),
but if you are not concerned with potentially reusing existing event loops (detailed information about
event loops can be found later in the chapter) and take care of shutting down your tasks yourself, you
can get away with the following:

import asyncio

async def main():
 print('Hello from main')
 await asyncio.sleep(1)

asyncio – Multithreading without Threads438

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
 loop.run_until_complete(main())
finally:
 # Run the loop again to finish pending tasks
 loop.run_until_complete(asyncio.sleep(0))

 asyncio.set_event_loop(None)
 loop.close()

Or a shorter version that is certainly not equivalent but will handle many of your test cases:

import asyncio

async def main():
 print('Hello from main')
 await asyncio.sleep(1)

loop = asyncio.get_event_loop()
loop.run_until_complete(main())

If at all possible, I would certainly recommend using asyncio.run(), of course. Even without asyncio.
run(), you are likely to run into library compatibility issues with older versions of Python.

If you have to, however, you can find the source for asyncio.run() in the Python Git so you can
implement a simplified version yourself: https://github.com/python/cpython/blob/main/Lib/
asyncio/runners.py.

A basic example of parallel execution
When it comes to code performance, you will usually encounter one of the two following bottlenecks:

•	 Waiting for external I/O such as web servers, the filesystem, a database server, anything net-
work-related, and others

•	 The CPU, in the case of heavy calculations

If your CPU is the bottleneck due to heavy calculations, you will need to resort to using faster algo-
rithms, faster or more processors, or offloading the calculations to dedicated hardware such as video
cards. In these cases, the asyncio library won’t help you much.

If your code is mostly waiting for the user, the kernel, the filesystem, or external servers, asyncio
can help you a lot while being a fairly easy solution with few side effects. As we will see in the asyncio
concepts section, there are some caveats, however. Making existing code asyncio-compatible can be
a lot of work.

https://github.com/python/cpython/blob/main/Lib/asyncio/runners.py
https://github.com/python/cpython/blob/main/Lib/asyncio/runners.py

Chapter 13 439

Let’s start with a very simple example to show the difference between regular and asyncio code when
having to wait.

First, the regular Python version that executes a 1-second sleep two times:

>>> import time
>>> import asyncio

>>> def normal_sleep():
... print('before sleep')
... time.sleep(1)
... print('after sleep')

>>> def normal_sleeps(n):
... for _ in range(n):
... normal_sleep()

Normal execution
>>> start = time.time()
>>> normal_sleeps(2)
before sleep
after sleep
before sleep
after sleep
>>> print(f'duration: {time.time() - start:.0f}')
duration: 2

And now the asyncio version that executes a 1-second sleep two times:

>>> async def asyncio_sleep():
... print('before sleep')
... await asyncio.sleep(1)
... print('after sleep')

>>> async def asyncio_sleeps(n):
... coroutines = []
... for _ in range(n):
... coroutines.append(asyncio_sleep())
...
... await asyncio.gather(*coroutines)

>>> start = time.time()
>>> asyncio.run(asyncio_sleeps(2))

asyncio – Multithreading without Threads440

before sleep
before sleep
after sleep
after sleep
>>> print(f'duration: {time.time() - start:.0f}')
duration: 1

As you can see, it still had to wait 1 second for the actual sleep, but it could run them in parallel. The
asyncio_sleep() functions started simultaneously, as can be seen by the before sleep output.

Let’s analyze the components used in this example:

•	 async def: This tells the Python interpreter that our function is a coroutine function instead
of a regular function.

•	 asyncio.sleep(): Asynchronous version of time.sleep(). The big difference between these
two is that time.sleep() will keep the Python process busy while it’s sleeping, while asyncio.
sleep() will allow switching to a different task within the event loop. This process is very
similar to the workings of task switching in most operating systems.

•	 asyncio.run(): A wrapper that executes a coroutine in the default event loop. This is effectively
the asyncio task switcher; more about this in the next section.

•	 asyncio.gather(): Wraps a sequence of awaitable objects and gathers the results for you. The
wait time is configurable, as is the manner of waiting. You can choose to wait until the first
result, until all results are available, or until the first exception occurs.

This immediately demonstrates a few of the caveats and pitfalls of asyncio code as well.

If we had accidentally used time.sleep() instead of asyncio.sleep(), the code would have taken 2
seconds to run instead and blocked the entire loop while doing so. More about this in the next section.

If we had used await asyncio.sleep() instead of using await asyncio.gather() at the end, the
code would have run sequentially, and not in parallel, as you are probably looking for.

Now that we have seen a basic example of asyncio, we need to learn more about the internals so the
limitations become more apparent.

asyncio concepts
The asyncio library has several basic concepts that have to be explained before venturing further into
examples and uses. The example shown in the previous section actually uses several of them, but a
little explanation about the how and why might still be useful.

The main concepts of asyncio are coroutines and event loops. Within those there are several helper
classes available such as Streams, Futures, and Processes. The next few paragraphs will explain the
basics of them so we can understand the implementations as examples in the later sections.

Chapter 13 441

Coroutines, Futures, and Tasks
The coroutine, asyncio.Future, and asyncio.Task objects are essentially promises of a result; they
return the results if they are available and can be used to cancel the execution of the promise if they
have not finished processing yet. It should be noted that the creation of these objects will not guarantee
that the code will be executed. The actual execution starts happening when you either await the re-
sults or tell an event loop to execute the promise. This is covered in the next section about event loops.

The most basic object you will encounter when using asyncio is the coroutine. The result of any
regular async def (such as asyncio.sleep()) is a coroutine object. Once you await that coroutine,
it will be executed and you will get the results.

The asyncio.Future and asyncio.Task classes can also be executed through await, but also allow
you to register callback functions that receive the results (or exceptions) as soon as they are available.
Additionally, they maintain a state variable internally, which allows an outside party to cancel the
future and stop (or prevent) its execution. The API is very similar to the concurrent.futures.Future
class, but they are not fully compatible, so make sure you do not confuse the two.

To clarify a bit further, all of these are awaitable but have different levels of abstraction:

•	 coroutine: The result of a called async def that has not yet been awaited. You will mostly
use these.

•	 asyncio.Future: A class that represents an eventual result. It does not need to wrap a coroutine
and the result can be set manually.

•	 asyncio.Task: An implementation of asyncio.Future that is meant to wrap a coroutine to
have a convenient and consistent interface.

Usually the creation of these classes is not something you need to worry about directly; instead of
creating the class yourself, the recommended way is through either asyncio.create_task() or loop.
create_task(). The former actually executes loop.create_task() internally, but it’s more convenient
if you simply want to execute it on the running event loop through asyncio.get_running_loop()
without having to specify it. If you need to extend the Task class for some reason, that is easily possible
through the loop.set_task_factory() method.

Before Python 3.7, asyncio.create_task() was called asyncio.ensure_future().

Event loops
The event loop concept is actually the most important one within asyncio. You might suspect that
the coroutines themselves are what everything is about, but without the event loop they are useless.
Event loops function as task switchers, similar to how operating systems switch between active tasks
on the CPU. Even with multicore processors, there still needs to be a main process to tell the CPU
which tasks to run and which need to wait or sleep for a bit. That is exactly what the event loop does:
it decides which task to run.

Effectively, every time you do await, the event loop will look at the pending awaitables and will contin-
ue the execution of one that is currently pending. This is also where the danger of a single event loop
comes in. If, for some reason, you have a slow/blocking function in your coroutine, such as accidentally
using time.sleep() instead of asyncio.sleep(), it will block the entire event loop until it finishes.

asyncio – Multithreading without Threads442

In practice, this means that await asyncio.sleep(5) only guarantees that your code will wait at
least 5 seconds. If, during that await, some other coroutine blocked the event loop for 10 seconds, the
asyncio.sleep(5) would take at least 10 seconds.

Event loop implementations
So far we have only seen asyncio.run(), which uses asyncio.get_event_loop() internally to return
the default event loop with the default event loop policy. Currently, there are two bundled event loop
implementations:

•	 The asyncio.SelectorEventLoop implementation, which is used by default on Unix and Linux
systems

•	 The asyncio.ProactorEventLoop implementation, which is only supported (and the default)
on Windows

Internally, the asyncio.ProactorEventLoop implementation uses I/O completion ports, a sys-
tem that is supposedly faster and more efficient than the select implementation of the asyncio.
SelectorEventLoop on Windows systems.

The asyncio.SelectorEventLoop is based on selectors, which, since Python 3.4, are available through
the select module in the core Python module. There are several selectors available: the traditional
selectors.SelectSelector, which uses select.select internally, but also more modern solutions
such as selectors.KqueueSelector, selectors.EpollSelector, and selectors.DevpollSelector.
Even though asyncio.SelectorEventLoop will select the most efficient selector by default, there are
cases where the most efficient one is not suitable in some way or another.

In those cases, the selector event loop allows you to specify a different selector:

>>> import asyncio
>>> import selectors

The most efficient selector is chosen by process of elimination. If the select module has
a kqueue attribute, the KqueueSelector will be used. If kqueue is not available, the next
best option will be chosen in the following order:

1.	 KqueueSelector: kqueue is an event notification interface for BSD systems. It is
currently supported on FreeBSD, NetBSD, OpenBSD, DragonFly BSD, and macOS
(OS X).

2.	 EpollSelector: epoll is the Linux kernel version of kqueue.
3.	 DevpollSelector: This selector uses /dev/poll, a system that is similar to

kqueue and epoll but is supported on Solaris systems.
4.	 PollSelector: poll() is a system call that will call your function when an update

is available. The actual implementation depends on the system.
5.	 SelectSelector: Very similar to poll(), but select() builds a bitmap for all

file descriptors and walks through that list for every update, which is quite a bit
less efficient than poll().

Chapter 13 443

>>> selector = selectors.SelectSelector()
>>> loop = asyncio.SelectorEventLoop(selector)
>>> asyncio.set_event_loop(loop)

It should be noted that the differences between these are generally too small to notice in most real-world
applications. This is why I would recommend ignoring optimizations like these wherever possible,
as they will most likely have very little effect and might actually cause problems if used incorrectly.
The only situation I have come across where these would actually matter is when building a server
that has to handle a lot of simultaneous connections. By “a lot,” I refer to over 100,000 concurrent
connections on a single server, which is a problem only a few people on this planet have to deal with.

If performance is important to you (and you are running Linux/OS X) I would recommend looking at
uvloop, a really fast event loop that is built on libuv, an asynchronous I/O library written in C that’s
supported on most platforms. According to the uvloop benchmarks, it can make your event loop 2-4
times faster.

Event loop policies
The event loop policies are merely the constructs that store and create event loops for you and have
been written with maximum flexibility in mind. The only reason I can think of for modifying the event
loop policy is if you want to make specific event loops run on specific processors and/or systems, such
as enabling uvloop only if you are running Linux or OS X. Beyond that, it offers more flexibility than
most people will ever need. To make uvloop the default loop if installed, you could do the following:

import asyncio

class UvLoopPolicy(asyncio.DefaultEventLoopPolicy):
 def new_event_loop(self):
 try:
 from uvloop import Loop
 return Loop()
 except ImportError:
 return super().new_event_loop()

asyncio.set_event_loop_policy(UvLoopPolicy())

Beyond overriding the new_event_loop() to customize the creation of new event loops, you can also
override how the re-use of event loops works by overriding the get_event_loop() and set_event_
loop() methods. I have personally never had any use for it beyond enabling uvloop, however.

Event loop usage
Now that we know what event loops are, what they do, and how an event loop is selected, let’s look at
how they can be applied beyond asyncio.run().

asyncio – Multithreading without Threads444

If you get into running your own event loops you will likely use loop.run_forever(), which, as you
might expect, keeps running forever. Or at least until loop.stop() has been run. But you can also
run a single task using loop.run_until_complete(). The latter is very useful for one-off operations,
but can cause bugs in some scenarios. If you create a task from a very small/quick coroutine, odds
are that the task will not have any time to run so it won’t be executed until the next time you execute
loop.run_until_complete() or loop.run_forever(). More about that later in this chapter, however;
for now, we will assume a long-running loop using loop.run_forever().

Because we have an event loop running forever now, we need to add tasks to it – this is where things
get interesting. There are quite a few choices available within the default event loops:

•	 call_soon(): Add an item to the end of the (FIFO) queue so the functions will be executed in
the order they were inserted.

•	 call_soon_threadsafe(): The same as call_soon() except for being thread-safe. The call_
soon() method isn’t thread-safe because thread safety requires the usage of the global inter-
preter lock (GIL), which effectively makes your program single-threaded at the moment of
thread safety. Chapter 14, Multiprocessing – When a Single CPU Core is Not Enough, explains both
the GIL and thread safety in detail.

•	 call_later(): Call the function after the given number of seconds; if two jobs would run at
the same time, they will run in an undefined order. If the undefined order is an issue, you can
also opt to use asyncio.gather() or increase the delay parameter for one of the two tasks
slightly. Note that the delay is a minimum – if the event loop is locked/busy, it could run later.

•	 call_at(): Call a function at a specific time related to the output of loop.time(), which is the
number of seconds since the loop started. So, if the current value of loop.time() is 90 (which
means the loop started running 90 seconds ago), then you could run loop.call_at(95, ...)
to run after 5 seconds.

All of these functions return asyncio.Handle objects. These objects allow the cancelation of the task if
it hasn’t been executed yet through the handle.cancel() function. Be careful with canceling from other
threads, however, as cancelation is not thread-safe either. To execute it in a thread-safe way, we have
to execute the cancelation function as a task as well: loop.call_soon_threadsafe(handle.cancel).

Example usage:

>>> import time
>>> import asyncio

>>> def printer(name):
... print(f'Started {name} at {loop.time() - offset:.1f}')
... time.sleep(0.2)
... print(f'Finished {name} at {loop.time() - offset:.1f}')

>>> loop = asyncio.new_event_loop()
>>> _ = loop.call_at(loop.time() + .2, printer, 'call_at')
>>> _ = loop.call_later(.1, printer, 'call_later')

Chapter 13 445

>>> _ = loop.call_soon(printer, 'call_soon')
>>> _ = loop.call_soon_threadsafe(printer, 'call_soon_threadsafe')

>>> # Make sure we stop after a second
>>> _ = loop.call_later(1, loop.stop)

Store the offset because the loop requires time to start
>>> offset = loop.time()

>>> loop.run_forever()
Started call_soon at 0.0
Finished call_soon at 0.2
Started call_soon_threadsafe at 0.2
Finished call_soon_threadsafe at 0.4
Started call_later at 0.4
Finished call_later at 0.6
Started call_at at 0.6
Finished call_at at 0.8

You might be wondering why we are using time.sleep() instead of asyncio.sleep() here. That is an
intentional choice to show how none of these functions offer any guarantee of when the function is
executed if the loop is somehow blocked. Even though we specified a 0.1 second delay for the loop.
call_later() call, it took 0.4 seconds to actually start. If we had used asyncio.sleep() instead, the
functions would have run in parallel.

The call_soon(), call_soon_threadsafe(), and call_later() functions are all just wrappers for
call_at(). In the case of call_soon(), it just wraps call_later() with a delay of 0, and call_at()
is simply a call_soon() with asyncio.time() added to the delay.

Depending on the type of event loop, there are actually many other methods for creating connections,
file handlers, and more, similar to asyncio.create_task(). Those will be explained with examples
in the later sections, since they have less to do with the event loop and are more about programming
with coroutines.

Executors
Since even a simple time.sleep() can completely block your event loop, you might be wondering
what the practical use for asyncio is. It would mean you have to rewrite your entire code base to be
asyncio-compatible, right? Ideally that would be the best solution, but we can work around this lim-
itation by executing sync code from asyncio code using executors. An Executor creates the other type
of Future (concurrent.futures.Future as opposed to asyncio.Future) we talked about earlier, and
runs your code in a separate thread or process to provide an asyncio interface to synchronous code.

Here is a basic example of the synchronous time.sleep() executed through an executor to make it
asynchronous:

asyncio – Multithreading without Threads446

>>> import time
>>> import asyncio

>>> def executor_sleep():
... print('before sleep')
... time.sleep(1)
... print('after sleep')

>>> async def executor_sleeps(n):
... loop = asyncio.get_running_loop()
... futures = []
... for _ in range(n):
... future = loop.run_in_executor(None, executor_sleep)
... futures.append(future)
...
... await asyncio.gather(*futures)

>>> start = time.time()
>>> asyncio.run(executor_sleeps(2))
before sleep
before sleep
after sleep
after sleep
>>> print(f'duration: {time.time() - start:.0f}')
duration: 1

So, instead of running executor_sleep() directly, we are creating a future through loop.run_in_
executor(). This makes asyncio execute this function through the default executor, which is normally
a concurrent.futures.ThreadPoolExecutor, and return the results when it’s done. You do need to
be aware of thread safety because it is handled in a separate thread, but more about that topic in the
next chapter.

For operations that are blocking but not CPU-bound (in other words, no heavy calculations), the de-
fault threading-based executor will work great. For CPU-bound operations it will not help you, since
the operations will still be limited to a single CPU core. For those scenarios, we can use concurrent.
futures.ProcessPoolExecutor():

import time
import asyncio
import concurrent.futures

def executor_sleep():
 print('before sleep')

Chapter 13 447

 time.sleep(1)
 print('after sleep')

async def executor_sleeps(n):
 loop = asyncio.get_running_loop()
 futures = []
 with concurrent.futures.ProcessPoolExecutor() as pool:
 for _ in range(n):
 future = loop.run_in_executor(pool, executor_sleep)
 futures.append(future)

 await asyncio.gather(*futures)

if __name__ == '__main__':
 start = time.time()
 asyncio.run(executor_sleeps(2))
 print(f'duration: {time.time() - start:.0f}')

While this example looks nearly identical to the previous example, the internal mechanism is quite dif-
ferent and the use of multiple Python processes instead of multiple threads comes with several caveats:

•	 Memory cannot easily be shared between processes. This means that anything you want to
pass as an argument and anything that you need to return has to be supported by the pickle
process so Python can send the data, through the network, to the other Python process. This
is explained in detail in Chapter 14.

•	 The main script has to be run from an if __name__ == '__main__' block, otherwise the
executor would end up in an infinite loop spawning itself.

•	 Most resources cannot be shared between processes. This is similar to not being able to share
memory, but it goes beyond that. If you have a database connection in your main process,
that connection cannot be used from the process so it will need to have its own connections.

•	 Killing/exiting the process can be more difficult since killing the main process is not always a
guarantee of killing the child processes.

•	 Depending on your operating system, every new process will use its own memory, resulting
in greatly increased memory usage.

•	 Creating a new process is generally a far heavier operation than creating a new thread, so you
have a lot more overhead.

•	 Synchronization between processes is much slower than with threads.

All of these reasons definitely shouldn’t prevent you from using ProcessPoolExecutor, but you should
always ask yourself if you actually need it. It can be an amazing solution if you need to run many
heavy calculations in parallel. If at all possible, I would recommend using functional programming
with ProcessPoolExecutor. Chapter 14, Multiprocessing – When a Single CPU Core Is Not Enough, covers
multiprocessing in much more detail.

asyncio – Multithreading without Threads448

Now that we have a basic grasp of asyncio, it is time to continue with some examples of where asyncio
can be useful.

Asynchronous examples
One of the most common reasons for stalling scripts and applications is the usage of remote resources,
where remote means any interaction with the network, filesystem, or other resources. With asyncio,
at least a large portion of that is easily fixable. Fetching multiple remote resources and serving to
multiple clients is quite a bit easier and more lightweight than it used to be. While both multithreading
and multiprocessing can be used for these cases as well, asyncio is a much lighter alternative that is
actually easier to manage in many cases.

The next few sections show a few examples of how to implement certain operations using asyncio.

Before you start implementing your own code and copying the examples here, I would recommend
doing a quick search on the web for whichever library you are looking for and seeing if there is an
asyncio version available.

In general, looking for “asyncio <protocol>” will give you great results. Alternatively, many libraries
use the aio prefix for the library name, such as aiohttp, so that can help your search as well.

Processes
So far, we have simply executed simple async functions within Python such as asyncio.sleep(), but
some things are a tad more difficult to run asynchronously. For example, let’s assume we have some
long-running external application that we wish to run without blocking our main thread completely.

The options for running external processes in a non-blocking mode are generally:

•	 Threading
•	 Multiprocessing
•	 Polling (periodically checking) for output

Both threading and multiprocessing are covered in Chapter 14.

Without resorting to more complex solutions such as threading and multiprocessing, which introduce
variable synchronization issues, we only have polling remaining. With polling, we check if there is
new output at an interval, which can slow down your results by as much as the poll interval. That is,
if your poll interval is 1 second and the process generates output 0.1 seconds after the last poll, the
next 0.9 seconds are wasted waiting. To alleviate this, you could reduce the poll interval, of course,
but with a lower poll interval more time is wasted checking to see if there are results.

With asyncio, we can have the advantages of the polling method without the time wasted between
the poll intervals. Using asyncio.create_subprocess_shell and asyncio.create_subprocess_exec,
we can await output just like other coroutines. The usage of the class is very similar to subprocess.
run except that the functions have been made asynchronous, resulting in the removal of the poll
function, of course.

Chapter 13 449

First, let’s look at the traditional sequential version of a script that runs external processes (in this
case the sleep command) through the subprocess module:

>>> import time
>>> import subprocess

>>> def subprocess_sleep():
... print(f'Started sleep at: {time.time() - start:.1f}')
... process = subprocess.Popen(['sleep', '0.1'])
... process.wait()
... print(f'Finished sleep at: {time.time() - start:.1f}')

>>> start = time.time()

After the first print(), we use subprocess.Popen() to run the sleep command with argument 0.1
so it will sleep for 0.1 seconds. As opposed to subprocess.run(), which blocks your Python process
and waits until the external process has finished running, subprocess.Popen() creates and starts the
process and returns a reference to the running process, but it won’t automatically wait for the output.

 The examples below expect the sleep command to be available in your environment. On
all Unix/Linux/BSD systems, this is the case by default. On Windows, it is not available by
default, but can be installed easily. The timeout command can be used as an alternative.

If you do wish to use sleep and other Unix tools, the easiest method I have found is to
install Git for Windows and let it install the optional Unix tools:

Figure 13.1: Git for Windows installer

asyncio – Multithreading without Threads450

This allows us to explicitly call process.wait() to wait or poll for the results, as we will see in the
next example. Internally, subprocess.run() is actually a convenient shortcut for a common use case
of subprocess.Popen().

When running the code, we get the following output, as you would expect:

>>> for _ in range(2):
... subprocess_sleep()
Started sleep at: 0.0
Finished sleep at: 0.1
Started sleep at: 0.1
Finished sleep at: 0.2

Since everything is executed sequentially, it takes two times the 0.1 seconds that the sleep command
is sleeping for. This is, of course, the worst-case scenario: it completely blocks your Python process
while it is running.

Instead of waiting for the sleep command immediately after running, we are now going to start all
processes in parallel and only wait for the results once they have all started in the background:

>>> import time
>>> import subprocess

>>> def subprocess_sleep():
... print(f'Started sleep at: {time.time() - start:.1f}')
... return subprocess.Popen(['sleep', '0.1'])

>>> start = time.time()

As you can see, we are returning the process by returning subprocess.Popen() without executing
process.wait().

Now we start all processes immediately and only wait for output after they have all started:

>>> processes = []
>>> for _ in range(2):
... processes.append(subprocess_sleep())
Started sleep at: 0.0
Started sleep at: 0.0

The processes should be running in the background now, so let’s wait for the results:

>>> for process in processes:
... returncode = process.wait()
... print(f'Finished sleep at: {time.time() - start:.1f}')
Finished sleep at: 0.1
Finished sleep at: 0.1

Chapter 13 451

While that looks a lot better in terms of runtime, it still blocks the main process when we run process.
wait(). It also required restructuring in such a way that the teardown (the Finished print statement)
is not in the same block as the start process, as was the case with the earlier example. This means
that if something were to go wrong with your application, you would manually need to keep track of
which process was failing, which is a bit inconvenient.

With the asyncio version, we can once again go back to processing everything related to the sleep
command in a single function, very similar to the first example with subprocess.Popen():

>>> import time
>>> import asyncio

>>> async def async_process_sleep():
... print(f'Started sleep at: {time.time() - start:.1f}')
... process = await asyncio.create_subprocess_exec('sleep', '0.1')
... await process.wait()
... print(f'Finished sleep at: {time.time() - start:.1f}')

>>> async def main():
... coroutines = []
... for _ in range(2):
... coroutines.append(async_process_sleep())
... await asyncio.gather(*coroutines)

>>> start = time.time()
>>> asyncio.run(main())
Started sleep at: 0.0
Started sleep at: 0.0
Finished sleep at: 0.1
Finished sleep at: 0.1

As you can see, it is trivial to run multiple applications at the same time this way. The syntax is essen-
tially the same as it would be with subprocess without having to block or poll.

If you are running this from a long-running asyncio event loop and you don’t need to capture the re-
sults, you could skip the entire asyncio.gather() step and use asyncio.create_task(async_process_
sleep()) instead.

Interactive processes
Starting processes is the easy part; the more difficult part is interactive input and output with processes.
The asyncio module has several measures to make that part easier, but it can still be difficult when
actually working with the results.

asyncio – Multithreading without Threads452

Here’s an example of calling the Python interpreter as an external subprocess, executing some code,
and exiting again in a simple one-off fashion:

>>> import time
>>> import asyncio

>>> async def run_python_script(script):
... print(f'Executing: {script!r}')
... process = await asyncio.create_subprocess_exec(
... 'python3',
... stdout=asyncio.subprocess.PIPE,
... stdin=asyncio.subprocess.PIPE,
...)
... stdout, stderr = await process.communicate(script)
... print(f'stdout: {stdout!r}')

>>> asyncio.run(run_python_script(b'print(2 ** 20)'))
Executing: b'print(2 ** 20)'
stdout: b'1048576\n'

In this case, we added a pipe to stdout (standard output) and stdin (standard input) so we can read from
stdout and write to stdin manually. After the process has started, we can use process.communicate()
to write to stdin, and process.communicate() will automatically read all output from stdout and
stderr if they are available. Since we did not declare what stderr is supposed to be, Python will au-
tomatically send all process.stderr output to sys.stderr for us, so we can ignore stderr here as it
will be None.

Now the actual challenge comes when we want interactive subprocesses with two-way communication
through stdin/stdout/stderr that keep on running for a longer time. That is also possible of course,
but it can be hard to avoid deadlocks in situations where both sides are waiting for input. Here’s a very
simple example of a Python subprocess that does effectively the same as communicate() above, but
manually, to give you granular control over the input and output of the process:

>>> import asyncio

>>> async def run_script():
... process = await asyncio.create_subprocess_exec(
... 'python3',
... stdout=asyncio.subprocess.PIPE,
... stdin=asyncio.subprocess.PIPE,
...)
...
... # Write a simple Python script to the interpreter

Chapter 13 453

... process.stdin.write(b'print("Hi~")')

...

... # Make sure the stdin is flushed asynchronously

... await process.stdin.drain()

... # And send the end of file so the Python interpreter will

... # start processing the input. Without this the process will

... # stall forever.

... process.stdin.write_eof()

...

... # Fetch the lines from the stdout asynchronously

... async for line in process.stdout:

... # Decode the output from bytes and strip the whitespace

... # (newline) at the right

... print('stdout:', line.rstrip())

...

... # Wait for the process to exit

... await process.wait()

>>> asyncio.run(run_script())
stdout: b'Hi~'

The code might appear largely as you would expect, but there are a few parts that are non-obvious to
use, yet required to function. While the creation of the subprocess is identical to the previous example,
the writing of the code to stdin is slightly different.

Instead of using process.communicate(), we now write directly to the process.stdin pipe. When you
run process.stdin.write(), Python will try to write to the stream, but might not be able to because
the process hasn’t started running yet. Because of that, we need to manually flush these buffers by
using process.stdin.drain(). Once that is done, we send an end-of-file (EOF) character so the Python
subprocess knows that no more input is coming.

Once the input is written, we need to read the output from the Python subprocess. We could use process.
stdout.readline() in a loop for this, but similar to how we can do for line in open(filename), we
can also read process.stdout line by line using an async for loop until the stream is closed.

If at all possible, I would recommend abstaining from using stdin to send data to subprocesses and
instead use some network, pipe, or file communication instead. As we will see in the next section cov-
ering an echo client and server, those are much more convenient to handle and less prone to deadlocks.

Echo client and server
The most basic kind of server you can get is an “echo” server, which sends all messages received back.
Since we can run multiple tasks in parallel with asyncio, we can run both the server and the client
from the same script here. Splitting them into two processes is also possible, of course.

asyncio – Multithreading without Threads454

Creating a basic client and server is easy to do:

>>> import asyncio

>>> HOST = '127.0.0.1'
>>> PORT = 1234

>>> async def echo_client(message):
... # Open the connection to the server
... reader, writer = await asyncio.open_connection(HOST, PORT)
...
... print(f'Client sending {message!r}')
... writer.write(message)
...
... # We need to drain and write the EOF to stop sending
... writer.write_eof()
... await writer.drain()
...
... async for line in reader:
... print(f'Client received: {line!r}')
...
... writer.close()

>>> async def echo(reader, writer):
... # Read all lines from the reader and send them back
... async for line in reader:
... print(f'Server received: {line!r}')
... writer.write(line)
... await writer.drain()
...
... writer.close()

>>> async def echo_server():
... # Create a TCP server that listens on 'HOST'/'PORT' and
... # calls 'echo' when a client connects.
... server = await asyncio.start_server(echo, HOST, PORT)
...
... # Start listening
... async with server:
... await server.serve_forever()

Chapter 13 455

>>> async def main():
... # Create and run the echo server
... server_task = asyncio.create_task(echo_server())
...
... # Wait a little for the server to start
... await asyncio.sleep(0.01)
...
... # Create a client and send the message
... await echo_client(b'test message')
...
... # Kill the server
... server_task.cancel()

>>> asyncio.run(main())
Client sending b'test message'
Server received: b'test message'
Client received: b'test message'

In this example, we can see that we sent the server to the background using asyncio.create_task().
After that, we have to wait just a tiny amount of time for the background task to start working, which
we are doing using asyncio.sleep(). The sleep time of 0.01 was chosen arbitrarily (and 0.001 is
probably enough as well), but it should be enough for most systems to communicate with the kernel
to create a listening socket. Once the server is running, we start our client to send a message and wait
for the response.

Naturally, this example could have been written in many different ways. Instead of async for, you
could use reader.readline() to read until the next newline, or you could use reader.read(number_
of_bytes) to read a specific number of characters. It all depends on the protocol you wish to write. In
the case of the HTTP/1.1 protocol, the server expects a Connection: close; in the case of the SMTP
protocol, a QUIT message should be sent. In our case, we use the EOF character as an indicator.

Asynchronous file operations
One of the operations you would prefer to be asynchronous is file operations. Even though storage
devices have become much faster over the years, you are not always working on fast local storage. If
you want to write to a network drive over a Wi-Fi connection, for example, you can experience quite
a lot of latency. By using asyncio, you can make sure this won’t stall your entire interpreter.

Unfortunately, there is currently no easy way to do file operations through asyncio in a cross-platform
way because most operating systems have no (scalable) asynchronous file operations support. Luckily,
someone created a workaround for this issue. The aiofiles library uses the threading library internal-
ly to give you an asyncio interface to file operations. While you could easily use an Executor to handle
the file operations for you, the aiofiles library is a very convenient wrapper that I recommend using.

asyncio – Multithreading without Threads456

First, install the library:

$ pip3 install aiofiles

Now we can use aiofiles to open, read, and write files in a non-blocking manner through asyncio:

>>> import asyncio
>>> import aiofiles

>>> async def main():
... async with aiofiles.open('aiofiles.txt', 'w') as fh:
... await fh.write('Writing to file')
...
... async with aiofiles.open('aiofiles.txt', 'r') as fh:
... async for line in fh:
... print(line)

>>> asyncio.run(main())
Writing to file

The usage of aiofiles is very similar to a regular open() call, except with the async prefix in all cases.

Creating async generators to support async for
In the earlier examples, you might have wondered how to support async for statements. Essentially
it is very easy to do so; instead of a regular generator that you could create with the __iter__ and
__next__ magic functions in a class, you would now use __aiter__ and __anext__ instead:

>>> import asyncio

>>> class AsyncGenerator:
... def __init__(self, iterable):
... self.iterable = iterable
...
... async def __aiter__(self):
... for item in self.iterable:
... yield item

>>> async def main():
... async_generator = AsyncGenerator([4, 2])
...
... async for item in async_generator:
... print(f'Got item: {item}')

Chapter 13 457

>>> asyncio.run(main())
Got item: 4
Got item: 2

Effectively, the code is identical to regular generators and with statements, but you can also access
asyncio code from the functions. There is really nothing special about these methods except that they
need the async prefix and the a in the name, so you get __aiter__ instead of __iter__.

Creating async context managers to support async with
Similar to the async generator, we can also create an async context manager. Instead of the __iter__
method, we now have to replace the __enter__ and __exit__ methods with __aenter__ and __aexit__,
respectively.

Effectively the code is identical to a with statement, but you can also access asyncio code from the
functions:

>>> import asyncio

>>> class AsyncContextManager:
... async def __aenter__(self):
... print('Hi :)')
...
... async def __aexit__(self, exc_type, exc_value, traceback):
... print('Bye :(')

>>> async def main():
... async_context_manager = AsyncContextManager()
...
... print('Before with')
... async with async_context_manager:
... print('During with')
... print('After with')

>>> asyncio.run(main())
Before with
Hi :)
During with
Bye :(
After with

Similar to the async generator, there really is nothing special about these methods. But the async con-
text manager in particular is very useful for setup/teardown methods, as we will see in the next section.

asyncio – Multithreading without Threads458

Asynchronous constructors and destructors
At some point, you will probably want to run some asynchronous code from your constructors and/
or destructors, perhaps to initialize a database connection or other type of network connection. Un-
fortunately, that is not really possible.

Naturally, using __await__ or metaclasses, you could hack around this for your constructor. And with
an asyncio.run(...) you could do something similar for your destructor. Neither is really a great
solution though – I would suggest restructuring your code instead.

Depending on the scenario I would suggest using either:

•	 Context managers to properly enter/exit using an async with statement
•	 A Factory pattern where an async def generates and initializes the class for you, together with

an async def close() as an async destructor

We have already seen the context manager in the previous section, and that would be the method I
would recommend in most cases, such as creating database connections and/or transactions, since
you cannot accidentally forget to run the teardown using that.

But a Factory pattern with an explicit create and close method is, of course, a good possibility too:

>>> import asyncio

>>> class SomeClass:
... def __init__(self, *args, **kwargs):
... print('Sync init')
...
... async def init(self, *args, **kwargs):
... print('Async init')
...
... @classmethod
... async def create(cls, *args, **kwargs):
... # Create an instance of 'SomeClass' which calls the
... # sync init: 'SomeClass.__init__(*args, **kwargs)'
... self = cls(*args, **kwargs)
... # Now we can call the async init:
... await self.init(*args, **kwargs)
... return self
...

 The Factory design pattern uses a function to facilitate the creation of an object. In this case,
that means instead of doing instance = SomeClass(...), you would have instance =
await SomeClass.create(...) so you can have an asynchronous initialization method.

Chapter 13 459

... async def close(self):

... print('Async destructor')

...

... def __del__(self):

... print('Sync destructor')

>>> async def main():
... # Note that we use 'SomeClass.create()' instead of
... # 'SomeClass()' so we also run 'SomeClass().init()'
... some_class = await SomeClass.create()
... print('Using the class here')
... await some_class.close()
... del some_class

>>> asyncio.run(main())
Sync init
Async init
Using the class here
Async destructor
Sync destructor

With the order of operations as shown before, you can properly create and tear down an asyncio class
that way. As a failsafe (explicitly calling close() is always the better solution), you can add an async
destructor to your __del__ by calling the loop.

For the next example, we will use the asyncpg library, so make sure to install it first:

$ pip3 install asyncpg

Now, an asyncio database connection to PostgreSQL could be implemented like this:

import typing
import asyncio
import asyncpg

class AsyncPg:
 _connection: typing.Optional[asyncpg.Connection]

 async def init(self):
 self._connection = asyncpg.connect(...)

 async def close(self):
 await self._connection.close()

asyncio – Multithreading without Threads460

 def __del__(self):
 if self._connection:
 loop = asyncio.get_event_loop()
 if loop.is_running():
 loop.create_task(self.close())
 else:
 loop.run_until_complete(self.close())

 self._connection = None

You could also create a registry to easily close all classes that were created so you can’t forget to do so on
exit. But if possible, I would still recommend the context manager-style solution. You could also make a
convenient shortcut using a decorator by creating an async version of contextlib.ContextDecorator.

Next up, we will look at how to debug asyncio code and how to catch common mistakes.

Debugging asyncio
The asyncio module has a few special provisions to make debugging somewhat easier. Given the
asynchronous nature of functions within asyncio, this is a very welcome feat. While the debugging
of multithreaded/multiprocessing functions or classes can be difficult – since concurrent classes can
easily change environment variables in parallel – with asyncio, it’s just as difficult, if not more, because
asyncio background tasks run in the stack of the event loop, not your own stack.

The first and most obvious way of debugging asyncio is to use the event loop debug mode. We have
several options for enabling the debug mode:

•	 Set the PYTHONASYNCIODEBUG environment variable to True
•	 Enable the Python development mode using the PYTHONDEVMODE environment variable or by

executing Python with the -X dev command-line option
•	 Pass the debug=True argument to asyncio.run()
•	 Call loop.set_debug()

Of these methods, I recommend using the PYTHONASYNCIODEBUG or PYTHONDEVMODE environment vari-
ables because these are applied very early and can therefore catch several errors that the others might
miss. We will see an example of that in the next section about forgotten await statements.

 If you wish to skip this part of the chapter, I urge you to at least read the section on Exiting
before all tasks are done. That covers a huge pitfall with asyncio.

Chapter 13 461

When the debug mode is enabled, the asyncio module will check a few common asyncio mistakes
and issues. Specifically:

•	 Coroutines that have not been yielded will raise an exception.
•	 Calling coroutines from the “wrong” thread raises an exception. This can occur if you have

code running in different threads from the thread running the current event loop. This is
effectively a case of thread safety, which is covered in Chapter 14.

•	 The execution time of the selector will be logged.
•	 Slow coroutines (more than 100 ms) will be logged. This timeout can be modified through loop.

slow_callback_duration.
•	 Warnings will be raised when resources are not closed properly.
•	 Tasks that were destroyed before execution will be logged.

Let’s showcase a few of these mistakes.

Forgetting to await a coroutine
This is probably the most common asyncio bug and it has bitten me many, many times. It is so easy to
do some_coroutine() instead of await some_coroutine() and you usually find out when it’s already
too late.

Note about setting environment variables

Within most Linux/Unix/Mac shell sessions, environment variables can be set using
variable=value as a prefix:

SOME_ENVIRONMENT_VARIABLE=value python3 script.py

Also, environment variables can be configured for the current shell (when using ZSH or
Bash) session using export:

export SOME_ENVIRONMENT_VARIABLE=value

The current value can be fetched using the following line:

echo $SOME_ENVIRONMENT_VARIABLE

On Windows, you can configure an environment variable for your local shell session using
the set command:

set SOME_ENVIRONMENT_VARIABLE=value

The current value can be fetched using this line:

set SOME_ENVIRONMENT_VARIABLE

asyncio – Multithreading without Threads462

Luckily, Python can help us with this one, so let’s look at what happens when you forget to await a
coroutine with PYTHONASYNCIODEBUG set to 1:

async def printer():
 print('This is a coroutine')

printer()

This results in an error for the printer coroutine, which we forgot to await:

$ PYTHONASYNCIODEBUG=1 python3 T_13_forgot_await.py
T_13_forgot_await.py:5: RuntimeWarning: coroutine 'printer' was never awaited
 printer()
RuntimeWarning: Enable tracemalloc to get the object allocation traceback

Note that this will only occur when the event loop has been closed. The event loop can’t know if you
intended to execute the coroutine at a later moment, so this can still be difficult to debug.

This is also one of the cases where using the PYTHONASYNCIODEBUG environment variable instead of
loop.set_debug(True) can make a difference. Think about a scenario where you have multiple event
loops and forget to enable debug mode for all of them, or where a forgotten coroutine is created before
debug mode is enabled, which means it will not be tracked.

Slow blocking functions
Not considering that a function might be slow and blocking your loop is easy to do. If it is somewhat
slow but not slow enough that you’ll notice, you will probably never find out about it unless you enable
the debug mode. Let’s look at how the debug mode helps us here:

import time
import asyncio

async def main():
 # Oh no... a synchronous sleep from asyncio code
 time.sleep(0.2)

asyncio.run(main(), debug=True)

In this case, we “accidentally” used time.sleep() instead of asyncio.sleep().

For these issues, debug=True works great, but it never hurts to use PYTHONASYNCIODEBUG=1 when
developing:

$ PYTHONASYNCIODEBUG=1 python3 T_14_slow_blocking_code.py
Executing <Task finished ...> took 0.204 seconds

As we expected, we get a warning with this slow function.

Chapter 13 463

The default warning threshold is set to 100 ms and we are sleeping for 200 ms, so it is reported. The
threshold can be changed through loop.slow_callback_duration=<seconds> if needed. This could be
useful if you are working on a slower system such as a Raspberry Pi, or if you want to look for slow code.

Forgetting to check the results or exiting early
A common way to write code with asyncio is to use fire-and-forget with asyncio.create_task()
without storing the resulting future. While this is not inherently wrong, if an exception unexpectedly
occurs in your code, it can be very difficult to find the culprit without the debug mode enabled.

To illustrate, we are going to use the following uncaught exception and execute it both with and
without debug mode:

import asyncio

async def throw_exception():
 raise RuntimeError()

async def main():
 # Ignoring an exception from an async def
 asyncio.create_task(throw_exception())

asyncio.run(main())

If we execute this without debug mode, we get the following output:

$ python3 T_15_forgotten_exception.py
Task exception was never retrieved
future: <Task finished ... at T_15_forgotten_exception.py:4>
exception=RuntimeError()>
Traceback (most recent call last):
 File "T_15_forgotten_exception.py", line 5, in throw_exception
 raise RuntimeError()
RuntimeError

While this does nicely show us where the exception occurred and what exception occurred, it does
not show us who or what created the coroutine.

Now if we repeat the same with debug mode enabled, we get this:

$ PYTHONASYNCIODEBUG=1 python3 T_15_forgotten_exception.py
Task exception was never retrieved
future: <Task finished ... at T_15_forgotten_exception.py:4>
exception=RuntimeError() created at asyncio/tasks.py:361>
source_traceback: Object created at (most recent call last):

asyncio – Multithreading without Threads464

 File "T_15_forgotten_exception.py", line 13, in <module>
 asyncio.run(main())
 File "asyncio/runners.py", line 44, in run
 return loop.run_until_complete(main)
 File "asyncio/base_events.py", line 629, in run_until_complete
 self.run_forever()
 File "asyncio/base_events.py", line 596, in run_forever
 self._run_once()
 File "asyncio/base_events.py", line 1882, in _run_once
 handle._run()
 File "asyncio/events.py", line 80, in _run
 self._context.run(self._callback, *self._args)
 File "T_15_forgotten_exception.py", line 10, in main
 asyncio.create_task(throw_exception())
 File "asyncio/tasks.py", line 361, in create_task
 task = loop.create_task(coro)
Traceback (most recent call last):
 File "T_15_forgotten_exception.py", line 5, in throw_exception
 raise RuntimeError()
RuntimeError

This might still be a bit hard to read, but now we see that the exception originated from asyncio.
create_task(throw_exception()) and we can even see the asyncio.run(main()) call.

For a slightly larger code base, this can be essential in tracing the source of your exceptions.

Exiting before all tasks are done
Pay attention here, because this issue is extremely subtle but can have huge consequences if you
don’t notice it.

Similar to forgetting to fetch the results, when you create a task while the loop is already tearing
down, the task will not always run. In some cases, it does not have the chance to run and you most
likely won’t notice it.

Take a look at this example where we have a task spawning another task:

import asyncio

async def sub_printer():
 print('Hi from the sub-printer')

async def printer():
 print('Before creating the sub-printer task')
 asyncio.create_task(sub_printer())

Chapter 13 465

 print('After creating the sub-printer task')

async def main():
 asyncio.create_task(printer())

asyncio.run(main())

In this case, even the debug mode cannot help you. To illustrate, let’s look at what happens when we
call this with debug mode enabled:

$ PYTHONASYNCIODEBUG=1 python3 T_16_early_exit.py
Before creating the sub-printer task
After creating the sub-printer task

The call to sub_printer() seems to have disappeared. It really hasn’t, but we did not explicitly wait
for it to finish so it never got a chance to run.

The best solution by far is to keep track of all futures created by asyncio.create_task() and do an
await asyncio.gather(*futures) at the end of your main() function. But this is not always an option

– you might not have access to the futures created by other libraries, or the futures might be created
in a scope you cannot easily access. So what can you do?

As a very simple workaround, you can simply wait at the end of your main() function:

import asyncio

async def sub_printer():
 print('Hi from the sub-printer')

async def printer():
 print('Before creating the sub-printer task')
 asyncio.create_task(sub_printer())
 print('After creating the sub-printer task')

async def main():
 asyncio.create_task(printer())
 await asyncio.sleep(0.1)

asyncio.run(main())

For this case, adding that little bit of sleep time works fine:

$ python3 T_17_wait_for_exit.py
Before creating the sub-printer task
After creating the sub-printer task
Hi from the sub-printer

asyncio – Multithreading without Threads466

But this only does the trick if your task is fast enough or if you increase the sleep time. If we had a
database teardown method that takes several seconds, we could still end up with an issue. As a very
crude workaround, it can be useful to add this to your code since it will be more obvious when you’re
missing a task.

A slightly better solution is to ask asyncio what tasks are still running and wait until they have finished.
The drawback of this method is that if you have a task that runs forever (in other words, while True),
you will wait forever for the script to exit.

So let’s look at how we could implement a feature like this, with a fixed timeout so we won’t wait forever:

import asyncio

async def sub_printer():
 print('Hi from the sub-printer')

async def printer():
 print('Before creating the sub-printer task')
 asyncio.create_task(sub_printer())
 print('After creating the sub-printer task')

async def main():
 asyncio.create_task(printer())
 await shutdown()

async def shutdown(timeout=5):
 tasks = []
 # Collect all tasks from 'asyncio'
 for task in asyncio.all_tasks():
 # Make sure we skip our current task so we don't loop
 if task is not asyncio.current_task():
 tasks.append(task)

 for future in asyncio.as_completed(tasks, timeout=timeout):
 await future

asyncio.run(main())

This time, we have added a shutdown() method that fetches all tasks from asyncio using asyncio.
all_tasks(). After collecting the tasks, we need to make sure that we don’t get our current task because
that would result in a chicken-and-egg problem. The shutdown() task will never exit while waiting
for the shutdown() task to finish.

Chapter 13 467

When all tasks are gathered, we use asyncio.as_completed() to wait for them to finish and return
after. If the waiting takes more than timeout seconds, asyncio.as_completed() will raise an asyncio.
TimeoutError for us.

You can easily modify this to try and cancel all tasks so all non-shielded tasks will be canceled right
away. And you can also change the exception to a warning instead if the pending tasks are not critical
in your use case.

Lastly, it should be noted that this solution is not without its flaws either. It could happen that one of
the tasks spawns new tasks while running; this is not something that is handled by this implementa-
tion, and handling it improperly might lead to waiting forever.

Now that we know how to debug the most common asyncio issues, it’s time to end with a few exercises.

Exercises
Working with asyncio will require active thought throughout most of your development process.
Besides asyncio.run() and similar methods, there is no way to run an async def from synchronous
code. This means that every intermediate function between your main async def and the code that
needs asyncio will have to be async as well.

You could make a synchronous function return a coroutine so one of the parent functions can run
it within an event loop. But that usually results in a very confusing execution order of the code, so I
would not recommend going down that route.

In short, this means that any asyncio project you try with the asyncio debug setting enabled is good
practice. We can create a few challenges, however:

•	 Try to create a asyncio base class that automatically registers all instances for easy closing/
destructuring when you are done

•	 Create an asyncio wrapper class for a synchronous process such as file or network operations
using executors

•	 Convert any of your scripts or projects to asyncio

task = asyncio.shield(...) protects against task.cancel() and functions like an
onion. A single asyncio.shield() protects against a single task.cancel(); to protect
against multiple cancelations, you will need to shield in a loop, or at least multiple times.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

asyncio – Multithreading without Threads468

Summary
In this chapter, we have seen:

•	 The basic concepts of asyncio and how they interact
•	 How to run external processes using asyncio
•	 How to create a server and client using asyncio
•	 How to create context managers with asyncio
•	 How to create generators with asyncio
•	 How to debug common issues when using asyncio
•	 How to avoid the unfinished task pitfall

By now you should know how to keep your main loop responsive while waiting for results without
having to resort to polling. In Chapter 14, Multiprocessing – When a Single CPU Core Is Not Enough, we
will learn about threading and multiprocessing as an asyncio alternative to running multiple func-
tions in parallel.

