
[1]

Mastering PyCharm

Use PyCharm with fluid efficiency

Quazi Nafiul Islam

BIRMINGHAM - MUMBAI

Mastering PyCharm

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1201015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-131-6

www.packtpub.com

www.packtpub.com

Credits

Author
Quazi Nafiul Islam

Reviewers
Frederic De Groef

Ivan Kleshnin

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Anand Singh

Technical Editor
Ankita Thakur

Copy Editor
Swati Priya

Project Coordinator
Paushali Desai

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Quazi Nafiul Islam is a consultant and an occasional speaker, and has worked
professionally with Python for 3 years while completing his bachelor's degree in
computer science. He blogs regularly on his website, nafiulis.me.

He struggled to find the right tools that could aid his workflow when working on
large Python projects until he was introduced to PyCharm. He loved it so much
that he wrote a book on it, his very first one.

nafiulis.me

About the Reviewers

Frederic De Groef has an MSc in computer science from the Brussels University,
Belgium. He previously worked as a researcher in an applied sciences laboratory at
the same university. There, he worked on immersive 3D visualization systems and
successfully campaigned for the use of Python as the favored tool by students, both
as the research and introductory programming language.

He is currently working as a software engineer at SoftKinetic Systems, a subsidiary
of Sony that develops time-of-flight sensors and cameras as well as computer vision
libraries for gesture recognition, body tracking, and 3D scanning. For 2 years, his
focus shifted towards engineering productivity, automation, quality assurance and
validation, and API design. Nowadays, his daily work includes extensive use of
Python for supporting research and development of machine learning methods,
computer vision algorithms, and ToF cameras.

He can be reached at f.degroef@gmail.com.

Ivan Kleshnin is a self-employed web developer and consultant. He uses JetBrain's
IDEs extensively for his everyday tasks. Ivan likes functional programming, LISP,
math, interfaces, and everything in between. Nowadays, he develops rich web
applications in JavaScript and Clojure for his commercial and personal projects.
Besides programming and reading tech books, he enjoys traveling. He can be
reached at ivan@paqmind.com.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

To Mr. Jon Storer for teaching me the importance of context and
being the best teacher I've ever had.

[i]

Table of Contents
Preface	 v
Chapter 1: Getting the Right Look	 1

A short note on keyboard shortcuts	 2
The basics	 2

The first change – fonts	 3
The layout	 4

The minimalist	 5
Beautiful code	 9

Editor	 9
Getting the right colors	 10
Style hierarchies	 13
Styling on steroids	 14

Imports and exports	 17
TextMate bundles	 21
Summary	 21

Chapter 2: Understanding the Keymap	 23
Different keymaps	 24
Finding shortcuts	 25
Setting shortcuts	 27
Troubleshooting on Mac	 33
Summary	 35

Chapter 3: Getting Places	 37
Omni	 37

Back and Forward	 37
Macro	 38

Go to definition or navigate to declaration	 38
Search Everywhere	 40

Table of Contents

[ii]

The Switcher tool	 41
The Project panel	 41

Micro	 43
The Structure panel	 43
Ace Jump	 44

Summary	 46
Chapter 4: Editing	 47

Improving code completion	 48
Understanding what intentions can do for you	 52
Collecting runtime types	 55
Adding docstrings and type information	 56
The skeletons in PyCharm's closet	 61

Setting up IPython Notebook	 62
Editor plugins	 64
Writing code	 66

Refactoring	 67
Multiple cursors	 69
doc_mode	 70

Reading code	 72
The lens mode	 72
Diagrams	 73
Method hierarchies	 75

Summary	 78
Chapter 5: Interpreters and Consoles	 79

All about interpreters	 79
Adding interpreters	 80
Creating virtualenvs	 82
Through the terminal	 83
Installing packages	 84
Setting paths	 86
Remote interpreters	 87
Using Vagrant in PyCharm	 90

The PyCharm console	 93
Console configuration	 95

Summary	 99
Chapter 6: Debugging	 101

Running, debugging, and setting breakpoints	 102
Debugging workflow	 106

Table of Contents

[iii]

Dealing with threads and processes	 112
Processes	 115

Debugging from the console	 116
Attach to Process…	 117
Profiling	 118
Summary	 119

Chapter 7: The PyCharm Ecosystem	 121
The IntelliJ ecosystem	 121
Support for PyCharm	 123
YouTrack.JetBrains	 124
What makes a good plugin?	 127
Summary	 131

Chapter 8: File Templates and Snippets	 133
File templates	 134

Understanding variables	 135
Making new templates	 135

Snippets (live templates)	 137
Surround templates	 141
Summary	 141

Chapter 9: Version Control Integration	 143
Initializing version control	 144
Ignoring files	 145
Remotes	 147
The VCS menu	 148
The Changes panel	 150

Changing Diff colors	 155
Change lists	 156
Summary	 157

Chapter 10: HTML and JavaScript Tools	 159
JavaScript support	 159

Getting the most out of JavaScript code completion	 160
Using JSDoc	 160
Using libraries	 162

Transpiled to JavaScript languages	 166
Support for libraries and frameworks	 169

Client-side frameworks	 170
Server-side frameworks and NodeJS	 170

JavaScript Code Quality Tools	 171

Table of Contents

[iv]

HTML and CSS	 171
Emmet	 171
Live debugging	 173

Installing the plugin	 173
Debugging the file	 175

File watchers	 176
Summary	 179

Chapter 11: Web Development with PyCharm	 181
Database tools	 181

Adding a data source	 182
Connecting to a database	 182
Adding files	 184

Using the SQL console	 185
Parameterized statements	 190
Console history	 190
Database diagrams	 191

Exporting data	 191
Copying DDLs	 192
Exporting the table contents	 193

Web frameworks	 194
Common features	 194

Support for templating engines	 195
Customized project creation	 198
Debugging in templates	 199

Django	 199
Setting up Django	 199
Model dependency diagrams	 201
Manage.py tasks	 202
Django Console	 202

Summary	 203
Index	 205

[v]

Preface
TLDR: So you want more PyCharm productivity, but don't want to read a book.
I get that! So, just head over to the main menu, go over to Help and then Productivity
Guide. If you want to get down to the best tools, read Chapter 4, Editing, Chapter 5,
Interpreters and Consoles, and Chapter 6, Debugging. However, if you read this book,
you'll get a lot more.

Welcome to Mastering PyCharm. If you've bought this book, then you probably
want to become more effective with PyCharm in your day-to-day work. However,
whether you can truly master a tool as multifaceted as PyCharm is completely up for
debate since PyCharm changes so fast and so quickly. However, what I can promise
you is that you will learn a great deal not only about how to use PyCharm, but how
PyCharm works as part of the IntelliJ ecosystem of IDEs and what that means in
terms of tooling and extensibility.

What this book covers
Chapter 1, Getting the Right Look, will help you make PyCharm look the exact way you
want it to. So, whether you want too many buttons or too few or you want to change
the theme or modify it more effectively, PyCharm will help you do all these.

Chapter 2, Understanding the Keymap, will help you map all the actions to their
shortcuts and search for the actions using the action name or by invoking the
shortcut. If that doesn't make sense, it means you've been missing out on something.
This chapter also covers how to overcome known problems with keyboard shortcuts.

Chapter 3, Getting Places, covers a host of tools that PyCharm has. These tools will
help you navigate everything from a really large file to huge codebases with loads
of packages.

Chapter 4, Editing, will explain all the tools and help you learn more about writing
error-free code quickly.

Preface

[vi]

Chapter 5, Interpreters and Consoles, covers a lot of interpreters that Python has.
PyCharm can support a whole host of them and provide code completion inside
the console and much more. If you don't read this chapter, you're really going to
miss out on some of the most powerful tools PyCharm has to offer.

Chapter 6, Debugging, being an iterative chapter, covers how to incorporate PyCharm's
powerful debugger in to your debugging workflow. Buckle up; this one's going to
get greasy.

Chapter 7, The PyCharm Ecosystem, answers PyCharm's existential questions. Who
makes it? How does it work? How do you extend it? Where do plugins come from?
Oh, and a lot more.

Chapter 8, File Templates and Snippets, covers the powerful set of snippets and file
templates that PyCharm has. This will help you pump out code as fast as you can hit
Tab. This chapter also talks about how to make your own file templates and snippets
and extend the ones that already exist, using the velocity templating language. After
all, don't you hate writing the same stuff all over again, such as getters and setters or
function declarations?

Chapter 9, Version Control Integration, is a short chapter on some of the good parts of
PyCharm's version control features that support multiple version control systems.

Chapter 10, HTML and JavaScript Tools, covers a set of tools that PyCharm comes with,
which will help you work with JavaScript efficiently. JavaScript is (unfortunately)
everywhere!

Chapter 11, Web Development with PyCharm, talks about picking a web framework,
any framework. Chances are that PyCharm supports it as well as the tools that
support those frameworks such as SQLAlchemy and templating languages
such as Jinja2 and Mako.

What you need for this book
Basic Python knowledge, such as what functions are, what docstrings are, and so on,
is needed. For Chapter 9, Version Control Integration, you'll need a basic understanding
of at least one version control system and for Chapter 10, HTML and JavaScript Tools
and Chapter 11, Web Development with PyCharm, you'll need to know quite a bit of
Python as well as how the different Python frameworks operate.

Who this book is for
This book is for those who want to learn how to use PyCharm more effectively.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You should be then presented with a .jar file, which you can save."

A block of code is set as follows:

def add_one(n):
 return n + 1

def foo(func, n):
 return func(n)

foo(add_one, 2)

Any command-line input or output is written as follows:

pip install ipython[all]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "What I've
tried to do is put in the name of the action being done so that you can take a look in
your Keymap (by navigating to File | Settings…)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/1316OT_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/1316OT_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/1316OT_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[ix]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting the Right Look
"Simplicity is the ultimate sophistication."

– Leonardo da Vinci

I fell in love with Python for its elegance. I love how there are no semicolons, how
you can make a block through a simple indentation, how you can make multiline
strings without having to concatenate them, and how you can make lambdas in a
single line. I love how readable it all is, and how the documentation (docstrings) is
built right into the language.

I think we all appreciate beauty. Think about it; you have a favorite font, a favorite
color-scheme, and the list can go on. In essence, the code you write needs to be
beautiful in your perspective, not just the syntax, but how it looks—the colors,
the font, the highlighting—everything must be just right.

In this chapter, we are going to work toward making PyCharm beautiful. We'll
progress from changing the overall appearance to some of the predefined
appearances available to us on PyCharm. After that, we'll get into fonts and how the
highlighting/coloring works in PyCharm. With the most difficult part of this chapter
under our belt, we'll dive into exporting and importing styles and themes.

If you appreciate how your code looks and how you can make it as beautiful as
possible, then this chapter will equip you with all the things necessary to make
PyCharm as vibrant as you want it to be. I've tried to make this chapter light so that
you can experiment yourself with it, and most things are pretty self-explanatory.

Getting the Right Look

[2]

A short note on keyboard shortcuts
The keyboard shortcuts used in this chapter are the defaults for when you install
PyCharm on Windows. PyCharm supports a wide range of shortcut schemes, and
hence, it is impossible to include them all here (also, you might have made your own
customizations). What I've tried to do is put in the name of the action being done so
that you can take a look in your Keymap (by navigating to File | Settings…).

The basics
The first time you install PyCharm, the theme will default to IntelliJ. But, if you prefer
something darker, I suggest you use Darcula. I personally prefer a darker IDE, so I
go with a custom version of Darcula that's tailored to my tastes.

Chapter 1

[3]

However, let's start with the default UI and see how we can make PyCharm look a
little better.

The first change – fonts
The first thing that hit me when I opened up PyCharm was the hideous font set by
default to be Courier New. Let's change this:

With the color scheme set to Default, you will need to save your new color scheme
with a different name before you can go about making any changes to the scheme.
You can just click on Save As... and then simply enter the name of your scheme in
the popup. After doing so, you are free to make any changes you wish.

Getting the Right Look

[4]

The Show only monospaced fonts option is enabled by default, but you can change
it to include other fonts such as Arial or Times New Roman as well. Also the choice
of a secondary font is important when you're trying to import your settings to
another computer that does not have your desired font.

A typical example would be Consolas; it's only available on Windows machines, so
when you try to import your font settings to Ubuntu or Mac, you likely get the default
monospaced font. I usually set my default font to Consolas and my secondary font to
Ubuntu Mono since it's free and can be made available on all the machines.

Now that the font business is taken care of, let's get down to a couple of other
features. We will revisit this part of PyCharm pretty soon.

The layout

Chapter 1

[5]

The default PyCharm layout is quite minimal. With reference to the preceding
screenshot, you get an editor in [1], and the list of your directories and files in [2].
Actually, [2] is a sidebar, so if you click on [3], you get a totally different sidebar
popping up.

You can show/hide it using Alt + number indicated by the underline. So, in this case,
if you were to press Alt + 7, the panel indicated by [3] (Structure) would show up.
Once you're familiar with the layout, you can hide all the panel buttons by clicking
on [4].

The minimalist

If you'd like to focus completely on the code, you ideally want a minimalistic layout
without all the extra tools taking up your screen. Let's see how PyCharm can help us
with this.

So far, we can hide panels; now let's get rid of all the other distractions as well. The
area highlighted with the arrow in the preceding screenshot is called the navigation
bar; if you'd like to get rid of it, you can deselect the Navigation Bar option in the
View option menu.

Getting the Right Look

[6]

Note that with the Navigation Bar option, you also lose the Run, Debug, Coverage,
and Search Anywhere buttons; but don't worry, there are plenty of shortcuts
available so that you can do everything you want from your keyboard.

You can make the navigation bar appear as a popup instead of being a permanent
bar by pressing Alt + Home (if this is not your shortcut, search for navigation bar in
the Keymap):

Chapter 1

[7]

As for the Debug and other buttons that we got rid of, you can always get them
through Find Action, Ctrl + Shift + A.

Search Everywhere searches files, actions, classes, objects, and pretty much
everything using double Shift (pressing Shift twice in quick succession):

Getting the Right Look

[8]

PyCharm can also go to full screen mode (it even gives you a nice helpful clock in the
top right):

I never use this mode because with my start menu minimized, with no navigation bar,
and a collapsible Project sidebar, I have plenty of screen space to get the job done.

Another tool that I really appreciate is Switcher, which can be invoked with
Ctrl + Tab. It appears as a floating window:

Chapter 1

[9]

You can quickly navigate through your open files on the right-hand side of the
window, and on the left-hand side you have some commonly used tools. You can
navigate by pressing Tab again, and this will proceed through the list. You can also
use the arrow keys. However, note that you will need to keep the Ctrl key pressed
down as long as you're using Switcher.

You can quickly get to them by pressing the key underlined. In this case, you can
quickly get to Terminal through first pressing Ctrl + Tab to bring up Switcher; if,
while holding down the Ctrl key, you press 4, (in the preceding screenshot, Terminal
is 4, but you might get a different number), you can open up Terminal.

You can close anything, that is, a tool panel or an editor tab using Ctrl + F4.

Beautiful code
We looked at themes briefly in the The basics section, and frankly there isn't much
else left to themes in PyCharm. Right now you have your choices limited to a couple
of themes if you're using IntelliJ IDEA Platform 130.* and above. In older versions of
IntelliJ, there used to be a lot more.

Editor
This is where you are going to be spending most of your time in PyCharm, so it
makes sense to make it look as good as possible.

Getting the Right Look

[10]

Getting the right colors

Each language has its own color scheme under Editor; if you can't find it, just look it
up in the search bar, and underneath Editor, you should be able to find Python. Most
of the options here are the same for all the IDEs built using the IntelliJ Platform, so
this is nothing native to PyCharm.

Chapter 1

[11]

Underneath Colors & Fonts, you should be able to see a whole bunch of choices.
We have already changed the font, and the other options will become more relevant
as we progress through this chapter, but first let's make a couple of changes to the
scheme for Python.

The list in [1] is merely the different elements in a file that can be styled. The best
way to go about changing the style is not using [1]; however, it's clicking on the
elements in [2], which directly takes you to the element in question. Note that you
cannot change the text in [2].

Whenever we change any of the default schemes, we need to
save it as a new scheme all together, which we can later make
changes to. PyCharm will prompt you for a new theme name.

Getting the Right Look

[12]

So, in this example, if you want to know the category for a decorator in Python,
all you have to do is click on the decorator in [2], and that will lead you to the
corresponding name of the said element. An interesting option is [3], which
we will touch upon soon.

As you can see, when we clicked on decorator, it auto-scrolled straight to Decorator
in the list. However, it's not always obvious what something is called, so clicking on
it again will help us identify what element it is:

PyCharm has two different styles for docstrings and string; in this case, what we
clicked on was a docstring and not a normal string, which is a lighter blue color
in this case.

