Mastering

Concurrency

in Python

Mastering Concurrency
in Python

Create faster programs using concurrency, asynchronous,
multithreading, and parallel programming

Quan Nguyen

BIRMINGHAM - MUMBAI

Mastering Concurrency in Python

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shahnish Khan

Content Development Editor: Zeeyan Pinheiro
Technical Editor: Romy Dias

Copy Editor: Safis Editing

Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Alishon Mendonsa

Production Coordinator: Aparna Bhagat

First published: November 2018
Production reference: 1231118
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78934-305-2

www.packtpub.com

http://www.packtpub.com

To Tiffany, my incredible mentor and friend. Your guidance and
friendship made all of this possible

— Quan Nguyen

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Quan Nguyen is a Python enthusiast and data scientist. He is currently a data analysis
engineer at Micron Technology, Inc. With a strong background in mathematics and
statistics, Quan is interested in the fields of scientific computing and machine learning.
With data analysis being his focus, Quan also enjoys incorporating technology automation
into everyday tasks through programming.

Quan's passion for Python programming has led him to be heavily involved in the Python
community. He started as a primary contributor for the book Python for Scientists and
Engineers and various open source projects on GitHub. Quan is also a writer for the Python
Software Foundation and an occasional content contributor for DataScience.com (part of
Oracle).

I'm grateful to my parents for their unwavering support. Special thanks to my sister, who
somehow always managed to remind me of the truly important things in life. To aunt Y
and uncle Nam: thank you for helping me in ways I never knew I needed.

A big thanks to my friends at Sigma Nu for always pushing me forward. To Karan, who
started this amazing journey. Thank you, Zeeyan and Romy, for your dedication. To
technical reviewers, for your insightful feedback.

About the reviewers

Romain Picard is currently a data science engineer. He has been working in the digital TV
and telecommunications industry for 20 years. His daily work consists of data
manipulation, machine learning model training, and model deployment. Most of these
tasks are based on Python code.

He was previously a media software architect and a software developer. In these previous
positions, he designed and developed TV and OTT players that have been used in millions
of set-top boxes. Romain is especially interested in algorithms, and is constantly hunting for
the most effective algorithm for each given use case.

Yogendra Sharma is a developer with experience of the architecture, design, and
development of scalable and distributed applications. He was awarded a bachelor's degree
from Rajasthan Technical University in computer science. With a core interest in
microservices and Spring, he also has hands-on experience with technologies such as AWS
Cloud, Python, J2EE, Node.js, JavaScript, Angular, MongoDB, and Docker. Currently, he
works as an IoT and cloud architect at Intelizign Engineering Services, Pune.

Simone Marzola is a software engineer and technical lead with 10 years of experience. He
is passionate about Python and machine learning, which have led him to be an active
contributor in open source communities such as Mozilla Services and the Pylons Project, as
well as involvement in European conferences as a speaker. Simone has been a lecturer on
the BIG DIVE data science and machine learning course. He is currently a CTO and Scrum
Master at Oval Money.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

Chapter 1: Advanced Introduction to Concurrent and Parallel
Programming
Technical requirements
What is concurrency?
Concurrent versus sequential
Example 1 — checking whether a non-negative number is prime
Concurrent versus parallel
A quick metaphor
Not everything should be made concurrent
Embarrassingly parallel
Inherently sequential
Example 2 — inherently sequential tasks
I/0 bound
The history, present, and future of concurrency
The history of concurrency
The present
The future
A brief overview of mastering concurrency in Python
Why Python?
Setting up your Python environment
General setup
Downloading example code
Summary
Questions
Further reading

Chapter 2: Amdahl's Law

Technical requirements
Amdahl's Law

Terminology
Formula and interpretation

The formula for Amdahl's Law

A quick example

Implications
Amdahl's Law's relationship to the law of diminishing returns
How to simulate in Python
Practical applications of Amdahl's Law
Summary

Table of Contents

Questions
Further reading

Chapter 3: Working with Threads in Python

Technical requirements
The concept of a thread
Threads versus processes
Multithreading
An example in Python
An overview of the threading module
The thread module in Python 2
The threading module in Python 3
Creating a new thread in Python
Starting a thread with the thread module
Starting a thread with the threading module
Synchronizing threads
The concept of thread synchronization
The threading.Lock class
An example in Python
Multithreaded priority queue
A connection between real-life and programmatic queues
The queue module
Queuing in concurrent programming
Multithreaded priority queue
Summary
Questions
Further reading

Chapter 4: Using the with Statement in Threads

Technical requirements
Context management
Starting from managing files
The with statement as a context manager
The syntax of the with statement
The with statement in concurrent programming
Example of deadlock handling
Summary
Questions
Further reading

Chapter 5: Concurrent Web Requests

Technical requirements
The basics of web requests
HTML
HTTP requests

42
42

43
44
44
44
45
47
51
51
51
52
53
55
58
58
59
59
61
61
62
63
67
68
69
69

70
70
71
71
72
74
74
75
77
77
78

79
79
80
80
82

[ii]

Table of Contents

HTTP status code
The requests module
Making a request in Python
Running a ping test
Concurrent web requests
Spawning multiple threads
Refactoring request logic
The problem of timeout
Support from httpstat.us and simulation in Python
Timeout specifications
Good practices in making web requests
Consider the terms of service and data-collecting policies
Error handling
Update your program regularly
Avoid making a large number of requests
Summary
Questions
Further reading

Chapter 6: Working with Processes in Python
Technical requirements
The concept of a process
Processes versus threads
Multiprocessing
Introductory example in Python
An overview of the multiprocessing module
The process class
The Pool class
Determining the current process, waiting, and terminating processes
Determining the current process
Waiting for processes
Terminating processes
Interprocess communication
Message passing for a single worker
Message passing between several workers
Summary
Questions
Further reading

Chapter 7: Reduction Operators in Processes
Technical requirements
The concept of reduction operators
Properties of a reduction operator
Examples and non-examples
Example implementation in Python

83
84
85
87
88
89
91
93
93
94
98
98
98
99
99
101
101
101

102
103
103
105
106
108
110
110
111
112
112
115
118
118
119
121
127
128
128

129
129
130
130
131
133

[iii]

Table of Contents

Real-life applications of concurrent reduction operators 138
Summary 138
Questions 139
Further reading 139
Chapter 8: Concurrent Image Processing 140
Technical requirements 140
Image processing fundamentals 141
Python as an image processing tool 141
Installing OpenCV and NumPy 142
Computer image basics 143
RGB values 143

Pixels and image files 144
Coordinates inside an image 144
OpenCV API 145
Image processing techniques 147
Grayscaling 148
Thresholding 150
Applying concurrency to image processing 155
Good concurrent image processing practices 159
Choosing the correct way (out of many) 159
Spawning an appropriate number of processes 162
Processing input/output concurrently 162
Summary 162
Questions 163
Further reading 163
Chapter 9: Introduction to Asynchronous Programming 164
Technical requirements 164
A quick analogy 165
Asynchronous versus other programming models 166
Asynchronous versus synchronous programming 167
Asynchronous versus threading and multiprocessing 168
An example in Python 169
Summary 172
Questions 172
Further reading 173
Chapter 10: Implementing Asynchronous Programming in Python 174
Technical requirements 174
The asyncio module 175
Coroutines, event loops, and futures 175
Asyncio API 177
The asyncio framework in action 178
Asynchronously counting down 179

A note about blocking functions 183

[iv]

Table of Contents

Asynchronous prime-checking
Improvements from Python 3.7
Inherently blocking tasks
concurrent.futures as a solution for blocking tasks
Changes in the framework
Examples in Python
Summary
Questions
Further reading

Chapter 11: Building Communication Channels with asyncio
Technical requirements
The ecosystem of communication channels
Communication protocol layers
Asynchronous programming for communication channels
Transports and protocols in asyncio
The big picture of asyncio's server client
Python example
Starting a server
Installing Telnet
Simulating a connection channel
Sending messages back to clients
Closing the transports
Client-side communication with aiohttp
Installing aiohttp and aiofiles
Fetching a website's HTML code
Writing files asynchronously
Summary
Questions
Further reading

Chapter 12: Deadlocks
Technical requirements
The concept of deadlock
The Dining Philosophers problem
Deadlock in a concurrent system
Python simulation
Approaches to deadlock situations
Implementing ranking among resources
Ignoring locks and sharing resources
An additional note about locks
Concluding note on deadlock solutions

The concept of livelock
Summary
Questions

184
188
189
190
191
191
195
196
197

198
199
199
199
201
202
204
205
205
207
208
209
210
212
213
213
215
217
218
218

219
219
220
220
223
224
228
228
234
236
237
237
240
240

[v]

Table of Contents

Further reading

Chapter 13: Starvation
Technical requirements
The concept of starvation
What is starvation?
Scheduling
Causes of starvation
Starvation's relationship to deadlock
The readers-writers problem
Problem statement
The first readers-writers problem
The second readers-writers problem
The third readers-writers problem
Solutions to starvation
Summary
Questions
Further reading

Chapter 14: Race Conditions

Technical requirements

The concept of race conditions
Critical sections
How race conditions occur

Simulating race conditions in Python

Locks as a solution to race conditions
The effectiveness of locks
Implementation in Python
The downside of locks

Turning a concurrent program sequential
Locks do not lock anything

Race conditions in real life
Security
Operating systems
Networking

Summary

Questions

Further reading

Chapter 15: The Global Interpreter Lock
Technical requirements
An introduction to the Global Interpreter Lock
An analysis of memory management in Python
The problem that the GIL addresses
Problems raised by the GIL
The potential removal of the GIL from Python

240

241
241
242
242
243
244
245
246
246
247
251
254
256
257
258
258

259
259
260
260
261
263
265
265
267
268

269
271

272
272
273
274
275
275
276

277
277
278
278
281
282
284

[vi]

Table of Contents

How to work with the GIL
Implementing multiprocessing, rather than multithreading
Getting around the GIL with native extensions
Utilizing a different Python interpreter

Summary

Questions

Further reading

Chapter 16: Designing Lock-Based and Mutex-Free Concurrent Data
Structures
Technical requirements
Lock-based concurrent data structures in Python
LocklessCounter and race conditions
Embedding locks in the data structure of the counter
The concept of scalability
Analysis of the scalability of the counter data structure
Approximate counters as a solution for scalability
The idea behind approximate counters
Implementing approximate counters in Python
A few considerations for approximate counter designs
Mutex-free concurrent data structures in Python
The impossibility of being lock-free in Python
Introduction to the network data structure
Implementing a simple network data structure in Python and race conditions
RCU as a solution
Building on simple data structures
Summary
Questions
Further reading

Chapter 17: Memory Models and Operations on Atomic Types
Technical requirements
Python memory model
The components of Python memory manager
Memory model as a labeled directed graph
In the context of concurrency
Atomic operations in Python
What does it mean to be atomic?
The GIL reconsidered
Innate atomicity in Python
Atomic versus nonatomic
Simulation in Python
Summary
Questions
Further reading

284
285
287
287
287
288
288

289
290
290
290
293
295
297
300
300
302
308
308
309
310
311
315
318
319
319
320

321
321
322
322
323
325
326
326
327
328
328
329
332
332
333

[vii]

Table of Contents

Chapter 18: Building a Server from Scratch

Technical requirements

Low-level network programming via the socket module
The theory of server-side communication
The API of the socket module
Building a simple echo server

Building a calculator server with the socket module
The underlying calculation logic
Implementing the calculator server

Building a non-blocking server
Analyzing the concurrency of the server
Generators in Python
Asynchronous generators and the send method
Making the server non-blocking

Summary

Questions

Further reading

Chapter 19: Testing, Debugging, and Scheduling Concurrent

Applications
Technical requirements
Scheduling with APScheduler
Installing APScheduler
Not a scheduling service
APScheduler functionalities
APScheduler API
Scheduler classes
Executor classes
Trigger keywords
Common scheduler methods
Examples in Python
Blocking scheduler
Background scheduler
Executor pool
Running on the cloud
Testing and concurrency in Python
Testing concurrent programs
Unit testing
Static code analysis
Testing programs concurrently
Debugging concurrent programs
Debugging tools and techniques
Debugging and concurrency
Summary
Questions
Further reading

334
334
335
335
337
338
342
342
343
346
346
350
352
354
360
360
361

362
362
363
363
364
364
366
366
366
367
367
368
368
369
370
372
373
374
374
376
376
380
380
381
382
383
384

[viii]

Table of Contents

Assessments 385

Other Books You May Enjoy 410

Index 413

[ix]

Preface

Concurrency can be notoriously difficult to get right, but fortunately, the Python
programming language makes working with concurrency tractable and easy. This book
shows how Python can be used to program high-performance, robust, concurrent programs
with its unique form of programming.

Designed for any curious developer with an interest in building fast, non-blocking, and
resource-thrifty systems applications, this book will cover the best practices and patterns to
help you incorporate concurrency into your systems. Additionally, emerging topics in
Python concurrent programming will be discussed, including the new AsynclO syntax, the
widely accepted view that "locks don't lock anything," the use of atomic message queues,
concurrent application architecture, and best practices.

We will tackle complex concurrency concepts and models via hands-on and engaging code
examples. Having read this book, you will have gained a deep understanding of the
principal components in the Python concurrency ecosystem, as well as a practical
appreciation of different approaches to a real-life concurrency problem.

Who this book is for

If you're a developer familiar who's and you Python who want to learn to build high-
performance applications that scale by leveraging single-core, multi-core, or distributed
concurrency, then this book is for you.

What this book covers

Chapter 1, Advanced Introduction to Concurrent and Parallel Programming, introduces you to
the concept of concurrency, and demonstrates an instance in which concurrent
programming can improve significantly the speed of a Python program.

Chapter 2, Amdahl’s Law, takes a theoretical approach and discusses the limitations of
concurrency in improving the speed of applications. We will take a look at what
concurrency truly provides and how we can best incorporate it.

Preface

Chapter 3, Working with Threads in Python, introduces the formal definition of threading
and covers a different approach to implementing threading in a Python program. In this
chapter, we will also discuss a major element in concurrent programming—the concept of
synchronization.

Chapter 4, Using the with Statement in Threads, combines the concept of context
management with threading in the overall context of concurrent programming in Python.
We will be introduced to the main idea behind context management and how it is used in
various programming practices, including threading.

Chapter 5, Concurrent Web Requests, covers one of the main applications of concurrent
programming: web scraping. It also covers the concept of web scraping, along with other
relevant elements, before discussing how threading can be applied to web scraping
programs in order to achieve significant speedup.

Chapter 6, Working with Processes in Python, shows the formal definition of multiprocessing
and how Python supports it. We will also learn more about the key differences between
threading and multiprocessing, which are often confused with one another.

Chapter 7, Reduction Operators in Processes, pairs the concepts of reduction operations and
multiprocessing together as a concurrent programming practice. This chapter will go over
the theoretical foundation of reduction operations and how it is relevant to multiprocessing
as well as programming in general.

Chapter 8, Concurrent Image Processing, goes into a specific application of concurrency:
image processing. The basic ideas behind image processing, in addition to some of the most
common processing techniques, are discussed. We will, of course, see how concurrency,
specifically multiprocessing, can speed up the task of image processing.

Chapter 9, Introduction to Asynchronous Programming, considers the formal concept of
asynchronous programming as one of the three major concurrent programming models
aside from threading and multiprocessing. We will learn how asynchronous programming
is fundamentally different from the two mentioned, but can still speedup concurrent
applications.

Chapter 10, Implementing Asynchronous Programming in Python, goes in depth into the API
that Python provides to facilitate asynchronous programming. Specifically, we will learn
about the asyncio module, which is the main tool for implementing asynchronous
programming in Python, and the general structure of an asynchronous application.

[2]

Preface

Chapter 11, Building Communication Channels with asyncio, combines the knowledge
obtained regarding asynchronous programming covered in previous chapters with the
topic of network communication. Specifically, we will look into using the aiohttp module
as a tool to make asynchronous HTTP requests to web servers, as well as the aiofile
module that implements asynchronous file reading/writing.

Chapter 12, Deadlocks, introduces the first of the problems that are commonly faced in
concurrent programming. We will learn about the classical dining philosophers problem as
an example of how deadlocks can cause concurrent programs to stop functioning. This
chapter will also cover a number of potential approaches to deadlocks as well as relevant
concepts, such as livelocks and distributed deadlocks.

Chapter 13, Starvation, considers another common problem in concurrent applications. The
chapter uses the narrative of the classical readers-writers problem to explain the concept of
starvation and its causes. We will, of course, also discuss potential solutions to these
problems via hands-on examples in Python.

Chapter 14, Race Conditions, addresses arguably the most well-known concurrency
problem: race conditions. We will also discuss the concept of a critical section, which is an
essential element in the context of race conditions specifically, and concurrent
programming in general. The chapter will then cover mutual exclusion as a potential
solution for this problem.

Chapter 15, The Global Interpreter Lock, introduces the infamous GIL, which is considered
the biggest challenge in concurrent programming in Python. We will learn about the reason
behind GIL's implementation and the problems that it raises. This chapter concludes with
some thoughts regarding how Python programmers and developers should think about
and interact with the GIL.

Chapter 16, Designing Lock-Based and Mutex-Free Concurrent Data Structures, analyzes the
process of designing two common concurrent data structures involving locks as a
synchronization mechanism: lock-based and mutex-free. Several advanced analyses of the
implementation of the data structures, as well as the performance thereof, are incorporated
into the chapter so that readers will develop a critical mindset when it comes to designing
concurrent applications.

Chapter 17, Memory Models and Operations on Atomic Types, includes theoretical topics that
involve the underlying structure of the Python language and how programmers can take
advantage of that in their concurrent applications. The concept of atomic operations is also
introduced to readers in this chapter.

[3]

Preface

Chapter 18, Building a Server from Scratch, walks readers through the process of building a
non-blocking server on a low level. We will learn about network programming
functionalities that the socket module in Python provides and how we can use them to
implement a functioning server. We will also apply the general structure of an
asynchronous program discussed earlier in the book to convert a blocking server into a
non-blocking one.

Chapter 19, Testing, Debugging, and Scheduling Concurrent Applications, covers higher-level
uses of concurrent programs. The chapter will first cover how concurrency can be applied
to the task of scheduling Python applications via the APScheduler module. We will then
discuss the complexities that arise from concurrency in the topics of testing and debugging
Python programs.

To get the most out of this book

Readers of this book should know how to execute Python programs in a development
environment, or simply from a command prompt. They should also be familiar with
general syntax and practices in Python programming (variables, functions, importing
packages, and so on). Some basic computer science knowledge of elements such as pixels,
the execution stack, and bytecode instructions is assumed at various points throughout this
book.

The final section of chapter 1, Advanced Introduction to Concurrent and Parallel Programming,
covers the process of getting your Python environment set up. Chapters in this book might
discuss the use of external libraries or tools that have to be installed via a package manager
such as pip and Anaconda, and specific instructions on how to install those libraries are
included in their corresponding chapters.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

[4]

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Concurrency-in-Python. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781789343052_ColorImages.pdf.

Code in Action

Visit the following link to check out videos of the code being run: http://bit.1ly/2BsvQj6

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The asyncio module provides a number of different transport classes."

A block of code is set as follows:

async def main(url):
async with aiohttp.ClientSession() as session:
await download_html (session, url)

[5]

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789343052_ColorImages.pdf
http://bit.ly/2BsvQj6
http://bit.ly/2BsvQj6
http://bit.ly/2BsvQj6
http://bit.ly/2BsvQj6
http://bit.ly/2BsvQj6
http://bit.ly/2BsvQj6
http://bit.ly/2BsvQj6
http://bit.ly/2BsvQj6
http://bit.ly/2BsvQj6

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

urls = [
'http://packtpub.com’,
'http://python.org',
'http://docs.python.org/3/library/asyncio’,
'http://aiohttp.readthedocs.io’,
'http://google.com'

]

Any command-line input or output is written as follows:

> python3 example5.py
Took 0.72 seconds.

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"To download the repository, simply click on the Clone or download button in the top-
right corner of your window."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

[6]

http://www.packt.com/submit-errata

Preface

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[7]

http://authors.packtpub.com/
http://www.packt.com/

Advanced Introduction to
Concurrent and Parallel
Programming

This first chapter of Mastering Concurrency in Python will provide an overview of what
concurrent programming is (in contrast to sequential programming). We will briefly
discuss the differences between a program that can be made concurrent and one that
cannot. We will go over the history of concurrent engineering and programming, and we
will provide a number of examples of how concurrent programming is used in the present
day. Finally, we will give a brief introduction to the approach that will be taken in this
book, including an outline of the chapter structure and detailed instructions for how to
download the code and create a working Python environment.

The following topics will be covered in this chapter:

¢ The concept of concurrency

e Why some programs cannot be made concurrent, and how to differentiate them
from programs that can

The history of concurrency in computer science: how it is used in the industry
today, and what can be expected in the future

The specific topics that will be covered in each section/chapter of the book

How to set up a Python environment, and how to check out/download code from
GitHub

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Technical requirements

Check out the following video to see the Code in Action: http://bit.ly/2TAMAeR

What is concurrency?

It is estimated that the amount of data that needs to be processed by computer programs
doubles every two years. The International Data Corporation (IDC), for example,
estimates that, by 2020, there will be 5,200 GB of data for every person on earth. With this
staggering volume of data come insatiable demands for computing power, and, while
numerous computing techniques are being developed and utilized every day, concurrent
programming remains one of the most prominent ways to effectively and accurately
process data.

While some might be intimidated when the word concurrency appears, the notion behind it
is quite intuitive, and it is very common, even in a non-programming context. However,
this is not to say that concurrent programs are as simple as sequential ones; they are indeed
more difficult to write and understand. Yet, once a correct and effective concurrent
structure is achieved, significant improvement in execution time will follow, as you will see
later on.

Concurrent versus sequential

Perhaps the most obvious way to understand concurrent programming is to compare it to
sequential programming. While a sequential program is in one place at a time, in a
concurrent program, different components are in independent, or semi-independent, states.
This means that components in different states can be executed independently, and
therefore at the same time (as the execution of one component does not depend on the
result of another). The following diagram illustrates the basic differences between these two

types:

[9]

http://bit.ly/2TAMAeR
http://bit.ly/2TAMAeR
http://bit.ly/2TAMAeR
http://bit.ly/2TAMAeR
http://bit.ly/2TAMAeR
http://bit.ly/2TAMAeR
http://bit.ly/2TAMAeR
http://bit.ly/2TAMAeR
http://bit.ly/2TAMAeR

Advanced Introduction to Concurrent and Parallel Programming

Chapter 1

Concurrent vs. Sequential

Statement Statement

|| Statement Il Statement

|l (3 Il Statement

tatement

Difference between concurrent and sequential programs

One immediate advantage of concurrency is an improvement in execution time. Again,
since some tasks are independent and can therefore be completed at the same time, less

time is required for the computer to execute the whole program.

Example 1 - checking whether a non-negative

number is prime

Let's consider a quick example. Suppose that we have a simple function that checks

whether a non-negative number is prime, as follows:

Chapter0Ol/examplel.py
from math import sqgrt

def is_prime(x):
if x < 2:
return False

if x ==
return True

if x $ 2 == 0:
return False

limit = int(sgrt(x)) + 1
for i in range (3, limit, 2):

if x $ 1 == 0:
return False

return True

[10]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Also, suppose that we have a list of significantly large integers (10" to 10" + 500), and we
want to check whether each of them is prime by using the preceding function:

input = [i1i for i in range (10 ** 13, 10 ** 13 + 500)]

A sequential approach would be to simply pass one number after another to the
is_prime () function, as follows:

Chapter0l/examplel.py
from timeit import default_timer as timer

sequential
start = timer ()
result = []
for i in input:

if is_prime(i):

result.append (i)

print ('Result 1:', result)
print ('Took: %.2f seconds.' % (timer () - start))

Copy the code or download it from the GitHub repository and run it (using the python
examplel.py command). The first section of your output will be something similar to the
following;:

> python examplel.py

Result 1: [10000000000037, 10000000000051, 10000000000099, 10000000000129,
10000000000183, 10000000000259, 10000000000267, 10000000000273,
10000000000279, 10000000000283, 10000000000313, 10000000000343,
10000000000391, 10000000000411, 10000000000433, 10000000000453]

Took: 3.41 seconds.

You can see that the program took around 3. 41 seconds to process all of the numbers; we
will come back to this number soon. For now, it will also be beneficial for us to check how
hard the computer was working while running the program. Open an Activity Monitor
application in your operating system, and run the Python script again; the following
screenshot shows my results:

System: 6.63% CPU LOAD Threads: 1439
User: 10.46% Processes: 371
Idle: 82.91%

by

Activity Monitor showing computer performance

[11]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Evidently, the computer was not working too hard, as it was nearly 83% idle.

Now, let's see if concurrency can actually help us to improve our program. The
is_prime () function contains a lot of heavy computation, and therefore it is a good
candidate for concurrent programming. Since the process of passing one number to the
is_prime () function is independent from passing another, we could potentially apply
concurrency to our program, as follows:

Chapter0Ol/examplel.py

concurrent

start = timer ()

result = []

with concurrent.futures.ProcessPoolExecutor (max_workers=20) as executor:
futures = [executor.submit (is_prime, i) for i in input]

for i, future in enumerate (concurrent.futures.as_completed (futures)):
if future.result () :
result.append (input[i])

print ('Result 2:', result)
print ('Took: %.2f seconds.' % (timer() - start))

Roughly speaking, we are splitting the tasks into different, smaller chunks, and running
them at the same time. Don't worry about the specifics of the code for now, as we will
discuss this use of a pool of processes in greater detail later on.

When I executed the function, the execution time was noticeably better, and the computer
also used more of its resources, being only 37% idle:

> python examplel.py

Result 2: [10000000000183, 10000000000037, 10000000000129, 10000000000273,
10000000000259, 10000000000343, 10000000000051, 10000000000267,
10000000000279, 10000000000099, 10000000000283, 10000000000313,
10000000000391, 10000000000433, 10000000000411, 10000000000453]

Took: 2.33 seconds

The output of the Activity Monitor application will look something like the following:

System: 5.78% CPU LOAD Threads: 1561
User: 57.18% Processes: 372

Idle: 37.04% M

Activity Monitor showing computer performance

[12]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Concurrent versus parallel

At this point, if you have had some experience in parallel programming, you might be
wondering whether concurrency is any different from parallelism. The key difference
between concurrent and parallel programming is that, while in parallel programs there are
a number of processing flows (mainly CPUs and cores) working independently all at once,
there might be different processing flows (mostly threads) accessing and using a shared
resource at the same time in concurrent programs.