For new projects, I would strongly consider using asyncio from the ground up because it is usually
the fastest solution for handling external resources. For existing scripts, however, this can be a very
invasive process. So knowing about threading and multiprocessing is certainly important, also
because asyncio can leverage them and you should be aware of thread and process safety.

When building utilities based on the asyncio library, make sure to search for pre-made libraries to
solve your problems as asyncio is gaining more adoption every year. In many cases, someone has
already created a library for you.

Next up is parallel execution using threading and multiprocessing.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

14
Multiprocessing – When a Single
CPU Core Is Not Enough

In the previous chapter, we discussed asyncio, which can use the threading and multiprocessing
modules but mainly uses single-thread/single-process parallelization. In this chapter, we will see how
we can directly use multiple threads or processes to speed up our code and what caveats to keep in
mind. This chapter can actually be seen as an extension to the list of performance tips.

The threading module makes it possible to run code in parallel in a single process. This makes
threading very useful for I/O-related tasks such as reading/writing files or network communication, but
a useless option for slow and heavy calculations, which is where the multiprocessing module shines.

With the multiprocessing module, you can run code in multiple processes, which means you can
run code on multiple CPU cores, multiple processors, or even on multiple computers. This is an easy
way to work around the Global Interpreter Lock (GIL) that was discussed in Chapter 12, Performance

– Tracking and Reducing Your Memory and CPU Usage.

The multiprocessing module has a fairly easy-to-use interface with many convenience features, but
the threading module is rather basic and requires you to manually create and manage the threads.
For this, we also have the concurrent.futures module, which offers a simple way of executing a list
of tasks either through threads or processes. This interface is also partially comparable to the asyncio
features we saw in the previous chapter.

To summarize, this chapter covers:

•	 The Global Interpreter Lock (GIL)
•	 Multithreading versus multiprocessing
•	 Locking, deadlocks, and thread safety
•	 Data sharing and synchronization between processes
•	 Choosing between multithreading, multiprocessing, and single-threading
•	 Hyper-threading versus physical cores

Multiprocessing – When a Single CPU Core Is Not Enough470

•	 Remote multiprocessing with multiprocessing and ipyparallel

The Global Interpreter Lock (GIL)
The GIL has been mentioned in this book several times already, but we have not really covered it in
detail and it really does need a bit more explanation before we continue with this chapter.

In short, the name already explains what it does. It is a global lock for the Python interpreter so it can
only execute a single statement at once. A lock or mutex (mutual exclusion) in parallel computing
is a synchronization primitive that can block parallel execution. With a lock, you can make sure that
nobody can touch your variable while you are working on it.

Python offers several types of synchronization primitives, such as threading.Lock and threading.
Semaphore. These are covered in more detail in the Sharing data between threads and processes section
of this chapter.

That means that even with the threading module, you are still only executing a single Python statement
at the same time. So, when it comes to pure Python code, your multithreaded solutions will always be
slower than single-threaded solutions because threading introduces some synchronization overhead
while not offering any benefit for that scenario.

Let’s continue with some more in-depth information about the GIL.

The use of multiple threads
Since the GIL only allows a single Python statement to be executed at the same time, what point does
threading have? The effectiveness greatly depends on your goal. Similar to the asyncio examples in
Chapter 13, threading can give you a lot of benefit if you are waiting for external resources.

For example, if you are trying to fetch a webpage, open a file (remember that the aiofiles module
actually uses threads), or if you want to execute something periodically, threading can work great.

There are several advantages to asyncio over threading:

•	 asyncio is generally faster than threading because you don’t have any thread synchronization
overhead.

•	 Since asyncio is normally single-threaded, you don’t have to worry about thread safety (more
about thread safety later in the chapter).

Why do we need the GIL?
The GIL is currently an essential part of the CPython interpreter because it makes sure that memory
management is always consistent.

When writing a new application, I would generally recommend that you make it ready for
asyncio if there is even a small chance of becoming I/O-limited in the future. Rewriting
for asyncio at a later time can be a huge amount of work.

Chapter 14 471

To explain how this works, we need to know a bit about how the CPython interpreter manages its
memory.

Within CPython, the memory management system and garbage collection system rely on reference
counting. This means that CPython counts how many names you have linked to a value. If you have a
line of Python like this: a = SomeObject(), that means that this instance of SomeObject has 1 refer-
ence, namely, a. If we were to do b = a, the reference count would increase to 2. When the reference
count reaches 0, the variable will be deleted by the garbage collector when it runs.

You can check the number of references using sys.getrefcount(variable). You should note that the
call to sys.getrefcount() increases your reference count by 1, so if it returns 2, the actual number is 1.

As the GIL makes sure that only a single Python statement can be executed simultaneously, you can
never have issues where multiple bits of code manipulate memory at the same time, or where memory
is being released to the system that is not actually free.

If the reference counter is not correctly managed, this could easily result in memory leaks or a crash-
ing Python interpreter. Remember the segmentation faults we saw in Chapter 11, Debugging – Solving
the Bugs? That is what could easily happen without the GIL, and it would instantly kill your Python
interpreter.

Why do we still have the GIL?
When Python was initially created, many operating systems didn’t even have a concept of threading,
and all common processors only had a single core. Long story short, there are two main reasons for
the GIL:

•	 There was initially no point in creating a complex solution that would handle threading
•	 The GIL is a really simple solution for a very complex problem

Luckily, it seems that is not the end of the discussion. Recently (May 2021), Guido van Rossum came out
of retirement and he has plans to address the GIL limitations by creating sub-interpreters for threads.
How this will work out in practice remains to be seen, of course, but the ambitious plan is to make
CPython 3.15 about 5 times faster than CPython 3.10, which would be an amazing performance increase.

Now that we know when the GIL limits CPython threads, let’s look at how we can create and use
multiple threads and processes.

Multiple threads and processes
The multiprocessing module was introduced in Python 2.6, and it has been a game changer when it
comes to working with multiple processes in Python. Specifically, it has made it rather easy to work
around the limitations of the GIL because each process has its own GIL.

The usage of the multiprocessing module is largely similar to the threading module, but it has sev-
eral really useful extra features that make much more sense with multiple processes. Alternatively,
you can also use it with concurrent.futures.ProcessPoolExecutor, which has an interface nearly
identical to concurrent.futures.ThreadPoolExecutor.

Multiprocessing – When a Single CPU Core Is Not Enough472

These similarities mean that in many cases you can simply swap out the modules and your code will
keep running as expected. Don’t be fooled, however; while threads can still use the same memory
objects and only have thread safety and deadlocks to worry about, multiple processes also have these
issues and introduce several other issues when it comes to sharing memory, objects, and results.

In either case, dealing with parallel code comes with caveats. This is also why code that uses multiple
threads or processes has the reputation of being difficult to work with. Many of these issues are not
as daunting as they might seem; if you follow a few rules, that is.

Within this section, we are going to cover:

•	 Basic examples using threading, multiprocessing, and concurrent.futures
•	 Cleanly exiting threads and processes
•	 Batch processing
•	 Sharing memory between processes
•	 Thread safety
•	 Deadlocks
•	 Thread-local variables

Several of these, such as race conditions and locking, are not exclusive to threading and could be
interesting for multiprocessing as well.

Basic examples
To create threads and processes, we have several options:

•	 concurrent.futures: An easy-to-use interface for running functions in either threads or pro-
cesses, similar to asyncio

•	 threading: An interface for creating threads directly
•	 multiprocessing: An interface with many utility and convenience functions to create and

manage multiple Python processes

Let’s look at an example of each one.

concurrent.futures
Let’s start with a basic example of the concurrent.futures module. In this example, we run two timer
jobs that run and print in parallel:

import time
import concurrent.futures

Before we continue with the example code, you should be aware that it is critically important
to have your code in an if __name__ == '__main__' block when using multiprocessing.
When the multiprocessing module launches the extra Python processes, it will execute
the same Python script, so without using this block you will end up with an infinite loop
of starting processes.

Chapter 14 473

def timer(name, steps, interval=0.1):
 '''timer function that sleeps 'steps * interval' '''
 for step in range(steps):
 print(name, step)
 time.sleep(interval)

if __name__ == '__main__':
 # Replace with concurrent.futures.ProcessPoolExecutor for
 # multiple processes instead of threads
 with concurrent.futures.ThreadPoolExecutor() as executor:
 # Submit the function to the executor with some arguments
 executor.submit(timer, steps=3, name='a')
 # Sleep a tiny bit to keep the output order consistent
 time.sleep(0.1)
 executor.submit(timer, steps=3, name='b')

Before we execute the code, let’s see what we did here. First, we created a timer function that runs
time.sleep(interval) and does that steps times. Before sleeping, it prints the name and the current
step so we can easily see what is happening.

Then, we create an executor using concurrent.futures.ThreadPoolExecutor to execute the functions.

Lastly, we submit the functions we want to execute with their respective arguments to start both of
the threads. In between starting them, we sleep a very short time so our output in this example is
consistent. If we were to execute the code without the time.sleep(0.1), the output order would be
random because sometimes a would be faster and other times b would be faster.

The main reason for including the tiny sleep is testing. All of the code in this book is available on
GitHub (https://github.com/mastering-python/code_2) and is automatically tested.

Now when executing this script, we get the following:

$ python3 T_00_concurrent_futures.py
a 0
b 0
a 1
b 1
a 2
b 2

As expected, they run right next to each other, but due to the tiny time.sleep(0.1) we added, the
results are consistently interleaved. In this case we started the ThreadPoolExecutor with the default
arguments, which results in threads without specific names and an automatically calculated thread
count.

https://github.com/mastering-python/code_2

Multiprocessing – When a Single CPU Core Is Not Enough474

The thread count depends on the Python version. Up to Python 3.8, the number of workers was equal
to the number of hyper-threaded CPU cores in the machine multiplied by 5. So, if your machine has
2 cores with hyper-threading enabled, it would result in 4 cores * 5 = 20 threads. With a 64-core ma-
chine, that would result in 320 threads, which would probably incur more synchronization overhead
than benefits.

For Python 3.8 and above, this has been changed to min(32, cores + 4), which should be enough to
always have at least 5 threads for I/O operations but not so much that it uses large amounts of resources
on machines with many cores. For the same 64-core machine, this would still be capped at 32 threads.

In the case of the ProcessPoolExecutor, the number of processor cores including hyper-threading
will be used. That means that if your processor has 4 cores with hyper-threading enabled, you will
get a default of 8 processes.

Naturally, the traditional threading module is still a good option and offers a bit more control while
still having an easy-to-use interface.

Before Python 3, the thread module was also available as a low-level API to threads. This module is
still available but renamed to _thread. Internally, both concurrent.futures.ThreadPoolExecutor
and threading are still using it, but you should generally have no need to access it directly.

threading
Now we will look at how to recreate the concurrent.futures example using the threading module:

import time
import threading

def timer(name, steps, interval=0.1):
 '''timer function that sleeps 'steps * interval' '''
 for step in range(steps):
 print(name, step)
 time.sleep(interval)

Create the threads declaratively
a = threading.Thread(target=timer, kwargs=dict(name='a', steps=3))
b = threading.Thread(target=timer, kwargs=dict(name='b', steps=3))

Start the threads
a.start()
Sleep a tiny bit to keep the output order consistent
time.sleep(0.1)
b.start()

The timer function is identical to the previous example, so no difference there. The execution, how-
ever, is a bit different.

Chapter 14 475

In this case we create the threads by instantiating threading.Thread() directly, but inheriting
threading.Thread is also an option, as we will see in the next example. The arguments to the target
function can be given by passing an args and/or kwargs argument, but these are optional if you have
no need for them or if you have prefilled them using functools.partial.

With the earlier example, we created a ThreadPoolExecutor() that creates a bunch of threads and
runs the functions on those threads. With this example, we are explicitly creating the threads to run
a single function and exit as soon as the function is done. This is mostly useful for long-running
backgrounded threads as this method requires setting up and tearing down a thread for each function.
Generally, the overhead of starting a thread is very little, but it depends on your Python interpreter
(CPython, PyPy, and so on) and your operating system.

Now for the same example, but inheriting threading.Thread instead of a declarative call to threading.
Thread():

import time
import threading

class Timer(threading.Thread):
 def __init__(self, name, steps, interval=0.1):
 self.steps = steps
 self.interval = interval
 # Small gotcha: threading.Thread has a built-in name
 # parameter so be careful not to manually override it
 super().__init__(name=name)

 def run(self):
 '''timer function that sleeps 'steps * interval' '''
 for step in range(self.steps):
 print(self.name, step)
 time.sleep(self.interval)

a = Timer(name='a', steps=3)
b = Timer(name='b', steps=3)

Start the threads
a.start()
Sleep a tiny bit to keep the output order consistent
time.sleep(0.1)
b.start()

Multiprocessing – When a Single CPU Core Is Not Enough476

The code is roughly the same as the procedural version where we called threading.Thread() directly,
but there are two critical differences that you need to be aware of:

•	 name is a reserved attribute for threading.Thread. On Linux/Unix machines your process
manager (for instance, top) can display this name instead of /usr/bin/python3.

•	 The default target function is run(). Be careful to override the run() method instead of the
start() method, otherwise your code will not execute in a separate thread but will execute
like a regular function call when you call start() instead.

The procedural and class-based versions use the exact same API internally and are equally powerful,
so choosing between them comes down to personal preference only.

multiprocessing
Lastly, we can recreate the earlier timer scripts using multiprocessing as well. First with the proce-
dural call to multiprocessing.Process():

import time
import multiprocessing

def timer(name, steps, interval=0.1):
 '''timer function that sleeps 'steps * interval' '''
 for step in range(steps):
 print(name, step)
 time.sleep(interval)

if __name__ == '__main__':
 # Create the processes declaratively
 a = multiprocessing.Process(target=timer, kwargs=dict(name='a', steps=3))
 b = multiprocessing.Process(target=timer, kwargs=dict(name='b', steps=3))

 # Start the processes
 a.start()
 # Sleep a tiny bit to keep the output order consistent
 time.sleep(0.1)
 b.start()

The code looks effectively the same with a few minor changes. Instead of threading.Thread we used
multiprocessing.Process, and we have to run the code from an if __name__ == '__main__' block.
Beyond that, both the code and execution are the same in this simple example.

Lastly, for completeness, let’s look at the class-based version as well:

import time
import multiprocessing

Chapter 14 477

class Timer(multiprocessing.Process):
 def __init__(self, name, steps, interval=0.1):
 self.steps = steps
 self.interval = interval
 # Similar to threading.Thread, multiprocessing.Process
 # also supports the name parameter but you are not
 # required to use it here.
 super().__init__(name=name)

 def run(self):
 '''timer function that sleeps 'steps * interval' '''
 for step in range(self.steps):
 print(self.name, step)
 time.sleep(self.interval)

if __name__ == '__main__':
 a = Timer(name='a', steps=3)
 b = Timer(name='b', steps=3)

 # Start the process
 a.start()
 # Sleep a tiny bit to keep the output order consistent
 time.sleep(0.1)
 b.start()

Once again, we are required to use the if __name__ == '__main__' block. But beyond that, the code
is virtually identical to the threading version. As was the case with threading, choosing between the
procedural and class-based style depends only on your personal preference.

Now that we know how to start threads and processes, let’s look at how we can cleanly shut them
down again.

Cleanly exiting long-running threads and processes
The threading module is mostly useful for long-running threads that handle an external resource.
Some example scenarios:

•	 When creating a server and you want to keep listening for new connections
•	 When connecting to HTTP WebSockets and you need the connection to stay open
•	 When you need to periodically save your changes

Multiprocessing – When a Single CPU Core Is Not Enough478

Naturally, these scenarios can also use multiprocessing, but threading is often more convenient,
as we will see later.

At some point you might need to shut the thread down from outside of the thread; during the exit of
your main script, for example. Waiting for a thread that is exiting by itself is trivial; the only thing you
need to do is future.result() or some_thread.join(timeout=...) and you are done. The harder
part is telling a thread to shut itself down and run the cleanup while it’s still doing something.

The only real solution for this issue, which applies if you are lucky, is a simple while loop that keeps
running until you give a stop signal like this:

import time
import threading

class Forever(threading.Thread):
 def __init__(self):
 self.stop = threading.Event()
 super().__init__()

 def run(self):
 while not self.stop.is_set():
 # Do whatever you need to do here
 time.sleep(0.1)

thread = Forever()
thread.start()
Do whatever you need to do here
thread.stop.set()
thread.join()

This code uses threading.Event() as a flag to tell the thread to exit when needed. While you can use
a bool instead of threading.Event() with the current CPython interpreter, there is no guarantee for
this to work with future Python versions and/or other types of interpreters. The reason this is cur-
rently safe for CPython is that, due to the GIL, all Python operations are effectively single-threaded.
That’s why threads are useful for waiting for external resources, but have a negative effect on the
performance of your Python code.

Additionally, if you were to translate this code to multiprocessing, you could simply replace threading.
Event() with multiprocessing.Event() and it should keep working with no other changes, assuming
you are not interacting with external variables. With multiple Python processes, you are no longer
protected by the single GIL so you need to be more careful when modifying variables. More about this
topic in the Sharing data between threads and processes section later in this chapter.

Now that we have the stop event, we can run stop.set() so the thread knows when to exit and will
do so after the maximum of 0.1 seconds’ sleep.

Chapter 14 479

This is the ideal scenario: to have a loop where the loop condition is checked regularly and the loop
interval is your maximum thread shutdown delay. What happens if the thread is busy doing some op-
eration and doesn’t check the while condition? As you might suspect, setting the stop event is useless
in those scenarios and you need a more powerful method to exit the thread.

To handle this scenario, you have a few options:

•	 Avoid the issue entirely by using asyncio or multiprocessing instead. In terms of performance,
asyncio is your best option by far, but multiprocessing can work as well if your code is suitable.

•	 Make the thread a daemon thread by setting your_thread.daemon = True before starting the
thread. This will automatically kill the thread when the main process exits so it is not a graceful
shutdown. You can still add a teardown using the atexit module.

•	 Kill the thread from the outside by either telling your operating system to send a terminate/
kill signal or by raising an exception within the thread from the main thread. You might be
tempted to go for this method, but I would strongly recommend against it. Not only is it un-
reliable, but it can cause your entire Python interpreter to crash, so it really is not an option
you should ever consider.

We have already seen how to use asyncio in the previous chapter, so let’s look at how we can terminate
with multiprocessing. Before we start, however, you should note that the same limitations that apply
to threading also largely apply to multiprocessing. While multiprocessing does have a built-in
solution for terminating processes as opposed to threading, it is still not a clean method and it won’t
(reliably) run your exit handlers, finally clauses, and so on. This means you should always try an
event first, but use multiprocessing.Event instead of threading.Event, of course.

To illustrate how we can forcefully terminate or kill a thread (while risking memory corruption):

import time
import multiprocessing

class Forever(multiprocessing.Process):
 def run(self):
 while True:
 # Do whatever you need to do here
 time.sleep(0.1)

if __name__ == '__main__':
 process = Forever()
 process.start()

 # Kill our "unkillable" process
 process.terminate()

Multiprocessing – When a Single CPU Core Is Not Enough480

 # Wait for 10 seconds to properly exit
 process.join(10)

 # If it still didn't exit, kill it
 if process.exitcode is None:
 process.kill()

In this example, we first try a regular terminate(), which sends a SIGTERM signal on Unix machines
and TerminateProcess() on Windows. If that does not work, we try again with a kill(), which sends
a SIGKILL on Unix and does not currently have a Windows equivalent, so on Windows the kill() and
terminate() methods behave the same way and both effectively kill the process without teardown.

Batch processing using concurrent.futures
Starting threads or processes in a fire-and-forget fashion is easy enough, as we have seen in the prior
examples. However, often, you want to spin up several threads or processes and wait until they have
all finished.

This is a case where concurrent.futures and multiprocessing really shine. They allow you to call
executor.map() or pool.map() very similarly to how we saw in Chapter 5, Functional Programming

– Readability Versus Brevity. Effectively, you only need to create a list of items to process, call the
[executor/pool].map() function, and you are done. You could build something similar with the
threading module if you are looking for a fun challenge, but there is little use for it otherwise.

To give our system a test, let’s get some information about a hostname that should use the system DNS
resolving system. Since that queries an external resource, we should expect nice results when using
threading, right? Well... let’s give it a try and have a look:

import timeit
import socket
import concurrent.futures

def getaddrinfo(*args):
 # Call getaddrinfo but ignore the given parameter
 socket.getaddrinfo('localhost', None)

def benchmark(threads, n=1000):
 if threads > 1:
 # Create the executor
 with concurrent.futures.ThreadPoolExecutor(threads) \
 as executor:
 executor.map(getaddrinfo, range(n))
 else:
 # Make sure to use 'list'. Otherwise the generator will

Chapter 14 481

 # not execute because it is lazy
 list(map(getaddrinfo, range(n)))

if __name__ == '__main__':
 for threads in (1, 10, 50, 100):
 print(f'Testing with {threads} threads and n={10} took: ',
 end='')
 print('{:.1f}'.format(timeit.timeit(
 f'benchmark({threads})',
 setup='from __main__ import benchmark',
 number=10,
)))

Let’s analyze this code. First, we have the getaddrinfo() function, which attempts to fetch some
info about a hostname through your operating system, an external resource that could benefit from
multiple threads.

Second, we have the benchmark() function, which uses multiple threads for the map() if threads is
set to a number above 1. If not, it goes for the regular map().

Lastly, we execute the benchmarks for 1, 10, 50, and 100 threads where 1 is the regular non-threaded
approach. So how much can threads help us here? This test strongly depends on your computer, op-
erating system, network, etc., so your results may be different, but this is what happened on my OS
X machine using CPython 3.10:

$ python3 T_07_thread_batch_processing.py
Testing with 1 threads and n=10 took: 2.1
Testing with 10 threads and n=10 took: 1.9
Testing with 50 threads and n=10 took: 1.9
Testing with 100 threads and n=10 took: 13.9

Did you expect those results? While 1 thread is indeed slower than 10 threads and 50 threads, at 100
we are clearly seeing the diminishing returns and the overhead of having 100 threads. Also, the ben-
efit of using multiple threads is rather limited here due to socket.getaddrinfo() being pretty fast.

If we were to read a whole bunch of files from a slow networked filesystem or if we were to use it to
fetch multiple webpages in parallel, we would see a much larger difference. That immediately shows
the downside of threading: it only gives you a benefit if the external resource is slow enough to warrant
the synchronization overhead. With a fast external resource, you are likely to experience slowdowns
instead because the GIL becomes the bottleneck. CPython can only execute a single statement at once
so that can quickly become problematic.

When it comes to performance, you should always run a benchmark to see what works best for your
case, especially when it comes to thread count. As you saw in the earlier example, more is not always
better and the 100-thread version is many times slower than even the single-threaded version.

Multiprocessing – When a Single CPU Core Is Not Enough482

So, what if we try the same using processes instead of threads? For brevity, we will skip the actual
code since we effectively only need to swap out concurrent.futures.ThreadPoolExecutor() with
concurrent.futures.ProcessPoolExecutor() and we are done. The tested code can be found on
GitHub if you are interested. When we execute that code, we get these results:

$ python3 T_08_process_batch_processing.py
Testing with 1 processes and n=10 took: 2.1
Testing with 10 processes and n=10 took: 3.2
Testing with 50 processes and n=10 took: 8.3
Testing with 100 processes and n=10 took: 15.0

As you can see, we got universally slower results when using multiple processes. While multiprocess-
ing can offer a lot of benefit when the GIL or a single CPU core is the limit, the overhead can cost you
performance in other scenarios.

Batch processing using multiprocessing
In the previous section, we saw how we can use concurrent.futures to do batch processing. You might
be wondering why we would want to use multiprocessing directly if concurrent.futures can handle
it for us. The reason is rather simple: concurrent.futures is an easy-to-use and very simple interface
to both threading and multiprocessing, but multiprocessing offers several advanced options that
can be very convenient and can even help your performance in some scenarios.

In the previous examples we only saw multiprocessing.Process, which is the process analog to
threading.Thread. In this case, however, we will be using multiprocessing.Pool, which creates a
process pool very similar to the concurrent.futures executors but offers several additional features:

•	 map_async(func, iterable, [..., callback, ...])

The map_async() method is similar to the map() method in concurrent.futures, but instead of
blocking it returns a list of AsyncResult objects so you can fetch the results when you need them.

•	 imap(func, iterable[, chunksize])

The imap() method is effectively the generator version of map(). It works in roughly the same
way, but it doesn’t preload the items from the iterable so you can safely process large iterables
if needed. This can be much faster if you need to process many items.

•	 imap_unordered(func, iterable[, chunksize])

The imap_unordered() method is effectively the same as imap() except that it returns the re-
sults as soon as they are processed, which can improve performance even further. If the order
of your results is of no importance to you, give it a try as it can make your code even faster.

•	 starmap(func, iterable[, chunksize])

The starmap() method is very similar to the map() method, but supports multiple arguments
by passing them like *args. If you were to run starmap(function, [(1, 2), (3, 4)]), the
starmap() method would call function(1, 2) and function(3, 4). This can be really useful
in conjunction with zip() to combine several lists of arguments.

Chapter 14 483

•	 starmap_async(func, iterable, [..., callback, ...])

As you can imagine, starmap_async() is effectively the non-blocking starmap() method, but
it returns a list of AsyncResult objects so you can fetch them at your convenience.

The usage of multiprocessing.Pool() is largely analogous to concurrent.future.SomeExecutor()
beyond the extra methods mentioned above. Depending on your scenario, it can be slower, a similar
speed, or faster than concurrent.futures, so always make sure to benchmark for your specific use
case. This little bit of benchmark code should give you a nice starting point:

import timeit
import functools
import multiprocessing
import concurrent.futures

def triangle_number(n):
 total = 0
 for i in range(n + 1):
 total += i

 return total

def bench_mp(n, count, chunksize):
 with multiprocessing.Pool() as pool:
 # Generate a generator like [n, n, n, ..., n, n]
 iterable = (n for _ in range(count))
 list(pool.imap_unordered(triangle_number, iterable,
 chunksize=chunksize))

def bench_ft(n, count, chunksize):
 with concurrent.futures.ProcessPoolExecutor() as executor:
 # Generate a generator like [n, n, n, ..., n, n]
 iterable = (n for _ in range(count))
 list(executor.map(triangle_number, iterable,
 chunksize=chunksize))

if __name__ == '__main__':
 timer = functools.partial(timeit.timeit, number=5)

 n = 1000
 chunksize = 50

Multiprocessing – When a Single CPU Core Is Not Enough484

 for count in (100, 1000, 10000):
 # Using <6 formatting for consistent alignment
 args = ', '.join((
 f'n={n:<6}',
 f'count={count:<6}',
 f'chunksize={chunksize:<6}',
))
 time_mp = timer(
 f'bench_mp({args})',
 setup='from __main__ import bench_mp',
)
 time_ft = timer(
 f'bench_ft({args})',
 setup='from __main__ import bench_ft',
)

 print(f'{args} mp: {time_mp:.2f}, ft: {time_ft:.2f}')

On my machine, this gives the following results:

$ python3 T_09_multiprocessing_pool.py
n=1000 , count=100 , chunksize=50 mp: 0.71, ft: 0.42
n=1000 , count=1000 , chunksize=50 mp: 0.76, ft: 0.96
n=1000 , count=10000 , chunksize=50 mp: 1.12, ft: 1.40

Before I benchmarked this, I was not expecting concurrent.futures to be that much faster in some
cases and that much slower in other cases. Analyzing these results, you can see that processing 1,000
items with concurrent.futures took more time than processing 10,000 items with multiprocessing
in this particular case. Similarly, for 100 items the multiprocessing module was nearly twice as slow.
Naturally, every run yields different results and there is not a single option that will perform well for
every scenario, but it is something to keep in mind.

Now that we know how to run our code in multiple threads or processes, let’s look at how we can
safely share data between the threads/processes.

Sharing data between threads and processes
Data sharing is really the most difficult part about multiprocessing, multithreading, and distributed
programming in general: which data to pass along, which data to share, and which data to skip. The
theory is really simple, however: whenever possible, don’t transfer any data, don’t share any data, and
keep everything local. This is essentially the functional programming paradigm, which is why func-
tional programming mixes really well with multiprocessing. In practice, regrettably, this is simply not
always possible. The multiprocessing library has several options to share data, but internally they
break down to two different options:

Chapter 14 485

•	 Shared memory: This is by far the fastest solution since it has very little overhead, but it can
only be used for immutable types and is restricted to a select few types and custom objects
that are created through multiprocessing.sharedctypes. This is a fantastic solution if you
only need to store primitive types such as int, float, bool, str, bytes, and/or fixed-sized lists
or dicts (where the children are primitives).

•	 multiprocessing.Manager: The Manager classes offer a host of different options for storing
and synchronizing data, such as locks, semaphores, queues, lists, dicts, and several others. If
it can be pickled, it can work with a manager.

For threading, the solution is even easier: all memory is shared so, by default, all objects are available
from every thread. There is an exception called a thread-local variable, which we will see later.

Sharing memory brings its own caveats, however, as we will see in the Thread safety section in the
case of threading. Since multiple threads and/or processes can write to the same piece of memory
at the same time, this is an inherently risky operation. At best, your changes can become lost due
to conflicting writes; at worst, your memory could become corrupted, which could even result in a
crashing interpreter. Luckily, Python is pretty good at protecting you, so if you are not doing anything
too exotic you do not have to worry about crashing your interpreter.

Shared memory between processes
Python offers several different structures to make memory sharing between processes a safe operation:

•	 multiprocessing.Value

•	 multiprocessing.Array

•	 multiprocessing.shared_memory.SharedMemory

•	 multiprocessing.shared_memory.ShareableList

Let’s dive into a few of these types to demonstrate how to use them.

For sharing primitive values, you can use multiprocessing.Value and multiprocessing.Array. These
are essentially the same, but with Array you can store multiple values whereas Value is just a single
value. As arguments, these expect a typecode identical to how the array module works in Python,
which means they map to C types. This results in d as a double (floating point) number, i as a signed
integer, b as a signed char, etc.

For more advanced types, you can take a look at the multiprocessing.sharedctypes module, which
is also where the Value and Array classes originate from.

For more options, look at the documentation for the array module: https://docs.
python.org/3/library/array.html.

https://docs.python.org/3/library/array.html
https://docs.python.org/3/library/array.html

Multiprocessing – When a Single CPU Core Is Not Enough486

Both multiprocessing.Value and multiprocessing.Array are not difficult to use, but they do not
feel very Pythonic to me:

import multiprocessing

some_int = multiprocessing.Value('i', 123)
with some_int.get_lock():
 some_int.value += 10
print(some_int.value)

some_double_array = multiprocessing.Array('d', [1, 2, 3])
with some_double_array.get_lock():
 some_double_array[0] += 2.5
print(some_double_array[:])

If you need to share memory and performance is important to you, feel free to use them. If possible,
however, I would avoid them (or sharing memory at all if possible) as the usage is clunky at best.

The multiprocessing.shared_memory.SharedMemory object is similar to the Array but it is a low-
er-level structure. It offers you an interface to read/write to an optionally named block of memory so
you can access it from other processes by name as well. Additionally, when you are done using it you
must call unlink() to release the memory:

from multiprocessing import shared_memory

From process A we could write something
name = 'share_a'
share_a = shared_memory.SharedMemory(name, create=True, size=4)
share_a.buf[0] = 10

From a different process, or the same one, we can access the data
share_a = shared_memory.SharedMemory(name)
print(share_a.buf[0])

Make sure to clean up after. And only once!
share_a.unlink()

As we can see in this example, the first call had a create=True parameter to ask the operating system
for memory. Only after that (and before calling unlink()) can we reference the block from other (or
the same) processes.

Once again it is not the most Pythonic interface, but it can be effective for sharing memory. Since the
name is optional and automatically generated otherwise, you could omit it from the creation of the
shared memory block and read it back from share_a.name. Also, like the Array and Value objects,
this too has a fixed size and cannot be grown without replacing it.

Chapter 14 487

Lastly, we have the multiprocessing.shared_memory.ShareableList object. While this object is
slightly more convenient than Array and SharedMemory since it allows you to be flexible with types
(i.e. item[0] could be a str and item[1] could be an int), it is still a hard-to-use interface and it does
not allow you to resize it. While you can change the type for the items, you cannot resize the object,
so swapping out a number with a larger string will not work. At least its usage is more Pythonic than
the other options:

from multiprocessing import shared_memory

shared_list = shared_memory.ShareableList(['Hi', 1, False, None])
Changing type from str to bool here
shared_list[0] = True
Don't forget to unlink()
shared_list.shm.unlink()

Seeing all of these options for sharing memory between processes, should you be using them? Yes, if
you need high performance, that is.

It should be a good indication of why it is best to keep memory local with parallel processing, howev-
er. Sharing memory between processes is a complicated problem to solve. Even with these methods,
which are the fastest and least complicated available, it is a bit of a pain already.

So, how much performance impact does memory sharing have? Let’s run a few benchmarks to see
the difference between sharing a variable and returning it for post-processing. First, the version that
does not use shared memory as a performance base:

import multiprocessing

def triangle_number_local(n):
 total = 0
 for i in range(n + 1):
 total += i

 return total

def bench_local(n, count):
 with multiprocessing.Pool() as pool:
 results = pool.imap_unordered(
 triangle_number_local,
 (n for _ in range(count)),
)
 print('Sum:', sum(results))

The triangle_number_local() function calculates the sum of all numbers up to and including n and
returns it, similar to a factorial function but with addition instead.

Multiprocessing – When a Single CPU Core Is Not Enough488

The bench_local() function calls the triangle_number_local() function count times and stores the
results. After that, we sum() those results to verify the output.

Now let’s look at the version using shared memory:

import multiprocessing

class Shared:
 pass

def initializer(shared_value):
 Shared.value = shared_value

def triangle_number_shared(n):
 for i in range(n + 1):
 with Shared.value.get_lock():
 Shared.value.value += i

def bench_shared(n, count):
 shared_value = multiprocessing.Value('i', 0)

 # We need to explicitly share the shared_value. On Unix you
 # can work around this by forking the process, on Windows it
 # would not work otherwise
 pool = multiprocessing.Pool(
 initializer=initializer,
 initargs=(shared_value,),
)

 iterable = (n for _ in range(count))
 list(pool.imap_unordered(triangle_number_shared, iterable))
 print('Sum:', shared_value.value)

 pool.close()

In this case we have created a Shared class as a namespace to store the shared variable, but a global
variable would also be an option.

To make sure the shared variable is available, we need to send it along to all workers in the pool using
an initializer method argument.

Additionally, as the += operation is not atomic (not a single operation, since it does fetch, add, set), we
need to make sure to lock the variable using the get_lock() method.

Chapter 14 489

The Thread safety section later in this chapter goes into more detail about when locking is and is not
needed.

To run the benchmarks, we use the following code:

import timeit

if __name__ == '__main__':
 n = 1000
 count = 100
 number = 5

 for function in 'bench_local', 'bench_shared':
 statement = f'{function}(n={n}, count={count})'
 result = timeit.timeit(
 statement, number=number,
 setup=f'from __main__ import {function}',
)
 print(f'{statement}: {result:.3f}')

Now when executing this, we see the reason for not sharing memory if possible:

bench_local(n=1000, count=100): 0.598
bench_shared(n=1000, count=100): 4.157

The code using shared memory is roughly 8 times slower, which makes sense because my machine
has 8 cores. Since the shared memory example spends most of its time with locking/unlocking (which
can only be done by one process at the same time), we have effectively made the code run on a single
core again.

I should point out that this is pretty much the worst-case scenario for shared memory. Since all the
functions do is write to the shared variable, most of the time is spent locking and unlocking the
variables. If you were to do actual processing in the function and only write the results, it would be
much better already.

You might be curious about how we could rewrite this example the right way while still using shared
variables. In this case it is rather easy, but this largely depends on your specific use case and this
might not work for you:

def triangle_number_shared_efficient(n):
 total = 0
 for i in range(n + 1):
 total += i

 with Shared.value.get_lock():

Multiprocessing – When a Single CPU Core Is Not Enough490

 Shared.value.value += total

This code runs almost as fast as the bench_local() function. As a rule of thumb, just remember to
reduce the number of locks and writes as much as possible.

Sharing data between processes using managers
Now that we have seen how we can directly share memory to get the best performance possible, let’s
look at a far more convenient and much more flexible solution: the multiprocessing.Manager class.

Whereas shared memory restricted us to primitive types, with a Manager we can share anything that can
be pickled in a very easy way if we are willing to sacrifice a little bit of performance. The mechanism
it uses is very different, though; it connects through a network connection. The huge advantage of this
method is that you can even use this across multiple devices (which we will see later in this chapter).

The Manager itself is not an object you will use much, though you will probably use the objects pro-
vided by the Manager. The list is plentiful so we will only cover a few in detail, but you can always look
at the Python documentation for the current list of options: https://docs.python.org/3/library/
multiprocessing.html#managers.

One of the most convenient options for sharing data with multiprocessing is the multiprocessing.
Namespace object. The Namespace object behaves very similarly to a regular object, with the difference
being that it can be accessed as a shared memory object from all processes. As long as your objects
can be pickled, you can use them as attributes of a Namespace instance. To illustrate the usage of the
Namespace:

import multiprocessing

manager = multiprocessing.Manager()
namespace = manager.Namespace()

namespace.spam = 123
namespace.eggs = 456

As you can see in this example, you can simply set the attributes of namespace as you would expect from
regular objects, but they are shared between all processes. Since the locking now happens through
network sockets, the overhead is even larger than with shared memory, so only write data when you
must. Directly translating the earlier shared memory example to use a Namespace and explicit Lock
(a Namespace does not have a get_lock() method) yields the following code:

def triangle_number_namespace(namespace, lock, n):
 for i in range(n + 1):
 with lock:
 namespace.total += i

def bench_manager(n, count):

https://docs.python.org/3/library/multiprocessing.html#managers
https://docs.python.org/3/library/multiprocessing.html#managers

Chapter 14 491

 manager = multiprocessing.Manager()
 namespace = manager.Namespace()
 namespace.total = 0
 lock = manager.Lock()
 with multiprocessing.Pool() as pool:
 list(pool.starmap(
 triangle_number_namespace,
 ((namespace, lock, n) for _ in range(count)),
))
 print('Sum:', namespace.total)

As with the shared memory example, this is a really inefficient case because we are locking for each
iteration of the loop, and it really shows. While the local version took about 0.6 seconds and the shared
memory version took about 4 seconds, this version takes a whopping 90 seconds for effectively the
same operation.

Once again, we can easily speed it up by reducing the time spent in the synchronized/locked code:

def triangle_number_namespace_efficient(namespace, lock, n):
 total = 0
 for i in range(n + 1):
 total += i

 with lock:
 namespace.total += i

When benchmarking this version with the same benchmark code as before, we can see that it is still
much slower than the 0.6 seconds we got with the local version:

bench_local(n=1000, count=100): 0.637
bench_manager(n=1000, count=100): 1.476

That being said, at least this is much more acceptable than the 90 seconds we would get otherwise.

Why are these locks so incredibly slow? For a proper lock to be set, all the parties need to agree that
the data is locked, which is a process that takes time. That simple fact slows down execution much
more than most people would expect. The server/process that runs the Manager needs to confirm to
the client that it has the lock; only once that has been done can the client read, write, and release the
lock again.

On a regular hard disk setup, database servers aren’t able to handle more than about 10 transactions
per second on the same row due to locking and disk latency. Using lazy file syncing, SSDs, and a bat-
tery-backed RAID cache, that performance can be increased to handle, perhaps, 100 transactions per
second on the same row. These are simple hardware limitations; because you have multiple processes
trying to write to a single target, you need to synchronize the actions between the processes, and that
takes a lot of time.

Multiprocessing – When a Single CPU Core Is Not Enough492

Even with the fastest hardware available, synchronization can lock all the processes and produce enor-
mous slowdowns, so if at all possible, try to avoid sharing data between multiple processes. Put simply,
if all the processes are constantly reading and writing from/to the same object, it is generally faster to
use a single process instead because the locking will effectively restrict you to a single process anyway.

Redis, one of the fastest data storage systems available, was fully single-threaded for over a decade
until 2020 because the locking overhead was not worth the benefit. Even the current threaded version
is effectively a collection of single-threaded servers with their own memory space to avoid locking.

Thread safety
When working with threads or processes, you need to be aware that you might not be the only one
modifying a variable at some point in time. There are many scenarios where this will not be an issue
and often you are lucky and it won’t affect you, but when it does it can cause bugs that are extremely
difficult to debug.

As an example, imagine having two bits of code incrementing a number at the same time and imagine
what could go wrong. Initially, let’s assume the value is 10. With multiple threads, this could result in
the following sequence:

1.	 Two threads fetch the number to local memory to increment. It is currently 10 for both.
2.	 Both threads increment the number in their local memory to 11.
3.	 Both threads write the number back from local memory (which is 11 for both) to the global

one, so the global number is now 11.

Since both threads fetched the number at the same time, one overwrote the increment of the other
with its own increment. So instead of incrementing twice, you now have a variable that was only
incremented once.

In many cases, the current GIL implementation in CPython will protect you from these issues when
using threading, but you should never take that protection for granted and make sure to protect your
variables if multiple threads might update your variable at the same time.

Perhaps an actual code example might make the scenario a bit clearer:

import time
import concurrent.futures

counter = 10

def increment(name):
 global counter
 current_value = counter
 print(f'{name} value before increment: {current_value}')
 counter = current_value + 1

Chapter 14 493

 print(f'{name} value after increment: {counter}')

print(f'Before thread start: {counter}')

with concurrent.futures.ThreadPoolExecutor() as executor:
 executor.map(increment, range(3))
print(f'After thread finish: {counter}')

As you can see, the increment function stores counter in a temporary variable, prints it, and writes to
counter after adding 1 to it. This example is admittedly a bit contrived because you would normally
do counter += 1 instead, which reduces the odds of unexpected behaviour, but even in that case you
have no guarantee that your results are correct.

To illustrate the output of this script:

$ python3 T_12_thread_safety.py
Before thread start: 10
0 value before increment: 10
0 value after increment: 11
1 value before increment: 11
1 value after increment: 12
2 value before increment: 11
2 value after increment: 12
4 value before increment: 12
4 value after increment: 13
3 value before increment: 12
3 value after increment: 13
After thread finish: 13

Why did we end up with 13 at the end? Pure luck really. Some of my attempts resulted in 15, some in
11, and others in 14. That’s what makes thread safety issues so incredibly hard to debug; in a com-
plicated codebase, it can be really hard to figure out what is causing the bug and you cannot reliably
reproduce the issue.

To make your code thread-safe, you have a few different options:

•	 This might seem obvious, but if you don’t update shared variables from multiple threads/
processes in parallel then there is nothing to worry about.

When experiencing strange and hard-to-explain errors in a system using multiple threads/
processes, make sure to see if they also occur when running single-threaded. Mistakes
like these are easily made and can easily be introduced by third-party code that was not
meant to be thread-safe.

Multiprocessing – When a Single CPU Core Is Not Enough494

•	 Use atomic operations when modifying your variables. An atomic operation is one that executes in a
single instruction so no conflicts could ever arise. For example, incrementing a number could be an
atomic operation where the fetching, incrementing, and updating happens in a single instruction.
Within Python, an increment is usually done with counter += 1 which is actually a shorthand
for counter = counter + 1. Can you see the issue here? Instead of incrementing counter
internally, Python will write a new value to the variable counter, which means it is not an
atomic operation.

•	 Use locks to protect your variables.

Knowing these options for thread-safe code, you might be wondering which operations are thread-safe
and which aren’t. Luckily, Python does have some documentation about the issue, and I would strongly
recommend looking at it as this is prone to change in the future: https://docs.python.org/3/faq/
library.html#what-kinds-of-global-value-mutation-are-thread-safe.

For the current CPython versions (at least CPython 3.10 and below) where the GIL is protecting us, we
can assume these operations to be atomic and therefore thread-safe:

L.append(x)
L1.extend(L2)
x = L[i]
x = L.pop()
L1[i:j] = L2
L.sort()
x = y
x.field = y
D[x] = y
D1.update(D2)
D.keys()

These are not atomic and not thread-safe:

i = i+1
L.append(L[-1])
L[i] = L[j]
D[x] = D[x] + 1

What could we do to make i = i + 1 thread-safe? The most obvious solution is to use our own lock,
similar to the GIL:

This lock needs to be the same object for all threads
lock = threading.Lock()
i = 0

def increment():
 global i

https://docs.python.org/3/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe
https://docs.python.org/3/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe

Chapter 14 495

 with lock():
 i += 1

As you can see, with a lock we can protect the updates for a variable easily. I should note that even
though we used a global variable in this case, the same limitation applies for the attributes of class
instances and other variables as well.

Naturally, this all applies to multiprocessing as well, with the subtle difference that variables are not
shared by default with multiple processes, so you need to do something to explicitly cause an issue.
Having said that, the earlier shared memory and Manager examples break immediately if you remove
the locks from them.

Deadlocks
Now that you know how to update your variables in a thread-safe manner, you might be hoping that
we are done with threading limitations. Unfortunately, the opposite is true. The locks we used to make
our variable updates thread-safe can actually introduce another issue that can be even more devious
to solve: deadlocks.

A deadlock can occur when threads or processes are holding a lock while waiting for another thread/
process to release a lock. In some cases, you can even have a thread/process that is waiting for itself. To
illustrate, let’s assume that we have locks a and b and two different threads. Now the following occurs:

1.	 Thread 0 locks a
2.	 Thread 1 locks b
3.	 Thread 0 waits for lock b
4.	 Thread 1 waits for lock a

Now thread 1 is waiting for thread 0 to finish, and vice versa. Neither will ever finish because they
are waiting for each other.

To illustrate this scenario:

import time
import threading

a = threading.Lock()
b = threading.Lock()

def thread_0():
 print('thread 0 locking a')
 with a:
 time.sleep(0.1)
 print('thread 0 locking b')
 with b:

Multiprocessing – When a Single CPU Core Is Not Enough496

 print('thread 0 everything locked')

def thread_1():
 print('thread 1 locking b')
 with b:
 time.sleep(0.1)
 print('thread 1 locking a')
 with a:
 print('thread 1 everything locked')

threading.Thread(target=thread_0).start()
threading.Thread(target=thread_1).start()

The code is relatively straightforward but warrants at least some explanation. As previously discussed,
the thread_0 function locks a first and b after and thread_1 does this in the reverse order. This is
what causes the deadlock; they will each wait for the other to finish. To be sure we actually reach the
deadlock in this example, we have a small sleep to make sure thread_0 does not finish before thread_1
starts. In real-world scenarios, you would have some code in that bit that would take time as well.

How can we resolve locking issues like these? Locking strategies and resolving these issues could easily
fill a chapter by themselves and there are several different types of locking problems and solutions.
You could even have a livelock problem where both threads are attempting to resolve the deadlock
problem at the same time with the same method, causing them to also wait for each other but with
constantly changing locks.

An easy way to visualize a livelock is to think of a narrow part of a road where two cars are approaching
from opposite sides. Both cars would attempt to drive at the same time and both would back off when
they notice that the other car is moving. Repeat that and you have a livelock.

In general, there are several strategies that you can employ to avoid deadlocks:

•	 Deadlocks can only occur when you have multiple locks, so if your code only ever acquires a
single lock at the same time, no problems can occur.

•	 Try to keep the lock section small so there is less chance of accidentally adding another lock
within that block. This can also help performance because a lock can make your parallel code
essentially single-threaded again.

•	 This is probably the most important tip for fixing deadlocks. Always have a consistent locking
order. If you always lock in the same order, you can never have deadlocks. Let’s explain how
this helps:With the earlier example and the two locks a and b, the problem occurred because
thread 0 was waiting for b and thread 1 was waiting for a.If they both had attempted to lock a
first and b after, we never would have reached the deadlock state because one of the threads
would lock a and that would cause the other thread to stall long before b could ever be locked.

Chapter 14 497

Thread-local variables
We have seen how to lock variables so only a single thread can modify a variable simultaneously. We
have also seen how we can prevent deadlocks while using locks. What if we want to give a thread a
separate global variable? That is where threading.local comes in: it gives you a context specifically
for your current thread. This can be useful for database connections, for example; you probably want
to give each thread its own database connection, but having to pass around the connection is incon-
venient, so a global variable or connection manager is a much more convenient option.