Chapter 1

[13]

Style hierarchies
PyCharm's style system can work on hierarchies; what this simply means is that a lot
of the common elements in different languages are handled by central rules. This is
useful since in this way, you have a common set of colors for all your languages.

For example, documentation comments are common in most languages, so PyCharm
allows you to control how documentation looks in all the languages, so the colors
stay consistent. Let's take a look at this:

Here it says that it does inherit from another set of styles; in this case, it is Language
Defaults, which has been abbreviated by PyCharm, so let's head over there, and we
can see that, yes indeed, there is a Doc comment element and its styled the same way
docstring is.

Getting the Right Look

[14]

Styling on steroids
Note that the editor isn't the only region that you can style; you can style just about
anything. For example, if you wanted to change the colors for the in-built terminal,
you'd have to change the console colors; both the terminal and console share a
common style setting.

A common problem that I faced when I initially installed PyCharm was that, even
though my terminal was actually styled, I did not get the styling when I opened up the
Terminal in PyCharm, and this is because I did not set up my console colors correctly:

Chapter 1

[15]

As you can see in the preceding screenshot, my ANSI colors have not been set right,
and hence, all my output just comes out in blue and red; thus, I had to manually
change the colors. Note that some elements can also inherit their color from within
the same category.

Getting the Right Look

[16]

So my terminal used to look similar to this:

However, after the change, I was able to make it look more like my real terminal,
although you cannot replicate it exactly.

You can of course go ahead and choose the appropriate colors, but it's best to let the
color picker (shown on the right-hand side in the following screenshot) do it for you:

Chapter 1

[17]

If you hover over your chosen color for just a second using
the color picker, PyCharm will show the color you've
chosen in the color circle.

Here are a few pointers on where things are located:

•	 General is for the different parts of the IDE that you see. For example, when
you try to find something in your editor, and your editor highlights the
search item in question, you determine that via Text search result in this tab.
This is really handy when you want to change things such as the color of
your line numbers, for example.

•	 CSS, Python, HTML, CoffeeScript, and so on are all language-specific
element stylings.

•	 Language Defaults provides the styling for generic language elements, such
as doc comments, variables, keywords, and so on.

•	 Console Colors is for styling the terminal and console (when you run
something, it opens up the Console window).

•	 Console Font is the font used in the terminal and console.
•	 Debugger is for debugger-specific styling (I would not change this if I were

you; the defaults are pretty intuitive).

Imports and exports
The best way to import a theme is to simply import it as a setting file; these are
typically .jar files. Remember, we mentioned that PyCharm is a derivative
of the IntelliJ Platform? Well, you can use all the themes that are available to
the Platform in PyCharm as well. One of the first places to look for themes is
http://ideacolorthemes.org/themes/.

http://ideacolorthemes.org/themes/

Getting the Right Look

[18]

This gives you a good set of themes, and also shows you the languages that a theme
will work with. So, we can just quickly download a theme; in this case, we will be
downloading Solarized Dark (one of my all-time favorites).

To download and install Solarized Dark, perform the following steps:

1.	 Head over and just click on Download Theme:

2.	 You should be then presented with a .jar file, which you can save:

Chapter 1

[19]

3.	 Click on Import Settings… to open up a dialog box for importing the JAR file:

4.	 Just choose the file that you want and click on OK:

5.	 Make sure that Editor Colors is selected and then simply press OK:

Getting the Right Look

[20]

You should now be able to see a new option in your Scheme menu:

That's all there is to it. You can export quite simply as well:

The Color schemes option must be selected, and at the end of it, you will get a
settings.jar file that you can import into another PyCharm installation.

Chapter 1

[21]

TextMate bundles
You can also import your TextMate bundles in PyCharm:

Summary
We covered a lot in this chapter. From fonts to styles to hierarchies, we saw a lot
of what we could do with the styling system in PyCharm. We took a look at a
minimalistic layout without compromising on what tools were quickly available to
us, using Find Action and Search Everywhere. In the end, we showed how we can
import themes and export them as well.

[23]

Understanding the Keymap
The keymap is one of the most powerful features that PyCharm has to offer. It allows
you to set your keyboard shortcuts and find the keyboard shortcuts you've seen
other people use. It also allows you to use a familiar set of keyboard shortcuts that
you're used to such as Eclipse and Emacs. This chapter is very much a standalone
chapter, and if you understand how keymaps work, you're well on your way to
using the most powerful features that PyCharm has to offer with ease.

In this chapter, we are going to go over the following topics:

•	 Different keymaps: PyCharm assumes that you might have had prior
experience with a separate IDE or editor, so you can quickly adapt
PyCharm to predetermined keyboard shortcuts.

•	 Finding shortcuts: A lot of times, you will see other people using
keyboard shortcuts, but you won't know what they're called. This
section will remedy that.

•	 Setting shortcuts: We will customize our own keyboard and mouse shortcuts
as we see fit. We will also make our own abbreviations.

•	 Troubleshooting on Mac: Unlike Windows and Linux, Mac comes with
support for a lot of special characters that can get in the way of using
keyboard shortcuts. This section will remedy that problem.

Understanding the Keymap

[24]

Different keymaps
PyCharm has a default keymap and even a nice PDF to show you all the most used
commands when you navigate to Help | Default Keymap Reference (the same on
Mac, Windows, and Linux).

On Mac, the default keymap is OSX 10.5+, and on both Windows and Linux, the
default keymap is called Default. This can easily be changed by changing the
keymap by going to Preferences (Mac) or Settings… (Windows/Linux).

Chapter 2

[25]

Notice how my keymap is Mac OS X 10.5+ copy. This is because you cannot
override a predefined configuration; you can only make your own copy of it. If my
list is different from yours, it's because I imported some of my keymaps; in this case,
Default copy from my Windows installation. Just like themes, you can import and
export keymaps.

Finding shortcuts
Now you can easily search for the keyboard shortcut that you're looking for in the
find bar, for example, if we want Find Action…, we can search for it like this:

However, you can also do just the reverse by inputting the shortcut to find out
what it's called (this is incredibly useful when you're trying to explain what
you're doing to someone else on another platform with a different set of
default keyboard shortcuts).

Understanding the Keymap

[26]

So, if we wanted to find what Alt + Q does, we would have done this:

At this point, I feel that it would be prudent to note that Mac shortcuts have special
symbols in them, while Windows/Linux don't (you can skip the next page). When
I was first using Mac with PyCharm, I found this quite perplexing because other
than the command key (), there were no other symbols on my Mac's keyboard.
These characters are explained in the bottom-right corner of the Default Keymap
Reference for Mac (which is a PDF).

However, if you cannot, for some reason or another, gain access to the PDF, here is a
reference, just in case (although mine contains a few more useful symbols):

Chapter 2

[27]

Setting shortcuts
Now that we've got all the basics down, it's (finally) time to make a keyboard
shortcut of our own, and we are going to start by making a keyboard shortcut for the
terminal. I have my terminal set to open up at [command + Shift + ;]. So, let's see how
we can get around to doing that.

First, we are going to look up for terminal and see what we get:

If you take a look, you will see that we have three options, and it turns out that
they all do the same thing. Now, notice how Terminal pops up in three separate
places. This is because the terminal inside PyCharm is in fact two things: one being
a bundled plugin and another being a tool. This is why you see Terminal appearing
in several places. This Terminal tool can be invoked by both [command + Shift + ;]
and [Alt + F12]. Now, I don't really like [Alt + F12], so I am going to get rid of it, by
right-clicking (or double-clicking) on the highlighted row:

Understanding the Keymap

[28]

Now I am assigning a new shortcut by clicking on Add Keyboard Shortcut:

Press [command + Shift + ;] in one go:

Chapter 2

[29]

If you had another action with the same shortcut, PyCharm will show you conflicts.
Now, in my own settings, the conflict lies with the Open Terminal action, which
does the same thing, so when the following screenshot pops up, I will choose Leave:

With that, you can now open up your terminal with [command + Shift + ;].

You might have also noticed something else; there was a way to add Second Stroke.
This is, in essence, just doing what we did previously, but adding a second stroke.
So, say, if we wanted to open up the terminal by pressing [command + Alt + ,] for the
first and the second key stroke, this is how we would do it:

1.	 First, just enter the first keystroke and then enable the second keystroke by
clicking on the Second Stroke checkbox:

Understanding the Keymap

[30]

2.	 When invoking this, after we've entered the first keystroke, PyCharm will
tell us that a prefix key has been pressed:

So by pressing [command + Alt + ,] twice, you can get the terminal. PyCharm will
show up all the possible actions. In this case, the only thing with a second stroke
and with this particular first stroke (also known as the Prefix Key) is Terminal.

Making a mouse shortcut is just as easy; you simply click on Add Mouse Shortcut:

Like before, you simply enter the combination of keys that you would like:

Chapter 2

[31]

You might have also noticed that we have the ability to add an abbreviation; this is
a way to quickly find the action in the Search Everywhere action, which is invoked
by a double Shift (pressing Shift twice in quick succession). So, say we wanted to
add an abbreviation for the Open in Browser action, all we need to do is head
over to the Keymap again, right-click on the Open in Browser action, and choose
Add Abbreviation:

We would then get a dialog box for the abbreviation:

Once that is done, we should be able to see oib, but in a green tag:

Understanding the Keymap

[32]

And with that, if we type oib into our Search Everywhere bar, we get this:

This can be a far better way to do things rather than using a second stroke in a
keyboard shortcut. But, abbreviations can be even more powerful than this. We can
group a couple of items with the same abbreviation so that we can make our own list
of favorite actions that will come up in the Top Hits section of Search Everywhere.
Let's have a look.

What we're going to do is assign two abbreviations to each of these two actions:

•	 Open in Browser
•	 Reload in Browser

So, we are going to assign the abbreviation b to both of them, as well as assigning
their own unique abbreviations:

Chapter 2

[33]

As you can see, the two browser actions have one common abbreviation, so we try to
look it up in Search Everywhere:

But we can still look them up individually:

This means you can get access to all your favorite actions with just a few keystrokes.
This functionality has made me much more productive.

Troubleshooting on Mac
One problem I faced when I first set up my Mac was that the keyboard shortcuts did
not work; instead of getting the desired action, I got weird Greek letters appearing
here and there. At first, I thought this was PyCharm's fault, but it wasn't.

The main problem was that the keyboard layout I was using, U.S., had special
characters appearing when the Alt/Option key was pressed. In order to actually use
my keyboard shortcuts, I had to change my layout to something that did not have
these special characters appearing. Here is the solution to this problem.

1.	 Download the key mapping file from Packt's website.

Understanding the Keymap

[34]

2.	 After you've downloaded it, move it to ~/Library/Keyboard Layouts.
3.	 Once you've saved the file there, all you need to do is make it your main

keyboard layout. To do this, you need to head over to System Preferences:
1.	 Go to Keyboard:

2.	 And then, choose to add a new one by clicking on the + button:

Chapter 2

[35]

3.	 Choose Others, as shown in the following screenshot:

4.	 Once you've added it, you can now use My Layout:

Your keyboard shortcuts should now function as expected.

Summary
In this chapter, we covered what is perhaps the most important part of using any
IDE. We also looked at the common problems that one might have with setting up
keyboard shortcuts on Mac.

The contents of this chapter will serve us well in the future as it will allow us to talk
about keyboard shortcuts by reference to what they are called instead of having to
provide a long list of possible shortcuts depending on our mapping.

[37]

Getting Places
This chapter is all about navigation. It is divided into three parts. The first part is
called Omni, which deals with getting to anywhere from any place. The second is
called Macro, which deals with navigating to places of significance. The third and
final part is about moving within a file and it is called Micro.

By the end of this chapter, you should be able to navigate freely and quickly within
PyCharm, and use the right tool for the job to do so.

Veteran PyCharm users may not find their favorite navigation tool mentioned or
explained. This is because the methods of navigation described throughout this
chapter will lead readers to discover their own tools that they prefer over others.

Omni
In this section, we will discuss the tools that PyCharm provides for a user to go from
anywhere to any place. You could be in your project directory one second; the next,
you could be inside the Python standard library or a class in your file. These tools are
generally slow or at least slower than more precise tools of navigation provided.

Back and Forward
The Back and Forward actions allow you to move your cursor back to the place
where it was previously for more than a few seconds or where you've made edits.
This information persists throughout sessions, so even if you exit the IDE, you can
still get back to the positions that you were in before you quit.

Getting Places

[38]

This falls into the Omni category because these two actions could potentially get
you from any place within a file to any place within a file in your directory (that you
have been to) to even parts of the standard library that you've looked into as well
as your third-party Python packages. The Back and Forward actions are perhaps
two of my most used navigation actions, and you can use Keymap (see Chapter 2,
Understanding the Keymap). Or, one can simply click on the Navigate menu to see
the keyboard shortcuts:

Macro
The difference between Macro and Omni is subtle. Omni allows you to go to the
exact location of a place, even a place of no particular significance (say, the third
line of a documentation string) in any file. Macro, on the other hand, allows you to
navigate anywhere of significance, such as a function definition, class declaration,
or particular class method.

Go to definition or navigate to declaration
Go to definition is the old name for navigate to declaration in PyCharm. This action, like
the one previously discussed, could lead you anywhere—a class inside your project
or a third-party library function. What this action does is allow you to go to the
source file declaration of a module, package, class, function, and so on. Keymap is
once again useful in finding the shortcut for this particular action.

Chapter 3

[39]

Using this action will move your cursor to the file where the class or function is
declared, may it be in your project or elsewhere. Just place your cursor on the
function or class and invoke the action. Your cursor will now be directly where
the function or class was declared.

There is, however, a slight problem with this. If one tries to go to the declaration
of a .so object, such as the datetime module or the select module, what one will
encounter is a stub file (discussed in detail later). These are helper files that allow
PyCharm to give you the code completion that it does. Modules that are .so files
are indicated by a terminal icon, as shown here:

Getting Places

[40]

Search Everywhere
The action speaks for itself. You search for classes, files, methods, and even actions.
Universally invoked using double Shift (pressing Shift twice in quick succession), this
nifty action looks similar to any other search bar. Search Everywhere searches only
inside your project, by default; however, one can also use it to search non-project items
as well. Not using this option leads to faster searches and a lower memory footprint.

Search Everywhere is a gateway to other search actions available in PyCharm. In
the preceding screenshot, one can see that Search Everywhere has separate parts,
such as Recent Files and Classes. Each of these parts has a shortcut next to its section
name. If you find yourself using Search Everywhere for Classes all the time, you
might start using the Navigate Class action instead, which is much faster.

Chapter 3

[41]

The Switcher tool
The Switcher tool allows you to quickly navigate through your currently open tabs,
recently opened files as well as all of your panels.

This tool is essential since you always navigate between tabs. A star to the left indicates
open tabs; everything else is a recently opened or edited file. If you just have one file
open, Switcher will show more of your recently opened files. It's really handy this way
since almost always the files that you want to go to are options in Switcher.

The Project panel
The Project panel is what I use to see the structure of my project as well as search for
files that I can't find with Switcher. This panel is by far the most used panel of all,
and for good reason. The Project panel also supports search; just open it up and start
typing to find your file.

Getting Places

[42]

However, the Project panel can give you even more of an understanding of what
your code looks similar to if you have Show Members enabled.

Once this is enabled, you can see the classes as well as the declared methods inside
your files.

Note that a search works just like before, meaning that your search is limited to only
the files/objects that you can see; if you collapse everything, you won't be able to
search either your files or the classes and methods in them.

Chapter 3

[43]

Micro
Micro deals with getting places within a file. These tools are perhaps what I end up
using the most in my development.

The Structure panel
The Structure panel gives you a bird's eye view of the file that you are currently have
your cursor on. This panel is indispensable when trying to understand a project that
one is not familiar with.

The yellow arrow indicates the option to show inherited fields and methods. The
red arrow indicates the option to show field names, meaning that, if it is turned off,
you will only see properties and methods. The orange arrow indicates the option to
scroll to and from the source. If both are turned on (scroll to and scroll from), where
your cursor is will be synchronized with whatever method, field, or property is
highlighted in the structure panel. Inherited fields are grayed out in the display.

Getting Places

[44]

Ace Jump
This is my favorite navigation plugin, and was made by John Lindquist who is a
developer at JetBrains (creators of PyCharm). Ace Jump is inspired by the Emacs
mode with the same name. It allows you to jump from one place to another within
the same file. Before one can use Ace Jump, one has to install the plugin for it
(see Chapter 7, The PyCharm Ecosystem). Ace Jump is usually invoked using Ctrl or
command + ; (semicolon). You can search for Ace Jump in Keymap as well, and it is
called Ace Jump. Once invoked, you get a small box in which you can input a letter.
Choose a letter from the word that you want to navigate to, and you will see letters
on that letter pop up immediately.