Since this shared resource can be read and overwritten by any of the different processing
flows, some form of coordination is required at times, when the tasks that need to be
executed are not entirely independent from one another. In other words, it is important for
some tasks to be executed after the others, to ensure that the programs will produce the
correct results.

!

Difference between concurrency and parallelism

The preceding figure illustrates the difference between concurrency and parallelism: while
in the upper section, parallel activities (in this case, cars) that do not interact with each
other can run at the same time, in the lower section, some tasks have to wait for others to
finish before they can be executed.

We will look at more examples of these distinctions later on.

[13]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

A quick metaphor

Concurrency is a quite difficult concept to fully grasp immediately, so let's consider a quick
metaphor, in order to make concurrency and its differences from parallelism easier to
understand.

Although some neuroscientists might disagree, let's briefly assume that different parts of
the human brain are responsible for performing separate, exclusive body part actions and
activities. For example, the left hemisphere of the brain controls the right side of the body,
and hence, the right hand (and vice versa); or, one part of the brain might be responsible for
writing, while another solely processes speaking.

Now, let's consider the first example, specifically. If you want to move your left hand, the
right side of your brain (and only the right side) has to process that command to move,
which means that the left side of your brain is free to process other information. So, it is
possible to move and use the left and right hands at the same time, in order to do different
things. Similarly, it is possible to be writing and talking at the same time.

That is parallelism: where different processes don't interact with, and are independent of,
each other. Remember that concurrency is not quite like parallelism. Even though there are
instances where processes are executed together, concurrency also involves sharing the
same resources. If parallelism is similar to using your left and right hands for independent
tasks at the same time, concurrency can be associated with juggling, where the two hands
perform different tasks simultaneously, but they also interact with the same object (in this
case, the juggling balls), and some form of coordination between the two hands is therefore
required.

Not everything should be made concurrent

Not all programs are created equal: some can be made parallel or concurrent relatively
easily, while others are inherently sequential, and thus cannot be executed concurrently, or
in parallel. An extreme example of the former is embarrassingly parallel programs, which
can be divided into different parallel tasks, between which there is little or no dependency
or need for communication.

[14]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Embarrassingly parallel

A common example of an embarrassingly parallel program is the 3D video rendering
handled by a graphics processing unit, where each frame or pixel can be processed with no
interdependency. Password cracking is another embarrassingly parallel task that can easily
be distributed on CPU cores. In a later chapter, we will tackle a number of similar
problems, including image processing and web scraping, which can be made
concurrent/parallel intuitively, resulting in significantly improved execution times.

Inherently sequential

In opposition to embarrassingly parallel tasks, the execution of some tasks depends heavily
on the results of others. In other words, those tasks are not independent, and thus, cannot
be made parallel or concurrent. Furthermore, if we were to try to implement concurrency
into those programes, it could cost us more execution time to produce the same results. Let's
go back to our prime-checking example from earlier; the following is the output that we
saw:

> python examplel.py

Result 1: [10000000000037, 10000000000051, 10000000000099, 10000000000129,
10000000000183, 10000000000259, 10000000000267, 10000000000273,
10000000000279, 10000000000283, 10000000000313, 10000000000343,
10000000000391, 10000000000411, 10000000000433, 10000000000453]

Took: 3.41 seconds.

Result 2: [10000000000183, 10000000000037, 10000000000129, 10000000000273,
10000000000259, 10000000000343, 10000000000051, 10000000000267,
10000000000279, 10000000000099, 10000000000283, 10000000000313,
10000000000391, 10000000000433, 10000000000411, 10000000000453]

Took: 2.33 seconds.

Pay close attention, and you will see that the two results from the two methods are not
identical; the primes in the second result list are out of order. (Recall that, in the second
method, to apply concurrency we specified splitting the tasks into different groups to be
executed simultaneously, and the order of the results we obtained is the order in which
each task finished being executed.) This is a direct result of using concurrency in our
second method: we split the tasks to be executed by the program into different groups, and
our program processed the tasks in these groups at the same time.

[15]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Since tasks across different groups were executed simultaneously, there were tasks that
were behind other tasks in the input list, and yet were executed before those other tasks.
For example, the number 10000000000183 was behind the number 10000000000129 in
our input list, but was processed prior to, and therefore in front of, the

number 10000000000129 in our output list. In fact, if you execute the program again and
again, the second result will vary in almost every run.

Evidently, this situation is not desirable if the result we'd like to obtain needs to be in the
order of the input we originally had. Of course, in this example, we can simply modify the
result by using some form of sorting, but it will cost us extra execution time in the end,
which might make it even more expensive than the original sequential approach.

A concept that is commonly used to illustrate the innate sequentiality of some tasks is
pregnancy: the number of women will never reduce the length of pregnancy. As opposed
to parallel or concurrent tasks, where an increase in the number of processing entities will
improve the execution time, adding more processors in inherently sequential tasks will not.
Famous examples of inherent sequentiality include iterative algorithms: Newton's method,
iterative solutions to the three-body problem, or iterative numerical approximation
methods.

Example 2 - inherently sequential tasks
Let us consider a quick example:
Computing f*(3), with fix) = x* - x + 1, and f""'(x) = f(f'(x)).

With complicated functions like f (where it is relatively difficult to find a general form of
f'(x)), the only obviously reasonable way to compute f**(3) or similar values is to iteratively

compute f(3) =f(f(3)), f(3) = f(f(3)), ..., f7(3) = f(f*(3)), and, finally, f*(3) = f{ f*(3)).

Since it will take significant time to actually compute f**(3), even when using a computer,
we will only consider f“(3) in our code (my laptop actually started heating up after £°(3)):

Chapter01/example?2.py

def f(x):
return x * x - x + 1

sequential
def f(x):

return x * x - x + 1

start = timer ()

[16]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

result = 3
for i in range (20):
result = f (result)

)

print ('Result is very large. Only printing the last 5 digits:', result %
100000)
print ('Sequential took: %.2f seconds.' % (timer() - start))

Run it (or use python example2.py); the following code shows the output I received:

> python example2.py
Result is very large. Only printing the last 5 digits: 35443
Sequential took: 0.10 seconds.

Now, if we were to attempt to apply concurrency to this script, the only possible way
would be through a for loop. One solution might be as follows:

Chapter01/example?2.py

concurrent

def concurrent_f (x):
global result
result = f (result)

result = 3

with concurrent.futures.ThreadPoolExecutor (max_workers=20) as exector:
futures = [exector.submit (concurrent_f, i) for i in range(20)]

_ = concurrent. futures.as_completed (futures)

)

print ('Result is very large. Only printing the last 5 digits:', result %
100000)
print ('Concurrent took: %.2f seconds.' % (timer() - start))

The output I received is shown as follows:

> python example2.py
Result is very large. Only printing the last 5 digits: 35443
Concurrent took: 0.19 seconds.

Even though both methods produced the same result, the concurrent method took almost
twice as long as the sequential method. This is due to the fact that every time a new thread
(from ThreadPoolExecutor) was spawned, the function conconcurrent_f (), inside that
thread, needed to wait for the variable result to be processed by the previous thread
completely, and the program as a whole was thus executed in a sequential manner,
nonetheless.

[17]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

So, while there was no actual concurrency involved in the second method, the overhead
cost of spawning new threads contributed to the significantly worse execution time. This is
one example of inherently sequential tasks, where concurrency or parallelism should not be
applied to attempt an improvement in execution time.

1/0 bound

Another way to think about sequentiality is the concept (in computer science) of a condition
called I/O bound, in which the time it takes to complete a computation is mainly
determined by the time spent waiting for input/output (I/O) operations to be completed.
This condition arises when the rate at which data is requested is slower than the rate at
which it is consumed, or, in short, more time is spent requesting data than processing it.

In an I/O bound state, the CPU must stall its operation, waiting for data to be processed.
This means that, even if the CPU gets faster at processing data, processes tend to not
increase in speed in proportion to the increased CPU speed, since they get more I/O-bound.
With faster computation speed being the primary goal of new computer and processor
designs, I/O bound states are becoming undesirable, yet more and more common, in
programs.

As you have seen, there are a number of situations in which the application of concurrent
programming results in decreased processing speed, and they should thus be avoided. It is
therefore important for us to not see concurrency as a golden ticket that can produce
unconditionally better execution times, and to understand the differences between the
structures of programs that benefit from concurrency and programs that do not.

The history, present, and future of
concurrency

In the following sub-topics, we will discuss the past, present, and future of concurrency.

The field of concurrent programming has enjoyed significant popularity since the early
days of computer science. In this section, we will discuss how concurrent programming
started and evolved throughout its history, its current usage in the industry, and some
predictions regarding how concurrency will be used in the future.

[18]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

The history of concurrency

The concept of concurrency has been around for quite some time. The idea developed from
early work on railroads and telegraphy in the nineteenth and early twentieth centuries, and
some terms have even survived to this day (such as semaphore, which indicates a variable
that controls access to a shared resource in concurrent programs). Concurrency was first
applied to address the question of how to handle multiple trains on the same railroad
system, in order to avoid collisions and maximize efficiency, and how to handle multiple
transmissions over a given set of wires in early telegraphy.

A significant portion of the theoretical groundwork for concurrent programming was
actually laid in the 1960s. The early algorithmic language ALGOL 68, which was first
developed in 1959, includes features that support concurrent programming. The academic
study of concurrency officially started with a seminal paper in 1965 from Edsger Dijkstra,
who was a pioneer in computer science, best known for the path-finding algorithm that was
named after him.

That seminal paper is considered the first paper in the field of concurrent programming, in
which Dijkstra identified and solved the mutual exclusion problem. Mutual exclusion,
which is a property of concurrency control that prevents race conditions (which we will
discuss later on), went on to become one of the most discussed topics in concurrency.

Yet, there was no considerable interest after that. From around 1970 to early 2000,
processors were said to double in executing speed every 18 months. During this period,
programmers did not need to concern themselves with concurrent programming, as all
they had to do to have their programs run faster was wait. However, in the early 2000s, a
paradigm shift in the processor business took place; instead of making increasingly big and
fast processors for computers, manufacturers started focusing on smaller, slower
processors, which were put together in groups. This was when computers started to have
multicore processors.

[19]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Nowadays, an average computer has more than one core. So, if a programmer writes all of
their programs to be non-concurrent in any way, they will find that their programs utilize
only one core or one thread to process data, while the rest of the CPU sits idle, doing
nothing (as we saw in the Example 1 — Checking whether a non-negative number is

prime section). This is one reason for the recent push in concurrent programming.

Another reason for the increasing popularity of concurrency is the growing field of
graphical, multimedia, and web-based application development, in which the application
of concurrency is widely used to solve complex and meaningful problems. For example,
concurrency is a major player in web development: each new request made by a user
typically comes in as its own process (this is called multiprocessing; see Chapter 6, Working
with Processes in Python) or asynchronously coordinated with other requests (this is called
asynchronous programming; see Chapter 9, Introduction to Asynchronous Programming); if
any of those requests need to access a shared resource (a database, for example) where data
can be changed, concurrency should be taken into consideration.

The present

Considering the present day, where an explosive growth the internet and data sharing
happens every second, concurrency is more important than ever. The current use of
concurrent programming emphasizes correctness, performance, and robustness.

Some concurrent systems, such as operating systems or database management systems, are
generally designed to operate indefinitely, including automatic recovery from failure, and
not terminate unexpectedly. As mentioned previously, concurrent systems use shared
resources, and thus they require some form of semaphore in their implementation, to
control and coordinate access to those resources.

[20]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Concurrent programming is quite ubiquitous in the field of software development.
Following are a few examples where concurrency is present:

¢ Concurrency plays an important role in most common programming languages:
C++, C#, Erlang, Go, Java, Julia, JavaScript, Perl, Python, Ruby, Scala, and so on.

¢ Again, since almost every computer today has more than one core in its CPU,
desktop applications need to be able to take advantage of that computing power,
in order to provide truly well-designed software.

Multicore processors used in MacBook Pro computers

e The iPhone 4S, which was released in 2011, has a dual-core CPU, so mobile
development also has to stay connected to concurrent applications.

¢ As for video games, two of the biggest players on the current market are the
Xbox 360, which is a multi-CPU system, and Sony's PS3, which is essentially a
multicore system.

e Even the current iteration of the $35 Raspberry Pi is built around a quad-core
system.

e [t is estimated that on average, Google processes over 40,000 search queries every
second, which equates to over 3.5 billion searches per day, and 1.2 trillion
searches per year, worldwide. Apart from having massive machines with
incredible processing power, concurrency is the best way to handle that amount
of data requests.

[21]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

A large percentage of today's data and applications are stored in the cloud. Since
computing instances on the cloud are relatively small in size, almost every web application
is therefore forced to be concurrent, processing different small jobs simultaneously. As it
gains more customers and has to process more requests, a well-designed web application
can simply utilize more servers while keeping the same logic; this corresponds to the
property of robustness that we mentioned earlier.

Even in the increasingly popular fields of artificial intelligence and data science, major
advances have been made, in part due to the availability of high-end graphics cards
(GPUs), which are used as parallel computing engines. In every notable competition on the
biggest data science website (https://www.kaggle.com/), almost all prize-winning
solutions feature some form of GPU usage during the training process. With the sheer
amount of data that big data models have to comb through, concurrency provides an
effective solution. Some Al algorithms are even designed to break their input data down
into smaller portions and process them independently, which is a perfect opportunity to
apply concurrency in order to achieve better model-training time.

The future

In this day and age, computer/internet users expect instant output, no matter what
applications they are using, and developers often find themselves struggling with the
problem of providing better speed for their applications. In terms of usage, concurrency
will continue to be one of the main players in the field of programming, providing unique
and innovative solutions to those problems. As mentioned earlier, whether it be video
game design, mobile apps, desktop software, or web development, concurrency is, and will
be, omnipresent in the near future.

Given the need for concurrency support in applications, some might argue that concurrent
programming will also become more standard in academia. Even though specific topics in
concurrency and parallelism are being covered in computer science courses, in-depth,
complex subjects on concurrent programming (both theoretical and applied subjects) will
be implemented in undergraduate and graduate courses, to better prepare students for the
industry, where concurrency is being used every day. Computer science courses on
building concurrent systems, studying data flows, and analyzing concurrent and parallel
structures will only be the beginning.

[22]

https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Others might have a more skeptical view of the future of concurrent programming. Some
say that concurrency is really about dependency analysis: a sub-field of compiler theory
that analyzes execution-order constraints between statements/instructions, and determines
whether it is safe for a program to reorder or parallelize its statements. Furthermore, since
only a very small number of programmers truly understand concurrency and all of its
intricacies, there will be a push for compilers, along with support from the operating
system, to take on the responsibility of actually implementing concurrency into the
programs they compile on their own.

Specifically, in the future programmers will not have to concern themselves with the
concepts and problems of concurrent programming, nor should they. An algorithm
implemented on the compiler-level should look at the program being compiled, analyze the
statements and instructions, produce a dependency graph to determine the optimal order
of execution for those statements and instructions, and apply concurrency/parallelism
where it is appropriate and efficient. In short, the combination of the low number of
programmers understanding and being able to effectively work with concurrent systems
and the possibility of automating the design of concurrency will lead to a decrease in
interest in concurrent programming.

In the end, only time will tell what the future holds for concurrent programming. We
programmers can only look at how concurrency is currently being used in the real world,
and determine whether it is worth learning or not: which, as we have seen in this case, it is.
Furthermore, even though there are strong connections between designing concurrent
programs and dependency analysis, I personally see concurrent programming as a more
intricate and involved process, which might be very difficult to achieve through
automation.

Concurrent programming is indeed extremely complicated and very hard to get right, but
that also means the knowledge gained through the process will be beneficial and useful to
any programmer, and I see that as a good enough reason to learn about concurrency. The
ability to analyze the problems of program speedup, restructure your programs into
different independent tasks, and coordinate those tasks to use the same resources, are the
main skills that programmers build while working with concurrency, and knowledge of
these topics will help them with other programming problems, as well.

[23]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

A brief overview of mastering concurrency
in Python

Python is one of the most popular programming languages out there, and for good reason.
The language comes with numerous libraries and frameworks that facilitate high-
performance computing, whether it be software development, web development, data
analysis, or machine learning. Yet, there have been discussions among developers
criticizing Python, which often revolve around the Global Interpreter Lock (GIL) and the
difficulty of implementing concurrent and parallel programs that it leads to.

While concurrency and parallelism do behave differently in Python than in other common
programming languages, it is still possible for programmers to implement Python
programs that run concurrently or in parallel, and achieve significant speedup for their
programs.

Mastering Concurrency in Python will serve as a comprehensive introduction to various
advanced concepts in concurrent engineering and programming in Python. This book will
also provide a detailed overview of how concurrency and parallelism are being used in
real-world applications. It is a perfect blend of theoretical analyses and practical examples,
which will give you a full understanding of the theories and techniques regarding
concurrent programming in Python.

This book will be divided into six main sections. It will start with the idea behind
concurrency and concurrent programming—the history, how it is being used in the
industry today, and finally, a mathematical analysis of the speedup that concurrency can
potentially provide. Additionally, the last section in this chapter (which is our next section)
will cover instructions for how to follow the coding examples in this book, including setting
up a Python environment on your own computer, downloading/cloning the code included
in this book from GitHub, and running each example from your computer.

The next three sections will cover three of the main implementation approaches in
concurrent programming: threads, processes, and asynchronous I/O, respectively. These
sections will include theoretical concepts and principles for each of these approaches, the
syntax and various functionalities that the Python language provides to support them,
discussions of best practices for their advanced usage, and hands-on projects that directly
apply these concepts to solve real-world problems.

[24]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Section five will introduce readers to some of the most common problems that engineers
and programmers face in concurrent programming: deadlock, starvation, and race
conditions. Readers will learn about the theoretical foundations and causes for each
problem, analyze and replicate each of them in Python, and finally implement potential
solutions. The last chapter in this section will discuss the aforementioned GIL, which is
specific to the Python language. It will cover the GIL's integral role in the Python
ecosystem, some challenges that the GIL poses for concurrent programming, and how to
implement effective workarounds.

In the last section of the book, we will be working on various advanced applications of
concurrent Python programming. These applications will include the design of lock-free
and lock-based concurrent data structures, memory models and operations on atomic
types, and how to build a server that supports concurrent request processing from scratch.
The section will also cover the the best practices when testing, debugging, and scheduling
concurrent Python applications.

Throughout this book, you will be building essential skills for working with concurrent
programs, just through following the discussions, the example code, and the hands-on
projects. You will understand the fundamentals of the most important concepts in
concurrent programming, how to implement them in Python programs, and how to apply
that knowledge to advanced applications. By the end of Mastering Concurrency in Python,
you will have a unique combination of extensive theoretical knowledge regarding
concurrency, and practical know-how of the various applications of concurrency in the
Python language.

Why Python?

As mentioned previously, one of the difficulties that developers face while working with
concurrency in the Python programming language (specifically, CPython—a reference
implementation of Python written in C) is its GIL. The GIL is a mutex that protects access to
Python objects, preventing multiple threads from executing Python byte codes at once. This
lock is necessary mainly because CPython's memory management is not thread-safe.
CPython uses reference counting to implement its memory management. This results in the
fact that multiple threads can access and execute Python code simultaneously; this situation
is undesirable, as it can cause an incorrect handling of data, and we say that this type of
memory management is not thread-safe. To address this problem, the GIL is, as the name
suggests, a lock that allows only one thread to access Python code and objects. However,
this also means that, to implement multithreading programs in CPython, developers need
to be aware of the GIL and work around it. That is why many have problems with
implementing concurrent systems in Python.

[25]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

So, why use Python for concurrency at all? Even though the GIL prevents multithreaded
CPython programs from taking full advantage of multiprocessor systems in certain
situations, most blocking or long-running operations, such as I/O, image processing, and
NumPy number crunching, happen outside the GIL. Therefore, the GIL only becomes a
potential bottleneck for multithreaded programs that spend significant time inside the GIL.
As you will see in future chapters, multithreading is only a form of concurrent
programming, and, while the GIL poses some challenges for multithreaded CPython
programs that allow more than one thread to access shared resources, other forms of
concurrent programming do not have this problem. For example, multiprocessing
applications that do not share any common resources among processes, such as I/O, image
processing, or NumPy number crunching, can work seamlessly with the GIL. We will
discuss the GIL and its place in the Python ecosystem in greater depth in Chapter 15, The
Global Interpret Lock.

Aside from that, Python has been gaining increasing popularity from the programming
community. Due to its user-friendly syntax and overall readability, more and more people
have found it relatively straightforward to use Python in their development, whether it is
beginners learning a new programming language, intermediate users looking for the
advanced functionalities of Python, or experienced programmers using Python to solve
complex problems. It is estimated that the development of Python code can be up to 10
times faster than C/C++ code.

The large number of developers using Python has resulted in a strong, ever-growing
support community. Libraries and packages in Python are being developed and released
every day, tackling different problems and technologies. Currently, the Python language
supports an incredibly wide range of programming—namely, software development,
desktop GUIs, video game design, web and internet development, and scientific and
numeric computing. In recent years, Python has also been growing as one of the top tools in
data science, big data, and machine learning, competing with the long-time player in the
field, R.

The sheer number of development tools available in Python has encouraged more
developers to start programming with Python, making Python even more popular and easy
to use; I call this the vicious circle of Python. David Robinson, chief data scientist at
DataCamp, wrote a blog (https://stackoverflow.blog/2017/09/06/incredible-growth-
python/) about the incredible growth of Python, and called it the most popular
programming language.

[26]

https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

However, Python is slow, or at least slower than other popular programming languages.
This is due to the fact that Python is a dynamically typed, interpreted language, where
values are stored not in dense buffers, but in scattered objects. This is a direct result of
Python's readability and user-friendliness. Luckily, there are various options regarding
how to make your Python program run faster, and concurrency is one of the most complex
of them; that is what we are going to master throughout this book.

Setting up your Python environment

Before we move any further, let's go through a number of specifications regarding how to
set up the necessary tools that you will be using throughout this book. In particular, we will
discuss the process of obtaining a Python distribution for your system and an appropriate
development environment, as well as how to download the code used in the examples
included in the chapters of this book.

General setup

Let's look at the process of obtaining a Python distribution for your system and an
appropriate development environment:

¢ Any developer can obtain their own Python distribution from https://www.
python.org/downloads/.

¢ Even though both Python 2 and Python 3 are being supported and maintained,
throughout this book we will be using Python 3.

e The choice of an integrated development environment (IDE) is flexible for this
book. Although it is technically possible to develop Python applications using a
minimal text editor, such as Notepad or TextEdit, it is usually much easier to
read and write code with IDEs designed specifically for Python. These include
IDLE (https://docs.python.org/3/library/idle.html), PyCharm (https://
www.jetbrains.com/pycharm/), Sublime Text (https://www.sublimetext.com/),
and Atom (https://atom.io/).

[27]

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://docs.python.org/3/library/idle.html
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://www.sublimetext.com/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Downloading example code

To obtain the code used throughout this book, you can download a repository from
GitHub, which includes all of the example and project code covered in this book:

o First, visit https://github.com/PacktPublishing/Mastering-Concurrency-in-
Python.

¢ To download the repository, simply click on the Clone or download button in
the top right corner of your window. Choose Download ZIP to download the
compressed repository to your computer:

o github.com
Create new file Upload files Find file Clone or download ~
Clone with HTTPS ® Use SSH

Use Git or checkout with SVN using the web URL. {b
https://github.com/benedict-jw/Ben-204¢ @.
updating sdk

Update Code Signing Identity Open in Desktop Download ZIP
Update m2048-Info.plist a month ago
Initial Commit 2 years ago

Click on Download ZIP to download the repository

e Uncompress the downloaded file to create the folder that we are looking for. The
folder should have the name Mastering-Concurrency—-in-Python.

Separate folders, titled Chapterxx, are inside the folder, indicating the chapter that covers
the code in that folder. For example, the Chapter03 folder contains the example and
project code covered in chapter 3, Working with Threads in Python. In each subfolder, there
are various Python scripts; as you go through each code example in the book, you will
know which script to run at a specific point in each chapter.

[28]

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Summary

You have now been introduced to the concept of concurrent and parallel programming. It is
about designing and structuring programming commands and instructions, so that
different sections of the program can be executed in an efficient order, while sharing the
same resources. Since time is saved when some commands and instructions are executed at
the same time, concurrent programming provides significant improvements in program
execution time, as compared to traditional sequential programming.

However, various factors need to be taken into consideration while designing a concurrent
program. While there are specific tasks that can easily be broken down into independent
sections that can be executed in parallel (embarrassingly parallel tasks), others require
different forms of coordination between the program commands, so that shared resources
are used correctly and efficiently. There are also inherently sequential tasks, in which no
concurrency and parallelism can be applied to achieve program speedup. You should know
the fundamental differences between these tasks, so that you can design your concurrent
programs appropriately.

Recently, there was a paradigm shift that facilitated the implementation of concurrency into
most aspects of the programming world. Now, concurrency can be found almost
everywhere: desktop and mobile applications, video games, web and internet development,
Al and so on. Concurrency is still growing, and it is expected to keep growing in the
future. It is therefore crucial for any experienced programmer to understand concurrency
and its relevant concepts, and to know how to integrate those concepts into their
applications.

Python, on the other hand, is one of the most (if not the most) popular programming
languages. It provides powerful options in most sub-fields of programming. The
combination of concurrency and Python is therefore one of the topics most worth learning
and mastering in programming.

In the next chapter, on Amdahl's Law, we will discuss how significant the improvements in
speedup that concurrency provides for our programs are. We will analyze the formula for
Amdahl's Law, discussing its implications and considering Python examples.

[29]

Advanced Introduction to Concurrent and Parallel Programming Chapter 1

Questions

e What is the idea behind concurrency, and why is it useful?

e What are the differences between concurrent programming and sequential
programming?

e What are the differences between concurrent programming and parallel
programming?

e Can every program be made concurrent or parallel?

What are embarrassingly parallel tasks?

What are inherently sequential tasks?
What does I/O bound mean?
e How is concurrent processing currently being used in the real world?