This section does not apply to multiprocessing, since variables are not automatically shared between
processes. A forked process can inherit the variables from the parent, however, so care must be taken
to explicitly initialize non-shared resources.

Let’s illustrate the usage of thread-local variables with a small example:

import threading
import concurrent.futures

context = threading.local()

def init_counter():
 context.counter = 10

def increment(name):
 current_value = context.counter
 print(f'{name} value before increment: {current_value}')
 context.counter = current_value + 1
 print(f'{name} value after increment: {context.counter}')

init_counter()
print(f'Before thread start: {context.counter}')

with concurrent.futures.ThreadPoolExecutor(
 initializer=init_counter) as executor:
 executor.map(increment, range(5))

print(f'After thread finish: {context.counter}')

This example is largely the same as the thread-safety example, but instead of having a global counter
variable, we are now using threading.local() as a context to set the counter variable to. We are
also using an extra feature of the concurrent.futures.ThreadPoolExecutor here, the initializer
function. Since a thread-local variable only exists within that thread and is not automatically copied
to other threads, all threads (including the main thread) need to have counter set separately. Without
setting it, we would get an AttributeError.

Multiprocessing – When a Single CPU Core Is Not Enough498

When running the code, we can see that all threads are independently updating their variables instead
of the completely mixed version we saw in the thread-safety example:

$ python3 T_15_thread_local.py
Before thread start: 10
0 value before increment: 10
0 value after increment: 11
1 value before increment: 10
2 value before increment: 11
1 value after increment: 11
3 value before increment: 10
3 value after increment: 11
2 value after increment: 12
4 value before increment: 10
4 value after increment: 11
After thread finish: 10

If possible, I would always recommend returning variables from a thread or appending them to a
post-processing queue and never updating a global variable or global state because it is faster and
less error-prone. Using thread-local variables can really help you in these cases to make sure you have
only one instance of a connection or collection class.

Now that we know how to share (or stop sharing) variables, it is time to learn about the advantages and
disadvantages of using threads as opposed to processes. We should have a basic grasp of memory man-
agement with threads and processes now. With all of these options, what should we choose and why?

Processes, threads, or a single thread?
Now that we know how to use multiprocessing, threading and concurrent.futures, which should
you choose for your case?

Since concurrent.futures implements both threading, and multiprocessing, you can mentally
exchange threading in this section with concurrent.futures.ThreadPoolExecutor. The same goes
for multiprocessing and concurrent.futures.ProcessPoolExecutor, of course.

When we consider the choice between single-threaded, multithreaded, and multiprocess, there are
multiple factors that we can consider.

The first and most important question you should ask yourself is whether you really need to use
threading or multiprocessing. Often, code is fast enough and you should ask yourself if the cost of
dealing with the potential side effects of memory sharing and such is worth it. Not only does writing
code become more complicated when parallel processing is involved, but the complexity of debugging
is multiplied as well.

Second, you should ask yourself what is limiting your performance. If the limitation is external I/O,
then it could be useful to use asyncio or threading to handle that, but it is still no guarantee.

Chapter 14 499

For example, if you are reading a bunch of files from a slow hard disk, threading might not even help
you. If the hard disk is the limiting factor, it will not become faster no matter what you try. So before
you rewrite your entire codebase to function with threading, make sure to test if your solution has
any chance of working.

Assuming that your I/O bottleneck can be alleviated, then you still have the choice of asyncio versus
threading. Since asyncio is the fastest of the available options, I would opt for that solution if it works
with your codebase, but using threading is not a bad option either, of course.

If the GIL is your bottleneck due to heavy calculations from your Python code, then multiprocessing
can help you a lot. But even in those cases, multiprocessing is not your only option; for many slow
processes, it can also help to employ fast libraries such as numpy.

I am a great fan of the multiprocessing library and it is one of the easiest implementations of mul-
tiprocess code that I have seen so far, but it still comes with several caveats such as more difficult
memory management and deadlocks, as we have seen. So always consider if you actually need the
solution and if your problem is suitable for multiprocessing. If a large portion of code is written us-
ing functional programming it can be really easy to implement; if you need to interact with a lot of
external resources, such as databases, it can be really difficult to implement.

threading versus concurrent.futures
When given the choice, should you use threading or concurrent.futures? In my opinion, it depends
on what you are trying to do.

The advantages of threading over concurrent.futures are:

•	 We can specify the name of the thread explicitly, which can be seen in the task manager on
many operating systems.

•	 We can explicitly create and start a long-running thread for a function instead of relying on
the availability within a thread pool.

If your scenario allows you to choose, I believe you should use concurrent.futures instead of
threading for the following reasons:

•	 With concurrent.futures you can switch between threads and processes by using concurrent.
futures.ProcessPoolExecutor instead of concurrent.futures.ThreadPoolExecutor.

•	 With concurrent.futures you have the map() method to easily batch-process a list of items
without having the (potential) overhead of setting up and shutting down the thread.

•	 The concurrent.futures.Future objects as returned by the concurrent.futures methods
allow for fine-grained control of the results and the handling.

multiprocessing versus concurrent.futures
When it comes to multiprocessing, I think the concurrent.futures interface adds much less benefit
than it does in the case of threading, especially since multiprocessing.Pool essentially offers you a
nearly identical interface to concurrent.futures.ProcessPoolExecutor.

Multiprocessing – When a Single CPU Core Is Not Enough500

The advantages of multiprocessing over concurrent.futures are:

•	 Many advanced mapping methods such as imap_unordered and starmap.
•	 More control over the pool (i.e. terminate(), close()).
•	 It can be used across multiple machines.
•	 You can manually specify the startup method (fork, spawn, or forkserver), which gives you

control over how variables are copied from the parent process.
•	 You can choose the Python interpreter. Using multiprocessing.set_executable(), you could

run a Python 3.10 pool while running Python 3.9 for the main process.

The advantages of concurrent.futures over multiprocessing are:

•	 You can easily switch to the concurrent.futures.ThreadPoolExecutor.
•	 The returned Future objects allow for more fine-grained control over the result handling when

compared to the AsyncResult objects multiprocessing uses.

Personally, I prefer multiprocessing if you have no need for compatibility with threads because of
the advanced mapping methods.

Hyper-threading versus physical CPU cores
Hyper-threading is a technology that offers extra virtual CPU cores to your physical cores. The idea
is that, because these virtual CPU cores have separate caches and other resources, you can more
efficiently switch between multiple tasks. If you task-switch between two heavy processes, the CPU
won’t have to unload/reload all caches. When it comes to actual CPU instruction processing, however,
it will not help you.

When you truly maximize CPU usage, it is generally better to only use the physical processor count. To
demonstrate how this affects the performance, we will run a simple test with several process counts.
Since my processor has 8 cores (16 if you include hyper-threading), we will run it with 1, 2, 4, 8, 16,
and 32 processes to demonstrate how it affects the performance:

import timeit
import multiprocessing

def busy_wait(n):
 while n > 0:
 n -= 1

def benchmark(n, processes, tasks):
 with multiprocessing.Pool(processes=processes) as pool:
 # Execute the busy_wait function 'tasks' times with
 # parameter n

Chapter 14 501

 pool.map(busy_wait, [n for _ in range(tasks)])
 # Create the executor

if __name__ == '__main__':
 n = 100000
 tasks = 128
 for exponent in range(6):
 processes = int(2 ** exponent)
 statement = f'benchmark({n}, {processes}, {tasks})'
 result = timeit.timeit(
 statement,
 number=5,
 setup='from __main__ import benchmark',
)
 print(f'{statement}: {result:.3f}')

To keep the processor busy, we are using a while loop from n to 0 in the busy_wait() function. For the
benchmarking, we are using a multiprocessing.Pool() instance with the given number of processes
and running busy_wait(100000) 128 times:

$ python3 T_16_hyper_threading.py
benchmark(100000, 1): 3.400
benchmark(100000, 2): 1.894
benchmark(100000, 4): 1.208
benchmark(100000, 8): 0.998
benchmark(100000, 16): 1.124
benchmark(100000, 32): 1.787

As you can see, with my 8-core CPU with hyper-threading enabled, the version with 8 threads is ob-
viously the fastest. Even though the operating system task manager shows 16 cores, it is not always
faster to utilize more than the 8 physical cores. Additionally, due to the boosting behavior of modern
processors, you can see that using 8 processors is only 3.4 times faster than the single-threaded variant,
as opposed to the expected 8-times speedup.

This illustrates the problem with hyper-threading when heavily loading the processor with instruc-
tions. As soon as the single processes actually use 100% of a CPU core, the task switching between the
processes actually reduces performance. Since there are only 8 physical cores, the other processes
have to fight to get something done on the processor cores. Don’t forget that other processes on the
system and the operating system itself will also consume a bit of processing power.

If you are truly pressed for performance with a CPU-bound problem then matching the physical CPU
cores is often the best solution, but if locking is a bottleneck, then a single thread can be faster than
any multithreaded solution due to CPU boosting behavior.

Multiprocessing – When a Single CPU Core Is Not Enough502

If you do not expect to maximize all cores all the time, then I recommend not passing the processes
parameter to multiprocessing.Pool(), which causes it to default to os.cpu_count(), which returns
all cores including hyper-threaded ones.

It all depends on your use case, however, and the only way to know for certain is to test for your spe-
cific scenario. As a rule of thumb, I recommend the following:

•	 Disk I/O bound? A single process is most likely your best bet.
•	 CPU bound? The number of physical CPU cores is your best bet.
•	 Network I/O bound? Start with the defaults and tune if needed. This is one of the few cases

where 128 threads on an 8-core processor can still be useful.
•	 No obvious bound but many (hundreds of) parallel processes are needed? Perhaps you should

try asyncio instead of multiprocessing.

Note that the creation of multiple processes is not free in terms of memory and open files; while you
could have a nearly unlimited number of coroutines, this is not the case for processes. Depending
on your operating system configuration, you could reach the maximum open files limit long before
you even reach 100 processes, and even if you reach those numbers, CPU scheduling will be your
bottleneck instead.

So what should we do if our CPU cores are not enough? Simple: use more CPU cores. Where do we get
those? Multiple computers! It is time to graduate to distributed computing.

Remote processes
So far, we have only executed our scripts on multiple local processors, but we can actually expand this
much further. Using the multiprocessing library, it’s actually very easy to execute jobs on remote
servers, but the documentation is currently still a bit cryptic. There are actually a few ways of executing
processes in a distributed way, but the most obvious one isn’t the easiest one. The multiprocessing.
connection module has both the Client and Listener classes, which facilitate secure communication
between the clients and servers in a simple way.

Communication is not the same as process management and queue management, however; those
features require some extra effort. The multiprocessing library is still a bit bare in this regard, but
it’s most certainly possible given a few different processes.

Distributed processing using multiprocessing
We will start with a module containing a few constants that should be shared between all clients and
the server, so the secret password and the hostname of the server are available to all. In addition to
that, we will add our prime calculation functions, which we will be using later. The imports in the
following modules will expect this file to be stored as T_17_remote_multiprocessing/constants.py,
but feel free to call it anything you like as long as the imports and references keep working:

host = 'localhost'
port = 12345

Chapter 14 503

password = b'some secret password'

Next up, we define the functions that need to be available to both the server and the client. We will
store this as T_17_remote_multiprocessing/functions.py:

def primes(n):
 for i, prime in enumerate(prime_generator()):
 if i == n:
 return prime

def prime_generator():
 n = 2
 primes = set()
 while True:
 for p in primes:
 if n % p == 0:
 break
 else:
 primes.add(n)
 yield n
 n += 1

Now it’s time to create the actual server that links the functions and the job queue. We will store this
as T_17_remote_multiprocessing/server.py:

import multiprocessing
from multiprocessing import managers

import constants
import functions

queue = multiprocessing.Queue()
manager = managers.BaseManager(address=('', constants.port),
 authkey=constants.password)

manager.register('queue', callable=lambda: queue)
manager.register('primes', callable=functions.primes)

server = manager.get_server()
server.serve_forever()

After creating the server, we need to have a client script that sends the jobs. You could use a single
script for both sending and processing, but to keep things sensible we will use separate scripts.

Multiprocessing – When a Single CPU Core Is Not Enough504

The following script will add 0 to 999 to the queue for processing. We will store this as T_17_remote_
multiprocessing/submitter.py:

from multiprocessing import managers

import constants

manager = managers.BaseManager(
 address=(constants.host, constants.port),
 authkey=constants.password)
manager.register('queue')
manager.connect()

queue = manager.queue()
for i in range(1000):
 queue.put(i)

Lastly, we need to create a client to actually process the queue. We will store this as T_17_remote_
multiprocessing/client.py:

from multiprocessing import managers

import functions

manager = managers.BaseManager(
 address=(functions.host, functions.port),
 authkey=functions.password)
manager.register('queue')
manager.register('primes')
manager.connect()

queue = manager.queue()
while not queue.empty():
 print(manager.primes(queue.get()))

From the preceding code, you can see how we pass along functions; the manager allows the registering
of functions and classes that can be called from the clients as well. With that, we pass along a queue
from the multiprocessing class, which is safe for both multithreading and multiprocessing.

Now we need to start the processes themselves. First, the server that keeps on running:

$ python3 T_17_remote_multiprocessing/server.py

After that, run the producer to generate the prime generation requests:

$ python3 T_17_remote_multiprocessing/submitter.py

Chapter 14 505

Now we can run multiple clients on multiple machines to get the first 1,000 primes. Since these clients
now print the first 1,000 primes, the output is a bit too lengthy to show here, but you can simply run
this in parallel multiple times or on multiple machines to generate your output:

$ python3 T_17_remote_multiprocessing/client.py

Instead of printing, you can use queues or pipes to send the output to a different process if you’d like.
As you can see, though, it’s still a bit of work to process things in parallel and it requires some code
synchronization to work. There are a few alternatives available, such as Redis, ØMQ, Celery, Dask,
and IPython Parallel. Which of these is the best and most suitable depends on your use case. If you
are simply looking for processing tasks on multiple CPUs, then multiprocessing, Dask, and IPython
Parallel are probably your best choices. If you are looking for background processing and/or easy
offloading to multiple machines, then ØMQ and Celery are better choices.

Distributed processing using Dask
The Dask library is quickly becoming the standard for distributed Python execution. It has very tight
integration with many scientific Python libraries such as NumPy and Pandas, making parallel execution
in many cases completely transparent. These libraries are covered in detail in Chapter 15, Scientific
Python and Plotting.

The Dask library provides an easy parallel interface that can execute single-threaded, use multiple
threads, use multiple processes, and even use multiple machines. As long as you keep the data-shar-
ing limitations of multiple threads, processes, and machines in mind, you can easily switch between
them to see which performs best for your use case.

Installing Dask
The Dask library consists of multiple packages and you might not need all of them. Broadly speaking,
the Dask package is only the core, and we can choose from several extras, which can be installed
through pip install dask[extra]:

•	 array: Adds an array interface similar to numpy.ndarray. Internally, these structures consist of
multiple numpy.ndarray instances spread across your Dask cluster for easy parallel processing.

•	 dataframe: Similar to the array interface, this is a collection of pandas.DataFrame objects.
•	 diagnostics: Adds profilers, progress bars, and even a fully interactive dashboard with live

information about the currently running jobs.
•	 distributed: Packages needed for running Dask across multiple systems instead of locally only.
•	 complete: All of the above extras.

For the demonstrations in this chapter, we will need to install at least the distributed extra, so you
need to run either:

$ pip3 install -U "dask[distributed]"

Or:

$ pip3 install -U "dask[complete]"

Multiprocessing – When a Single CPU Core Is Not Enough506

If you are playing around with Jupyter notebooks, the progress bars in the diagnostics extra also
have Jupyter support, which can be useful.

Basic example
Let’s start with a basic example of executing some code via Dask without explicitly setting up a cluster.
To illustrate how this can help performance, we will be using a busy-wait loop to maximize CPU load.
In this case, we will be using the dask.distributed submodule, which has an interface quite similar
to concurrent.futures:

import sys
import datetime

from dask import distributed

def busy_wait(n):
 while n > 0:
 n -= 1

def benchmark_dask(client):
 start = datetime.datetime.now()

 # Run up to 1 million
 n = 1000000
 tasks = int(sys.argv[1]) # Get number of tasks from argv

 # Submit the tasks to Dask
 futures = client.map(busy_wait, [n] * tasks, pure=False)
 # Gather the results; this blocks until the results are ready
 client.gather(futures)

 duration = datetime.datetime.now() - start
 per_second = int(tasks / duration.total_seconds())
 print(f'{tasks} tasks at {per_second} per '
 f'second, total time: {duration}')

if __name__ == '__main__':
 benchmark_dask(distributed.Client())

The code is mostly straightforward, but there are a few small caveats to look at. First of all, when
submitting the task to Dask, you need to tell Dask that it is an impure function.

Chapter 14 507

Dask will automatically cache the results in the case of pure functions. If you have two identical calls,
Dask will only execute the function once.

To queue the tasks, we need to use a function such as client.map() or client.submit(). These work
in a very similar way to executor.submit() in the case of concurrent.futures.

Lastly, we need to fetch the results from the futures. This can be done by calling future.result(), or
in batch by using client.gather(futures). Once again, very similar to concurrent.futures.

To make the code a bit more flexible, we made the number of tasks configurable so it runs in a rea-
sonable amount of time on your system. If you have a much slower or much faster system, you will
want to adjust this to get useful results.

When we execute the script, we get the following results:

$ python3 T_18_dask.py 128
128 tasks at 71 per second, total time: 0:00:01.781836

That is how easily you can execute some code across all of your CPU cores. Naturally, we can also test
in single-threaded or distributed mode; the only part we need to vary is how we initialize distributed.
Client().

Running a single thread
Let’s run the same code but in single-threaded mode:

if __name__ == '__main__':
 benchmark_dask(distributed.Client())

Now if we run it, we can see that Dask was definitely using multiple processes before:

$ python3 T_19_dask_single.py 128
128 tasks at 20 per second, total time: 0:00:06.142977

This can be useful for debugging thread-safety issues. If the issues still persist in single-threaded mode,
thread safety is probably not your issue.

Distributed execution across multiple machines
For a much more impressive feat, let’s run the code on multiple machines at the same time. To run
Dask on multiple systems simultaneously, there are many deployment options available:

•	 Manual setup using the dask-scheduler and dask-worker commands
•	 Automatic deployment over SSH using the dask-ssh command

If you recall from Chapter 5, Functional Programming – Readability Versus Brevity, a pure
function in functional programming is one that has no side effects; its output is consistent
and only depends on the input. A function returning a random value is impure because
repeated calls return different results.

Multiprocessing – When a Single CPU Core Is Not Enough508

•	 Deployment straight to an existing compute cluster running Kubernetes, Hadoop, and others
•	 Deployment to cloud providers such as Amazon, Google, and Microsoft Azure

In this case, we are going to use dask-scheduler since it’s the solution that you can run on pretty
much any machine that can run Python.

Note that you can encounter errors if the Dask versions and dependencies are not in sync, so updating
to the latest version before starting is a good idea.

First, we start the dask-scheduler:

$ dask-scheduler
[...]
distributed.scheduler - INFO - Scheduler at: tcp://10.1.2.3:8786
distributed.scheduler - INFO - dashboard at: :8787

Once you have the dask-scheduler running, it will also host the dashboard mentioned above, which
shows the current status: http://localhost:8787/status.

Now we can run the dask-worker processes on all machines that need to participate:

$ dask-worker --nprocs auto tcp://10.1.2.3:8786

With the --nprocs parameter, you can set the number of processes to start. With auto, it is set to the
number of CPU cores including hyper-threading. When set to a positive number, it will start that exact
number of processes; when set to a negative number the number is added to the number of CPU cores.

Your dashboard screen and the console should show all of the connected clients now. It’s time to run
our script again, but distributed this time:

if __name__ == '__main__':
 benchmark_dask(distributed.Client('localhost:8786'))

That’s the only thing we need to do: configure where the scheduler is running. Note that we could also
connect from other machines using the IP or hostname instead.

Let’s run it and see if it became any faster:

$ python3 T_20_dask_distributed.py 2048
[...]
2048 tasks at 405 per second, total time: 0:00:05.049570

Wow, that’s quite a difference! Instead of the 20 per second we could do in single-threaded mode or
the 71 per second we could do in multiple-process mode, we can now process 405 of these tasks per
second. As you can see, it also took very little effort to set up.

The Dask library has many more options to increase efficiency, limit memory, prioritize work, and
more. We didn’t even cover the combining of tasks by chaining them or running a reduce on bun-
dled results. I can strongly recommend considering Dask if your code could benefit from running on
multiple systems at the same time.

Chapter 14 509

Distributed processing using ipyparallel
The IPython Parallel module, similar to Dask, makes it possible to process code on multiple computers
at the same time. It should be noted that you can run Dask on top of ipyparallel. The library supports
more features than you are likely to need, but the basic usage is important to know just in case you
need to do heavy calculations that can benefit from multiple computers.

First, let’s start by installing the latest ipyparallel package and all the IPython components:

$ pip3 install -U "ipython[all]" ipyparallel

Especially on Windows, it might be easier to install IPython using Anaconda instead, as it includes
binaries for many science, math, engineering, and data analysis packages. To get a consistent instal-
lation, the Anaconda installer is also available for OS X and Linux systems.

Secondly, we need a cluster configuration. Technically, this is optional, but since we are going to create a
distributed IPython cluster, it is much more convenient to configure everything using a specific profile:

$ ipython profile create --parallel --profile=mastering_python
[ProfileCreate] Generating default config file: '~/.ipython/profile_mastering_
python/ipython_config.py'
[ProfileCreate] Generating default config file: '~/.ipython/profile_mastering_
python/ipython_kernel_config.py'
[ProfileCreate] Generating default config file: '~/.ipython/profile_mastering_
python/ipcontroller_config.py'
[ProfileCreate] Generating default config file: '~/.ipython/profile_mastering_
python/ipengine_config.py'
[ProfileCreate] Generating default config file: '~/.ipython/profile_mastering_
python/ipcluster_config.py'

These configuration files contain a huge number of options, so I recommend searching for a specific
section instead of walking through them. A quick listing gave me about 2,500 lines of configuration in
total for these five files. The filenames already provide hints about the purpose of the configuration
files, but we’ll walk through the files explaining their purpose and some of the most important settings.

ipython_config.py
This is the generic IPython configuration file; you can customize pretty much everything about your
IPython shell here. It defines how your shell should look, which modules should be loaded by de-
fault, whether or not to load a GUI, and quite a bit more. For the purpose of this chapter, it’s not all
that important, but it’s definitely worth a look if you’re going to use IPython more often. One of the
things you can configure here is the automatic loading of extensions, such as line_profiler and
memory_profiler discussed in Chapter 12, Performance – Tracking and Reducing Your Memory and CPU
Usage. For example:

c.InteractiveShellApp.extensions = [
 'line_profiler',

Multiprocessing – When a Single CPU Core Is Not Enough510

 'memory_profiler',
]

ipython_kernel_config.py
This file configures your IPython kernel and allows you to overwrite/extend ipython_config.py. To
understand its purpose, it’s important to know what an IPython kernel is. The kernel, in this context,
is the program that runs and introspects the code. By default, this is IPyKernel, which is a regular
Python interpreter, but there are also other options such as IRuby or IJavascript to run Ruby or
JavaScript respectively.

One of the more useful options is the possibility of configuring the listening port(s) and IP addresses
for the kernel. By default, the ports are all set to use a random number, but it is important to note that
if someone else has access to the same machine while you are running your kernel, they will be able
to connect to your IPython kernel, which can be dangerous on shared machines.

ipcontroller_config.py
ipcontroller is the master process of your IPython cluster. It controls the engines and the distribution
of tasks and takes care of tasks such as logging.

The most important parameter in terms of performance is the TaskScheduler setting. By default, the
c.TaskScheduler.scheme_name setting is set to use the Python LRU scheduler, but depending on your
workload, others such as leastload and weighted might be better. If you have to process so many
tasks on such a large cluster that the scheduler becomes the bottleneck, there is also the plainrandom
scheduler, which works surprisingly well if all your machines have similar specs and the tasks have
similar durations.

For the purpose of our test, we will set the IP of the controller to *, which means that all IP addresses
will be accepted and that every network connection will be accepted. If you are in an unsafe environ-
ment/network and/or don’t have any firewalls that allow you to selectively enable certain IP addresses,
then this method is not recommended! In such cases, I recommend launching through more secure
options, such as SSHEngineSetLauncher or WindowsHPCEngineSetLauncher, instead.

Assuming your network is indeed safe, set the factory IP to all the local addresses:

c.HubFactory.client_ip = '*'
c.RegistrationFactory.ip = '*'

Now start the controller:

$ ipcontroller --profile=mastering_python
[IPControllerApp] Hub listening on tcp://*:58412 for registration.
[IPControllerApp] Hub listening on tcp://127.0.0.1:58412 for registration.
...
 [IPControllerApp] writing connection info to ~/.ipython/profile_mastering_
python/security/ipcontroller-client.json

Chapter 14 511

[IPControllerApp] writing connection info to ~/.ipython/profile_mastering_
python/security/ipcontroller-engine.json
...

Pay attention to the files that were written to the security directory of the profile directory. They con-
tain the authentication information that is used by ipengine to find and connect to the ipcontroller,
such as the encryption keys and port information.

ipengine_config.py
ipengine is the actual worker process. These processes run the actual calculations, so to speed up the
processing you will need these on as many machines as you have available. You probably won’t need
to change this file, but it can be useful if you want to configure centralized logging or need to change
the working directory. Generally, you don’t want to start the ipengine process manually since you will
most likely want to launch multiple processes per computer. That’s where our next command comes
in, the ipcluster command.

ipcluster_config.py
The ipcluster command is actually just an easy shorthand to start a combination of ipcontroller and
ipengine at the same time. For a simple local processing cluster, I recommend using this, but when
starting a distributed cluster, it can be useful to have the control that the separate use of ipcontroller
and ipengine offers. In most cases the command offers enough options, so you might have no need
for the separate commands.

The most important configuration option is c.IPClusterEngines.engine_launcher_class, as this
controls the communication method between the engines and the controller. Along with that, it
is also the most important component for secure communication between the processes. By de-
fault it’s set to ipyparallel.apps.launcher.LocalControllerLauncher, which is designed for local
processes, but ipyparallel.apps.launcher.SSHEngineSetLauncher is also an option if you want
to use SSH to communicate with the clients. Alternatively, there is ipyparallel.apps.launcher.
WindowsHPCEngineSetLauncher for Windows HPC.

Before we can create the cluster on all machines, we need to transfer the configuration files. Your
options are to transfer all the files or to simply transfer the files in your IPython profile’s security
directory.

Now it’s time to start the cluster. Since we already started the ipcontroller separately, we only need
to start the engines. On the local machine, we simply need to start it, but the other machines don’t
have the configuration yet. One option is copying the entire IPython profile directory, but the only file
that really needs copying is security/ipcontroller-engine.json; after creating the profile using the
profile creation command, that is. So unless you are going to copy the entire IPython profile directory,
you need to execute the profile creation command again:

$ ipython profile create --parallel --profile=mastering_python

Multiprocessing – When a Single CPU Core Is Not Enough512

After that, simply copy the ipcontroller-engine.json file and you’re done. Now we can start the
actual engines:

$ ipcluster engines --profile=mastering_python -n 4
[IPClusterEngines] IPython cluster: started
[IPClusterEngines] Starting engines with [daemon=False]
[IPClusterEngines] Starting 4 Engines with LocalEngineSetLauncher

Note that the 4 here was chosen for a quad-core processor, but any number would do. The default
will use the number of logical processor cores, but depending on the workload it might be better to
match the number of physical processor cores instead.

Now we can run some parallel code from our IPython shell. To demonstrate the performance differ-
ence, we will use a simple sum of all the numbers from 0 to 10,000,000. Not an extremely heavy task,
but when performed 10 times in succession, a regular Python interpreter takes a while:

In [1]: %timeit for _ in range(10): sum(range(10000000))
1 loops, best of 3: 2.27 s per loop

This time however, to illustrate the difference, we will run it 100 times to demonstrate how fast a
distributed cluster is. Note that this is with only a three-machine cluster, but it’s still quite a bit faster:

In [1]: import ipyparallel

In [2]: client = ipyparallel.Client(profile='mastering_python')
In [3]: view = client.load_balanced_view()
In [4]: %timeit view.map(lambda _: sum(range(10000000)), range(100)).wait()
1 loop, best of 3: 909 ms per loop

More fun, however, is the definition of parallel functions in ipyparallel. With just a simple decorator,
a function is marked as parallel:

In [1]: import ipyparallel

In [2]: client = ipyparallel.Client(profile='mastering_python')
In [3]: view = client.load_balanced_view()
In [4]: @view.parallel()
 ...: def loop():
 ...: return sum(range(10000000))
 ...:
In [5]: loop.map(range(10))
Out[5]: <AsyncMapResult: loop>

The ipyparallel library offers many more useful features, but that is outside the scope of this book.
Even though ipyparallel is a separate entity from the rest of Jupyter/IPython, it does integrate well,
which makes combining them easy enough.

Chapter 14 513

Exercises
While preparing for multiple threads and/or multiple processes is less invasive than preparing for
asyncio is, it still requires a bit of thought if you have to pass or share variables. So, this is really a
question of how difficult you want to make it for yourself.

See if you can make an echo server and client as separate processes.Even though we did not cover
multiprocessing.Pipe(), I trust you can work with it regardless. It can be created through a, b =
multiprocessing.Pipe() and you can use it with [a/b].send() and [a/b].recv().

•	 Read all files in a directory and sum the size of the files by reading each file using threading
and multiprocessing, or concurrent.futures if you want an easier exercise. If you want an
extra challenge, walk through the directories recursively by letting the thread/process queue
new items while running.

•	 Create a pool of workers that keeps waiting for items to be queued through multiprocessing.
Queue(). Bonus points if you make it a safe RPC (remote procedure call) type operation.

•	 Apply your functional programming skills and calculate something in a parallel way. Perhaps
parallel sorting?

All of these exercises are unfortunately still easy compared to what you can experience in the wild.
If you really want a challenge, start applying these techniques (especially memory sharing) to your
existing or new projects and hope (or not) that you run into a real challenge.

Summary
We have covered many different topics in this chapter, so let’s summarize them:

•	 What the Python GIL is, why we need it, and how we can work around it
•	 When to use threads, when to use processes, and when to use asyncio
•	 Running code in parallel threads using threading and concurrent.futures
•	 Running code in parallel processes using multiprocessing and concurrent.futures
•	 Running code distributed across multiple machines
•	 Sharing data between threads and processes
•	 Thread safety
•	 Deadlocks

The most important lesson you can learn from this chapter is that the synchronization of data between
threads and processes is really slow. Whenever possible, you should only send data to the function
and return once it is done, with nothing in between. Even in that case, if you can send less data, send
less data. If possible, keep your calculations and data local.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Multiprocessing – When a Single CPU Core Is Not Enough514

In the next chapter, we will learn about scientific Python libraries and plotting. These libraries can
help you perform difficult calculations and data processing in record time. These libraries are mostly
highly optimized for performance and go great together with multiprocessing or the Dask library.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

15
Scientific Python and Plotting

The Python programming language is quite suited for scientific work. This is due to it being really easy
to program for while being powerful enough to do almost anything you need. This combination has
spawned a whole bunch of (very large) Python projects, such as numpy, scipy, matplotlib, pandas, and
so on, over the years. While these libraries are all large enough to warrant entire books for themselves,
we can offer a little insight into where and when they can be useful so you have an idea of where to start.

The major topics and libraries covered in this chapter are split into three sections:

•	 Arrays and matrices: NumPy, Numba, SciPy, Pandas, statsmodels, and xarray
•	 Mathematics and precise calculations: gmpy2, Sage, mpmath, SymPy, and Patsy
•	 Plotting, graphing, and charting: Matplotlib, Seaborn, Yellowbrick, Plotly, Bokeh, and Data-

shader

It is very likely that not all libraries in this chapter are relevant to you, so don’t feel bad for not reading
through all of it. However, I would recommend you at least look at the NumPy and Pandas sections
briefly, as they are used heavily in the next chapter on machine learning.

Additionally, I would also recommend taking a look at the Matplotlib and Plotly sections, since those
could be very useful in a wide range of scenarios.

Installing the packages
As is always the case with Python libraries that are built on C and other non-Python code, installing
is very platform-dependent. On most platforms, thanks to binary wheels, we can simply do:

$ pip3 install <package>

For this and the next chapter, however, I would recommend an alternative solution instead. While
some of the libraries, such as numpy, are easy to install on most platforms, some of the other libraries
are more challenging. For this reason, I would recommend the use of either the Anaconda distribution
or one of the Jupyter Docker Stacks.

Scientific Python and Plotting516

The Jupyter Docker Stacks require you to have Docker working on your system, but if you do, it can be
extremely easy to launch very complicated systems that would be near impossible to set up otherwise.
The list of available stacks can be found here: https://jupyter-docker-stacks.readthedocs.io/
en/latest/using/selecting.html#core-stacks.

A good starting point for this chapter is the jupyter/scipy-notebook stack, which includes a huge list
of packages such as numpy, scipy, numba, matplotlib, cython, and many more. Running this image
(assuming you have Docker running) is as easy as:

$ docker run -p 8888:8888 jupyter/scipy-notebook

After running the command, it will give you some information on how to open Jupyter in your browser.

Arrays and matrices
Matrices are at the heart of most scientific Python and artificial intelligence libraries because they are
very convenient for storing a lot of related data. They are also suitable for really fast bulk processing,
and calculations on them can be performed much faster than you could achieve with many separate
variables. In some cases, these calculations can even be offloaded to the GPU for even faster processing.

Note that a 0D matrix is effectively a single number, a 1D matrix is a regular array, and there is no real
limit to the number of dimensions you can use. It should be noted that both size and processing time
quickly increase with multiple dimensions, of course.

NumPy – Fast arrays and matrices
The numpy package spawned most of the scientific Python development and is still used at the core of
many of the libraries covered in this chapter and the next. The library is largely (where it matters, at
least) written in C, which makes it extremely fast; we will see a few benchmarks later, but depending
on the operation, it can easily be 100 times faster than pure Python for the CPython interpreter.

Since numpy has numerous features, we can only cover a few of the basics. But these already demon-
strate how incredibly powerful (and fast) it is and why it is the basis for many of the other scientific
Python packages in this chapter.

The core feature of the numpy library is the numpy.ndarray object. The numpy.ndarray object is im-
plemented in C and offers a very fast and memory-efficient array. It can be represented as a single-di-
mension array or a multi-dimensional matrix with very powerful slicing features. You can store any
Python object in one of these arrays, but to take full benefit of the power of numpy, you will need to
use numbers such as integers or floating point numbers.

Let’s look at a few basic examples of how this array can be used and why it is very convenient:

One important thing to note about numpy arrays is that they have a fixed size and cannot
be resized because they reserve a contiguous block of memory. If you need to make them
smaller or larger, you will need to create a new array.

https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#core-stacks
https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#core-stacks

Chapter 15 517

A commonly used shorthand for numpy is np
>>> import numpy as np

Generate a list of numbers from 0 up to 1 million
>>> a = np.arange(1000000)
>>> a
array([0, 1, 2, ..., 999997, 999998, 999999])

Change the shape (still references the same data) to a
2-dimensional 1000x1000 array
>>> b = a.reshape((1000, 1000))
>>> b
array([[0, 1, 2, ..., 997, 998, 999],
 [1000, 1001, 1002, ..., 1997, 1998, 1999],
 ...,
 [998000, 998001, 998002, ..., 998997, 998998, 998999],
 [999000, 999001, 999002, ..., 999997, 999998, 999999]])

The first row of the matrix
>>> b[0]
array([0, 1, 2, 3, ..., 995, 996, 997, 998, 999])

The first column of the matrix
>>> b[:, 0]
array([0, 1000, 2000, ..., 997000, 998000, 999000])

Row 10 up to 12, the even columns between 20 and 30
>>> b[10:12, 20:30:2]
array([[10020, 10022, 10024, 10026, 10028],
 [11020, 11022, 11024, 11026, 11028]])

Row 10, columns 5 up to 10:
>>> b[10, 5:10]
array([10005, 10006, 10007, 10008, 10009])

Alternative syntax for the last slice
>>> b[10][5:10]
array([10005, 10006, 10007, 10008, 10009])

As you can see, the slicing options of numpy are very powerful, but what is even more useful about
these slices is that they are all references/views instead of copies.

Scientific Python and Plotting518

This means that if you modify the data in a slice, the original array will be modified as well. To illustrate
using the array we created in the earlier examples:

>>> b[0] *= 10
>>> b[:, 0] *= 20

>>> a
array([0, 10, 20, ..., 999997, 999998, 999999])
>>> b[0:2]
array([[0, 10, 20, ..., 9970, 9980, 9990],
 [20000, 1001, 1002, ..., 1997, 1998, 1999]])

As you can see, after modifying the first row and the first column for each row, we now see that a, b,
and consequently all slices of a and b have been modified; and all of that in a single operation instead
of having to loop.

Let’s try to run a simple benchmark to see how fast numpy can be at certain operations. If you are
familiar with linear algebra, you undoubtedly know what a dot product is. If not, the dot product is
an algebraic operation on two equal-length arrays of numbers, which are multiplied pair-wise and
summed after. In mathematical terms, it looks like this:

𝑎𝑎 𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 = 𝑎𝑎0 ∗ 𝑏𝑏0 + 𝑎𝑎1 ∗ 𝑏𝑏1 + ⋯+ 𝑎𝑎𝑛𝑛 ∗𝑛𝑛
𝑖𝑖𝑖𝑖 𝑏𝑏𝑛𝑛

It is a rather simple procedure and not that computationally heavy, but still something that is much
faster when executed through numpy.

To easily time the results, we will execute this from an IPython shell:

In [1]: import numpy

In [2]: a = list(range(1000000))
In [3]: b = numpy.array(a)

In [4]: def dot(xs, ys):
 ...: total = 0
 ...: for x, y in zip(xs, ys):

 The goal of the dot product is to apply the growth of the second vector (array) onto the first
vector. When applied to matrices, this can be used to move/rotate/scale a point or even an
n-dimensional object. Simply put, if you have a 3D model stored in numpy, you can run a
full transform on it using numpy.dot. Some examples of these operations can be found
in my numpy-stl package: https://pypi.org/project/numpy-stl/.

Within this example, we will keep to the standard dot product of two 1-dimensional arrays,
however.

https://pypi.org/project/numpy-stl/.

Chapter 15 519

 ...: total += x * y
 ...: return total
 ...:

In [5]: %timeit dot(a, a)
78.7 ms ± 1.03 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [6]: %timeit numpy.dot(b, b)
518 µs ± 27.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In this basic example, we can see that the pure Python version takes 78.7 ms and the numpy version
takes 518 µs. That means that the numpy version is 150 times faster. Depending on what you are trying
to do and on the size of the array, the advantage can be far greater.

To create an array, there are several options available, but the following are the most useful in my
experience:

•	 numpy.array(source_array) creates an array from a different array (as we saw in the previous
example).

•	 numpy.arange(n) creates an array with the given range. Effectively identical to numpy.
array(range(n)).

•	 numpy.zeros(n) creates an array of size n, filled with zeros. It also supports tuples to create
matrices: numpy.zeros((x, y, z)).

•	 numpy.fromfunction(function, (x, y, z)) creates an array with the given shape using the
given function. It should be noted that this function will be passed the index/indices of the
current item, so the x, y, and z indices in this case.

The numpy library has many more useful functions, but at the very least it offers an array with nearly
unbeatable performance and a very easy-to-use interface.

Numba – Faster Python on CPU or GPU
We already covered the basics of numba in Chapter 12, Performance – Tracking and Reducing Your Memory
and CPU Usage. Combined with numpy, numba gets even more powerful because it natively supports
functions that broadcast over numpy arrays (numpy calls these ufuncs or universal functions), similar
to how the built-in numpy functions work. The only important difference between a regular numba
function and one that supports numpy per-element processing is which decorator function you use.
Normally you would use numba.jit(); for numpy per-element processing you need to use the numba.
vectorize(...) decorator with the input and output types as parameters:

>>> import numpy
>>> import numba

>>> numbers = numpy.arange(500, dtype=numpy.int64)

>>> @numba.vectorize([numba.int64(numba.int64)])

Scientific Python and Plotting520

... def add_one(x):

... return x + 1

>>> numbers
array([0, 1, 2, ..., 498, 499])

>>> add_one(numbers)
array([1, 2, 3, ..., 499, 500])

Adding 1 is a useless example of course, but you can do anything you want here, which makes it very
useful. The real point is how easy it is; as long as your function is purely functional (in other words,
does not mutate external variables), it can be made extremely fast with very little effort. That is also the
reason why several of the other libraries in this chapter heavily depend on numba for their performance.

In addition to the numba.vectorize() decorator, we have several other options available, such as the
numba.jitclass() decorator for JIT-compiling an entire class, or the numba.jit_module() function
to enhance an entire module.

SciPy – Mathematical algorithms and NumPy utilities
The scipy (Scientific Python) package contains a collection of mathematical algorithms for many dif-
ferent problems. The functions vary from signal processing to spatial algorithms to statistical functions.

Here’s a list of some of the current sub-packages available in the scipy library (according to the scipy
manual):

•	 cluster: Clustering algorithms such as k-means
•	 fftpack: Fast Fourier Transform routines
•	 integrate: Integration and ordinary differential equation solvers
•	 interpolate: Interpolation and spline smoothing functions
•	 linalg: Linear algebra functions such as linear equation solving
•	 ndimage: N-dimensional image processing
•	 odr: Orthogonal distance regression
•	 optimize: Optimization and root-finding routines

As we specified numba.vectorize([numba.int64(numba.int64)]), our function will
only accept a 64-bit integer and will return a 64-bit integer. To create a function that takes
two 32- or 64-bit floats and returns a 64-bit integer, we would use the following:

@numba.vectorize([
 numba.int64(numba.float32, numba.float32),
 numba.int64(numba.float64, numba.float64),
])

Chapter 15 521

•	 signal: Signal processing functions such as peak finding and spectral analysis
•	 sparse: Sparse matrices and associated routines to save memory
•	 spatial: Spatial data structures and algorithms for triangulation and plotting
•	 stats: Statistical distributions and functions

As you can see, scipy features algorithms for a large range of topics and many of the functions are
really fast, so it is definitely worth taking a look at.

With most of these topics, you can already guess by their names whether or not they apply to your use
case, but there are a few that warrant a small example. So, let’s look at one.

Sparse matrices
One of the most useful features of scipy (in my opinion, at least) is scipy.sparse. This module allows
you to create sparse arrays, which can save you a huge amount of memory. While a numpy array takes
roughly the amount of memory you are reserving, the sparse arrays only store the non-zero values or
the non-zero blocks/rows/columns, depending on the type you choose. In the case of numpy, storing
1 million 64-bit integers takes 64 million bits or 8 megabytes.

Naturally, the advantage of a sparse array comes with a bunch of downsides, such as slower processing
for certain operations or directions. The scipy.sparse.csc_matrix method, for example, produces
sparse matrices that are really fast to slice in the column direction, but slow when slicing rows. Mean-
while, scipy.sparse.csr_matrix is the opposite.

Usage of sparse arrays is roughly as straightforward as a numpy array, but care has to be taken when
selecting the specific sparse matrix type. The options are:

•	 bsr_matrix(arg1[, shape, dtype, copy, blocksize]): Block Sparse Row matrix
•	 coo_matrix(arg1[, shape, dtype, copy]): A sparse matrix in COOrdinate format.
•	 csc_matrix(arg1[, shape, dtype, copy]): Compressed Sparse Column matrix
•	 csr_matrix(arg1[, shape, dtype, copy]): Compressed Sparse Row matrix
•	 dia_matrix(arg1[, shape, dtype, copy]): Sparse matrix with DIAgonal storage
•	 dok_matrix(arg1[, shape, dtype, copy]): Dictionary Of Keys-based sparse matrix.
•	 lil_matrix(arg1[, shape, dtype, copy]): Row-based List-Of-Lists sparse matrix

If you only need something like a large identity matrix, this can be extremely useful. It is easy to con-
struct and takes very little memory. The following two matrices are identical in contents:

>>> import numpy
>>> from scipy import sparse

>>> x = numpy.identity(10000)
>>> y = sparse.identity(10000)

>>> x.data.nbytes
800000000

Scientific Python and Plotting522

Summing the memory usage of scipy.sparse objects requires the summing
of all internal arrays. We can test for these arrays using the
nbytes attribute.
>>> arrays = [a for a in vars(y).values() if hasattr(a, 'nbytes')]

Sum the bytes from all arrays
>>> sum(a.nbytes for a in arrays)
80004

As you can see here, the non-sparse version of the identity matrix (x) took 10,000 times more memory.
In this case, it is 800 megabytes versus 80 kilobytes, but if you have a much larger matrix this quickly
becomes impossible. Since the matrix grows in size quadratically (n^2; the matrix above has size
10,000x10,000=100,000,000) this can make a very dramatic difference. The sparse matrix (in this case,
at least) grows linearly (n).

For smaller non-sparse arrays (up to a billion numbers) the memory usage is still workable and it
would take about 8 gigabytes of memory for a billion 64-bit numbers, but when you go beyond that,
most systems will quickly run out of memory. As is often the case, these memory savings do come at
the cost of increased CPU time for many operations, so I would not recommend replacing all of your
numpy arrays with sparse arrays.

In conclusion, scipy is a versatile and very useful module that supports a wide variety of calculations
and algorithms. If scipy has an algorithm available for your goal, it is likely one of the fastest options
you are going to find within the Python ecosystem. Many of the functions are very domain-specific,
however, so you can probably guess which are (and are not) useful for you.

Pandas – Real-world data analysis
While the focus of numpy, scipy, and sympy is mostly mathematical, Pandas is focused more on re-
al-world data analysis. With Pandas, you are generally expected to load data from some external
source such as databases or CSV files. Once you have the data loaded, you can easily calculate statistics,
visualize the data, or combine the data with other datasets.

To store data, Pandas offers two different data structures. The pandas.Series is a 1-dimensional array
and the pandas.DataFrame is a 2-dimensional matrix where the columns can be labeled if needed.
Internally these objects wrap a numpy.ndarray, so all numpy operations are still possible on these
objects as well.

Why do we need Pandas on top of numpy? It all comes down to convenience, and Pandas offers several
features on top of numpy that are beneficial for doing real-world data analysis:

•	 It can gracefully handle missing data. Within a numpy floating point number, you can store
NaN (not a number), but not all numpy methods will handle that nicely without custom filtering.

•	 As opposed to the fixed-size numpy.ndarray, columns can be added and removed to a numpy.
DataFrame as desired.

Chapter 15 523

•	 It provides bundled data management functions to easily group, aggregate, or transform data.
While you can easily modify numpy data, grouping data is a lot harder out of the box.

•	 It also provides utility functions for data containing time series, allowing you to easily apply
moving window statistics and compare newer to older data with very little effort.

Let’s create a simple example that stores the release dates of major Python releases with their versions.
The data is sourced from Wikipedia, which has a nice table that we can quickly use and copy: https://
en.wikipedia.org/wiki/History_of_Python#Table_of_versions.

For brevity, we are showing a shortened version of the code here, but you can copy/paste the full table
from Wikipedia or look in the GitHub project for this book.

First, let’s read the data into a dataframe:

A commonly used shorthand for pandas is pd
>>> import re
>>> import io

>>> import pandas as pd

>>> data = '''
... Version\tLatest micro version\tRelease date\tEnd of full support\tEnd ...
... 0.9\t0.9.9[2]\t1991-02-20[2]\t1993-07-29[a][2]
... ...
... 3.9\t3.9.5[60]\t2020-10-05[60]\t2022-05[61]\t2025-10[60][61]
... 3.10\t\t2021-10-04[62]\t2023-05[62]\t2026-10[62]
... '''.strip()

Slightly clean up data by removing references
>>> data = re.sub(r'\[.+?\]', '', data)

df is often used as a shorthand for pandas.DataFrame
>>> df = pd.read_table(io.StringIO(data))

In this case, we have the entire table stored in data as a tab-separated string. Since that includes the
references that Wikipedia uses, we use a regular expression to clean up everything that looks like
[...]. Lastly, we read the data into a pandas.DataFrame object using pandas.read_table(). The
read_table() function supports either a filename or a file handle and, since we have the data as a
string, we’re using io.StringIO() to convert the string to a file handle.