If we were to hit D, the cursor would move to the position indicated by D. This
might seem long winded, but it actually leads to really fast navigation.

If we wanted to select the word indicated by the letter, then we'd invoke Ace Jump
twice before entering a letter.

Chapter 3

[45]

This turns the Ace Jump box red. Upon hitting B, the named parameter rounding
will be selected.

Often, we don't want to go to a word, but rather the beginning or the end of a line. In
order to do this, just hit Invoke Ace Jump and then the left arrow for line beginnings
or the right arrow for line endings.

In this case, we'd just hit V to jump to the beginning of the line that starts
with num_type.

This is an example where we hit left arrow instead of the right one, and we get
line-ending options.

Getting Places

[46]

Summary
In this chapter, I discussed some of the best tools for navigation. This is by no means
an exhaustive list. However, these tools will serve as a gateway to more precise tools
available for navigation in PyCharm. I generally use Ace Jump, Back, Forward, and
Switcher the most when I write code. The Project panel is always open for me, with
the most used files having their classes and methods expanded for quick search.

[47]

Editing
Editing is what we are going to be doing the most in PyCharm, and hence, this is
one of the most important chapters. This chapter does not try to cover a wide range
of feature sets; it instead tries to provide a comprehensive look at some of the best
tools available for editing. The most important part of this chapter is enhancing
code completion in PyCharm. This IDE has a remarkably powerful engine that can
understand your code, and it allows for things such as better code completion (even
when we haven't specified the types), method hierarchies, and a lot more.

This chapter has several parts:

•	 Improving code completion: This section will take a comprehensive look at
the tools at our disposal that enhance PyCharm's code completion, giving us
more completion options and smarter completions.

•	 Writing code: This section will cover some of the best tools that PyCharm
offers to write code quickly and effectively.

•	 Setting up IPython Notebook: IPython Notebook has become the de facto
document format for Python's scientific community, and for good reason.
This section will take a look at how to set up IPython Notebook in PyCharm
so that we can get the benefits of code completion inside the notebook.

•	 Editor plugins: This section will cover a few select plugins to help you get
used to PyCharm if you come from other editors such as Emacs and Vim.
This section will also showcase support markdown.

•	 Reading code: This section looks at the different tools at your disposal to
better read code such as diagrams and method hierarchies.

Editing

[48]

Improving code completion
Code completion in PyCharm is really quite something, and there are many things
that you can do to enhance it even further. PyCharm normally gives you code
completion options as you type:

However, if you press Ctrl + spacebar while this popup is on the screen, you will get
even more code completion options:

Note that islice is not even imported, yet PyCharm can smartly tell you that you
can use it, and if you chose to do so, it will be automatically imported. PyCharm also
supports Cyclic Word Completion also known as Hippe Complete (Alt + /), which
can prove to be very useful when you want completion in strings:

Chapter 4

[49]

Furthermore, you can fine-tune your completion options:

Editing

[50]

Here, [1] is, by default, set to first letter, and I feel it's best to demonstrate this with
an example.

With first letter, you will need to type in a capital K in order to get KeyboardInterrrupt;
otherwise, it will never show up in your completion options:

But, with the setting set to None, you don't need to type in a capital K:

I set my case sensitivity to None because I'm too lazy to press Shift.

What [2] and [3] do is pretty self-explanatory, however, you might be confused at
what Smart Type Completion does, and you're right to be. It has nothing to do
with Python, but it's a JavaScript feature in PyCharm that gives you better code
completion options when you're writing JavaScript.

Chapter 4

[51]

This would be a good time to tell you that PyCharm has what I like to call Fuzzy
Completion, which means that in the preceding example, if you were to type in ki, it
would take you to KeboardInterrupt, but this is not limited to camel case alone, it
also extends to underscores:

Again, [4] is self-explanatory. It will simply arrange your options in a certain way
(basically, alphabetical, but numbers appear before letters). Toggling [5] will allow
completion options to display commas, semicolons, and a whole host of other
characters. This can slow down PyCharm quite a lot on slow systems. Option [6]
will automatically open documentation when you press Ctrl + spacebar on a
completion option:

Editing

[52]

The Parameter Info popup, [7], shows you the parameter information that looks
similar to a little callout:

This will automatically pop up, and if it goes away for some reason, you can always
bring it back with Ctrl + P (Parameter Info).

Understanding what intentions can do for you
If you've ever wondered about what that yellow light bulb means, it's simply
an indication that there are possible intention actions at your disposal. Intentions
in PyCharm are context-specific actions that you can invoke with Alt + Enter
(Show Intention Actions). One very useful example of intentions at work is
when using language injection in strings.

And with that, we can insert the many different languages that PyCharm supports:

Chapter 4

[53]

The best part is that you get syntax highlighting and snippet completion within the
string as well:

But, injections are not limited to languages alone, for example, you can have things
such as file paths:

You can have a look at all the intentions at your disposal here:

Editing

[54]

All the intentions are context-specific; sometimes, they're tuned specifically for
languages and others are often more general purpose. For example, in Python, you
have the intention to convert from a single-quoted string into a double-quoted string,
however, language injections work across different languages. You can get a good
idea of what these intentions do just by looking at its individual page:

It gives you everything that you wanted to know about intentions, but notice what
it is powered by. In this case, this is one of PyCharm's core functionalities, but some
intentions are powered by plugins, so if one does not work, you can figure out what
is causing the problem.

Chapter 4

[55]

Collecting runtime types
Code completion is probably the reason why most of us use PyCharm. The PyCharm
team spends a lot of their time improving and refining completion options not
only in PyCharm but also in other IDEs. One of the easiest ways to improve code
completion is to gather runtime data.

Collecting runtime types allows PyCharm to provide better code completion. This
runtime data is collected every time one debugs a program, not when one simply runs
it. If by any chance, PyCharm shows you the wrong types, then clearing the caches is
the best way to solve the problem.

Editing

[56]

Adding docstrings and type information
Docstrings are parsed and used by PyCharm to give you better code completion as
well as better quick documentation information. Here is an example, using Intentions.

Say we wanted to make a Person class so that we can declare the class and add a few
parameters to its __init__ function:

We can also add parameter info through docstrings or annotations (in Python 3) and
since docstrings work for both Python 2 and 3, we're going to stick with them.

Chapter 4

[57]

This causes PyCharm to generate a lot of documentation for me (for free!):

Let me take a step back to say that this docstring is in a particular format, that
is, it's in rst or reStructuredText. This means that PyCharm can parse the string
and get information regarding the parameters to the init function and class it is
initializing. Note that you have the choice between Epytext and reStructuredText.
I suggest using reStructuredText because that is what PyCharm uses to generate
documentation skeletons for a variety of stdlib classes. Here is where all of these
options are set:

Editing

[58]

Now that we've put in some information regarding our Person object, let's see what
the Quick Documentation (Ctrl + Q) brings up:

This is great, but we can get even more information out of docstrings. So now
using another intention option, we can generate the parameter types for each
of the arguments for Person:

And with this, we can say that the name will be of type str:

Chapter 4

[59]

With this, you get even more information from Quick Documentation:

Please note that you need to be careful when adding docstrings because they require
special formatting. So, in this case, we have the following:

 """
 :type name: str
 :param name: The name of the human

 :type age: int
 :param age: How old the human is

 :type gender: str
 :param gender: Male or Female

 :type country_of_origin: str
 :param country_of_origin: Somewhere on the planet, hopefully

Editing

[60]

See how we have the type of the parameter first, then its description, and finally
a blank line between parameters. This is best practice, so even without PyCharm
someone can quickly read about and understand the different parameters. This is
how you need to arrange the information in your docstring in order for PyCharm to
give you useful quick documentation. Docstrings can also be used by PyCharm to
help you write more accurate code:

PyCharm correctly points out that you've put in the wrong parameters, and this kind
of static analysis can be very helpful. Also, note that you can choose to tell PyCharm
to ignore the problem (by pressing the right arrow after we've selected Inspect 'Type
checker' options):

This will add a new command above the line, telling PyCharm to ignore the type
checking for this statement:

Docstrings can provide a lot of code completion options for functions, however, they
often fall short when it comes to providing code completion options for metaclasses.
This is to be expected since docstrings provide static analysis.

Chapter 4

[61]

The skeletons in PyCharm's closet
No, it's not that PyCharm has something to hide; it's just that it has a lot of skeletons
generated for different modules, and you can take a look at them too:

Python skeletons provide a lot of the code completion that you see in PyCharm,
and all are hosted on an open source GitHub repository at https://github.com/
JetBrains/python-skeletons.

https://github.com/JetBrains/python-skeletons
https://github.com/JetBrains/python-skeletons

Editing

[62]

And when I said skeletons, I meant skeletons! These are not implementations;
they are merely something that PyCharm can statically analyze. Let's look at
the decimal.py file:

There's no implementation here, just the bare information that PyCharm needs to
give you the code completion options you need. The skeletons are still a work in
progress but are getting better every day.

Setting up IPython Notebook
Support for the IPython Notebook is one of PyCharm's newer additions. Before
we can do anything, we need to make sure that IPython is installed as one of our
packages in the interpreter. Unfortunately, if we install IPython through PyCharm's
package installer, all the requirements will not be installed. So, the best way to install
IPython is through the following command line:

pip install ipython[all]

Chapter 4

[63]

This will install IPython and all its requirements. Now, we can create a new
notebook with the extension of .ipynb, and PyCharm will recognize this. If all the
requirements are not installed, PyCharm will complain that the connection to the
server is being refused. Once we make a .ipynb file, we will see a different interface
from other Python files.

Editing

[64]

This is just like the IPython Notebook interface that we're used to. The only
difference is that we can now get code completion too.

Editor plugins
PyCharm is extended through plugins, and one can install them by simply browsing
the Plugins catalog in PyCharm:

Chapter 4

[65]

The PyCharm plugin ecosystem is so large and so important that there is an entire
chapter dedicated to it in this book. However, in this section, we will look at two
plugins in particular: IdeaVim and emacsIDEAs.

IdeaVim was created by JetBrains. It offers full emulation of Vim and is freely
available on the repositories.

Editing

[66]

However, the other plugin, emacsIDEAs, is not supported by JetBrains. This is a
third-party plugin, but has a high rating and is regularly updated.

Writing code
This section has been purposely kept short and only showcases three powerful
features that many PyCharm users are not completely aware of. The first two
features are very simple and require us to simply use a keyboard shortcut,
while the other feature requires a little more work.

Chapter 4

[67]

Refactoring
Refactoring is one of PyCharm's most powerful features and its capabilities
go beyond a single file. One of the simplest ways to see this feature at work
is renaming a variable or a function:

def add_one(n):
 return n + 1

def foo(func, n):
 return func(n)

foo(add_one, 2)

In the preceding example, we want to change the function name foo to apply (because
it makes more sense). This is of course a simple example, but helps prove a point.

Editing

[68]

This brings up another window that gives us a few options:

Here, [1] is very useful if we have put docstrings into the functions that describe
variables. [2] will search for text documents such as .rst and .md. This already
shows you how far PyCharm can go in its analysis. In this simple example, we don't
need to turn on [1] or [2], so let's see what happens when we just go ahead with what
we have.

Chapter 4

[69]

This panel might seem complicated, and we don't have to understand what all the
buttons do to take advantage of what this panel has to offer. We can see the function
that we are going to name, in this case foo, and the places where it is referenced. By
default, things are grouped by directories and then by files, and it's best to keep it this
way (although we can change this as well). In this case, we have only one use case of
foo, and that is being shown under the aptly named file, refactoring.py. However,
one of the buttons that I do find very useful is the one indicated by the arrow that will
show the exact code in a side panel (although we cannot edit in the panel).

Once we hit the Do Refactor button, we can see that foo is now renamed apply. As
I've mentioned before, this is a simple example because this can be used to refactor
everything from module names to setting variables in totally different packages with
usages all over the place. As long as PyCharm knows that a file exists, that is, it is in
the PYTHONPATH, it will search the file for relevant usages.

Multiple cursors
Multiple cursors has been a long-awaited feature in PyCharm and its addition has
everything to do with sublime text championing this much-loved feature. Placing
cursors is easy; all we need to do is add or remove a caret (Shift + Alt + click).
Clicking on the same place a second time after a cursor has been placed will remove
the cursor. This is rather difficult to show in a book, but it looks similar to this:

We can also get multiple cursors by invoking Add Selection for Next Occurrence.
This allows us to place a cursor on the same occurrence of a symbol.

Editing

[70]

We can also use Alt + drag to get a straight perpendicular line of cursors.

This can be really useful when trying to add trailing commas at the end of each item
in a list or dictionary, for example.

doc_mode
This is something I coined myself. It is not an official feature, but rather something
that you can set up in PyCharm. This mode is terribly useful when you want to
explore a new library. Here we have a Quick Documentation popup, but what if we
wanted to see the documentation in a panel and that panel updated as we invoked
methods or functions?

Chapter 4

[71]

What we first need to do is change Quick Documentation from Floating Mode to
Pinned Mode:

We also need to disable Floating Mode. This part is confusing since we need to click
on the gear icon again and then disable Floating Mode, just like we enabled Pinned
Mode. After it is pinned, we need to invoke Quick Documentation again. Click on
the gear icon once more and select Docked Mode. Make sure that Auto-update from
Source is also selected.

Editing

[72]

Once this is done, we can now get documentation as we type.

Reading code
This section covers the different tools available in PyCharm to help you read code
better. This is not an exhaustive list, however, as there are so many features out there.

The lens mode
When editing, you might notice that there are different colored bars on the right-hand
side. If you hover over these small bars, you will be able to see the warning, error, or
information in question. This is what PyCharm calls lens mode.

Chapter 4

[73]

This is really quite useful when you want to take a quick look at the code. You can
also see that lens mode will show you all the messages that the colored horizontal
bars mean. In this case, you can see that by placing the mouse on the dark yellow
bar, we can see the message that it is trying to convey. This can give you a quick
bird's-eye view of your code. But, usually, when I want to see what a particular
function does, I use Quick Documentation or Quick Definition.

Diagrams
The Diagrams option can also give you a great view of your code; you can simply go
to any class and choose to see its inheritance diagram:

This popup will show you a quick representation:

Editing

[74]

This is great if you want a quick look, and you can also choose to take a look at the
variables and methods of the classes:

However, this can get a bit too much to see in the popup comfortably, so it's better
to just look at it in a tab of its own. So, using Show Diagram… can instead provide a
much better way of navigating large class structures easily:

Chapter 4

[75]

The best thing is that you can easily navigate to the source as well. These tools have
helped me immensely when trying to understand open source libraries such as
requests and httpie.

Method hierarchies
Method hierarchies can be very useful in trying to determine what other methods
are being called to be a method as well as what methods call a particular method.
If that's a mouthful, let me demonstrate with an example:

encoding=utf8
import time

def say_doing_something():
 time.sleep(1)
 print("We are doing something")

def say_we_did_something():
 print("We did something")

def do_something(a):
 say_doing_something()
 _ret = a + 1
 say_we_did_something()
 return _ret

if __name__ == '__main__':
 print(do_something(10))

Editing

[76]

In the preceding example, there are three simple methods. When we call do_
something, we call say_doing_something, which calls time.sleep. After say_
doing_something is called, add 1 to the initial argument, a. Then, we call say_we_
did_something. We finally return _ret. This is an improvised decorator; there are of
course far more elegant ways of writing the preceding code, but bear with me. If we
now jump into PyCharm, and ask to get all the called methods in do_something, we
not only get that, but also the methods that say_doing_something calls, by looking at
the Callee Methods Hierarchy. First, we must move our cursor over do_something
and then invoke Call Hierarchy. Once this is done, we should see a new panel with the
call hierarchy of do_something.

If we now place the cursor on say_doing_something and invoke Call Hierarchy,
we again get the same panel; this time we can take a look at the Caller Methods
Hierarchy.

Chapter 4

[77]

We can see that do_something calls say_doing_something. Unfortunately,
however, this static analysis does not extend to real decorators. For example,
take a look at the following code:

encoding=utf-8
from functools import wraps

import time

def sleep_for_a_second():
 time.sleep(1)

def tell_all(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 print("we are doing something")
 sleep_for_a_second()
 out = func(*args, **kwargs)
 print("We did something")
 return out

 return wrapper

@tell_all
def do_something(a):
 return a + 1

if __name__ == '__main__':
 print(do_something(10))

If we place the cursor on do_something, we will not see test_all as the caller or the
callee. However, if we place the cursor on tell_all, we can see that do_something
is listed as a caller.