Further reading

For more information you can refer to the following links:

e Python Parallel Programming Cookbook, by Giancarlo Zaccone, Packt Publishing
Ltd, 2015

e Learning Concurrency in Python: Build highly efficient, robust, and concurrent
applications (2017), by Forbes, Elliot

¢ "The historical roots of concurrent engineering fundamentals." IEEE Transactions
on Engineering Management 44.1 (1997): 67-78, by Robert P. Smith

e Programming language pragmatics, Morgan Kaufmann, 2000, by Michael Lee Scott

[30]

Amdahl's Law

Often used in discussions revolving around concurrent programs, Amdahl's Law explains
the theoretical speedup of the execution of a program that can be expected when using
concurrency. In this chapter, we will discuss the concept of Amdahl's Law, and we will
analyze its formula, which estimates the potential speedup of a program and replicates it in
Python code. This chapter will also briefly cover the relationship between Amdahl's Law
and the law of diminishing returns.

The following topics will be covered in this chapter:

e Amdahl's Law

e Amdahl's Law: its formula and interpretation

e The relationship between Amdahl's Law and the law of diminishing returns
e Simulation in Python, and the practical applications of Amdahl's Law

Technical requirements

The following is a list of prerequisites for this chapter:

¢ Ensure that you have Python 3 installed on your computer

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder named Chapter02
¢ Check out the following video to see the Code in Action: http://bit.1ly/2DWa0eQ

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2DWaOeQ
http://bit.ly/2DWaOeQ
http://bit.ly/2DWaOeQ
http://bit.ly/2DWaOeQ
http://bit.ly/2DWaOeQ
http://bit.ly/2DWaOeQ
http://bit.ly/2DWaOeQ
http://bit.ly/2DWaOeQ
http://bit.ly/2DWaOeQ

Amdahl’s Law Chapter 2

Amdahl's Law

How do you find a balance between parallelizing a sequential program (by increasing the
number of processors) and optimizing the execution speed of the sequential program itself?
For example, which is the better option: Having four processors running a given program
for 40% of its execution, or using only two processors executing the same program, but for
twice as long? This type of trade-off, which is commonly found in concurrent
programming, can be strategically analyzed and answered by applying Amdahl's Law.

Additionally, while concurrency and parallelism can be a powerful tool that provides
significant improvements in program execution time, they are not a silver bullet that can
speed up any non-sequential architecture infinitely and unconditionally. It is therefore
important for developers and programmers to know and understand the limits of the speed
improvements that concurrency and parallelism offer to their programs, and Amdahl's Law
addresses those concerns.

Terminology

Amdahl's Law provides a mathematical formula that calculates the potential improvement
in speed of a concurrent program by increasing its resources (specifically, the number of
available processors). Before we can get into the theory behind Amdahl's Law, first, we
must clarify some terminology, as follows:

e Amdahl's Law solely discusses the potential speedup in latency resulting from
executing a task in parallel. While concurrency is not directly discussed here, the
results from Amdahl's Law concerning parallelism will nonetheless give us an
estimation regarding concurrent programs.

e The speed of a program denotes the time it takes for the program to execute in
full. This can be measured in any increment of time.

¢ Speedup is the time that measures the benefit of executing a computation in
parallel. It is defined as the time it takes a program to execute in serial (with one
processor), divided by the time it takes to execute in parallel (with multiple
processors). The formula for speedup is as follows:

In the preceding formula, T(j) is the time it takes to execute the program when
using j processors.

[32]

Amdahl’s Law Chapter 2

Formula and interpretation

Before we get into the formula for Amdahl's Law and its implications, let's explore the
concept of speedup, through some brief analysis. Let's assume that there are N workers
working on a given job that is fully parallelizable—that is, the job can be perfectly divided
into N equal sections. This means that N workers working together to complete the job will
only take 1/N of the time it takes one worker to complete the same job.

However, most computer programs are not 100% parallelizable: some parts of a program
might be inherently sequential, while others are broken up into parallel tasks.

The formula for Amdahl's Law

Now, let B denote the fraction of the program that is strictly serial, and consider the
following;:

e B *T(1)is the time it takes to execute the parts of the program that are inherently
sequential.
e T(1)-B*T(1)=(1-B) * T(1) is the time it takes to execute the parts of the
program that are parallelizable, with one processor:
e Then, (1-B)*T(1)/N is the time it takes to execute these parts

with N processors
e So, B*T(1)+(1-B)*T(1)/N is the total time it takes to execute the whole
program with N processors.

Coming back to the formula for the speedup quantity, we have the following:

(1) T(1) B 1

TG Bre+ BT B+ P

S

This formula is actually a form of Amdahl's Law, used to estimate the speedup in a parallel
program.

[33]

Amdahl’s Law Chapter 2

A quick example
Let's assume that we have a computer program, and the following applies to it:

e 40% of it is subject to parallelism, so B=1 - 40% = 0.6
e Its parallelizable parts will be processed by four processors, so j =4

Amdahl's Law states that the overall speedup of applying the improvement will be as
follows:

1 1 10
T piIE geprm 7

Implications
The following is a quote from Gene Amdahl, in 1967:

"For over a decade prophets have voiced the contention that the organization of a
single computer has reached its limits and that truly significantly advances can be
made only by interconnection of a multiplicity of computers in such a manner as to
permit cooperative solution... The nature of this overhead (in parallelism) appears to
be sequential so that it is unlikely to be amenable to parallel processing techniques.
Overhead alone would then place an upper limit on throughput of five to seven times
the sequential processing rate, even if the housekeeping were done in a separate
processor... At any point in time it is difficult to foresee how the previous bottlenecks
in a sequential computer will be effectively overcome.”

Through the quote, Amdahl indicated that whatever concurrent and parallel techniques are
implemented in a program, the sequential nature of the overhead portion required in the
program always sets an upper boundary on how much speedup the program will gain.
This is one of the implications that Amdahl's Law further suggests. Consider the following
example:

1_B>1_B:> ! < 1 = S. <S
' j+1 1B 1B 7
J J+ B+ > B+j+1

Sn denotes the speedup gained from n processors

[34]

Amdahl’s Law Chapter 2

This shows that, as the number of resources (specifically, the number of available
processors) increases, the speedup of the execution of the whole task also increases.
However, this does not mean that we should always implement concurrency and
parallelism with as many system processors as possible, to achieve the highest
performance. In fact, from the formula, we can also gather that the speedup achieved from
incrementing the number of processors decreases. In other words, as we add more
processors for our concurrent program, we will obtain less and less improvement in
execution time.

Furthermore, as mentioned previously, another implication that Amdahl's Law suggests
concerns the upper limit of the execution time improvement:

1
s<i
1

B is the cap of how much improvement concurrency and parallelism can offer your
program. This is to say that, no matter how many available resources your system has, it is
1

impossible to obtain a speedup larger than B through concurrency, and this limit is
dictated by the sequential overhead portion of the program (B is the fraction of the program
that is strictly serial).

Amdahl's Law's relationship to the law of
diminishing returns

Amdahl's Law is often conflated with the law of diminishing returns, which is a rather
popular concept in economics. However, the law of diminishing returns is only a special
case of applying Amdahl's Law, depending on the order of improvement. If the order of
separate tasks in the program is chosen to be improved in an optimal way, a monotonically
decreasing improvement in execution time will be observed, demonstrating diminishing
returns. An optimal method indicates first applying those improvements that will result in
the greatest speedups, and leaving those improvements yielding smaller speedups for later.

Now, if we were to reverse this sequence for choosing resources, in which we improve less
optimal components of our program before more optimal components, the speedup
achieved through the improvement would increase throughout the process. Furthermore, it
is actually more beneficial for us to implement system improvements in this reverse-
optimal order in reality, as the more optimal components are usually more complex, and
take more time to improve.

[35]

Amdahl’s Law Chapter 2

Another similarity between Amdahl's Law and the law of diminishing returns concerns the
improvement in speedup obtained through adding more processors to a system.
Specifically, as a new processor is added to the system to process a fixed-size task, it will
offer less usable computation power than the previous processor. As we discussed in the
last section, the improvement in this situation strictly decreases as the number of processors
increases, and the total throughout approaches the upper boundary of 1/B.

It is important to note that this analysis does not take into account other potential
bottlenecks, such as memory bandwidth and I/O bandwidth. In fact, if these resources do
not scale with the number of processors, then simply adding processors results in even
lower returns.

How to simulate in Python

In this section, we will look at the results of Amdahl's Law through a Python program. Still
considering the task of determining whether an integer is a prime number, as discussed in
Chapter 1, Advanced Introduction to Concurrent and Parallel Programming, we will see what
actual speedup is achieved through concurrency. If you already have the code for the book
downloaded from the GitHub page, we are looking at the Chapter02/examplel.py file.

As a refresher, the function that checks for prime numbers is as follows:

Chapter02/examplel.py
from math import sqgrt

def is_prime(x):
if x < 2:
return False

if x == 2:
return x

if x $ 2 == 0:
return False

limit = int(sgrt(x)) + 1
for i in range (3, limit, 2):

if x $ 1 == 0:
return False

return x

[36]

Amdahl’s Law Chapter 2

The next part of the code is a function that takes in an integer that indicates the number of
processors (workers) that we will be utilizing to concurrently solve the problem (in this
case, it is used to determine which numbers in a list are prime numbers):

Chapter02/examplel.py
import concurrent.futures
from timeit import default_timer as timer

def concurrent_solve (n_workers
print ('Number of workers:

. o

i.'" % n_workers)

)
start = timer ()

result = []

with concurrent.futures.ProcessPoolExecutor (
max_workers=n_workers) as executor:

futures = [executor.submit (is_prime, i) for i in input]
completed_futures = concurrent.futures.as_completed (futures)
sub_start = timer ()

for i, future in enumerate (completed_futures):
if future.result():
result.append (future.result ())

sub_duration = timer () - sub_start
duration = timer () - start
print ('Sub took: %$.4f seconds.' % sub_duration)
print ('Took: %.4f seconds.' % duration)

Notice that the variables sub_start and sub_duration measure the portion of the task
that is being solved concurrently, which, in our earlier analysis, is denoted as 1 - B. As for
the input, we will be looking at numbers between 10" and 10" + 1000:

input = [i1i for i in range (10 ** 13, 10 ** 13 + 1000)]

[371]

Amdahl’s Law Chapter 2

Lastly, we will be looping from one to the maximum number of processors available in our
system, and we will pass that number to the preceding concurrent_solve () function. As
a quick tip, to obtain the number of available processors from your computer, call
multiprocessing.cpu_count (), as follows:

for n_workers in range(l, multiprocessing.cpu_count () + 1):
concurrent_solve (n_workers)
print ('_"'" * 20)

You can run the whole program by entering the command python examplel.py. Since
my laptop has four cores, the following is my output after running the program:

Number of workers: 1.
Sub took: 7.5721 seconds.
Took: 7.6659 seconds.

Number of workers: 2.
Sub took: 4.0410 seconds.
Took: 4.1153 seconds.

Number of workers: 3.
Sub took: 3.8949 seconds.
Took: 4.0063 seconds.

Number of workers: 4.
Sub took: 3.9285 seconds.
Took: 4.0545 seconds.

A few things to note are as follows:

e First, in each iteration, the subsection of the task was almost as long as the whole
program. In other words, the concurrent computation formed the majority of the
program during each iteration. This is quite understandable, since there is hardly
any other heavy computation in the program, aside from prime checking.

¢ Secondly, and arguably more interestingly, we can see that, while considerable
improvements were gained after increasing the number of processors from 1 to 2
(7.6659 secondsto4.1153 seconds), hardly any speedup was achieved
during the third iteration. It took longer during the forth iteration than the third,
but this was most likely overhead processing. This is consistent with our earlier
discussions regarding the similarity between Amdahl's Law and the law of
diminishing returns, when considering the number of processors.

[38]

Amdahl’s Law Chapter 2

We can also refer to a speedup curve to visualize this phenomenon. A speedup
curve is simply a graph with the x axis showing the number of processors,
compared to the y axis showing the speedup achieved. In a perfect scenario,
where S =j (that is, the speedup achieved is equal to the number of processors
used), the speedup curve would be a straight, 45-degree line. Amdahl's Law
shows that the speedup curve produced by any program will remain below that
line, and will begin to flatten out as efficiency reduced. In the preceding
program, this was during the transition from two to three processors:

Speedup

Amdahl's Law

20 4 e ————
—
b
18 ~
// Parallel portion
16 7 50%
S 75%
14 / —— 0%
/ —— 95%
12 /",
10 ’,/ e e e e e e]
—
/! -~
8
6
'l

1
2
1
8
16
32

-t
-]

128
256
512

-
o~
=
-

2048
4096
8192
16384
32768
65536

Number of processors

Speedup curves with different parallel portions

[39]

Amdahl’s Law Chapter 2

Practical applications of Amdahl's Law

As we have discussed, by analyzing the sequential and parallelizable portion of a given
program or system with Amdahl's Law, we can determine, or at least estimate, the upper
limit of any potential improvements in speed resulting from parallel computing. Upon
obtaining this estimation, we can then make an informed decision on whether an improved
execution time is worth an increase in processing power.

From our examples, we can see that Amdahl's Law is applied when you have a concurrent
program that is a mixture of both sequentially and executed-in-parallels instructions. By
performing analysis using Amdahl's Law, we can determine the speedup through each
incrementation of the number of cores available to perform the execution, as well as how
close that incrementation is to helping the program achieve the best possible speedup from
parallelization.

Now, let's come back to the initial problem that we raised at the beginning of the chapter:
the trade-off between an increase in the number of processors versus an increase in how
long parallelism can be applied. Let's suppose that you are in charge of developing a
concurrent program that currently has 40 percent of its instructions parallelizable. This
means that multiple processors can be running simultaneously for 40 percent of the
program execution. Now you have been tasked with increasing the speed of this program
by implementing either of the following two choices:

¢ Having four processors implemented to execute the program instructions

e Having two processors implemented, in addition to increasing the parallelizable
portion of the program to 80 percent

How can we analytically compare these two choices, in order to determine the one that will
produce the best speed for our program? Luckily, Amdahl's Law can assist us during this
process:

e For the first option, the speedup that can be obtained is as follows:

1 1 1
= —0 ~ 1.43

S = = =
B+E2 1-04+9 7

e For the second option, the speedup is as follows:

1 1 10
-B = 08 :—%167
B++2 1-08+% 6

[40]

Amdahl’s Law Chapter 2

As you can see, the second option (which has fewer processors than the first) is actually the
better choice to speed up our specific program. This is another example of Amdahl's Law,
illustrating that sometimes simply increasing the number of available processors is, in fact,
undesirable in terms of improving the speed of a program. Similar trade-offs, with
potentially different specifications, can also be analyzed this way.

As a final note, it is important for us to know that, while Amdahl's Law offers an estimation
of potential speedup in an unambiguous way, the law itself makes a number of underlying
assumptions and does not take into account some potentially important factors, such as the
overhead of parallelism or the speed of memory. For this reason, the formula of Amdahl's
Law simplifies various considerations that might be common in practice.

So, how should programmers of concurrent programs think about and use Amdahl's Law?
We should keep in mind that the results of Amdahl's Law are simply estimates that can
provide us with an idea about where, and by how much, we can further optimize a
concurrent system, specifically by increasing the number of available processors. In the end,
only actual measurements can precisely answer our questions about how much speedup
our concurrent programs will achieve in practice. With that said, Amdahl's Law can still
help us to effectively identify good theoretical strategies for improving computing speed
using concurrency and parallelism.

Summary

Amdahl's Law offers us a method to estimate the potential speedup in execution time of a
task that we can expect from a system when its resources are improved. It illustrates that, as
the resources of the system are improved, so is the execution time. However, the
differential speedup when incrementing the resources strictly decreases, and the
throughput speedup is limited by the sequential overhead of its program.

You also saw that in specific situations (namely, when only the number of processors
increases), Amdahl's Law resembles the law of diminishing returns. Specifically, as the
number of processors increases, the efficiency gained through the improvement decreases,
and the speedup curve flattens out.

Lastly, this chapter showed that improvement through concurrency and parallelism is not
always desirable, and detailed specifications are needed for an effective and efficient
concurrent program.

[41]

Amdahl’s Law Chapter 2

With more knowledge of the extent to which concurrency can help to speed up our
programs, we will now start to discuss the specific tools that Python provides to implement
concurrency. Specifically, we will consider one of the main players in concurrent
programming, threads, in the next chapter, including their application in Python
programming.

Questions

e What is Amdahl's Law? What problem does Amdahl's Law try to solve?
e Explain the formula of Amdahl's Law, along with its components.

e According to Amdahl's Law, will speedup increase indefinitely as the resources
of the system improve?

e What is the relationship between Amdahl's Law and the law of diminishing
returns?

Further reading

For more information you can refer to the following links:

o Amdahl’s Law (https://home.wlu.edu/~whaleyt/classes/parallel/topics/
amdahl.html), by Aaron Michalove

e Uses and abuses of Amdahl’s Law, Journal of Computing Sciences in Colleges 17.2
(2001): 288-293, S. Krishnaprasad

e Learning Concurrency in Python: Build highly efficient, robust, and concurrent
applications (2017), Elliot Forbes

[42]

https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
https://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html

Working with Threads in Python

In chapter 1, Advanced Introduction to Concurrent and Parallel Programming, you saw an
example of threads being used in concurrent and parallel programming. In this chapter,
you will be introduced to the formal definition of a thread, as well as the threading
module in Python. We will cover a number of ways to work with threads in a Python
program, including activities such as creating new threads, synchronizing threads, and
working with multithreaded priority queues, via specific examples. We will also discuss the
concept of a lock in thread synchronization, and we will implement a lock-based
multithreaded application, in order to better understand the benefits of thread
synchronization.

The following topics will be covered in this chapter:

The concept of a thread in the context of concurrent programming in computer
science

The basic API of the threading module in Python
How to create a new thread via the threading module

The concept of a lock and how to use different locking mechanisms to
synchronize threads

The concept of a queue in the context of concurrent programming, and how to
use the Queue module to work with queue objects in Python

Working with Threads in Python Chapter 3

Technical requirements

The following is a list of prerequisites for this chapter:

Ensure that you have Python 3 installed on your computer

Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

During this chapter, we will be working with the subfolder titled Chapter03

Check out the following video to see the Code in Action: http://bit.ly/2SeD2oz

The concept of a thread

In the field of computer science, a thread of execution is the smallest unit of programming
commands (code) that a scheduler (usually as part of an operating system) can process and
manage. Depending on the operating system, the implementation of threads and processes
(which we will cover in future chapters) varies, but a thread is typically an element (a
component) of a process.

Threads versus processes

More than one thread can be implemented within the same process, most often executing
concurrently and accessing/sharing the same resources, such as memory; separate
processes do not do this. Threads in the same process share the latter's instructions (its
code) and context (the values that its variables reference at any given moment).

The key difference between the two concepts is that a thread is typically a component of a
process. Therefore, one process can include multiple threads, which can be executing
simultaneously. Threads also usually allow for shared resources, such as memory and data,
while it is fairly rare for processes to do so. In short, a thread is an independent component
of computation that is similar to a process, but the threads within a process can share the
address space, and hence the data, of that process:

[44]

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2SeD2oz
http://bit.ly/2SeD2oz
http://bit.ly/2SeD2oz
http://bit.ly/2SeD2oz
http://bit.ly/2SeD2oz
http://bit.ly/2SeD2oz
http://bit.ly/2SeD2oz
http://bit.ly/2SeD2oz
http://bit.ly/2SeD2oz

Working with Threads in Python Chapter 3

Process

Time

v

A process with two threads of execution running on one processor

Threads were reportedly first used for a variable number of tasks in OS/360
multiprogramming, which is a discontinued batch processing system that was developed
by IBM in 1967. At the time, threads were called tasks by the developers, while the term
thread became popular later on and has been attributed to Victor A. Vyssotsky, a
mathematician and computer scientist who was the founding director of Digital's
Cambridge Research Lab.

Multithreading

In computer science, single-threading is similar to traditional sequential processing,
executing a single command at any given time. On the other hand, multithreading
implements more than one thread to exist and execute in a single process, simultaneously.
By allowing multiple threads to access shared resources/contexts and be executed
independently, this programming technique can help applications to gain speed in the
execution of independent tasks.

[45]

Working with Threads in Python

Chapter 3

Multithreading can primarily be achieved in two ways. In single-processor systems,

multithreading is typically implemented via time slicing, a technique that allows the CPU
to switch between different software running on different threads. In time slicing, the CPU
switches its execution so quickly and so often that users usually perceive that the software
is running in parallel (for example, when you open two different software at the same time
on a single-processor computer):

A
HIGH
Preemption Task Completion

Task)) /
Priority Time Slice Task4

| \ | |

| Taskl | Task2 | Task3 | T1 T1 --p
LOW

Time

An example of a time slicing technique called round-robin scheduling

As opposed to single-processor systems, systems with multiple processors or cores can
easily implement multithreading, by executing each thread in a separate process or core,
simultaneously. Additionally, time slicing is an option, as these multiprocess or multicore
systems can have only one processor/core to switch between tasks—although this is

generally not a good practice.

Multithreaded applications have a number of advantages, as compared to traditional
sequential applications; some of them are listed as follows:

¢ Faster execution time: One of the main advantages of concurrency through
multithreading is the speedup that is achieved. Separate threads in the same
program can be executed concurrently or in parallel, if they are sufficiently
independent of one another.

[46]

Working with Threads in Python Chapter 3

¢ Responsiveness: A single-threaded program can only process one piece of input
at a time; therefore, if the main execution thread blocks on a long-running task
(that is, a piece of input that requires heavy computation and processing), the
whole program will not be able to continue with other input, and hence, it will
appear to be frozen. By using separate threads to perform computation and
remain running to take in different user input simultaneously, a multithreaded
program can provide better responsiveness.

e Efficiency in resource consumption: As we mentioned previously, multiple
threads within the same process can share and access the same resources.
Consequently, multithreaded programs can serve and process many client
requests for data concurrently, using significantly fewer resources than would be
needed when using single-threaded or multiprocess programs. This also leads to
quicker communication between threads.

That being said, multithreaded programs also have their disadvantages, as follows:

¢ Crashes: Even though a process can contain multiple threads, a single illegal
operation within one thread can negatively affect the processing of all of the
other threads in the process, and can crash the entire program as a result.

¢ Synchronization: Even though sharing the same resources can be an advantage
over traditional sequential programming or multiprocessing programs, careful
consideration is also needed for the shared resources. Usually, threads must be
coordinated in a deliberate and systematic manner, so that shared data is
computed and manipulated correctly. Unintuitive problems that can be caused
by careless thread coordination include deadlocks, livelocks, and race conditions,
all of which will be discussed in future chapters.

An example in Python

To illustrate the concept of running multiple threads in the same process, let's look at a
quick example in Python. If you have already downloaded the code for this book from the
GitHub page, go ahead and navigate to the Chapter03 folder. Let's take a look at the
Chapter03/my_thread.py file, as follows:

Chapter03/my_thread.py
import threading

import time

class MyThread(threading.Thread) :
def __init__ (self, name, delay):

[47]

Working with Threads in Python Chapter 3

threading.Thread.__init__ (self)
self.name = name
self.delay = delay

def run(self):

print ('Starting thread %s.' % self.name)
thread_count_down (self.name, self.delay)
print ('Finished thread %s.' % self.name)

def thread_count_down (name, delay):
counter = 5

while counter:
time.sleep (delay)
print ('Thread %s counting down: %i...' % (name, counter))
counter -= 1

In this file, we are using the threading module from Python as the foundation of the
MyThread class. Each object of this class has a name and delay parameter. The function
run (), which is called as soon as a new thread is initialized and started, prints out a
starting message, and, in turn, calls the thread_count_down () function. This function
counts down from the number 5 to the number 0, while sleeping between iterations for a
number of seconds, specified by the delay parameter.

The point of this example is to show the concurrent nature of running more than one thread
in the same program (or process) by starting more than one object of the MyThread class at
the same time. We know that, as soon as each thread is started, a time-based countdown for
that thread will also start. In a traditional sequential program, separate countdowns will be
executed separately, in order (that is, a new countdown will not start until the current one
finishes). As you will see, the separate countdowns for separate threads are executed
concurrently.

Let's look at the Chapter3/examplel.py file, as follows:

Chapter03/examplel.py

from my_thread import MyThread

threadl
thread?2

MyThread ('A', 0.5)
MyThread ('B', 0.5)

threadl.start ()
thread2.start ()

threadl.join ()

[48]

Working with Threads in Python Chapter 3

thread2.join ()

print ('Finished. ")

Here, we are initializing and starting two threads together, each of which has 0. 5 seconds
as its delay parameter. Run the script using your Python interpreter. You should get the
following output:

> python examplel.py
Starting thread A.
Starting thread B.
Thread A counting down:

Thread counting down:
Thread counting down:
Finished thread B.
Finished thread A.
Finished.

5..

Thread B counting down: 5..
Thread B counting down: 4..
Thread A counting down: 4..
Thread B counting down: 3..
Thread A counting down: 3..
Thread B counting down: 2..
Thread A counting down: 2..
B 1..

A 1..

Just as we expected, the output tells us that the two countdowns for the threads were
executed concurrently; instead of finishing the first thread's countdown and then starting
the second thread's countdown, the program ran the two countdowns at almost the same
time. Without including some overhead and miscellaneous declarations, this threading
technique allows almost double improvement in speed for the preceding program.

There is one additional thing that should be taken note of in the preceding output. After the
first countdown for number 5, we can see that the countdown of thread B actually got
ahead of thread A in execution, even though we know that thread A was initialized and
started before thread B. This change actually allowed thread B to finish before thread A.
This phenomenon is a direct result of concurrency via multithreading; since the two threads
were initialized and started almost simultaneously, it was quite likely for one thread to get
ahead of the other in execution.

[49]

Working with Threads in Python Chapter 3

If you were to execute this script many times, it would be quite likely for you to get varying
output, in terms of the order of execution and the completion of the countdowns. The
following are two pieces of output that I obtained by executing the script again and again.
The first output shows a uniform and unchanging order of execution and completion, in
which the two countdowns were executed hand in hand. The second shows a case in which
thread A was executed significantly faster than thread B; it even finished before thread B
counted to number 1. This variation of output further illustrates the fact that the threads
were treated and executed by Python equally.

The following code shows one possible output of the program:

> python examplel.py
Starting thread A.
Starting thread B.
Thread A counting down:

5..
Thread B counting down: 5..
Thread A counting down: 4..
Thread B counting down: 4..
Thread A counting down: 3..
Thread B counting down: 3..
Thread A counting down: 2..
Thread B counting down: 2..
Thread A counting down: 1..
Thread B counting down: 1..

Finished thread A.
Finished thread B.
Finished.

The following is another possible output:

> python examplel.py
Starting thread A.
Starting thread B.