Now that we have the data, let’s see what we can do with it:

List the columns
>>> df.columns
Index(['Version', ..., 'Release date', ...], dtype='object')

https://en.wikipedia.org/wiki/History_of_Python#Table_of_versions
https://en.wikipedia.org/wiki/History_of_Python#Table_of_versions

Scientific Python and Plotting524

List the versions:
>>> df['Version']
0 0.9
...
25 3.9
26 3.1
Name: Version, dtype: float64

Oops... where did Python 3.10 go in the output above? The
conversion to float trimmed the 0 so we need to disable that.
>>> df = pd.read_table(io.StringIO(data), dtype=dict(Version=str))

Much better, we didn't lose the version info this time
>>> df['Version']
0 0.9
...
25 3.9
26 3.10
Name: Version, dtype: object

Now that we know how to read the data from the table, let’s see how we can do something more useful
with it. This time we are going to convert it into a time series so we can do analysis based on dates/times:

The release date is read as a string by default, so we convert
it to a datetime:
>>> df['Release date'] = pd.to_datetime(df['Release date'])

>>> df['Release date']
0 1991-02-20
...
26 2021-10-04
Name: Release date, dtype: datetime64[ns]

Let's see which month is the most popular for Python releases.
First we run groupby() on the release month and after that we
run a count() on the version:
>>> df.groupby([df['Release date'].dt.month])['Version'].count()
Release date
1 2
2 2
3 1
4 2

Chapter 15 525

6 3
7 1
9 4
10 8
11 1
12 3
Name: Version, dtype: int64

While you could do all of this with plain numpy, it is certainly much more convenient with pandas.

Input and output options
One huge advantage of Pandas is the huge amount of readily available input and output options.
Let’s start by saying that this list will never be complete because you can easily implement your own
method, or install a library to handle other types for you. We will see an example of this later in this
chapter when we cover xarray.

At the time of writing, the pandas library natively supports a huge list of input and/or output formats:

•	 Common formats such as Pickle, CSV, JSON, HTML, and XML
•	 Spreadsheets such as Excel files
•	 Data formats used by other statistical systems such as HDF5, Feather, Parquet, ORC, SAS, SPSS,

and Stata
•	 Many types of databases using SQLAlchemy

If your preferred format is not on the list, the odds are that you can easily find a converter for it. Al-
ternatively, it is fairly easy to write a converter yourself as you can implement them in plain Python.

Pivoting and grouping
One very useful feature of Pandas is the ability to pivot and unpivot a DataFrame. When pivoting, we
can convert rows to columns based on their values, effectively grouping them. The pandas library has
several options to pivot/unpivot your data:

•	 pivot: Returns a reshaped pivot table without aggregation (e.g. sum/count/etc.) support
•	 pivot_table: Returns a pivot table with aggregation support
•	 melt: Reverses the operation of pivot
•	 wide_to_long: A simpler version of melt that can be more convenient to use

What can we achieve by pivoting? Let’s create a very simple example of some temperature measure-
ments in a long list, and pivot them so we get the days as columns instead of rows:

>>> import pandas as pd
>>> import numpy as np

>>> df = pd.DataFrame(dict(
... building=['x', 'x', 'y', 'x', 'x', 'y', 'z', 'z', 'z'],

Scientific Python and Plotting526

... rooms=['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'],

... hours=[10, 11, 12, 10, 11, 12, 10, 11, 12],

...

... temperatures=np.arange(0.0, 9.0),

...))

>>> df
 building rooms hours temperatures
0 x a 10 0.0
1 x a 11 1.0
...
7 z c 11 7.0
8 z c 12 8.0

The way this data is set up is similar to how a data logging tool would usually return it, with a single
row for a single measurement. However, this is often not the most convenient way to read or analyze
the data, and that is where pivoting can really help.

Let’s look at the mean room temperature per hour:

>>> pd.pivot_table(
... df, values='temperatures', index=['rooms'],
... columns=['hours'], aggfunc=np.mean)
hours 10 11 12
rooms
a 0.0 1.0 2.0
b 3.0 4.0 5.0
c 6.0 7.0 8.0

That shows a row for each room and a column for each hour, with the values generated through numpy.
mean().

We can also get the mean room temperature per building, per room, per hour:

>>> pd.pivot_table(
... df, values='temperatures', index=['building', 'rooms'],
... columns=['hours'], aggfunc=np.mean)
hours 10 11 12
building rooms
x a 0.0 1.0 NaN
 b 3.0 4.0 NaN
y a NaN NaN 2.0
 b NaN NaN 5.0
z c 6.0 7.0 8.0

Chapter 15 527

As you can see, pandas handles missing values by showing NaN for the missing data and gives us a
very nice aggregate result.

In addition to these pivoting features, Pandas provides a huge list of grouping functions that also allow
you to aggregate results. The big advantage of the grouping feature over pivoting is that you can group
over arbitrary ranges and functions. For time-based results, for example, you could choose to group
per second, minute, hour, 5 minutes, or any other interval that might be useful to you.

As a basic example with the data above:

>>> df.groupby(pd.Grouper(key='hours')).mean()
 temperatures
hours
10 3.0
11 4.0
12 5.0

This example already shows how the groupby feature can be used, but the real power comes when
combining it with timestamps. For instance, you could do pd.Grouper(freq='5min').

Merging
Another extremely useful feature of Pandas is that you can merge data, similar to how you would join
tables in a database. As is the case with pivoting, the pandas library has several join methods:

•	 pandas.merge: The merge function is pretty much the straight equivalent of a database join. It
can do inner, outer, left, right, and cross joins, similar to many databases. Additionally, it can
validate if the relations between the columns are correct (i.e. one-to-one, one-to-many, many-
to-one, and many-to-many), in a similar way to how referential integrity in a database functions.

•	 pandas.merge_ordered: Similar to merge but allows for optional filling/interpolation using a
function.

•	 pandas.merge_asof: This function does a left join on the nearest key instead of requiring an
exact match.

The ability to easily merge multiple DataFrame objects is a really powerful feature that is invaluable
when processing real-world data.

Rolling or expanding windows
In Pandas, windows can help you to efficiently run calculations on rolling subsets of (expanding) data.
Naively calculating is of course possible, but that can be highly inefficient and infeasible for larger
datasets. With a rolling window, you can have a running mean, sum, or other function on a fixed
window size in an efficient manner.

To illustrate, let’s assume you have an array with 100 items and you want to get the mean value using
a window size of 10. The naïve solution would be to sum the first 10 items and divide them by 10, then
repeat that for items 1 to 11, and so on.

Scientific Python and Plotting528

For each of these, you would have to walk through all 10 items in the window. If we take n as the length
of the array and w as the size of the window, this takes O(n*w) time. We can do much better if we keep
track of the intermediate sum, however; if we simply add the next number and simultaneously remove
the first number from our running sum, we can do the same in O(n) instead.

Let’s illustrate how pandas can take care of this for us:

>>> import pandas as pd
>>> import numpy as np

>>> pd_series = pd.Series(np.arange(100)) # [0, 1, 2, ... 99]

>>> # Create a rolling window with size 10
>>> window = pd_series.rolling(10)
>>> # Calculate the running mean and ignore the N/A values at the
>>> # beginning before the window is full
>>> window.mean().dropna()
9 4.5
10 5.5
 ...
99 94.5
Length: 91, dtype: float64

The rolling window as we have seen above supports functions for count, sum, mean, median, variance,
standard deviation, quantiles, and several more. If you need something special, you can also provide
your own function.

There are a few extra features to these windows. Instead of having all items calculated with the same
weight, you can also use weighted windows to vary the weight of the items so recent data becomes
more relevant than older data. In addition to regular weighted windows, you can also opt for expo-
nentially weighted windows to increase the effect even further.

Lastly, we also have expanding windows. With these, you get the result from the beginning of the data-
set up to your current point. If you were to sum a series with values 1, 2, 3, 4, 5, it would return 1,
3, 6, 10, 15, with each item being the total sum from the beginning of the series up to that point.

To conclude, the pandas library is extremely useful for analyzing data from varying sources. Since it
was built on top of numpy it is also extremely fast, which makes it very convenient for in-depth analysis.

If you ever have a large amount of data to process, or data from several different sources, give pandas
a try and see if it can help you to sort it out.

Statsmodels – Statistical models on top of Pandas
Similar to how scipy builds on top of numpy, we have statsmodels that builds on top of pandas. Initially,
it was part of the scipy package, but later split off and greatly improved.

Chapter 15 529

The statsmodels library offers a host of statistical methods and plotting tools and can be used to create
regression models, choice models, analysis of variance (ANOVA), forecasting, and more.

A quick example of a weighted least squares regression, which attempts to fit a line to a set of data
points, can be applied like this:

The common shorthand for statsmodels is sm
>>> import statsmodels.api as sm
>>> import numpy as np

>>> Y = np.arange(8)
>>> X = np.ones(8)

Create the weighted-least-squares model
>>> model = sm.WLS(Y, X)

Fit the model and generate the regression results
>>> fit = model.fit()

Show the estimated parameters and the t-values:
>>> fit.params
array([3.5])
>>> fit.tvalues
array([4.04145188])

While it still requires some background knowledge about statistics to be able to apply this properly, it
does show how easily you can do a regression with statsmodels.

An abbreviated list of the models and analysis types that are currently supported by statmodels from
the statsmodels manual follows.

Regression and linear models:

•	 Linear regression
•	 Generalized linear models
•	 Generalized estimating equations
•	 Generalized additive models (GAMs)
•	 Robust linear models
•	 Linear mixed effects models
•	 Regression with discrete dependent variable
•	 Generalized linear mixed effects models
•	 ANOVA

Scientific Python and Plotting530

Time series analysis:

•	 Generic time series analysis such as univariate and vector autoregressive models (ARs/VARs)
•	 Time series analysis by state space methods
•	 Vector autoregressions

Other models:

•	 Methods for survival and duration analysis
•	 Nonparametric methods
•	 Generalized method of moments
•	 Multivariate statistics

The actual list of supported features is quite a bit longer, but this should give you a good indication as
to whether it is a useful library for you. If you are familiar with statistical models, you should be able to
get started with statsmodels rather quickly and the package is well documented with great examples.

xarray – Labeled arrays and datasets
The xarray library is very similar to pandas and is also built on top of numpy. The main differences are
that xarray is multi-dimensional, whereas pandas supports one-dimensional and two-dimensional
data only, and it was created with the netCDF (Network Common Data Form) formats in mind. The
netCDF formats are commonly used for scientific research data, which (as opposed to CSV files, for
example) contain both the data and metadata such as variable labels, data descriptions, and docu-
mentation, allowing for easy use in a multitude of software.

The xarray library can easily work together with pandas, so for this example, we will re-use the data
from our earlier pandas example. The other way around is also easily possible using the to_dataframe()
method on an xarray.DataArray object (the standard xarray matrix object). In this example, we will
assume that you still have the df variable available from the pandas example earlier:

The common shorthand for xarray is xr
>>> import xarray as xr

>>> ds = xr.Dataset.from_dataframe(df)

For reference, the pandas version of the groupby
df.groupby([df['Release date'].dt.month])['Version'].count()

>>> ds.groupby('Release date.month').count()['Version']
<xarray.DataArray 'Version' (month: 10)>
array([2, 2, 1, 2, 3, 1, 4, 8, 1, 3])
Coordinates:
 * month (month) int64 1 2 3 4 6 7 9 10 11 12

Chapter 15 531

The syntax for the groupby() is slightly different from pandas, and less Pythonic (if you ask me) due
to the use of strings over variables, but it essentially comes down to the same operation.

Additionally, for this use case, I would argue that the output of xarray is not all that readable, but it
certainly isn’t bad either. Often, you will have so many data points that you won’t be too interested in
the raw data anyway.

The real advantage to xarray over pandas (in my opinion, at least) is the support for multi-dimensional
data. You can add as much as you want to the Dataset object:

>>> import xarray as xr
>>> import numpy as np

>>> points = np.arange(27).reshape((3, 3, 3))
>>> triangles = np.arange(27).reshape((3, 3, 3))
>>> ds = xr.Dataset(dict(
... triangles=(['p0', 'p1', 'p2'], triangles),
...), coords=dict(
... points=(['x', 'y', 'z'], points),
...))

>>> ds
<xarray.Dataset>
Dimensions: (p0: 3, p1: 3, p2: 3, x: 3, y: 3, z: 3)
Coordinates:
 points (x, y, z) int64 0 1 2 3 4 5 ... 21 22 23 24 25 26
Dimensions without coordinates: p0, p1, p2, x, y, z
Data variables:
 triangles (p0, p1, p2) int64 0 1 2 3 4 ... 21 22 23 24 25 26

In this case, we only added the triangles and the points, but you can add as much as you want and
you can use xarray to combine these so you can reference multi-dimensional objects easily. Data
combination can be achieved through several methods such as concatenation, merging to combine
multiple datasets into one, combining based on field values, through per-row updates, and others.

When it comes down to pandas versus xarray, I would recommend simply giving them both a try
and seeing which is more convenient for your use case. The libraries are very similar in features and
usability and both have their own advantages. The multi-dimensionality of xarray is a huge advantage
over pandas if you need it, however.

In the pandas version, the order of the count() and the ['Version'] can be swapped
to be even more similar. That is, the following is also valid and returns the same results:

df.groupby([df['Release date'].dt.month]).count()['Version']

Scientific Python and Plotting532

If it’s all the same to you then I would currently recommend pandas over xarray, simply because it
is currently the most used of the two, which results in more documentation/blog posts/books being
available.

STUMPY – Finding patterns in time series
The stumpy library offers several tools to automatically detect patterns and anomalies in your time
series matrices. It is built upon numpy, scipy, and numba to provide great performance and gives you
the possibility of employing GPU (video card) power as well, to process the data even faster.

Using stumpy you could, for example, automatically detect if a website is getting an abnormal number
of visitors. One of the nice features of stumpy in this scenario is that, in addition to static matrices,
you can also add more data in a streaming way, which allows you to do real-time analysis without too
much overhead.

As an example, let’s assume we have a list of temperatures for a living room thermostat and see if we
can find any repeating patterns:

>>> import numpy as np
>>> import stumpy

>>> temperatures = np.array([22., 21., 22., 21., 22., 23.])

>>> window_size = 3

Calculate a Euclidean distance matrix between the windows
>>> stump = stumpy.stump(temperatures, window_size)

Show the distance matrix. The row number is the index in the
input array. The first column is the distance; the next columns
are the indices of the nearest match, the left match, and the
right match.
>>> stump
array([[0.0, 2, -1, 2],
 [2.449489742783178, 3, -1, 3],
 [0.0, 0, 0, -1],
 [2.449489742783178, 1, 1, -1]], dtype=object)

As we can see in the matrix above, the first window has a
distance of 0 to the window at index 2, meaning that they are
identical. We can easily verify that by showing both windows:

The first window:
>>> temperatures[0:window_size]

Chapter 15 533

array([22., 21., 22.])

The window at index 2:
>>> temperatures[2:2 + window_size]
array([22., 21., 22.])

The observant among you may have noticed that this distance matrix only has 4 rows for 6 values
instead of the traditional n*n (6*6 in this case) distance matrix. This is in part because we use a win-
dow size of 3 and we only look at the number of windows (which is n-window_size+1=4). A larger
part is due to stumpy storing only the closest pairs, resulting in only requiring O(n) space instead of
the normal O(n*n).

While you can do these types of analysis with plain numpy as well, stumpy uses a very smart algorithm
and relies heavily on numba for faster processing, so if you can use the library, I would recommend it.

Mathematics and precise calculations
Python has a decent number of mathematical functions and features built in, but there are cases
where you need more advanced features or something faster. In this section, we will discuss a few
libraries that help by introducing many extra mathematical functions and/or increase mathematical
precision and/or performance quite a bit.

First, let’s discuss the options in the Python core libraries to store numbers and perform calculations
with varying precision:

•	 int: To store whole numbers (e.g. 1, 2, 3), we have the int object in Python. The int is directly
translated into a C int64 on most systems as long as it can fit within 64-bit. Outside of that, it
is internally cast to a Python long type (not to be confused with a C long), which can be arbi-
trarily large. This allows for infinite accuracy but only works as long as you use whole numbers.

•	 fractions.Fraction: The Fraction object makes it possible to store fractional numbers (for
example, 1/2, 1/3, 2/3) and they are infinitely precise since they rely on two int (or long)
objects internally as the denominator and the numerator. However, these only work if the
number you are trying to store can be represented as a fraction. Irrational numbers such as
Pi cannot be represented this way.

•	 float: Floating point numbers make it really easy to store numbers that include decimals (for
example 1.23, 4.56). These numbers are generally stored as a 64-bit floating point, which is
a combination of a sign (1 bit positive or negative), exponent (11 bits), and a fraction (52 bits),
resulting in the following equation:(−1)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ (2𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) ∗ 1. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . This means that a
number such as 0.5 is stored using fraction 0 and exponent -1, resulting in: 2−1 ∗ 1.0 = 0.5 . In
the case of 0.5, this can be stored perfectly; in many other cases, this is problematic because not
every number can be accurately described like this, which causes floating point inaccuracies.

•	 decimal.Decimal: The Decimal object allows for calculations with an arbitrary but specified
precision. You can choose how many decimals you want, but it is not all that fast.

Several of the following libraries offer solutions to enhance the precision of your calculations.

Scientific Python and Plotting534

gmpy2 – Fast and precise calculations
The gmpy2 library uses libraries that are written in C for really fast high-precision calculations. On Li-
nux/Unix systems it will rely on GMP (hence the name); on Windows it will use MPIR, which is based on
GMP. Additionally, the MPFR and MPC libraries are used for correctly rounding floating point real and
complex numbers respectively. Lastly, it uses mpz_lucas and mpz_prp for really fast primality testing.

Here’s a tiny example on how to get Pi to 1000 places, which you can’t easily do with the Python core
library:

>>> import gmpy2

>>> gmpy2.const_pi(1000)
mpfr('3.14159265358979...33936072602491412736',1000)

This library is invaluable if you need fast and high-precision calculations.

Sage – An alternative to Mathematica/Maple/MATLAB
If you have ever taken an advanced math class in college or university, chances are that you have
encountered software such as Mathematica, Maple, MATLAB, or Magma. Or perhaps you have used
WolframAlpha, which is built on Mathematica. The Sage project is meant as a free and open source
alternative to those really expensive software packages.

The Sage package can be used to solve equations both numerically and exactly, plot charts, and per-
form many other tasks from the Sage interpreter. Similar to IPython and Jupyter, Sage offers its own
interpreter with a custom language so it feels closer to mathematical packages such as Mathematica.
Naturally, you could import the Sage code from regular Python as well.

A small example of solving for a variable using Sage with the Sage interpreter:

sage: x, y, z = var('x, y, z')
sage: solve([x + y == 10, x - y == 5, x + y + z == 1], x, y, z)
[[x == (15/2), y == (5/2), z == -9]]

For my personal use case, the gmpy library (gmpy2 didn’t exist yet at that time) has been
extremely helpful when competing in the fun online math challenge project called Project
Euler: https://projecteuler.net/.

For reference, at the time of writing, the basic Mathematica Home edition, which can only
run at 4 CPU cores at the same time, costs 413 euros (487 US dollars).

https://projecteuler.net/

Chapter 15 535

In this case, we asked Sage to solve an equation with three variables for us given the following con-
straints: 𝑥𝑥 𝑥 𝑥𝑥 𝑥 10 𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥

According to Sage (correctly), this results in:𝑥𝑥 𝑥 152 , 𝑦𝑦 𝑦 52 , 𝑧𝑧 𝑧 𝑧𝑧

If you are looking for a full-fledged mathematical software system (or some features of one), Sage is
a good option.

mpmath – Convenient, precise calculations
The mpmath library is an all-round mathematical library offering functions for trigonometry, calculus,
matrices, and many others while still maintaining a configurable precision.

Installing mpmath is really easy since it is pure Python and has no required dependencies, but it does
offer speedups using Sage and gmpy2 if they are available. This combines the benefits of the Sage and
gmpy2 libraries for speed with the convenience of a pure Python installation if those are not available.

Let’s illustrate the advantages of configurable precision versus regular floating point numbers in
Python:

>>> N = 10
>>> x = 0.1

Regular addition
>>> a = 0.0
>>> for _ in range(N):
... a += x

>>> a
0.9999999999999999

Using sum, the same result as addition
>>> sum(x for _ in range(N))
0.9999999999999999

As you can see, both regular addition and sum() are both inaccurate. Python does have a better method
available for this specific problem:

Sum using Python's optimized fsum:
>>> import math

Scientific Python and Plotting536

>>> math.fsum(x for _ in range(N))
1.0

When it comes to the general case, however, floating point math will always be inaccurate and at
times that can be problematic. So, if your calculations do require floating point math but you want
more accuracy, mpmath can help you:

>>> import mpmath

Increase the mpmath precision to 100 decimal places
>>> mpmath.mp.dps = 100
>>> y = mpmath.mpf('0.1')

Using mpmath with addition:
>>> b = mpmath.mpf('0.0')
>>> for _ in range(N):
... b += y

>>> b
mpf('1.00000000000000000000000000...00000000000000000000000014')

Or a regular sum with mpmath:
>>> sum(y for _ in range(N))
mpf('1.00000000000000000000000000...00000000000000000000000014')

While these results are obviously still not perfect (you would assume the result to be 1.0, like what math.
fsum() produced), it can help to reduce floating point errors a lot more. Make sure to feed mpmath strings
or integers, otherwise your variable can already introduce floating point errors. If we had used x in the
sum instead of y, it would have resulted in floating point inaccuracy similar to regular Python math.

Naturally, fpmath can do a lot more than simply reduce your floating point errors, such as plotting
and calculus, but I will leave that for you to explore. If you are looking for solutions to mathematical
problems, this library should be on your list.

SymPy – Symbolic mathematics
The sympy module is a library that you might never need, but it is such a great library that it should
be covered. The goal of sympy is to be a fully featured Computer Algebra System (CAS) so you can
manipulate mathematical expressions similar to how you would do so on paper.

Let’s start with a little demo on how we can express and solve an integral using sympy:

>>> from sympy import *

>>> init_printing(use_unicode=True)

Chapter 15 537

>>> x, y, z = symbols('x y z')

>>> integral = Integral(x * cos(x), x)
>>> integral
⌠
| x cos(x) dx
⌡
>>> integral.doit()
x sin(x) + cos(x)

Apologies if this gave you horrible flashbacks to some calculus exam, but I think it is amazing to be
able to do this. This code first imports sympy using a wildcard because the equations would quickly
become unreadable if all functions needed to be prefixed by sympy.

After that, we use the init_printing() function with the Unicode flag enabled to tell sympy that our
shell supports Unicode characters. This allows for pretty rendering of many mathematical formulas,
but certainly not all of them. The alternatives to this are basic ASCII rendering (as you can imagine,
this does not look too pretty for an integral), and LaTeX output, which can render as images (for
example, when using Jupyter). There are actually several other rendering modes available, but they
greatly depend on your environment so we will not be getting into those.

Because you can use any variable name in an equation, we need to specifically declare x, y, and z as
variables. Even though we only use x in this case, you will often need the others as well, so why not
declare them in advance?

Now we use the Integral function to declare the integral. Due to font limitations, the example above
is not perfect, but the rendered integral should look like this in your shell or browser:∫𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 𝑑𝑑𝑑𝑑

Lastly, we tell sympy to solve the integral using the doit() method. This correctly results in the equation:𝑥𝑥 sin 𝑥𝑥 𝑥 𝑥𝑥𝑥 𝑥𝑥

The only nitpick I have here is that sympy omits the integration constant by default. Ideally, it would
include the + C.

If you’re looking to represent (and solve) an equation, sympy can certainly help. I personally think it
is a really great library even though I have very little use for it.

Patsy – Describing statistical models
Similar to how sympy can describe mathematical formulas in Python, patsy can describe statistical
models, which makes it go hand in hand with the statsmodels package. It can also use regular Python
functions or directly apply numpy:

>>> import patsy
>>> import numpy as np

Scientific Python and Plotting538

>>> array = np.arange(2, 6)

>>> data = dict(a=array, b=array, c=array)
>>> patsy.dmatrix('a + np.square(b) + np.power(c, 3)', data)
DesignMatrix with shape (4, 4)
 Intercept a np.square(b) np.power(c, 3)
 1 2 4 8
 1 3 9 27
 1 4 16 64
 1 5 25 125
 Terms:
 'Intercept' (column 0)
 'a' (column 1)
 'np.square(b)' (column 2)
 'np.power(c, 3)' (column 3)

In this example, we created a numpy array with a range from 2 to 6 and passed this to the patsy.
dmatrix() function under the names a, b, and c, since duplicate names will be ignored. After that, we
created the matrix using patsy; as you can see, the + in the patsy language tells it to add a new column.
Those columns can be plain columns such as a, but they can also call functions such as np.square(b).

If you are familiar with the mathematics behind vectors and matrices, this library might feel very nat-
ural to you. At the very least, it can be a slightly more obvious way to declare how your data interacts.

Plotting, graphing, and charting
Being able to read, process, and write data is important, of course, but to understand the meaning of
data it is often far more convenient to create a plot, graph, or chart. As the old adage goes: “A picture
is worth a thousand words.”

If you have experience with any of the libraries mentioned earlier in this chapter, you may know that
many of them have options for graphical output. In (almost?) all cases, however, this is not really a
built-in feature but a convenient shortcut to an external library such as matplotlib.

As is the case with several of the libraries mentioned in this chapter, there are multiple libraries with
similar features and possibilities, so this is certainly not an exhaustive list. To make visual plotting
easier, for these examples we will mostly rely on jupyter-notebook with the use of the ipywidgets to
create interactive samples. As always, the code (in these cases, the jupyter-notebooks) can be found
on GitHub at https://github.com/mastering-python/code_2.

Matplotlib
The matplotlib library is the reliable standard for plotting and is supported by many of the scientific
libraries in this chapter.

https://github.com/mastering-python/code_2

Chapter 15 539

Most of the libraries mentioned earlier in this chapter either explain how matplotlib can be used
with the library, or even have utility functions to facilitate plotting with matplotlib.

Does this mean that the matplotlib library is the gold standard for plotting? As usual, it depends.
While matplotlib is certainly the most used scientific plotting Python library with a huge array of
features, it is not always the most beautiful option. That doesn’t mean you cannot configure it to be
pretty, but out of the box, the library focuses on easy-to-read, consistent results and works for every-
one and all scenarios. Some of the prettier libraries might look fantastic on a web page and have very
useful interactive features but are not that suited for publishing and printing.

The basic example is trivially easy:

The common shorthand for pyplot is plt
import matplotlib.pyplot as plt
import numpy as np

Enable in-line rendering for the Jupyter notebook
%matplotlib inline

a = np.arange(100) ** 2
plt.plot(a)

Effectively, we only need plt.plot() to plot a basic chart:

Figure 15.1: Matplotlib plot

This simple example was very easy to plot, but matplotlib can do so much more. Let’s take a look at
how we can combine a few graphs and make the plot interactive using ipywidgets:

%matplotlib notebook

import matplotlib.pyplot as plt

Scientific Python and Plotting540

import numpy as np
import ipywidgets as widgets

Using interact, we create 2 sliders here for size and step.
In this case we have size which goes from 1 to 25 with increments
of 1, and step, which goes from 0.1 to 1 with increments of 0.1
@widgets.interact(size=(1, 25, 1), step=(0.1, 1, 0.1))
def plot(size, step):
 # Create a matplotlib figure
 # We will render everything onto this figure
 fig = plt.figure()

 # Add a subplot. You could add multiple subplots but only one will
 # be shown when using '%matplotlib notebook'
 ax = fig.add_subplot(projection='3d')

 # We want X and Y to be the same, so generate a single range
 XY = np.arange(-size, size, step)

 # Convert the vectors into a matrix
 X, Y = np.meshgrid(XY, XY)

 R = np.sqrt(X**2 + Y**2)

 # Plot using sine
 Z = np.sin(R)
 ax.plot_surface(X, Y, Z)

 # Plot using cosine with a Z-offset of 10 to plot above each other
 Z = np.cos(R)
 ax.plot_surface(X, Y, Z + 10)

Chapter 15 541

This function generates the following figure:

Figure 15.2: Matplotlib in Jupyter Notebook with adjustable sliders

With a combination of jupyter-notebook and matplotlib, we can create interactive plots. If you run
this in your own browser, not only can you drag the 3D plot around and view it from all sides, but you
can also modify the size and step parameters by dragging the sliders.

With regard to actual plot types supported by matplotlib, there are really too many options and
variations to list here, but if you are looking for any type of chart, graph, or plot, you are likely to find
a solution using matplotlib. Additionally, many of the scientific Python libraries natively support it,
which makes it an easy choice. This short section really does not do justice to the depth and features
of matplotlib, but fear not – we are far from done with it as it, is the basis of a few other plotting
libraries in this chapter.

Seaborn
The seaborn library is related to matplotlib in a similar way to how statsmodels works on top of
pandas. It provides an interface for matplotlib with a strong focus on statistical data. The major fea-
ture of seaborn is that it makes it really easy to automatically generate an entire grid of plots.

Scientific Python and Plotting542

Additionally, which is very convenient for our examples, seaborn comes with some test data so we
can show fully fledged demonstrations based on real data. To illustrate, let’s look at how easily we can
create a very elaborate set of plots:

%matplotlib notebook

import seaborn as sns

sns.pairplot(
 # Load the bundled Penguin dataset
 sns.load_dataset('penguins'),
 # Show a different "color" for each species
 hue='species',
 # Specify the markers (matplotlib.markers)
 markers=['o', 's', 'v'],
 # Gray was chosen due to the book being printed in black and white
 palette='Greys',
 # Specify which rows and columns to show. The default is to show all
 y_vars=['body_mass_g', 'flipper_length_mm'],
 x_vars=['body_mass_g', 'flipper_length_mm', 'bill_length_mm'])

This produces the following set of plots:

Figure 15.3: Seaborn pairplot render

Chapter 15 543

While this still seems like a very elaborate call, you could actually get away with just using sns.
pairplot(df) to get great results. Without the hue=... parameter, the results will not be split by
species, however.

The seaborn library has support for many types of plots:

•	 Relational plots such as line plots and scatter plots
•	 Distribution plots such as histograms
•	 Categorical plots such as box plots
•	 Matrix plots such as heatmaps

The seaborn library also has many shortcuts for creating sets of plots or automatically processing the
data using algorithms such as kernel density estimation.

If you are looking for a nice-looking plotting library, seaborn is a very good option, especially due to
the multi-plot grid features. The list of plots above are all specific plots, but as we saw with pairplot,
seaborn can generate an entire grid of plots in just a single line of code, which is extremely useful. You
could do the same with matplotlib directly, but it would probably take you a few dozen lines of code.

Yellowbrick
As is the case with seaborn, yellowbrick is also built on top of matplotlib. The difference is that
yellowbrick is focused on visualizing machine learning results and depends on the scikit-learn
(sklearn) machine learning library. The scikit-learn integration is also what makes this library very
powerful in those scenarios; it natively understands the scikit-learn data structures so it can easily
plot them for you with almost no configuration. In the next chapter, we will see more on scikit-learn.

This example, straight from the yellowbrick manual, shows how you can visualize a regression in
effectively a single line of code:

%matplotlib notebook

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split as tts

from yellowbrick.datasets import load_concrete
from yellowbrick.regressor import residuals_plot

Load the dataset and split into train/test (pandas.DataFrame) splits
X, y = load_concrete()

X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2, shuffle=True)

Create the visualizer, fit, score, and show it
viz = residuals_plot(RandomForestRegressor(), X_train, y_train, X_test, y_test)

Scientific Python and Plotting544

This generates the following scatter plot:

Figure 15.4: Yellowbrick regression plot

These kinds of shortcut functions make it really easy to generate usable output and work on your
regression instead of having to worry about how to properly plot the data. In addition to plotting
regressions, yellowbrick has many more visualizers organized by analysis type. Similar to seaborn,
yellowbrick can take care of not only the plotting but also the calculations and analysis for you.

The yellowbrick library has functions for many types of analysis such as:

•	 Feature visualization: Displaying features as scatter plots, detecting relationships and ranking
them, creating a circular plot of related features, and so on

•	 Classification visualization: Displaying the thresholds, precision, and the error prediction for
classifications as line, area, or matrix plots

•	 Regression visualization: Displaying a scatter or a combination of scatter plots and histograms
•	 Cluster visualization: Displaying maps to visualize the distance between the clusters
•	 Model selection visualization: Displaying the learning curve through a combination of lines

and area or showing the feature importance as a bar chart

Chapter 15 545

The yellowbrick library is currently the most convenient option for visualizing scikit-learn output,
but most of the charting options also apply to other data types such as pandas.DataFrame objects, so
it’s worth taking a look if seaborn does not suit your needs.

Plotly
The plotly library supports a lot of different types of plots and even has native support for controls
such as sliders, so you can change parameters when viewing from a web browser. Additionally, similar
to how seaborn makes usage of matplotlib much easier in some cases, plotly also includes Plotly
Express (often denoted as px), which makes usage trivially easy.

To illustrate how easy Plotly Express can be, let’s try to replicate the plots we made with seaborn:

import seaborn as sns
import plotly.express as px

fig = px.scatter_matrix(
 # Load the Penguin dataset from seaborn
 sns.load_dataset('penguins'),
 # Show a different "color" for each species
 color='species',
 # Specify that the symbols/markers are species-dependent
 symbol='species',
 # Specify which rows and columns to show. The default is to show all
 dimensions=['body_mass_g', 'flipper_length_mm', 'bill_length_mm'],
)
fig.show()

Here is the result:

Figure 15.5: Plotly Express example output

Scientific Python and Plotting546

While I would argue that the seaborn output is slightly prettier in this specific case, it does show just
how easy it is to create useful plots using Plotly Express.

You might be wondering how easy or difficult it is to use the regular plotly API, as opposed to Plotly
Express. For that, let’s see if we can replicate the 3D matplotlib render:

import plotly
import numpy as np
import ipywidgets as widgets
import plotly.graph_objects as go

Using interact, we create 2 sliders here for size and step.
In this case we have size which goes from 1 to 25 with increments
of 1, and step, which goes from 0.1 to 1 with increments of 0.1
@widgets.interact(size=(1, 25, 1), step=(0.1, 1, 0.1))
def plot(size, step):
 # Create a plotly figure, we will render everything onto this figure
 fig = go.Figure()

 # We want X and Y to be the same, so generate a single range
 XY = np.arange(-size, size, step)

 # Convert the vectors into a matrix
 X, Y = np.meshgrid(XY, XY)

 R = np.sqrt(X**2 + Y**2)

 # Plot using sine
 Z = np.sin(R)
 fig.add_trace(go.Surface(x=X, y=Y, z=Z))

 # Plot using cosine with a Z-offset of 10 to plot above each other
 Z = np.cos(R)
 fig.add_trace(go.Surface(x=X, y=Y, z=Z + 10))
 fig.show()

Chapter 15 547

Here’s the final result with the two cosines plotted in 3D:

Figure 15.6: 3D plot using plotly

This is pretty much identical to matplotlib, and I would argue that it’s even slightly better due to be-
ing even more interactive (which the book cannot effectively show, unfortunately). By default, plotly
features a very useful display of the values when you hover with the mouse and allows for really easy
zooming and filtering interactively.

When it comes to the choice between matplotlib and plotly, I would recommend looking at your
specific use case. I think plotly is slightly easier and more convenient to use, but matplotlib is deeply
integrated with many scientific Python libraries, which makes it a very convenient option. As always,
opinions vary, so make sure to take a look at both.

Bokeh
The bokeh library is a beautiful and powerful visualization library with a strong focus on interactive
visualizations in web browsers. Being able to make plots interactive can be extremely useful for an-
alyzing the results. Instead of having to create multiple plots in a grid as we saw with seaborn, you
can use a single grid and filter interactively. As this is a book, however, we cannot really demonstrate
the full power of bokeh.

Before we get started with some examples, we need to talk about the two ways you can use bokeh.
Effectively it comes down to static versus dynamic, where the static version uses a static snapshot of
all data shown and the dynamic version loads data on demand.

Scientific Python and Plotting548

The static version is similar to how matplotlib and most plotting libraries work: all data is contained
in a single image or on a single web page without loading external resources. This works great for
many cases, but not all.

What if you have a lot of data? A nice example of a visualization like this is Google Earth. You could
never realistically download all of the data from Google Earth onto your computer (according to some
estimates, currently over 100 petabytes of data), so you need to load it as you move around the map.
For this purpose, bokeh has a server built in so the visualization can dynamically load the results as
you filter. For the purpose of this book that makes little sense because it will be static in all cases, but
we can show examples of both.

First, let’s create a very basic plot:

import numpy as np

from bokeh.plotting import figure, show
from bokeh.io import output_notebook

Load all javascript/css for bokeh
output_notebook()

Create a numpy array of length 100 from 0 to 4 pi
x = np.linspace(0, 4*np.pi, 100)

Create a bokeh figure to draw on
p = figure()
Draw both a sine and a cosine
p.line(x, np.sin(x), legend_label='sin(x)', line_dash='dotted')
p.line(x, np.cos(x), legend_label='cos(x)')

Render the output
show(p)

Chapter 15 549

From this, we get the sine and cosine rendered as lines:

Figure 15.7: Bokeh basic render

Scientific Python and Plotting550

As you can see, rendering basic x/y data as a line is really easy and does not look too different from
the matplotlib output. If you look carefully, however, you might also notice the buttons on the right.
These are what bokeh calls tools, and they can be used for zooming by either scrolling or by drawing a
rectangle around what you wish to see. Panning can be done by dragging the image. It is also possible
to save the render as an image file. If desired, you can create tooltips that respond to mouse clicks or
mouse hovers.

Now let’s see if we can recreate a more advanced plot like the one we made with seaborn:

import numpy as np
import seaborn as sns

from bokeh.plotting import figure, show
from bokeh.io import output_notebook
from bokeh.layouts import gridplot
from bokeh.transform import factor_cmap, factor_mark

output_notebook()

Load the seaborn penguin dataset (pandas.DataFrame)
penguins = sns.load_dataset('penguins')
Get the unique list of species for the marker and color mapping
species = penguins['species'].unique()
Specify the marker list which will be mapped to the 3 species
markers = ['circle', 'square', 'triangle']
Create a list of rows so we can build the grid of plots
rows = []

for y in ('body_mass_g', 'flipper_length_mm'):
 row = []
 rows.append(row)

 for x in ('body_mass_g', 'flipper_length_mm', 'bill_length_mm'):
 # Create a figure with a fixed size and pass along the labels

Chapter 15 551

 p = figure(width=250, height=250,
 x_axis_label=x, y_axis_label=y)
 row.append(p)

 if x == y:
 # Calculate the histogram using numpy and make sure to drop
 # the NaN values
 hist, edges = np.histogram(penguins[x].dropna(), bins=250)
 # Draw the histograms as quadrilaterals (rectangles)
 p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:])
 else:
 # Create a scatter-plot
 p.scatter(
 # Specify the columns of the dataframe to show on the
 # x and y axis
 x, y,
 # Specify the datasource, the pandas.DataFrame is
 # natively supported by bokeh
 source=penguins,
 # Specify the column that contains the legend data
 legend_field='species',
 # Map the species onto our list of markers
 marker=factor_mark('species', markers, species),
 # Map the species to the Greys4 color palette
 color=factor_cmap('species', 'Greys4', factors=species),
 # Add transparency to the markers to make them easier
 # to see
 fill_alpha=0.2,
)

Show a grid of plots. Expects a 2D array
show(gridplot(rows))

Scientific Python and Plotting552

This results in a collection of scatter plots and histograms:

Figure 15.8: Seaborn-like plots using Bokeh

This somewhat resembles what we created with seaborn, but it still took quite a bit of effort to do. It
does show how we can fairly easily combine several plots (and types of plots) together even when
using a pandas.DataFrame as a source.

Should you use bokeh? I think bokeh is a nicely documented plotting library with a lot of merits, but
so are many of the others. In my opinion, the main feature of bokeh is the support for dynamic data
loading through the bokeh server, which can be a really useful feature in some cases. As opposed to
plotly, the bokeh server has more features for maintaining its own state, so chart changes can be
made easily without recalculation.

Datashader
The datashader library is a special case but I believe it deserves a mention. The datashader plotting
library can be used for regular plotting, but it is specially optimized for high performance and large
datasets. As a little example, this plot with 10 million data points only takes about a second to render:

Chapter 15 553

import numpy as np, pandas as pd, datashader as ds
from datashader import transfer_functions as tf
from datashader.colors import inferno, viridis
from numba import jit
from math import sin, cos, sqrt, fabs

Set the number of points to calculate, takes about a second with
10 million
n=10000000

The Clifford attractor code, JIT-compiled using numba
@jit(nopython=True)
def Clifford(x, y, a, b, c, d, *o):
 return sin(a * y) + c * cos(a * x), \
 sin(b * x) + d * cos(b * y)

Coordinate calculation, also JIT-compiled
@jit(nopython=True)
def trajectory_coords(fn, x0, y0, a, b=0, c=0, d=0, e=0, f=0, n=n):
 x, y = np.zeros(n), np.zeros(n)
 x[0], y[0] = x0, y0
 for i in np.arange(n-1):
 x[i+1], y[i+1] = fn(x[i], y[i], a, b, c, d, e, f)
 return x,y

def trajectory(fn, x0, y0, a, b=0, c=0, d=0, e=0, f=0, n=n):
 x, y = trajectory_coords(fn, x0, y0, a, b, c, d, e, f, n)
 return pd.DataFrame(dict(x=x,y=y))

Calculate the pandas.DataFrame
df = trajectory(Clifford, 0, 0, -1.7, 1.5, -0.5, 0.7)

Create a canvas and render
cvs = ds.Canvas()
agg = cvs.points(df, 'x', 'y')
tf.shade(agg, cmap=["white", "black"])

Scientific Python and Plotting554

Here is the plot generated by calculating the 10 million points:

Figure 15.9: Datashader attractor render

Exercises
Due to the nature of this chapter, we have only covered the absolute basics of the mentioned libraries
and they really do deserve much more. In this case, as an exercise, I recommend that you try and use
some (or all) of the mentioned libraries and see if you can do something useful with them, using the
variety of examples we have introduced already as inspiration.

Some suggestions:

•	 Create your own beautiful datashader plots
•	 Render the lines of code per project of your personal workspace
•	 Continuing from the lines of code per project, see if you can cluster the projects by program-

ming language
•	

Summary
This chapter has shown us a sample of the most commonly used and generic scientific Python libraries.
While it covered a lot of libraries, there are many more available, especially when you start looking
for domain-specific libraries. With regard to plotting alone, there are at least several other very big
libraries that could be useful for your use cases but would be superfluous for this chapter.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Chapter 15 555

To recap, we have covered the basics of working with NumPy matrices and Pandas data objects, both of
which are important for the next chapter. We have also seen a few libraries that focus on mathematics
and really precise calculations. Lastly, we have covered several plotting libraries, some of which will
be used in the next chapter as well.

Next up is the chapter about artificial intelligence and machine learning in Python. As is the case with
this chapter, we cannot go into too much depth, but we can cover the most important technologies
and libraries so you know where to look.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

16
Artificial Intelligence

In the last chapter, we saw a collection of scientific Python libraries that allow for really fast and easy
processing of large data files. In this chapter, we will use some of these and a few others for machine
learning.

Machine learning is a complex subject, and many completely distinct subjects within it are entire
branches of research by themselves. This should not discourage you from diving in, however; many
of the libraries mentioned in this chapter are really powerful and allow you to get started with a very
reasonable amount of effort.

It should be noted that there is a huge difference between applying a pre-trained model and gener-
ating your own. Applying a model is usually possible in a few lines of code and barely requires any
processing power; building your own model usually takes many lines of code and hours or more to
process. This makes the training of models outside of the scope of this book in all but the most trivial
cases. In these cases, you will get an overview of what the library can do with some explanation of
where this would be useful, without explicit examples.

Artificial intelligence is the branch of computer science relating to the study of all types of machine
learning, which includes neural networks and deep learning, Bayesian networks, evolutionary algo-
rithms, computer vision, natural language processing (NLP), and support-vector machines (SVMs),
among others.

In this chapter, we will cover the following topics:

•	 Introduction to artificial intelligence
•	 Libraries for image processing
•	 Libraries for NLP
•	 Libraries for neural networks and deep learning
•	 Generic AI libraries and utilities

Artificial Intelligence558

Introduction to artificial intelligence
Before we continue with this chapter, we need to establish a few definitions. Because artificial intel-
ligence (AI) is such a broad subject, the lines tend to blur a bit, so we need to make sure that we are
all talking about the same thing.

First of all, we define AI as any algorithm with a human-like ability to solve problems. While I admit that
this statement is very broad, any narrower definition would exclude valid AI strategies. What is and is
not AI is more a philosophical question than a technical one. While (almost) anyone would consider
a neural network to be AI, once you get to algorithms such as (Bayesian) decision trees, not everyone
agrees anymore.

With that broad definition in mind, here is a list of technologies and terms we are going to cover, with
a short explanation of what they are and what they can do.

Types of AI
Within the broad scope of AI, we have two major branches, machine learning (ML) and the rest. Ma-
chine learning covers any method that can learn by itself. You might wonder, is it even AI if it does not
involve learning? This is a bit of a philosophical question, but I personally think that there are several
non-learning algorithms that can still be considered AI because they can produce human-like decisions.

Within self-learning systems, we have further distinctions with their own goals and applications:

•	 Supervised learning
•	 Reinforcement learning
•	 Unsupervised learning

The use of one of these does not exclude the others from being used too, so many practical implemen-
tations use combinations of multiple methods.

Non-machine learning systems are quite a bit more diverse because they can mean just about anything,
so here are a few examples of non-learning algorithms that can rival humans in some ways:

•	 NLP: It should be noted that NLP by itself does not use ML. Many NLP algorithms are still
written by hand, because it is far easier for a human to explain to a machine how and why
certain grammar and semantics work than to have a computer figure out the oddities and
complexities of human languages. That field is changing very rapidly, however, and this might
not be the case for much longer.

•	 Expert systems: This is the first type of AI that was actually successful in practice. The first
expert systems were created in 1970 and they have been used ever since. These systems work
by asking you a string of questions and narrowing down a list of potential solutions/answers
based on those. You have certainly encountered many of these when going through prob-
lem-solving wizards at some point, perhaps in the FAQ on websites or when calling a helpdesk.
These systems allow the capturing of expert information and compress it down into a simple
system that can make decisions. Many of these have been used (and are still used today) in
diagnosing medical issues.

Chapter 16 559

Before we continue with actual AI implementations, it is a good idea to look at a few image processing
libraries that are used as a basis in many of the AI examples.

Installing the packages
As was the case with installing the scientific Python libraries in Chapter 15, installing the packages
in this chapter directly using pip can be troublesome in some cases. Using one of the Jupyter Docker
Stacks or conda can be more convenient. Additionally, most of these projects have very well-docu-
mented installation instructions for many scenarios.

Image processing
Image processing is an essential part of many types of machine learning, such as computer vision
(CV), so it is essential that we show you a few of the options and their possibilities here. These range
from image-only libraries to libraries that have full machine learning capabilities while also support-
ing image inputs.

scikit-image
The scikit-image (skimage) library is part of the scikit project with the main project being scikit-learn
(sklearn), covered later in this chapter. It offers a range of functions for reading, processing, trans-
forming, and generating images. The library builds on scipy.ndimage, which provides several image
processing options as well.

We need to talk about what an image is in terms of these Python libraries first. In the case of scipy
(and consequently, skimage), an image is a numpy.ndarray object with 2 or more dimensions. The
conventions are:

•	 2D grayscale: Row, column
•	 2D color (for example, RGB): Row, column, color channel
•	 3D grayscale: Plane, row, column
•	 3D color: Plane, row, column, color channel

All of these are just conventions, however; you can shape your arrays in other ways as well. A multi-
channel image could also mean CMYK (cyan, magenta, yellow, and key/black) colors instead of RGB
(red, green, and blue), or something completely different.

Naturally you could have more dimensions as well, such as a dimension for time (in other words, video).
Since the arrays are regular numpy arrays, you can manipulate them by slicing as usual.

For the neural networks portion of this chapter, it would be best to get a notebook stack
that has most libraries available. I would recommend giving the jupyter/tensorflow-
notebook stack a test: https://jupyter-docker-stacks.readthedocs.io/en/latest/
using/selecting.html#jupyter-tensorflow-notebook.

https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-tensorflow-notebook
https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-tensorflow-notebook

Artificial Intelligence560

Often you will not use the scikit-image library for machine learning directly, but rather for pre-processing
image data before you feed it to your machine learning algorithms. In many types of detections, for
example, color is not that relevant, which means you can make your machine learning system three
times as fast by going from RGB to grayscale. Additionally, there are often fast algorithms available
to pre-process the data so your machine learning system only needs to look at the relevant sections
of the image.