Editing

[78]

Summary
We learned a lot in this chapter—from how code completion works to how
PyCharm's powerful static analysis can help you read code better. I use
reStructuredText docstrings all the time for my own code so that it serves as
documentation as well as a way for PyCharm to help me write error-free code. There
are of course limitations to all these tools, most notably reStructuredText still does
not support all kinds of types, for example, more complex types that aren't built in.

We also looked at some of the powerful tools at our disposal to write and read
code. Some of these features might change over time, but I'm sure that the basic
functionalities will remain the same.

[79]

Interpreters and Consoles
In this chapter, we are going to be diving deep into interpreter support in PyCharm.
PyCharm's interpreter support is very powerful, with the ability to support almost
any interpreter—from the most commonly used interpreter, CPython, to less widely
used interpreters such as PyPy and Jython. PyCharm also has powerful console
support. It can emulate both IPython and the normal Python interpreter, providing
the syntax highlighting and code completion that we take for granted from the
editor. What's even better is that code completion in the console is more powerful
in PyCharm than in the editor. By reading this chapter, you'll be able to quickly
install packages, make virtualenvs, and get the most out of code completion in the
PyCharm console. This chapter is broken down into a few parts:

•	 All about interpreters: This section covers interpreter configuration,
virtualenv creation, package management, and remote interpreters

•	 The PyCharm console: This section teaches you how to take advantage of the
PyCharm console—from code completion to debugging

All about interpreters
Interpreter features in PyCharm are quite numerous. PyCharm allows you to create
a new project with any interpreter that is installed on your system. It also allows
you to derive a virtualenv from any interpreter installed on your system. And, it
even allows you to inherit global site packages in the dialog box when creating the
virtualenv. However, if you don't like this, you can always launch a project from the
command line with the interpreter of your choice.

Before we start, however, I feel it is necessary to discuss virtualenv. It is a
Python package for managing Python environments. It is freely available on
Python Package Index (PyPI) and can be easily accessed with a pip install.
If you aren't familiar with how virtualenv works, I suggest reading the
documentation at https://virtualenv.pypa.io/en/latest/.

https://virtualenv.pypa.io/en/latest/

Interpreters and Consoles

[80]

Adding interpreters
When starting off a Pure Python project in the wizard, PyCharm gives us the ability
to choose any interpreter installed on our system, and it refers to such interpreters as
local interpreters.

In the preceding screenshot, you can see that I've got quite a few interpreters
installed. The interpreter indicated by the red arrow is IronPython, a Python
implementation for the .NET platform. The green arrow indicates my PyPy
interpreter. The one highlighted in blue is my default CPython interpreter.
PyCharm automatically detects your interpreters for you, but in case it does
not, you can always manually add a new interpreter.

The gear icon indicated by the black arrow allows us to add another interpreter
manually. In this case, we're going to add a Jython interpreter (a Python interpreter
that runs on the JVM). We are first going to choose to add a local interpreter since it's
an interpreter installed on our machine.

Chapter 5

[81]

Once we chose to add a new local interpreter, PyCharm will ask us for the binary of
that interpreter. In most cases, it is a .exe file, but in the case of Jython, it's a .bat
file. In a *nix machine, it will just appear as an executable.

Once added, we should see a new interpreter ready and waiting to be used as one of
our interpreter options.

Interpreters and Consoles

[82]

Creating virtualenvs
PyCharm also allows you to drive a virtualenv from an existing Python interpreter.
Just like before, after clicking on the gear icon, we can add a new virtualenv.

All we need to do in order to create a virtualenv is tell PyCharm what base
interpreter we want to use [1], the name of the virtualenv, and finally whether we
want to inherit global site packages or not (if we want to install all the third-party
packages in the base Python interpreter as well) [3]. The option marked with [2]
allows us to manually add a new interpreter on the fly.

However, I dislike this way of creating a virtualenv because in this manner,
virtualenvs get installed all over the place. I much prefer project creation
through the command line.

Chapter 5

[83]

Through the terminal
The project creation wizard is an absolute godsend for Windows users since they
don't have to manage virtualenvs through the cmd. However, for *nix users, a far
better option is using the command-line launcher. Creating a launcher is simple; all
you need to do is tell PyCharm that you want one created.

After this, we can open up PyCharm by simply using the newly created charm
command. This is how I create my projects:

mkdir <Project Name>

cd <Project Name>

virtualenv .venv

source .venv/bin/activate

charm .

By invoking PyCharm at the end, PyCharm will use the virtualenv Python interpreter
as the project's Python interpreter. In the command line, whichever interpreter is
directed to by the Python command, is the interpreter that PyCharm uses.

Interpreters and Consoles

[84]

Installing packages
PyCharm allows you to install packages for an interpreter without ever having to
open up the command line. We can see a list of packages installed by going to File |
Settings… | Project | Project Interpreter.

In the preceding screenshot, the area enclosed by the blue box shows a list of all
the packages installed for this particular interpreter. Using [1], we can add a new
packager from PyPI. Using [2], we can remove a selected package and with [3], we
can upgrade a selected package.

Chapter 5

[85]

Adding a new package is very simple; all we need to do is search for it.

In this example, we're trying to install the boto package. Option [1] will allow us to
install a specific version, and [2] will let us add options to the installation just as we
do in pip (such as allow-insecure). Option [3] allows us to add other repositories
(such as a Git repository) to PyCharm in case you are using a private package not
available on PyPI.

Interpreters and Consoles

[86]

Setting paths
The PYTHONPATH determines where your interpreter looks when searching for
packages or modules to import. We can take a look at the list of paths included in
our PYTHONPATH. We first need to select Show All to view all the interpreters in
the project interpreter dropdown.

Then we select the interpreter of our choice [1]. After that, we ask to see its paths
by using [2]. Finally, [3] shows us the list of all the paths available to us. Adding an
extra path is often useful when working with Google App Engine (GAE) since you
need to manually upload some of the libraries you're going to be using. By adding a
path in PyCharm, we can emulate GAE circumstances.

Chapter 5

[87]

Remote interpreters
PyCharm can connect directly to your server's interpreter and use it to debug your
script. All you need to do is set up your server and then configure your interpreter.
Adding a server is easy enough; PyCharm uses the SFTP protocol to do so.

We now need to configure the server.

Interpreters and Consoles

[88]

You can use your public IP or address. As for authentication, I use Amazon's EC2,
so I get a .pem file, and that's why Key pair is selected. If you have a username and
password, change Auth type. In Advanced options…, you have the ability to change
the text encoding and the number of concurrent connections; alter them if you know
what you're doing. Some parts are blurred out because this is a server that I actually
use, and it's not that I don't trust you (the very thought of it!). It's just that I don't
trust all the other people reading this book.

With this done, we're on our way to adding our remote interpreter, but with this,
you also get filesystem access to your server. You can edit any file that you have
rights to, you can also SSH into it any time you want with the terminal available
in PyCharm.

Now, you have SSH access to your server:

Chapter 5

[89]

I found these tools very handy when working on a Windows machine.

Now that all of the server configuration is done, and we know how to SSH into
our server, we can get started on configuring the interpreter. You will find it rather
anti-climactic now that we've configured the server:

After choosing to add a remote interpreter, we will get this popup:

Now that all of this is done, PyCharm will upload a couple of important files to your
remote interpreter that will allow you to use the interpreter as if it were right here on
your local machine (this might take some time depending on your connection):

Now every time you run a script, it will be run through the remote interpreter on
your server. You can always change back to the local interpreter of your choice.

Interpreters and Consoles

[90]

Using Vagrant in PyCharm
Setting up Vagrant with a headless Linux box is so automated in PyCharm that
it's almost no fun. The only prerequisite is that we have Vagrant installed on
our machines and you don't even need to have a box installed. PyCharm will
automatically download the default Vagrant box in case you don't have any
installed on your system. We can initialize Vagrant like this:

If we don't have a box handy, PyCharm will offer us the option to download a box of
our choice, with lucid32's URI already in the dialog box.

Chapter 5

[91]

In case we already have a box installed, PyCharm will just go ahead and initialize it
for us.

Now we can Vagrant up by navigating to Tools | Vagrant | Up.

Interpreters and Consoles

[92]

Vagrant acts like a remote interpreter on your local machine, so you can actually SSH
into your Vagrant machine any time you want after it has been turned on.

We can now add yet another remote interpreter, and load this directly from the
Vagrant file, so PyCharm automatically adds it for us.

And now, if we set our project interpreter to the Python interpreter in Vagrant, the
files will be run using the Vagrant interpreter, all within PyCharm.

Chapter 5

[93]

The PyCharm console
The PyCharm console is another fundamental part of PyCharm. In essence, it's the
Python REPL with autocompletion and variable watch (which we will get into later).
Right now, let's take a look at what the console offers us:

You can of course invoke the same action from the Find Action and Search
Everywhere search boxes. This opens up the following:

Interpreters and Consoles

[94]

Most buttons are self-explanatory, except for the two indicated by the arrows. The
first is what I like to call variable watch; in essence, this shows you all the variables
in your console (by pressing it, you toggle it):

New variables and the changes in variables are shown in blue:

The Variable Watch button is even more powerful, but that's a topic for
Chapter 6, Debugging.

Chapter 5

[95]

The second button after variable watch is actually pretty useful; it's a history of all
the commands you've entered into your console throughout the project, so even if
you close PyCharm or even shut down your system, the history will have dutifully
recorded all the Python statements that you have entered:

Console configuration
Now let's head over to a few of the options that we have for our Python console:

Interpreters and Consoles

[96]

With reference to the preceding screenshot, with [1], we can define our
environment variables:

With this, you can now see the environment variables in the console (make sure that
you restart your console):

Chapter 5

[97]

With that out of the way, you can set the path to your interpreter with [2], and
provide additional arguments with [3]. The working directory can be specified
with [4]. Enabling [5] simply adds your project root to the PYTHONPATH:

You can also add your source directories to your PYTHONPATH by enabling [6].
You can make a directory a source directory by doing this:

Interpreters and Consoles

[98]

With that, when you open up your console with [6] enabled, you can see that
PyCharm adds the directory to the PYTHONPATH, and hence, you can import
files from that directory:

As you can see, you can also get code completion for the .py file inside the
src directory.

Last but not least, we come to the Starting script, [7]. With this, you can specify the
Python code that the interpreter will run at every launch. Note that you also get code
completion here:

Chapter 5

[99]

With this, you can see it imported:

If you want to use IPython in PyCharm, all you have to do is install
the IPython package, and PyCharm will automatically launch the
IPython interpreter for you when you launch the console.

Summary
In this chapter, we learned a lot about managing the several interpreters, both local
and remote, as well as taking advantage of PyCharm's top class support for code
completion in the console. If you're curious about why code completion is better in
the console than in the editor, it's because PyCharm knows the types of every single
variable that you're using. Please note, however, that should you close PyCharm
with the console open; the next time you open PyCharm, the console will launch
too. This is totally fine for local interpreters, but should you configure a remote
interpreter, launching PyCharm can take a pretty long time.

[101]

Debugging
"There is no freedom quite like the freedom of being constantly underestimated."

– Scott Lynch

When I first started programming, I used print statements. Having to write this
book, I took a look at some of my earliest code samples, and it turns out that most
of it was commented out print statements used for checking the value of variables.
Note that I started off writing C using Notepad, and compiling all that through the
command line, so no green run button and no IDE. I knew about GDB, but it was so
hard to even set a simple breakpoint that I stuck to my print statements. Most of the
bugs I had encountered so far had been obvious bugs staring at me in the face. After
a few mishaps, I started to print everything that I could so that I could take a look at
where the program was and what was happening, making sure not to underestimate
bugs or the extent of my own stupidity.

In this chapter, we are going to be talking about PyCharm's powerful debugging
tools and use them to understand, examine, and yes, debug our programs. We are
going to:

•	 Take a look at how we can run Python scripts in running mode and
debugging mode

•	 Understand the different components of the debugging toolset
•	 Use variables and watches to make sure we miss nothing
•	 Utilize frames to zoom in and out of different layers of a program—from

your scripts right down to the Python standard library
•	 Evaluate expressions at breakpoints
•	 Use the Python console and Python prompt to gain a better understanding of

program execution

Debugging

[102]

Running, debugging, and setting
breakpoints
You can run a .py file in two modes: running and debugging. If you run a program,
then even if you set breakpoints (points at which PyCharm will stop program
execution), nothing will happen. It's only when you run it in debug mode that
breakpoints become effective. The way I like to run or debug my programs is
through the Resume Program action:

You can then choose any of the different ways to run/debug your program. By
default, if you press Enter, you will go into debug mode, if you press Shift + Enter,
the program will just run. You can also choose coverage by pressing the left arrow:

Chapter 6

[103]

As soon as you start debugging, a window appears underneath and you have
so many options that it's hard to make sense of it all. Let's focus on managing
breakpoints for now. To the bottom-left of the window, you can see a bunch
of buttons:

This is the View Breakpoints button. This allows you to see different types of
breakpoints that are available to you:

Debugging

[104]

The breakpoint we set is a line breakpoint, but by default, in debug mode, program
execution will suspend when you get an exception. You can actually disable this, but
this only makes sense when you're looking for certain exceptions. Say, you only want
to catch TypeError exceptions:

You add TypeError to your list of exceptions; you can also add exceptions that are
only available in your project. So, with that added, we now have:

Chapter 6

[105]

Unfortunately, you do not have the same fine-grained control as you do with line
breakpoints, where you can evaluate expressions to pause execution. But, it still
allows you to narrow your focus on certain exception types:

In the preceding example, the breakpoint will only execute if the Person object
is None. If this condition is true, this will be logged to the console, and so will the
expression. In this case, it will simply print the string.

You can of course toggle all the breakpoints in debug mode as well:

This will render your line breakpoints moot.

Debugging

[106]

Debugging workflow
A friend of mine, who used Java in his day job, sent me a code snippet that he
needed help with. He was new to Python and was still getting used to the differences
between Java and Python. He mostly worked with databases, so he was exploring
the different ORMs that were available. He tried SQLAlchemy, the Django ORM, and
eventually, found that he liked a still very new ORM called Pony. At that time, the
documentation for Pony was still in its infancy, so he sent me the code so that I could
help him out. It looked similar to this:

__author__ = "John Doe"

import string
import random

from pony.orm import db_session, commit, Database, Required

db = Database()

class Person(db.Entity):
 name = Required(str)
 age = Required(int)

vowels = 'aeiou'
consonants = str(letter for letter in string.ascii_lowercase if letter
not in vowels)

def gen():
 return random.choice(consonants) + random.choice(vowels)

names = [(gen() for _ in range(random.randint(3, 4))) for i in
range(100)]

db.bind('sqlite', 'data.sqlite', create_db=True)
db.generate_mapping(create_tables=True)

with db_session:
 for name in names:
 Person(name=name, age=random.randint(5, 21))

commit()

Chapter 6

[107]

I ran this fine in debug mode, and got an exception in the console, saying that it was
a MappingError, so I looked at the file and found out that the script did not bind to
a database before generating mappings, so that was easy enough to fix— it needed
to bind before generating mappings. But then came another problem, and that
was TypeError:

So, it's saying that we have TypeError, and that it was expecting Unicode, but for
what? This is where frames come in handy. Frames, located on the left-hand side
of the debug menu, are like layers in an application. Frames showcase this callback
sequence (or a function call stack), letting you jump between the files where the
problem was caused.

Debugging

[108]

In the preceding screenshot, you can see that the topmost item in the frame list is
where the exception was raised; the list item shows you the function call, as well
as the file in which the function exists. You can also see that the library files are
highlighted in a dark yellow color (indicated by the red arrow), whereas your files
are clear (indicated by the orange arrow). By using this panel, you can go back and
forth in the sequence and see what went wrong. In this case, let's go back to our own
file and see what the problem is:

So, it seems that the problem here arises when we try to initialize a Person object.
Now, let's go back to the original exception, which said that it was a TypeError and
it expected a Unicode object. Let's use our frames to dive into where the object
was initiated:

Chapter 6

[109]

We can see here that name is a generator, which feels wrong to me, because it should
be a string or perhaps even Unicode. Let's go back to our original file and see what
this is all about and also see what name is all about:

So, if we hover over name, we can see that it's a generator object, but that doesn't
sound right. I mean, a person's name isn't supposed to be a generator. Name comes
from names, and let's take a look at what names is made up of:

You can use the Evaluate Expression… button to check what an expression is;
this button even has autocompletion. Right now, you can use it to evaluate simple
expressions such as checking out the gen function. You can even select an expression
in Python, right-click on the expression and then choose Evaluate Expression...:

Debugging

[110]

You could also choose to evaluate this inside the console:

It turns out that these objects are all generators, and we need to fix that by getting rid
of the braces around the expression to be added:

[gen() for _ in range(random.randint(3, 4)) for i in range(100)]

But, if we were to evaluate this, it would look rather weird:

Chapter 6

[111]

First, we're trying to generate names; names are usually not two letters long. Second,
when was the last time you saw a name with a greater-than sign in it? Something
fishy is going on here. So, the gen function is giving us all of this data, and hence,
there has to be something wrong with the gen function. Let's take a look at the gen
function then. It turns out that gen concatenates a consonant and a vowel to form a
pronounceable syllable.