Thread A counting down: 5..
Thread B counting down: 5..
Thread A counting down: 4..
Thread B counting down: 4..
Thread A counting down: 3..
Thread B counting down: 3..
Thread A counting down: 2..
Thread B counting down: 2..
Thread A counting down: 1..
Finished thread A.

Thread B counting down: 1..

Finished thread B.
Finished.

[50]

Working with Threads in Python Chapter 3

An overview of the threading module

There are a lot of choices when it comes to implementing multithreaded programs in
Python. One of the most common ways to work with threads in Python is through the
threading module. Before we dive into the module's usage and its syntax, first, let's
explore the thread model, which was previously the main thread-based development
module in Python.

The thread module in Python 2

Before the threading module became popular, the primary thread-based development
module was thread. If you are using an older version of Python 2, it is possible to use the
module as it is. However, according to the module documentation page, the thread
module was, in fact, renamed _thread in Python 3.

For readers that have been working with the thread module to build multithreaded
applications and are looking to port their code from Python 2 to Python 3, the 2to3 tool
might be a solution. The 2to3 tool handles most of the detectable incompatibilities between
the different versions of Python, while parsing the source and traversing the source tree to
convert Python 2.x code into Python 3.x code. Another trick to achieve the conversion is to
change the import code from import threadto import _thread as threadinyour
Python programs.

The main feature of the thread module is its fast and sufficient method of creating new
threads to execute functions: the thread.start_new_thread () function. Aside from this,
the module only supports a number of low-level ways to work with multithreaded
primitives and share their global data space. Additionally, simple lock objects (for example,
mutexes and semaphores) are provided for synchronization purposes.

The threading module in Python 3

The old thread module has been considered deprecated by Python developers for a long
time, mainly because of its rather low-level functions and limited usage. The threading
module, on the other hand, is built on top of the thread module, providing easier ways to
work with threads through powerful, higher-level APIs. Python users have actually been
encouraged to utilize the new threading module over the thread module in their
programs.

[51]

Working with Threads in Python Chapter 3

Additionally, the thread module considers each thread a function; when

the thread.start_new_thread () is called, it actually takes in a separate function as its
main argument, in order to spawn a new thread. However, the threading module is
designed to be user-friendly for those that come from the object-oriented software
development paradigm, treating each thread that is created as an object.

In addition to all of the functionality for working with threads that the thread module
provides, the threading module supports a number of extra methods, as follows:

e threading.activeCount (): This function returns the number of currently
active thread objects in the program

e threading.currentThread (): This function returns the number of thread
objects in the current thread control from the caller

e threading.enumerate (): This function returns a list of all of the currently
active thread objects in the program

Following the object-oriented software development paradigm, the threading module
also provides a Thread class that supports the object-oriented implementation of threads.
The following methods are supported in this class:

e run (): This method is executed when a new thread is initialized and started

e start (): This method starts the initialized calling thread object by calling the
run () method

e join(): This method waits for the calling thread object to terminate before
continuing to execute the rest of the program

e isAlive (): This method returns a Boolean value, indicating whether the calling
thread object is currently executing

e getName () : This method returns the name of the calling thread object

¢ setName () : This method sets the name of the calling thread object

Creating a new thread in Python

Having provided an overview of the threading module and its differences from the old
thread module, in this section, we will explore a number of examples of creating new
threads by using these tools in Python. As mentioned previously, the threading module is
most likely the most common way of working with threads in Python. Specific situations
require use of the thread module and maybe other tools, as well, and it is important for us
to be able to differentiate those situations.

[52]

Working with Threads in Python Chapter 3

Starting a thread with the thread module

In the thread module, new threads are created to execute functions concurrently. As we
have mentioned, the way to do this is by using the thread.start_new_thread()
function:

thread.start_new_thread (function, args([, kwargs])

When this function is called, a new thread is spawned to execute the function specified by
the parameters, and the identifier of the thread is returned when the function finishes its
execution. The function parameter is the name of the function to be executed, and

the args parameter list (which has to be a list or a tuple) includes the arguments to be
passed to the specified function. The optional kwargs argument, on the other hand,
includes a separate dictionary of additional keyword arguments. When the
thread.start_new_thread () function returns, the thread also terminates silently.

Let's look at an example of using the thread module in a Python program. If you have
already downloaded the code for this book from the GitHub page, go ahead and navigate
to the Chapter03 folder and the Chapter03/example2.py file. In this example, we will
look at the is_prime () function that we have also used in previous chapters:

Chapter03/example2.py
from math import sqgrt

def is_prime(x):

if x < 2:

print ('$i is not a prime number.' % x)
elif x == 2:

print ('%$1i is a prime number.' % x)
elif x % 2 == 0:

print ('$1i is not a prime number.' % x)
else:

limit = int(sgrt(x)) + 1
for i in range (3, limit, 2):

if x $ 1 == 0:
print ('$i is not a prime number.' % x)
print ('%$1i is a prime number.' % x)

[53]

Working with Threads in Python Chapter 3

You may have noticed that there is quite a difference in the way this is_prime (x) function
returns the result of its computation; instead of returning true or false, to indicate
whether the x parameter is a prime number, this is_prime () function directly prints out
that result. As you saw earlier, the thread.start_new_thread () function executes the
parameter function through spawning a new thread, but it actually returns the thread's
identifier. Printing out the result inside of the is_prime () function is a workaround for
accessing the result of that function through the thread module.

In the main part of our program, we will loop through a list of potential candidates for
prime numbers, and we will call the thread.start_new_thread () function on the
is_prime () function and each number in that list, as follows:

Chapter03/example?2.py
import _thread as thread
my_input = [2, 193, 323, 1327, 433785907]

for x in my_input:
thread.start_new_thread(is_prime, (x,))

You will notice that, in the Chapter03/example?2.py file, there is a line of code to take in
the user's input at the end:

a = input ('Type something to quit: \n')

For now, let's comment out this last line. Then, when we execute the whole Python
program, it will be observed that the program terminates without printing out any output;
in other words, the program terminates before the threads can finish executing. This is due
to the fact that, when a new thread is spawned through the thread.start_new_thread ()
function to process a number in our input list, the program continues to loop through the
next input number while the newly created thread executes.

So, by the time the Python interpreter reaches the end of the program, if any thread has not
finished executing (in our case, it is all of the threads), that thread will be ignored and
terminated, and no output will be printed out. However, once in a while, one of the output
is2 is a prime number. which will be printed out before the program terminates,
because the thread processing the number 2 is able to finish executing prior to that point.

[54]

Working with Threads in Python Chapter 3

The last line of code is another workaround for the t hread module—this time, to address
the preceding problem. This line prevents the program from exiting until the user presses
any key on their keyboard, at which time the program will quit. The strategy is to wait for
the program to finish executing all of the threads (that is, to finish processing all of the
numbers in our input list). Uncomment the last line and execute the file, and your output
should be similar to the following:

> python example2.py

Type something to quit:

2 is a prime number.

193 is a prime number.

1327 is a prime number.

323 is not a prime number.
433785907 is a prime number.

As you can see, the Type something to quit: line, which corresponds to the last line of
code in our program, was printed out before the output from the is_prime () function;
this is consistent with the fact that that line is executed before any of the other threads
finish executing, most of the time. I say most of the time because, when the thread that is
processing the first input (the number 2) finishes executing before the Python interpreter
reaches the last line, the output of the program would be something similar to the
following;:

> python example2.py

2 is a prime number.

Type something to quit:

193 is a prime number.

323 is not a prime number.
1327 is a prime number.
433785907 is a prime number.

Starting a thread with the threading module

You now know how to start a thread with the thread module, and you know about its
limited and low-level use of threading and the need for considerably unintuitive
workarounds when working with it. In this subsection, we will explore the preferred
threading module and its advantages over the thread module, with regard to the
implementation of multithreaded programs in Python.

[551]

Working with Threads in Python Chapter 3

To create and customize a new thread using the threading module, there are specific steps
that need to be followed:

1. Define a subclass of the threading. Thread class in your program
2. Override the default __init_ (self [,args]) method inside of the subclass,
in order to add custom arguments for the class

3. Override the default run (self [, args]) method inside of the subclass, in
order to customize the behavior of the thread class when a new thread is
initialized and started

You actually saw an example of this in the first example of this chapter. As a refresher, the
following is what we have to use to customize a threading. Thread subclass, in order to
perform a five-step countdown, with a customizable delay between each step:

Chapter03/my_thread.py

import threading
import time

class MyThread (threading.Thread) :

def __init__ (self, name, delay):
threading.Thread.__init__ (self)
self.name = name

self.delay = delay

def run(self):

print ('Starting thread %s.' % self.name)
thread_count_down (self.name, self.delay)
print ('Finished thread %s.' % self.name)

def thread_count_down (name, delay):
counter = 5

while counter:
time.sleep (delay)
print ('Thread %s counting down: %i...' % (name, counter))
counter -= 1

[561]

Working with Threads in Python Chapter 3

In our next example, we will look at the problem of determining whether a specific number
is a prime number. This time, we will be implementing a multithreaded Python program
through the threading module. Navigate to the Chapter03 folder and the example3.py
file. Let's first focus on the MyThread class, as follows:

Chapter03/example3.py
import threading

class MyThread (threading.Thread) :
def _ _init_ (self, x):
threading.Thread.__init__ (self)
self.x = x

def run(self):
print ('Starting processing %$i...' % x)
is_prime (self.x)

Each instance of the MyThread class will have a parameter called x, specifying the prime
number candidate to be processed. As you can see, when an instance of the class is
initialized and started (that is, in the run (self) function), the is_prime () function,
which is the same prime-checking function that we used in the previous example, on the
x parameter, before that a message is also printed out by the run () function to specify the
beginning of the processing.

In our main program, we still have the same list of input for prime-checking. We will be
going through each number in that list, spawning and running a new instance of the
MyThread class with that number, and appending that MyThread instance to a separate list.
This list of created threads is necessary because, after that, we will have to call the join ()
method on all of those threads, which ensures that all of the threads have finished
executing successfully:

my_input = [2, 193, 323, 1327, 433785907]
threads = []
for x in my_input:
temp_thread = MyThread (x)
temp_thread.start ()

threads.append (temp_thread)

for thread in threads:
thread.join ()

print ('Finished. ")

[571

Working with Threads in Python Chapter 3

Notice that, unlike when we used the thread module, this time, we do not have to invent a
workaround to make sure that all of the threads have finished executing successfully.
Again, this is done by the join () method provided by the threading module. This is only
one example of the many advantages of using the more powerful, higher-level API of the
threading module, rather than using the thread module.

Synchronizing threads

As you saw in the previous examples, the threading module has many advantages over
its predecessor, the thread module, in terms of functionality and high-level API calls. Even
though some recommend that experienced Python developers know how to implement
multithreaded applications using both of these modules, you will most likely be using the
threading module to work with threads in Python. In this section, we will look at using
the threading module in thread synchronization.

The concept of thread synchronization

Before we jump into an actual Python example, let's explore the concept of synchronization
in computer science. As you saw in previous chapters, sometimes, it is undesirable to have
all portions of a program execute in a parallel manner. In fact, in most contemporary
concurrent programs, there are sequential portions and concurrent portions of the code;
furthermore, even inside of a concurrent portion, some form of coordination between
different threads/processes is also required.

Thread/process synchronization is a concept in computer science that specifies various
mechanisms to ensure that no more than one concurrent thread/process can process and
execute a particular program portion at a time; this portion is known as the critical section,
and we will discuss it in further detail when we consider common problems in concurrent
programming in Chapter 12, Starvation, and Chapter 13, Race Conditions.

In a given program, when a thread is accessing/executing the critical section of the
program, the other threads have to wait until that thread finishes executing. The typical
goal of thread synchronization is to avoid any potential data discrepancies when multiple
threads access their shared resources; allowing only one thread to execute the critical
section of the program at a time guarantees that no data conflicts occur in multithreaded
applications.

[581]

Working with Threads in Python Chapter 3

The threading.Lock class

One of the most common ways to apply thread synchronization is through the
implementation of a locking mechanism. In our threading module, the threading.Lock
class provides a simple and intuitive approach to creating and working with locks. Its main
usage includes the following methods:

e threading.Lock (): This method initializes and returns a new lock object.
e acquire (blocking): When this method is called, all of the threads will run
synchronously (that is, only one thread can execute the critical section at a time):
¢ The optional argument blocking allows us to specify whether the
current thread should wait to acquire the lock
e When blocking = 0, the current thread does not wait for the lock
and simply returns 0 if the lock cannot be acquired by the thread,
or 1 otherwise

e When blocking = 1, the current thread blocks and waits for the
lock to be released and acquires it afterwards

e release (): When this method is called, the lock is released.

An example in Python

Let's consider a specific example. In this example, we will be looking at the
Chapter03/exampled.py file. We will go back to the thread example of counting down
from five to one, which we looked at at the beginning of this chapter; take a moment to look
back if you do not remember the problem. In this example, we will be tweaking the
MyThread class, as follows:

Chapter03/exampled.py

import threading
import time

class MyThread (threading.Thread) :

def __init__ (self, name, delay):
threading.Thread.__init__ (self)
self.name = name

self.delay = delay

def run(self):
print ('Starting thread %s.' % self.name)
thread_lock.acquire ()

[591]

Working with Threads in Python Chapter 3

thread_count_down (self.name, self.delay)
thread_lock.release ()
print ('Finished thread %s.' % self.name)

def thread_count_down (name, delay):
counter = 5

while counter:
time.sleep (delay)
print ('Thread %s counting down: %i...' % (name, counter))
counter -= 1

As opposed to the first example of this chapter, in this example, the MyThread class utilizes
a lock object (whose variable is named thread_lock) inside of its run () function.
Specifically, the lock object is acquired right before the thread_count_down () function is
called (that is, when the countdown begins), and the lock object is released right after its
ends. Theoretically, this specification will alter the behavior of the threads that we saw in
the first example; instead of executing the countdown simultaneously, the program will
now execute the threads separately, and the countdowns will take place one after the other.

Finally, we will initialize the thread_1lock variable as well as run two separate instances of
the MyThread class:

thread_lock = threading.Lock ()

threadl
thread2

MyThread ('A', 0.5)
MyThread ('B', 0.5)

threadl.start ()
thread2.start ()

threadl.join ()
thread2.join ()

print ('Finished. ")
The output will be as follows:

> python exampled.py
Starting thread A.
Starting thread B.
Thread A counting down:
Thread A counting down:
Thread A counting down:
Thread A counting down:
Thread A counting down:

PN WU

[60]

Working with Threads in Python Chapter 3

Finished thread A.
Thread B counting down:
Thread B counting down:
Thread B counting down:
Thread B counting down:
Thread B counting down:
Finished thread B.
Finished.

P NDWdO

Multithreaded priority queue

A computer science concept that is widely used in both non-concurrent and concurrent
programming is queuing. A queue is an abstract data structure that is a collection of
different elements maintained in a specific order; these elements can be the other objects in
a program.

A connection between real-life and programmatic
queues

Queues are an intuitive concept that can easily be related to our everyday life, such as when
you stand in line to board a plane at the airport. In an actual line of people, you will see the
following;:

¢ People typically enter at one end of the line and exit from the other end

e If person A enters the line before person B, person A will also leave the line
before person B (unless person B has more priority)

* Once everyone has boarded the plane, there will be no one left in the line. In
other words, the line will be empty

In computer science, a queue works in a considerably similar way:

¢ Elements can be added to the end of the queue; this task is called enqueue.

¢ Elements can also be removed from the beginning of the queue; this task is called
dequeue.

[61]

Working with Threads in Python Chapter 3

e In a First In First Out (FIFO) queue, the elements that are added first will be
removed first (hence, the name FIFO). This is contrary to another common data

structure in computer science, called stack, in which the last element that is
added will be removed first. This is known as Last In First Out (LIFO).

o If all of the elements inside of a queue have been removed, the queue will be
empty and there will be no way to remove further elements from the queue.
Similarly, if a queue is at the maximum capacity of the number of elements it can
hold, there is no way to add any other elements to the queue:

Back Front

;“__ Dequeue
Enqueue N

A visualization of the queue data structure

The queue module

The queue module in Python provides a simple implementation of the queue data
structure. Each queue in the queue . Queue class can hold a specific amount of element, and
can have the following methods as its high-level API:

¢ get () : This method returns the next element of the calling queue object and
removes it from the queue object

e put () : This method adds a new element to the calling queue object

e gsize (): This method returns the number of current elements in the calling
queue object (that is, its size)

e empty (): This method returns a Boolean, indicating whether the calling queue
object is empty

e full (): This method returns a Boolean, indicating whether the calling queue
object is full

[62]

Working with Threads in Python Chapter 3

Queuing in concurrent programming

The concept of a queue is even more prevalent in the sub-field of concurrent programming,
especially when we need to implement a fixed number of threads in our program to
interact with a varying number of shared resources.

In the previous examples, we have learned to assign a specific task to a new thread. This
means that the number of tasks that need to be processed will dictate the number of threads
our program should spawn. (For example, in our Chapter03/example3.py file, we had
five numbers as our input and we therefore created five threads—each took one input
number and processed it.)

Sometimes it is undesirable to have as many threads as the tasks we have to process. Say
we have a large number of tasks to be processed, then it will be quite inefficient to spawn
the same large number of threads and have each thread execute only one task. It could be
more beneficial to have a fixed number of threads (commonly known as a thread pool) that
would work through the tasks in a cooperative manner.

Here is when the concept of a queue comes in. We can design a structure in which the pool
of threads will not hold any information regarding the tasks they should each execute,
instead the tasks are stored in a queue (in other words task queue), and the items in the
queue will be fed to individual members of the thread pool. As a given task is completed by
a member of the thread pool, if the task queue still contains elements to be processed, then
the next element in the queue will be sent to the thread that just became available.

This diagram further illustrates this setup:

Task Queue

-([(@@© — O —l

Troad OO0 20O] 0O

Pool

Completed Tasks
~(@© «— O

Queuing in threading

[63]

Working with Threads in Python Chapter 3

Let's consider a quick example in Python, in order to illustrate this point. Navigate to the
Chapter03/example5.py file. In this example, we will be considering the problem of
printing out all of the positive factors of an element in a given list of positive integers. We
are still looking at the previous MyThread class, but with some adjustments:

Chapter03/example5.py
import queue

import threading

import time

class MyThread (threading.Thread) :
def _ _init_ (self, name):
threading.Thread.__init__ (self)
self.name = name

def run(self):

print ('Starting thread %s.' % self.name)
process_queue ()
print ('Exiting thread %s.' % self.name)

def process_qgueue () :
while True:

try:
x = my_qgueue.get (block=False)

except queue.Empty:
return

else:
print_factors (x)

time.sleep (1)
def print_factors(x):

result_string = 'Positive factors of %i are:
for i in range(l, x + 1):

o°
b

if x & 1 ==
result_string += str(i) + ' '

result_string += '\n' + '_' * 20
print (result_string)

setting up variables

input_ = [1, 10, 4, 3]

filling the queue
my_queue = queue.Queue ()

[64]

Working with Threads in Python Chapter 3

for x in input_:
my_dgueue.put (x)

initializing and starting 3 threads
threadl = MyThread('A'")
thread2 = MyThread('B'")
thread3 = MyThread('C'")

threadl.start ()
thread2.start ()
thread3.start ()

joining all 3 threads
threadl. join ()
thread2.join ()
thread3.join ()

print ('Done.")

There is a lot going on, so let's break the program down into smaller pieces. First, let's look
at our key function, as follows:

Chapter03/example5.py

def print_factors(x):
result_string = 'Positive factors of %i are: $ X
for i in range(l, x + 1):
if x & 1 ==
result_string += str(i) + ' '
result_string += '\n' + '_' * 20

print (result_string)

This function takes in an argument, x then iterates through all positive numbers between 1
and itself, to check whether a number is a factor of x. It finally prints out a formatted
message that contains all of the information that it cumulates through the loop.

[65]

Working with Threads in Python Chapter 3

In our new MyThread class, when a new instance is initialized and started, the
process_queue () function will be called. This function will first attempt to obtain the next
element of the queue object that the my_queue variable holds in a non-blocking manner by
calling the get (block=False) method. If a queue.Empty exception occurs (which
indicates that the queue currently holds no value), then we will end the execution of the
function. Otherwise we simply pass that element we just obtained to the

print_factors () function.

Chapter03/example5.py

def process_qgueue () :
while True:

try:
x = my_queue.get (block=False)

except queue.Empty:
return

else:
print_factors (x)

time.sleep (1)

The my_queue variable is defined in our main function as a Queue object from the queue
module that contains the elements in the input_ list:

setting up variables
input_ = [1, 10, 4, 3]

filling the queue

my_gueue = dgueue.Queue (4)

for x in input_:
my_dgueue.put (x)

For the rest of the main program, we simply initiate and run three separate threads until all
of them finish their respective execution. Here we choose to create only three threads to
simulate the design that we discussed earlier—a fixed number of threads processing a
queue of input whose number of elements can change independently:

initializing and starting 3 threads
threadl = MyThread('A'")
thread2 = MyThread('B')
thread3 = MyThread('C'")

threadl.start ()
thread2.start ()
thread3.start ()

[66]

Working with Threads in Python Chapter 3

joining all 3 threads
threadl. join ()
thread2.join ()
thread3.join ()

print ('Done."')

Run the program and you will see the following output:

> python example5.py
Starting thread A.

Starting thread B.

Starting thread C.

Positive factors of 1 are: 1

Positive factors of 10 are: 1 2 5 10

Positive factors of 4 are: 1 2 4

Positive factors of 3 are: 1 3

Exiting thread C.
Exiting thread A.
Exiting thread B.
Done.

In this example, we have implemented the structure that we discussed earlier: a task queue
that holds all the tasks to be executed and a thread pool (threads A, B, and C) that interacts
with the queue to process its elements individually.

Multithreaded priority queue

The elements in a queue are processed in the order that they were added to the queue; in
other words, the first element that is added leaves the queue first (FIFO). Even though this
abstract data structure simulates real life in many situations, depending on the application
and its purposes, sometimes, we need to redefine/change the order of the elements
dynamically. This is where the concept of priority queuing comes in handy.

[671]

Working with Threads in Python Chapter 3

The priority queue abstract data structure is similar to the queue (and even the
aforementioned stack) data structure, but each of the elements in a priority queue, as the
name suggests, has a priority associated with it; in other words, when an element is added
to a priority queue, its priority needs to be specified. Unlike in regular queues, the
dequeuing principle of a priority queue relies on the priority of the elements: the elements
with higher priorities are processed before those with lower priorities.

The concept of a priority queue is used in a variety of different applications—namely,
bandwidth management, Dijkstra's algorithm, best-first search algorithms, and so on. Each
of these applications typically uses a definite scoring system/function to determine the
priority of its elements. For example, in bandwidth management, prioritized traffic, such as
real-time streaming, is processed with the least delay and the least likelihood of being
rejected. In best-search algorithms that are used to find the shortest path between two given
nodes of a graph, a priority queue is implemented to keep track of unexplored routes; the
routes with shorter estimated path lengths are given higher priorities in the queue.

Summary

A thread of execution is the smallest unit of programming commands. In computer science,
multithreaded applications allow for multiple threads to exist within the same

process simultaneously, in order to implement concurrency and parallelism.
Multithreading provides a variety of advantages, in execution time, responsiveness, and the
efficiency of resource consumption.

The threading module in Python 3, which is commonly considered superior to the old
thread module, provides an efficient, powerful, and high-level API to work with threads
while implementing multithreaded applications in Python, including options to spawn new
threads dynamically and synchronize threads through different locking mechanisms.

Queuing and priority queuing are important data structures in the field of computer
science, and they are essential concepts in concurrent and parallel programming. They
allow for multithreaded applications to efficiently execute and complete their threads in an
accurate manner, ensuring that the shared resources are processed in a specific and
dynamic order.

In the next chapter, we will discuss a more advanced function of Python, the with
statement, and how it complements the use of multithreaded programming in Python.

[68]

Working with Threads in Python Chapter 3

Questions

What is a thread? What are the core differences between a thread and a process?
What are the API options provided by the thread module in Python?

What are the API options provided by the threading module in Python?
What are the processes of creating new threads via the thread and threading
modules?

What is the idea behind thread synchronization using locks?

What is the process of implementing thread synchronization using locks in
Python?

What is the idea behind the queue data structure?

What is the main application of queuing in concurrent programming?

What are the core differences between a regular queue and a priority queue?

Further reading

For more information you can refer to the following links:

Python Parallel Programming Cookbook, Giancarlo Zaccone, Packt Publishing Ltd,
2015

"Learning Concurrency in Python: Build highly efficient, robust, and concurrent
applications", Elliot Forbes (2017)

Real-time concepts for embedded systems, Qing Li and Caroline Yao, CRC Press, 2003

[69]

Using the with Statement in
Threads

The with statement in Python sometimes causes confusion for novice and experienced
Python programmers alike. This chapter explains in depth the idea behind the with
statement as a context manager and its usage in concurrent and parallel programming,
specifically regarding the use of locks while synchronizing threads. This chapter also
provides specific examples of how the with statement is most commonly used.

The following topics will be covered in this chapter:

e The concept of context management and the options that the with statement
provides as a context manager, specifically in concurrent and parallel
programming

¢ The syntax of the with statement and how to use it effectively and efficiently

e The different ways of using the with statement in concurrent programming

Technical requirements

The following is a list of prerequisites for this chapter:

e Python 3 must be installed on your computer

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder named Chapter04
¢ Check out the following video to see the Code in Action: http://bit.ly/2DSGLEZ

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2DSGLEZ
http://bit.ly/2DSGLEZ
http://bit.ly/2DSGLEZ
http://bit.ly/2DSGLEZ
http://bit.ly/2DSGLEZ
http://bit.ly/2DSGLEZ
http://bit.ly/2DSGLEZ
http://bit.ly/2DSGLEZ
http://bit.ly/2DSGLEZ

Using the with Statement in Threads Chapter 4

Context management

The new with statement was first introduced in Python 2.5 and has been in use for quite
some time. However, there still seems to be confusion regarding its usage, even for
experienced Python programmers. The with statement is most commonly used as a context
manager that properly manages resources, which is essential in concurrent and parallel
programming, where resources are shared across different entities in the concurrent or
parallel application.

Starting from managing files

As an experienced Python user, you have probably seen the with statement being used to
open and read external files inside Python programs. Looking at this problem at a lower
level, the operation of opening an external file in Python will consume a resource—in this
case, a file descriptor—and your operating system will set a limit on this resource. This
means that there is an upper limit on how many files a single process running on your
system can open simultaneously.