Installing scikit-image
The package is easily installable through pip for many platforms; I would suggest installing not just
the base package but the optional extras as well, which add extra capabilities to scikit-image, such
as parallel processing:

$ pip3 install -U 'scikit-image[optional]'

Edge detection
Let’s look at how we can display one of the built-in images and do some basic processing on it:

%matplotlib inline
from skimage import io, data

coins = data.coins()
io.imshow(coins)

In this case, we are using the coins dataset that is bundled with skimage. It contains a few coins and
we can use it to display some of the nice features of skimage. First, let’s look at the results:

Figure 16.1: scikit-image coins

Chapter 16 561

As an example of what kind of processing we can do, let’s do some edge detection using the Canny
edge detection algorithm. This is a prime example of a non-ML algorithm that can be really useful
for pre-processing your data before you feed it to your ML system. To display the results a bit better,
first we will slice the image so only the top-right three coins are visible. In Figure 16.1, the numbers
indicate the actual pixel indices for the x and y axes, which can be used to estimate where to slice.
After that, we will apply the canny() function to detect the edges:

%matplotlib inline
from matplotlib import pyplot as plt
from skimage import feature

Get pixels 180 to the end in the X direction
x0, x1 = 180, -1
Get pixels 0 to 90 in the Y direction
y0, y1 = 0, 90
Slice the image so only the top-right three coins are visible
three_coins = coins[y0:y1, x0:x1]
Apply the canny algorithm
plt.imshow(feature.canny(three_coins), cmap='gray')

The results are shown in the following image, where you can see the auto-detected edges of coins we
have selected:

Figure 16.2: Coins after edge detection

scikit-image can do much more, but this is a nice and basic example of how you can do edge detection
in a single line of code, which can make your data much more useful for ML systems.

Face detection
We will now use one of the examples from the fantastic scikit-image documentation: https://scikit-
image.org/docs/dev/auto_examples/applications/plot_face_detection.html.

https://scikit-image.org/docs/dev/auto_examples/applications/plot_face_detection.html
https://scikit-image.org/docs/dev/auto_examples/applications/plot_face_detection.html

Artificial Intelligence562

This is a machine learning example that uses a pre-trained model to automatically detect faces. The
specific model uses a multi-block local binary pattern (LBP). An LBP looks at points surrounding a
center point and indicates whether these points are greater (lighter) or smaller (darker) than the center
point. The multi-block part is an optional extension to this method and performs the LBP algorithm
across multiple block sizes of 9 identically sized rectangles. The first iteration might look at a 3x3 pixel
square; the second iteration could look at 6x6; the third 9x9; and so on.

The model was trained using the OpenCV cascade classifier training, which can train your model,
generate samples, and run the detection. A cascade classifier concatenates the results of multiple
classifiers to reach a combined model that is expected to perform better than the separate classifiers
by themselves.

To test the face detection, we will apply it to a photo of the NASA astronaut Eileen Collins. First, we
will import the libraries, load the image, and tell matplotlib to draw it:

%matplotlib inline
from skimage import data
from skimage.feature import Cascade

We are using matplotlib directly so we can
draw on the rendered output
import matplotlib.pyplot as plt
from matplotlib import patches

dpi = 300
color = 'white'
thickness = 1
step_ratio = 1
scale_factor = 1.2
min_object_size = 60, 60
max_object_size = 123, 123

A photo of Astronaut Eileen Collins
img = data.astronaut()

Plot the image as high resolution in grayscale
plt.figure(dpi=dpi)
plt.imshow(img.mean(axis=2), cmap='gray')

Looking at the code above, you might notice a few magic numbers such as the scale_factor, step_
ratio, min_object_size, and max_object_size. These parameters are ones that you will have to
tune to your input image. These specific numbers are straight from the OpenCV documentation, but
depending on your input you will need to experiment with these values until they suit your scenario.

Chapter 16 563

Since these parameters are somewhat arbitrary and dependent on your input, it can be a good idea
to apply a bit of automation to find them. An evolutionary algorithm could be useful in helping you
find effective parameters.

Now we are ready to start the detection and illustrate what we found:

Load the trained file and initialize the detector cascade
detector = Cascade(data.lbp_frontal_face_cascade_filename())

Apply the detector to find faces of varying sizes
out = detector.detect_multi_scale(
 img=img, step_ratio=step_ratio, scale_factor=scale_factor,
 min_size=min_object_size, max_size=max_object_size)

img_desc = plt.gca()
for box in out:
 # Draw a rectangle for every detected face
 img_desc.add_patch(patches.Rectangle(
 # Col and row as X and Y respectively
 (box['c'], box['r']), box['width'], box['height'],
 fill=False, color=color, linewidth=thickness))

After loading the cascade, we run the model using the detect_multi_scale method. This method
searches for matching objects (faces) with sizes varying from min_size to max_size, which is needed
because we don’t know how large the subject (face) is. Once we have the matches, we draw a rectangle
around them to indicate where they are:

Figure 16.3: Face detected by scikit-image

Artificial Intelligence564

By itself, scikit-image does not have many machine learning features available, but the coupling with
other libraries is what makes this library very useful for machine learning. In addition to the frontal
face dataset we loaded above, you can also use pre-trained cascades from OpenCV.

scikit-image overview
The scikit-image library can do much more than we have covered. Here’s a quick overview of a few
of the available submodules:

•	 exposure: Functions for analyzing and fixing photo exposure levels, which can be essential
for cleaning data before you feed it to your AI system.

•	 feature: Feature detection such as the canny() edge detection function we used earlier. This
allows for detecting objects, blobs of content, and more to pre-filter your input so you can
reduce the processing time needed by your AI system.

•	 filters: Image filtering functions, such as thresholding to automatically filter noise, and many
others. Similar to the exposure functions, these can be very useful for cleanup.

•	 morphology: Many functions to sharpen edges, fill sections, find minima/maxima, and so on.
•	 registration: Functions for calculating the optical flow in an image. With these functions,

you can estimate what part of the image is moving, and how fast objects are moving. Given
two images, this can help to calculate the intermediate image.

•	 segmentation: Functions for segmenting images. In the case of the coins above, the separate
coins can be extracted and/or labeled.

As you can see, the scikit-image library offers an extensive list of image manipulation and processing
functions. Additionally, it is well integrated into the scientific Python ecosystem.

OpenCV
The big “competitor” to scikit-image is OpenCV (Open Source Computer Vision library). The OpenCV
library is written in C/C++ but has bindings for several languages such as Python and Java. The reason
I put “competitor” between quotes is that these libraries don’t have to compete; you can easily combine
the strengths of both if you wish to do so, and it is something I have done myself in several projects.

We will first look at installing the Python OpenCV package.

Installing OpenCV for Python
The opencv-python package comes in several variants depending on your needs. Besides the main
OpenCV package, OpenCV also has many “contrib” and “extra” packages, which can be very useful.
The contrib packages are mainly for following tutorials and trying examples, and the extra modules
contain many useful additional algorithms.

Several pre-trained models are available in the OpenCV Git repository: https://github.
com/opencv/opencv/tree/master/data/lbpcascades.

https://github.com/opencv/opencv/tree/master/data/lbpcascades
https://github.com/opencv/opencv/tree/master/data/lbpcascades

Chapter 16 565

The list of extra modules can be found in the documentation: https://docs.opencv.org/5.x/.

I strongly recommend installing the extra modules as well, since many very useful modules are part
of the extra package.

You have the following options if you are installing the package on a desktop machine where you will
be using a GUI:

•	 opencv-python: The main modules, the bare minimum
•	 opencv-contrib-python: The full package including the main modules from the opencv-python

package, but also the contrib and extra modules

For servers that are not running a GUI, you have these options:

•	 opencv-python-headless: Beyond not including any GUI output functions such as cv2.
imshow(), this is identical to opencv-python

•	 opencv-contrib-python-headless: As above, this is the headless version of opencv-contrib-
python

Now that we have OpenCV installed, let’s see if we can replicate the Canny edge detection from scikit-im-
age using OpenCV.

Edge detection
Let’s look at how we can perform the Canny algorithm using OpenCV, similar to what we did in the
scikit-image example earlier. The Canny algorithm is not part of the OpenCV core, so you need to
install the opencv-contrib-python package for this:

$ pip3 install opencv-contrib-python

We will use the same coins image as before:

%matplotlib inline
import cv2
from matplotlib import pyplot as plt
from skimage import data

Use the coins image from scikit-image
coins = data.coins()

Get pixels 180 to the end in the X direction
x0, x1 = 180, -1
Get pixels 0 to 90 in the Y direction
y0, y1 = 0, 90
Slice the image so only the top-right three coins are visible
three_coins = coins[y0:y1, x0:x1]
scikit-image automatically guesses the thresholds, OpenCV does not

https://docs.opencv.org/5.x/

Artificial Intelligence566

threshold_1, threshold_2 = 100, 200
Apply the canny algorithm
output = cv2.Canny(three_coins, threshold_1, threshold_2)

OpenCV's imshow() function does not work well with Jupyter so
we use matplotlib to render to grayscale
plt.imshow(output, cmap='gray')

At a first glance the code looks quite similar, but there are a few differences.

First, the cv2.Canny() function requires two extra parameters: threshold_1 and threshold_2, or the
lower and upper bounds. These parameters decide what should be considered noise and what parts
are relevant for the edges. By increasing or decreasing these values, you can get finer details in the
resulting edges, but doing so means the algorithm can also start wrongly detecting the background
gradient as edges, which is already happening at the top right of the output image (Figure 16.4).

While you can pass these along to scikit-image if you wish, by default scikit-image automatically
guesses some suitable parameters for you. With OpenCV you could easily do the same, but this is
not included by default. The algorithm that scikit-image uses for this estimation can be seen in the
source: https://github.com/scikit-image/scikit-image/blob/main/skimage/feature/_canny.py
Second, OpenCV has no native support for Jupyter, so we are using matplotlib to render the output.
Alternatively, we could also use the IPython.display module to display the image.

The generated output is similar, however:

Figure 16.4: OpenCV Canny

For more similar output, you could even use scikit-image to render the output from OpenCV. Since
they both operate on numpy arrays, you can easily mix and match the functions if needed.

https://github.com/scikit-image/scikit-image/blob/main/skimage/feature/_canny.py

Chapter 16 567

Object detection
In the scikit-image face detection example, we were actually using an OpenCV-generated model, so
we could easily use that model with opencv-python directly, with a few small changes:

•	 Instead of skimage.feature.Cascade(filename), you need to use cv2.
CascadeClassifier(filename)

•	 Instead of cascade.detect_multi_scale() the function is called cascade.detectMultiScale()

With OpenCV we can easily go beyond the simple cascades we used for face detection; this time we
will use a DNN (deep neural network) instead.

The network we will be using is called YOLOv3 (You Only Look Once, version 3) and is able to detect
many types of objects such as cars, animals, fruit, and many more. Naturally this model is far larger
as well. The face detection model was only about 50 KiB, while the YOLOv3 network is nearly 5000
times larger, at 237 MiB.

Before we can start, we need to download a few files for the YOLO network to be fully functional:

•	 The model (237 MiB): https://pjreddie.com/media/files/yolov3.weights
•	 The YOLO configuration file: https://raw.githubusercontent.com/pjreddie/darknet/

master/cfg/yolov3.cfg

•	 The names for the objects: https://raw.githubusercontent.com/pjreddie/darknet/master/
data/coco.names

Once you have those files, we can demonstrate the YOLO network. First, we set up a few imports and
variables, and then load the image:

%matplotlib inline
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
from skimage import data

color = 0xFF, 0xFF, 0xFF # White
dpi = 300
font = cv.FONT_HERSHEY_SIMPLEX
font_size = 3
image_dims = 320, 320
label_offset = 10, 70
min_score = 0.9

This immediately illustrates one of the differences between scikit-image and python-
opencv. Where scikit-image uses the Python convention of underscores between words
in a function name, opencv-python uses the camelCase function names directly from
the OpenCV source.

https://pjreddie.com/media/files/yolov3.weights
https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg
https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg
https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names
https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names

Artificial Intelligence568

thickness = 2

Load the astronaut image from scikit-image as before
img = data.astronaut()
Convert the image into a 4-dimensional blob
by subtracting the mean and rescaling
blob = cv.dnn.blobFromImage(img, 1 / 255, size=image_dims)

Now that we have the imports ready and the image converted to a blob that’s suitable for the model,
we can load the model and show the results:

Load names of classes so we know what was detected
classes = open('coco.names').read().splitlines()
Load the deep neural network model and configuration
net = cv.dnn.readNetFromDarknet('yolov3.cfg', 'yolov3.weights')
Determine the output layer
ln = net.getLayerNames()
ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]

Pass the blob to the net and calculate the output blobs
net.setInput(blob)
out = net.forward(ln)
Loop through all outputs after stacking because
the net attempts to match multiple sizes
for result in np.vstack(out):
 # x, y, w and h are numbers between 0 and 1 and need to be
 # scaled by the width and height
 result[:4] *= img.shape[1::-1] * 2
 x, y, w, h, *scores = result
 # Search the net for the best match
 match_index = np.argmax(scores)
 # Skip questionable matches
 if scores[match_index] < min_score:
 continue

 # Calculate the top left and bottom right points
 tl = np.array([x - w / 2, y - h / 2], dtype=int)
 br = np.array([x + w / 2, y + h / 2], dtype=int)
 cv.rectangle(img, tl, br, color, thickness)
 # Calculate the point to place the text
 cv.putText(img, classes[match_index], tl + label_offset,
 font, font_size, color, thickness)

Chapter 16 569

 # Stop after the first match to prevent overlapping results
 break

plt.figure(dpi=dpi)
plt.imshow(img.mean(axis=2), cmap='gray')

For brevity this example is very condensed, but it shows you how you can do something as advanced
as object detection in just a few lines. If we look at the output, the deep neural network has correctly
identified the astronaut as being a person:

Figure 16.5: Object detection on astronaut

I highly encourage you to try the YOLOv3 network yourself with different images. For an old image of
a street, I got the following results:

Figure 16.6: Applying YOLOv3 on an image of a street with cars

Isn’t it amazing how easy it is to do object detection these days and how well it works? If you take a
good look at the image, you might notice that it’s even detecting cars and people that are partially
obstructed. Training a new deep neural network and doing the research for it is a completely different
question, of course, but at least applying these networks has become child’s play and they execute
well within a second, including the loading of the network.

Artificial Intelligence570

The possibilities certainly don’t end here, and you could even use techniques like these to do real-time
analysis of a video stream if you wanted. The OpenCV library really is an impressive bit of software.

OpenCV versus scikit-image
Both scikit-image and OpenCV have their own advantages over the other. This is one of the cases where
you don’t really have to choose, however; you can easily use both simultaneously.

In my opinion, OpenCV has three major advantages over scikit-image:

•	 OpenCV has native support for processing using your GPU
•	 Since it is implemented in C++, you can do parallel processing in threads without having to

worry about the GIL
•	 OpenCV has even more features than scikit-image

Naturally, scikit-image has a few advantages as well:

•	 scikit-image is written in Python so it is very easy to view (or modify) the algorithms right
from your editor.

•	 scikit-image is focused toward Python, so the naming conventions feel more natural.
•	 As scikit-image is only for Python, all documentation is immediately relevant. With OpenCV,

many of the examples you will find on the web (and in the documentation) are about the C++
interface, which is slightly different.

If you need high performance for the live processing of video streams, then OpenCV would be my top
recommendation because it has several methods built in to make that task a bit easier. If you simply
need to read and modify some images and you can get away with scikit-image, then that would be my
top recommendation.

In either case, both libraries are great and I can confidently recommend both. If your needs span
across both, use both.

Now it is finally time to start discussing the artificial intelligence libraries themselves.

Natural language processing
NLP is the process of parsing text and understanding its meaning. This can be used to extract knowl-
edge from pieces of text, understand the differences between texts, and more.

There are several well-developed libraries available for this purpose that work quite well. Addition-
ally, there are also hosted pre-trained networks available such as the GPT-3 network, which can be
accessed through the OpenAI API.

This network can generate text of such high quality that it is often indistinguishable from human-gen-
erated text.

Chapter 16 571

NLTK – Natural Language Toolkit
NLTK is not really a machine learning library by itself like most of the other libraries here, but it’s
the basis for many natural language processing libraries. The NLTK project started in 2001 with the
purpose of understanding natural languages, and definitely deserves a place in this list.

The project comes bundled with a large collection of corpora and pre-trained models for many dif-
ferent languages.

Using these corpora and models, it can do sentiment analysis, tokenize the text to find the relevant
keywords, and more.

First, we need to install nltk:

$ pip3 install nltk

As a basic example, let’s use the pre-trained sentiment analysis capability to see how positive or neg-
ative a sentence is:

>>> import nltk
>>> from nltk import sentiment

>>> nltk.download('vader_lexicon')
True

>>> sentences = [
... 'Python is a wonderful programming language',
... 'Weak-typed languages are prone to errors',
... 'I love programming in Python and I hate YAML',
...]

>>> si = sentiment.SentimentIntensityAnalyzer()
>>> for sentence in sentences:
... scores = si.polarity_scores(sentence)
... print(sentence)
... print('negative: {neg}, positive: {pos}'.format(**scores))
Python is a wonderful programming language

Corpora are large collections of structured texts that can be used for training and testing
models.

Artificial Intelligence572

negative: 0.0, positive: 0.481
Weak-typed languages are prone to errors
negative: 0.324, positive: 0.0
I love programming in Python and I hate YAML
negative: 0.287, positive: 0.326

We start by downloading the pre-trained model for sentiment analysis. After that, we can use the
SentimentIntensityAnalyzer to detect if a sentence is negative, neutral, positive, or a combination.

The library can do much more, but this already gives you a nice indication of how easy it is to get started.
If you need any basic human input parsing, make sure to give it a try as it offers very impressive results.

spaCy – Natural language processing with Cython
The spaCy library is a very impressive and extremely fast NLP library. It comes with many pre-trained
neural network models for over 60 languages and does a very good job at text classification and named
entity recognition.

The documentation is amazing and, while being fully open-source, it is developed by the company
Explosion, which is doing a really good job of keeping up with the latest developments in NLP. If you
want a high-level understanding of text, this library is one of your best options. If you only need basic
text tokenization, then I would still recommend NLTK because it is faster and more effective.

Before we continue with the example, we need to install spaCy and download the models:

$ pip3 install spacy
$ python3 -m spacy download en_core_web_sm

The en_core_web_sm dataset is a small and fast English dataset. If you need a more thorough dataset,
you can download en_core_web_trf instead.

Now that we have that taken care of, let’s try to extract some information from a sentence:

>>> import spacy
>>> import en_core_web_sm

>>> nlp = en_core_web_sm.load()
>>> _ = nlp.add_pipe("merge_entities")

>>> sentence = ('Python was introduced in 1989 by Guido van '
... 'Rossum at Stichting Mathematisch Centrum in Amsterdam.')

To install a different language, I recommend you visit the spaCy website: https://spacy.
io/usage#quickstart. For example, the Dutch dataset is called nl_core_news_sm, as
opposed to nl_core_web_sm, which you might have been expecting.

https://spacy.io/usage#quickstart
https://spacy.io/usage#quickstart

Chapter 16 573

>>> for token in nlp(sentence):
... if token.ent_type_:
... print(f'{token.ent_type_}: {token.text}')
DATE: 1989
PERSON: Guido van Rossum
ORG: Stichting Mathematisch Centrum
GPE: Amsterdam

After loading spacy and the en_core_web_sm model, we added the merge_entities pipe. This pipe
automatically merges the tokens together so we get "Guido van Rossum" instead of "Guido", "van",
and "Rossum" as separate tokens.

Isn’t this an amazing result? It automatically understands that "Guido van Rossum" is a person,
"Stichting Mathematisch Centrum" is an organisation, and "Amsterdam" is a geopolitical entity.

Gensim – Topic modeling for humans
The Gensim library (https://radimrehurek.com/gensim/) takes care of NLP for you. It is similar to
NLTK but more focused on the modern machine learning libraries. It is well documented and easy to
use and can be used to calculate similarities between texts, analyze the topic of a piece of text, and
more. While there is a large overlap between NLTK and Gensim, I would argue that Gensim is a bit of
a higher-level library and slightly easier to get started with. NLTK, on the other hand, has existed for
over 20 years and has a huge amount of documentation available in the wild because of that.

Machine learning
Machine learning is the branch of artificial intelligence that can learn by itself. This can be fully au-
tonomous learning, learning based on pre-labeled data, or a combination of these.

We need a little bit of background information before we can dive into the libraries and the examples
for this subject. Feel free to gloss over this section and jump straight to the libraries if you are already
familiar with the types of machine learning.

Types of machine learning
As we have briefly covered in the introduction, machine learning roughly splits up into three different
methodologies, but often uses a combination of several. To recap, we have the following three major
branches:

•	 Supervised learning
•	 Reinforcement learning
•	 Unsupervised learning

Naturally, there are many combinations of these, so we will discuss a few important distinct types of
learning that are based on the branches above. The names themselves should already give you a hint
about how they function, but we will dive deeper.

https://radimrehurek.com/gensim/

Artificial Intelligence574

Supervised learning
In the case of supervised learning, we provide the system with a lot of labeled data so the machine
can learn the relationship between the input data and the labels. Once it has been trained on that
data, we can test using new data to see if it works. If the results are not as expected, parameters or
intermediate training steps are tuned until the results improve.

Examples of these are:

•	 Classification models where the models are trained on a large number of photos to recognize
the objects in the photo. Or to answer a question such as: “Are we looking at a bird?”

•	 Sentiment analysis of text. Is the person writing the message happy, sad, hostile, and so on?
•	 Weather prediction. Since we have a huge amount of historical weather data available, this is

a perfect case for supervised learning.

If you have the data available, this will probably be your best option. In many cases, however, you ei-
ther don’t have the data or you have data without high-quality labels. That is where the other learning
methods come in.

Reinforcement learning
Reinforcement learning is similar to supervised learning, but instead of using labeled input/output
pairs it uses a scoring or reward function to provide feedback. The parameter that has to be tuned
with reinforcement learning is whether to re-use existing knowledge or to investigate a new solution.
Leaning too heavily toward re-use will result in a “local optimum,” where you will never get the best (or
even a good) result because you get stuck on your previously found solution. Leaning too much toward
investigation/exploration of new solutions, however, results in never reaching an optimal solution.

Examples of these are:

•	 Creating solvers/players for games. For a game such as Go or Chess, you could use win/lose as
a scoring function. For a game such as Pong or Tetris, you could use the score as the reward.

•	 Robot navigation systems. As a scoring system, you could use “distance moved from origin”
combined with “not hitting a wall.”

•	 Swarm intelligence. These are systems with many (a swarm) of independent, self-organizing
systems that need to reach a common goal. As an example, some online supermarkets use
swarms of robots to automatically fetch and package groceries with this method. The swarm
intelligence takes care of collision avoidance and automatically replacing defective robots.

Reinforcement learning is the next best option after supervised learning, because it doesn’t require
a large amount of high-quality data. You can combine these methods quite well, though. Creating a
good scoring function can be difficult, and you can easily verify your function by testing it on known
good data.

Unsupervised learning
By the name alone, you might be confused by unsupervised learning.

Chapter 16 575

After all, how would an unsupervised system work if it has no idea when it has reached a useful solu-
tion? The point is that with unsupervised learning you don’t know what the solution will look like in
the end, but you can declare how a solution could look.

Since the explanation of unsupervised learning is a bit vague, I hope some examples help:

•	 Clustering algorithms. With clustering, you feed the algorithm data with a lot of variables (for
example, in the case of people, weight, height, gender, and so on) and tell the algorithm to
find clusters.

•	 Anomaly detection. This is also an area where unsupervised learning can really shine. With
anomaly detection, you never know what you are really looking for, but any patterns that are
out of the ordinary could be important.

Unsupervised learning is quite a different type of method from the other two machine learning meth-
ods we covered earlier because there is often no known target. However, that does not make it useless
by any means. Finding patterns in seemingly random data can be really useful in uptime/stability
monitoring or visitor analysis for e-commerce websites, among other things.

Now it’s time to look at combinations of the previous methods.

Combinations of learning methods
AI development is as active as it has ever been and I expect the field to keep growing in the foreseeable
future. That is why more and more variants of algorithms are being used, which causes these clear-cut
definitions to become more flexible all the time.

In some cases, for example, you can get much better results by combining supervised and reinforce-
ment learning together than you could by using either of these methods alone. That is why the lines
between all of these methods can be extremely blurry, and if a method works for your goal, it is not
wrong to combine them.

Deep learning
One of the most effective examples of machine learning is deep learning. This type of machine learn-
ing has become extremely popular over the last few years because it has proven to be one of the
most effective types of neural networks in practical applications, in some cases even outperforming
human experts.

This type of network is called deep because the neural network has multiple (often many) hidden
internal layers, while traditional neural networks usually only have a single or a few hidden layers.

Beyond that, it is just a regular neural network and can be supervised, unsupervised, reinforcement,
or anything in between.

Artificial neural networks and deep learning
When thinking about AI, most people will immediately think of artificial neural networks (ANNs).
These networks are an attempt to mimic the workings of animal brains by having artificial neurons
and connections between them similar to synapses.

Artificial Intelligence576

There are a few key differences, however. In an animal brain, a neuron can function both as input
and output, whereas with an ANN there are usually a set of input neurons in an input layer, a set of
neurons as an output layer, and the middle layer(s) that handles the processing.

It should be noted that while ANNs (and especially deep learning) networks are very powerful and
can be self-learning, many of them are static. After they have been trained once, they do not improve
or update anymore.

The libraries in this section are made to build neural networks and to enable deep learning. Since
this is an entirely distinct field in AI, it really deserves its own section. Note that you can still mix and
match AI strategies if needed, of course.

Within Python, there are multiple large libraries for creating neural networks, but the biggest ones
by far are PyTorch and TensorFlow/Keras. Until a few years ago, there was another large library with
similar features called Theano. That library has since been discontinued and forked under a new name,
Aesara. Neither of these is used very often these days, but Theano is considered to be the original Python
neural network library. The TensorFlow library was actually created to replace Theano within Google.

Tensors
The basis of an ANN is the tensor. Tensors are a mathematical representation for your data with
descriptions of valid transformations that can be applied to this data. The actual story is much more
complicated, of course, but for the purposes of the discussion here you can think of a tensor as a
multi-dimensional array very similar to the numpy.ndarray object we have seen in the previous chapter.

When people talk about a 0-dimensional or 0D Tensor, they are effectively talking about a single number.
Going up from that, a 1D tensor is an array or vector, and a 2D tensor is a matrix.

The big takeaway for now is that the difference between a regular number/array/matrix and a tensor
is that the tensors specify what transformations are valid on them as well. It is basically the differ-
ence between a list() and a custom class that contains the data for the list() but has additional
properties as well.

PyTorch – Fast (deep) neural networks
PyTorch is a library developed by Facebook and focuses on building neural networks, such as deep
learning networks, using tensors.

Currently (in 2021; it was launched in June 2020) by far the most impressive ANN is the
GPT-3 network, which has been trained for NLP. It has an incredible 175 billion machine
learning parameters and in some cases the text it generates is indistinguishable from
human-written text.

This text is likely to be outdated quite soon, however. The GPT-3 network is already 100
times bigger than GPT-2, which was released in 2019. GPT-4 has already been announced
and is supposed to be about 500 times larger than GPT-3.

Chapter 16 577

The tensors in PyTorch use a custom data structure (instead of numpy.ndarray) for performance rea-
sons. The PyTorch library is heavily optimized for performance and it has built-in support for GPU
acceleration for further speedups.

The real strength of PyTorch (besides the performance) is the number of utility libraries included for
different kinds of inputs. You can easily use it to process images, video, audio, and text using these
APIs, and most processes can easily be run in parallel in a distributed fashion.

Here is a little overview of the most useful modules:

•	 torch.distributed: For parallel training across multiple GPUs in a single system or across
multiple systems.

•	 torchaudio: For processing audio, either from pre-recorded files or straight from (multiple)
microphones.

•	 torchtext: For processing text; you can also combine this with NLP libraries such as NLTK.
•	 torchvision: For processing images and sequences of images (videos).
•	 torchserve: For setting up a server that hosts your models so you can build a service that

runs your calculations. This is useful because starting a process and loading the model can
be a slow and heavy task.

•	 torch.utils: Contains many useful utility functions, but above all, TensorBoard. With Tensor-
Board, you can interactively (through a web interface) inspect your models and make changes
to your model parameters.

It’s time for a small example, but before we can get started we need to install both pytorch and
torchvision:

$ pip3 install torch torchvision

We will use the pre-trained Mask R-CNN model to do object recognition. This is a region-based
convolutional neural network (R-CNN) that has been trained using a combination of images and
labeled image masks (object outlines).

In many cases you can use torch.Tensor as a drop-in replacement for numpy.ndarray
to enable GPU acceleration. The torch.Tensor API is largely identical to the numpy.
ndarray API.

CNNs are well suited for visual applications such as image classification and image seg-
mentation. They can also be applied to other types of problems such as NLP as well.

The R-CNN is a specialized version of the CNN specifically for computer vision tasks such
as object detection. R-CNN tasks are trained by specifying the region of interest (ROI) in a
set of images. The Mask R-CNN is a specialization that specifies the ROI not as a rectangle
but as a mask that only highlights the specific object.

Artificial Intelligence578

Now we’ll do some object recognition using PyTorch. First, we load the photo and imports and convert
the photo into a tensor:

%matplotlib inline
from PIL import Image
from matplotlib import pyplot as plt, patches
from torchvision import transforms
from torchvision.models import detection

dpi = 300
font_size = 14
color = 'white'
min_score = 0.8
min_size = 100
label_offset = 25, -25

Load the img and convert it to a PyTorch Tensor
img = Image.open('amsterdam-street.jpg')
img_t = transforms.ToTensor()(img)

The conversion to a tensor can be done using the ToTensor transform operation. The torchvision.
transforms module has many more operations available, such as resizing, cropping, and color nor-
malization, to pre-filter the images before we send them to the model.

Next up is the loading of the model and the labels:

Read the labels from coco_labels. The entire COCO
(Common Objects in COntext) dataset is available at:
https://cocodataset.org/#download
labels = open('coco_labels.txt').read().splitlines()

Load the R-CNN model and set it to eval mode for execution
model = detection.fasterrcnn_resnet50_fpn(pretrained=True)
model.eval()
Apply the model to the img as a list and unpack after applying
out, = model([img_t])

Chapter 16 579

As you can see, the model itself is bundled with PyTorch. After loading the model and setting it to
eval mode (as opposed to training), we can quickly apply the model to our image. The labels are
unfortunately not bundled, so we need to fetch those ourselves. Now we need to display the results:

results = zip(out['boxes'].detach(), out['labels'], out['scores'])

Increase the DPI to get a larger output image
plt.figure(dpi=dpi)
img_desc = plt.subplot()
Walk through the list of detections and print the results
for (t, l, b, r), label_idx, score in results:
 # Skip objects that are questionable matches
 if score < min_score:
 continue

 # Skip tiny matches
 h, w = b - t, r - l,
 if w < min_size or h < min_size:
 continue

 # Draw the bounding box and label
 img_desc.add_patch(patches.Rectangle(
 (t, l), h, w, fill=False, color=color))
 label = f'{labels[label_idx]} {score * 100:.0f}%'
 img_desc.text(
 t + label_offset[0], r + label_offset[1], label,
 fontsize=font_size, color=color)

Output the img as grayscale for print purposes
plt.imshow(img.convert('L'), cmap='gray')
plt.show()

The label file is available on this book’s GitHub page.

Artificial Intelligence580

We can display the matches and their bounding boxes to get the following result:

Figure 16.7: Street in Amsterdam with objects labeled by PyTorch

With just a few lines of code, we managed to create an object recognizer that correctly identified a
few cars, bicycles, and a boat.

In practice, the model actually recognized far more objects in the image, but we filtered out small
matches so the image is not too busy. It actually recognized seven more cars, four people, and two boats.

PyTorch Lightning and PyTorch Ignite – High-level PyTorch APIs
The PyTorch Lightning and PyTorch Ignite libraries are convenient shortcuts for getting your net-
work up and running with fewer steps and several useful features built in. You can do the same with
PyTorch directly, but using the utility functions you can run several PyTorch steps at once, meaning
less repetition while working.

These libraries were created independently, but serve roughly the same goal and are comparable
in features. It depends on your personal preference as to which is the best for you. I would initially
recommend you start with PyTorch directly, however. While these libraries are really great, it is im-
portant to understand the underlying principles before you start using shortcuts that you might not
completely understand. The PyTorch documentation is quite easy to follow and largely identical in
workings to PyTorch Ignite and PyTorch Lightning, besides being a bit more verbose.

Skorch – Mixing PyTorch and scikit-learn
As was briefly mentioned, scikit-learn natively supports neural networks, but its performance is not
good enough for large-scale networks. The Skorch library takes care of that; you can still use the scikit-
learn API if you are familiar with that, but it runs on PyTorch internally to achieve great performance.

Chapter 16 581

TensorFlow/Keras – Fast (deep) neural networks
The TensorFlow library is developed by Google and focuses on building deep neural networks very
similar to PyTorch. The library is well documented and has a large number of pre-trained models
available to use; you may never have to train your own models, which can be a big advantage.

Similar to PyTorch, TensorFlow is also based on tensors for the actual calculations, and it is highly
optimized for performance on many platforms, including mobile phones for deployment and dedicated
tensor processing units (TPUs) or GPU hardware for training the models.

As an example, we will run the Mask R-CNN we used with PyTorch earlier again. Since this model is
not bundled with tensorflow, we need to install tensorflow-hub in addition to tensorflow:

$ pip3 install tensorflow tensorflow-hub

This will automatically install tensorflow with GPU support if available for your platform. Currently,
that means either Windows or Ubuntu Linux. Now we can test some TensorFlow/Keras code. First,
we import what we need, set some variables, and load the image:

%matplotlib inline
import numpy as np
import tensorflow_hub as hub
from keras.preprocessing import image
from matplotlib import pyplot as plt, patches

dpi = 300
font_size = 14
color = 'white'
min_score = 0.8
min_size = 100
label_offset = 25, -25

Load the img and convert it to a numpy array
img = image.load_img('amsterdam-street.jpg')
img_t = image.img_to_array(img)
img_w, img_h = img.size

Now that the image is loaded, let’s load the model using tensorflow_hub and apply it on our image:

labels = open('coco_labels.txt').read().splitlines()
model = hub.load(
 'https://tfhub.dev/tensorflow/mask_rcnn/inception_resnet_v2_1024x1024/1')
out = model(np.array([img_t]))

Artificial Intelligence582

The box coordinates are normalized to [0, 1]
img_dim = np.array([img.size[1], img.size[0]] * 2)
result = zip(
 out['detection_boxes'][0] * img_dim,
 out['detection_classes'][0],
 out['detection_scores'][0],
)

Once again, we don’t have the labels available, so we read that from our coco_labels.txt file. However,
once we load the model we can easily apply it to our image.

Now we need to prepare the results for easy processing and display them:

Increase the DPI to get a larger output image
plt.figure(dpi=dpi)
img_desc = plt.subplot()

Walk through the list of detections and print the results
for (l, t, r, b), label_idx, score in result:
 label_idx = int(label_idx)
 # Skip objects that are questionable matches
 if score < min_score:
 continue

 # Skip tiny matches
 h, w = b - t, r - l,
 if w < min_size or h < min_size:
 continue

 # Draw the bounding box and label
 img_desc.add_patch(patches.Rectangle(
 (t, l), h, w, fill=False, color=color))
 label = f'{labels[label_idx]} {score * 100:.0f}%'
 img_desc.text(
 t + label_offset[0], r + label_offset[1], label,
 fontsize=font_size, color=color)

Output the img as a large grayscale for print purposes
plt.imshow(img.convert('L'), cmap='gray')

The code is largely similar to the PyTorch code because it uses the same pre-trained model. The no-
table differences are:

Chapter 16 583

•	 We loaded the model using tensorflow_hub. This automatically downloads and executes pre-
trained models from https://tfhub.dev/.

•	 The box points are from 0 to 1 instead of being relative to the image size. So, coordinate 10x5
in a 20x20 image results in 0.5x0.25.

•	 The output variable names are different. It should be noted that these are dependent on the
model and can be found on TensorFlow Hub for this model: https://tfhub.dev/tensorflow/
mask_rcnn/inception_resnet_v2_1024x1024/1.

•	 The box points use the left, top, right, bottom order instead of top, left, bottom, right, as was
the case with PyTorch.

Beyond those small changes, the code is effectively identical.

NumPy compatibility
The actual tensor objects in TensorFlow are slightly different from the PyTorch tensors. While the
pytorch.Tensor API can be used as a numpy.ndarray alternative, with tensorflow.Tensor the API
is a bit different.

There is a tensorflow.Tensor.numpy() method, which returns a numpy.ndarray of the data. It is
important to note that this is not a reference, however; modifying the numpy array will not update the
original tensor, so you will need to convert it back after your changes.

As an alternative, TensorFlow does offer an experimental numpy API if you prefer that API. It can be
enabled like this:

>>> import tensorflow.experimental.numpy as tnp

>>> tnp.experimental_enable_numpy_behavior()

Usage is fairly straightforward, but it is by no means fully numpy.ndarray-compatible:

>>> x = tnp.random.random([5])
>>> x[:5] += 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tensorflow.python.framework.ops.EagerTensor' object does not
support item assignment

Keras
The Keras submodule of TensorFlow is similar to what PyTorch Lightning and PyTorch Ignite are for
PyTorch. It offers a high-level interface for TensorFlow, making it easier to use and get started with.
As opposed to the aforementioned PyTorch libraries, Keras is quite suitable as a starting point as well.
Knowing the underlying TensorFlow functions can be useful, but it is not a requirement for being
able to use Keras effectively.

Keras might be for you if you are just getting started with TensorFlow and want to apply some machine
learning to your project without going down the rabbit hole.

https://tfhub.dev/
https://tfhub.dev/tensorflow/mask_rcnn/inception_resnet_v2_1024x1024/1
https://tfhub.dev/tensorflow/mask_rcnn/inception_resnet_v2_1024x1024/1

Artificial Intelligence584

TensorFlow versus PyTorch
There are a few advantages and disadvantages to TensorFlow compared to PyTorch, so let’s list those
before we continue.

Here are some reasons you might choose TensorFlow over PyTorch:

•	 TensorFlow supports the execution of the pre-trained model in a web browser. While PyTorch
does have a few libraries available to do this as well, they are either stale or far behind Tensor-
Flow in terms of features and stability.

•	 TensorFlow is largely language-agnostic. This means that it has bindings for multiple languages,
whereas PyTorch is largely Python-only.

•	 TensorFlow, or more specifically, Keras, is a very high-level API that allows you to get started
quickly. When comparing Keras to PyTorch Lightning/PyTorch Ignite, I personally feel that you
can get a working result more quickly with TensorFlow. Keras has many utility functions and
classes bundled that can save you some work while creating a model. Another big help is Ten-
sorFlow Hub, which offers many pre-trained models with example code for your convenience.

•	 TensorFlow has a slightly bigger community and slightly more tutorials available.

Conversely:

•	 PyTorch was written around Python and has a much more Pythonic API.
•	 PyTorch offers more fine-grained control and easily gives you many parameters to tune.
•	 While this is a personal opinion, I find that debugging PyTorch is much nicer (from Python,

at least) than TensorFlow or Keras because the codebase has fewer layers and seems less
complicated. Stepping through the execution of your model with a regular Python debugger
works great and is easy to follow in the case of PyTorch. In my experience, regular Python
debuggers do not work at all with TensorFlow.

•	 PyTorch is a bit faster than TensorFlow. This can be a huge help while developing and debugging.

Which of the libraries you should use depends on personal preference and factors such as pre-existing
experience for you and/or the rest of your team. I can certainly recommend both of them.

Evolutionary algorithms
Evolutionary algorithms are a technique based on evolution in nature that improve by using a fitness
function to determine quality, and by evolving the solution.

The most common implementation is the genetic algorithm, which commonly encodes the solution,
or chromosome, into a string or an array that can be tested by the fitness function. This chromosome
could be a list of functions to apply, a list of parameters to a function, or something else entirely. How
you wish to encode the chromosome is up to you, as long as the fitness function can use it to calculate
a fitness score.

The genetic algorithm will employ one of the following operations to try and improve the fitness score:

•	 Mutation: This could be a bit flip from 0 to 1, or a more complex mutation of replacing multiple
bits. For example, if we have bit-string 0101, then a mutation could result in 0111.

Chapter 16 585

•	 Selection: Given a set of different tested chromosomes using the fitness function, only keep
the best few.

•	 Crossover: Given a few different chromosomes, combine parts of them to try new solutions.
For example, if we have two strings, AABB and DEFG, the crossover can split them and com-
bine them; for instance, you could get AAFG, which combines the first two characters from
the first string and the last two from the second string.

The genetic algorithm takes a few parameters to control which strategy is employed at a given run.
The mutation rate sets the probability of a mutation occurring; the elitism parameter decides how
many results to keep in the selection process; and the crossover rate sets the probability of crossovers
occurring. The difficult part is tuning these parameters to return a good and stable solution (in other
words, one that does not change too much between runs), but not getting stuck in a local optimum
where your solution appears the best but could be far better by attempting more genetic diversity.

There are many applications where genetic algorithms (or more generally, genetic programming)
are the most feasible option to get a good solution to your problem. One of the prime examples of
where genetic algorithms shine is the traveling salesman problem (TSP). With the TSP, you have a
list of cities that you want to visit, and you want to find the shortest route that covers all of them. The
standard brute-force solution has a time complexity of O(n!), which means that for 10 cities you need
about 3,628,800 steps to calculate. That is a lot, but still easily manageable. For 20 cities, however, the
number grows to 2,432,902,008,176,640,000, or, 2 quintillion (2 billion billion), and that growth contin-
ues very rapidly. With genetic programming, the fitness problem will almost immediately eliminate
parts of the solution space that are completely infeasible and gives you a good (but possibly not the
best) solution relatively fast.

Even though evolutionary algorithms offer a lot of power, implementing them is relatively easy to do
and often highly specific to your specific use case. This makes it a scenario where applications and
libraries usually opt for writing their own implementation instead of using a library for this goal.

There is at least one notable Python library for genetic algorithms however. The PyGAD library can
make it easily possible for you to use genetic algorithms in your project. It also comes with built-in
support for Keras and PyTorch to save you some work.

Let’s start by installing PyGAD:

$ pip3 install pygad

Now we will attempt to solve a problem you might encounter in the real world. Let’s say that you
need a new floor and you want wooden floorboards. Due to bulk discounts, it can be cheaper to buy
a large stack of boards instead of just a few separate boards, so let’s assume we have a few different
bulk quantities and make our algorithm optimize for cost. First, we need to define our list of bulk sizes
with the prices. We will also define the number of boards we are looking for. Lastly, we will define the
fitness function to tell PyGAD how good (or bad) the solution is:

import numpy as np
import pygad

Artificial Intelligence586

Combination of number of boards with the prices per board
stack_prices = np.array(
 [
 [1, 10], # $10 per board
 [5, 5 * 9], # $9 per board
 [10, 10 * 8], # $8 per board
 [25, 25 * 7], # $7 per board
]
)

The minimum number of boards to buy
desired_boards = 67

def fitness_function(solution: numpy.ndarray, solution_index):
 # We can't have a negative number of boards
 if (solution < 0).any():
 return float('-inf')

 # Make sure we have the minimum number of boards required
 total_area = stack_prices[:, 0] * solution
 if total_area.sum() < desired_boards:
 return float('-inf')

 # Calculate the price of the solution
 price = stack_prices[:, 1] * solution
 # The fitness function maximizes so invert the price
 return - price.sum()

The fitness functions for PyGAD optimize for the highest number; since we are looking for the lowest
price, we can simply invert the price. Additionally, we can return minus infinity when we want to
rule out “bad” solutions.

To get some intermediate results, we can optionally add a function that will show us the state at every
generation:

def print_status(instance):
 # Only print the status every 100 iterations
 if instance.generations_completed % 100:
 return

 total = 0
 solution = instance.best_solution()[0]

Chapter 16 587

 # Print the generation, bulk size, and the total price
 print(f'Generation {instance.generations_completed}', end=' ')
 for mp, (boards, price) in zip(solution, stack_prices):
 print(f'{mp:2d}x{boards},', end='')
 total += mp * price
 print(f' price: ${total}')

Now it’s time to run the algorithm and show the output while doing so:

ga_instance = pygad.GA(
 num_generations=1000,
 num_parents_mating=10,
 # Every generation will have 100 solutions
 sol_per_pop=100,
 # We use 1 gene per stack size
 num_genes=stack_prices.shape[0],
 fitness_func=fitness_function,
 on_generation=print_status,
 # We can't buy half a board, so use integers
 gene_type=int,
 # Limit the solution space to our maximum number of boards
 gene_space=numpy.arange(desired_boards),
 # Limit how large the change in a mutation can be
 random_mutation_min_val=-2,
 random_mutation_max_val=2,
 # Disable crossover since it does not make sense in this case
 crossover_probability=0,
 # Set the number of genes that are allowed to mutate at once
 mutation_num_genes=stack_prices.shape[0] // 2,
)

ga_instance.run()
ga_instance.plot_fitness()

This will run 1,000 generations for us with 100 solutions per generation. A single solution contains the
number of stacks of wood to buy for each stack size. When we run this code, we should get something
similar to this:

$ python3 T_02_pygad.py
Generation 100 3x1, 1x5, 6x10, 0x25, price: $555
Generation 200 3x1, 0x5, 4x10, 1x25, price: $525
...

Artificial Intelligence588

Generation 900 2x1, 1x5, 1x10, 2x25, price: $495
Generation 1000 2x1, 1x5, 1x10, 2x25, price: $495

The plot of our results:

Figure 16.8: Genetic algorithm fitness result plot

In this case, 495 is actually the optimal result; in most cases, though, you don’t know if you have
reached the optimal result. This essentially means that you could keep your code running forever,
which is why you should either configure a fixed number of generations, or tell PyGAD to stop once
it has reached a steady state for a certain number of generations.

More importantly, however, after about 50 generations we already had a great and very usable solution
for our problem, whereas the optimal solution took roughly 700 generations this run. In many of the
other runs I did, it never even found the optimal solution. This shows you how quickly the genetic
algorithm can give you a useful result.

Support-vector machines
Support-vector machines (SVMs) or support-vector networks are common models for supervised
learning. Since it is a supervised learning method, it expects a dataset that is already labeled (for
example, a list of photos with correct labels) to train on. Once the model has been trained, it can be
used for classification and regression analysis.

In statistics, regression analysis is a way to show the relationship between variables. These can be used
to fit lines, create predictors, detect outliers, and more. We have seen several examples of regression
analysis in Chapter 15, Scientific Python and Plotting, as well.

Chapter 16 589

Classification refers to statistical classification and is a method of splitting data. For example, the
question as to whether an email is spam or not is a form of binary classification.

Bayesian networks
Bayesian networks are based on the idea that we have probabilities of an event occurring. This is usu-
ally expressed as P(event), where P(event)=1 is 100% probability of event occurring and P(event)=0
is no probability at all.

These can be used for all sorts of applications and are particularly useful for expert systems, which
can make recommendations based on your given data. For example, given that there is a thunderstorm
outside, we know that there is a larger probability of rain than if it is sunny outside. In Bayesian terms,
we would describe it like this:

P(rain) = The probability of rain
P(thunderstorm) = The probability of a thunderstorm
P(rain | thunderstorm) = The probability of rain given that there is a
thunderstorm

Bayesian networks are often used for spam filters that look for certain keywords and calculate the
odds of an email being spam. Another possible use case for Bayesian networks is text prediction when
typing. If you train your network with many sentences, you can calculate the next most likely word
to occur given the previous word or words.

As you have seen, there are many types of different machine learning models, and many more submod-
els that all have their own strengths and weaknesses. This list of examples is an extremely condensed
and simplified list of available models, but it should give you at least some idea of the scenarios in
which these different algorithms can do their magic.

Versatile AI libraries and utilities
Python is by far the most popular language when it comes to developing AI systems. The result of this
popularity is that there are a huge number of libraries available for every branch of AI you can think
of. There is at least a single good library for nearly every AI technique, and often dozens.

In this section of this chapter, you will find a curated (and incomplete) list of useful AI libraries split
into segments. There are many more that are not mentioned due to being too specific, too new, or
simply because I have omitted them owing to the great number of libraries that are out there.

scikit-learn – Machine learning in Python
The scikit-learn library is an extremely versatile machine learning library that covers many AI topics;
for many of them, this should be your starting point. We have already seen the scikit-image library
earlier, which is a part of the scikit-learn project, but there are many more options.

Artificial Intelligence590

The complete list of possibilities is huge, so I will try to give you a very small list based on the scikit-
learn modules that I have personally found useful. Many more methods are available, so make sure
to read through the scikit-learn documentation if you are interested in anything specific.