Taking a look at gen, we find that it makes function calls to random.choice, so I
doubt there's a problem in the standard library. It uses two variables, vowels and
consonants, and that means there's a problem in both or either of these two. The
vowels variable is pretty simple, so there isn't much room for error. However, we're
probably messing something up when we're generating consonants. Let's set a line
breakpoint just before the declaration of the gen function and take a look at what the
consonants variable is made up of.

Ha! It looks like we've got a stringified (is that even a word?) generator. We need to
use the string's .join function to get the job done. Let's do that now and change the
line to this:

consonants = "".join(letter for letter in string.ascii_lowercase if
letter not in vowels)

Let's see if that works now and take a look at what the names look similar to:

Debugging

[112]

It seems like we're having a little bit of trouble here. I've heard of a nickname called
zu, but I think the names are too small, so let's make them bigger:

names = ["".join(gen() for _ in range(random.randint(3, 4))) for i in
range(100)]

After making the change and rerunning the program, we get mobuwa and yemuyo as
names. This is pretty neat! I might just use these names as example names; they are
way better than John Doe.

After that final change, the script ran smoothly and the right data was inserted into
the database. I was able to send this back to my friend, and told him where he went
wrong—mostly with the string concatenation using generators.

Before we depart this section, I'd like to tell you that Evaluate Expression… and
the Console work inside frames. This means that if you're trying to evaluate an
expression in a different frame that you have currently selected in the debugger, the
debugger will give you an error.

Finally, PyCharm also supports watches and the usual step-into/step-out procedures
that are conventional in debugging.

Dealing with threads and processes
PyCharm has very good support for dealing with threads. Just like how we can
change frames, we can also change threads if we so wish (that is, if we have more
than one thread to begin with). Let's take the example of a simple downloader script
called downloader.py:

encoding=utf-8
from threading import Thread

import requests

def download(url):

Chapter 6

[113]

 response = requests.get(url)
 if response.status_code == 200:
 print "Success -> {:<75} | Length -> {}".format(response.url,
len(response.content))
 else:
 print "Failure -> {:>75}".format(response.url)

if __name__ == '__main__':
 urls = "http://www.google.com http://www.bing.com http://www.
yahoo.com http://news.ycombinator.com".split()

 for u in urls:
 Thread(target=download, args=(u,)).start()

To run this code, you'll need to install requests though
pip install requests in the command line.

This is a simple script that sends a get request to a url (there are four in total here),
and each request is sent in its own thread. This simple script will demonstrate
PyCharm's ability to debug threads. This is what the output looks similar to
after an initial run:

$ python downloader.py

Success -> http://www.google.com.bd/?gws_rd=cr&ei=1N_HVePAH9HiuQTHsLigDQ
| Length -> 12559

Success -> http://www.bing.com/
| Length -> 58210

Success -> https://news.ycombinator.com/
| Length -> 27698

Success -> https://www.yahoo.com/
| Length -> 357013

Debugging

[114]

It seems simple enough; we can now set a breakpoint after we check for a 200 status:

After we set the breakpoint, we can now debug the script, and we see that the
debugger stops on every single thread.

The drop-down menu, indicated by the red arrow, allows us to jump between
threads. The orange arrow indicates the URL (since that is what is used to create
each new thread).

Chapter 6

[115]

We can swap to a different thread and see a different URL.

In the preceding thread, a request is being sent to http://www.google.com, whereas
in the previous one, the request was being sent to http://www.yahoo.com.

Processes
Processes are handled similarly in PyCharm. We will make only a small change to
the preceding code—importing Process instead of Thread and starting Process
instead of Thread:

encoding=utf-8
from multiprocessing import Process

import requests

def download(url):
 response = requests.get(url)
 if response.status_code == 200:
 print "Success -> {:<75} | Length -> {}".format(response.url,
len(response.content))
 else:
 print "Failure -> {:>75}".format(response.url)

if __name__ == '__main__':
 urls = "http://www.google.com http://www.bing.com http://www.
yahoo.com http://news.ycombinator.com".split()

 for u in urls:
 Process(target=download, args=(u,)).start()

http://www.google.com
http://www.yahoo.com

Debugging

[116]

If we try to debug this by setting the breakpoint at the same place, we get process IDs
instead of thread numbers since we're creating processes.

Debugging from the console
When playing around with new libraries in the REPL, it can be very useful to have a
debugger to help you understand it better. You can directly connect your debugger
to the REPL and hence, set breakpoints and break on exceptions:

Chapter 6

[117]

We're importing fib first (which is in our PYTHONPATH; in other words, in the
root directory of the project), we set a breakpoint in the fibonacci function's
recursive call, and we click on the button indicated by the green arrow. If we call
the fibonacci function now from our REPL, we will see that the Python debugger
suspends on the line indicated. So, first we import the file we want to test out in our
PYTHONPATH, then we click on the debugger button in the console, and finally, we
merely invoke the function where we have set a breakpoint.

Attach to Process…
PyCharm also has the ability to attach its debugger to separately running processes.
This can be very helpful when trying to debug a command-line application that
require changes in parameters or when trying to debug games. The PyCharm
debugger simply looks for running the Python processes:

Debugging

[118]

Profiling
Profiling is a new addition to PyCharm 4.5, and has a nice set of features, most
notably, a graphic representation of the calls made. We are going to use the
previously mentioned downloader.py file to demonstrate some of the new features.

We simply right-click anywhere on the file and then left-click on Profile
'downloader'. With this, we will be taken to a new panel that shows us a call table.

Chapter 6

[119]

We can also see that if we choose to, we can jump to both the source and the call
graph. The call graph is a graphical representation of what functions are being called
where and their impact; green means small impact and red means high impact. This
is really quite useful since we can optimize slow code on the spot if the optimization
is simple.

Furthermore, the call graph gives us a nice colorized hierarchical representation of
function calls.

We can also export the graph files for others to see. If we right-click on any of the call
blocks in the call graph, we can jump to the source.

Summary
I hope I was able to convince you of the value in PyCharm's debugging toolset.
We looked at a lot of the tools that I find useful in my everyday work . We covered
debugging tools and how we can use them in our own workflow.

I didn't discuss any of the common tools that are ubiquitous in any debugger, just
the ones that I find make PyCharm special.

One thing I must note is that whenever you debug code, the script will run slower
since PyCharm imports some helper functions before actually running your code. If
you take a closer look at frames when you debug a program, you will see, at the very
bottom, that a function from pydevd.py is called. Thus, if you're looking at execution
times when you debug a program using PyCharm, you will find them a lot slower
than when you actually run them in PyCharm or the interpreter.

Debugging

[120]

We also looked at PyCharm's new profiler that allows to see a nice colorized call
graph as well as giving you the ability to jump to source. If we so wished, we could
also save the files for others to view.

Finally, make absolutely sure that you turn on the collection of runtime
information when you debug since it will help you with type information,
that is, better code completion.

[121]

The PyCharm Ecosystem
"Look well into thyself; there is a source of strength which will always spring up if
thou wilt always look there."

– Marcus Aurelius Antoninus

This chapter dives into the inner workings of PyCharm. While having a little to do
with PyCharm usage, it has everything to do with how PyCharm works, where to
find help and report issues as well as the plugin ecosystem.

There are several key takeaways:

•	 The IntelliJ ecosystem: This section explores what kind of IDE PyCharm is.
It explains how PyCharm shares common features with other IDEs

•	 Support for PyCharm: This section explores the different sites and tools that
will help to solve PyCharm-related issues

•	 Plugins: This section explores the different plugins available in PyCharm,
what kind of plugins to expect, and what makes a good plugin

The IntelliJ ecosystem
In the very beginning, there was IntelliJ, JetBrains' very first IDE. IntelliJ started off
as a Java IDE but soon grew to incorporate other languages, both programming
and document languages such as HTML. JetBrains has several IDEs for different
languages such as RubyMine for Ruby, CLion for C++, and of course, PyCharm for
Python. All of these IDEs are based on IntelliJ, in other words, PyCharm and others
all are just plugins built on top of IntelliJ.

The PyCharm Ecosystem

[122]

In fact, you can use the Python plugin in IntelliJ and the same feature set as the
community edition of PyCharm. If you've already purchased IntelliJ, you don't need
to purchase PyCharm or any other JetBrains IDE since all the language support can
be installed through plugins.

If you've used IDEs other than PyCharm, you will notice that IDEs from JetBrains
have very similar feature sets, for example, Search Everywhere and Find Action. In
many cases, some IDEs may get common feature sets sooner than others and this has
everything to do with build numbers.

The common features are made available at certain build numbers. The best way to
stay updated with the latest build is to use PyCharm's Early Access Program (EAP),
and we can opt to take part in the program by changing our update settings.

In the preceding screenshot, the green arrow shows update channels by increasing
stability, with the most stable being New Major Version Releases and the least being
Early Access Program. When reporting an issue, if you're using an EAP, be sure to
place your build number (indicated by the red arrow) in YouTrack; otherwise, enter
your version number (for example, PyCharm 3.0.2). Don't worry if you don't know
what YouTrack means; it has its own section in this chapter.

Chapter 7

[123]

EAP is the version JetBrains is currently working on. This version can be very buggy,
and I would not suggest using it, use Early Releases or Public Previews instead;
these give you new versions of the programs quickly, and they are quite stable.

One question that you might have nagging you is—what's the difference between
PyCharm and IntelliJ with plugins? There is no difference! In fact, IntelliJ with
plugins is probably superior because if you want to use Jython, it has better ways of
managing your SDKs and libraries. However, PyCharm is much cheaper than the
ultimate version of IntelliJ that allows you to install plugins.

Support for PyCharm
PyCharm has many places that you can get support from. The bundled
documentation can often be the only thing that you need.

If you're stuck on a problem with regards to PyCharm, Stack Overflow is probably
the best site for such a thing. I myself have received a lot of support on this site, and
you can ask a question with the PyCharm tag.

There is also a PyCharm forum, forum.jetbrains.com/forum/PyCharm, which
you can use if Stack Overflow fails to answer your question. I recommend Stack
Overflow only because it is a far more active site, and the answers often come within
15 minutes of the question being asked.

Another site that I must recommend is the JetBrains PyCharm blog—
blog.jetbrains.com/pycharm. It gives you all the latest news on all things
PyCharm, and furthermore, gives you tutorials on how to use new features.
This is especially important since they announce RC candidates in those EAP
programs, which are far more stable than the other EAP releases.

The PyCharm Ecosystem

[124]

YouTrack.JetBrains
All of the features and bug fixes that we see in PyCharm are actually from
YouTrack.JetBrains, a place where users submit their bug reports and feature
requests, and that is what we're going to be looking at next.

The complete URL for the site is http://youtrack.jetbrains.com/.

This is a site that you should definitely make an account on if you haven't already
done so. It's the place where you submit bug reports and feature requests, and it's
packed with a lot of tools that will help you showcase your problem regardless
of the platform. You can already log in with Google, Yahoo, and OpenID.

With reference to the preceding screenshot, here are some details:

•	 1: This is where you should start. It's a guide to how to work with
YouTrack, and it has a few useful pointers and video tutorials on
how to use different features.

•	 2: You'll probably be clicking on this button a lot if you come here often! It
creates an issue, ideally a bug report or a feature request. There are many
more categories, but we'll skip the details.

•	 3: There are saved searches that are very useful for taking a look to see if
anyone has replied to any of the issues you've created. You can always make
more of them, and the guides in [1] will help you make them.

•	 4: This is the category view; ideally, we're only interested in the PY category
for PyCharm. If you click on this and select PY, it will show you all the
different issues that are relevant to PyCharm.

http://youtrack.jetbrains.com/

Chapter 7

[125]

Now, if you've filed a bug report or a feature request, there are different priorities that
the developers can assign to these requests. This gives you an indication of how quickly
the problem will be resolved, and the following categories are listed in descending
order of importance:

•	 Show-stopper
•	 Critical
•	 Major
•	 Minor
•	 Normal

Firstly, when reporting an issue, most of the time, you will need to take a screenshot.
If you don't have one, don't worry; you can use the one that comes with YouTrack.
This is an application that is made using Java, so you will need Java running on your
system, however, it will work with almost any operating system out there.

Another thing to note is that you can use wiki markup in your description to format
code samples. If you click on the wiki markup link in the following screenshot, it
will lead you to a site with all the information you need to make sure that the code
highlighting works for the language you want to show a code sample of.

The PyCharm Ecosystem

[126]

You can fill up the information on the right-hand side with the stuff we've already
talked about so far, so that shouldn't be an issue.

You can also vote for a given topic on YouTrack, and as you might expect, the more
votes you cast, the more likely a feature is to be added in a future release. However,
this is not set in stone (so don't get your hopes up too high). Here's an example at
http://youtrack.jetbrains.com/issue/IDEA-63201:

This topic has 123 votes (a very high number) and it was opened 3 years ago, but this
feature is yet to be implemented.

Now, if your feature request has been accepted, you can take a look at it in the
agile board:

There are different parts of the board—you can take a look at the issues that have
been verified, the ones that are being fixed, and the ones that have been fixed. This
can give you an idea of how long it will take for JetBrains to finish the feature request
or fix the bug.

http://youtrack.jetbrains.com/issue/IDEA-63201

Chapter 7

[127]

What makes a good plugin?
The most important thing is—whether the plugin does what it is supposed to do. If a
plugin works for you, then it's a good one; however, this section will take a different
approach to plugins. We are going to list what the elements of a good plugin are, but
what do I mean by that?

A good plugin solves a problem that you need it to solve, but at the same time, it
must be stable, well-supported (updated often), and compatible with your version
of PyCharm (and the underlying IntelliJ Platform). Without giving you an extensive
dose of theory, let's take a look at a couple of examples. We can get to the plugin
repository through Preferences (Mac) or Settings (Windows/Linux):

The first thing that hits you when you explore the plugin repository is the star
system. Surely, that's useful, but it's not the best indicator of whether something
functions properly (and we'll get into that later). But for now, let's take a look at
IdeaVim, which, in essence, is Vim emulation for PyCharm (as well as for the rest
of the IntelliJ family):

The PyCharm Ecosystem

[128]

So, IdeaVim has a good rating, but notice that even though it does have a good
rating, it's been updated recently (at the time of writing this chapter), indicated by
the Date column. This is very important because there are many plugins that target
a different version of the IntelliJ Platform (a lot of language-specific plugins), and so,
even though they have a high rating, installing them on your version of PyCharm
would cause errors (I speak from experience). A recent date is a good indication that
it supports the latest versions of the IntelliJ Platform, but you can double-check by
visiting plugins.jetbrains.com:

And then searching for IdeaVim:

Chapter 7

[129]

After you're done with that, you can scroll down the IdeaVim page and take a look at
its different versions, the latest is always at the top:

So, you can use IdeaVim with any version of the IntelliJ Platform after build 120.
Another thing to notice is that the vendor for this plugin is JetBrains, the creators of
PyCharm. As a rule of thumb, anything that is created by JetBrains is good and well
supported. However, let's take a look at a plugin that by JetBrains and another one
that was updated quite some time ago:

The PyCharm Ecosystem

[130]

This particular plugin, AceJump, has a good star rating. However, the other reason
for this being a good plugin is because John Lindquist worked at JetBrains before
and maintained this plugin well.

Another great plugin that hasn't been created by JetBrains is called String
Manipulation. It basically gives you a lot of quick fixes when dealing with strings.
It's recently updated, and has a high rating, although its creators do not have an
affiliation with JetBrains.

Chapter 7

[131]

Summary
In this chapter, we gained an idea of what makes PyCharm work the way it does, its
support systems, as well as its feature/bug tracking system. We also got a taste of
what makes the IntelliJ Platform so powerful—plugins.

PyCharm supports many plugins that are language-specific such as Markdown
or Bash. It also supports productivity plugins such as Key Promoter, which gets
you used to shortcuts quickly. It has plugins for all kinds of needs, but you might be
asking—how do you write a plugin? With Java or JVM languages (preferably Kotlin)?
If you want to get started on plugin development, this is the place to start from
http://confluence.jetbrains.com/display/IDEADEV/PluginDevelopment.

http://confluence.jetbrains.com/display/IDEADEV/PluginDevelopment

[133]

File Templates and Snippets
"Are we there yet?"