Let's consider a quick example to illustrate this point further. Let's take a look at
the Chapter04/examplel.py file, as shown in the following code:

Chapter04/examplel.py

n_files = 10
files = []

for i in range(n_files):
files.append (open ('outputl/sample%i.txt' % 1, 'w'))

This quick program simply creates 10 text files inside the output1 folder: sample0.txt,
samplel.txt, .., sample9.txt. What might be of more interest to us is the fact that the
files were opened inside the for loop but were not closed—this is a bad practice in
programming that we will discuss later. Now, let's say we wanted to reassign the
n_files variable to a large number—say 10,000—as shown in the following code:

Chapter4d/examplel.py

n_files = 10000
files = []

method 1
for i in range(n_files):
files.append (open ('outputl/sample%i.txt' % 1, 'w'))

[71]

Using the with Statement in Threads Chapter 4

We would get an error similar to the following;:

> python examplel.py
Traceback (most recent call last):
File "examplel.py", line 7, in <module>
OSError: [Errno 24] Too many open files: 'outputl/sample253.txt'

Looking closely at the error message, we can see that my laptop can only handle 253
opened files simultaneously (as a side note, if you are working on a UNIX-like system,
running ulimit -n will give you the number of files that your system can handle). More
generally, this situation arose from what is known as file descriptor leakage. When Python
opens a file inside a program, that opened file is essentially represented by an integer. This
integer acts as a reference point that the program can use in order to have access to that file,
while not giving the program complete control over the underlying file itself.

By opening too many files at the same time, our program assigned too many file descriptors
to manage the open files, hence the error message. File descriptor leakage can lead to a
number of difficult problems—especially in concurrent and parallel
programming—namely, unauthorized I/O operations on open files. The solution to this is
to simply close opened files in a coordinated manner. Let's look at our
Chapter04/examplel.py file in the second method. In the for loop, we would do the
following;:

Chapter04/examplel.py

n_files = 1000

files = []

method 2

for i in range(n_files):
f = open('outputl/sample%i.txt' % i, 'w')
files.append (f)
f.close()

The with statement as a context manager

In real-life applications, it is rather easy to mismanage opened files in your programs by
forgetting to close them; it can sometimes also be the case that it is impossible to tell
whether the program has finished processing a file, and we programmers will therefore be
unable to make a decision as to when to put the statement to close the files appropriately.
This situation is even more common in concurrent and parallel programming, where the
order of execution between different elements changes frequently.

[72]

Using the with Statement in Threads Chapter 4

One possible solution to this problem that is also common in other programming languages
istouseatry...except...finally block every time we want to interact with an
external file. This solution still requires the same level of management and significant
overhead and does not provide a good improvement in the ease and readability of our
programs either. This is when the with statement of Python comes into play.

The with statement gives us a simple way of ensuring that all opened files are properly
managed and cleaned up when the program finishes using them. The most notable
advantage of using the with statement comes from the fact that, even if the code is
successfully executed or it returns an error, the with statement always handles and
manages the opened files appropriately via context. For example, let's look at our
Chapter04/examplel .py file in more detail:

Chapter04/examplel.py

n_files = 254
files = []

method 3
for i in range(n_files):
with open ('outputl/sample%i.txt' % i, 'w') as f:
files.append(£f)

While this method accomplishes the same job as the second method we saw earlier, it
additionally provides a cleaner and more readable way to manage the opened files that our
program interacts with. More specifically, the with statement helps us indicate the scope of
certain variables—in this case, the variables that point to the opened files—and hence, their
context.

For example, in the third method in the preceding code, the f variable indicates the current
opened file within the with block at each iteration of the for loop, and as soon as our
program exits that with block (which is outside the scope of that f variable), there is no
longer any other way to access it. This architecture guarantees that all cleanup associated
with a file descriptor happens appropriately. The with statement is hence called a context
manager.

[73]

Using the with Statement in Threads Chapter 4

The syntax of the with statement

The syntax of the with statement can be intuitive and straightforward. With the purpose of
wrapping the execution of a block with methods defined by a context manager, it consists
of the following simple form:

with [expression] (as [target]):
[code]

Note that the as [target] part of the with statement is actually not required, as we will
see later on. Additionally, the with statement can also handle more than one item on the
same line. Specifically, the context managers created are treated as if multiple with
statements were nested inside one another. For example, look at the following code:

with [expressionl] as [targetl], [expression2] as [target2]:
[code]

This is interpreted as follows:

with [expressionl] as [targetl]:
with [expression2] as [target2]:
[code]

The with statement in concurrent
programming

Obviously, opening and closing external files does not resemble concurrency very much.
However, we mentioned earlier that the with statement, as a context manager, is not only
used to manage file descriptors, but most resources in general. And if you actually found
managing lock objects from the threading.Lock () class similar to managing external files
while going through chapter 2, Amdahl’s Law, then this is where the comparison between
the two comes in handy.

As a refresher, locks are mechanisms in concurrent and parallel programming that are
typically used to synchronize threads in a multithreaded application (that is, to prevent
more than one thread from accessing the critical session simultaneously). However, as we
will discuss again in chapter 12, Starvation, locks are also a common source of deadlock,
during which a thread acquires a lock but never releases it because of an unhandled
occurrence, thereby stopping the entire program.

[74]

Using the with Statement in Threads Chapter 4

Example of deadlock handling

Let's look at a quick example in Python. Let's a take look at the Chapter04/example2.py
file, as shown in the following code:

Chapter04/example?2.py
from threading import Lock
my_lock = Lock()

def get_data_from_file_vl(filename) :
my_lock.acquire ()

with open(filename, 'r') as f:
data.append (f.read())

my_lock.release ()
data = []

try:

get_data_from_file ('output2/samplel.txt"')
except FileNotFoundError:

print ('Encountered an exception...')

my_lock.acquire ()
print ('Lock can still be acquired.')

In this example, we have a get_data_from_file_v1 () function that takes in the path to
an external file, reads the data from it, and appends that data to a predeclared list called
data. Inside this function, a lock object called my_1lock, which is also predeclared prior to
the function being called, is acquired and released as the parameter file is read before and
after, respectively.

In the main program, we will try to call get_data_from_file_v1 () on anonexistent file,
which is one of the most common errors in programming. At the end of the program, we
also acquire the lock object again. The point is to see whether our programming could
handle the error of reading a nonexistent file appropriately and gracefully with just

the try. . .except block that we have.

[75]

Using the with Statement in Threads Chapter 4

After running the script, you will notice that our program will print out the error message
specified in the try. . .except block, Encountered an exception..., whichis
expected, since the file could not be found. However, the program will also fail to execute
the rest of the code; it will never get to the last line of code—print ('Lock

acquired. ')—and will hang forever (or until you hit Ctrl + C to force-quit the program).

This is a deadlock situation, which, again, occurs when my_1ock is acquired inside the
get_data_from_file_v1 () function, but since our program encountered an error before
executing my_lock.release (), the lock was never released. This in turn caused
themy_lock.acquire () line at the end of the program to hang, as the lock could not be
acquired in any way. Our program hence could not reach its last line of code, print ('Lock

acquired."').

This problem, however, could be handled with a with statement easily and effortlessly. In
the example2.py file, simply comment out the line calling get_data_from_file_v1 ()
and uncomment the line calling get_data_from_file_v2 (), and you will have the
following;:

Chapter04/example?2.py
from threading import Lock
my_lock = Lock()

def get_data_from_file_v2 (filename) :
with my_lock, open(filename, 'r') as f:
data.append (f.read())

data = []

try:

get_data_from_file_v2 ('output2/sample0.txt")
except:

print ('Encountered an exception...')

my_lock.acquire ()
print ('Lock acquired.')

In the get_data_from_file_v2 () function, we have the equivalent of a pair of nested
with statements, as follows:

with my_lock:
with open(filename, 'r') as f:
data.append(f.read())

[76]

Using the with Statement in Threads Chapter 4

Since Lock objects are context managers, simply using with my_lock: would ensure that
the lock object is acquired and released appropriately, even if an exception is encountered
inside the block. After running the script, you will have the following output:

> python example2.py
Encountered an exception...
Lock acquired.

We can see that, this time, our program was able to acquire the lock and reach the end of
the script gracefully and without errors.

Summary

The with statement in Python offers an intuitive and convenient way to manage resources
while ensuring that errors and exceptions are handled correctly. This ability to manage
resources is even more important in concurrent and parallel programming, where various
resources are shared and utilized across different entities—specifically, by using the with
statement with threading.Lock objects that are used to synchronize different threads in a
multithreaded application.

Aside from better error handling and guaranteed cleanup tasks, the with statement also
provides extra readability from your programs, which is one of the strongest features that
Python offers its developers.

In the next chapter, we will be discussing one of the most popular uses of Python at the
moment: web-scraping applications. We will look at the concept and the basic idea behind
web scraping, the tools that Python provides to support web scraping, and how
concurrency will significantly help your web-scraping applications.

Questions

e What is a file descriptor and in what ways can it be handled in Python?

What problem arises when file descriptors are not handled carefully?

What is a lock and in what ways can it be handled in Python?

What problem arises when locks are not handled carefully?

What is the idea behind context managers?

What options does the with statement in Python provide in terms of context
management?

[77]

Using the with Statement in Threads Chapter 4

Further reading

For more information, you can refer to the following links:

o Python Parallel Programming Cookbook, by Zaccone and Giancarlo, published by
Packt, 2015

e Improve Your Python: the with Statement and Context Managers, Jeff Knupp (https:/
/jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-
and-context-managers/)

o Compound statements, Python Software Foundation (https://docs.python.org/
3/reference/compound_stmts.html)

[78]

https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://jeffknupp.com/blog/2016/03/07/improve-your-python-the-with-statement-and-context-managers/
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html

Concurrent Web Requests

This chapter will focus on the application of concurrency in making web requests.
Intuitively, making requests to a web page to collect information about it is independent to
applying the same task to another web page. Concurrency, specifically threading in this
case, therefore can be a powerful tool that provides a significant speedup in this process. In
this chapter, we will learn the fundamentals of web requests and how to interact with
websites using Python. We will also see how concurrency can help us make multiple
requests in an efficient way. Finally, we will look at a number of good practices in web
requests.

In this chapter, we will cover the following concepts:

¢ The basics of web requests
e The requests module
¢ Concurrent web requests

The problem of timeout

Good practices in making web requests

Technical requirements

The following is a list of prerequisites for this chapter:

¢ Python 3 must be installed on your computer

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering—-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder named Chapter05
¢ Check out the following video to see the Code in Action: http://bit.1ly/2FylZcS

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2Fy1ZcS
http://bit.ly/2Fy1ZcS
http://bit.ly/2Fy1ZcS
http://bit.ly/2Fy1ZcS
http://bit.ly/2Fy1ZcS
http://bit.ly/2Fy1ZcS
http://bit.ly/2Fy1ZcS
http://bit.ly/2Fy1ZcS
http://bit.ly/2Fy1ZcS

Concurrent Web Requests Chapter 5

The basics of web requests

The worldwide capacity to generate data is estimated to double in size every two years.
Even though there is an interdisciplinary field known as data science that is entirely
dedicated to the study of data, almost every programming task in software development
also has something to do with collecting and analyzing data. A significant part of this is,

of course, data collection. However, the data that we need for our applications is sometimes
not stored nicely and cleanly in a database—sometimes, we need to collect the data we
need from web pages.

For example, web scraping is a data extraction method that automatically makes requests to
web pages and downloads specific information. Web scraping allows us to comb through
numerous websites and collect any data we need in a systematic and consistent
manner—the collected data can be analyzed later on by our applications or simply saved on
our computers in various formats. An example of this would be Google, which programs
and runs numerous web scrapers of its own to find and index web pages for the search
engine.

The Python language itself provides a number of good options for applications of this kind.
In this chapter, we will mainly work with the requests module to make client-side web
requests from our Python programs. However, before we look into this module in more
detail, we need to understand some web terminology in order to be able to effectively
design our applications.

HTML

Hypertext Markup Language (HTML) is the standard and most common markup
language for developing web pages and web applications. An HTML file is simply a
plaintext file with the . htm1 file extension. In an HTML document, texts are surrounded
and delimited by tags, written in angle brackets: <p>, , <i>, and so on. These tags
typically consist of pairs—an opening tag and a closing tag—indicating the styling or the
nature of the data included inside.

It is also possible to include other forms of media in HTML code, such as images or videos.
There are also numerous other tags that are used in common HTML documents. Some
specify a group of elements that share some common characteristics, such as <id></id>
and <class></class>.

[80]

Concurrent Web Requests Chapter 5

The following is an example of HTML code:

<div class="topNavTop">
<p>Welcome to Chilli restaurant</p>
<div class="topNavRight">

<p>416-455-3221</p>

<p>info@company.com</p>

</div>
</div>
<div class="topNavBottom">

<div class="topNavRightBottom">
HOME
MENU
EVENTS
CONTACT

Sample HTML code

Fortunately, detailed knowledge on what each HTML tag accomplishes is not required for
us to be able to make effective web requests. As we will see later on in this chapter, the
more essential part of making web requests is the ability to interact with web pages
efficiently.

[81]

Concurrent Web Requests Chapter 5

HTTP requests

In a typical communication process on the web, HTML texts are the data that is to be saved
and/or further processed. This data needs to be first collected from web pages, but how can
we go about doing that? Most of the communication is done via the internet—more
specifically, the World Wide Web—and this utilizes the Hypertext Transfer Protocol
(HTTP). In HTTP, request methods are used to convey the information of what data is
being requested and should be sent back from a server.

For example, when you type packtpub.com in your browser, the browser sends a request
method via HTTP to the Packt website's main server asking for data from the website.
Now, if both your internet connection and Packt's server are working well, then your
browser will receive a response back from the server, as shown in the following diagram.
This response will be in the form of an HTML document, which will be interpreted by your
browser, and your browser will display the corresponding HTML output to the screen.

HTTP =—=1 | |=——=
— Request Message
—
= 3 °
Response Message
HTTP Clients 5 i
(Web Browser) HTTP over TCP/IP HTTP Server (Web Server)

Diagram of HTTP communication

Generally, request methods are defined as verbs that indicate the desired action to be
performed while the HTTP client (web browsers) and the server communicate with each
other: GET, HEAD, POST, PUT, DELETE, and so on. Of these methods, GET and POST are two

of the most common request methods used in web-scraping applications; their function is
described in the following list:

¢ The GET method makes a request for a specific data from the server. This method
only retrieves data and has no other effect on the server and its databases.
e The POST method sends data in a specific form that is accepted by the server.

This data could be, for example, a message to a bulletin board, mailing list, or a
newsgroup; information to be submitted to a web form; or an item to be added to

a database.

[82]

Concurrent Web Requests Chapter 5

All general-purpose HTTP servers that we commonly see on the internet are
actually required to implement at least the GET (and HEAD) method, while the POST method
is considered optional.

HTTP status code

It is not always the case that, when a web request is made and sent to a web server, the
server will process the request and return the requested data without fail. Sometimes, the
server might be completely down or already busy interacting with other clients and
therefore unresponsive to a new request; sometimes, the client itself makes bad requests to
a server (for example, incorrectly formatted or malicious requests).

As a way to categorize these problems as well as provide the most information as possible
during the communication resulting from a web request, HTTP requires servers to respond
to each request from its clients an HTTP response status code. A status code is typically a
three-digit number that indicates the specific characteristics of the response that the server
sends back to a client.

There are in total five large categories of HTTP response status codes, indicated by the first
digit of the code. They are as follows:

¢ Ixx (informational status code): The request was received and the server is
processing it. For example, 100 means the request header has been received and
the server is waiting for the request body; 102 indicates that the request is
currently being processed (this is used for large requests and to prevent clients
from timing out).

e 2xx (successful status code): The request was successfully received, understood,
and processed by the server. For example, 200 means the request was
successfully fulfilled; 202 indicates that the request has been accepted for
processing, but the processing itself is not complete.

¢ 3xx (redirectional status code): Additional actions need to be taken so that the
request can be successfully processed. For example, 300 means that there are
multiple options regarding how the response from the server should be
processed (for example, giving the client multiple video format options when a
video file is to be downloaded); 301 indicates that the server has been moved
permanently and all requests should be directed to another address (provided in
the response from the server).

[83]

Concurrent Web Requests Chapter 5

e 4xx (error status code for the client): The request was incorrectly formatted by
the client and could not be processed. For example, 400 means that the client sent
in a bad request (for example, syntax error or the size of the request is too large);
404 (arguably the most well-known status code) indicates that the request
method is not supported by the server.

¢ 5xx (error status code for the server): The request, although valid, could not be
processed by the server. For example, 500 means there is an internal server error
in which an unexpected condition was encountered; 504 (Gateway Timeout)
means that the server, which was acting as a gateway or a proxy, did not receive
a response from the final server in time.

A lot more can be said about these status codes, but it is already sufficient for us to keep in
mind the big five categories previously mentioned when making web requests from
Python. If you would like to find more specific information about the above or other status
codes, the Internet Assigned Numbers Authority (IANA) maintains the official registry of
HTTP status codes.

The requests module

The requests module allows its users to make and send HTTP request methods. In the
applications that we will be considering, it is mainly used to make contact with the server
of the web pages we want to extract data from and obtain the response for the server.

According to the official documentation of the module, the use of Python
3 is highly recommended over Python 2 for requests.

To install the module on your computer, run the following:

pip install requests

You should use this code if you are using pip as your package manager. If, however, you
are using Anaconda instead, simply use the following:

conda install requests

These commands should install requests and any other required dependencies (idna,
certifi, urllib3, and so on) for you if your system does not have those already. After
this, run import requests in a Python interpreter to confirm that the module has been
installed successfully.

[84]

Concurrent Web Requests Chapter 5

Making a request in Python

Let's look at an example usage of the module. If you already have the code for this book
downloaded from the GitHub page, go ahead and navigate to the Chapter05 folder. Let's
take a look at the examplel.py file, as shown in the following code:

Chapter05/examplel.py
import requests

url = 'http://www.google.com'
res = requests.get (url)

print (res.status_code)
print (res.headers)

with open('google.html', 'w') as f:
f.write (res.text)

print ('Done.")

In this example, we are using the requests module to download the HTML code of the
web page, www.google.com. The requests.get () method sends a GET request method
to url and we store the response to the res variable. After checking the status and headers
of the response by printing them out, we create a file called google.html and write the
HTML code, which is stored in the response text, to the file.

After running the programming (assuming that your internet is working and the
Google server is not down), you should get the following output:

200

{'Date': 'Sat, 17 Nov 2018 23:08:58 GMT', 'Expires': '-1', 'Cache-Control':
'private, max-age=0', 'Content-Type': 'text/html; charset=IS0-8859-1',
'P3P': 'CP="This is not a P3P policy! See g.co/p3phelp for more info."',
'X-XSS-Protection': 'l; mode=block', 'X-Frame-Options': 'SAMEORIGIN',
'Content-Encoding': 'gzip', 'Server': 'gws', 'Content-Length': '4958',

'Set-Cookie': 'lP_JAR=2018-11-17-23; expires=Mon, 17-Dec-2018 23:08:58 GMT,
path=/; domain=.google.com, NID=146=NHT7fic3mjBO_vdiFB3-
gqnFPyGN1EGxyMkkNPnFMEVsqjGJ8S0EwrivDBWBgUS7hCPZGHbosLE4uxz31lshnr3X4adRpe7u
ICEiK8gh3Asu6LH_bIKSLWStAp8gMK1£f9_GnQ0_JKQoMvG-
OLrT_fwVOhwTR5r2UVYsUJ6xHtX2s; expires=Sun, 19-May-2019 23:08:58 GMT;
path=/; domain=.google.com; HttpOnly'}

Done.

[85]

Concurrent Web Requests Chapter 5

The response had a 200 status code, which we know means that the request has been
successfully completed. The header of the response, stored in res.headers, additionally
contains further specific information regarding the response. For example, we can see the
date and time the request was made or that the content of the response is text and HTML
and the total length of the content is 4958.

The complete data sent from the server was also written to the google.html file. When
you open the file in a text editor, you will be able to see the HTML code of the web page
that we have downloaded using requests. On the other hand, if you use a web browser to
open the file, you will see how most of the information from the original web page is now
being displayed through a downloaded offline file.

For example, the following is how Google Chrome on my system interprets the HTML file:

®® [coogle

Kearch Images Maps Play YouTube News Gmail Drive More » Web History | Settings | Sign.

l».Google

Google Search | I'm Feeling Lucky

Advertising Programs Business Solutions +Google About Google

© 2018 - Privacy - Terms

Downloaded HTML opened offline

There is other information that is stored on the server that web pages of that server make
reference to. This means that not all of the information that an online web page provides
can be downloaded via a GET request, and this is why offline HTML code sometimes fails
to contain all of the information available on the online web page that it was downloaded
from. (For example, the downloaded HTML code in the preceding screenshot does not
display the Google icon correctly.)

[86]

Concurrent Web Requests Chapter 5

Running a ping test

With the basic knowledge of HTTP requests and the requests module in Python in mind,
we will go through the rest of this chapter with a central problem: running a ping test. A
ping test is a process in which you test the communication between your system and
specific web servers, simply by making a request to each of the servers in question. By
considering the HTTP response status code (potentially) returned by the server, the test is
used to evaluate either the internet connection of your own system or the availability of the
servers.

Ping tests are quite common among web administrators, who usually have to manage a
large number of websites simultaneously. Ping tests are a good tool to quickly identify
pages that are unexpectedly unresponsive or down. There are many tools that provide you
with powerful options in ping tests and, in this chapter, we will be designing a ping test
application that can concurrently send multiple web requests at the same time.

To simulate different HTTP response status codes to be sent back to our program, we will
be using httpstat.us, a website that can generate various status codes and is commonly
used to test how applications that make web requests can handle varying response.
Specifically, to use a request that will return a 200 status code in a program, we can simply
make a request to httpstat.us/200 and the same applies for other status codes. In our ping
test program, we will have a list of httpstat.us URLs with different status codes.

Let's now a take look at the Chapter(05/example2.py file, as shown in the following code:
Chapter05/example?2.py
import requests

def ping(url):
res = requests.get (url)
print (f'{url}: {res.text}')

urls = [
'http://httpstat.us/200"',
'http://httpstat.us/400"',
'http://httpstat.us/404",
'http://httpstat.us/408"',
'http://httpstat.us/500"',
'http://httpstat.us/524"'

[871]

http://www.httpstat.us
http://www.httpstat.us/200
http://www.httpstat.us

Concurrent Web Requests Chapter 5

for url in urls:
ping(url)

print ('Done.")

In this program, the ping () function takes in a URL and attempts to make a GET request to
the site. It will then print out the content of the response returned by the server. In our main
program, we have a list of different status codes that we mentioned earlier, each of which
we will go through and call the ping () function on.

The final output after running the preceding example should be as follows:

http://httpstat.us/200: 200 OK
http://httpstat.us/400: 400 Bad Request
http://httpstat.us/404: 404 Not Found
http://httpstat.us/408: 408 Request Timeout
http://httpstat.us/500: 500 Internal Server Error
http://httpstat.us/524: 524 A timeout occurred
Done.

We see that our ping test program was able to obtain corresponding responses from the
server.

Concurrent web requests

In the context of concurrent programming, we can see that the process of making a request
to a web server and obtaining the returned response is independent from the same
procedure for a different web server. This is to say that we could apply concurrency and
parallelism to our ping test application to speed up our execution.

In the concurrent ping test applications that we are designing, multiple HTTP requests will
be made to the server simultaneously and corresponding responses will be sent back to our
program, as shown in the following figure. As discussed before, concurrency and
parallelism have significant applications in web development, and most servers nowadays
have the ability to handle a large amount of requests at the same time:

[881]

Concurrent Web Requests

Chapter 5

HTTP Request

HTTP Result

HTTP Request

HTTP Result

HTTP Request

HTTP Result

HTTP Request

HTTP Result

Parallel HTTP requests

Spawning multiple threads

To apply concurrency, we simply use the threading module that we have been discussing

to create separate threads to handle different web requests. Let's take a look at the
Chapter05/example3.py file, as shown in the following code:

Chapter05/example3.py

import threading

import requests
import time

def ping(
res =

url) :

requests.get (url)

print (f'{url}: {res.text}')

urls = [

'http:
'http:
'http:
'http:
'http:
'http:

//httpstat.us/200",
//httpstat.us/400",
//httpstat.us/404",
//httpstat.us/408",
//httpstat.us/500",
//httpstat.us/524"

[891]

Concurrent Web Requests Chapter 5

start = time.time ()
for url in urls:
ping(url)
print (f'Sequential: {time.time() - start : .2f} seconds')

print ()

start = time.time ()
threads = []
for url in urls:
thread = threading.Thread(target=ping, args=(url,))
threads.append (thread)
thread.start ()
for thread in threads:
thread.join ()

print (f'Threading: {time.time() - start : .2f} seconds')

In this example, we are including the sequential logic from the previous example to process
our URL list, so that we can compare the improvement in speed when we apply threading
to our ping test program. We are also creating a thread to ping each of the URLs in our URL
list using the threading module; these threads will be executing independently from each
other. Time taken to process the URLs sequentially and concurrently are also tracked using
methods from the t ime module.

Run the program and your output should be similar to the following:

http://httpstat.us/200: 200 OK
http://httpstat.us/400: 400 Bad Request
http://httpstat.us/404: 404 Not Found
http://httpstat.us/408: 408 Request Timeout
http://httpstat.us/500: 500 Internal Server Error
http://httpstat.us/524: 524 A timeout occurred
Sequential: 0.82 seconds

http://httpstat.us/404: 404 Not Found
http://httpstat.us/200: 200 OK
http://httpstat.us/400: 400 Bad Request
http://httpstat.us/500: 500 Internal Server Error
http://httpstat.us/524: 524 A timeout occurred
http://httpstat.us/408: 408 Request Timeout
Threading: 0.14 seconds

[90]

Concurrent Web Requests Chapter 5

While the specific time that the sequential logic and threading logic take to process all the
URLs might be different from system to system, there should still be a clear distinction
between the two. Specifically, here we can see that the threading logic was almost six times
faster than the sequential logic (which corresponds to the fact that we had six threads
processing six URLs in parallel). There is no doubt, then, that concurrency can provide
significant speedup for our ping test application specifically and for the process of making
web requests in general.