This section is split between supervised and unsupervised options, since your dataset is the most
important factor in deciding on an algorithm for your use case.

Supervised learning
Starting with supervised learning, scikit-learn offers a host of different options in many different
categories.

Linear models
First of all, scikit-learn offers dozens of different linear models for performing many types of regres-
sions. It has functions for many specific use cases, such as:

•	 Ordinary least squares regression, as we have seen several times in the previous chapter as well.
•	 Ridge regression and classifier, a function similar to the ordinary least squares method but

more resistant to collinearity.
•	 The LASSO (least absolute shrinkage and selection operator) model, which can be seen as the

successor to the Ridge model for specific use cases. One of the advantages of the lasso model
is that, in the case of machine learning, it can help filter out (usually irrelevant) features with
very little data.

•	 Polynomial regression: Methods such as the ordinary least squares method perform regression
by creating a single straight line. In some cases, however, a straight line will never properly fit
your data. In these cases, polynomial regression can help a lot since it can generate curved lines.

Support-vector machines
Next up are support-vector machines. We already discussed SVMs briefly, but in short these can be
used for classification, regression, and outlier detection. As opposed to the linear (2D) models above,
these methods also function for higher-dimensional data.

Currently, scikit-learn supports these types of SVMs:

•	 SVC/SVR: Support-vector classification and regression based on the C libsvm library. For smaller
datasets (a few thousand samples), this is the most useful and flexible SVM implementation in
scikit-learn. This method can also handle support vectors, which can increase the precision
of classifiers.

•	 NuSVC/NuSVR: A modified version of SVC/SVR that introduces a parameter v (the Greek letter
Nu) to approximate the fraction of training errors and support vectors.

There are many more methods in this module, so make sure to take a look at the docu-
mentation: https://scikit-learn.org/stable/modules/linear_model.html.

https://scikit-learn.org/stable/modules/linear_model.html

Chapter 16 591

•	 LinearSVC/LinearSVR: A fast (faster than SVC/SVR) linear support vector classification and
regression system. For large datasets (over 10,000 samples) this is the better alternative to SVC/
SVR, but it does not handle separate support vectors.

SVMs are very robust prediction methods for higher-dimensional data while still maintaining decent
execution speeds.

Decision trees
Decision trees (DTs) also deserve special attention. While most of the machine learning models are
still relatively expensive to use after training, with DTs you build a tree based on the training data to
use in your classification or regression. If you are familiar with tree structures, you know that many
lookups only take O(log(n)) time to do. In addition to being really fast to calculate, it can also make it
much easier to visualize your data, because scikit-learn can export the evaluated results to Graphviz,
a tool for rendering graph structures.

To supercharge the DTs, you can also combine a collection of them into a forest using a
RandomForestClassifier or RandomForestRegressor, which results in reduced variance. To take
this a step further, you can also use the extremely randomized trees methods ExtraTreesClassifier
or ExtraTreesRegressor, which also randomize the specific thresholds between the trees, for further
reduced variance over the normal forest methods.

Feature selection
Using feature selection, you can input a large number of input parameters without specifying what
they are for, and let the model figure out the most important features.

For example, let’s say that you have collected a large set of weather and geographical data, such as
temperature, humidity, air pressure, altitude, and coordinates, and you want to know which of these
play a role in answering the question of whether it will snow. The coordinates and air pressure are
probably less important factors than temperature is in this case.

The scikit-learn library has several different options available for feature selection:

•	 sklearn.feature_selection.VarianceThreshold: Excludes items with a small variance by
satisfying the equation Var[X]=p(1-p)

•	 sklearn.feature_selection.SelectKBest: Selects the k highest scoring features
•	 sklearn.feature_selection.SelectPercentile: Selects the top nth percentile scoring fea-

tures
•	 sklearn.feature_selection.SelectFromModel: A special and very useful feature selector

that can use previously generated models (such as an SVM) to filter features

There are several other feature selection and feature filtering methods available, so make sure to check
the documentation to see if there is a better method available for your specific use case.

Artificial Intelligence592

Other models
In addition to these methods, there are many other methods supported by scikit-learn, such as:

•	 Bayesian networks: Gaussian, multinomial, complement, Bernoulli, categorical, and out-of-
core.

•	 Linear and quadratic discriminant analysis: These are similar to the linear models but also
offer quadratic solutions.

•	 Kernel ridge regression: A combination of ridge regression and classification. This can be a
faster alternative to SVR.

•	 Stochastic gradient descent: A very fast regression/classifier alternative to SVM for specific
use cases.

•	 Nearest neighbor: These methods are useful for a range of different purposes and are at the
core of many of the other functions in this library. At the very least, take a look at this section,
because structures such as KD-trees have many applications outside of machine learning as well.

While there are several other options as well, these are probably the ones that are most useful to you.
Note that even though scikit-learn does support neural networks such as multi-layer perceptrons, I
would not recommend you use scikit-learn for this purpose. While the implementation works well, it
does not have support for GPU (video card) acceleration, which makes a huge performance difference.
For neural networks I recommend using TensorFlow, as discussed earlier in this chapter.

Unsupervised learning
Due to the nature of unsupervised learning, it is a lot less versatile than supervised learning, but there
are a few scenarios where unsupervised learning absolutely makes sense and is an easy solution.
While the unsupervised learning portion of scikit-learn is smaller than the supervised portion, there
are still several really useful functions available.

Clustering is the prime example of where unsupervised learning shines. This comes down to giving the
algorithm a whole bunch of data and telling it to cluster (split) it into useful sections wherever it can
find a pattern. To facilitate this, scikit-learn has a range of different algorithms. The documentation
explains this very well: https://scikit-learn.org/stable/modules/clustering.html#overview-
of-clustering-methods.

A subsection of this documentation is given below:

Method name Scalability Use case

K-Means Very large n_samples, medium
n_clusters with MiniBatch code

General-purpose, even cluster size, flat
geometry, not too many clusters, inductive

Affinity
propagation

Not scalable with n_samples Many clusters, uneven cluster size, non-flat
geometry, inductive

Mean-shift Not scalable with n_samples Many clusters, uneven cluster size, non-flat
geometry, inductive

https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods
https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods

Chapter 16 593

Spectral
clustering

Medium n_samples, small n_
clusters

Few clusters, even cluster size, non-flat
geometry, transductive

Ward
hierarchical
clustering

Large n_samples and n_
clusters

Many clusters, possibly connectivity constraints,
transductive

Agglomerative
clustering

Large n_samples and n_
clusters

Many clusters, possibly connectivity constraints,
non-Euclidean distances, transductive

DBSCAN Very large n_samples, medium
n_clusters

Non-flat geometry, uneven cluster sizes,
transductive

OPTICS Very large n_samples, large
n_clusters

Non-flat geometry, uneven cluster sizes,
variable cluster density, transductive

Gaussian
mixtures

Not scalable Flat geometry, good for density estimation,
inductive

BIRCH Large n_clusters and n_
samples

Large dataset, outlier removal, data reduction,
inductive

All of these methods have their own use cases and the scikit-learn documentation explains this much
better than I could. In general, however, the K-Means algorithm, which we have also used in the pre-
vious chapter, is a very good starting point.

Note that the clusters can also be used for learning features and the relationship between them. Once
you have learned the features, you could use the feature selection in supervised learning to filter them
for subselections.

To summarize, for the general machine learning cases, scikit-learn is probably your best bet. For
special cases, there are often better libraries available; many of these are built on top of scikit-learn,
however, so it is recommended that you familiarize yourself with the library if you plan to employ
machine learning.

auto-sklearn – Automatic scikit-learn
The scikit-learn library can do so many things that it is often overwhelming to use. At the time of
writing, there are 34 distinct regression functions and 25 different classifiers, which can make it quite
a challenge to select the right one for you.

This is where auto-sklearn can help. It can automatically select a classification function for you and
fill in the parameters needed for it to work. If you’re just looking for something that just works, this
is your best bet.

mlxtend – Machine learning extensions
mlxtend is a library with a range of relatively easy and well-documented machine learning examples.

Artificial Intelligence594

It uses scikit-learn, pandas, and matplotlib internally to provide a more user-friendly interface for
machine learning compared to scikit-learn. If you are starting out with machine learning (or scikit-
learn), this can be a nice introduction, since it’s a bit less complicated than using scikit-learn directly.

scikit-lego – scikit-learn utilities
Even though scikit-learn already has a huge catalog of functions and features built in, there are still
many things that it does not provide an easy interface for. This is where the scikit-lego library can
help, it has many convenient functions for scikit-learn and pandas so you don’t need to repeat yourself
too often.

In the previous chapter, we used the Penguins dataset a few times. Loading that dataset and plotting
the distribution can be done in just a few lines:

import collections

from matplotlib import pyplot as plt
from sklego import datasets

X, y = datasets.load_penguins(return_X_y=True)
counter = collections.Counter(y)
plt.bar(counter.keys(), counter.values())
plt.show()

This results in:

Figure 16.9: Penguin distribution

Chapter 16 595

scikit-lego can automatically perform some conversions for us (the return_X_y parameter here) so
we can easily plot the results. There are many more of these functions available, which make it really
easy to play around with Scikit-learn.

XGBoost – eXtreme Gradient Boosting
XGBoost is a fast and efficient library for gradient boosting, a regression/classification technique that
produces forests of decision trees. The main advantage of this technique compared to many other
regression/classification algorithms is the scalability. With XGBoost, you can easily spread your work-
load along clusters of many computers, and it happily scales to billions of data points.

If you have very large datasets, XGBoost might be one of your best options.

Featuretools – Feature detection and prediction
The Featuretools library makes it really easy to transform your datasets into aggregated feature ma-
trices based on either time-based datasets or relational ones. Once the feature matrix is constructed,
the library can be used for predictions about these features.

You could, for example, predict trip durations based on a collection of multiple trips, or predict when
a customer will purchase from you again.

Snorkel – Improving your ML data automatically
Snorkel is a library that attempts to make the training of your ML models much easier. Getting enough
training data to properly train your models can be really difficult, and this library has several clever
methods to make this easier.

The library has three core operations to help you build your datasets:

•	 First, to help with labeling, the Snorkel library features several heuristic methods. While these
labels will not be perfect, manually labeling all data can be a prohibitive task.

•	 The second core operation is the transforming and augmenting of datasets. Once again, these
use heuristic methods to (hopefully) improve your data quality.

•	 The last core operation is the slicing of data so you only get data that is relevant for your use
case. This operation is also heuristics-based.

You will not need this if you already have good-quality data available, but it is certainly worth looking
at if your data could use some improvement. As is always the case with machine learning, care must
be taken to avoid overfitting or underfitting data. Applying the Snorkel methods can quickly exacerbate
problems in your dataset, since it uses the dataset as a source.

TPOT – Optimizing ML models using genetic programming
TPOT (tea-pot) is a library that optimizes your learning pipelines through genetic programming. We
already covered evolutionary algorithms earlier, but to remind you, they are algorithms that improve
by changing themselves or their parameters through evolution.

Artificial Intelligence596

While genetic algorithms are relatively easy to implement by themselves, the complexity comes from
the encoding of the solution so it is compatible with the genetic algorithm. This is what is very nice
about the TPOT library; it makes it really easy to encode your features, cache parts of the pipeline,
and even run the attempts in parallel using Dask.

To illustrate, here is the code needed to tell TPOT to automatically optimize a scikit-learn classifier
with its parameters:

import tpot
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
 some_data, some_target, train_size=0.75, test_size=0.25)

tpot = tpot.TPOTClassifier(verbosity=2, max_time_mins=10)
tpot.fit(X_train, y_train)
tpot.export('optimized_classifier.py')

Once it is done trying multiple classifiers, it will write the optimized function calls to optimized_
classifier.py. It is important to note that the classifier returned is also dependent on the optimiz-
er results; it could be sklearn.neighbors.KNeighborsClassifier, but you could also get sklearn.
ensemble.RandomForestClassifier or something else.

Do not assume that TPOT is a fast solution for finding your parameters, though; getting a good solution
using genetic algorithms can take a long time, and it can be beneficial to reduce your test set before
you apply this algorithm.

That was the last library, and it’s time to try things out for yourself in the Exercises section.

Exercises
Due to the nature of this chapter, all topics only cover the absolute basics of the mentioned libraries
and they really do deserve much more. In this case, as an exercise, I recommend that you try and use
some (or all) of the mentioned libraries and see if you can do something useful with them.

Some suggestions:

•	 Browse through TensorFlow Hub and apply some models to your own data. Perhaps you can
apply object detection to your holiday photos.

•	 After applying a model to your photos, try and improve the model by adding some new objects
and finetuning it.

•	 Try to extract some data or information from this chapter’s summary by applying one of the
NLP algorithms.

Chapter 16 597

AI is a complicated subject, and even simple example guides are often quite elaborate. Luckily, these
days we can often immediately try examples online through Google Colab or by running a Jupyter
Notebook. Dive in and don’t get discouraged; there is an incredible amount of high-quality information
available online from field experts.

Summary
This chapter gave you a sample of some of the largest and most popular Python AI libraries, but there
are many more (large) libraries around that could be useful for your particular use case. There are, for
example, also many libraries available for specific topics such as astronomy, geographical information
systems (GISes), protein folding, and neurological imaging.

After this chapter, you should have some idea of where to start searching for particular types of AI
libraries. Additionally, you should know a little bit about when to apply a particular type of AI. For many
use cases, you will need a combination of these methods to solve the problem in an efficient manner.
A supervised ML system, for example, is a fantastic option if you have a vast amount of good-quality,
labeled data. Often this is not the case, which is where the other algorithms come in.

Surprisingly enough, many of the current “AI” start-up companies don’t actually use AI for their rec-
ommendation systems but humans instead, hoping to upgrade to an effective AI somewhere in the
future when they have gathered enough training data. Effectively, they are trying to solve the data
requirement for supervised ML systems with brute force. Similarly, algorithms are only part of the
reason that voice recognition systems such as Alexa, Google Assistant, or Siri have become possible.
Another large part is the availability of training data over the last several years. Naturally, these systems
are not built on one algorithm specifically but use a combination of multiple algorithms; the system
not only tries to convert your voice to words, but also attempts to understand what you are likely to
say by constantly cross-validating those results with what would be a logical sentence structure.

The field of AI is improving and changing more rapidly with each year. With the increased processing
power we have now, there are many more options than we had in the past. The currently used deep
learning AI models were completely infeasible to build only 20 years ago, and in 10 years’ time the
models will have far surpassed what is possible now. If there is no solution available for the issue you
are facing today, the situation might be completely different a year from now.

It is also perfectly reasonable to skip this part of Python entirely. While AI is becoming a larger and
larger portion of what is being done with Python, a big part of that is in academic settings and might
not be interesting for your field of work. AI can be a great help, but it is often a much more complicated
solution than is actually needed.

In the next chapter, we will learn about creating extensions in C/C++ to increase performance and
allow low-level access to memory and other hardware resources. While this can greatly help with
performance, performance rarely comes free, as we will see.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Artificial Intelligence598

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

17
Extensions in C/C++, System
Calls, and C/C++ Libraries

The last few chapters have shown us many machine learning and scientific computing libraries. Many
of these libraries are not written in pure Python because of code reuse from existing libraries, or for
performance reasons. In this chapter, we will learn how we can do some of this ourselves by creating
C/C++ extensions.

In Chapter 12, Performance – Tracking and Reducing Your Memory and CPU Usage, we saw that
the cProfile module is about 10 times faster than the profile module, which indicates that at least
some C extensions are faster than their pure Python equivalents. This chapter will not focus on per-
formance that much, however. The goal here is interaction with non-Python libraries. To paraphrase
Linus Torvalds, any performance improvement will just be a completely unintentional side effect.

If performance is your main goal, you really should not be looking at writing a C/C++ extension man-
ually. For the Python core modules, that was done, of course, but in most practical applications you
are far better off using numba or cython. Or, if the use case allows, use pre-existing libraries such as
numpy or jax. The main reason for using the tools in this chapter should be to reuse existing libraries
so you don’t have to reinvent the wheel.

We will discuss the following topics in this chapter:

•	 ctypes for handling foreign (C/C++) functions and data from Python
•	 C Foreign Function Interface (CFFI), similar to ctypes, but with a slightly different approach
•	 Writing native C/C++ to extend Python

Setting up tooling
Before we begin, it is important to note that this chapter will require a working compiler that plays
nicely with your Python interpreter. Unfortunately, these vary from platform to platform. For Linux
distributions, this can usually be achieved with one or two commands without much hassle.

Extensions in C/C++, System Calls, and C/C++ Libraries600

For OS X, the experience is often very similar, mostly because the heavy lifting can be offloaded to
package management systems such as Homebrew. For Windows, it can be slightly trickier, but that
process has been streamlined over the last few years as well.

A good and up-to-date starting point to get the required tooling is the Python Developer’s Guide:
https://devguide.python.org/setup/.

For building the actual extensions, the Python manual can be useful: https://docs.python.org/3/
extending/building.html.

Do you need C/C++ modules?
In almost all cases, I’m inclined to say that you don’t need C/C++ modules. If you are really strapped
for best performance, then there are almost always highly optimized Python libraries available that use
C/C++/Fortran/etc. internally and fit your purpose. There are some cases where native C/C++ (or just
 “not Python”) is a requirement. If you need to communicate directly with hardware that has specific
timings, then Python might not do the trick. Generally, however, that kind of communication should
be left to an operating system kernel-level driver that takes care of the specific timings. Regardless,
even if you will never write one of these modules yourself, you might still need to know how they
work when you are debugging a project.

Windows
For Windows, the general recommendation is Visual Studio. The specific version depends on your
Python version:

•	 Python 3.4: Microsoft Visual Studio 2010
•	 Python 3.5 and 3.6: Microsoft Visual Studio 2015 or Visual Studio 2017
•	 Python 3.7–3.10: Microsoft Visual Studio 2017

The specifics of installing Visual Studio and compiling Python modules fall somewhat outside the
scope of this book. Luckily, the Python documentation has some documentation available to get you
started: https://devguide.python.org/setup/#windows.

If you are looking for a more Linux/Unix-like solution, you can also choose to use the GCC compiler
through MinGW.

OS X
For a Mac, the process is mostly straightforward, but there are a few tips specific to OS X. First, install
Xcode through the Mac App Store.

Visual Studio 2019 is also supported, but the official builds of Python 3.7 to Python 3.10
still use Visual Studio 2017, making that the recommended solution.

https://devguide.python.org/setup/
https://docs.python.org/3/extending/building.html
https://docs.python.org/3/extending/building.html
https://devguide.python.org/setup/#windows

Chapter 17 601

Once you have done that, you should be able to run the following command:

$ xcode-select --install

Next up is the fun part. Because OS X comes with a bundled Python version (which is generally out
of date), I would recommend installing a new Python version through Homebrew instead. The most
up-to-date instructions for installing Homebrew can be found on the Homebrew home page (http://
brew.sh/), but the gist of installing Homebrew is this command:

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/HEAD/install.sh)"

After that, make sure you check whether everything is set up correctly using the doctor command:

$ brew doctor

When all of this is done, simply install Python through Homebrew and make sure you use that Python
release when executing your scripts:

$ brew install python3
$ python3 --version
Python 3.9.7
which python3
/usr/local/bin/python3

Also ensure that the Python process is in /usr/local/bin, that is, the Homebrewed version. The
regular OS X version would be in /usr/bin/ instead.

Linux/Unix
The installation for Linux/Unix systems greatly depends on the distribution, but it is generally simple
to do.

For Fedora, Red Hat, CentOS, and other systems that use yum as the package manager, use these lines:

$ sudo yum install yum-utils
$ sudo yum-builddep python3

For Debian, Ubuntu, and other systems that use apt as the package manager, use the following line:

$ sudo apt-get build-dep python3.10

Note that Python 3.10 is not available everywhere yet, so you might need Python 3.9 or even Python
3.8 instead.

For most systems, to get help with the installation, a web search along the lines
of <operating system> python.h should do the trick.

http://brew.sh/
http://brew.sh/

Extensions in C/C++, System Calls, and C/C++ Libraries602

Calling C/C++ with ctypes
The ctypes library makes it easily possible to call functions from C libraries, but you do need to be
careful with memory access and data types. Python is generally very lenient in memory allocation
and type-casting; C is, most definitely, not that forgiving.

Platform-specific libraries
Even though all platforms will have a standard C library available somewhere, the location and the
method of calling it differs per platform. For the purpose of having a simple environment that is easily
accessible to most people, I will assume the use of an Ubuntu (virtual) machine. If you don’t have a
native Ubuntu machine available, you can easily run it through VirtualBox on Windows, Linux, and OS X.

Since you will often want to run examples on your native system instead, we will first show the basics
of loading printf from the standard C library.

Windows
One problem of calling C functions from Python is that the default libraries are platform-specific.
While the following example will work just fine on Windows systems, it won’t run on other platforms:

>>> import ctypes

>>> ctypes.cdll
<ctypes.LibraryLoader object at 0x...>
>>> libc = ctypes.cdll.msvcrt
>>> libc
<CDLL 'msvcrt', handle ... at ...>
>>> libc.printf
<_FuncPtr object at 0x...>

The ctypes library exposes the functions and attributes of the C/C++ library (MSVCRT.DLL in this case)
to your Python installation. Since the ms part of msvcrt stands for Microsoft, this is one library you
generally won’t find on non-Windows systems.

There is a difference between Linux/Unix and Windows in loading as well; on Windows, the modules
will generally be auto-loaded, while on Linux/Unix systems, you will need to load them manually,
because these systems will often have multiple versions of the same library available.

Linux/Unix
Calling standard system libraries from Linux/Unix does require manual loading, but it’s luckily nothing
too involved. Fetching the printf function from the standard C library is quite simple:

>>> import ctypes

>>> ctypes.cdll
<ctypes.LibraryLoader object at 0x...>
>>> libc = ctypes.cdll.LoadLibrary('libc.so.6')

Chapter 17 603

>>> libc
<CDLL 'libc.so.6', handle ... at ...>
>>> libc.printf
<_FuncPtr object at 0x...>

OS X
For OS X, explicit loading is also required, but beyond that, it is quite similar to how everything works
on regular Linux/Unix systems:

>>> import ctypes

>>> libc = ctypes.cdll.LoadLibrary('libc.dylib')
>>> libc
<CDLL 'libc.dylib', handle ... at 0x...>
>>> libc.printf
<_FuncPtr object at 0x...>

Making it easy
Besides the way libraries are loaded, there are more differences, unfortunately, but the earlier exam-
ples at least give you the standard C library, which allows you to call functions such as printf straight
from your C implementation. If, for some reason, you have trouble loading the right library, there is
always the ctypes.util.find_library function.

As always, I would recommend explicit over implicit declarations, but things can be made easier in
some cases using this function. To illustrate a run on an OS X system:

OS X
>>> from ctypes import util
>>> from ctypes import cdll

>>> library = util.find_library('libc')
>>> library
'/usr/lib/libc.dylib'

Load the library
>>> libc = cdll.LoadLibrary(library)
>>> libc
<CDLL '/usr/lib/libc.dylib', handle ... at 0x...>

Calling functions and native types
Calling a function through ctypes is nearly as simple as calling native Python functions. The notable
difference is the arguments and return statements. These should be converted to native C variables.

Extensions in C/C++, System Calls, and C/C++ Libraries604

We will now create a C string that is effectively a memory block, with the characters as ASCII charac-
ters and terminated with a null character. After creating the C string, we will run printf on the string:

>>> c_string = ctypes.create_string_buffer(b'some bytes')
>>> ctypes.sizeof(c_string)
11
>>> c_string.raw
b'some bytes\x00'
>>> c_string.value
b'some bytes'
>>> libc.printf(c_string)
10
some bytes>>>

This output might look a bit confusing initially, so let’s analyze it. When we call libc.printf on
c_string, it will write the string to stdout directly. Because of this, you can see that the output is
interleaved (some bytes>>>) with the Python output, as this circumvents the Python output buffering
and Python does not know this is happening. Additionally, you can see that libc.printf returned 10,
which is the number of bytes written to stdout.

To call the printf function, you must—and I cannot stress this enough—convert your values from
Python to C explicitly. While it might appear to work without this initially, it really doesn’t:

>>> libc.printf(123)
segmentation fault (core dumped) python3

Another thing to note from the example is that ctypes.sizeof(c_string) returns 11 instead of 10.
This is caused by the trailing null character that C strings require, which is visible in the raw property
of the C string.

Without it, the string functions in C such as printf won’t know where the string will end, since a C
string is just a block of bytes in memory and C only knows at what memory address the string starts;
the end is indicated by the null character. This is why memory management in C requires paying a
lot of attention.

These examples assume that you have libc in your scope from one of the examples in
the previous paragraphs.

Remember to use the faulthandler module from Chapter 11, Debugging – Solving the
Bugs, to debug segfaults.

Chapter 17 605

If you allocate a string of size 5 and write 10 bytes to it, you will be writing into the memory outside
of your variable, which could be another function, another variable, or outside of your program’s
memory. This would result in a segmentation fault.

To pass along other types (such as integers) toward libc functions, we have to use some conversion
as well. In some cases, it is optional:

>>> format_string = b'Number: %d\n'
>>> libc.printf(format_string, 123)
Number: 123
12

>>> x = ctypes.c_int(123)
>>> libc.printf(format_string, x)
Number: 123
12

But not in all cases, so caution is advised, and explicitly converting is the safer option:

>>> format_string = b'Number: %.3f\n'
>>> libc.printf(format_string, 123.45)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ctypes.ArgumentError: argument 2: <class 'TypeError'>: Don't know how to
convert parameter 2

>>> x = ctypes.c_double(123.45)
>>> libc.printf(format_string, x)
Number: 123.450
16

It’s important to note that even though these values are usable as native C types, they are still mutable
through the value attribute:

>>> x = ctypes.c_double(123.45)
>>> x.value
123.45

Python will generally protect you from silly mistakes; C and C++ most certainly won’t. To
quote Bjarne Stroustrup (the creator of C++):

“C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you do, it blows
away your whole leg.”

As opposed to C, C++ does have a string type to protect you in these cases. However, it is still
a language where you have easy access to memory addresses and mistakes are easily made.

Extensions in C/C++, System Calls, and C/C++ Libraries606

>>> x.value = 456
>>> x
c_double(456.0)

This is the case unless the original object was immutable, which is a very important distinction to
make. The create_string_buffer object creates a mutable string object, whereas c_wchar_p, c_char_p,
and c_void_p create references to the actual Python string. Since strings are immutable in Python,
these values are also immutable. You can still change the value property, but it will only assign a new
string. Passing one of these immutable variables to a C function that mutates the internal value will
result in unpredictable behavior and/or crashes.

The only values that should convert to C without any issues are integers, strings, and bytes, but I per-
sonally recommend that you always convert all of your values so that you are certain of which type
you will get and how to treat it.

Complex data structures
We have already seen that we can’t just pass along Python values to C, but what if we need more complex
objects such as classes or tuples? Luckily, we can easily create (and access) C structures using ctypes:

>>> from _libc import libc
>>> import ctypes

>>> class ComplexStructure(ctypes.Structure):
... _fields_ = [
... ('some_int', ctypes.c_int),
... ('some_double', ctypes.c_double),
... ('some_char', ctypes.c_char),
... ('some_string', ctypes.c_char_p),
...]
...
>>> structure = ComplexStructure(123, 456.789, b'x', b'abc')
>>> structure.some_int
123
>>> structure.some_double
456.789
>>> structure.some_char
b'x'
>>> structure.some_string
b'abc'

This supports any of the fundamental data types such as integers, floating-point numbers, and strings.
Nesting is also supported; for instance, other structures could use ComplexStructure instead of
ctypes.c_int in this example.

Chapter 17 607

Arrays
Within Python, we generally use a list to represent a collection of objects. These are very convenient
in that you can easily add and remove values. Within C, the default collection object is the array, which
is just a block of memory with a fixed size.

The size of the block in bytes is decided by multiplying the number of items by the size of the type.
In the case of a char, this is 8 bits, so if you wish to store 100 chars, you would have 100 * 8 bits =
800 bits = 100 bytes.

This is literally all it is—a block of memory—and the only reference you receive from C is a pointer to
the memory address where the block of memory begins. Since the pointer does have a type, char* in
this case, C will know how many bytes to jump ahead when trying to access a different item. Effec-
tively, when trying to access item 25 in a char array, you simply need to do array_pointer + 24 *
sizeof(char). This has a convenient shortcut: array_pointer[24]. Note that we need to access index
24 because we start counting at 0, just like with Python collections such as lists and strings.

Note that C does not store the number of items in the array, so even though our array has only 100
items, it won’t block us from doing array_pointer[1000] and reading other (random) memory. At
some point, however, you will go outside of the reserved memory of your application and your oper-
ating system will punish you with a segmentation fault.

If you take all of these limitations into account, C arrays are definitely usable but mistakes are quickly
made and C is unforgiving. No warnings; just crashes and strangely behaving code. Beyond that, let’s
see how easily we can declare an array with ctypes:

>>> TenNumbers = 10 * ctypes.c_double
>>> numbers = TenNumbers()
>>> numbers[0]
0.0

As you can see, because of the fixed sizes and the requirement of declaring the type before using it, its
usage is slightly awkward. However, it does function as you would expect. Additionally, as opposed to
regular C, the values are initialized to zero by default and it will protect you from out-of-bound errors
when accessing from Python. Naturally, this can be combined with our previously created custom
structures as well:

>>> GrossComplexStructures = 144 * ComplexStructure
>>> complex_structures = GrossComplexStructures()

>>> complex_structures[10].some_double = 123
>>> complex_structures[10]
<__main__.ComplexStructure object at ...>
>>> complex_structures
<__main__.ComplexStructure_Array_144 object at ...>

Extensions in C/C++, System Calls, and C/C++ Libraries608

Even though you cannot simply append to these arrays to resize them, they are actually resizable
with a few constraints. Firstly, the new array needs to be larger than the original array. Secondly, the
size needs to be specified in bytes, not items. To illustrate, we have this example:

>>> TenNumbers = 10 * ctypes.c_double
>>> numbers = TenNumbers()

>>> ctypes.resize(numbers, 11 * ctypes.sizeof(ctypes.c_double))
>>> ctypes.resize(numbers, 10 * ctypes.sizeof(ctypes.c_double))
>>> ctypes.resize(numbers, 9 * ctypes.sizeof(ctypes.c_double))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: minimum size is 80

>>> numbers[:5] = range(5)
>>> numbers[:]
[0.0, 1.0, 2.0, 3.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0]

As a starting point, the TenNumbers array has 10 items. Next up, we try to resize the array to 11, which
works because it’s more than the original 10. Resizing back to 10 is also allowed, but resizing to 9 items
is not allowed because that is fewer than the 10 items we had originally.

Lastly, we mutate a slice of items simultaneously, which works as you would expect.

Gotchas with memory management
Besides the obvious memory allocation issues and mixing mutable and immutable objects, there is
one more non-obvious memory mutability issue.

In regular Python, we can do something like a, b = b, a and it will work as you would expect because
Python uses internal temporary variables. With regular C, you do not have that luxury, unfortunately;
with ctypes, you do have the benefit of Python taking care of the temporary variable for you, but
sometimes that can still go wrong:

>>> import ctypes

>>> class Point(ctypes.Structure):
... _fields_ = ('x', ctypes.c_int), ('y', ctypes.c_int)

>>> class Vertex(ctypes.Structure):
... _fields_ = ('c', Point), ('d', Point)

>>> a = Point(0, 1)
>>> b = Point(2, 3)
>>> a.x, a.y, b.x, b.y
(0, 1, 2, 3)

Chapter 17 609

Swap points a and b
>>> a, b = b, a
>>> a.x, a.y, b.x, b.y
(2, 3, 0, 1)

>>> v = Vertex()
>>> v.c = Point(0, 1)
>>> v.d = Point(2, 3)
>>> v.c.x, v.c.y, v.d.x, v.d.y
(0, 1, 2, 3)

Swap points c and d
>>> v.c, v.d = v.d, v.c
>>> v.c.x, v.c.y, v.d.x, v.d.y
(2, 3, 2, 3)

With the first example, we get 2, 3, 0, 1 when swapping a and b, as expected. With the second ex-
ample, we get 2, 3, 2, 3 instead. The problem is that these objects are copied to a temporary buffer
variable, but the objects themselves are being changed in the meantime.

Let’s elaborate for a bit more clarity. With Python, when you do a, b = b, a, it will effectively run
temp = a; a = b; b = temp. That way, the replacement works as expected and you will receive the
correct values in a and b.

When you execute a, b = b, a in C, you effectively get a = b; b = a. By the time the b = a state-
ment is executed, the value for a has already been changed by the a = b statement, so both a and b
will have the original value of b at that point.

CFFI
The CFFI (C Foreign Function Interface) library offers options very similar to ctypes, but it’s a bit
more direct. Unlike the ctypes library, a C compiler is really a necessity for CFFI. With it comes the
opportunity to directly call your C compiler from Python in an easy way. We illustrate by calling printf:

>>> import cffi

>>> ffi = cffi.FFI()
>>> ffi.cdef('int printf(const char* format, ...);')
>>> libc = ffi.dlopen(None)
>>> arg = ffi.new('char[]', b'Printing using CFFI\n')
>>> libc.printf(arg)
20
Printing using CFFI

Extensions in C/C++, System Calls, and C/C++ Libraries610

Okay… so that looks a bit weird, right? We had to define how the printf function looks and specify the
arguments to printf with a valid C function header. Additionally, we had to specify the C-string as a
char[] array manually. With ctypes, that would not be required, but there are several advantages to
CFFI as opposed to ctypes.

With CFFI, we can directly control what is sent to the C compiler, which gives us much more control
over what is happening internally compared to ctypes. This means you can exactly control what types
you feed the functions and what types you are returning, and you can use C macros.

Additionally, CFFI allows for easy reuse of existing C code. If the C code you are using has several
struct definitions, you don’t have to manually map them to a ctypes.Structure class; you can use
the struct definition straightaway. You can even write C code directly in your Python code and CFFI
will take care of calling the compiler and building the library for you.

Getting back to the declarations, you may notice that we called ffi.dlopen with a None parameter.
When you pass None to this function, it will automatically load the entire C namespace; on non-Win-
dows systems, at least. On Windows systems, you will need to explicitly tell CFFI which library to load.

If you remember the ctypes.util.find_library function, you can use that again in this case, de-
pending on your operating system:

>>> from ctypes import util
>>> import cffi

Initialize the FFI builder
>>> ffi = cffi.FFI()

Find the libc library on OS X. Look back at the ctypes examples
for other platforms.
>>> library = util.find_library('libc.dylib')
>>> library
'/usr/lib/libc.dylib'

Load the library
>>> libc = ffi.dlopen(library)
>>> libc
<cffi.api._make_ffi_library.<locals>.FFILibrary object at ...>

We do have printf available, but CFFI requires a signature
>>> libc.printf
Traceback (most recent call last):
 ...
AttributeError: printf

Chapter 17 611

Define the printf signature and call printf
>>> ffi.cdef('int printf(const char* format, ...);')
>>> libc.printf
<cdata 'int(*)(char*, ...)' ...>

we can see here, the workings are initially quite comparable to ctypes and loading the library is just
as easy. The big difference is when actually calling functions and using library attributes; those need
to be explicitly defined.

Luckily, the function signatures are almost always available in a C header file for your convenience
so you don’t need to write those yourself. And that is one of the advantages of CFFI: it allows you to
reuse existing C code.

Complex data structures
The CFFI definitions are somewhat similar to the ctypes definitions, but instead of having Python emu-
lating C, it’s just plain C that is accessible from Python. In reality, it’s only a small syntactical difference.
While ctypes is a library for accessing C from Python while remaining as close to the Python syntax
as possible, CFFI uses plain C syntax to access C systems, which actually removes some confusion for
people experienced with C. I personally find CFFI easier to use because I have experience with C and
know what is actually happening, whereas I am not always 100% certain with ctypes.

Let’s repeat the Vertex and Point example with CFFI:

>>> import cffi

>>> ffi = cffi.FFI()

Create the structures as C structs
>>> ffi.cdef('''
... typedef struct {
... int x;
... int y;
... } point;
...
... typedef struct {
... point a;
... point b;
... } vertex;
... ''')

Create a vertex and return the pointer
>>> v = ffi.new('vertex*')

Set the data

Extensions in C/C++, System Calls, and C/C++ Libraries612

>>> v.a.x, v.a.y, v.b.x, v.b.y = (0, 1, 2, 3)

Print before change
>>> v.a.x, v.a.y, v.b.x, v.b.y
(0, 1, 2, 3)

>>> v.a, v.b = v.b, v.a

Print after change
>>> v.a.x, v.a.y, v.b.x, v.b.y
(2, 3, 2, 3)

As you can see, the mutable variable issues remain, but the code is just as usable. Since the struct
can be copied from your C headers, the only thing that remains for you is to allocate the memory for
the vertex.

The special workings of CFFI allow you to shortcut these operations. Normally in C, using vertex*
would only allocate the memory for the pointer, not the vertex itself. In the case of CFFI, that is taken
care of automatically.

Arrays
Allocation memory for new variables is almost trivial with CFFI. The previous section showed you
an example of a single struct allocation. Let’s now see how we can allocate an array of structs:

>>> import cffi

>>> ffi = cffi.FFI()

Create arrays of size 10:
>>> x = ffi.new('int[10]')
>>> y = ffi.new('int[]', 10)

In C, a regular int type variable x looks like int x;. A pointer to a memory address with
size int looks like this: int *x;. The int part of the pointer tells the compiler how much
memory to fetch when using the variable. To illustrate:

int a = 123; // Variable a contains integer 123
int* b = &a; // Variable b contains the memory address of a
int c = *b; // Variable c contains 123, the value at memory
address c

The & operator returns the memory address for a variable and the * operator returns the
value at the pointer’s address.

Chapter 17 613

>>> x
<cdata 'int[10]' owning 40 bytes>
>>> y
<cdata 'int[]' owning 40 bytes>

>>> x[0:10] = range(10)
>>> list(x)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> x[:] = range(10)
Traceback (most recent call last):
 ...
IndexError: slice start must be specified

>>> x[0:100] = range(100)
Traceback (most recent call last):
 ...
IndexError: index too large (expected 100 <= 10)

In this case, you might wonder why the slice includes both the start and the stop. This is a requirement
for CFFI. Not problematic, but a tad annoying nonetheless. Luckily, as you can see in the example
above, CFFI does protect us from allocating outside of the bounds of the array.

ABI or API?
As always, there are some caveats. The examples so far have partially used the ABI (application binary
interface), which loads the binary structures from the libraries. With the standard C library, this is
generally safe; with other libraries, it generally isn’t. The difference between the API (application
programming interface) and the ABI is that the latter calls the functions at a binary level, directly
addressing memory, calling memory locations directly, and expecting them to be functions.

To be able to do this, all sizes need to be consistent as well. When compiled as a 32-bit binary, a pointer
will be 32 bits; when compiled as a 64-bit binary, a pointer will be 64 bits. That means that the offsets
are not guaranteed to be consistent and you could be calling a random block of memory as a function.

Within CFFI, it’s the difference between ffi.dlopen and ffi.set_source. Here, dlopen is not always
safe, but set_source is, because it passes a compiler instead of just guessing how to call a method.
The downside of using set_source is that you need the actual source for the library you are planning
to use. Let’s look at a quick example of using ffi.set_source to call a function we defined ourselves:

>>> import cffi

>>> ffi = cffi.FFI()

Extensions in C/C++, System Calls, and C/C++ Libraries614

In API mode, we can in-line the actual C code
>>> ffi.set_source('_sum', '''
... int sum(int* input, int n){
... int result = 0;
... while(n--)result += input[n];
... return result;
... }
... ''')
>>> ffi.cdef('int sum(int*, int);')

>>> library = ffi.compile()

The initialization of CFFI is as normal, but instead of using ffi.dlopen() we are now using ffi.
set_source() to directly pass the C code to CFFI. By doing this, CFFI can compile the library specifi-
cally for our system so we know that we will not run into ABI issues because we are creating the ABI
ourselves with the call to ffi.compile().

After the ffi.compile() step has completed, CFFI has created a _sum.dll, sum.so, or _sum.cpython-
...-os.so file, which can be imported as a regular Python library. Now we will use the generated
library:

Now we can import the library
>>> import _sum

Or use 'ffi.dlopen()' with the results from the compile step
>>> _sum_lib = ffi.dlopen(library)

Create an array with 5 items
>>> N = 5
>>> array = ffi.new('int[]', N)
>>> array[0:N] = range(N)

Call our C function from either the import or the dlopen
>>> _sum.lib.sum(array, N)
10

>>> _sum_lib.sum(array, N)
10

As you can see, both import _sum and ffi.dlopen(library) work in this case. For use in production
applications, I would recommend the import _sum method, but the ffi.dlopen() method can be
very convenient to use from long-running applications such as Jupyter Notebooks. If you were to
use import _sum and make a change in the library, it would not show your changes without you first
calling reload(_sum).

Chapter 17 615

Since this is a C function, we need to pass a C array for complex types, which is why we are using ffi.
new() here. After that, the function call is straightforward, but since a C array does not have a notion
of size, we need to pass the array size for this to work.

You can easily go out of bounds here and put in some arbitrary number instead of N, and the function
will most likely work without crashes, but it will return very strange results because it will be summing
random data in your memory.

CFFI or ctypes?
This really depends on what you are looking for. If you have a C library that you simply need to call
and you don’t need anything special, then ctypes is most likely the easier choice. If you’re actually
writing your own C library and trying to link to the library from Python, CFFI is probably a more
convenient option.

If you’re not familiar with the C programming language, then I would definitely recommend ctypes
or perhaps cython.

Native C/C++ extensions
The libraries that we have used so far only showed us how to access a C/C++ library within our Python
code. Now we are going to look at the other side of the story: how C/C++ functions/modules within
Python are actually written and how modules such as cPickle and cProfile are created.

A basic example
Before we can actually start with writing and using native C/C++ extensions, we have a few prereq-
uisites. First of all, we need the compiler and Python headers; the instructions at the beginning of
this chapter should have taken care of this for us. After that, we need to tell Python what to compile.
The setuptools package mostly takes care of this, but we do need to create a setup.py file:

import pathlib
import setuptools

Get the current directory
PROJECT_PATH = pathlib.Path(__file__).parent

sum_of_squares = setuptools.Extension('sum_of_squares', sources=[
 # Get the relative path to sum_of_squares.c
 str(PROJECT_PATH / 'sum_of_squares.c'),
])

In C/C++, linking a library means using an external pre-compiled library without requir-
ing the source. You do need to have the header files, which contain details such as the
function arguments and return types. This is exactly what we are doing when we use
CFFI in ABI mode.

Extensions in C/C++, System Calls, and C/C++ Libraries616

if __name__ == '__main__':
 setuptools.setup(
 name='SumOfSquares',
 version='1.0',
 ext_modules=[sum_of_squares],
)

This tells Python that we have an Extension object named sum_of_squares that will be based on sum_
of_squares.c.

Now, let’s write a function in C that sums all perfect squares (2*2, 3*3, and so on) up to a given number.
The Python code will be stored in sum_of_squares_python.py and looks like this:

def sum_of_squares(n):
 total = 0
 for i in range(n):
 if i * i < n:
 total += i * i
 else:
 break

 return total

The raw C version of this code would look something like this:

long sum_of_squares(long n){
 long total = 0;
 /* The actual summing code */
 for(int i=0; i<n; i++){
 if((i * i) < n){
 total += i * i;
 }else{
 break;
 }
 }

 return total;
}

Now that we know how the C code looks, we will create the actual C Python version that we will be using.

As we have seen with ctypes and CFFI, Python and C have different data types and some conversion
needs to be done. Since the CPython interpreter is written in C, it has definitions specifically to take
care of this translation step.

Chapter 17 617

To load these definitions, we need to include Python.h, which are the CPython header files that should
have everything you need.

If you look carefully, you will see that the actual summing code is identical to the C version, but we
need quite a few conversion steps to make Python understand what we are doing:

#include <Python.h>

static PyObject* sum_of_squares(PyObject *self, PyObject
 *args){
 /* Declare the variables */
 int n;
 int total = 0;

 /* Parse the arguments */
 if(!PyArg_ParseTuple(args, "i", &n)){
 return NULL;
 }

 /* The actual summing code */
 for(int i=0; i<n; i++){
 if((i * i) < n){
 total += i * i;
 }else{
 break;
 }
 }

 /* Return the number but convert it to a Python object first */
 return PyLong_FromLong(total);
}

static PyMethodDef methods[] = {
 /* Register the function */
 {"sum_of_squares", sum_of_squares, METH_VARARGS,
 "Sum the perfect squares below n"},
 /* Indicate the end of the list */
 {NULL, NULL, 0, NULL},
};

static struct PyModuleDef module = {
 PyModuleDef_HEAD_INIT,
 "sum_of_squares", /* Module name */

Extensions in C/C++, System Calls, and C/C++ Libraries618

 NULL, /* Module documentation */
 -1, /* Module state, -1 means global. This parameter is
 for sub-interpreters */
 methods,
};

/* Initialize the module */
PyMODINIT_FUNC PyInit_sum_of_squares(void){
 return PyModule_Create(&module);
}

It looks quite complicated, but it’s really not that hard. There is just a lot of overhead in this case because
we only have a single function. Generally, you would have several functions, in which case you only
need to expand the methods array and create the functions. We will explain the code in more detail
shortly, but first, let’s look at how to run our first example. We need to build and install the module:

$ python3 T_09_native/setup.py build install
running build
running build_ext
building 'sum_of_squares' extension ...
...
Processing dependencies for SumOfSquares==1.0
Finished processing dependencies for SumOfSquares==1.0

Now, let’s create a little test script to time the difference between the Python version and the C version.
First, some imports and setup:

import sys
import timeit
import argparse
import functools

from sum_of_squares_py import sum_of_squares as sum_py

try:
 from sum_of_squares import sum_of_squares as sum_c
except ImportError:
 print('Please run "python setup.py build install" first')
 sys.exit(1)

Now that we have the modules imported (or got an error if you hadn’t run the build step yet), we can
start benchmarking:

Chapter 17 619

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('repetitions', type=int)
 parser.add_argument('maximum', type=int)
 args = parser.parse_args()

 timer = functools.partial(
 timeit.timeit, number=args.repetitions, globals=globals())

 print(f'Testing {args.repetitions} repetitions with maximum: '
 f'{args.maximum}')

 result = sum_c(args.maximum)
 duration_c = timer('sum_c(args.maximum)')
 print(f'C: {result} took {duration_c:.3f} seconds')

 result = sum_py(args.maximum)
 duration_py = timer('sum_py(args.maximum)')
 print(f'Py: {result} took {duration_py:.3f} seconds')

 print(f'C was {duration_py / duration_c:.1f} times faster')

In essence, we have a basic benchmarking script where we compare the C version to the Python version
here, with a configurable number of repetitions and a maximum number to test for. Now, let’s execute it:

$ python3 T_09_native/test.py 10000 1000000
Testing 10000 repetitions with maximum: 1000000
C: 332833500 took 0.009 seconds
Py: 332833500 took 1.264 seconds
C was 148.2 times faster

Perfect! Exactly the same results but much faster.

The main advantage of writing C modules is the reuse of existing C code, however. For speedups, you
are often better off with cython, numba, or converting your code to use libraries such as numpy or jax.

If your goal is speed alone, you should give numba a try instead. Adding the @numba.njit
decorator to sum_of_squares_python is much easier and probably even faster.

Extensions in C/C++, System Calls, and C/C++ Libraries620

C is not Python – Size matters
The Python language makes programming so easy that you might forget about the underlying data
structures at times; with C and C++, you can’t afford to do that. Just take our example from the previous
section but with different parameters:

$ python3 T_09_native/test.py 1000 10000000
Testing 1000 repetitions with maximum: 10000000
C sum of squares: 1953214233 took 0.003 seconds
Python sum of squares: 10543148825 took 0.407 seconds
C was 145.6 times faster

It’s still very fast, but what happened to the numbers? The Python and C versions give different re-
sults, 1953214233 versus 10543148825. This is caused by integer overflows in C. While Python numbers
can essentially have any size, with C, a regular number has a fixed size. How much you get depends
on the type you use (int, long, and so on) and your architecture (32-bit, 64-bit, and so on), but it’s
definitely something to be careful with. It might be hundreds of times faster in some cases, but that
is meaningless if the results are incorrect.