– Everyone, including you

Coding is a ton of fun, but sometimes, it can be rather repetitive. Snippets (live
templates) in PyCharm help you do away with a lot of the receptive parts. However,
PyCharm goes further; it even allows you to make file templates so that once you
make a new file, for example, a .py file or a .js file, you can have some boilerplate
code written for you. You're already using file templates in PyCharm if you haven't
changed its default settings. This chapter is all about coding speed, so hold on to
your hats!

In this chapter, we are going to take a look at:

•	 File templates
•	 Snippets (live templates)
•	 Surround templates

File Templates and Snippets

[134]

File templates

Let's make a new file in PyCharm. The two options that you have, Python file and
Python unit test, are file templates. You might have more than what is shown here,
but in essence, when you make a new file template, it shows up as an option when
you make a new file. So, let's take a look at what's inside these two templates:

Chapter 8

[135]

Understanding variables
As you can see in the template (in the preceding screenshot) there is some code to
initiate the file. In this case, it's Python Unit Test. You can also see that (indicated by a
red arrow); there are some special variables that you can use inside the template. The
file templating engine PyCharm uses is called Velocity Template Language (VTL).

Some of the variables are given to you by default. So, $USER is derived from the
username that the user has registered to PyCharm with. If you registered with an
abbreviation of your name, you might want to change the $USER variable, and
you can do it like this:

#set ($USER = "THE AMAZING SPIDER MAN")

You can change preconfigured variables and make new variables using #set. The
documentation on File and Code Templates provides a good account of the default
variables available, but if you want to explore more of VTL, which is an Apache
project with tons of documentation, refer to https://velocity.apache.org/
engine/releases/velocity-1.5/user-guide.html.

Making new templates
You can make new templates with the (+) icon. You can also copy the existing ones
with the copy icon if you want to make slight modifications. Now, it is fairly simple
to create new templates with variables in them. But, say, you registered with the
username CHEEZIE; although this is a great name for the Internet, a pseudonym is
often inappropriate in more formal circumstances.

We saw that we can set $USER with #set, but we don't want to be doing this
for every script that has a reusable variable in it. We can use this by using the
Includes tab.

https://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html
https://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html

File Templates and Snippets

[136]

We can set the include template here and simply include it at the top of our file in
our Python script using #parse:

However, we cannot create your own group. Some other templates such as
Setup Script and Flask Main are only available under certain conditions. For
example, Flask Main is used as a template when you first create a Flask project
using PyCharm.

In most cases, the basic tools that file templates provide you are often more than
adequate and can speed up a lot of repetitive tasks for you. You probably won't use
this feature very much, but you will certainly use snippets, or as PyCharm likes to
call them, live templates, which we will be discussing next.

Chapter 8

[137]

Snippets (live templates)
Live templates are a wonderful part of PyCharm. They are very helpful when there
is a repetitive pattern that you need to type over and over again. PyCharm 3.4
introduced a couple of new snippets into the mix, so let's see how we can make our
own by inspecting the snippets that are already available. Let's take a look at the
main snippet that comes bundled with PyCharm 3.4:

We can see that [1] is the snippet in question and it has its own abbreviation main,
and this is what we invoke with [2]. The description for snippet [3] is what will be
shown when you try to invoke Insert Live Template (Command/Ctrl + J). You can
change the abbreviation to suit your fancy so that you can invoke it using whatever
you like. The most important parts of the screenshot to discuss are [4] and [5].

END [4] is a special template variable, and it is where the cursor will be after
the snippet has been inserted (after you've put in any variables that the template
requires). END is a reserved template variable, and there are a couple of others that
we will get into. This particular snippet is under a particular template group, Python
[5]. This means that this template can only be invoked inside a .py file.

File Templates and Snippets

[138]

Variables in Live Templates are very similar to that of file templates, but with Live
Templates, you have a lot more control. So, let's take a look at a List comprehension
snippet in PyCharm, compl:

So, the variables are there and you can use them as they are, but we need to take a look
at the customizations made to the variables to appreciate the power of this snippet:

The order in which the variables are arranged in this list is the order in which your
cursor will be placed, so in this case, your cursor will initially be placed in the
position where the ITERABLE variable sits.

Chapter 8

[139]

So, ITERABLE is pyIterableVariable() [1], and this means that the only type that
is allowed in the code completion dialog box is an iterable, meaning a generator or a
list, set, and so on:

Note the completion that you get. The variables are only iterable. This is actually a
very powerful way in which you can minimize any mistakes that you make when
writing Python.

But you can do more than just saying something will be an iterable. In the Edit
Template Variables screenshot, you will see that there is another expression,
collectionElementName(ITERABLE) [2], and this takes the first variable as an
argument to the expression, essentially making a function call. This function turns
a plural noun into a singular noun, so take a look at the following screenshot:

So, we have a list called names, and that gets turned into a singular version, name,
by the logic in the snippet. There are many more in-built functions, which can be
seen in the drop-down box in the expression column of each variable.

File Templates and Snippets

[140]

You can have default values and they can be variables that you have defined before,
or you can have hard coded variables using strings, so we can modify the main
snippet that we discussed earlier:

1.	 Let's change the name to ifname so that we invoke it using ifname instead of
main. You can do this by changing the abbreviation.

2.	 Introduce a variable instead of __main__.
3.	 Give NAME a default value of __main__:

4.	 With this, when you invoke it, you will automatically get __main__ as the
default argument, but you can change it if you like.

Although this is a simple example, it does demonstrate a lot of the things that we
talked about.

Chapter 8

[141]

Surround templates
Surround templates allow you to take advantage of the Surround With action.
An example of an in-built Surround With (Command/Ctrl + T) template is
the try / except block:

You can see that there are a few live templates that I can use since I've made them
myself. The key to using surround templates is using the SELECTION variable. Here is
a simple demonstration:

Summary
In this chapter, we learned about one of the most important parts of PyCharm. Both file
and live templates are excellent for storing up bits of code that we reuse throughout
our development, and can make our development a lot less error-prone by making
sure that all the variables that we input into a snippet fall under a certain expression.

To take full advantage of PyCharm's live template system, it would be wise to take a
quick look at the VTL's syntax.

[143]

Version Control Integration
"As a project drags on, my git commit messages get less and less informative."

– Randall Munroe

A lot of my friends use IntelliJ IDEs and hence, have forgotten how to use most Git
command-line tools. I can't blame them; the interface that we have is very simple
to use, and most of the common commands are available to us in a neatly packed
menu. That isn't to say that this layer of abstraction like many others is leaky. In this
chapter, I will take a quick look at most of the tools and talk about some limitations.
Version control is in no way a simple topic and hence, I won't explain its topics; I'll
merely show you how to use the tools available in PyCharm. We will mainly go over:

•	 Initializing version control
•	 Ignoring files
•	 Adding remotes
•	 The VCS menu
•	 The Changes panel
•	 Change lists

Version Control Integration

[144]

Initializing version control
PyCharm supports different version control systems. In the following examples, we
will be using a Git repo to elaborate on different features since it's the modus operandi
of most development. As most of what we cover in this chapter is VCS agnostic, this
will not matter; however, each tool has its own submenu in PyCharm, which we will
go over. After we've created our project, we can initialize VCS right away:

This will give us a popup of all the types of repositories that we can initiate:

Chapter 9

[145]

Ignoring files
In my project, I have my virtualenv set up in my .venv folder, and I certainly
don't want to include it in my commit, so I have to make sure to ignore it. So,
let's head over to Settings... and do the following:

Inside, we can choose to add either files or folders. Come to think of it PyCharm also
generates project metadata and stores this data in the .idea folder, and I'll need to
ignore that as well. After clicking on [3], we get the following window:

We can choose to ignore files, folders, or even patterns. For example, you can ignore
all the compiled Python bytecode files by adding *.pyc in (C). In the preceding
screenshot, we just ignored all the files under .venv. This works across VCSs.

Version Control Integration

[146]

Git users are in for a special treat. There is a special plugin called .gitignore that
allows us to create a .gitignore file and get code completion in the .gitigore file:

This plugin allows you to create a new type of file called the .gitignore file, which,
as you would might guess, allows us to ignore files, folders, and patterns:

Inside the file, we will be able to get code completion for the files, folders, and
patterns in our project's directory. This is a third-party plugin and also supports
other .ignore files.

Chapter 9

[147]

Remotes
Adding remotes is straightforward; you have to use the command line or make a
file for your respective VCS systems. This is currently a feature request in YouTrack,
so it will be worked on at some point. However, PyCharm understands remotes,
so if we add a GitHub remote from Git (git remote add origin git@github.
com:gamesbrainiac/TestProject.git), PyCharm would understand that we've
added a remote when we go to commit and push:

We can add multiple remotes via the command line, and PyCharm will allow us to
pick which one we want to push. Make sure to check the Push current branch to
alternative branch checkbox, or else PyCharm will tell us that there's nothing to push.

However, all of this is done for us by the built-in GitHub plugin in PyCharm if we
click on Share Project on GitHub:

Version Control Integration

[148]

If you're a Bitbucket user, you may also choose to use its plugin, which gives you
similar functionality:

Be warned though; this plugin has not been updated for quite some time, and has a
few quirks. The orange arrow in the second last screenshot is pointing to the action
for sharing on Bitbucket.

The VCS menu
The VCS menu allows us to see all the possible actions available to us, and can be
easily invoked:

Chapter 9

[149]

This will cause a new menu to pop up:

This menu also has search and allows us to do most of the things that we want
to do, from committing to reverting. History actually opens up the Version Control
panel, which allows you to see a log of all the changes that our actions have been
translated into.

Version Control Integration

[150]

The Console tab (indicated by the orange arrow) will show you all the commands
that have been entered and the File Readme.md History tab (indicated by the
red arrow) will show you a list of all the changes that have been made, and their
associated hash values. Annotate will give you a side panel that shows you all the
hashes of the commits, and Branches... allows you to check out branches and tags.

If you know Git, then all of these options will register with their command-line
equivalents. Now, we will move onto the Changes panel, which gives you a
more graphical representation of what's been happening to our project.

The Changes panel
The Changes panel gives us a bird's eye view of the status of our commits and the
branches we have as well as the difference between the commits. There are so many
features that we cannot go over all of them, but we will be looking at most of them.

Changes is a panel, just like Project, and we should able to access it once we've
initialized version control in our project:

The Changes panel has two tabs: Log and Local. The Log tab allows us to dive into
the changes that have been made, providing powerful search tools. It also gives us
the ability to quickly see the changes between different versions of the commits.

But, before we dive into this awesome panel, we need a project that can showcase
how powerful it can be, and this is why we are going to be cloning the Python
requests, an open source library by Kenneth Reitz, which has been around for
quite some time and hence, has many different commits for us to look at.

Chapter 9

[151]

The first thing that we're going to do is clone the Python requests so that they give
us a large library with lots of commits. Then, we are going to take a look at all the
changes that have been made over the lifetime of the project using the Changes
panel. We can clone a Git repo directly within PyCharm by heading over to the
Quick Start screen and choosing to check out from version control:

And then, we enter the Git repo's URL:

Here, [1], [2], and [3] are pretty self-explanatory. We can use [4] to check whether the
repo exists before cloning to avoid errors later on.

Version Control Integration

[152]

The first thing that we are going to do is take a look at how a particular file,
index.rst, has changed over the course of the project's existence and we are going
to use the Changes panel to do it. The first thing that we do is select index.rst as
the structure that we want to observe:

We first get to the Changes panel by clicking on [1] or we can use Find Action, as
shown before. Then, we select Structure [2]. It is an example of a filter that we can
apply just like Branch, User, or Date.

Structure allows us to select multiple files and/or directories that we wish to
observe. We may not, however, select the root directory because it is pointless to do
so as it would list all the changes that we get as the default view when we first open
up the Log tab.

So, let's add the index.rst file as the structure that we want to watch:

Chapter 9

[153]

Once this is done, we will see a list of all the commits that have changed the
index.rst file. Furthermore, we can filter these commits based on their messages:

Here, we can see that in one of the commit messages, Armin Ronacher's testimonial
was added. Let's take a look at it by selecting the commit. Then, we will look at the
changed files.

Version Control Integration

[154]

Once we've double-clicked on [2], we can take a look at the changes made to
index.rst in the commit:

We can also see the changes between different commits by selecting the two
different commits:

Chapter 9

[155]

Other filters such as Branch and User have code completion:

Here, we can even enter multiple names on separate lines to get changes from
different users. All the recent filters are saved too.

Changing Diff colors
If we wish to change the Diff colors, all we have to do is alter the colors in
Colors & Fonts:

Version Control Integration

[156]

Change lists
Often, we want to group the changes to the project together. By default, PyCharm
puts everything in our Default change list. But what if we wanted to just commit
changes to a certain file or a group of files? In the Changes panel, we can select a
bunch of files, and move them to a separate change list:

We've set the change list to become the active change list, meaning that the changes
we made will get added to this change list. However, note that this is in no way a
partial commit, it is file-specific. We cannot pick out individual commits and add
them to a change list. Once this has been done, when we go to commit, we should see
two different change lists—one being Default, and the other being the new change
list that we've just made.

We can also move files between change lists by dragging and dropping.

Chapter 9

[157]

Change lists also give us the ability to configure what happens when we commit
from a particular change list:

The After Commit and Before Commit menus allow us to do specific things before
and after each commit list is committed. The Details tab, indicated by the orange
arrow, allows us to see the exact changes that are going to be committed on a
file-by-file basis.

Summary
In this chapter, we looked at what's possible with PyCharm's VCS and what isn't.
PyCharm has super support for Git and GitHub, but lacks a little bit elsewhere,
which can often be made up for with additional plugins. PyCharm's VCS is not a
leaky abstraction over a VCS, such as source tree, but still has some powerful search
and filtering tools.

[159]

HTML and JavaScript Tools
PyCharm's support for JavaScript is exclusive to its professional edition. These sets of
tools are common across other IntelliJ IDEs (see Chapter 9, Version Control Integration).
This chapter is by no means exhaustive because most of the support for JavaScript
in PyCharm comes from plugins. If we were to dive into all the plugins available for
IntelliJ IDEs, we would've written several books on the topic. So, to keep this short
and sweet, these are some of the most used features that any JavaScript developer
would find useful. Here is a quick run-down of what we're going to cover:

•	 JavaScript support: This section of the chapter is the largest and covers
many features that developers would find useful. We are going to look at
JavaScript code completion, NodeJS support, library support (for libraries
such as jQuery and underscore), transpiled language support, and code
quality tools such as JSLint. This section is rather large, so it's been broken
down into much smaller subsections for your convenience.

•	 HTML and CSS: This section deals with support for HTML, CSS, Emmet,
and live editing, as well as transpiled CSS languages such as SASS and Less
and transpiled HTML languages such as HAML. We are also going to take
a quick look at watchers and how they can make the task of compiling these
files much simpler.

JavaScript support
JavaScript is all around us, and with the advent of NodeJS, it has become (much
to my chagrin) undisputedly the most prolific programming language. PyCharm
has several JavaScript-specific features to deal with the influx of JavaScript needs.
However, it's impossible to cover everything with regards to JavaScript support,
and many of the features will appear as you work in PyCharm. So, let's look at some
of the best tools that PyCharm has to offer for JavaScript. We will start off with the
simplest—code completion.

HTML and JavaScript Tools

[160]

Getting the most out of JavaScript code
completion
JavaScript is a difficult language to provide code completion for. Luckily, PyCharm
has powerful tools to make code completion a lot better in JavaScript.

Using JSDoc
There are two things that make JavaScript code completion in PyCharm
outstanding—smart type completion and support for documentation, including
TypeScript stubs. If you don't know what that means just yet, let me demonstrate.
JavaScript has support for JSDoc; this means that the documentation and the types
will help out in code completion. Let's start off by making an Immediately Invoked
Function Expression, and in it, let's create a function called greetNames:

(function () {

 function greetNames(names) {
 for(var i = 0; i < names.length; i ++) {
 console.log("Hello, " + names[i])
 }
 }

})();

While writing the preceding code, PyCharm will provide several completion
suggestions for the function, and when names is made a parameter, names.length
should automatically come up as a viable option. However, in JavaScript, we often
want specific suggestions as in many cases, PyCharm offers us a host of possible
code completions that we do not want. One way to fix this issue is to include a JSDoc
stub. With stubs added, our code looks similar to this:

/**
 * This function greets all the names in an array of names
 * @param {Array} names
 */
function greetNames(names) {
 for(var i = 0; i < names.length; i ++) {
 console.log("Hello, " + names[i])
 }
}

Chapter 10

[161]

In the stub, we specify that names is an array, and so, when we go for suggestions,
PyCharm will offer up length as one of the very first suggestions, and this is because
PyCharm understands that names is an array. If we get the quick documentation on
names, we see that PyCharm sees names as an array.