Refactoring request logic

The current version of our ping test application works as intended, but we can improve its
readability by refactoring the logic where we make web requests into a thread class.
Consider the Chapter05/example4.py file, specifically the MyThread class:

Chapter05/exampled.py

import threading
import requests

class MyThread (threading.Thread) :
def __init__ (self, url):
threading.Thread.__init__ (self)
self.url = url
self.result = None

def run(self):
res = requests.get (self.url)
self.result = f'{self.url}: {res.text}'

In this example, MyThread inherits from the threading. Thread class and contains two
additional attributes: url and result. The url attribute holds the URL that the thread
instance should process, and the response returned from the web server to that thread will
be written to the result attribute (in the run () function).

Outside of this class, we now can simply loop through the URL list, and create and manage
the threads accordingly while not having to worry about the request logic in the main
program:

urls = [
'http://httpstat.us/200',
'http://httpstat.us/400',
'http://httpstat.us/404"',
'http://httpstat.us/408"',
'http://httpstat.us/500",

[91]

Concurrent Web Requests Chapter 5

'http://httpstat.us/524"'
]

start = time.time ()

threads = [MyThread(url) for url in urls]
for thread in threads:
thread.start ()
for thread in threads:
thread.join ()
for thread in threads:
print (thread.result)

print (f'Took {time.time() - start : .2f} seconds')
print ('Done.")

Note that we are now storing the responses in the result attribute of the MyThread class,
instead of directly printing them out as in the old ping () function from the previous
examples. This means that, after making sure that all threads have finished, we will need to
loop through the threads one more time and print out those responses.

Refactoring the request logic should not greatly affect the performance of our current
program; we are keeping track of the execution speed to see if this is actually the case.
Execute the program and you will obtain the output similar to the following:

http://httpstat.us/200: 200 OK
http://httpstat.us/400: 400 Bad Request
http://httpstat.us/404: 404 Not Found
http://httpstat.us/408: 408 Request Timeout
http://httpstat.us/500: 500 Internal Server Error
http://httpstat.us/524: 524 A timeout occurred
Took 0.14 seconds

Done.

Just as we expected, we are still achieving a significant speedup from the sequential version
of the program with this refactored request logic. Again, our main program is now more
readable, and further adjustments of the request logic (as we will see in the next section)
can simply be directed to the MyThread class, without affecting the rest of the program.

[92]

Concurrent Web Requests Chapter 5

The problem of timeout

In this section, we will explore a potential improvement to be made to our ping test
application: timeout handling. Timeouts typically occur when the server takes an unusually
long time to process a specific request, and the connection between the server and its client
is terminated.

In the context of a ping test application, we will be implementing a customized threshold
for the timeout. Recall that a ping test is used to determine whether specific servers are still
responsive, so we can specify in our program that, if a request takes more than our timeout
threshold for the server to response, we will categorize that specific server with a timeout.

Support from httpstat.us and simulation in
Python

In addition to different options for status codes, the httpstat.us website additionally
provides a way to simulate a delay in its response when we send in requests. Specifically,
we can customize the delay time (in milliseconds) with a query argument in our GET
request. For example, httpstat.us/200?sleep=5000 will return a response after five
seconds of delay.

Now, let us see how a delay like this would affect the execution of our program. Consider
the Chapter05/example5.py file, which contains the current request logic of our ping test
application but has a different URL list:

Chapter05/example5.py

import threading
import requests

class MyThread (threading.Thread) :
def _ _init__ (self, url):
threading.Thread.__init__ (self)
self.url = url
self.result = None

def run(self):
res = requests.get (self.url)
self.result = f'{self.url}: {res.text}'

urls = [
'http://httpstat.us/200"',
'http://httpstat.us/200?sleep=20000",

[93]

http://www.httpstat.us
http://httpstat.us/200?sleep=5000

Concurrent Web Requests Chapter 5

'http://httpstat.us/400"'
]

threads = [MyThread(url) for url in urls]
for thread in threads:
thread.start ()
for thread in threads:
thread.join ()
for thread in threads:
print (thread.result)

print ('Done."')

Here we have a URL that will take around 20 seconds to return a response. Considering
that we will block the main program until all threads finish their execution (with the

join () method), our program will most likely appear to be hanging for 20 seconds before
any response is printed out.

Run the program to experience this for yourself. A 20 second delay will occur (which will
make the execution take significantly longer to finish) and we will obtain the following
output:

http://httpstat.us/200: 200 OK
http://httpstat.us/200?sleep=20000: 200 OK
http://httpstat.us/400: 400 Bad Request
Took 22.60 seconds

Done.

Timeout specifications

An efficient ping test application should not be waiting for responses from its websites for a
long time; it should have a set threshold for timeout that, if a server fails to return a
response under that threshold, the application will deem that server non-responsive. We
therefore need to implement a way to keep track of how much time has passed since a
request is sent to a server. We will do this by counting down from the timeout threshold
and, once that threshold is passed, all responses (whether returned or not yet returned) will
be printed out.

[94]

Concurrent Web Requests Chapter 5

Additionally, we will also be keeping track of how many requests are still pending and
have not had their responses returned. We will be using the isAlive () method from the
threading.Thread class to indirectly determine whether a response has been returned for
a specific request: if, at one point, the thread processing a specific request is alive, we can
conclude that that specific request is still pending.

Navigate to the Chapter05/example6.py file and consider the process_requests ()
function first:

Chapter05/example6.py
import time
UPDATE_INTERVAL = 0.01

def process_requests (threads, timeout=5):
def alive_count () :
alive = [1 if thread.isAlive () else 0 for thread in threads]
return sum(alive)

while alive_count () > 0 and timeout > O0:
timeout —-= UPDATE_INTERVAL
time.sleep (UPDATE_INTERVAL)

for thread in threads:
print (thread.result)

The function takes in a list of threads that we have been using to make web requests in the
previous examples, as well as an optional argument specifying the timeout threshold.
Inside this function, we have an inner function, alive_count (), which returns the count
of the threads that are still alive at the time of the function call.

In the process_requests () function, as long as there are threads that are currently alive
and processing requests, we will allow the threads to continue with their execution (this is
done in the while loop with the double condition). The UPDATE_INTERVAL variable, as you
can see, specifies how often we check for this condition. If either condition fails (if there are
no alive threads left or if the threshold timeout is passed), then we will proceed with
printing out the responses (even if some might have not been returned).

Let's turn our attention to the new MyThread class:

Chapter05/exampleb.py

import threading
import requests

class MyThread (threading.Thread) :

[95]

Concurrent Web Requests Chapter 5

def _ _init_ (self, url):
threading.Thread.__init__ (self)
self.url = url
self.result = f'{self.url}: Custom timeout'

def run(self):
res = requests.get(self.url)
self.result = f'{self.url}: {res.text}'

This class is almost identical to the one we considered in the previous example, except that
the initial value for the result attribute is a message indicating a timeout. In the case that
we discussed earlier where the timeout threshold specified in the process_requests ()
function is passed, this initial value will be used when the responses are printed out.

Finally, let's consider our main program:

Chapter05/example6.py

urls = [
'http://httpstat.us/200",
'http://httpstat.us/200?sleep=4000",
'http://httpstat.us/200?sleep=20000",
'http://httpstat.us/400"'

start = time.time ()

threads = [MyThread(url) for url in urls]
for thread in threads:
thread.setDaemon (True)
thread.start ()
process_requests (threads)

print (f'Took {time.time() - start : .2f} seconds')
print ('Done.")

Here, in our URL list, we have a request that would take 4 seconds and another that would
take 20 seconds, aside from the ones that would respond immediately. As the timeout
threshold that we are using is 5 seconds, theoretically we should be able to see that the 4-
second-delay request will successfully obtain a response, while the 20-second-delay one
will not.

[961]

user
Highlight

Concurrent Web Requests Chapter 5

There is another point to be made about this program: daemon threads. In the
process_requests () function, if the timeout threshold is passed while there is still at
least one thread processing, then the function will proceed to print out the result attribute
of each thread:

while alive_count () > 0 and timeout > O0:
timeout -= UPDATE_INTERVAL
time.sleep (UPDATE_INTERVAL)

for thread in threads:
print (thread.result)

This means that we do not block our program until all of the threads have finished their
execution by using the join () function, and the program therefore can simply move
forward if the timeout threshold is reached. However, this means that the threads
themselves do not terminate at this point. The 20-second-delay request, specifically, will
still most likely be running after our program exits out of the process_requests ()
function.

If the thread processing this request is not a daemon thread (as we know, daemon threads
execute in the background and never terminate), it will block the main program from
finishing until the thread itself finishes. By making this thread, and any other thread, a
daemon thread, we allow the main program to finish as soon as it executes the last line of
its instructions, even if there are threads still running.

Let us see this program in action. Execute the code and your output should be similar to the
following;:

http://httpstat.us/200: 200 OK
http://httpstat.us/200?sleep=4000: 200 OK
http://httpstat.us/200?sleep=20000: Custom timeout
http://httpstat.us/400: 400 Bad Request

Took 5.70 seconds

Done.

As you can see, it took around 5 seconds for our program to finish this time. This is because
it spent 5 seconds waiting for the threads that were still running and, as soon as the 5-
second threshold was passed, the program printed out the results. Here we see that the
result from the 20-second-delay request was simply the default value of the result
attribute of the MyThread class, while the rest of the requests were able to obtain the correct
response from the server (including the 4-second-delay request, since it had enough time to
obtain the response).

[97]

user
Highlight

Concurrent Web Requests Chapter 5

If you would like to see the effect of non-daemon threads that we discussed earlier, simply
comment out the corresponding line of code in our main program, as follows:

threads = [MyThread(url) for url in urls]
for thread in threads:

#thread.setDaemon (True)

thread.start ()
process_requests (threads)

You will see that the main program will hang for around 20 seconds, as the non-daemon
thread processing the 20-second-delay request is still running, before being able to finish its
execution (even though the output produced will be identical).

Good practices in making web requests

There are a few aspects of making concurrent web requests that require careful
consideration and implementation. In this section, we will be going over those aspects and
some of the best practices that you should use when developing your applications.

Consider the terms of service and data-collecting
policies

Unauthorized data collection has been the topic of discussion in the technology world for
the past few years, and it will continue to be for a long time—and for good reason too. It is
therefore extremely important for developers who are making automated web requests in
their applications to look for websites' policies on data collecting. You can find these
policies in their terms of service or similar documents. When in doubt, it is generally a good
rule of thumb to contact the website directly to ask for more details.

Error handling

Error is something that no one can easily avoid in the field of programming, and this is
especially true in making web requests. Errors in these programs can include making bad
requests (invalid requests or even bad internet connections), mishandling downloaded
HTML code, or unsuccessfully parsing HTML code. It is therefore important to make use of
try...except blocks and other error-handling tools in Python to avoid crashing your
application. Avoiding crashes is especially important if your code/applications are used in
production and larger applications.

[981]

Concurrent Web Requests Chapter 5

Specifically in concurrent web scraping, it might be possible for some threads to collect data
successfully, while others fail. By implementing error-handling functionalities in
multithreaded parts of your program, you can make sure that a failed thread will not be
able to crash the entirety of your program and ensure that successful threads can still return
their results.

However, it is important to note that blind error-catching is still undesirable. This term
indicates the practice where we have a large try. . .expect block in our program that will
catch any and all errors that occur in the program execution, and no further information
regarding the errors can be obtained; this practice might also be known as error
swallowing. It's highly recommended to have specific error handling code in a program, so
that not only appropriate actions can be taken with regards to that specific error, but other
errors that have not been taken into account might also reveal themselves.

Update your program regularly

It is quite common for websites to change their request-handling logic as well as their
displayed data regularly. If a program that makes requests to a website has considerably
inflexible logic to interact with the server of the website (for example, structuring its
requests in a specific format, only handling one kind of response), then if and when the
website alters the way it handles its client requests, the program will most likely stop
functioning correctly. This situation happens frequently with web scraping programs that
look for data in specific HTML tags; when the HTML tags are changed, these programs will
fail to find their data.

This practice is implemented to prevent automated data collecting programs from
functioning. The only way to keep using a website that recently changed its request-
handling logic is to analyze the updated protocols and alter our programs accordingly.

Avoid making a large number of requests

Each time one of the programs that we have been discussing runs, it makes HTTP requests
to a server that manages the site that you'd like to extract data from. This process happens
significantly more frequently and over a shorter amount of time in a concurrent program,
where multiple requests are being submitted to that server.

[991]

Concurrent Web Requests Chapter 5

As mentioned before, servers nowadays have the ability to handle multiple requests
simultaneously with ease. However, to avoid having to overwork and overconsume
resources, servers are also designed to stop answering requests that come in too frequently.
Websites of big tech companies, such as Amazon or Twitter, look for large amounts of
automated requests that are made from the same IP address and implement different
response protocols; some requests might be delayed, some might be refused a response, or
the IP address might even be banned from making further requests for a specific amount of
time.

Interestingly, making repeated, heavy-duty requests to servers is actually a form of hacking
a website. In Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks, a
very large number of requests are made at the same time to the server, flooding the
bandwidth of the targeted server with traffic, and as a result, normal, nonmalicious
requests from other clients are denied because the servers are busy processing

the concurrent requests, as illustrated in the following diagram:

Slaves
p———-YN
Victim
Attacker
T,
pr————"=N
p————N .
pr——=--—-N
DDoS Attack
pr————-—N

A of a DDoS attack

It is therefore important to space out the concurrent requests that your application makes to
a server so that the application would not be considered an attacker and be potentially
banned or treated as a malicious client. This could be as simple as limiting the maximum
number of threads/requests that can be implemented at a time in your program or pausing
the threading for a specific amount of time (for example, using the time .sleep ()

function) before making a request to the server.

[100]

Concurrent Web Requests Chapter 5

Summary

In this chapter, we have learned about the basics of HTML and web requests. The two most
common web requests are GET and POST requests. There are five main categories for HTTP
response status code, each indicating a different concept regarding the communication
between the server and its client. By considering the status codes received from different
websites, we can write a ping test application that effectively checks for the responsiveness
of those websites.

Concurrency can be applied to the problem of making multiple web requests
simultaneously via threading to provide a significant improvement in application speed.
However, it is important to keep in mind a number of considerations when make
concurrent web requests.

In the next chapter, we will start discussing another major player in concurrent
programming: processes. We will be considering the concept of and the basic idea behind a
process, and the options that Python provides for us to work with processes.

Questions

e What is HTML?

e What are HTTP requests?

e What are HTTP response status codes?

e How does the requests module help with making web requests?
e What is a ping test and how is one typically designed?

e Why is concurrency applicable in making web requests?

e What are the considerations that need to be made while developing applications
that make concurrent web requests?

Further reading

For more information, you can refer to the following links:

o Automate the boring stuff with Python: practical programming for total beginners, Al
Sweigart, No Starch Press, 2015

e Web Scraping with Python, Richard Lawson, Packt Publishing Ltd, 2015
e Instant Web Scraping with Java, Ryan Mitchell, Packt Publishing Ltd, 2013

[101]

Working with Processes In
Python

This chapter is the first of three chapters on using concurrency through multiprocessing
programming in Python. We have seen various examples of processes being used in
concurrent and parallel programming. In this chapter, you will be introduced to the formal
definition of a process, as well as the multiprocessing module in Python. This chapter
will go through some of the most common ways of working with processes using the API
of the multiprocessing module, such as the Process class, the Pool class, and
interprocess communication tools such as the Queue class. This chapter will also look at the
key differences between multithreading and multiprocessing in concurrent programming.

The following topics will be covered in this chapter:

e The concept of a process in the context of concurrent programming in computer
science

¢ The basic API of the multiprocessing module in Python

¢ How to interact with processes and the advanced functionalities that the
multiprocessing module provides

e How the multiprocessing module supports interprocess communication

¢ The key differences between multiprocessing and multithreading in concurrent
programming

Working with Processes in Python Chapter 6

Technical requirements

The following is a list of prerequisites for this chapter:

e Install Python 3 on your computer

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ Ensure that you can access the subfolder named Chapter06
¢ Check out the following video to see the Code in Action: http://bit.ly/2Btwldw

The concept of a process

In the field of computer science, a process of execution is an instance of a specific computer
program or software that is being executed by the operating system. A process contains
both the program code and its current activities and interactions with other entities.
Depending on the operating system, the implementation of a process can be made up of
multiple threads of execution that can execute instructions concurrently or in parallel.

It is important to note that a process is not equivalent to a computer program. While a
program is simply a static collection of instructions (program code), a process is instead the
actual execution of those instructions. This also means that the same program could be run
concurrently by spawning multiple processes. These processes execute the same code from
the parent program.

For example, the internet browser Google Chrome usually manages a process called
Google Chrome Helper for its main program in order to facilitate web browsing and other
processes, to assist with various purposes. An easy way to see what different processes
your system is running and managing involves using Task Manager for Windows, Activity
Monitor for iOS, and System Monitor for Linux operating systems.

[103]

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2BtwlJw
http://bit.ly/2BtwlJw
http://bit.ly/2BtwlJw
http://bit.ly/2BtwlJw
http://bit.ly/2BtwlJw
http://bit.ly/2BtwlJw
http://bit.ly/2BtwlJw
http://bit.ly/2BtwlJw
http://bit.ly/2BtwlJw

Working with Processes in Python Chapter 6

The following is a screenshot of my Activity Monitor. Multiple processes with the name
Google Chrome Helper can be seen in the list. The PID column (which stands for process
ID) reports the unique ID that each process has:

[) @ Activity Monitor (My Processes)
L - CPU Memory Energy Disk Network Q
Process Name % CPU CPU Time Threads Idle Wake Ups PID User
Google Chrome Helper 40.2 1:42.47 20 167 89735 gquannguyen
B Activity Monitor 1.7 188 5 2 90024 quannguyen
G Google Chrome 1.4 15:37.27 37 27 80968 quannguyen
., Screencapturetb U2 0.29 6 2 90038 quannguyen
MTLCompilerService 0.6 0.16 4 0 90039 gquannguyen
screencapture 0.5 0.07 4 0 90035 quannguyen
Google Chrome Helper 0.4 41.69 14 9 88787 quannguyen
Google Chrome Helper 0.3 7:00.50 13 58 80974 quannguyen
Google Chrome Helper 0.3 16.39 15 1 89481 guannguyen
Google Chrome Helper 0.2 28.81 13 10 80998 quannguyen
Google Chrome Helper 0.2 2:00.92 15 2 80993 quannguyen
sharingd 0.1 3:00.62 5 1 326 quannguyen
cfprefsd 0.1 42.08 6 0 267 quannguyen
identityservicesd 0.1 2:46.95 7 0 293 quannguyen
=) Dr. Cleaner 0.1 13:39.59 8 1 494 quannguyen
Google Chrome Helper 0.1 1:12.94 14 0 80983 quannguyen
Google Chrome Helper 0.1 21.63 14 0 80976 gquannguyen
&) CleanMyMac 3 Menu 0.1 3:52.92 4 0 415 quannguyen
UserEventAgent 0.0 57.91 7 5 268 quannguyen
SafariBookmarksSyncAgent 0.0 58.62 4 1 331 gquannguyen
CommCenter 0.0 51.83 8 1 272 quannguyen
& Spotlight 0.0 23.72 6 0 356 quannguyen
System: 3.81% CPU LOAD Threads: 15637
User: 11.80% Processes: 377
Idle: 84.39% &

Sample list of processes

[104]

Working with Processes in Python Chapter 6

Processes versus threads

One of the most common mistakes that programmers make when developing concurrent
and parallel applications is to confuse the structure and functionalities of processes and
threads. As we have seen from chapter 3, Working with Threads in Python, a thread is the
smallest unit of programming code, and is typically a component of a process.
Furthermore, more than one thread can be implemented within the same process to access
and share memory or other resources, while different processes do not interact in this way.
This relationship is shown in the following diagram:

Process

Time

v

Diagram of two threads executing in one process

Since a process is a larger programming unit than a thread, it is also more complicated and
consists of more programming components. A process, therefore, also requires more
resources, while a thread does not and is sometimes called a lightweight process. In a
typical computer system process, there are a number of main resources, as shown in the

following list:

¢ An image (or copy) of the code being executed from the parent program.

e Memory associated with an instance of a program. This might include executable
code, input and output for that specific process, a call stack to manage program-
specific events, or a heap that contains generated computation data and is
currently being used by the process during runtime.

¢ Descriptors for the resources allocated to that specific process by the operating
system. We have seen an example of these—file descriptors—in chapter 4, Using
the with Statement in Threads.

[105]

Working with Processes in Python Chapter 6

¢ Security components of a specific process, namely the owner of the process and
its permissions and allowed operations.

e The processor state, also known as the process context. The context data of a
process is often located in processor registers, the memory used by the process,
or in control registers used by the operating system to manage the process.

Because each process has a state dedicated to it, processes hold more state information than
threads; multiple threads within a process in turn share process states, memory, and other
various resources. For similar reasons, processes only interact with each other through
system-facilitated interprocess communication methods, while threads can communicate
with one another easily through shared resources.

Additionally, context-switching—the act of saving the state data of a process or a thread to
interrupt the execution of a task and resume it at a later time—takes more time between
different processes than between different threads within the same process. However,
while we have seen that communication between threads requires careful memory
synchronization to ensure correct data handling, since there is less communication between
separate processes, little or no memory synchronization is needed for processes.

Multiprocessing

A common concept in computer science is multitasking. When multitasking, an operating
system simply switches between different processes at high speed to give the appearance
that these processes are being executed simultaneously, even though it is usually the case
that only one process is executing on one single central processing unit (CPU) at any given
time. In contrast, multiprocessing is the method of using more than one CPU to execute a
task.

While there are a number of different uses of the term multiprocessing, in the context of
concurrency and parallelism multiprocessing refers to the execution of multiple concurrent
processes in an operating system, in which each process is executed on a separate CPU, as
opposed to a single process being executed at any given time. By the nature of processes, an
operating system needs to have two or more CPUs in order to be able to implement
multiprocessing tasks, as it needs to support many processors at the same time and allocate
tasks between them appropriately.

[106]

Working with Processes in Python Chapter 6

This relationship is shown in the following diagram:

Word = Web s
E-mail Antivirus
Processor Browser

PROCESS
PROCESS
¢ PROCESS
PROCESS

Operating System
| |

CPU Core CPU Core

Example diagram of multiprocessing using two CPU cores

We have seen in Chapter 3, Working with Threads in Python, that multithreading shares a
somewhat similar definition to multiprocessing. Multithreading means that only one
processor is utilized, and the system switches between tasks within that processor (also
known as time slicing), while multiprocessing generally denotes the actual
concurrent/parallel execution of multiple processes using multiple processors.

Multiprocessing applications have enjoyed significant popularity in the field of concurrent
and parallel programming. Some reasons for this are listed as follows:

e Faster execution time: As we know, when done correctly concurrency always
provides additional speedups for your programs, provided that some parts of
them can be executed independently.

¢ Synchronization free: Given the fact that separate processes do not share
resources among themselves in a multiprocessing application, developers rarely
need to spend their time coordinating the sharing and synchronization of these
resources, unlike multithreaded applications, where efforts need to be made to
make sure that data is being manipulated correctly.

¢ Safety from crashes: As processes are independent from each other in terms of
both computing procedures and input/output, the failure of one process will not
affect the execution of another in a multiprocessing program, if handled
correctly. This implies that programmers could afford to spawn a larger number
of processes (that their system can still handle) and the chance of crashing the
entire application would not increase.

[107]

Working with Processes in Python Chapter 6

With that being said, there are also noteworthy disadvantages to using multiprocessing that
we should consider, as shown in the following list:

e Multiple processors are needed: Again, multiprocessing requires the operating
system to have more than one CPU. Even though multiple processors are fairly
common for computer systems nowadays, if yours does not have more than one,
then the implementation of multiprocessing will not be possible.

¢ Processing time and space: As mentioned before, there are many complex
components involved in implementing a process and its resources. It therefore
takes significant computing time and power to spawn and manage processes in
comparison to doing the same with threads.

Introductory example in Python

To illustrate the concept of running multiple processes on one operating system, let's look
at a quick example in Python. Let's take a look at the Chapter06/examplel.py file, as
shown in the following code:

Chapter06/examplel.py
from multiprocessing import Process
import time
def count_down (name, delay):
print ('Process %s starting...' % name)

counter = 5

while counter:
time.sleep (delay)

print ('Process %s counting down: %i...' % (name, counter))
counter -= 1
print ('Process %s exiting...' % name)
if _ name_ == '_ main__':
processl = Process (target=count_down, args=('A', 0.5))
process2 = Process (target=count_down, args=('B', 0.5))

processl.start ()
process2.start ()

[108]

Working with Processes in Python Chapter 6

processl.join ()
process2.join ()

print ('Done."')

In this file, we are going back to the counting-down example that we saw in Chapter 3,
Working with Threads in Python, while we look at the concept of a thread. Our

count_down () function takes in a string as a process identifier and a delay time range. It
will then count down from 5 to 1 while sleeping between iterations for a number of seconds
specified by the delay parameter. The function also prints out a message with the process
identifier at each iteration.

As we saw in Chapter 3, Working with Threads in Python, the point of this counting-down
example is to show the concurrent nature of running separate tasks at the same time, this
time through different processes by using the Process class from the multiprocessing
module. In our main program, we initialize two processes at the same time to implement
two separate time-based countdowns simultaneously. Similar to how two separate threads
would do this, our two processes will carry out their own countdowns concurrently.

After running the Python script, your output should be similar to the following:

> python examplel.py

Process A starting...
Process B starting...
Process B counting down: 5..
Process A counting down: 5..
Process B counting down: 4..
Process A counting down: 4..
Process B counting down: 3..
Process A counting down: 3..
Process B counting down: 2..
Process A counting down: 2..
Process A counting down: 1..
Process B counting down: 1..
Process A exiting...

Process B exiting...

Done.

Just as we expected, the output tells us that the two countdowns from the separate
processes were executed concurrently; instead of finishing the first process' countdown and
then starting the second's, the program ran the two countdowns at almost the same time.
Even though processes are more expensive and contain more overhead than threads,
multiprocessing also allows double the improvement in terms of speed for programs such
as the preceding one.

[109]

Working with Processes in Python Chapter 6

Remember that in multithreading we saw a phenomenon in which the order of the printed
output changed between different runs of the program. Specifically, sometimes process B
would get ahead of process A during the countdown and finish before process A, even
though it was initialized later. This is, again, a direct result of implementing and starting
two processes that execute the same function at almost the same time. By executing the
script many times, you will see that it is quite likely for you to obtain changing output in
terms of the order of the counting and the completion of the countdowns.