We can increase the size a bit, of course. This makes it better:

typedef unsigned long long int bigint;

static PyObject* sum_of_large_squares(PyObject *self, PyObject *args){
 /* Declare the variables */
 bigint n;
 bigint total = 0;

 /* Parse the arguments */
 if(!PyArg_ParseTuple(args, "K", &n)){
 return NULL;
 }

 /* The actual summing code */
 for(bigint i=0; i<n; i++){
 if((i * i) < n){
 total += i * i;
 }else{
 break;
 }
 }

 /* Return the number but convert it to a Python object first */
 return PyLong_FromUnsignedLongLong(total);
}

Chapter 17 621

We used typedef to create a bigint alias for unsigned long long int.

If we test it now, we realize that it works great:

$ python3 T_10_size_matters/test.py 1000 10000000
Testing 1000 repetitions with maximum: 10000000
C: 10543148825 took 0.001 seconds
Py: 10543148825 took 0.405 seconds
C was 270.3 times faster

And with the increased size, the difference in performance increases as well.

Making the number even larger breaks things again since even an unsigned long long int still has
its limits:

$ python3 T_10_size_matters/test.py 1 100000000000000
Testing 1 repetitions with maximum: 100000000000000
C: 1291890006563070912 took 0.004 seconds
Py: 333333283333335000000 took 1.270 seconds
C was 293.7 times faster

So, how can you fix this? The simple answer is that you can’t, and Python hasn’t really fixed it either.
The complex answer is that you can if you use a different data type to store your data. The C language
by itself doesn’t have the “big number support” that Python has.

Python supports infinitely large numbers by combining several regular numbers in the actual memory
and automatically switches to those types of numbers when needed. With Python 2, that was much
more obvious with the distinction between the int and long types. With Python 3, the long and int
types have been merged into the int type. You will not notice the switchover to the long type; it will
automatically happen in the background.

Within C, there are no commonly available provisions for this, so there is simply no easy way to get
this working. But we can check for errors instead:

static unsigned long long int get_number_from_object(int* overflow,
 PyObject* some_very_large_number){
 return PyLong_AsLongLongAndOverflow(sum, overflow);
}

Note that this only works for PyObject*, which means it doesn’t work for internal C overflows. However,
you can, of course, just keep the original Python long around and perform operations on that instead.
So, you do have big number support in C without too much effort.

The example explained
We have seen the results from our example, but if you’re not familiar with the Python C API, you might
be confused as to why the function parameters look the way they do.

Extensions in C/C++, System Calls, and C/C++ Libraries622

The basic calculations within sum_of_squares are identical to the regular C sum_of_squares function,
but there are a few small differences. Firstly, the type definition for a function using the Python C API
should look something like this:

static PyObject* sum_of_squares(PyObject *self, PyObject *args);

Let’s break this down.

static
This means that the function is static. A function that’s static can be called only from the same trans-
lation unit within the compiler. This effectively results in a function that cannot be linked (imported/
used) from other modules, which allows the compiler to optimize a bit further. Since functions in C
are global by default, this can be very useful in preventing naming collisions. Just to be sure, howev-
er, you could prefix your function names with the name of the module if you use a name that is less
likely to be unique.

Be careful not to confuse the word static here with the static before a variable. They are com-
pletely different beasts. A static variable means that the variable will exist for the entire runtime of
the program instead of the runtime of just the function.

PyObject*
The PyObject type is the basic type for Python data types, which means that all Python objects can be
cast to PyObject* (the PyObject pointer). Effectively, it only tells the compiler what kind of properties
to expect, which can be used later for type identification and memory management. Instead of direct
access to PyObject*, it is generally a better idea to use the available macros, such as Py_TYPE(some_
object). Internally, this expands to (((PyObject*)(o))->ob_type), which is why the macro is gen-
erally a better idea. Besides being unreadable, a typo can easily happen.

The list of properties is long and depends greatly on the type of object. For those, you can refer to the
Python documentation: https://docs.python.org/3/c-api/typeobj.html.

The entire Python C API could fill a book of its own, but it is luckily well documented within the Python
manual. Its usage, on the other hand, might be less obvious.

Parsing arguments
With regular C and Python, you specify the arguments explicitly, since variable-sized arguments are a
bit tricky with C. This is because they need to be parsed separately. PyObject* args is the reference
to objects containing the actual values. To parse these, you need to know how many and which type
of variables to expect. In the example, we used the PyArg_ParseTuple function, which parses the
arguments as positional arguments only, but it is quite easily possible to parse named arguments as
well using PyArg_ParseTupleAndKeywords or PyArg_VaParseTupleAndKeywords. The difference be-
tween these is that the first one uses a variable number of arguments to specify the destination and
the latter uses a va_list to set the values to.

https://docs.python.org/3/c-api/typeobj.html

Chapter 17 623

Let’s analyze the code from the actual example:

if(!PyArg_ParseTuple(args, "i", &n)){
 return NULL;
}

We know that args is the object containing the reference to the actual arguments. The "i" is a format
string, which in this case will try to parse a single integer. &n tells the function to store the value at
the memory address of the n variable.

The format string is the important part here. Depending on the character, you get a different data type,
but there are many; i specifies a regular integer, and s converts your variable to a C-string (actually
a char*, which is a null-terminated character array). It should be noted that this function is, luckily,
smart enough to take overflows into consideration as well.

Parsing multiple arguments is quite similar; you need to add multiple characters to the format string
and multiple destination variables:

PyObject* callback;
int n;

/* Parse the arguments */
if(!PyArg_ParseTuple(args, "Oi", &callback, &n)){
 return NULL;
}

The version with keyword arguments is similar, but requires a few more code changes as the list of
methods needs to be informed that the function takes keyword arguments. Otherwise, the kwargs pa-
rameter would never arrive:

static PyObject* function(
 PyObject *self,
 PyObject *args,
 PyObject *kwargs){
 /* Declare the variables */
 PyObject* callback;
 int n;

 static char* keywords[] = {"callback", "n", NULL};

 /* Parse the arguments */
 if(!PyArg_ParseTupleAndKeywords(args, kwargs, "Oi", keywords,
 &callback, &n)){
 return NULL;
 }

Extensions in C/C++, System Calls, and C/C++ Libraries624

 Py_RETURN_NONE;
}

static PyMethodDef methods[] = {
 /* Register the function with kwargs */
 {"function", function, METH_VARARGS | METH_KEYWORDS,
 "Some kwargs function"},
 /* Indicate the end of the list */
 {NULL, NULL, 0, NULL},
};

Let’s look at the differences from the version that only supported *args:

1.	 Similar to pure Python, our function header now includes PyObject *kwargs.
2.	 Because we need to pre-allocate strings in C, we have an array of words called keywords with

all of the kwargs we plan to parse.
3.	 Instead of PyArg_ParseTuple we now have to use PyArg_ParseTupleAndKeywords. This func-

tion overlaps the PyArg_ParseTuple function and adds keyword parsing by walking through
the previously defined keywords array.

4.	 At the function registry, we need to specify that the function supports keyword arguments by
adding the METH_KEYWORDS flag in addition to the METH_VARARGS flag.

Note that this still supports normal arguments, but keyword arguments are also supported now.

C is not Python – Errors are silent or lethal
As we saw in a previous example, integer overflows are not something you will generally notice, and
unfortunately, there’s no good cross-platform way to catch them. However, those are actually the
easier errors to handle; the worst one is generally memory management. With Python, if you get an
error, you will get an exception that you can catch. With C, you can’t really handle it gracefully. Take
a division by zero, for example:

$ python3 -c '1/0'
Traceback (most recent call last):
 File "<string>", line 1, in <module>
ZeroDivisionError: division by zero

This is simple enough to catch with try: ... except ZeroDivisionError: With C, on the other
hand, if you get a bad error, it will kill your entire process. But debugging C code is what C compilers
have debuggers for, and to find the cause of the error, you can use the faulthandler module discussed
in Chapter 11, Debugging – Solving the Bugs. Right now, let’s see how we can properly throw errors from C:

static PyObject* count_eggs(PyObject *self, PyObject *args){
 PyErr_SetString(PyExc_RuntimeError, "Too many eggs!");

Chapter 17 625

 return NULL;
}

When executing this, it will effectively run raise RuntimeError('Too many eggs!'). The syntax is
slightly different—PyErr_SetString instead of raise—but it’s the same basic principle.

Calling Python from C – Handling complex types
We have seen how to call C functions from Python, but now let’s try Python from C and back. Instead of
using the readily available sum function, we will build one of our own with a callback and handling of
any type of iterable. While this sounds simple enough, it does actually require a bit of type meddling,
as you can only expect PyObject* as arguments. This is contrary to the simple types, such as integers,
chars, and strings, which are immediately converted to the native Python version.

First, we start with the include function signature, and the declaration of the variables we need. Note
that the values for total and callback are defaults in the event that these arguments are not specified:

#include <Python.h>

static PyObject* custom_sum(PyObject* self, PyObject* args){
 long long int total = 0;
 int overflow = 0;
 PyObject* iterator;
 PyObject* iterable;
 PyObject* callback = NULL;
 PyObject* value;
 PyObject* item;

Now we parse a PyObject* followed by, optionally (the | character), a PyObject* and a long long
int. This is specified by the O|OL argument. The results will be stored in the memory addresses (the
& sends the memory address of a variable) of iterable, callback, and total:

 if(!PyArg_ParseTuple(args, "O|OL", &iterable, &callback, &total)){
 return NULL;
 }

For clarity, this is just a single function that is broken up into multiple parts.

Extensions in C/C++, System Calls, and C/C++ Libraries626

We see if we can create an iterator from the iterable. This is effectively the same as doing iter(iterable)
in Python:

 iterator = PyObject_GetIter(iterable);
 if(iterator == NULL){
 PyErr_SetString(PyExc_TypeError,
 "Argument is not iterable");
 return NULL;
 }

Next, we check whether the callback exists or wasn’t specified. If it was specified, check whether it’s
callable or not:

 if(callback != NULL && !PyCallable_Check(callback)){
 PyErr_SetString(PyExc_TypeError, "Callback is not callable");
 return NULL;
 }

Looping through the iterable, if we have a callback available, we call it. Otherwise, we just use the
item as the value:

 while((item = PyIter_Next(iterator))){
 if(callback == NULL){
 value = item;
 }else{
 value = PyObject_CallFunction(callback, "O", item);
 }

We add the value to total and check for overflows:

 total += PyLong_AsLongLongAndOverflow(value, &overflow);
 if(overflow > 0){
 PyErr_SetString(PyExc_RuntimeError, "Integer overflow");
 return NULL;
 }else if(overflow < 0){
 PyErr_SetString(PyExc_RuntimeError, "Integer underflow");
 return NULL;
 }

If we were indeed using the callback, we decrease the reference count to the value because it is a
separate object now.

We also need to dereference item and the iterator. Forgetting to do this results in memory leaks be-
cause it decreases the reference count for the Python garbage collector.

Chapter 17 627

So, always make sure you call the PyDECREF function after using PyObject* types:

 if(callback != NULL){
 Py_DECREF(value);
 }
 Py_DECREF(item);
 }
 Py_DECREF(iterator);

Lastly, we need to convert total to the correct return type and return it:

 return PyLong_FromLongLong(total);
}

This function is callable in three different ways. When given only an iterable, it will sum the iterable
and return the value. Optionally, we can pass a callback function, which will be applied to each value
in the iterable before summing. As a second optional parameter, we can specify the initial value to
start with:

>>> x = range(10)
>>> custom_sum(x)
45
>>> custom_sum(x, lambda y: y + 5)
95
>>> custom_sum(x, lambda y: y + 5, 5)
100

Another important issue is that even though we catch overflow errors when converting to long long
int, this code is still not safe. If we sum even two very large numbers (close to the long long int limit),
we will still have an overflow:

>>> import spam

>>> n = (2 ** 63) - 1
>>> x = n,
>>> spam.sum(x)
9223372036854775807
>>> x = n, n
>>> spam.sum(x)
-2

In this case, you could test for this by doing something like if(value > INT_MAX - total), but that
solution does not always apply, so it is most important to be conscious of overflows and underflows
when using C.

Extensions in C/C++, System Calls, and C/C++ Libraries628

Exercises
The possibilities with external libraries are endless, so perhaps you already have some ideas about
what to implement. If not, here’s some inspiration:

•	 Try to sort a list of numbers using ctypes, CFFI, and with a native extension. You can use the
qsort function in stdlib.

•	 Try to make the custom_sum function we created safer by adding proper errors for overflow/
underflow issues. Additionally, catch the errors when summing multiple numbers that only
overflow or underflow in summation.

These exercises should be a nice starting point for doing something useful with your newly acquired
knowledge. If you are looking for more of the native C/C++ examples, I would recommend look-
ing through the CPython source. There are many examples available: https://github.com/python/
cpython/tree/main/Modules. I would suggest starting with a relatively simple one such as the bisect
module.

Summary
In this chapter, you learned about writing and using extensions in C/C++. As a quick recap, we covered:

•	 Loading external (system) libraries such as stdlib using ctypes
•	 Creating and handling complex data structures using ctypes and CFFI
•	 Handling arrays using ctypes and CFFI
•	 Combining C and Python functions
•	 Important caveats regarding numeric types, arrays, overflows, and other error handling

Even though you can now create C/C++ extensions, I still recommend that you avoid them, if possible,
because it is so easy to end up with bugs. Even the code examples in this chapter don’t handle many
of the possible error scenarios and, as opposed to errors in Python, if these errors happen in C, they
can kill your interpreter or application entirely.

If your goal is better performance, then I would recommend trying numba or cython instead. If you
really need interoperability with non-Python libraries, however, these libraries are good options. A
few examples of universal libraries such as these are TensorFlow and OpenCV, which are available in
many languages and have Python wrappers for convenience.

While building the examples in this chapter, you may have noticed that we used a setup.py file and
imported from the setuptools library. This is what the next chapter will cover: packaging your code
into an installable Python library and distributing it on the Python Package Index.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://github.com/python/cpython/tree/main/Modules
https://github.com/python/cpython/tree/main/Modules
https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Chapter 17 629

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

18
Packaging – Creating Your
Own Libraries or Applications

The chapters thus far have covered how to write, test, and debug Python code. With all of that, there
is only one thing that remains: packaging and distributing your Python libraries and applications. To
create installable packages, we will use the setuptools package, which is bundled with Python these
days. If you have created packages before, you might remember distribute and distutils2, but it
is very important to remember that these have been replaced by setuptools and distutils and you
shouldn’t use them anymore!

We have several types of packages and packaging methods to cover:

•	 Building new-style packages using the PEP 517/518 pyproject.toml file
•	 Advanced package building using the setup.py file
•	 Package types: wheels, eggs, source packages, and others
•	 Installing executables and custom setuptools commands
•	 Packages containing C/C++ extensions
•	 Running tests on the package

Introduction to packages
Python has a very messy history when it comes to packaging. Over the decades that Python has
existed, we have (had) libraries such as distutils, distutils2, distribute, buildout, setuptools,
packaging, distlib, poetry, and several others. All of these projects were started with the best in-
tentions to improve upon the status quo, unfortunately with varying degrees of success. And that is
not to mention all the different package types such as wheels, source packages, and binary packages
such as eggs, Red Hat .rpm files, and Windows .exe/.msi files.

The good news is that even though packaging has had a complicated history, things have started to
settle over the last few years and the situation has improved greatly. Building packages has become
much easier, and maintaining a stable project dependency state is now easily possible.

Packaging – Creating Your Own Libraries or Applications632

Types of packages
Python has (had) a whole bunch of package types, but there are only two that really matter these days:

•	 Wheels: These are small, ready-to-install .zip files with a .whl extension that only need ex-
traction as opposed to the building a source package would need. Additionally, these can be
either source or binary, depending on the package.

•	 Source packages: These can have many extensions such as .zip, .tar, .tar.gz, .tar.bz2,
.tar.xz, and .tar.Z. They contain the Python/C/etc. source and data files needed to install
and build the package.

Now we’ll go into a bit more detail about the formats.

Wheels – The new eggs
For pure Python packages, the source packages have always been enough. For binary C/C++ packages,
however, it is a much less convenient option. The problem with C/C++ source packages is that compi-
lation is needed, which requires not only a compiler but often headers and libraries on the system as
well. With binary packages, you usually don’t need a compiler or any other libraries installed because
the required libraries are bundled with the package; Python itself is enough.

Traditionally, Python used the .egg format for binary packages. The .egg format is, in essence, just a
renamed .zip file containing the source code and metadata, and in the case of binary .egg files also
the compiled binaries. While the idea was great, .egg files never really solved the problem quite right;
an .egg file could match multiple environments, but that was no guarantee of it actually running on
those systems.

That is why the wheel format was introduced (PEP-427), a package format that can contain both
source and binary files and can be installed on Windows, Linux, macOS X, and other systems without
requiring a compiler.

As an added bonus, wheels can install both pure Python and binary packages more quickly because
there are no build, install, or post-processing steps and because they are smaller. Installing a wheel
only requires extracting the .whl file to the site-packages directory of your Python environment
and you are done.

The biggest issue binary wheels solve over eggs is the naming of files. With wheels, this is done in a
simple and consistent way so that checking for the existence of a compatible wheel can be done by
filename alone. The files use the following format:

{distribution}-{version}[-{build tag}]-{python tag}-{abi tag}-{platform tag}.
whl

Let’s dive into these fields and look at what their possible values are. But first, the syntax. The names
between the { and } parentheses are the fields, and the [and] parentheses indicate an optional field:

•	 distribution: The name of the package, e.g. numpy, scipy, etc.
•	 version: The version of the package, e.g. 1.2.3.
•	 build tag: An optional build number as a tie-breaker if multiple wheels match.

Chapter 18 633

•	 python tag: The Python version and platform. In the case of CPython 3.10, this would be
cp310. For PyPy 3.10, this would be pp310. You can read more about this in PEP-425. For pure
Python packages, this is either py3 for Python 3 support or py2.py3 for universal packages
that support both Python 2 and Python 3.

•	 abi tag: The ABI (application binary interface) tag indicates the required Python ABI. cp310d
would be CPython 3.10 with debugging enabled, for example. More details can be found in
PEP-3149. In the case of a pure Python package, this is usually none.

•	 platform tag: The platform tag tells you the operating systems it will run on. This can be win32
or win_amd64 for 32-bit or 64-bit Windows respectively. For macOS X, this could be something
like macosx_11_0_arm64. For pure Python packages, this is usually any.

With all of these different options, you can probably guess that to support many platforms you will
need many wheels. This is actually a good thing, as it solves one of the big issues of egg files, namely
that installable files did not always work. If you can find a matching wheel for your system, you can
expect it to work without any issues.

The downside is the build time required for all of these wheels. The numpy package, for example, has
29 different wheels at the time of writing. Each of these wheels takes between 15 and 45 minutes to
build, so if we take an average of 30 minutes per wheel, we end up with 15 hours of build time for each
numpy release. Naturally, they can be built in parallel, but it is something to take into consideration.

Even though we have 29 different wheels available for numpy, there is still no support for many plat-
forms, such as FreeBSD, so the need for a source package also remains.

Source packages
Source packages are the most versatile out of all the types of Python packages. They contain the
source, build scripts, and potentially many other files such as documentation and tests. These allow
you to build and/or compile the package for your system. Source packages can have many different
extensions, such as .zip and .tar.bz2, but are basically a slightly stripped-down version of the entire
project directory and related files.

Since these packages often contain not only the straight-up source files but also tests and documen-
tation, they take up more space and are slower to install than wheels. Looking at the source package
for numpy, for example, I currently see 1941 files, whereas the wheel only contains 710 files. This
difference can actually be useful as well because you might have a use for the test files or the docu-
mentation. If you wish to skip the binary files because you wish to have the original sources or if you
want an optimized build for your specific system, you can opt for installing the source files by telling
pip to skip the binary files.

Installing the package from the source instead of the binaries can result in a smaller and/
or faster binary because it will only link to the libraries available on your system instead of
being universal.

The psycopg package for connecting to PostgreSQL databases is a good example of this. It offers
three possible installation options to install through pip in descending order of preference:

Packaging – Creating Your Own Libraries or Applications634

To install without any pre-compiled binaries:

$ pip3 install --no-binary ...

Since a source package comes with a build script, the installation alone can already be dangerous.
While a wheel will only unpack and not run anything, a source package will execute the build scripts
during installation. At one point, there was even a Russian Roulette package on PyPI that would have a
1/6 chance of deleting files on your system during installation to illustrate the dangers of this approach.

I personally think the security risk of executing build scripts during installion is of much less impor-
tance than vetting a package before you even plan to install it. Installing potentially malicious packages
on your system is a bad idea, whether or not you actually execute the code.

Package tools
So, what tools do we still need and use for installation these days?

The distribute, distutils, and distutils2 packages have largely been replaced by setuptools. To
install a setup.py based source package, you usually need setuptools, and setuptools comes bun-
dled with pip, so that is a requirement you should already have available. When it comes to installing
wheels, you need the wheel package; this is also conveniently bundled with pip. On most systems, this
means that you should have everything you need to install extra packages once Python is installed.

Since setuptools and pip have seen quite a lot of development over the last few years, it might be a
good idea to upgrade these packages in any case:

$ pip3 install --upgrade pip setuptools wheel

Now that we have all the prerequisites installed, we can continue with building our own packages.

Package versioning
While there are many versioning schemes available, many Python packages, and Python itself, use
PEP-440 for the version specifications.

•	 psycopg[c]: Both the Python and the C source files for building and compiling
locally

•	 psycopg[binary]: The Python source and precompiled binaries
•	 psycopg: The Python source only; in this case, you need to have the libpq library

installed on your system, which is accessed through ctypes

The Ubuntu Linux distribution is unfortunately a notable exception which ships with a
mutilated Python installation that lacks both the pip and ensurepip commands. This can
be fixed by installing pip separately using:

$ apt install python3-pip

If that does not work, you can always install pip by running the get-pip.py script:
https://bootstrap.pypa.io/get-pip.py

https://bootstrap.pypa.io/get-pip.py

Chapter 18 635

The short and simplified explanation is that version numbers such as 1.2 or 1.2.3 are used. For in-
stance, looking at version 1.2.3:

•	 1 is the major version and indicates API-breaking incompatible changes
•	 2 is the minor version and indicates backward-compatible functionality addition
•	 3 is the patch version, which is used for backward-compatible bugfixes

In the case of major versions, some libraries opt for making the versions non-contiguous and use
dates for the versions, such as 2022.5.

Pre-releases such as alphas and betas can be specified through the minor version with letters. The
options are a for alpha, b for beta, and rc for release candidate. This results in 1.2a3 for 1.2 alpha
3, for instance.

In the case of semantic versioning, this is handled by adding a pre-release identifier to the end, such
as 1.2.3-beta or 1.2.3-beta.1 for multiple betas.

Lastly, PEP-440 allows the use of post-releases using 1.2.post3 instead of 1.2.3 for minor bugfixes,
and similarly 1.2.dev2 for development releases.

Whichever versioning system you use, think about it carefully before starting your project. Not taking
the future into account can certainly cause problems in the long run. An example of this is Windows.
Some applications had trouble supporting Windows 10 because an alphabetical sort of version number
puts Windows 10 below Window 8 (after all, 1 is smaller than 8).

Building packages
Python packages were traditionally built using a setup.py file that contained (part of) the build
script. This method usually depends on setuptools and is still the standard for most packages, but
we have easier methods available these days. If your project is not too demanding, you can use a small
pyproject.toml file instead, which can be much easier to maintain.

Let’s give both methods a try and see how easy it is to build a basic Python package.

Packaging using pyproject.toml
The pyproject.toml file allows for really easy packaging depending on the tooling used. It was intro-
duced in 2015 through PEP-517 and PEP-518. This method was created to improve upon the setup.py
file by introducing build-time dependencies, automatic configuration, and making it easier to work
in a DRY (Don’t Repeat Yourself) manner.

Some people adhere to the slightly stricter version called semantic versioning (SemVer),
but the two are largely compatible.

Packaging – Creating Your Own Libraries or Applications636

Before we continue, we need to clarify a few things. When we talk about the setup.py file, we are often
actually talking about the setuptools library instead. The distutils library, which is bundled with
Python, can be used as well, but since pip depends on setuptools it is often the better option; it has
more features, and updates together with pip instead of with your Python installation.

Similar to how setup.py usually means setuptools, with pyproject.toml we also have multiple
libraries available for building and managing PEP-517 style packages. This approach to creating a
standard and relying on community projects for the implementations has worked quite well for Py-
thon in the past, which makes it a sound choice. An example of this approach is the Python Web
Server Gateway Interface (WSGI), which was introduced as PEP-333 and currently has several great
implementations available.

The reference solution for PEP-517 is the pep517 library, which works but is rather limited. Another
option is the build library, which is maintained by the Python Package Authority (PyPA), which also
maintains the Python Package Index (PyPI). While that library works, it is also really limited in terms
of features and not an option I would recommend either.

The best option by far, in my opinion, is the poetry tool. The poetry tool not only handles the building
of packages for you but also takes care of:

•	 Fast installing of dependencies in parallel
•	 Creating virtual environments
•	 Creating easy access points for runnable scripts
•	 Managing dependencies by specifying smart version constraints (for example, major and

minor versions, covered in detail later in this chapter)
•	 Building packages
•	 Publishing to PyPI
•	 Handling multiple Python versions using pyenv

For most cases, pyproject.toml can replace the traditional setup.py files completely, but there are
a few cases where you will need some extra tools.

In the case of building C/C++ extensions and others, you either need a setup.py file or to specify how to
build the extensions some other way. One option for this is to use the poetry tool and add a build script
to the pyproject.toml tool. We will discuss this more later on, in the section about C/C++ extensions.

TOML stands for “Tom’s Obvious, Minimal Language” and is somewhat comparable to
YAML and INI files, but a bit simpler. Since it is such a simple language, it can easily be
included in packages such as pip with little overhead. This makes it perfect for scenar-
ios where you need a flat structure and have no need for complicated features such as
inheritance and includes.

Chapter 18 637

Creating a basic package
Let’s start by using poetry to create a basic pyproject.toml file in our current directory:

$ poetry new .
Created package t_00_basic_pyproject in .

Since our parent directory is called t_00_basic_pyproject, poetry automatically makes that the
new project name. Alternatively, you can also do poetry new some_project_name and it will create
a directory for you.

The poetry command created the following files for us:

README.rst
pyproject.toml
t_00_basic_pyproject
t_00_basic_pyproject/__init__.py
tests
tests/__init__.py
tests/test_t_00_basic_pyproject.py

This is very simple boilerplate that contains enough to get your project started. The t_00_basic_
pyproject/__init__.py file contains the version (which defaults to 0.1.0) and the tests/test_t_00_
basic_pyproject.py file tests for this version as an example test. The more interesting part is the
pyproject.toml file, however, so let’s look at that now:

[tool.poetry]
name = "T_00_basic_pyproject"
version = "0.1.0"
description = ""
authors = ["Rick van Hattem <Wolph@wol.ph>"]

[tool.poetry.dependencies]
python = "^3.10"

[tool.poetry.dev-dependencies]
pytest = "^5.2"

[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"

Editable installs (i.e. pip install -e ...) were not possible until 2021, but that has
been remedied by PEP-660.

Packaging – Creating Your Own Libraries or Applications638

As you can see, poetry has automatically configured the name and version. It also added me as an
author by looking at the git config on my system. You can easily configure this yourself by running
these commands:

$ git config --global user.email 'your@email.tld'
$ git config --global user.name 'Your Name'

Next up, we can see that it automatically set Python 3.10 as a requirement and added pytest 5.2 as a
development dependency. For building the package, it added poetry-core as a dependency, which
is the poetry equivalent of setuptools.

Installing packages for development
For development purposes, we usually install a package in editable mode. In editable mode, the pack-
age is not copied to your site-packages directory, but a link is made to your source directory so all
changes to your source directory apply immediately. Without editable mode, you would have to do a pip
install every time you made a change to your package, which is very inconvenient for development.

With pip, you can install in editable mode with the command:

$ pip3 install --editable <package-directory>

For installing in the current directory, you can use . as the directory, resulting in:

$ pip3 install --editable .

With the poetry command, installing in editable mode (or something similar for older versions of
poetry) happens automatically. It also handles the creation of a virtual environment for us while
making use of pyenv for the Python version specified in the pyproject.toml file. To install the package
and all of its requirements, you only need to run:

$ poetry install

If you wish to have direct access to all of the commands in the virtual environment created, you can use:

$ poetry shell
(name-of-your-project) $

The poetry shell command spawns a new shell with the name of the current project added to your
command-line prefix and with the virtual environment scripts directory added to your PATH envi-
ronment variable. This results in commands such as python and pip executing within your virtual
environment.

Adding code and data
In the basic example, we didn’t have anything specifying which directory contains the source or that
the t_00_basic_pyproject directory has to be included in the directory. By default, that is handled
implicitly, but we can modify the pyproject.toml file to explicitly include directories or file patterns
as the Python source:

Chapter 18 639

[tool.poetry]
...
packages = [
 {include="T_00_basic_pyproject"},
 {include="some_directory/**/*.py"},
]

Note that adding the packages argument disables the automatic detection of packages, so you will
need to specify all included packages at this point.

To include other data files such as documentation, we can use the include and exclude parameters.
The exclude parameter overrides the files included by the packages argument:

[tool.poetry]
...
include = ["CHANGELOG.rst"]
exclude = ["T_00_basic_pyproject/local.py"]

For a basic project, you might not need to look at this. But, as always, explicit is better than implicit,
so I recommend that you do take a quick look to prevent unwanted surprises where the wrong files
are accidentally included in your package.

Adding executable commands
Some packages such as numpy are libraries only, meaning they are imported but have no runnable
commands. Other packages such as pip and poetry contain runnable scripts which are installed as
new commands during installion. After all, when the poetry package is installed, you can use the
poetry command from your shell.

To create our own commands, we need to specify the name of the new command, the module, and
the corresponding function, so poetry will know what to run. For example:

[tool.poetry.scripts]
our_command = 'T_00_basic_pyproject.main:run'

This would execute the run() function in a file called T_00_basic_pyproject/main.py. After installing
the package, you could execute our_command from your shell to run the script. During development
with poetry, you can use poetry run our_command, which automatically runs the command in the
poetry-created virtual environment.

Managing dependencies
The pyproject.toml file we created already had a few requirements for both development and building,
but you might also want to add other dependencies to your project. For example, if we wanted to add
a progress bar we could run the following:

$ poetry add progressbar2
Using version ^4.0.0 for progressbar2
...

Packaging – Creating Your Own Libraries or Applications640

This automatically installs the progressbar2 package for us and adds it to the pyproject.toml file
like this:

[tool.poetry.dependencies]
...
progressbar2 = "^4.0.0"

Additionally, poetry will create or update a poetry.lock file, which contains the exact package ver-
sions that are installed, so an installation in a new environment can easily be reproduced. In the case
above, we simply told poetry to install any version of progressbar2 which resulted in poetry setting
the version requirement to ̂ 4.0.0, but we can relax those requirements so poetry will automatically
install the latest patch, minor, or major version of the package.

By default, poetry will add the dependencies to the [tool.poetry.dependencies] section, but you
can also add them as development dependencies using the --dev or -D command-line arguments. If
you want to add other types of dependencies such as the build-system dependencies or test depen-
dencies, you will need to manually edit the pyproject.toml file, however.

The version specifiers expect SemVer-compatible versions and work as follows. For allowing newer
non-major versions, you can use the caret (^). This looks at the first non-zero number, so the behavior
of ^1.2.3 is different from ^0.1.2, as follows:

•	 ^1.2.3 means >=1.2.3 and <2.0.0
•	 ^1.2 means >=1.2.0 and <2.0.0
•	 ^1 means >=1.0.0 and <2.0.0
•	 ^0.1.2 means >=0.1.2 and <0.2.0

Next up are the tilde (~) requirements, which specify the minimal version but allow for minor updates.
They are a bit simpler than the caret versions and effectively specify what the number should start with:

•	 ~1.2.3 means >=1.2.3 and <1.3.0.
•	 ~1.2 means >=1.2.0 and <1.3.0.
•	 ~1 means >=1.0.0 and <2.0.0. Note that the two options above both allow minor version

updates, and this is the only one that allows major version updates.

Wildcard requirements are also possible using an asterisk (*):

•	 1.2.* means >=1.2.0 and <1.3.0
•	 1.* means >=1.0.0 and <2.0.0

The versioning system is compatible with the format used by requirements.txt as well, which allows
for versions such as:

•	 >= 1.2.3

•	 >= 1.2.3, <1.4.0

•	 >= 1.2.3, <1.4.0, != 1.3.0

•	 != 1.5.0

Chapter 18 641

I personally prefer this last syntax since it’s clear and doesn’t require much prior knowledge, but
you are free to use whichever you prefer. By default, poetry will use a ^1.2.3 format when adding
dependencies.

Now, let’s say we have a requirement like progressbar2 = "^3.5" and we have version 3.5.0 in our
poetry.lock file. If we run poetry install, it will install exactly version 3.5.0 because we know
that version to be good.

As a developer, you might want to update that dependency to a newer version so you can test if newer
versions also work. This is also something we can ask of poetry:

$ poetry update
Updating dependencies
...
Package operations: 0 installs, 1 update, 0 removals
 • Updating progressbar2 (3.5.0 -> 3.55.0)

Now poetry will automatically upgrade the package and update the poetry.lock file within the con-
straints of pyproject.toml.

Building the package
Now that we have our pyproject.toml file configured and the dependencies we want, we can build
the package. This is trivially easy using poetry, luckily. Building the package takes a single command:

$ poetry build
Building T_00_basic_pyproject (0.1.0)
 - Building sdist
 - Built T_00_basic_pyproject-0.1.0.tar.gz
 - Building wheel
 - Built T_00_basic_pyproject-0.1.0-py3-none-any.whl

With just that single command, poetry created a source package and a wheel for us. So, if you have
been keeping track, you’ll realize we can essentially create and build a package with just two com-
mands: poetry new and poetry build.

Building C/C++ extensions
Before we start with this section, I need to provide a little disclaimer. Building C/C++ extensions is
at the time of writing (the end of 2021) not a stable and supported feature by poetry, which means
it could be replaced by a different mechanism in the future. For the time being, however, there is a
working solution available for building C/C++ extensions and future versions are likely to work in a
similar fashion.

If you are looking for a stable and well-supported solution right now, I would suggest going with a
setup.py based project instead as covered later in this chapter.

Packaging – Creating Your Own Libraries or Applications642

We need to start by modifying our pyproject.toml file and adding the following line to the [tool.
poetry] section:

build = "build_extension.py"

Once this is done, poetry will execute the build_extension.py file when we run poetry build, so
now we need to create the build_extension.py file so setuptools can build the extension for us:

import pathlib
import setuptools

Get the current directory
PROJECT_PATH = pathlib.Path(__file__).parent

Create the extension object with the references to the C source
sum_of_squares = setuptools.Extension('sum_of_squares', sources=[
 # Get the relative path to sum_of_squares.c
 str(PROJECT_PATH / 'sum_of_squares.c'),
])

def build(setup_kwargs):
 setup_kwargs['ext_modules'] = [sum_of_squares]

This script is largely the same as what you would put in the setup.py file. The reason for this is that it’s
actually injecting into the same function call. If you look carefully at the build() function, you will see
that it updates setup_kwargs and sets the ext_modules item within that. That argument is fed to the
setuptools.setup() function verbatim. Essentially, we are just emulating the use of a setup.py file.

Note that for our C file we used the sum_of_squares.c file from Chapter 17, Extensions in C/C++, System
Calls, and C/C++ Libaries. You will see that the rest of the code largely resembles the setup.py file we
used in Chapter 17.

When we execute the poetry build command, poetry will automatically call setuptools internally
and build the binary wheel:

$ poetry build
Building T_01_pyproject_extensions (0.1.0)
 - Building sdist
 - Built T_01_pyproject_extensions-0.1.0.tar.gz
 - Building wheel

Make sure you don’t name the file build.py if you ever wish to use the PyPA build com-
mand.

Chapter 18 643

running build
running build_py
creating build
...
running build_ext
building 'sum_of_squares' extension
...

With that, we are done. We now have a wheel file containing the built C extension.

Packaging using setuptools with setup.py or setup.cfg
The setup.py file is the traditional method of building Python packages, but is still used quite exten-
sively and is a very flexible method of creating packages.

Chapter 17 has already shown us a couple of examples when building extensions, but let’s reiterate
and review what the most important parts actually do. The core function you will be using in this
entire chapter is setuptools.setup().

Before we continue, it is always a good idea to make sure you have the latest version of pip, wheel,
and setuptools:

$ pip3 install -U pip wheel setuptools

As an alternative or addition to the setup.py file, you can also configure all metadata using a setup.
cfg file. This uses the INI format and can be a bit more convenient for simple metadata where you do
not need (or want) the overhead of the Python syntax.

You can even choose to use setup.cfg alone and skip setup.py; however, if you did, you would need
a separate building utility. For those cases, I would recommend installing PyPA’s build library:

$ pip3 install build
...

The distutils package bundled with Python will be sufficient as well in most cases, but
I recommend setuptools regardless. The setuptools package has many great features
that distutils lacks and nearly all Python environments will have setuptools available
as it is included with pip.

The setuptools and distutils packages have changed significantly over the last
few years and the documentation/examples written before 2014 are most likely out of
date. Be careful not to implement deprecated examples, and I would recommend skipping
any documentation/examples using distutils.

Packaging – Creating Your Own Libraries or Applications644

Creating a basic package
Now that we have all the prerequisites, let’s create a package using a setup.py file. While the most
basic setuptools.setup() call technically doesn’t require any parameters, you should really include
at least the name, version, packages, url, author, and author_email fields if you plan to publish the
package to PyPI. Here’s a really basic example containing these fields:

import setuptools

if __name__ == '__main__':
 setuptools.setup(
 name='T_02_basic_setup_py',
 version='0.1.0',
 packages=setuptools.find_packages(),
 url='https://wol.ph/',
 author='Rick van Hattem',
 author_email='wolph@wol.ph',
)

As an alternative to configuring these as setup() parameters, you can also use a setup.cfg file, which
uses the INI format but works in effectively the same way:

[metadata]
name = T_03_basic_setup_cfg
version = 0.1.0
url='https://wol.ph/',
author='Rick van Hattem',
author_email='wolph@wol.ph',

[options]
packages = find:

The main advantage of setup.cfg is that it is a more concise and simpler file format than the setup.
py file is. Take a look at the packages section, for example; setuptools.find_packages() is quite a
bit more verbose than find:.

The downside is that you need to pair a setup.cfg file with either a setup.py or pyproject.toml file
to be able to build it. setup.cfg alone is not enough for a package, which makes setup.cfg a nice and
clean way to separate your metadata from your setup code. Additionally, many libraries such as pytest
and tox have native support for the setup.cfg file, so these can be configured through the file as well.

To pair setup.cfg and/or setup.py with a pyproject.toml file, we need to add these lines to the
pyproject.toml file:

Chapter 18 645

[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"

Note that a pyproject.toml file by itself won’t give you poetry support; for poetry support, you need
to add a [tool.poetry] section.

Installing the package for development
To install the package for local development, we can once again use the -e or --editable flag, as
explained in the poetry section of this chapter. This installs a link from your source directory to the
site-packages directory so the actual source is used, instead of having setuptools copy all of the
source files to the site-packages directory.

In short, from the project directory you can either use the setup.py file:

$ python3 setup.py develop

Or pip:

$ pip3 install -e .

Adding packages
In the basic example, you could see that we used find_packages() as the argument for packages. This
automatically detects all source directories and is usually fine as a default, but sometimes you need
more control. The find_packages() function also allows you to add an include or exclude parameter
if you wish to exclude tests and other files from the package, like this:

setuptools.find_packages(
 include=['a', 'b', 'c.*'],
 exclude=['a.excluded'],
)

The arguments to find_packages() can also be translated to a setup.cfg file with a slightly different
syntax:

[options]
packages = find:

[options.packages.find]
include =
 a
 b
 c.*
exclude = a.excluded

Packaging – Creating Your Own Libraries or Applications646

Adding package data
In most scenarios, you probably won’t have to include the package data such as test data or documen-
tation files, but there are cases where you need extra files. Web applications, for example, might come
bundled with html, javascript, and css files.

There are a few different options for including extra files with your package. First, it is important to
know which files are included in your source package by default:

•	 Python source files in the package directories and all their subdirectories
•	 The setup.py, setup.cfg, and pyproject.toml files
•	 Readme files if available, such as README.rst, README.txt, and README.md
•	 Metadata files containing the package name, version, entry points, file hashes, and so on

For Python wheels the list is even shorter, and only the Python source and the metadata files will be
packaged by default.

This means that if we want to include other files, we need to specify that those need to be added. We
have two different options for adding other types of data to our package.

First of all, we can enable the include_package_data flag as an argument to setup():

 setuptools.setup(
 ...
 include_package_data=True,
)

Once that flag is enabled, we can specify what file patterns we want in a MANIFEST.in file. This file
contains patterns to include, exclude, and more. The include and exclude commands use patterns
to match. These patterns are glob-style patterns (see the glob module for documentation: https://
docs.python.org/3/library/glob.html) and have three variants for both the include and exclude
commands:

•	 include/exclude: These commands only work for the given path and nothing else
•	 recursive-include/recursive-exclude: These commands are similar to the include/

exclude commands, but process the given paths recursively
•	 global-include/global-exclude: Be very careful with these, as they will include or exclude

these files anywhere within the source tree

Besides the include/exclude commands, there are also two others: the graft and prune commands,
which include or exclude directories including all the files under a given directory. This can be use-
ful for tests and documentation, since they can include non-standard files. Beyond those examples,
it’s almost always better to explicitly include the files you need and ignore all the others. Here’s an
example MANIFEST.in file:

Include all documentation files
include-recursive *.rst
include LICENSE

https://docs.python.org/3/library/glob.html
https://docs.python.org/3/library/glob.html

Chapter 18 647

Include docs and tests
graft tests
graft docs

Skip compiled python files
global-exclude *.py[co]

Remove all build directories
prune docs/_build
prune build
prune dist

Alternatively, we can use the package_data and exclude_package_data arguments and add them to
setup.py:

 setuptools.setup(
 ...
 package_data={
 # Include all documentation files
 '': ['*.rst'],

 # Include docs and tests
 'tests': ['*'],
 'docs': ['*'],
 },
 exclude_package_data={
 '': ['*.pyc', '*.pyo'],
 'dist': ['*'],
 'build': ['*'],
 },
)

Naturally, these also have an equivalent setup.cfg format:

[options]
...
include_package_data=True,

[options.package_data]
Include all documentation files
* = *.rst

Packaging – Creating Your Own Libraries or Applications648

Include docs and tests
tests = *
docs = *

[options.exclude_package_data]
* = *.pyc, *.pyo
dist = *
build = *

You can choose whichever format and method you prefer.

Managing dependencies
When you are using a setup.py or setup.cfg file, you don’t get the easy dependency management
that poetry provides. Adding new dependencies is not much harder, except that you need to add the
requirement and install the package yourself instead of doing it all in a single command.

As is the case with pyproject.toml, there are multiple types of dependencies that you can declare:

•	 [build-system] requires: These are the requirements to build the project. These are usually
setuptools and wheel for setuptools-based packages; for poetry this would be poetry-core.

•	 [options] install_requires: These are the requirements to be able to run the package. A
project such as pandas will have a requirement for numpy, for example.

•	 [options.extras_require] NAME_OF_EXTRA: If your project has optional dependencies for
specific circumstances, the extras can help. For example, to install portalocker with redis
support, you can run this command:

$ pip3 install "portalocker[redis]"

If you have experience with creating packages, you might wonder why tests_require is not shown
here. The reason is that there is no real need for it anymore since extras_require was added. You
can simply add an extra requirement for tests and docs instead.

Here’s an example of adding a few requirements to a setup.py file:

setuptools.setup(
 ...
 setup_requires=['pytest-runner'],
 install_requires=['portalocker'],
 extras_require={
 'docs': ['sphinx'],

Note that these parameters use package_data instead of data for a reason. All of these
require you to use a package. That means that data will only be included if it’s inside a
proper Python package (in other words, if it contains an __init__.py).

Chapter 18 649

 'tests': ['pytest'],
 },
)

Here is the equivalent in a setup.cfg file:

[build-system]
requires =
 setuptools
 wheel

[options]
install_requires =
 portalocker

[options.extras_require]
docs = sphinx
tests = pytest

Adding executable commands
As is the case with a pyproject.toml-based project, we can specify executable commands using the
setup.py or setup.cfg files as well. To add a basic executable command similar to how we can run
the pip or ipython commands, we can add entry_points to our setup.py file:

setuptools.setup(
...
 entry_points={
 'console_scripts': [
 'our_command = T_02_basic_setup_py.main:run',
],
 },

Or the setup.cfg equivalent:

[options.entry_points]
console_scripts =
 our_command = T_03_basic_setup_cfg.main:run

Once you have installed this package you can run our_command from your shell, similar to how you
would run a command like pip or ipython.

From the examples above, you might wonder if we have other options besides console_scripts, and
the answer is yes. One example is distutils.commands, which can be used to add extra commands
to setup.py. By adding a command in that namespace, you can do:

$ python3 setup.py our_command

Packaging – Creating Your Own Libraries or Applications650

The most prominent example of this behavior, however, is the pytest library. The pytest library uses
these entry points to automatically detect plugins that are compatible with pytest. We could easily
create our own equivalent:

[options.entry_points]
our.custom.plugins =
 some_plugin = T_03_basic_setup_cfg.some_plugin:run

Once you have packages like these installed, you can query them through importlib like so:

>>> from importlib import metadata

>>> metadata.entry_points()['our.custom.plugins']
[EntryPoint(name='some_plugin', value='...some_plugin:run', ...]

This is a very useful feature for automatically registering plugins across libraries.

Building the package
To actually build the package, we have a few options. I personally use the setup.py file if it is available:

$ python3 setup.py build sdist bdist_wheel
running build
...
creating 'dist/T_02_basic_setup-0.1.0-py3-none-any.whl' and adding ...

If you only have a setup.cfg and pyproject.toml available, you will need to install a package to
invoke the builder. In addition to poetry, PyPA provides a tool called build for this, which creates an
isolated environment for building the package:

$ python3 -m build
* Creating venv isolated environment...
...
Successfully built T_02_basic_setup-0.1.0.tar.gz and T_02_basic_setup-0.1.0-
py3-none-any.whl

Both the wheel and the source package are written to the dist directory and they are ready for pub-
lishing.

Publishing packages
Now that we have the packages built, we need to actually publish them to PyPI. There are several
different options we can use, but let’s discuss some optional package metadata first.

Adding URLs
Our setup.py and setup.cfg files already contained a url parameter that will be used as the package
homepage on PyPI. However, we can add more relevant URLs by configuring the project_urls setting,
which is an arbitrary map of name/URL pairs. For settings.py:

Chapter 18 651

 setuptools.setup(
 ...
 project_urls=dict(
 docs='https://progressbar-2.readthedocs.io/',
),
)

Or for settings.cfg:

[options]
project_urls=
 docs=https://progressbar-2.readthedocs.io/

Similarly, for pyproject.toml using poetry:

[tool.poetry.urls]
docs='https://progressbar-2.readthedocs.io/'

PyPI trove classifiers
To increase the exposure of your package on PyPI, it can be useful to add a few classifiers. Some
classifiers such as the Python version and the license are automatically added for you, but it can be
useful to specify what kind of library or application you are writing.

There are many examples of useful classifiers for people interested in your packages:

•	 Development status: This can vary from “planning” to “mature” and tells your users whether
an application is ready for production. People’s definitions of what is stable or beta differs, of
course, so this is usually considered a hint at most.

•	 Framework: The framework(s) you are using or extending. This could be Jupyter, IPython,
Django, Flask, and so on.

•	 Topic: Whether this is a software development package, scientific, a game, and so on.

A full list of classifiers can be found on the PyPI website: https://pypi.org/classifiers/

Uploading to PyPI
Uploading and publishing your package to PyPI is really easy. Perhaps too easy, as we will see in the
case of twine.

Before we get started, to prevent you from accidentally publishing your package to PyPI, you should be
aware of the PyPI test server: https://packaging.python.org/en/latest/guides/using-testpypi/

In the case of poetry, we can configure the test repository like this:

$ poetry config repositories.testpypi https://test.pypi.org/simple/
$ poetry config pypi-token.testpypi <token>

https://pypi.org/classifiers/
https://packaging.python.org/en/latest/guides/using-testpypi/

Packaging – Creating Your Own Libraries or Applications652

First of all, if you are using poetry it is as simple as:

$ poetry publish --repository=testpypi

If you’re not using poetry and don’t want to use a poetry-compatible pyproject.toml, you’ll need a
different solution. The official solution from PyPA is to use the twine tool, maintained by the PyPA.
After you have used python3 -m build to build the package, you can use twine for uploading:

$ twine upload --repository testpypi dist/*

Before you start publishing your packages to PyPI, you should ask yourself a couple of questions:

•	 Is the package in a working state?
•	 Do you plan to support the package?