This kind of documentation will also help when we make the function call.

This can become very useful when dealing with large code bases. Also, note that
PyCharm understands the type of the anObject variable as well. Inserting a JSDoc
stub will come automatically if you want it to. Go to the line above the function
declaration, type out /** and then hit Enter. PyCharm will automatically create
the @param lines for you.

HTML and JavaScript Tools

[162]

Using libraries
When writing client-side JavaScript, we almost always use third-party libraries.
This can often be difficult for PyCharm to understand when you have a lot of them.
Furthermore, if we're using the minimized JavaScript files, PyCharm will not be
able to give us the kind of code completion that we expect if we had written these
files ourselves with the proper documentation stubs. This problem is remedied by
including library support in a specific JavaScript file. Inside the JavaScript file, we
can right-click anywhere and choose to add a supported library; in this case, we are
going to add support for jQuery.

This will allow PyCharm to offer code completions based on jQuery's official
documentation.

PyCharm is not limited to just jQuery or just the most popular set of libraries, it
can support a wide range of libraries because of the TypeScript stubs made by the
TypeScript community. In order to add support for a library, we simply need to
head over to the Libraries section inside the JavaScript preferences.

Chapter 10

[163]

There is of course official library support, but more interestingly, we can also
download support for lesser-known libraries (such as underscore) because
of the TypeScript stubs.

HTML and JavaScript Tools

[164]

In this example, we are going to try and download support for underscore.js.

Once we've successfully downloaded the stub file for underscore, it will appear as a
library that is supported by PyCharm:

It is best to disable the Enabled box, and only assign library support to the files when
you need it, otherwise, your suggestions will get overly cluttered.

Chapter 10

[165]

We can now choose to include underscore as one of our libraries inside the file:

So, if we want to use underscore functions now, we get code completion as well as
type checking (because TypeScript is a statically-typed language):

In most cases, I prefer using TypeScript stubs over the community or official
documentation simply because the stubs are of very high quality and always
provide type information that can be very handy when managing large projects.

HTML and JavaScript Tools

[166]

Transpiled to JavaScript languages
PyCharm supports TypeScript and CoffeeScript (not the iced version though). Support
extends quite far: code completion, syntax highlighting, and the automatic creation
of map files are supported. Furthermore, automatic watchers to turn these files into
.js files are added when you initialize a TypeScript or CoffeeScript file. Although no
templates exist for automatic TypeScript or CoffeeScript creation, simply creating a
file with a .ts or .coffee extension will cause PyCharm to recognize those files and
provide the required code completion/syntax highlighting for those languages.

As soon as we create the file, PyCharm will prompt us to add the watcher that
compiles this TypeScript file into a JavaScript file. It will also generate a map
file to aid with debugging.

Chapter 10

[167]

We can configure the watcher in the dialog window that pops up when we choose to
add the watcher.

This may seem intimidating at first, but you really don't have to do anything other
than say OK to all of this. We will go into depth about this later when we will talk
about watchers. For now, the two most important parts of the whole dialog window
are [1] and [2]. Number [1] indicates the TypeScript executable that will be used to
compile your TypeScript file; make sure that you have TypeScript installed, and if
you don't have it, simply install it by using the following command:

npm install –g typescript

HTML and JavaScript Tools

[168]

Number [2] indicates when the console will be shown. As you write in your
TypeScript file, PyCharm will automatically run the executable every single time you
make a pause or save the file (this can be changed, however) and produce two files, a
.js file and a .map file (which helps while debugging).

If the compilation causes an error, only then will you see the console pop up at the
bottom of the PyCharm's window.

Notice how the window shows you what command was executed, and what
the console output was. When we finally finish typing out class, the console
will disappear.

This support is identical for CoffeeScript, with the only difference being that
CoffeeScript will have a separate executable. However, ES6 support (using traceur)
is a little different. In this case, we need to make sure that we have traceur installed;
you can do that with the following command:

npm install –g traceur

Chapter 10

[169]

To support ES6, we need to tell PyCharm that we want to use ES6 as our JavaScript
standard. To do this, all we need to do is change the version number of ECMAScript
that PyCharm is using.

Unlike last time where we created a specific extension, to use ES6 all we need to do is
create a new .js file, and PyCharm will ask us to add a traceur watcher for it.

And once we add the watcher, the same thing will happen as it did for TypeScript, a
dialog window will pop up, asking for an executable and other options.

Support for libraries and frameworks
Support for third-party frameworks is done through plugins. There are so many
plugins that aid JavaScript development that it is impossible to cover them all.
However, this section talks about the highlights of both the client- and server-side
frameworks that are supported.

HTML and JavaScript Tools

[170]

Client-side frameworks
Through plugins, PyCharm has excellent support for both client-side and server-side
JavaScript frameworks. Think of PyCharm Professional as the PyCharm community
+ WebStorm (an IDE for building JavaScript applications).

On the client-side of things, PyCharm has support for AngularJS, and the support
extends to having quick fixes for directives, the creation of controllers, and syntax
highlighting for AngularJS templates.

PyCharm also supports Bower out of the box.

Server-side frameworks and NodeJS

PyCharm can support NodeJS through plugins. If we install the NodeJS plugin, we
will not only gain node support, but also gain access to custom project creation, with
the Express framework. The NodeJS plugin also comes with support for managing
the node modules (through npm) you have installed in your project.

Chapter 10

[171]

JavaScript Code Quality Tools

PyCharm supports a wide range of linters and other quality tools. However, please
note that some tools require you to install node on your machine as well as point the
node package that does the linting or the hinting for you.

HTML and CSS
HTML and CSS are well supported in PyCharm. This section is by no means
exhaustive, but does provide a detailed account of the tools that will help you stay
productive. PyCharm provides tag completion for HTML, but it has so much more
than this that tag completion is the least exciting feature in its feature set.

Emmet
Emmet is essentially shorthand HTML and CSS. You type the abbreviations of what
you want, hit Tab, and PyCharm will automatically convert that shorthand into the
desired tags and subelements.

For example, if we were to type in div.container, we would be creating a div tag
of the container class. In other words, the following:

div.container

turns into:

<div class="container"></div>

HTML and JavaScript Tools

[172]

with your caret automatically placed inside the div tag.

This section won't teach you the basics of Emmet; the Emmet documentation site
does a much better job: http://docs.emmet.io/

However, PyCharm has its own twist on Emmet, and this includes extra support for
XML tags as well as automatic insertion of vendor prefixes that can be customized
inside the Emmet subjection of the Editor settings. Depending on what CSS selector
you're using, you can have PyCharm autocomplete browser prefixes for you and
customize what browser prefixes you support. The default prefixes are updated with
every PyCharm update.

What Emmet for CSS essentially means is that now when we type in an attribute, such
as animation-delay, we will get browser-specific attributes written for us as well.

http://docs.emmet.io/

Chapter 10

[173]

Emmet also supports surround templates. For example, we can make a selection, invoke
Surround With…, and use Emmet abbreviations to surround the relevant HTML.

Live debugging
Live debugging is one of the best PyCharm features. It renders your HTML and CSS
in real time, meaning that the changes you make inside your editor are reflected
in your web browser. It also channels Chrome's JavaScript console directly to
PyCharm's console, meaning that you can control your web browser directly from
within PyCharm.

Installing the plugin
However, before we are allowed to use live edit or live debugging, we need to make
sure that we have the JetBrains IDE Support extension installed.

HTML and JavaScript Tools

[174]

Once this is installed, if we debug an HTML page, PyCharm will automatically
figure out how to set up the connection between Chrome and itself. I wouldn't
recommend messing with the settings of the extension, but I'm going to show
you how to mess around with it anyway.

In most versions of Chrome, we see the JetBrains extension after we've turned on
developer mode. In doing so, we gain access to the Options menu.

Inside Options, we have a few things that we can change. First of all is the port
number. JetBrains uses a pretty specific port number, so don't change it unless
you absolutely need to (in case you see a connection refused error pop up
somewhere in PyCharm).

However, there is an option that allows you to whitelist a few sites that you want to
make cross-site requests to (in case your security options are preventing a request to
a specific site).

Chapter 10

[175]

Debugging the file

Unfortunately, I can't show you the pure awe that you feel when using live
debugging, I simply can't convey it through a book (because it's something
that's happening). But here are a few things to note:

•	 At the start, you will see a notification in Chrome, saying JetBrains IDE
Support is debugging this tab.

•	 Any change to the HTML file will be reflected in the browser. In case it isn't,
you can always use the Reload in Browser command.

•	 CSS changes are also reflected instantaneously, even with SASS and SCSS
files, since PyCharm incrementally builds them.

•	 You can run JavaScript inside the console that pops up in PyCharm, and see
it reflected in the console inside Chrome. Try it! Just run alert("I am from
the future"); into the console and see what happens.

•	 Whatever you select with your cursor in PyCharm will be directly reflected
in Chrome.

•	 Make sure to disconnect after your debugging session, otherwise, the port
used by PyCharm stays open.

•	 You can set breaking inside your JavaScript files as well as your transpiled to
JavaScript files and debug the script when it's executing from PyCharm.

This is such a neat feature that I always debug when I edit. This may just be
because I'm never really sure if my styles work the way I want them to, but
it's good fun anyway.

HTML and JavaScript Tools

[176]

File watchers
File watchers are language and framework agnostic, but I feel that they are most
relevant when working with HTML, CSS, JavaScript, and transpiled languages.
Previously, we talked a little about file watchers in this chapter as I wanted to
showcase the simplest way of setting up a watcher that suits most needs. However,
the file watchers in PyCharm are very powerful and allow you to leverage macros.

File watchers essentially run a tool on a kind of specified file after that file has been
changed. For example, most of the preceding templates are for transpiled languages
such as CoffeeScript and LESS. However, some of them carry out different tasks such
as the CSSE CSS Optimizer template. Let's start off by looking at a sample template.

Chapter 10

[177]

•	 Immediate file synchronization: This means that the file watcher will run
the desired task if there is a change in the file; it does not matter whether the
file is saved or not. This is enabled, by default, on most templates, but if your
tool takes time to run, then disabling it would be best.

•	 Track only root files: This is a more subtle feature. Root files are files not
included in any other file. In other words, the files that the HAML watcher
is watching are the files that aren't imported anywhere in any other file. You
might think that this is rather useless, but consider a language such as SCSS,
which can import other SCSS files. We have a main SCSS file that we are
actually going to import into our HTML. This means that when any file that
is imported is changed, the watcher only runs on the main SCSS file. This
saves a lot of compile time.

HTML and JavaScript Tools

[178]

•	 Trigger watcher regardless of syntax errors: This is self-explanatory.
However, I highly recommend that you keep it turned off since the console
popping up and then automatically closing down again can be rather
annoying since screen space is eaten up.

•	 Output Filters…: This allows you to use PyCharm to recognize the output
from the watcher. For example, the TypeScript watcher can recognize the file
path and the line numbers on which the error has occurred because of the
output filter that it has enabled by default.

Due to this output filter, PyCharm can make links from the output console to
the error in question. The $<ALLCAPS>$ variables are macros. These macros
are used to recognize where the file is and the line and column number of the
error message.

•	 File type: This indicates the file type. You can only watch files with
extensions recognized by PyCharm. So, in order to add a watcher for a file
that is not normally recognized by PyCharm, you need to add recognition for
that file by navigating to Editor | File and Code Templates

•	 Scope: This specifies the scope of the watcher. Although the default is what
you always ought to be using, there are many other options as well that you
can explore, for example Open Files.

•	 Program: This links program/executable to the program that is doing
the task.

•	 Arguments: Don't ever change this if you don't know what you're doing, it's
easy to get it wrong. These are basically the arguments that are fed into the
program. Notice how macros are used here again to specify a generic way of
passing in parameters.

Chapter 10

[179]

•	 Insert macro…: This allows you to insert macros and preview them as well.
Please note that it has a few quirks, for example, the Python interpreter is
pointed to as $JDKPath$.

•	 Working directory: This also takes in macros but also accepts hardcoded file
paths. This is the directory of where the output file will go.

•	 Output paths to refresh: Once again, a macro is used here to refer to the
compiled file. If the files were not refreshed, then live debugging would
not seem to work since the compiled files would not be refreshed.

•	 Create output file from stdout: Only use this if the output of your program
gets directly printed into stdout.

Summary
This is by no means an exhaustive account of PyCharm's web development
prowess, but it does showcase its unique features that I myself have come to deeply
appreciate. We focused on code completion and support for transpiled languages
in JavaScript and took a look at the tools that will boost our HTML and CSS
productivity. Live debugging is probably the best tool of the lot, and something
that you should take full advantage of. File watchers were also covered in detail as
they offer a very powerful way of handling task management and can be a good
alternative to Gulp and Grunt.

[181]

Web Development
with PyCharm

In this last and final chapter, we are going to look at the database and framework
support that PyCharm provides out of the box. PyCharm allows you to connect
almost any kind of database, and will automatically download JDBC drivers for you
to act as an interface. It also has support for multiple web frameworks such as Flask,
Django, Pyramid, and GAE. This chapter introduces you to some of the best tools
that PyCharm has to offer for web development. However, this chapter does not
go into great depth; instead it opts to showcase the most useful features. Here is an
outline of what we're going to cover:

•	 Database tools: This section will deal with connecting to databases and using
PyCharm as a complete interface to the database. Please note that, for now,
PyCharm only supports RDBMSes.

•	 Web frameworks: This section will look into the different web frameworks
that PyCharm supports, starting with common tools and then eventually
heading off to framework-specific subtopics.

Database tools
PyCharm supports interfacing with almost any database. Once you give PyCharm a
created database, it can give you the schema of the database, generate a diagram of
all the tables and how they are connected, and provide you with SQL writing tools
that have code completion.

Web Development with PyCharm

[182]

Adding a data source
In PyCharm you cannot create databases, but provides facilities to manage and
query them. Once you are granted access to a certain database, you can configure one
or more data sources within PyCharm that reflect the structure of the database and
store the database access credentials.

Connecting to a database
Adding an existing database is a simple process of configuring the hostname and
port and providing the authentication details required for the connection. It might
take a while to initially configure the database since PyCharm will need to download
JDBC drivers in order to do so. To add a database, we must first select a type.

Chapter 11

[183]

In this case, we are going to connect to an existing PostgreSQL database.

When adding a database, we can set its scope. When we set the scope to Project [1], we
tell PyCharm that this database is only relevant for this particular project. If we set it to
IDE, the database will be available on every single project in our database panel.

[2] is the name of the database we want to connect to and [3] will be generated
automatically as the connection URL. The reason that we cannot test the connection
using [4] is because PyCharm does not have the downloaded drivers; we can fix this
by just clicking on the link in [5].

Web Development with PyCharm

[184]

Once we download the files, we should be able to see that PyCharm is using the
PostgreSQL drivers in the Driver files subsection.

After installing the drivers and setting the credentials, we should now be able to test
our connection.

Adding files
We can even add .ddl files or sqlite databases (.db files) just by dragging and
dropping them into the database panel. We can then query the files as if they were
any other database.

Chapter 11

[185]

Using the SQL console
Using the SQL console in PyCharm gives us many features, including code
completion, error detection, diagram generation, and much more. Let's start
by firing up the console for the newly added database.

The console allows us to input SQL into the database, and the first thing we are
going to do is create a schema called demo.

Once we run the SQL, we should expect to see the changes reflected in the database
panel on the right-hand side since the statement was executed as shown in [2]. Our
first point of call might be to synchronize using [1], but even that will not solve the
problem because PyCharm offers you better code completion by only taking into
consideration the schemas that you want considered.

Web Development with PyCharm

[186]

The solution is to change the list of schemas that PyCharm does take into
consideration using [3], which will allow us to once again configure our database.

Underneath the Schemas & Tables tab, we must enable the postgres.demo schema.
Once enabled, we can set the schema as our default schema. If we disable all the
other schemas except for the demo schema, PyCharm will only provide us with code
completion from the demo schema. This makes code completion a lot faster, and as a
result, makes PyCharm a lot more responsive. This feature also extends to tables.

Chapter 11

[187]

We can now begin creating a table called students under the demo schema.

Note how PyCharm offers us possible types in [1]. We can also see that there are a
few snippets available to us in [2]. PyCharm also provides table-specific completions
and catches silly mistakes.

In [1], we forgot to add a name for the constraint, and in [2], we are provided with
age as a possible completion. Note that other completions such as function calls
are also suggested.

Web Development with PyCharm

[188]

The complete schema looks similar to this:

CREATE TABLE students (
 id SERIAL PRIMARY KEY,
 fname VARCHAR(255),
 lname VARCHAR(255),
 age INTEGER CONSTRAINT minimum_age CHECK (age > 4)
);

It is a very simple table, but with it, we can illustrate a few points. First, the console
only allows you to execute one selection or a statement at a time. This means we have
to select the SQL we want to execute or place our cursor on a statement; otherwise, the
green button will remain grayed out and Ctrl + Enter will result in nothing happening.