An overview of the multiprocessing module

The multiprocessing module is one of the most commonly used implementations of
multiprocessing programming in Python. It offers methods to spawn and interact with
processes using an API similar to the threading module (as we saw with

the start () and join () methods in the preceding example). According to its
documentation website, the module allows both local and remote concurrency and
effectively avoids the global interpreter lock (GIL) in Python (which we will discuss in
more detail later in chapter 15, The Global Interpreter Lock) by using subprocesses instead of
threads.

The process class

In the multiprocessing module, processes are typically spawned and managed through
the Process class. Each Process object represents an activity that executes in a separate
process. Conveniently, the Process class has equivalent methods and APIs that can be
found in the threading. Thread class.

Specifically, utilizing an object-oriented programming approach, the Process class from
multiprocessing provides the following resources:

e run (): This method is executed when a new process is initialized and started

e start (): This method starts the initialized calling Process object by calling the
run () method

® join (): This method waits for the calling Process object to terminate before
continuing with the execution of the rest of the program

[110]

Working with Processes in Python Chapter 6

e isAlive (): This method returns a Boolean value indicating whether the
calling Process object is currently executing

e name: This attribute contains the name of the calling Process object

¢ pid: This attribute contains the process ID of the calling Process object
e terminate (): This method terminates the calling Process object

As you can see from our previous example, while initializing a Process object, we can pass
parameters to a function and execute it in a separate process by specifying the target (for
the target function) and args (for target function arguments) parameters. Note that one
could also override the default Process () constructor and implement one's own run ()
function.

As it is a major player in the multiprocessing module and in concurrency in Python in
general, we will look at the Process class again in the next section.

The Pool class

In the multiprocessing module, the Pool class is mainly used to implement a pool of
processes, each of which will carry out tasks submitted to a Pool object. Generally, the
Pool class is more convenient than the Process class, especially if the results returned
from your concurrent application should be ordered.

Specifically, we have seen that the order of completion for different items in a list is
considerably likely to change when put through a function concurrently as the program
runs over and over again. This leads to difficulty when reordering the outputs of the
program with respect to the order of the inputs that produced them. One possible solution
to this is to create tuples of processes and their outputs, and to sort them by process ID.

This problem is addressed by the Pool class: the Pool.map () and Pool.apply () methods
follow the convention of Python's traditional map () and apply () methods, ensuring that
the returned values are ordered in the same way that the input is. These methods, however,
block the main program until a process has finished processing. The Poo1l class, therefore,
also has the map_async () and apply_async () functions to better assist concurrency and
parallelism.

[111]

Working with Processes in Python Chapter 6

Determining the current process, waiting, and
terminating processes

The Process class provides a number of ways to easily interact with processes in a
concurrent program. In this section, we will explore the options of managing different
processes by determining the current process, waiting, and terminating processes.

Determining the current process

Working with processes is at times considerably difficult, and significant debugging is
therefore required. One of the methods of debugging a multiprocessing program is to
identify the processes that encounter errors. As a refresher, in the previous countdown
example we passed a name parameter to the count_down () function to determine where
each process is during the countdown.

This is, however, unnecessary as each Process object has a name parameter (with a default
value) that can be changed. Naming processes is a better way to keep track of running
processes than passing an identifier to the target function itself (as we did earlier),
especially in applications with different types of processes running at the same time. One
powerful functionality that the multiprocessing module provides is the
current_process () method, which will return the Process object that is currently
running at any point of a program. This is another way to keep track of running processes
effectively and effortlessly.

Let's look at this in more detail using an example. Navigate to the
Chapter06/example?.py file, as shown in the following code:

Chapter06/example?2.py

from multiprocessing import Process, current_process
import time

def f1():

pname = current_process () .name

print ('Starting process %s...' % pname)

time.sleep(2)

print ('Exiting process %s...' % pname)
def £2():

pname = current_process () .name

print ('Starting process %s...' % pname)

time.sleep (4)

[112]

Working with Processes in Python Chapter 6

print ('Exiting process %s...' % pname)
if _ name_ == '_ main__ "':

pl = Process (name='Worker 1', target=f1l)

p2 = Process (name='Worker 2', target=£f2)

p3 = Process (target=f1)

pl.start ()

p2.start ()

p3.start ()

pl.join ()

p2.join ()

p3.join ()

In this example, we have two dummy functions, £1 () and £2 (), each of which prints out
the name of the process that executes the function before and after sleeping for a specified
period of time. In our main program, we initialize three separate processes. The first two
we name Worker 1 and Worker 2 respectively, and the last we purposefully leave blank
to give it the default value of its name (thatis, 'Process-3"). After running the script, you
should have an output similar to the following;:

> python example2.py
Starting process Worker 1...
Starting process Worker 2...
Starting process Process-3...
Exiting process Worker 1...
Exiting process Process-3...
Exiting process Worker 2...

We can see that the current_process () successfully helped us access the correct process
that ran each function, and the third process was assigned the name Process-3 by default.
Another way to keep track of the running processes in your program is to look at the
individual process IDs using the os module. Let's take a look at a modified example in

the Chapter06/example3.py file, as shown in the following code:

Chapter06/example3.py
from multiprocessing import Process, current_process

import time
import os

def print_info(title):
print (title)

[113]

Working with Processes in Python

Chapter 6

if hasattr(os, 'getppid'):
print ('Parent process ID: %s.' % str(os.getppid()))

print ('Current Process ID: %s.\n' % str(os.getpid()))

def f£():
print_info ('Function f')

pname = current_process () .name

print ('Starting process %s...' % pname)

time.sleep (1)

print ('Exiting process %s...' % pname)
if _ name_ == '_ main__ "':

print_info('Main program')
p = Process (target=f)
p.start ()

p.join()

print ('Done."')

Our main focus for this example is the print_info () function, which uses the

os.getpid() and os.getppid () functions to identify the current process using its
process ID. Specifically, os.getpid () returns the process ID of the current process, and
os.getppid() (which is only available on Unix systems) returns the ID of the parent

process. The following is my input after running the script:

> python example3.py

Main program

Parent process ID: 14806.
Current Process ID: 29010.

Function £
Parent process ID: 29010.
Current Process ID: 29012.

Starting process Process-1...
Exiting process Process-1...
Done.

[114]

Working with Processes in Python Chapter 6

The process IDs might vary from system to system, but their relative relationship should be
the same. Specifically for my output, we can see that, while the ID for the main Python
program was 29010, the ID of its parent process was 14806. Using Activity Monitor, I
crosschecked this ID and connected it to my Terminal and Bash profile, which makes sense
since I ran this Python script from my Terminal. You can see the displayed results from
Activity Monitor in the following screenshot:

Process Name % CPU CPU Time Threads Idle Wake Ups PID User
B Terminal 0.0 41.16 6 0 14803 quannguyen
MTLCompilerService 0.0 0.13 2 0 14804 quannguyen
bash 0.0 0.39 1 0 14806 quannguyen

Screenshot of Activity Monitor being used to crosscheck PIDs

In addition to the main Python program, we also called print_info () inside the £ ()
function, whose process ID was 29012. We can also see that the parent process of the
process running the £ () function is actually our main process, whose ID was 29010.

Waiting for processes

Oftentimes, we'd like to wait for all of our concurrent processes to finish executing before
moving to a new section of the program. As mentioned before, the Process class from
the multiprocessing module provides the join () method in order to implement a way
to wait until a process has completed its task and exits.

However, sometimes developers want to implement processes that run in the background
and do not block the main program from exiting. This specification is commonly used
when there is no easy way for the main program to tell whether it is appropriate to
interrupt the process at any given time, or when exiting the main program without
completing the worker does not affect the end result.

These processes are called daemon processes. The Process class also provides an easy
option to specify whether a process is a daemon through the daemon attribute, which takes
a Boolean value. The default value for the daemon attribute is False, so setting it

to True will turn a given process into a daemon. Let's look at this in more detail using an
example in the Chapter06/example4.py file, as shown in the following code:

Chapter06/exampled.py

from multiprocessing import Process, current_process
import time

[115]

Working with Processes in Python Chapter 6

def f£1():
p = current_process ()
print ('Starting process %s, ID %s...' % (p.name, p.pid))
time.sleep (4)
print ('Exiting process %s, ID %s...' % (p.name, p.pid))

def £2():
p = current_process ()
print ('Starting process %s, ID %s...' % (p.name, p.pid))
time.sleep(2)
print ('Exiting process %s, ID %s...' % (p.name, p.pid))

if name == '_ _main__ ':

pl = Process (name='Worker 1', target=fl)
pl.daemon = True
p2 = Process (name='Worker 2', target=£f2)

pl.start ()
time.sleep (1)
p2.start ()

In this example, we have a long-running function (represented by £1 (), which has a sleep
period of 4 seconds) and a faster function (represented by £2 (), which has a sleep period of
only 2 seconds). We also have two separate processes, as shown in the following list:

e The p1 process, which is a daemon process assigned to run £1 ()
e The p2 process, which is a regular process assigned to run £2 ()

In our main program, we start both processes without calling the join () method on either
of them at the end of the program. Since p1 is a long-running process, it will most likely not
finish executing before p2 (which is the faster process of the two) finishes. We also know
that p1 is a daemon process, so our program should exit before it finishes executing. After
running the Python script, your output should be similar to the following code:

> python example4.py

Starting process Worker 1, ID 33784...
Starting process Worker 2, ID 33788...
Exiting process Worker 2, ID 33788...

Again, even though the process IDs might be different when you yourself run the script,
the general format of the output should be the same. As we can see, the output is consistent
with what we discussed: both p1 and p2 processes were initialized and started by our main
program, and the program terminated after the nondaemon process exited without waiting
for the daemon process to finish.

[116]

Working with Processes in Python Chapter 6

The ability to terminate the main program without having to wait for specific tasks that the
daemon is processing is indeed extremely useful. However, sometimes we might want to
wait for daemon processes for a specified amount of time before exiting; this way, if the
specifications of the program allow some waiting time for the process' execution, we could
complete some potential daemon processes instead of terminating all of them prematurely.

The combination of daemon processes and the join () method from

the multiprocessing module can help us implement this architecture, especially given
that, while the join () method blocks the program execution indefinitely (or at least until
the task finishes), it is also possible to pass a timeout argument to specify the number of
seconds to wait for the process before exiting. Let's consider a modified version of the
previous example in Chapter06/example5.py. With the same £1 () and £2 () functions,
in the following script, we are changing the way we handle the daemon process in the main
program:

Chapter06/example5.py

if _ name_ == '_ main__ ':
pl = Process (name='Worker 1', target=fl)
pl.daemon = True
p2 = Process (name='Worker 2', target=£f2)
pl.start ()
time.sleep (1)
p2.start ()
pl.join (1)

print ('Whether Worker 1 is still alive:', pl.is_alive())
p2.Jjoin ()

Instead of terminating without waiting for the daemon process, in this example, we are
calling the join () method on both processes: we allow one second for p1 to finish while
we block the main program until p2 finishes. If p1 has not finished executing after that one
second, the main program simply continues executing the rest of the program and exits, at
which time we will see that p1—or Worker 1—is still alive. After running the Python
script, your output should be similar to the following:

> python example5.py

Starting process Worker 1, ID 36027...
Starting process Worker 2, ID 36030...
Whether Worker 1 is still alive: True
Exiting process Worker 2, ID 36030...

We see that p1 was indeed still alive by the time the program moved on after waiting for it
for one second.

[117]

Working with Processes in Python Chapter 6

Terminating processes

The terminate () method from the multiprocessing.Process class offers a way to
quickly terminate a process. When the method is called, exit handlers, finally causes, or
similar resources that are specified in the Process class or an overridden class will not be
executed. However, descendant processes of the terminated process will not be terminated.
These processes are known as orphaned processes.

Although terminating processes is sometimes frowned upon, it is sometimes necessary
because some processes interact with interprocess-communication resources, such as locks,
semaphores, pipes, or queues, and forcibly stopping those processes is likely to cause those
resources to become corrupted or unavailable to other processes. If, however, the processes
in your program never interact with the aforementioned resources, the terminate ()

method is considerably useful, especially if a process appears to be unresponsive or
deadlocked.

One thing to note when using the terminate () method is that, even though the Process
object is effectively killed after calling the method, it is important that you call join () on
the object as well. Since the alive status of Process objects is sometimes not immediately
updated after the terminate () method, this practice gives the background system an
opportunity to implement the update itself to reflect the termination of the processes.

Interprocess communication

While locks are one of the most common synchronization primitives that are used for
communication among threads, pipes and queues are the main way of communicating
between different processes. Specifically, they provide message-passing options to facilitate
communication between processes—pipes for connections between two processes and
queues for multiple producers and consumers.

In this section, we will be exploring the usage of queues, specifically the Queue class from
the multiprocessing module. The implementation of the Queue class is, in fact, both
thread-and process-safe, and we have already seen the use of queues in chapter 3, Working
with Threads in Python. All pickleable objects in Python can be passed through a Queue
object; in this section, we will be using queues to pass messages back and forth between
processes.

[118]

Working with Processes in Python Chapter 6

Using a message queue for interprocess communication is preferred over having shared
resources since, if certain processes mishandle and corrupt shared memory and resources
while those resources are being shared, then there will be numerous undesirable and
unpredictable consequences. If, however, a process failed to handle its message correctly,
other items in the queue will remain intact. The following diagram represents the
differences in architecture between using a message queue and shared resources
(specifically memory) for interprocess communication:

process A — |: process A

| process B shared meamaory j
process B

kermel
kermel

message queue
—-mﬁ_m,|mg|m3] - ‘

(&) (b)

The architecture involved in using a message queue and shared resources for interprocess communication

Message passing for a single worker

Before we dive into the example code in Python, first we need to discuss specifically how
we use a Queue object in our multiprocessing application. Let's say that we have a worker
class that performs heavy computations and does not require significant resource sharing
and communication. Yet these worker instances still need to be able to receive information
from time to time during their execution.

This is where the use of a queue comes in: when we put all the workers in a queue. At the
same time, we will also have a number of initialized processes, each of which will go
through that queue and process one worker. If a process has finished executing a worker
and there are still other workers in the queue, it will move on to another worker and
execute it. Looking back at the earlier diagram, we can see that there are two separate
processes that keep picking up and executing messages from a queue.

[119]

Working with Processes in Python Chapter 6

From a Queue object, we will be using two main methods, as shown in the following list:

¢ get (): This method returns the next item in the calling Queue object

e put () : This method adds the parameter passed to it as an additional item to the
calling Queue object

Let's look at an example script showing the use of a queue in Python. Navigate to and open
the Chapter06/example6.py file, as shown in the following code:

Chapter06/example6.py

import multiprocessing

class MyWorker () :

def _ _init_ (self, x):
self.x = x

def process(self):
pname = multiprocessing.current_process () .name

o)

print ('Starting process %$s for number %i...' % (pname, self.x))

def work (qg) :

if

worker = g.get ()
worker.process ()

name == main__ ':
my_queue = multiprocessing.Queue ()

p = multiprocessing.Process (target=work, args=(my_qgueue,))
p.start ()

my_queue.put (MyWorker (10))
my_queue.close ()
my_queue.join_thread()

p.join()

print ('Done."')

In this script, we have a MyWorker class that takes in a number x parameter and performs a
computation from it (for now, it will only print out the number). In our main function, we
initialize a Queue object from the multiprocessing module and add a MyWorker object
with the number 10 in it. We also have the work () function, which upon being called will
get the first item from the queue and process it. Finally, we have a process whose task is to
call the work () function.

[120]

Working with Processes in Python Chapter 6

The structure is designed to pass a message—in this case, a MyWorker object—to one single
process. The main program then waits for the process to finish executing. After running the
script, your output should be similar to the following:

> python exampleé6.py
Starting process Process-1 for number 10...
Done.

Message passing between several workers

As mentioned earlier, our goal is to have a structure where there are several processes
constantly executing workers from a queue, and if a process finishes executing one worker,
then it will pick up another. To do this, we will be utilizing a subclass of Queue called
JoinableQueue, which will provide the additional task_done () and join () methods, as
described in the following list:

e task_done (): This method tells the program that the calling JoinableQueue
object is complete

¢ join (): This method blocks until all items in the calling JoinableQueue object
have been processed

Now the goal here, again, is to have a JoinableQueue object holding all the tasks that are
to be executed—we will call this the task queue—and a number of processes. As long as
there are items (messages) in the task queue, the processes will take their turn to execute
those items. We will also have a Queue object to store all the results returned from the
processes—we will call this the result queue.

Navigate to the Chapter06/example7.py file and take a look at the Consumer class and
the Task class, as shown in the following code:

Chapter06/example’.py

from math import sqgrt
import multiprocessing

class Consumer (multiprocessing.Process) :

def __init__ (self, task_queue, result_qgueue):
multiprocessing.Process.__init__ (self)
self.task_queue = task_queue
self.result_gueue = result_queue

def run(self):

[121]

Working with Processes in Python Chapter 6

pname = self.name
while not self.task_queue.empty () :

temp_task = self.task_queue.get ()

)

print ('$s processing task: %s' % (pname, temp_task))

answer = temp_task.process ()
self.task_queue.task_done ()
self.result_gueue.put (answer)

class Task () :
def _ _init_ (self, x):
self.x = x

def process(self):
if self.x < 2:

return '%i is not a prime number.' % self.x
if self.x ==

return '%i is a prime number.' % self.x
if self.x % 2 == 0:

return '%i is not a prime number.' % self.x

limit = int (sgrt(self.x)) + 1
)z

for i in range (3, limit, 2
if self.x % 1 == 0:
return '%i is not a prime number.' % self.x
return '%i is a prime number.' % self.x
def _ str_ (self):
return 'Checking if %i is a prime or not.' % self.x

The Consumer class, which is an overridden subclass of the multiprocessing.Process
class, is our processor logic, which takes in a task queue and a result queue. When started,
each Consumer object will get the next item in its task queue, execute it, and finally call
task_done () and put the returned result to its result queue. Each item in the task queue is
in turn represented by the Task class, whose main functionality is to prime-check its

x parameter. As one instance of the Consumer class interacts with one instance of the Task

class, it will also print out a help message for us to easily keep track of which consumer is
executing which task.

[122]

Working with Processes in Python Chapter 6

Let's move on and consider our main program, as shown in the following code:

Chapter06/example’.py
if _ name_ == '_ main__ "':

tasks = multiprocessing.JoinableQueue ()
results = multiprocessing.Queue ()

spawning consumers with respect to the
number cores available in the system

n_consumers = multiprocessing.cpu_count ()
print ('Spawning %i consumers...' % n_consumers)
consumers = [Consumer (tasks, results) for i in range (n_consumers)]

for consumer in consumers:
consumer.start ()

enqueueing Jjobs
my_input = [2, 36, 101, 193, 323, 513, 1327, 100000, 9999999,
433785907]
for item in my_input:
tasks.put (Task (item))

tasks.join ()

for i in range(len (my_input)):
temp_result = results.get ()
print ('Result:', temp_result)

print ('Done."')

As we said earlier, we create a task queue and a result queue in our main program. We also
create a list of Consumer objects and start all of them; the number of processes created
corresponds to the number of CPUs available in our system. Next, from a list of inputs that
requires heavy computation from the Task class, we initialize a Task object with each input
and put them all in the task queue. At this point our processes—our Consumer
objects—will start executing these tasks.

Finally, at the end of our main program, we call join () on our task queue to ensure that all
items have been executed and print out the result by looping through our result queue.
After running the script, your output should be similar to the following:

> python example7.py

Spawning 4 consumers...

Consumer-3 processing task: Checking if 2 is a prime or not.
Consumer-2 processing task: Checking if 36 is a prime or not.
Consumer-3 processing task: Checking if 101 is a prime or not.
Consumer-2 processing task: Checking if 193 is a prime or not.

[123]

Working with Processes in Python Chapter 6

Consumer-3 processing task: Checking if 323 is a prime or not.
Consumer-2 processing task: Checking if 1327 is a prime or not.
Consumer—-3 processing task: Checking if 100000 is a prime or not.
Consumer-4 processing task: Checking if 513 is a prime or not.
Consumer—-3 processing task: Checking if 9999999 is a prime or not.
Consumer-2 processing task: Checking if 433785907 is a prime or not.
Result: 2 is a prime number.

Result: 36 is not a prime number.

Result: 193 is a prime number.

Result: 101 is a prime number.

Result: 323 is not a prime number.

Result: 1327 is a prime number.

Result: 100000 is not a prime number.

Result: 9999999 is not a prime number.

Result: 513 is not a prime number.

Result: 433785907 is a prime number.

Done.

Everything seems to be working, but if we look closely at the messages our processes have
printed out, we will notice that most of the tasks were executed by either Consumer-2 or
Consumer-3, and that Consumer—4 executed only one task while Consumer-1 failed to
execute any. What happened here?

Essentially, when one of our consumers—Ilet's say Consumer-3—finished executing a task,
it tried to look for another task to execute immediately after. Most of the time, it would get
priority over other consumers, since it was already being run by the main program. So
while Consumer-2 and Consumer-3 were constantly finishing their tasks' executions and
picking up other tasks to execute, Consumer—4 was only able to "squeeze" itself in once,
and Consumer-1 failed to do this altogether.

When running the script over and over again, you will notice a similar trend: only one or
two consumers executed most of the tasks, while others failed to do this. This situation is
undesirable for us, since the program is not utilizing all of the available processes that were
created at the beginning of the program.

To address this issue, a technique has been developed, to stop consumers from immediately
taking the next item from the task queue, called poison pill. The idea is that, after setting
up the real tasks in the task queue, we also add in dummy tasks that contain "stop" values
and that will have the current consumer hold and allow other consumers to get the next
item in the task queue first; hence the name "poison pill."

[124]

Working with Processes in Python Chapter 6

To implement this technique, we need to add in our tasks value in the main program's
special objects, one per consumer. Additionally, in our Consumer class, the implementation
of the logic to handle these special objects is also required. Let's take a look at the
example8.py file (a modified version of the previous example, containing the
implementation of the poison pill technique), specifically in the Consumer class and the
main program, as shown in the following code:

Chapter06/example8.py

class Consumer (multiprocessing.Process) :

def __init__ (self, task_gueue, result_qgueue):
multiprocessing.Process.__init__ (self)
self.task_queue = task_queue
self.result_queue = result_queue

def run(self):
pname = self.name

while True:
temp_task = self.task_queue.get ()

if temp_task is None:

print ('Exiting %s...' % pname)
self.task_queue.task_done ()
break

print ('$%s processing task: %s' % (pname, temp_task))

answer = temp_task.process()
self.task_queue.task_done ()
self.result_gueue.put (answer)

class Task () :
def __init_ (self, x):
self.x = x

def process(self):
if self.x < 2:

return '$i is not a prime number.' % self.x
if self.x ==

return '$i is a prime number.' % self.x
if self.x $ 2 == 0:

return '$i is not a prime number.' % self.x

[125]

Working with Processes in Python Chapter 6

limit = int (sgrt(self.x)) + 1
)z

for i in range (3, limit, 2
if self.x % 1 == 0:
return '%i is not a prime number.' % self.x
return '%i is a prime number.' % self.x
def _ str_ (self):
return 'Checking if %i is a prime or not.' % self.x

if name == '_ _main__ ':

tasks = multiprocessing.JoinableQueue ()
results = multiprocessing.Queue ()

spawning consumers with respect to the
number cores available in the system

n_consumers = multiprocessing.cpu_count ()
print ('Spawning %i consumers...' % n_consumers)
consumers = [Consumer (tasks, results) for i in range (n_consumers)]

for consumer in consumers:
consumer.start ()

enqueueing Jjobs
my_input = [2, 36, 101, 193, 323, 513, 1327, 100000, 9999999,
433785907]
for item in my_input:
tasks.put (Task (item))

for i in range (n_consumers) :
tasks.put (None)

tasks.join ()

for i in range(len (my_input)):
temp_result = results.get ()
print ('Result:', temp_result)

print ('Done."')

The Task class remains the same as our previous example. We can see that our poison pill
is the None value: in the main program, we add in None values of a number equal to the
number of consumers we have spawned to the task queue; in the Consumer class, if the
current task to be executed holds the value None, then the class object will print out a
message indicating the poison pill, call task_done (), and exit.

[126]

Working with Processes in Python

Chapter 6

Run the script; your output should be similar to the following;:

> python exampleS8.py

Spawning 4 consumers. ..

Consumer-1 processing task: Checking if 2 is a prime or not.
Consumer-2 processing task: Checking if 36 is a prime or not.
Consumer-3 processing task: Checking if 101 is a prime or not.
Consumer-4 processing task: Checking if 193 is a prime or not.
Consumer-1 processing task: Checking if 323 is a prime or not.
Consumer-2 processing task: Checking if 513 is a prime or not.
Consumer-3 processing task: Checking if 1327 is a prime or not.
Consumer-1 processing task: Checking if 100000 is a prime or not.
Consumer—2 processing task: Checking if 9999999 is a prime or not.
Consumer-3 processing task: Checking if 433785907 is a prime or not.

Exiting
Exiting
Exiting
Exiting
Result:
Result:
Result:
Result:
Result:
Result:
Result:
Result:
Result:
Result:
Done.

Consumer-1...

Consumer-2. ..

Consumer-4...

Consumer-3...

2 is a prime number.

36 is not a prime number.

323 is not a prime number.
101 is a prime number.

513 is not a prime number.
1327 is a prime number.
100000 is not a prime number.
9999999 is not a prime number.
193 is a prime number.
433785907 is a prime number.

This time, as well as seeing the poison pill messages being printed out, the output also
shows a significantly better distribution in terms of which consumer executed which task.

Summary

In the field of computer science, a process is an instance of a specific computer program or
software that is being executed by the operating system. A process contains both the
program code and its current activities and interactions with other entities. More than one
thread can be implemented within the same process to access and share memory or other
resources, while different processes do not interact in this way.

[127]

Working with Processes in Python Chapter 6

In the context of concurrency and parallelism, multiprocessing refers to the execution of
multiple concurrent processes from an operating system, in which each process is executed
on a separate CPU, as opposed to a single process being executed at any given time. The
multiprocessing module in Python provides a powerful and flexible API to spawn and
manage processes for a multiprocessing application. It also allows complex techniques for
interprocess communication via the Queue class.

In the next chapter, we will be discussing a more advanced function of Python—reduction
operations—and how it is supported in multiprocessing programming.

Questions

e What is a process? What are the core differences between a process and a thread?

e What is multiprocessing? What are the core differences between multiprocessing
and multithreading?

e What are the API options provided by the multiprocessing module?

e What are the core differences between the Process class and the Poo1l class from
the multiprocessing module?

e What are the options to determine the current process in a Python program?

e What are daemon processes? What are their purposes in terms of waiting for
processes in a multiprocessing program?

e How do you terminate a process? Why is it sometimes acceptable to terminate
processes?

e What is one of the ways to facilitate interprocess communication in Python?