The PyPI repository is unfortunately full of empty packages from people that are claiming usable
package names for no apparent reason.

C/C++ extensions
The previous chapter and earlier sections in this chapter have already covered the compilation of C/
C++ components lightly, but this topic is complicated enough to warrant its own section with more
in-depth explanations.

For convenience, we will start with a basic setup.py file that compiles a C extension:

import setuptools

sum_of_squares = setuptools.Extension('sum_of_squares', sources=[
 # Get the relative path to sum_of_squares.c
 str(PROJECT_PATH / 'sum_of_squares.c'),
])

setuptools.setup(
 name='T_04_C_extensions',
 version='0.1.0',
 ext_modules=[sum_of_squares],
)

Warning! This command will immediately register and upload the package to pypi.org if
you are already authenticated. That’s why --repository testpypi was added to upload
to the test PyPI server instead. If you drop that argument, you will immediately publish
your package to PyPI.

Chapter 18 653

Before you start with these extensions, you should learn the following setup.py commands:

•	 build_ext: This command builds the C/C++ extension so it can be used when the package is
installed in development/editable mode.

•	 clean: This cleans the results from the build command. This is generally not needed, but
sometimes the detection of files that need to be recompiled to work is incorrect. If you en-
counter strange or unexpected issues, try cleaning the project first.

Instead of using python3 setup.py build_ext, you can also choose to use the PyPA build command,
but that is not a convenient option for development. If you use python3 setup.py build you can re-
use your build directory and selectively build your C/C++ extensions, which saves you a lot of time
for larger C/C++ modules. The PyPA build command is meant to produce clean, production-ready
packages, which is strongly recommended for deploying and publishing, but not for development.

Regular C/C++ extensions
The setuptools.Extension class tells setuptools that a module named sum_of_squares uses the
source file sum_of_squares.c. This is just the simplest version of an extension – a name and a list of
sources – but often you are going to need not just the C file but also some headers from other libraries.

A prime example is the pillow library for image manipulation. When the library is building, it auto-
matically detects the libraries available on the system and adds extensions based on that. For .jpeg
support you need to have libjpeg installed; for .tiff images you need libtiff; and so on. As these
extensions include binary libraries, some extra compilation flags and C header files are required. The
basic PIL module itself doesn’t appear too involved, but the setup.py file is filled with auto-detection
code to detect which libs (libraries) are available, with the matching C macro definitions to enable
these libraries.

Here’s a partial example Extension from an older version of the pillow setup.py file:

exts = [(Extension("PIL._imaging", files, libraries=libs,
 define_macros=defs))]

Macros in C are preprocessor directives. These directives are executed before the actual
compilation step occurs, which makes them ideal for conditional code. You could have a
conditional block of debug code dependent on a DEBUG flag, for example:

#ifdef DEBUG
/* your debug code here */
#endif

If DEBUG is set, the code will be part of the compiled binary. If the flag is not set, the block
of code will never end up in the resulting binary. This results in smaller and faster binaries
because these conditionals happen at compile time as opposed to runtime.

Packaging – Creating Your Own Libraries or Applications654

The newer versions are quite different and the setup.py file for the pillow project is currently over
1,000 lines. The freetype extension has something similar:

if feature.freetype:
 exts.append(Extension(
 "PIL._imagingft", ["_imagingft.c"], libraries=["freetype"]))

Adding and compiling C/C++ extensions can certainly be challenging, so I would recommend taking
inspiration from projects such as pillow and numpy if you need to take care of this. They are perhaps a
bit too complicated, but should provide you with a nice starting point that covers nearly all scenarios.

Cython extensions
The setuptools library is a bit smarter than the regular distutils library when it comes to extensions:
it actually adds a little trick to the Extension class. Remember the brief introduction to cython in Chap-
ter 12, about performance? The setuptools library makes it a bit more convenient to compile Cython
extensions. The Cython manual recommends that you use something similar to the following code:

from setuptools import setup
from Cython.Build import cythonize

setup(
 ext_modules = cythonize("src/*.pyx")
)

The problem with this approach is that setup.py will break with an ImportError unless you
have Cython installed:

$ python3 setup.py build
Traceback (most recent call last):
 File "setup.py", line 2, in <module>
 import Cython
ImportError: No module named 'Cython'

To prevent that issue, we are just going to let setuptools handle the Cython compilation:

import setuptools

setuptools.setup(
 name='T_05_cython',
 version='0.1.0',
 ext_modules=[
 setuptools.Extension(
 'sum_of_squares',
 sources=['T_05_cython/sum_of_squares.pyx'],
),

Chapter 18 655

],
 setup_requires=['cython'],
)

Now Cython will automatically be installed if needed and the code will work just fine:

$ python3 setup.py build
running build
running build_ext
cythoning T_05_cython/sum_of_squares.pyx to T_05_cython/sum_of_squares.c
building 'sum_of_squares' extension
...

For development purposes, however, Cython also offers a simpler method that doesn’t require manual
building, pyximport:

$ python3
>>> import pyximport

>>> pyximport.install()
(None, <pyximport.pyximport.PyxImporter object at ...>)

>>> from T_05_cython import sum_of_squares

>>> sum_of_squares.sum_of_squares(10)
14

That’s how easy it is to run the pyx files without explicit compiling.

Testing
In Chapter 10, Testing and Logging – Preparing for Bugs, we saw a few of the many testing systems for
Python. As you might suspect, at least some of these have setup.py integration. It should be noted that
setuptools even has a dedicated test command (at the time of writing), but this command has been
deprecated and the setuptools documentation now recommends using tox. While I am a huge fan
of tox, for immediate local development it often incurs quite a bit of overhead. I find that executing
py.test directly is faster, because you can really quickly test only the bits of the code that you changed.

unittest
Before we start, we should create a test script for our package. For actual tests please look at Chapter
10; in this case, we will just use a no-op test, test.py:

import unittest

class Test(unittest.TestCase):

Packaging – Creating Your Own Libraries or Applications656

 def test(self):
 pass

The standard python setup.py test command has been deprecated, so we will run unittest directly:

$ python3 -m unittest -v test
running test
...

The unittest library is still rather limited, however, so I recommend skipping straight to py.test
instead.

py.test
The py.test package currently automatically registers as an extra command in setuptools, so after
installing you can run python3 setup.py pytest. However, since setuptools is actively trying to
reduce all interaction with setup.py, I would recommend using a py.test or tox call directly instead.

As mentioned earlier, it is recommended to use tox for bootstrapping your environment and fully
testing the project. For fast local development, however, I would suggest installing the pytest module
and running the tests directly.

To configure py.test we have several options depending on your preferences. All of the following
files will work:

•	 pytest.ini

•	 pyproject.toml

•	 tox.ini

•	 setup.cfg

For the projects I maintain, I have the test requirements defined as an extra so these can be installed
using (for example) pip3 install -e "./progressbar2[tests]". After that, you can easily run
py.test to run the tests identically to how tox would run them. Naturally, tox can also install the
requirements using the same extras, which ensures you are using the same test environment.

To enable this in your setup.cfg (or the equivalent for setup.py / pyproject.toml):

[options.extras_require]
tests = pytest

For local development, we can now install the package and the extras in editable mode for quick testing:

$ pip3 install -e '.[tests]'

Note that there might still be old documentation floating around suggesting the use of
pytest-runner, python setup.py test with an alias or custom command, or the
generation of a runtests.py file, but all of these solutions have been deprecated and
should not be used anymore.

Chapter 18 657

That should be enough to be able to test using py.test directly:

$ py.test

To test using tox, you will need to create a tox.ini file, but for that, I suggest you take a look at
Chapter 10.

Exercises
Now that you have reached the end of the book, there are many things to try, of course. You can build
and publish your own applications and libraries, or extend existing libraries and applications.

While trying out the examples in this chapter, be careful not to accidentally publish packages to PyPI
if that was not your intention. It just takes a single twine command to accidentally register and upload
a package, and PyPI is already too crowded with packages that do nothing useful.

For some practical exercises:

•	 Create a setuptools command to bump the version in your package
•	 Extend the version bumping command by interactively asking for a major, minor, or patch

upgrade
•	 Try and convert existing projects from setup.py to a pyproject.toml structure
•	

Summary
After reading this chapter, you should be able to create Python packages containing not only pure-Py-
thon files but also extra data, compiled C/C++ extensions, documentation, and tests. With all these
tools at your disposal, you are now able to make high-quality Python packages that can easily be reused
in other projects and packages.

The Python infrastructure makes it really quite easy to create new packages and split your project
into multiple subprojects. This allows you to create simple and reusable packages with fewer bugs
because everything is easily testable. While you shouldn’t go overboard with splitting up the packages,
if a script or module has a purpose of its own then it’s a candidate for packaging separately.

*

With this chapter, we have come to the end of the book. I sincerely hope you enjoyed reading it and
have learned about some new and interesting topics. Any and all feedback is greatly appreciated, so
feel free to contact me through my website at https://wol.ph/.

Example answers for these exercises can be found on GitHub: https://github.com/
mastering-python/exercises. You are encouraged to submit your own solutions and
learn about alternative solutions from others.

https://wol.ph/
https://github.com/mastering-python/exercises
https://github.com/mastering-python/exercises

Packaging – Creating Your Own Libraries or Applications658

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:
https://discord.gg/QMzJenHuJf

https://discord.gg/QMzJenHuJf

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as in-
dustry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals
•	 Improve your learning with Skill Plans built especially for you
•	 Get a free eBook or video every month
•	 Fully searchable for easy access to vital information
•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free
newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Advanced Python Programming - Second edition

Quan Nguyen

ISBN: 978-1-80181-401-0

•	 Write efficient numerical code with NumPy, pandas, and Xarray
•	 Use Cython and Numba to achieve native performance
•	 Find bottlenecks in your Python code using profilers
•	 Optimize your machine learning models with JAX
•	 Implement multithreaded, multiprocessing, and asynchronous programs
•	 Solve common problems in concurrent programming, such as deadlocks
•	 Tackle architecture challenges with design patterns

https://subscription.packtpub.com/search?query=9781801814010

Other Book You May Enjoy662

Python Architecture Patterns

Jaime Buelta

ISBN: 978-1-80181-999-2

•	 Think like an architect, analyzing software architecture patterns
•	 Explore API design, data storage, and data representation methods
•	 Investigate the nuances of common architectural structures
•	 Utilize and interoperate elements of patterns such as microservices
•	 Implement test-driven development to perform quality code testing
•	 Recognize chunks of code that can be restructured as packages
•	 Maintain backward compatibility and deploy iterative changes

https://subscription.packtpub.com/search?query=9781801819992

Other Book You May Enjoy 663

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Mastering Python, Second Edition, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1800207727

Index

A
abstract classes

internal workings 225-229
with collections.abc 225

Abstract Syntax Tree (AST) 73
accumulate function

intermediate results, reducing with 147
aiofiles library 455, 456
aliases 377, 378

pdb commands 378
alternative interpreters 32

bpython 33, 34
IPython 36
Jupyter 42
ptpython 35

Anaconda
using 8

Anaconda distribution 515
Anaconda Navigator 9
application binary interface (ABI) 613-615
application programming

interface (API) 613-615
arbitrary expressions, f-strings 53
arguments

adding, to metaclasses 222, 223
parsing 622-624

array module
reference link 485

arrays 516
handling, with CFFI 612, 613
handling, with ctypes 607, 608

artificial intelligence (AI) 558
libraries 589
types 558
utilities 589

Artificial Neural Networks (ANNs) 575, 576
assertions

simplifying 317-320
assignment expressions 76
async/await statements 436
async context managers

creating, to support async with statement 457
async def 440
async generators

creating, to support async for
statements 456, 457

asynchronous constructors 458, 459
asynchronous destructors 458, 459
asynchronous file operations 455
asyncio 436

advantages, over threading 470
concepts 440
coroutines 441
debugging 460, 461
echo client 453-455
echo server 453-455
event loop 441
event loop implementations 442, 443
event loop policies 443
event loop usage 443-445
examples 448
executors 445-447
Futures 441
interactive processes 451-453

Index666

issues 461-467
parallel execution, basic example 438-440
processes 448-451
Python 3.4 usage 436
Python 3.5 syntax 437
Python 3.7 437, 438
Tasks 441

asyncio.gather() 440
asyncio.run() 440
asyncio.sleep() 440
attributes

using, for matching 83
automatic arguments

with fixtures 322, 323
automatic dependency tracking

with pipenv 20-22
automatic project management

with poetry 17
automodule directive 287
auto-sklearn 593

B
backward compatibility 436
batch processing

with concurrent.futures 480, 481
with multiprocessing 482-484

Bayesian networks 589, 592
big O notation

purpose 98
using 98-101

bisect module 122
sorted collections, searching with 122-126

blocks, code documentation 273
bokeh library 547-552
Borg pattern 126, 127

bpython interpreter 33
automatically enabled features,

illustrating 33, 34
features 33
modules, reloading 35
session, rewinding 34

breakpoints 373-376
commands 374

bulleted lists 264, 265

C
C

errors, handling 624
Python, calling from 625-627

cache fixture 323
call stack

displaying, without exceptions 368, 369
C/C++

calling, with ctypes 602
C/C++ extensions 652

Cython 654
regular 653, 654

C/C++ modules
need for 600

C Foreign Function Interface (CFFI) 609-611
advantages 611
application binary interface (ABI) 613, 614
application programming interface

(API) 613, 614
selecting 615
using, to handle arrays 612, 613
using, to handle complex

data structures 611, 612
chain function

multiple results, combining 147, 148
ChainMap

multiple scopes, combining with 114-116

Index 667

charting libraries 538
circular imports 93-95
class attributes

storing, in definition order 243
class decorators 176
classes

creating, dynamically 220, 221
decorators, creating 166
documenting, with Google style 292, 293
documenting, with NumPy style 293, 294
documenting, with Sphinx style 290-292
sortable class, creating 179
used, for accessing metaclass

attributes 224, 225
class functions

decorating 167
classic solution

without metaclasses 243, 244
classification 589
classifier 590
classmethod decorator 168-172
class properties 87, 88
closures 92
CMYK (Cyan, Magenta, Yellow, and

Key/Black) 559
CNNs 577
code 273

documenting 289
quality, verifying 72

code snippet performance
comparing, with cProfile module 394-404
comparing, with timeit module 389-394

collections.abc
for abstract classes 225

commands
running, with poetry 20

commands command 378

comments 274
complex data structures

handling, with CFFI 611, 612
handling, with ctypes 606

compress function
items, selecting with Boolean list 148, 149

Computer Algebra System (CAS) 536
computer vision (CV) 559
concurrent.futures 472, 473

used, for batch processing 480, 481
versus multiprocessing 499, 500
versus threading 499

conda 9
packages, installing 10

configuration
used, for importing plugins 234, 235

console on demand 371
contextlib.contextmanager 205-207
contextmanager class

using 184, 185
core collections 101

dict 104-106
list 101-104
set 107, 108
tuple 108-111

coroutines 207, 208
example 208
exceptions, closing 210, 211
exceptions, throwing 209-211
generators, mixing, with 211-213
priming 208
state, using 214-216

count function
infinite range, with decimal steps 149

cProfile module
profiler, calibrating 397-399
profile statistics, using 401-404

Index668

profiling run 395, 396
selective profiling, with decorators 400, 401
used, for finding slowest components 394

CPU performance
measuring 389

cron commands
running 24

crossover rate 585
ctypes

arrays, handling with 607, 608
C/C++, calling with 602
complex data structures, handling with 606
selecting 615

custom fixtures 324, 325
custom type checks 229, 230
custom types 251, 252
Cython extensions 654, 655

D
Dask

code execution, example 506, 507
distributed execution, across multiple

machines 507, 508
installing 505
single thread, running 507
used, for distributed processing 505

dataclasses module 112, 237-239
using, for smart storage with

type hinting 111-114
datashader library 552-554
data sharing

between processes 490-492
between threads, and processes 484, 485

deadlocks 495
avoiding, strategies 496

debugging
with IPython 379, 380
with Jupyter 380-382

with logging 366, 367
with Python debugger (pdb) 372

decision trees (DTs) 591
decorators 154, 155

chaining 159
creating, with classes 166
functions, registering 160, 161
nesting 159
using, for memoization 162-165
with arguments 165, 166

deep learning 575
defaultdict 116

using, for default dictionary values 116-119
definition list 266
dependencies

adding 18, 19
additional dependencies, with extras 16
conditional dependencies, with environment

markers 16
managing 13
upgrading 19, 20

descriptors 170
working 171

dict comprehensions 134, 135
pitfalls 136-138

dictionaries
matching 82
testing 309-311

dict object 104-106
dict union operators 128
directives, Sphinx 287
distributed processing

with Dask 505
with ipyparallel 509
with multiprocessing 502-505

Django-StatsD
reference link 431

DNN (Deep Neural Network) 567

Index 669

doctest
documentation, using as tests 298
example 298-301
flags 305-307
quirks 309
writing 301, 302

documentation
using, for testing 302-305

Dowser 416
dropwhile function

items, selecting with 149
duck typing 67, 68
dunder methods 105
durations 311

E
EAFP

ideology 408
reference link 68

Elastic APM 383
elitism parameter 585
ELLIPSIS flag 308
enumerated lists 263, 264
enum package

working with 119, 120
environment

sharing 12
evolutionary algorithms 584-588
exceptions

catching 376

execution time
improving 406

expanding windows 528
expert systems 558
exponentially weighted windows 528

F
face detection example, scikit-image

reference link 561
factorial function

implementing 143, 144
fallback

storing, as variable 78
faulthandler

crashes, handling 369-371
feature selection 591
Featuretools 595
filesystem

used, for importing plugins 235, 236
fixtures

custom fixtures 324, 325
using, for automatic arguments 322, 323

flake8 75
flake8-bugbear 75
flake8-docstrings 75
flake8-mypy 75
floating-point numbers

testing 311
f-strings 51, 352
functional programming 131

advantages 133
purely functional 132

functions
calling 603-605
decorating 154
registering, with decorators 160, 161

functools 141, 179
partial 141, 142
reduce 143

functools.cached_property 172
functools.wraps

significance 158, 159

Index670

G
garbage collector

memory usage, analyzing with 422
generator examples

about 200
context managers, creating 205-207
iterable, breaking into chunks/groups 200-202
iterables, slicing 202, 203
multiple iterables, concatenating 204
output, using multiple times 204, 205

generators 191
advantages 192
class-based generators 197
comprehensions 196, 197
converting, into iterator 198
coroutines, mixing with 211-213
creating 192
disadvantages 192
example 192
execution 193
handling 194
infinite generators, creating 195
iterables, wrapping 195, 196
limitations 198-200

generic function decorators 155-157
generics 253
genetic algorithm 584, 585
Gensim 573

reference link 573
Global Interpreter Lock (GIL) 444, 470

need for 470, 471
global variables 84, 85
gmpy2 library 534
Google style

class, documenting 292, 293
Grafana 430
graphical user interface (GUI) 33

graphing libraries 538
groupby function

sorted iterable, grouping 150, 151
guards

values, matching with 79

H
headers 259

with Markdown 262, 263
with reStructuredText 260, 261

heapq module 121
collections, sorting with 121, 122

Heapy 416
Homebrew

reference link 601
hyper-threading

versus physical CPU cores 500-502

I
identities 70
image 559
image processing 559
images 270

with Markdown 272
with reStructuredText 270, 271

import collisions 95
infinite generators

creating 195
InfluxDB 431
inline markup 258, 259
interactive debugging 371

console on demand 371
with IPython 379, 380
with Jupyter 380-382
with Python debugger (pdb) 372

ipcluster_config.py 511, 512
ipcontroller_config.py 510

Index 671

ipdb debugger 382
ipengine_config.py 511
ipyparallel

using, for distributed processing 509
ipython_config.py 509
IPython interpreter

about 36
autocompletion 41
doctest mode 39, 40
features 36
help 40
introspection 40
magic functions 47
prompt 39, 40
sessions, loading 38, 39
sessions, saving 38
shortcuts 47
usage 37, 38
using, for debugging 379, 380

ipython_kernel_config.py 510
IPython project

structure 42, 43
isinstance

using, for matching 83
itertools.chain 204
itertools.islice 202

implementation 203
itertools library 147

accumulate function 147
chain function 147, 148
compress function 148, 149
count function 149
dropwhile function 149
groupby function 150

itertools.tee 204, 205

J
JIT compiling options

CPython 3.12 414
CPython 3.13 414
Numba 414
Pypy 414
Pyston 414

Jupyter
installing 44-46
project 42
project structure 42, 43
using, for debugging 380-382

Jupyter Docker Stacks
reference link 516

K
Keras 576, 583
kernel ridge regression 592

L
labels 267, 268
lambda functions 138
LASSO (least absolute shrinkage and selection

operator) model 590
linear discriminant analysis 592
linear models 590
LinearSVC 591
LinearSVR 591
line_profiler module

used, for tracking performance
per line 404-406

links 267
Linux/Unix

C libraries, calling in 602
tooling, setting up for C/C++ extensions in 601

Index672

list comprehensions 133, 134
list object 101-104
lists 263

bulleted lists 264, 265
definition lists 266
enumerated lists 263, 264
matching 80
nested lists 266, 267
option lists 265, 266

local binary pattern (LBP) 562
lock 470
Logger object 348, 349

formatting 350, 351
properties 349, 350
usage 349

loggers
debugging 354-356

logging 326, 327, 340
basic logging configuration 341-343
configuration 341
dictionary configuration 343
ini file configuration 345, 346
JSON configuration 344, 345
network configuration 346-348
pitfalls 353

long-running threads
exiting 477-480

Look Before You Leap (LBYL) 408
reference link 68

loops 70, 71

M
machine learning 558, 573

deep learning 575
methods combinations 575
reinforcement learning 574
supervised learning 574
types 573

unsupervised learning 574
magic methods 105
managers

used, for sharing data between
processes 490-492

mappings
matching 82

Markdown format 255-258
advantages 256
headers 262, 263
images 272
reference link, for home page 258

match statement 77, 78
math 274
mathematical precision 533
matplotlib library 538-541
matrices 516
maximum line length 71, 72
McCabe 73, 74
memoization 161

with decorators 162-165
memory address 68
memory leaks 418-420

circular references 420-422
memory management

gotchas 608, 609
memory_profiler module 417, 418
memory usage 416

analyzing, garbage collector used 422
generators, versus lists 428
monitoring 417
monitoring, tracemalloc module used 416
recreating collections, versus

removing items 428
reducing 425-427
slots, using 428-430

metaclass attributes
accessing, through classes 224

Index 673

metaclasses 219-221
arguments, adding 222, 223
creating 221, 222
using, to obtain sorted namespace 245, 246

mlxtend 593
mock objects 333
modules, OpenCV

reference link 565
mpmath library 535, 536
multiple environments

testing, with Tox 336
multiple threads 472

usage 470
multiple values

matching, in single case 79
multiprocessing 471, 472, 476, 477, 498

used, for batch processing 482-484
used, for distributed processing 502-505
versus concurrent.futures 499, 500

multiprocessing.Manager 485
mutable function default arguments 86, 87
mutation rate 585
mutual exclusion lock (mutex) 407, 470
Mypy 74

N
named variables 53
native C/C++ extensions 615

example 615-619
native types

calling 603-605
natural language processing (NLP) 558, 570
Natural Language Toolkit (NLTK) 571
nearest neighbor 592
nested lists 266, 267
netCDF (Network Common Data Form) 530

non-interactive debugging 359-361
call stack, displaying without

exceptions 368, 369
faulthandler, used for handling

crashes 369-371
script, inspecting with trace 362-366
with logging 366, 367

non-machine learning systems 558
numba 519, 520
numba JIT compiler

using 415
NumPy

class, documenting 293, 294
compatibility, with TensorFlow 583

numpy package 516-519
NuSVC 590

O
OpenCV 564

edge detection 565, 566
installing, for Python 564
object detection 567-569
versus scikit-image 570

opencv-contrib-python-headless package 565
opencv-contrib-python package 565
opencv-python-headless package 565
opencv-python package 564, 565
option lists 265
order of operations,

during class instantiation 240
class body, executing 240
class decorators, executing 241
class instance, creating 241
class object, creating 241
example 241-243
metaclass, finding 240
namespace, preparing 240

ordinary least squares regression 590

Index674

OS X
C libraries, calling in 603
tooling, setting up for C/C++

extensions in 600, 601

P
packages 631

building 635
installing 515, 559
installing, through source control

repositories 15
installing, within virtual environment 5, 6
publishing 650
source packages 632-634
updating 23
URLs, adding 650
wheels 632, 633

package tools 634
package versioning 634, 635
packaging using setuptools, with setup.py or

setup.cfg 643
basic package, creating 644
dependencies, managing 648
executable commands, adding 649, 650
package, building 650
package data, adding 646, 647
package, installing for local development 645
packages, adding 645

packaging, with pyproject.toml 635, 636
basic package, creating 637, 638
C/C++ extensions, building 641, 642
code, adding 638
data, adding 638
dependencies, managing 639-641
executable commands, adding 639
package, building 641
packages, installing for development 638

pandas
data, merging 527

data, pivoting 525, 526
data structures 522
data, unpivoting 525, 526
input format 525
output format 525
real-world data analysis 522-524

pandas.merge 527
pandas.merge_asof 527
pandas.merge_ordered 527
Pandoc

URL 256
partial function 141

prefill function arguments 141, 142
pass by reference

with mutable variables 85, 86
patsy 537
pdb debugger 382
pdbpp debugger 383
PEP 8 50, 66

reference link 50
pep8-naming 73, 75
PEP 20 54

reference link 50
PEP 498

reference link 52
PEP 572 76
PEP 634 77
PEP 8010

reference link 50
PEP 8011

reference link 50
PEP 8012

reference link 50
PEP 8013

reference link 50
PEP 8014

reference link 50

Index 675

PEP 8015
reference link 50

PEP 8016
reference link 50

performance 388, 389
monitoring 430, 431

performance per line
tracking, with line profiler 404-406

performance tuning
addition, versus generators 410
algorithm, using 407
caching 411
code parts, converting to C 415
global interpreter lock (GIL) 407
just-in-time (JIT) compiling 414, 415
lazy imports 412
list comprehension 411
lists, versus generators 409
map, versus generators 411
map, versus list comprehensions 411
optimized libraries, using 413
slots, using 412, 413
string concatenation 409
try, versus if statement 408, 409

physical CPU cores
versus hyper-threading 500-502

pip
using 14

pipenv
automatic dependency tracking 20-22

platform-specific libraries 602
calling, from Linux/Unix 602
calling, from OS X 603
calling, from Windows 602
printf, calling from C 603

plotly library 545-547
plotting libraries 538

plugins 327
configuring 333
importing, on-demand 233, 234
importing, through configuration 234, 235
importing, through filesystem 235, 236

plugin systems
registering, automatically 230-233

poetry
automatic project management 17
commands, running 20
project, creating 17

polynomial regression 590
pre-trained Mask R-CNN model 577
pre-trained models, OpenCV Git repository

reference link 564
printf 51
print statements 325, 327
processes 472

exiting 478-480
production

deploying to 23
Project Euler

URL 534
Prometheus 430
property decorator 172-176
ptpython interpreter

about 35, 36
features 35, 36

pudb debugger 382
pycodestyle checker 72
pyenv

using 6, 7
pyenv-installer

reference link 6
pyflakes checker 73
PyGAD 585
PyObject 622

Index676

PyPI classifiers 651
reference link 651

PyPI packages
installing 11
publishing 651

py.test 656
example 314-317
using, for testing 312

pytest-cov
using 327-330

pytest-flake8
using 331, 332

py.test monkeypatch
using 335, 336

pytest-mypy
using 332

Python 132
calling, from C 625-627
documentation link 600
errors, handling 624
functional programming features 133
history 49
OpenCV, installing for 564
syntax, for recent additions 76
versions 600
versus C 620, 621

Python core libraries, options
decimal 533
float 533
fractions 533
int 533

Python debugger (pdb)
using, for debugging 372

Python Developer's Guide
reference link 600

Python Enhancement Proposal (PEP) 49
Pythonic code 51

error handling 62, 63

explicit 56, 57
flat 59, 60
namespaces 65, 66
practicality 61, 62
readability 60
simple 57-59
sparse 60
strings, formatting 51
style rules 55
unambiguous 64
whitespace 51

Pythonic patterns,
with advanced collections 111

collections, sorting with heapq 121
default dictionary values,

with defaultdict 116-119
dict union operators 128
enum package 119, 120
global instances, with Borg pattern 126, 127
global instances,

with Singleton pattern 126, 127
multiple scopes,

combining with ChainMap 114-116
property behavior, modifying 127, 128
smart data storage with type hinting,

dataclasses used 111-114
sorted collections,

searching with bisect 122-126
Python interpreter 27

autocompletion, enabling 29
autocompletion, enhancing 30-32
modifying 28, 29

Python memory manager
arenas 426
blocks 426
heap 426
pools 426

Python, pitfalls 84
circular imports 93-95
closures 92
exceptions, catching 91, 92

Index 677

exceptions, storing 91, 92
extra built-ins, creating/overwriting 88-90
import collisions 95
late binding 92
objects, modifying while iterating 90, 91
scope 84

Python-StatsD
reference link 431

Python type interface files 254, 255
PyTorch 576-579

torchaudio 577
torch.distributed 577
torchserve 577
torchtext 577
torch.utils 577
torchvision 577
versus TensorFlow 584

PyTorch Ignite 580
PyTorch Lightning 580

Q
quadratic discriminant analysis 592
quotes 275

R
reduce function 143

factorial function, implementing 143, 144
reducing, in other direction 146
trees, processing 144, 145

references 268
Region-Based Convolutional Neural Network

(R-CNN) 577
Region of Interest (ROI) 577
regression analysis 588
regular C/C++ extensions 653, 654
reinforcement learning 574
remote processes 502

REPL (Read-Eval-Print-Loop) 28
requirements.txt file

using 13
reStructuredText format 255-257

advantages 255
headers 260, 261
images 270, 271
reference link, for home page 258

reward function 574
RGB (Red, Green, and Blue) 559
ridge regression 590
rlcompleter module 29
roles, Sphinx 288
rolling window 527, 528

S
Sage 534
scikit-image 559

edge detection 560, 561
exposure module 564
face detection 561-564
feature module 564
filters module 564
installing 560
morphology module 564
registration module 564
segmentation module 564
versus OpenCV 570

scikit-learn 589
Bayesian networks 592
kernel ridge regression 592
linear discriminant analysis 592
nearest neighbor 592
options, for feature selection 591
quadratic discriminant analysis 592
stochastic gradient descent 592

scikit-learn, supervised learning 590
decision trees 591

Index678

feature selection 591
linear models 590
support-vector machines 590

scikit-learn, unsupervised learning 592, 593
scikit-lego 594, 595
scipy 520

sparse matrices 521, 522
scoring function 574
script

inspecting, with trace 362-366
seaborn library 541-543
self-learning systems 558
semantic versioning (SemVer) 635
Sentry 383, 384

features 383
reference link 350

sequence patterns
matching 80, 81

sequences
matching 80

services
debugging 383

set comprehensions 133-135
pitfalls 136, 137

set object 107, 108
shared memory 485

between processes 485-489
single case

multiple values, matching 79
single dispatch decorator 181-184
Singleton pattern 126, 127, 177
Skorch library 580
Snorkel 595
sorted namespace

obtaining, with metaclasses 245, 246

source control repositories
used, for installing packages 15

source packages 632-634
spaCy 572

reference link 572
Sphinx 276

class, documenting 290-292
directives 287
roles 288

sphinx-apidoc
using 280-286

Sphinx documentation generator 276
sphinx-quickstart

using 277-279
static function 622
staticmethod decorator 168-172
static variable 622
StatsD 431
statsmodels library 529, 530
stochastic gradient descent 592
str.format 51, 351, 352
strings

formatting 51
simple string, formatting 52, 53

structural pattern matching 77
stumpy library 532, 533
sub-patterns

capturing 81
substitutions 272, 273
sum_of_squares function 621
supervised learning 574
support-vector machines (SVMs) 588, 590
SVC 590
SVR 590
switch statement 77
sympy module 536, 537

Index 679

T
TensorFlow 576, 581, 582

versus PyTorch 584
tensor processing units (TPUs) 581
tensors 576
testenv 338
testing 655

with documentation 302-305
with py.test 312

tests
parameterizing 320-322

text-based user interface (TUI) 33
threading 472-476, 498

versus concurrent.futures 499
thread-local variables 497, 498
thread safety 492-494
timeit module

used, for comparing code
snippet performance 389-394

toctree directive 287
tooling, for C/C++ extensions

setting up 599
setting up, for Linux/Unix 601
setting up, for OS X 600
setting up, for Windows 600

total_ordering class decorator 178
tox 336-338

multiple environments, testing 336
running 339

tox.ini config file 337, 338
TPOT 595
trace

used, for inspecting script 362-366
tracemalloc module

used, for monitoring memory usage 416, 417
traveling salesman problem (TSP) 585

trees
processing 144, 145

tuple object 108-111
tuples

matching 80
type checking 253, 254
type conversions 186
type hinting 186, 250

conclusion 255
example 250, 251

type validation 186

U
unittest 655

example 313, 314
unittest.mock

using 334, 335
universal functions 519
unsupervised learning 574

V
value comparisons 68
values

matching, with guards 79
variables

fallback, storing as 78
matching from 78

venv
activating 4, 5
creating 3, 4

virtualenv
activating 4, 5
using 4

virtual environments 1
need for 1, 2
packages, installing 5, 6

version specifiers 14, 15

Index680

W
walrus operator 76
warnings 187
weak references

using 424
weakref module

limitations 424, 425
using 423

web-based interpreter 42
weighted windows 528
Werkzeug debugger 383
wheels 632, 633
whitespace 51

normalizing 307
Windows

platform-specific libraries, calling from 602
tooling, setting up for 600

X
xarray library 530, 531
XGBoost 595

Y
Y combinator 139, 140
yellowbrick 543, 544

classification visualization 544
cluster visualization 544
feature visualization 544
model selection visualization 544
regression visualization 544

YOLOv3 (You Only Look Once, Version 3) 567

	Preface
	Getting Started – One Environment per Project
	Virtual environments
	Why virtual environments are a good idea
	Using venv and virtualenv
	Creating a venv
	Activating a venv/virtualenv
	Installing packages

	Using pyenv
	Using Anaconda
	Getting started with Anaconda Navigator
	Getting started with conda

	Managing dependencies
	Using pip and a requirements.txt file
	Version specifiers
	Installing through source control repositories
	Additional dependencies using extras
	Conditional dependencies using environment markers
	Automatic project management using poetry
	Creating a new poetry project
	Adding dependencies
	Upgrading dependencies
	Running commands

	Automatic dependency tracking using pipenv
	Updating your packages
	Deploying to production
	Running cron commands

	Exercises
	Reading the Python Enhancement Proposals (PEPs)
	Combining pyenv and poetry or pipenv
	Converting an existing project to a poetry project

	Summary

	Interactive Python Interpreters
	The Python interpreter
	Modifying the interpreter
	Enabling and enhancing autocompletion

	Alternative interpreters
	bpython
	Rewinding your session
	Reloading modules

	ptpython
	IPython and Jupyter
	Basic interpreter usage
	Saving and loading sessions
	Regular Python prompt/doctest mode
	Introspection and help
	Autocompletion
	Jupyter
	Installing Jupyter
	IPython summary

	Exercises
	Summary

	Pythonic Syntax and Common Pitfalls
	A brief history of Python
	Code style – What is Pythonic code?
	Whitespace instead of braces
	Formatting strings – printf, str.format, or f-strings?
	Simple formatting
	Named variables
	Arbitrary expressions

	PEP 20, the Zen of Python
	Beautiful is better than ugly
	Explicit is better than implicit
	Simple is better than complex
	Flat is better than nested
	Sparse is better than dense
	Readability counts
	Practicality beats purity
	Errors should never pass silently
	In the face of ambiguity, refuse the temptation to guess
	One obvious way to do it
	Hard to explain, easy to explain
	Namespaces are one honking great idea

	Explaining PEP 8
	Duck typing
	Differences between value and identity comparisons
	Loops
	Maximum line length

	Verifying code quality, pep8, pyflakes, and more
	Recent additions to the Python syntax
	PEP 572: Assignment expressions/the walrus operator
	PEP 634: Structural pattern matching, the switch statement

	Common pitfalls
	Scope matters!
	Global variables
	Mutable function default arguments
	Class properties

	Overwriting and/or creating extra built-ins
	Modifying while iterating
	Catching and storing exceptions
	Late binding and closures
	Circular imports
	Import collisions

	Summary

	Pythonic Design Patterns
	Time complexity – The big O notation
	Core collections
	list – A mutable list of items
	dict – A map of items
	set – Like a dict without values
	tuple – The immutable list

	Pythonic patterns using advanced collections
	Smart data storage with type hinting using dataclasses
	Combining multiple scopes with ChainMap
	Default dictionary values using defaultdict
	enum – A group of constants
	Sorting collections using heapq
	Searching through sorted collections using bisect
	Global instances using Borg or Singleton patterns
	No need for getters and setters with properties
	Dict union operators

	Exercises
	Summary

	Functional Programming – Readability Versus Brevity
	Functional programming
	Purely functional
	Functional programming and Python
	Advantages of functional programming

	list, set, and dict comprehensions
	Basic list comprehensions
	set comprehensions
	dict comprehensions
	Comprehension pitfalls

	lambda functions
	The Y combinator

	functools
	partial – Prefill function arguments
	reduce – Combining pairs into a single result
	Implementing a factorial function
	Processing trees
	Reducing in the other direction

	itertools
	accumulate – reduce with intermediate results
	chain – Combining multiple results
	compress – Selecting items using a list of Booleans
	dropwhile/takewhile – Selecting items using a function
	count – Infinite range with decimal steps
	groupby – Grouping your sorted iterable

	Exercises
	Summary

	Decorators – Enabling Code Reuse by Decorating
	Decorating functions
	Generic function decorators
	The importance of functools.wraps
	Chaining or nesting decorators
	Registering functions using decorators
	Memoization using decorators
	Decorators with (optional) arguments
	Creating decorators using classes

	Decorating class functions
	Skipping the instance – classmethod and staticmethod
	Properties – Smart descriptor usage

	Decorating classes
	Singletons – Classes with a single instance
	Total ordering – Making classes sortable

	Useful decorators
	Single dispatch – Polymorphism in Python
	contextmanager — with statements made easy
	Validation, type checks, and conversions
	Useless warnings – How to ignore them safely

	Exercises
	Summary

	Generators and Coroutines – Infinity, One Step at a Time
	Generators
	Creating generators
	Creating infinite generators
	Generators wrapping iterables
	Generator comprehensions
	Class-based generators and iterators

	Generator examples
	Breaking an iterable up into chunks/groups
	itertools.islice – Slicing iterables
	itertools.chain – Concatenating multiple iterables
	itertools.tee – Using an output multiple times
	contextlib.contextmanager – Creating context managers

	Coroutines
	A basic example
	Priming
	Closing and throwing exceptions
	Mixing generators and coroutines
	Using the state

	Exercises
	Summary

	Metaclasses – Making Classes (Not Instances) Smarter
	Dynamically creating classes
	A basic metaclass
	Arguments to metaclasses
	Accessing metaclass attributes through classes

	Abstract classes using collections.abc
	Internal workings of the abstract classes
	Custom type checks

	Automatically registering plugin systems
	Importing plugins on-demand
	Importing plugins through configuration
	Importing plugins through the filesystem

	Dataclasses
	Order of operations when instantiating classes
	Finding the metaclass
	Preparing the namespace
	Executing the class body
	Creating the class object (not instance)
	Executing the class decorators
	Creating the class instance
	Example

	Storing class attributes in definition order
	The classic solution without metaclasses
	Using metaclasses to get a sorted namespace

	Exercises
	Summary

	Documentation – How to Use Sphinx and reStructuredText
	Type hinting
	Basic example
	Custom types
	Generics
	Type checking
	Python type interface files
	Type hinting conclusion

	reStructuredText and Markdown
	Getting started with reStructuredText
	Getting started with Markdown
	Inline markup
	Headers
	Headers with reStructuredText
	Headers with Markdown

	Lists
	Enumerated lists
	Bulleted lists
	Option lists
	Definition lists (reST only)
	Nested lists

	Links, references, and labels
	Images
	Images with reStructuredText
	Images with Markdown

	Substitutions
	Blocks, code, math, comments, and quotes
	Conclusion

	The Sphinx documentation generator
	Getting started with Sphinx
	Using sphinx-quickstart
	Using sphinx-apidoc

	Sphinx directives
	Sphinx roles

	Documenting code
	Documenting a class with the Sphinx style
	Documenting a class with the Google style
	Documenting a class with the NumPy style
	Which style to choose

	Exercises
	Summary

	Testing and Logging – Preparing for Bugs
	Using documentation as tests with doctest
	A simple doctest example
	Writing doctests
	Testing with documentation
	The doctest flags
	True and False versus 1 and 0
	Normalizing whitespace
	Ellipsis

	Doctest quirks
	Testing dictionaries
	Testing floating-point numbers
	Times and durations

	Testing with py.test
	The difference between the unittest and py.test output
	The difference between unittest and py.test tests
	Simplifying assertions
	Parameterizing tests
	Automatic arguments using fixtures
	Print statements and logging
	Plugins

	Mock objects
	Using unittest.mock
	Using py.test monkeypatch

	Testing multiple environments with tox
	Getting started with tox
	The tox.ini config file
	Running tox

	Logging
	Configuration
	Basic logging configuration
	Dictionary configuration
	JSON configuration
	ini file configuration
	The network configuration

	Logger
	Usage
	Formatting
	Modern formatting using f-strings and str.format

	Logging pitfalls
	Debugging loggers

	Exercises
	Summary

	Debugging – Solving the Bugs
	Non-interactive debugging
	Inspecting your script using trace
	Debugging using logging
	Showing the call stack without exceptions
	Handling crashes using faulthandler

	Interactive debugging
	Console on demand
	Debugging using Python debugger (pdb)
	Breakpoints
	Catching exceptions
	Aliases
	commands

	Debugging with IPython
	Debugging with Jupyter
	Other debuggers
	Debugging services

	Exercises
	Summary

	Performance – Tracking and Reducing Your Memory and CPU Usage
	What is performance?
	Measuring CPU performance and execution time
	Timeit – comparing code snippet performance
	cProfile – Finding the slowest components
	First profiling run
	Calibrating your profiler
	Selective profiling using decorators
	Using profile statistics

	Line profiler – Tracking performance per line

	Improving execution time
	Using the right algorithm
	Global interpreter lock
	try versus if
	Lists versus generators
	String concatenation
	Addition versus generators
	Map versus generators and list comprehensions
	Caching
	Lazy imports
	Using slots
	Using optimized libraries
	Just-in-time compiling
	Converting parts of your code to C

	Memory usage
	tracemalloc
	Memory Profiler
	Memory leaks
	Circular references
	Analyzing memory usage using the garbage collector
	Weak references
	Weakref limitations and pitfalls

	Reducing memory usage
	Generators versus lists
	Recreating collections versus removing items
	Using slots

	Performance monitoring
	Exercises
	Summary

	asyncio – Multithreading without Threads
	Introduction to asyncio
	Backward compatibility and async/await statements
	Python 3.4
	Python 3.5
	Python 3.7

	A basic example of parallel execution
	asyncio concepts
	Coroutines, Futures, and Tasks
	Event loops
	Executors

	Asynchronous examples
	Processes
	Interactive processes
	Echo client and server
	Asynchronous file operations
	Creating async generators to support async for
	Asynchronous constructors and destructors

	Debugging asyncio
	Forgetting to await a coroutine
	Slow blocking functions
	Forgetting to check the results or exiting early
	Exiting before all tasks are done

	Exercises
	Summary

	Multiprocessing – When a Single CPU Core Is Not Enough
	The Global Interpreter Lock (GIL)
	The use of multiple threads
	Why do we need the GIL?
	Why do we still have the GIL?

	Multiple threads and processes
	Basic examples
	concurrent.futures
	threading
	multiprocessing

	Cleanly exiting long-running threads and processes
	Batch processing using concurrent.futures
	Batch processing using multiprocessing

	Sharing data between threads and processes
	Shared memory between processes
	Thread safety
	Deadlocks
	Thread-local variables

	Processes, threads, or a single thread?
	threading versus concurrent.futures
	multiprocessing versus concurrent.futures

	Hyper-threading versus physical CPU cores
	Remote processes
	Distributed processing using multiprocessing
	Distributed processing using Dask
	Installing Dask
	Basic example
	Running a single thread
	Distributed execution across multiple machines

	Distributed processing using ipyparallel
	ipython_config.py
	ipython_kernel_config.py
	ipcontroller_config.py
	ipengine_config.py
	ipcluster_config.py

	Summary

	Scientific Python and Plotting
	Installing the packages
	Arrays and matrices
	NumPy – Fast arrays and matrices
	Numba – Faster Python on CPU or GPU
	SciPy – Mathematical algorithms and NumPy utilities
	Sparse matrices

	Pandas – Real-world data analysis
	Input and output options
	Pivoting and grouping
	Merging
	Rolling or expanding windows

	Statsmodels – Statistical models on top of Pandas
	xarray – Labeled arrays and datasets
	STUMPY – Finding patterns in time series

	Mathematics and precise calculations
	gmpy2 – Fast and precise calculations
	Sage – An alternative to Mathematica/Maple/MATLAB
	mpmath – Convenient, precise calculations
	SymPy – Symbolic mathematics
	Patsy – Describing statistical models

	Plotting, graphing, and charting
	Matplotlib
	Seaborn
	Yellowbrick

	Plotly
	Bokeh
	Datashader

	Exercises
	Summary

	Artificial Intelligence
	Introduction to artificial intelligence
	Types of AI

	Installing the packages
	Image processing
	scikit-image
	Installing scikit-image
	Edge detection
	Face detection
	scikit-image overview

	OpenCV
	Installing OpenCV for Python
	Edge detection
	Object detection

	OpenCV versus scikit-image

	Natural language processing
	NLTK – Natural Language Toolkit
	spaCy – Natural language processing with Cython
	Gensim – Topic modeling for humans

	Machine learning
	Types of machine learning
	Supervised learning
	Reinforcement learning
	Unsupervised learning
	Combinations of learning methods
	Deep learning

	Artificial neural networks and deep learning
	Tensors
	PyTorch – Fast (deep) neural networks
	PyTorch Lightning and PyTorch Ignite – High-level PyTorch APIs
	Skorch – Mixing PyTorch and scikit-learn
	TensorFlow/Keras – Fast (deep) neural networks
	TensorFlow versus PyTorch

	Evolutionary algorithms
	Support-vector machines
	Bayesian networks

	Versatile AI libraries and utilities
	scikit-learn – Machine learning in Python
	Supervised learning
	Unsupervised learning

	auto-sklearn – Automatic scikit-learn
	mlxtend – Machine learning extensions
	scikit-lego – scikit-learn utilities
	XGBoost – eXtreme Gradient Boosting
	Featuretools – Feature detection and prediction
	Snorkel – Improving your ML data automatically
	TPOT – Optimizing ML models using genetic programming

	Exercises
	Summary

	Extensions in C/C++, System Calls, and C/C++ Libraries
	Setting up tooling
	Do you need C/C++ modules?
	Windows
	OS X
	Linux/Unix

	Calling C/C++ with ctypes
	Platform-specific libraries
	Windows
	Linux/Unix
	OS X
	Making it easy

	Calling functions and native types
	Complex data structures
	Arrays
	Gotchas with memory management

	CFFI
	Complex data structures
	Arrays
	ABI or API?
	CFFI or ctypes?

	Native C/C++ extensions
	A basic example
	C is not Python – Size matters
	The example explained
	static
	PyObject*
	Parsing arguments

	C is not Python – Errors are silent or lethal
	Calling Python from C – Handling complex types

	Exercises
	Summary

	Packaging – Creating Your Own Libraries or Applications
	Introduction to packages
	Types of packages
	Wheels – The new eggs
	Source packages

	Package tools

	Package versioning
	Building packages
	Packaging using pyproject.toml
	Creating a basic package
	Installing packages for development
	Adding code and data
	Adding executable commands
	Managing dependencies
	Building the package
	Building C/C++ extensions

	Packaging using setuptools with setup.py or setup.cfg
	Creating a basic package
	Installing the package for development
	Adding packages
	Adding package data
	Managing dependencies
	Adding executable commands
	Building the package

	Publishing packages
	Adding URLs
	PyPI trove classifiers
	Uploading to PyPI

	C/C++ extensions
	Regular C/C++ extensions
	Cython extensions

	Testing
	unittest
	py.test

	Exercises
	Summary

	Other Books You May Enjoy
	Index
	_gjdgxs
	_gjdgxs