Chapter 11

[189]

This means that if we have multiple statements as in the preceding screenshot, we
need to select all of them; otherwise, only the statement we currently have our cursor
on will execute. Once we have selected the statements we want to be executed, the
results will appear in the console.

Web Development with PyCharm

[190]

Parameterized statements
PyCharm allows us to reuse statements using parameters, and is particularly useful
when we want to enter a sequence of statements. In this case, we want to create three
students, so we are going to parameterize the statement using question marks:

Opening up the parameters window (indicated by the red arrow) will allow us to
enter different values for the three parameters. Please note that this window might
pop up on the right-hand side as an attachment to the database console.

Console history

We can reuse any of the statements we've entered into a console session. The console
sessions are saved for each project; so even if we were to close PyCharm, the history
would remain intact.

Chapter 11

[191]

Database diagrams
If we want a bird's eye view of how the tables in a certain schema are related to each
other, we can use PyCharm's database visualization tools.

In the preceding screenshot, we first selected the schema and then we visualized
the tables in the schema; if we wanted to see the relationships between just a subset
of the tables in the schema, we could just select those tables and then visualize only
those tables in the selection in addition to the tables that they're taking a reference
from. So, if we were to visualize student_courses, we would get a visualization of
all three tables, because student_courses is related to the other two tables as well.

Exporting data
PyCharm allows us to export pretty much anything from a database, ranging from
the contents to a single table in JSON or CSV to the DDL required to construct all the
tables in a schema. There are so many options here that we can only dive into a few,
and talk about some of the unexpected behavior we see.

Web Development with PyCharm

[192]

Copying DDLs
DDLs allow you to recreate tables. If we were to select a schema, table, or a subset of
tables in a schema, PyCharm would be able to generate the DDL required to create
all the tables that fall under the schema or our selection of tables. So, for example, if
we copy the DDL for our courses: table, we simply select the courses as our table
and copy the DDL.

The resulting DDL will be the following:

CREATE TABLE courses (
 id SERIAL PRIMARY KEY NOT NULL,
 description VARCHAR NOT NULL);

We can do the same thing by selecting a schema, table, or a set of tables within
a schema. However, note that the SQL generated may differ from what was
originally entered.

Chapter 11

[193]

Exporting the table contents

We can export the data in our tables in a myriad of ways. As shown in the preceding
screenshot, we can export pretty much every file type imaginable from CSV to JSON.
Furthermore, we can customize how we export CSVs, TSVs, and HTML tables in
configure extractors.

Web Development with PyCharm

[194]

We can even configure new formats of export (based on the current formats that
already exist) as separate options using the + icon indicated by the red arrow.

Web frameworks
PyCharm supports a wide range of Python frameworks. All the frameworks share
common features such as setting the templating directory and mapping views to
those templates; however, they also have their own unique feature sets, such as
Django having very good code completion for its ORM. In the following subtopics,
we will discuss common and specialized features for the different frameworks that
PyCharm supports.

Although SQLAlchemy is not a web framework, PyCharm supports it just like
it supports Django's ORM, giving you good code completion and being able to
generate model dependency diagrams.

Common features
All the frameworks share some common features such as project creation. Here are a
few of the common features that will help you with development in any framework.

Chapter 11

[195]

Support for templating engines
Most frameworks will serve templated files. PyCharm supports a multitude of
Python-based templating engines. Setting the templating engine and the template
folder allows us to get code completion inside our templates. We can demonstrate
this by first creating a Flask (or any other framework, for that matter) project. All we
need to create a Flask project is an app.py file like this:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def index():
 return "Hello World!"

if __name__ == '__main__':
 app.run()

The preceding code is very simple. It creates a simple Flask application using
Flask(__name__), then assigns it to the variable app, registers a route for the
/ path, and finally, runs it using app.run(). The route function simply returns
Hello World. We are going to change the index function to render a template. The
first thing we're going to do is create Template Folder in our current directory and
mark it as a template directory.

Web Development with PyCharm

[196]

Once we've set this, we need to set the templating language as well.

Flask uses Jinja2 by default, but we can use other templating languages as well such as
Mako. We can now create an index.html file and get code completion for variables,
but before we do that, let's modify our index function to render a template.

Chapter 11

[197]

In the preceding example, we are using render_template to render the Jinja2
template file in question. Once we input index.html as our first parameter,
PyCharm understands that such a template file does not exist in our templates
directory and allows us to use a quick-fix for it (Alt + Enter). If we choose the Create
template 'index.html' option, PyCharm will create the index.html file inside our
Template Folder.

Furthermore, this template file will be linked to our view file and we will be able to
get code completion for the variables we pass onto the template. In this case, we can
see that message is popping up as an option when we type in m.

Web Development with PyCharm

[198]

Customized project creation
PyCharm allows us to create projects for the different frameworks, with boilerplate
code. For example, if we choose to create a Pyramid by navigating to File | New
Project… | Pyramid, we will see a lot of customized options in More Settings.

This means that PyCharm will automatically set Templates folder, create all the
boilerplate files and download as well as install all the libraries necessary for the
project we wish to create. This is very useful for quickly creating a project, especially
on a Windows system.

If we were to create a Google App Engine application, the project creator would ask
for our app ID in the creation window. All the Project Creators are customized to their
individual frameworks with some common options such as the templates folder.

However, it is worth noting that all this will create files and install packages for
you; it does not mean that the files themselves will be adapted to our choices. For
example, if we were to create a Flask project using Mako as our templating engine, it
would not mean that Flask would render Mako templates, it would still render using
the default Jinja2 templating engine. We would still need to configure Flask to use
Mako as the templating engine instead of the default one.

Chapter 11

[199]

Debugging in templates
PyCharm allows you to set breakpoints inside our templates. This means that when
we are debugging (not just running) our application, PyCharm will stop at the
template's breakpoint. We don't need to do anything other than click on the line on
the left-hand side to enable a breakpoint.

Django
Django is by far the best supported Python framework in PyCharm. Most of the
support lies in code completion (and will therefore become self-evident), so this
section looks at the tooling for Django.

Setting up Django
For a Django project that was not created by the PyCharm project creator, we have a
little bit of configuration that we need to take care of.

Web Development with PyCharm

[200]

First off, if we have an old Django project, PyCharm will offer to convert it.

If we click on Details…, we will get a list of all the things that will be changed.

However, if PyCharm cannot recognize the project as a Django project, we need to
point PyCharm to the correct locations inside Languages & Frameworks | Django.

Chapter 11

[201]

Model dependency diagrams
PyCharm allows us to take a look at how Django models are related. All we need to
do is right-click on any Django model to see the models inside a certain package.

This will show the dependency diagram for all the Django models that will be
created using Python manage.py migrate for that particular package. We can even
generate diagrams for individual models (by right-clicking on the relevant class and
then selecting the visualization option that we want).

This will generate a model dependency diagram, but only for the model Post in the
preceding example.

Web Development with PyCharm

[202]

Manage.py tasks
PyCharm allows you to quickly execute manage.py tasks from a window (Alt + R).

In my own development, I almost never use this. I instead opt to use the command
line and run the manage.py script myself. However, this can be very useful for
Windows systems since you don't have handy tools such as workon, which
automatically links your virtualenv to your project.

Django Console

Chapter 11

[203]

Whenever we open up the console for a Django project, we are going to get a
specialized console for Django that is essentially a PyCharm version of the manage.py
shell. What this basically means is that we get all the benefits of using manage.py's shell
command as well as the code completion in the console session. We can even modify it
inside the Django Console settings. In the previous versions of PyCharm, the Django
Console was a separate console to the Python console, but in the newer versions, they
have been merged.

Summary
In this chapter, we looked at PyCharm's powerful web-centric tools. Databases
are well supported and there are many framework-agnostic tools that we can take
advantage of. These tools are useful for frameworks that aren't officially supported
by PyCharm. We also looked at the Django support that PyCharm provides.

What I love best about Django support is the automatic project creation, support in
the console, and amazing code completion for Django ORM models (which are also
present for SQLAlchemy).

PyCharm's support for web development and its approach to decoupled features
allow developers to quickly get up to speed with most of the feature sets.

[205]

Index
A
Ace Jump 44, 45
Attach to Process… 117

B
breakpoints

debugging 102-105
running 102, 103
setting 102-105

C
Change lists 156, 157
Changes panel

about 150-155
Diff colors, changing 155

client-side frameworks 170
code completion

about 48-52
docstrings, adding 56-60
runtime types, collecting 55
skeletons, in PyCharms closet 61, 62
type information, adding 56-60

code, reading
about 72
diagrams option 73-75
lens mode 72, 73
method hierarchies 75-77

code, writing
about 66
doc_mode 70, 71
multiple cursors 69, 70
refactoring 67, 68

console
debugging from 116, 117

CSS 171
Cyclic Word Completion 48

D
database tools

about 181
database, connecting to 182-184
data source, adding 182

data, exporting
about 191
DDLs, copying 192
table contents, exporting 193, 194

Django
about 199
console 203
manage.py tasks 202
model dependency diagrams 201
setting up 199, 200

docstrings 56-60

E
Early Access Program (EAP) 122
editor plugins

about 9, 64-66
colors 10-12
style hierarchies 13, 14

Emmet
about 171-173
URL 172

F
files

adding 184
ignoring 145, 146

[206]

file templates 134
File watchers 176-179

H
Hippe Complete 48
HTML 171

I
IdeaVim 128-130
Immediately Invoked Function

Expression 160
IntelliJ ecosystem 121-123
intentions 52-54
interpreters

about 79
adding 80, 81
packages, installing 84, 85
paths, settings 86
remote interpreters 87-89
through terminal 83
Vagrant, using in PyCharm 90-92
virtualenvs, creating 82

IPython Notebook
setting up 62-64

J
JavaScript

client-side frameworks 170
Code Quality Tools 171
server-side frameworks 170
support 159
support, for frameworks 169
support, for libraries 169
Transpiled to JavaScript languages 166-169

JavaScript code completion
JSDoc, using 160, 161
libraries, using 162-165

JetBrains IDE Support extension 173
JetBrains PyCharm blog

URL 123

K
keyboard shortcuts

about 2

finding 25, 26
setting 27-33

key mapping file
URL 33

keymaps
about 24, 25
Mac, troubleshooting on 33-35
shortcuts, finding 25, 26
shortcuts, setting 27-33

L
layout

about 5
minimalistic layout 5-9

lens mode 72, 73
Live debugging

about 173
file, debugging 175
plugin, installing 173

live templates. See snippets

M
Macro

about 38
Go to definition or navigate

to declaration 38, 39
Project panel 41, 42
Search Everywhere 40
Switcher tool 41

method hierarchies 75
Micro

about 43
Ace Jump 44, 45
Structure panel 43

N
navigation

options 37

O
Omni

about 37
Back and Forward action 37, 38

[207]

P
plugin 127-129
Prefix Key 30
processes 112-116
profiling 118, 119
PyCharm

basics 2, 3
coding 9
editor 9
fonts 3
layout 5
minimalist layout 5-9
support for 123

PyCharm console
about 93-95
configuring 95-99

Python Package Index (PyPI) 79

R
refactoring 67-69
remotes

adding 147, 148

S
server-side frameworks 170
snippets 137-140
Solarized Dark

about 18
downloading 18-20
installing 18-20

SQL console
database diagrams 191
history 190
parameterized statements 190
using 185-188

Structure panel 43
surround templates 141
Switcher tool 41

T
templates

new templates, creating 135, 136
TextMate bundles 21
theme

importing 17
threads 112-114

V
Vagrant

using, in PyCharm 90-92
variables 135
VCS menu 148-150
Velocity Template Language (VTL)

about 135
URL 135

version control
initializing 144

virtualenv
creating 82
URL 79

W
web frameworks

about 194
features 194
project creation, customized 198
templates, debugging in 199
templating engines, support for 195-197

workflow
debugging 106-112

Y
YouTrack.JetBrains

about 124-126
URL 126

Thank you for buying
Mastering PyCharm

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

NetBeans IDE 8 Cookbook
ISBN: 978-1-78216-776-1 Paperback: 386 pages

Over 75 practical recipes to maximize your
productivity with NetBeans

1.	 Increase developer productivity using features
such as refactoring and code creation.

2.	 Test applications effectively using JUnit,
TestNG, and Arquilian.

3.	 A recipe-based guide filled with practical
examples to help you create robust applications
using NetBeans.

Learning Python Data
Visualization
ISBN: 978-1-78355-333-4 Paperback: 212 pages

Master how to build dynamic HTML5-ready SVG
charts using Python and the pygal library

1.	 A practical guide that helps you break into the
world of data visualization with Python.

2.	 Understand the fundamentals of building
charts in Python.

3.	 Packed with easy-to-understand tutorials for
developers who are new to Python or charting
in Python.

Please check www.PacktPub.com for information on our titles

Mastering Python for Data
Science
ISBN: 978-1-78439-015-0 Paperback: 294 pages

Explore the world of data science through Python
and learn how to make sense of data

1.	 Master data science methods using Python and
its libraries.

2.	 Create data visualizations and mine for patterns.

3.	 Advanced techniques for the four fundamentals
of data science with Python—data mining,
data analysis, data visualization, and
machine learning.

Learning Data Mining with Python
ISBN: 978-1-78439-605-3 Paperback: 344 pages

Harness the power of Python to analyze data and
create insightful predictive models

1.	 Learn data mining in practical terms using a
wide variety of libraries and techniques.

2.	 Learn how to find, manipulate, and analyze
data using Python.

3.	 Step-by-step instructions on creating real-world
applications of data mining techniques.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting the Right Look
	A short note on keyboard shortcuts
	The basics
	The first change – fonts
	The layout
	The minimalist

	Beautiful code
	Editor
	Getting the right colors
	Style hierarchies
	Styling on steroids

	Imports and exports
	TextMate bundles
	Summary

	Chapter 2: Understanding the Keymap
	Different keymaps
	Finding shortcuts
	Setting shortcuts
	Troubleshooting on Mac
	Summary

	Chapter 3: Getting Places
	Omni
	Back and Forward

	Macro
	Go to definition or navigate to declaration
	Search Everywhere
	The Switcher tool
	The Project panel

	Micro
	The Structure panel
	Ace Jump

	Summary

	Chapter 4: Editing
	Improving code completion
	Understanding what intentions can do for you
	Collecting runtime types
	Adding docstrings and type information
	The skeletons in PyCharm's closet

	Setting up IPython Notebook
	Editor plugins
	Writing code
	Refactoring
	Multiple cursors
	doc_mode

	Reading code
	The lens mode
	Diagrams
	Method hierarchies

	Summary

	Chapter 5: Interpreters and Consoles
	All about interpreters
	Adding interpreters
	Creating virtualenvs
	Through the terminal
	Installing packages
	Setting paths
	Remote interpreters
	Using Vagrant in PyCharm

	The PyCharm console
	Console configuration

	Summary

	Chapter 6: Debugging
	Running, debugging, and setting breakpoints
	Debugging workflow
	Dealing with threads and processes
	Processes

	Debugging from the console
	Attach to Process…
	Profiling
	Summary

	Chapter 7: The PyCharm Ecosystem
	The IntelliJ ecosystem
	Support for PyCharm
	YouTrack.JetBrains
	What makes a good plugin?
	Summary

	Chapter 8: File Templates and Snippets
	File templates
	Understanding variables
	Making new templates

	Snippets (live templates)
	Surround templates
	Summary

	Chapter 9: Version Control Integration
	Initializing version control
	Ignoring files
	Remotes
	The VCS menu
	The Changes panel
	Changing Diff colors

	Change lists
	Summary

	Chapter 10: HTML and JavaScript Tools
	JavaScript support
	Getting the most out of JavaScript code completion
	Using JSDoc
	Using libraries

	Transpiled to JavaScript languages
	Support for libraries and frameworks
	Client-side frameworks
	Server-side frameworks and NodeJS

	JavaScript Code Quality Tools

	HTML and CSS
	Emmet
	Live debugging
	Installing the plugin
	Debugging the file

	File watchers

	Summary

	Chapter 11: Web Development
with PyCharm
	Database tools
	Adding a data source
	Connecting to a database
	Adding files

	Using the SQL console
	Parameterized statements
	Console history
	Database diagrams

	Exporting data
	Copying DDLs
	Exporting the table contents

	Web frameworks
	Common features
	Support for templating engines
	Customized project creation
	Debugging in templates

	Django
	Setting up Django
	Model dependency diagrams
	Manage.py tasks
	Django Console

	Summary

	Index