Further reading

For more information, you can refer to the following links:

e Python Parallel Programming Cookbook, by Giancarlo Zaccone, Packt Publishing
Ltd (2015).

¢ "Learning Concurrency in Python: Build highly efficient, robust, and concurrent
applications", Elliot Forbes (2017).

¢ Python Module of The Week. "Communication Between Processes"
(pymotw.com/2/multiprocessing/communication.html). This contains functions
that you can use to identify the current process.

[128]

https://pymotw.com/2/multiprocessing/communication.html

Reduction Operators in
Processes

The concept of reduction operators—in which many or all elements of an array are reduced
into one single result—is closely associated with concurrent and parallel programming.
Specifically, because of the associative and communicative nature of the operators,
concurrency and parallelism can be applied to greatly improve their execution time.

This chapter discusses the theoretical concurrent approach to designing and writing a
reduction operator from the perspective of programmers and developers. From here, this
chapter also makes connections to similar problems that can be solved using concurrency in
similar ways.

The following topics will be covered in this chapter:

¢ The concept of a reduction operator in computer science

¢ The communicative and associative properties of reduction operators, and
therefore the reason why concurrency can be applied

e How to identify problems that are equivalent to a reduction operator and how to
apply concurrent programming in such cases

Technical requirements

The following is a list of prerequisites for this chapter:

* You must have Python 3 installed on your computer

¢ Download the GitHub repository from https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder titled Chapter07
e Check out the following video to see the Code in Action: http://bit.ly/2TD50dl

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2TD5odl
http://bit.ly/2TD5odl
http://bit.ly/2TD5odl
http://bit.ly/2TD5odl
http://bit.ly/2TD5odl
http://bit.ly/2TD5odl
http://bit.ly/2TD5odl
http://bit.ly/2TD5odl
http://bit.ly/2TD5odl

Reduction Operators in Processes Chapter 7

The concept of reduction operators

As experienced programmers, you have undoubtedly encountered situations where you
need to calculate the sum or the product of all the numbers in an array, or compute the
result of applying the AND operator to all Boolean elements of an array to see whether there
is any false value in that array. These are called reduction operators, which take a set or an
array of elements and perform some form of computation to return only one single result.

Properties of a reduction operator

Not every mathematical or computer science operator is a reduction operator. In fact, even
if an operator is capable of reducing an array of elements into one single value, there is no
guarantee that it is a reduction operator. An operator is a reduction operator if it satisfies
the following conditions:

¢ The operator can reduce an array of elements into one scalar value

¢ The end result (the scalar value) must be obtained through creating and
computing partial tasks

The first condition is indicative of the phrase "reduction operators", as all elements of the
input array have to be combined and reduced into one single value. However, the second
condition is, essentially, in terms of concurrency and parallelism. It requires the
computation of any reduction operator to be able to be divided into smaller partial
computations.

First, let's consider one of the most common reduction operators: addition. For example,
consider the input array [1, 4, 8, 3, 2, 5]—thesum of the elements in this array is as

follows:

5
3) +2) + 5
)

[130]

Reduction Operators in Processes Chapter 7

In the preceding computation, we reduced the numbers in our array into their sum, 23, in a
sequential order. In other words, we went through each and every element of the array
from the beginning to the end and added the current sum. Now, we know that addition is a
commutative and associative operator, which means: a+b=b+aand (a+b)+c=a+ (b +c).

Therefore, we can perform the preceding computation in a more efficient way by breaking
the summation into smaller summations:

This technique is at the heart of applying concurrency and parallelism (specifically
multiprocessing) to a reduction operator. By breaking the whole task into smaller subtasks,
multiple processes can perform those small computations simultaneously, and the system
as a whole can arrive at the result much more quickly.

For the same reason, the communicative and associative properties are considered to be
equivalent to the requirements for a reduction operator that we discussed earlier. In other
words, the operator ©O is a reduction operator that's communicative and associative.
Specifically the following:

e Communicative:aOb=b0aq
e Associative: (1O b)Oc=a0 (bO¢)

Here a, b, and c are elements of input arrays.

So, if an operator is a reduction operator, it has to be communicative and associative, and
therefore has the ability to break down a big task into smaller, more manageable subtasks,
which can be computed in a more efficient way using multiprocessing.

Examples and non-examples

So far, we have seen that addition is one example of a reduction operator. To perform
addition as a reduction operator, we first divide the elements from our input array into
groups of two, each of which is one of our subtasks. We then perform addition on each
group, take the added result from each group, and divide them into groups of two again.

[131]

Reduction Operators in Processes Chapter 7

This process continues until we arrive at one single number. This process follows a model
called binary tree reduction, which utilizes groups of two to form the subtasks:

Diagram of binary tree reduction for addition

In the preceding example with the array [1, 4, 8, 3, 2, 5], after dividing the numbers into
three different groups of two numbers (1 and 4, 8 and 3, 2 and 5), we used three separate
processes to add the pairs of numbers together. We then obtained the array [5, 11, 7], which
we used for one process to obtain [16, 7], and again another process to finally obtain 23. So,
with three CPUs or more, an addition operator of six elements can be done in log,6 = 3 steps
instead of five steps in sequential addition.

Other common examples of reduction operators are multiplication and logical AND. For
example, reducing the same array of numbers [1, 4, 8, 3, 2, 5] using multiplication as a
reduction operator would be done as follows:

1 x4 x8x3x2 x5

= ((1 x 4) x (8 x 3)) x (2 x b5)
= (4 x 24) x 10

= 96 x 10

= 960

To reduce an array of Boolean values, for example (True, False, False, True), using the
logical AND operator, we could do the following:

True AND False AND False AND True

(True AND False) AND (False AND True)
= False AND False
False

[132]

Reduction Operators in Processes Chapter 7

A non-example of reduction operators is the power function, as changing the order of
computation would change the final result (that is, the function is not communicative). For
example, reducing the array [2, 1, 2] sequentially would give us the following;:

2701 r2=2"(1"2) =2"1=2
And if we were to change the order of operation as follows:
(27~1) ~2=2"2=4

We would obtain a different value. Therefore, the power function is not a reduction
operation.

Example implementation in Python

As we mentioned previously, due to their communicative and associative properties,
reduction operators can have their partial tasks created and processed independently, and
this is where concurrency can be applied. To truly understand how a reduction operator
utilizes concurrency, let's try implementing a concurrent, multiprocessing reduction
operator from scratch—specifically the add operator.

Similar to what we saw in the previous chapter, in this example, we will be using a task
queue and a result queue to facilitate our interprocess communication. Specifically, the
program will store all of the numbers in the input array in the task queue as individual
tasks. As each of our consumers (individual processes) executes, it will call get () on the
task queue twice to obtain two task numbers (except for some edge cases where there is no
or only one number left in the task queue), add them together, and put the result in the
result queue.

Similar to adding pairs of numbers together, like we did in the previous section, after our
processes iterate through the tasks queue one time and put the added pairs of task numbers
in the result queue, the number of elements in the input array will have been reduced by
half. For example, an input array of [1, 4, 8, 3, 2, 5] willbecome [5, 11, 7].

Now, our program will assign the new task queue to be the result queue (so, in this
example, [5, 11, 7] is now the new task queue), and our processes will continue going
through it and adding pairs of numbers together to generate a new result queue, which will
become the next task queue. This process repeats itself until the result queue only contains
one element, since we know that that single number is the sum of the numbers in the
original input array.

[133]

Reduction Operators in Processes Chapter 7

The following diagram shows the changes in the task queue and the result queue in each
iteration of processing the input array (1, 4, 8, 3, 2, 5];the process stops when the
result queue contains only one number (23):

Iteration 1
Task queue:

‘ 1 | 4 ‘ 8 ‘ 3 2 5
Result queue:
E [K |

Iteration 2
Task queue:

E I |
Result queue

K |

Iteration 3
Task queue:

e[|
Result queue:

Sample diagram of the multiprocessing add operator
Let's take a look at the ReductionConsumer class in the Chapter07/examplel.py file:
Chapter07/examplel.py

class ReductionConsumer (multiprocessing.Process) :

def __init__ (self, task_queue, result_qgueue):
multiprocessing.Process.__init__ (self)
self.task_queue = task_queue
self.result_queue = result_qgqueue

def run(self):
pname = self.name
print ('Using process %s...' % pname)

while True:
numl = self.task_queue.get ()

[134]

Reduction Operators in Processes Chapter 7

if numl is None:

print ('Exiting process %s.' % pname)
self.task_queue.task_done ()
break

self.task_queue.task_done ()
num2 = self.task_qgueue.get ()
if num2 is None:
print ('Reaching the end with process %s and number

1T o

%i.' % (pname, numl))
self.task_queue.task_done ()
self.result_gueue.put (numl)
break

print ('Running process %s on numbers %i and %$i.' % (
pname, numl, num2))

self.task_queue.task_done ()

self.result_gueue.put (numl + num?2)

We implement the Reduct ionConsumer class by overriding the
multiprocessing.Process class. This consumer class takes in a task queue and a result
queue when initialized, and handles the consumer process logic of the program, which calls
get () twice on the task queue to obtain two numbers from the queue, and adds their sum
to the result queue.

While doing this, the Reduct ionConsumer class also handles cases where there is no or
only one number left in the task queue (that is, when either the num1 or num2 variable is
None, which, as we know from the previous chapter, is what we use to indicate a poison

pill).

Additionally, recall that the JoinableQueue class of the multiprocessing module is
used to implement our task queues, and that it requires the task_done () function to be
called after each time the get () function is called, otherwise the subsequent join ()
function that we will call on the task queue later will block indefinitely. So, in the case
where the consumer process calls get () two times, it is important to call task_done () on
the current task queue twice, and when we only call get () once (when the first number is a
poison pill), then we should call task_done () only once. This is one of the more complex
considerations while working with multiprocessing programs that facilitate interprocess
communication.

[135]

Reduction Operators in Processes Chapter 7

To process and coordinate different consumer processes as well as manipulate the task
queue and the result queue after each iteration, we have a separate function called
reduce_sum():

def reduce_sum(array) :
tasks = multiprocessing.JoinableQueue ()
results = multiprocessing.JoinableQueue ()
result_size = len(array)

n_consumers = multiprocessing.cpu_count ()

for item in array:
results.put (item)

while result_size > 1:
tasks = results
results = multiprocessing.JoinableQueue ()

consumers = [ReductionConsumer (tasks, results)
for i in range (n_consumers)]
for consumer in consumers:
consumer.start ()

for i in range (n_consumers) :
tasks.put (None)

tasks.join()
result_size = result_size // 2 + (result_size % 2)
#fprint ('-' * 40)

return results.get ()

This function takes in a Python list of numbers to compute the sum of its elements. Aside
from a task queue and a result queue, the function also keeps track of another variable
called result_size, which indicates the number of elements in the current result queue.

After initializing its base variables, the function spawns its consumer processes to reduce
the current task queue inside a while loop. As we discussed previously, in each iteration of
the while loop, the elements in the task queue are added together pairwise, and the added
results are stored in the result queue. After that, the task queue will take over the elements
of that result queue, and add additional None values to the queue to implement the poison
pill technique.

[136]

Reduction Operators in Processes Chapter 7

In each iteration, a new empty result queue is also initialized as a JoinableQueue
object—this is different from the multiprocessing.Queue class that we used for our
result queue in the previous chapter, since we will be assigning tasks = results at the
beginning of the next iteration, and the task queue needs to be a JoinableQueue object.

We also update the value of result_size at the end of each iteration through
result_size = result_size // 2 + (result_size % 2).Itisimportant to note
here that while the gsize () method from the JoinableQueue class is a potential method
to keep track of the length of its object (that is, the number of elements in a JoinableQueue
object), this method is usually considered to be unreliable for various reasons—it is not
even implemented in Unix operating systems.

Since we can easily predict how the number of remaining numbers from our input array
will change after each iteration (it is halved if it is an even number, otherwise it is halved by
integer division, and then 1 is added to that result), we can keep track of that number using
a separate variable called result_size.

As for our main program for this example, we simply pass a Python list to the
reduce_sum () function. Here, we are adding numbers from 0 to 19:

my_array = [1 for i in range(20)]

result = reduce_sum(my_array)
print ('Final result: %i.' % result)

After running the script, your output should be similar to the following:

> python examplel.py

Using process ReductionConsumer-1...

Running process ReductionConsumer-1 on numbers 0 and 1.
Using process ReductionConsumer-2...

Running process ReductionConsumer—-2 on numbers 2 and 3.
Using process ReductionConsumer-3...

[...Truncated for readability..]

Exiting process ReductionConsumer-17.
Exiting process ReductionConsumer-18.
Exiting process ReductionConsumer-19.
Using process ReductionConsumer-20...
Exiting process ReductionConsumer-20.
Final result: 190.

[137]

Reduction Operators in Processes Chapter 7

Real-life applications of concurrent
reduction operators

The communicative and associative nature of the way reduction operators process their
data enables the subtasks of an operator to be processed independently, and is thus highly
connected to concurrency and parallelism. Consequently, various topics in concurrent
programming could be related to reduction operators, and by applying the same principles
of reduction operators, problems regarding those topics could be made more intuitive and
efficient.

As we have seen, add and multiply operators are reduction operators. More generally,
number-crunching problems that usually involve communicative and associative operators
are prime candidates for applying concurrency and parallelism. This is actually a true case
for the famous, and arguably one of the most used modules in Python—NumPy, whose

code is implemented to be as parallelizable as possible.

Furthermore, applying the logic operators AND, OR, or XOR to an array of Boolean values
works the same way as reduction operators. Some real-world applications for concurrent
bitwise reduction operators include the following;:

e Finite state machines, which commonly take advantage of logic operators while
processing logic gates. Finite state machines can be found in both hardware
structures and software designs.

e Communication across sockets/ports, which typically involves parity and stop
bits to check for data errors, or flow control algorithms. These techniques utilize
logic values of individual bytes to process information through the use of logic
operators.

e Compression and encryption techniques, which heavily depend on bitwise
algorithms.

Summary

Careful considerations need to be made while implementing multiprocessing reduction
operators in Python, especially if the program utilizes task queues and result queues to
facilitate communication across the consumer processes.

[138]

Reduction Operators in Processes Chapter 7

The operations of various real-world problems resemble reduction operators, and the use of
concurrency and parallelism for these problems could greatly improve efficiency and

thus productivity of the programs processing them. It is therefore important to be able to
identify these problems, and relate back to the concept of reduction operators to implement
their solutions.

In the next chapter, we will be discussing a specific real-world application for
multiprocessing programs in Python: image processing. We will be going over the basic
ideas behind image processing and how concurrency—specifically multiprocessing—could
be applied to image-processing applications.

Questions

e What is a reduction operator? What conditions must be satisfied so that an
operator can be a reduction one?

e What properties do reduction operators have that are equivalent to the required
conditions?

e What is the connection between reduction operators and concurrent
programming?

e What are some of the considerations that must be made while working with
multiprocessing programs that facilitate interprocess communication in Python?

e What are some real-life applications of concurrent reduction operators?

Further reading

For more information, you can refer to the following links:

Python Parallel Programming Cookbook, Giancarlo Zaccone, Packt Publishing Ltd,
2015

Learning Concurrency in Python: Build highly efficient, robust, and concurrent
applications., Elliot Forbes (2017)

Parallel Programming in OpenMP, Morgan Kaufmann, Chandra, Rohit (2001)
Fundamentals of Parallel Multicore Architecture, Yan Solihin (2016), CRC Press

[139]

Concurrent Image Processing

This chapter analyzes the process of processing and manipulating images through
concurrent programming, especially multiprocessing. Since images are processed
independently of one another, concurrent programming can provide image processing with
a significant speedup. This chapter discusses the basics behind image processing
techniques, illustrates the improvements that concurrent programming provides, and
finally, goes over some of the best practices used in image processing applications.

The following topics will be covered in this chapter:

e The idea behind image processing and a number of basic techniques in image
processing

¢ How to apply concurrency to image processing, and how to analyze the
improvements it provides

¢ Best practices in concurrent image processing

Technical requirements

Following is a list of prerequisites for this chapter:

* You must have Python 3 installed on your computer

You must have OpenCV and NumPy installed for your Python 3 distribution

Download the GitHub repository from https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

During this chapter, we will be working with the subfolder named Chapter08

Check out the following video to see the Code in Action: http://bit.ly/2R8ydN8

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2R8ydN8
http://bit.ly/2R8ydN8
http://bit.ly/2R8ydN8
http://bit.ly/2R8ydN8
http://bit.ly/2R8ydN8
http://bit.ly/2R8ydN8
http://bit.ly/2R8ydN8
http://bit.ly/2R8ydN8
http://bit.ly/2R8ydN8

Concurrent Image Processing Chapter 8

Image processing fundamentals

Digital/computational image processing (which we will refer to simply as image processing
from this point forward) has become so popular in the modern era that it exists in
numerous aspects in our everyday life. Image processing and manipulation is involved
when you take a picture with your camera or phone using different filters, or when
advanced image editing software such as Adobe Photoshop is used, or even when you
simply edit images using Microsoft Paint.

Many of the techniques and algorithms used in image processing were developed in the
early 1960s for various purposes such as medical imaging, satellite image analysis,
character recognition, and so on. However, these image processing techniques required
significant computing power, and the fact that the available computer equipment at the
time was unable to accommodate the need for fast number-crunching slowed down the use
of image processing.

Fast-forwarding to the future, where powerful computers with fast, multicore processors
were developed, image processing techniques consequently became much more accessible,
and research on image processing increased significantly. Nowadays, numerous image
processing applications are being actively developed and studied, including pattern
recognition, classification, feature extraction, and so on. Specific image processing
techniques, which take advantage of concurrent and parallel programming and would
otherwise be extremely computationally time-consuming, include Hidden Markov models,
independent component analysis, and even up-and-coming neural network models:

One sample use of image processing: grayscaling

Python as an image processing tool

As we have stated multiple times throughout this book, the Python programming language
is on its way to becoming the most popular programming language. This is especially true
in the field of computational image processing, which, most of the time, requires fast
prototyping and designing, and significant automation capabilities.

[141]

Concurrent Image Processing Chapter 8

As we will find out in the following section, digital images are represented in two-
dimensional and three-dimensional matrices so that computers can process them easily.
Consequently, most of the time, digital image processing involves matrix calculation.
Multiple Python libraries and modules not only provide efficient matrix calculation
options, but also interact seamlessly with other libraries that handle image reading/writing.

As we already know, automating tasks and making them concurrent are both Python's
strong suit. This makes Python the prime candidate to implement your image processing
applications. For this chapter, we will be working with two main Python libraries: OpenCV
(which stands for Open Source Computer Vision), which is a library that provides image
processing and computer vision options in C++, Java, and Python, and NumPy, which, as
we know, is one of the most popular Python modules and performs efficient and
parallelizable number-crunching calculations.

Installing OpenCV and NumPy

To install NumPy for your Python distribution using the pip package manager, run the
following command:

pip install numpy

If, however, you are using Anaconda/Miniconda to manage your packages, run the
following command:

conda install numpy

Installing OpenCV might be more complicated, depending on your operating system. The
easiest option is to have Anaconda handle the installation process by following this guide
(https://anaconda.org/conda-forge/opencv) after installing Anaconda (https://www.
anaconda.com/download/) as your main Python package manager. If, however, you are not
using Anaconda, the main option for installing OpenCV is to follow its official
documentation guide, which can be found at https://docs.opencv.org/master/df/d65/
tutorial_table_of content_introduction.html. After successfully inStaHing OpenCV,
open a Python interpreter and try importing the library, as follows:

>>> import cv2
>>> print (cv2.__version__)
3.1.0

We import OpenCV using the name cv2, which is the library alias of OpenCV in Python.
The success message indicates the version of my OpenCV library that has been
downloaded (3.1.0).

[142]

https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://anaconda.org/conda-forge/opencv
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html

Concurrent Image Processing Chapter 8

Computer image basics

Before we jump into processing and manipulating digital image files, we first need to
discuss the fundamentals of those files, and how computers interpret data from them.
Specifically, we need to understand how data regarding the colors and coordinates of
individual pixels in an image file is represented, and how to extract it using Python.

RGB values

RGB values are the basics of how colors are represented digitally. Standing for Red, Green,
and Blue, RGB values are constructed from the fact that all colors can be generated from a
specific combination of red, green, and blue. An RGB value therefore is a tuple of three
integer numbers, each of which ranges from 0 (which indicates no color at all) to 255 (which
indicates the deepest shade of that specific color).

For example, the color red corresponds to the tuple (255, 0, 0); in the tuple, there is only the
highest value for red and no value for the other colors, so the whole tuple represents the
pure color red. Similarly, blue is represented by (0, 0, 255), and green is represented by (0,
255, 0). The color yellow is the result of mixing equal amounts of red and green, and is
therefore represented by (255, 255, 0) (the maximum amount of red and green, with no
blue). White, which is the combination of all three colors, is (255, 255, 255), while black,
which is the opposite of white and therefore lacks all colors, is represented by (0, 0, 0).

;

RGB values basics

[143]

Concurrent Image Processing Chapter 8

Pixels and image files

So, an RGB value indicates a specific color, but how do we connect this to a computer
image? If we were to view an image on our computer and try to zoom in as much as we
can, we would observe that as we zoom in deeper and deeper, the image will start breaking
apart into increasingly discernible colored squares—these squares are called pixels, which
are the smallest units of color on a computer display or in a digital image:

Examples of pixels in digital images

A set of different pixels arranged in a tabular format (rows and columns of pixels) makes
up a computer image. Each pixel, in turn, is an RGB value; in other words, a pixel is a tuple
of three integers. This means that a computer image is simply a two-dimensional array of
tuples, whose sides correspond to the size of the image. For example, a 128 x 128 image has
128 rows and 128 columns of RGB tuples for its data.

Coordinates inside an image

Similar to indexing for two-dimensional arrays, the coordinate for a digital image pixel is a
pair of two integers, representing the x- and y-coordinates of that pixel; the x-coordinate
indicates the pixel's location along the horizontal axis starting from the left, and the y-
coordinate indicates the pixel's location along the vertical axis starting from the top.

Here, we can see how heavy computational number-crunching processes are typically
involved when it comes to image processing, as each image is a matrix of integer tuples.
This also suggests that, with the help of the NumPy library and concurrent programming,
we can implement significant improvements in execution time for Python image processing
applications.

[144]

Concurrent Image Processing Chapter 8

Following the convention of indexing two-dimensional arrays in NumPy, the location of a
pixel is still a pair of integers, but the first number indicates the index of the row containing
the pixel, which corresponds to the y-coordinate, and similarly, the second number
indicates the x-coordinate of the pixel.

OpenCV API

There are a surprising number of methods to read in, perform image processing, and
display a digital image file in Python. However, OpenCV provides some of the easiest and
most intuitive APIs to do this. One important thing to note regarding OpenCV is that it
actually inverts RGB values to BGR values when interpreting its images, so instead of red,
green, and blue in order, the tuples in an image matrix will represent blue, green, and red,
in that order.

Let's look at an example of interacting with OpenCV in Python. Let's a take look at
the Chapter08/examplel.py file:

Chapter08/examplel.py
import cv2
im = cv2.imread ('input/ship.Jjpg'")

cv2.imshow ('Test', im)
cv2.waitKey (0) # press any key to move forward here

print (im)

print ('Type:', type(im))

print ('Shape:', im.shape)

print ('Top-left pixel:', im([0, O0])

print ('Done."')

There are a few methods from OpenCV that have been used in this script that we need to
discuss:

e cv2.imread (): This method takes in a path to an image file (common file
extensions include . jpeg, . jpg, .png, and so on) and returns an image object,
which, as we will see later, is represented by a NumPy array.

e cv2.imshow (): This method takes in a string and an image object and displays it
in a separate window. The title of the window is specified by the passed-in
string. The method should always be followed by the cv2.waitKey () method.

[145]

Concurrent Image Processing Chapter 8

e cv2.waitKey (): This method takes in a number and blocks the program for a
corresponding number of milliseconds, unless the number 0 is passed in, in
which case it will block indefinitely until the user presses a key on their
keyboard. This method should always follow the cv2.imshow () method.

After calling cv2.imshow () on the ship. jpg file inside the input subfolder so that it's
displayed from the Python interpreter, the program will stop until a key is pressed, at
which point it will execute the rest of the program. If run successfully, the script will
display the following image:

You should also obtain the following output for the rest of the main program after pressing
any key to close the displayed picture:

> python examplel.py
[[[199 136 86]

[199 136 86]

[199 136 86]

.« ey

[146]

Concurrent Image Processing

Chapter 8

[198 140 81]
[197 139 80]
[201 143 84]]

[...Truncated for readability...

[[56
[59
[60
[79
[80
[75

Type:
Shape:

Done.

The output confirms a few of the things that we discussed earlier:

23
26
27

43
44
39

4]
7]
7]

7]
8]
3111

<class 'numpy.ndarray'>

(1118, 1577, 3)
Top-left pixel: [199 136 86]

e First, when printing out the image object returned from the cv2.imread ()

function, we obtained a matrix of numbers.

¢ Using the type () method from Python, we found out that the class of this matrix

is indeed a NumPy array: numpy .ndarray.

¢ Calling the shape attribute of the array, we can see that the image is a three-
dimensional matrix of the shape (1118, 1577, 3), which corresponds to a table
with 1118 rows and 1577 columns, each element of which is a pixel (three-
number tuple). The numbers for the rows and columns also correspond to the
size of the image.

¢ Focusing on the top-left pixel in the matrix (the first pixel in the first row, that
is, im[0, 01), we obtained the BGR value of (199, 136, 86)—199 blue, 136
green, and 86 red. By looking up this BGR value through any online converter,
we can see that this is a light blue that corresponds to the sky, which is the upper
part of the image.

Image processing techniques

We have already seen some Python APIs that are provided by OpenCV to read in data from
image files. Before we can use OpenCV to perform various image processing tasks, let's
discuss the theoretical foundation for a number of techniques that are commonly used in
image processing.

Concurrent Image Processing Chapter 8

Grayscaling

We saw an example of grayscaling earlier in this chapter. Arguably one of the most used
image processing techniques, grayscaling is the process of reducing the dimensionality of
the image pixel matrix by only considering the intensity information of each pixel, which is
represented by the amount of light available.

As a result, pixels of grayscale images no longer hold three-dimensional information (red,
green, and blue), and only one-dimensional black-and-white data. These images are
exclusively composed of shades of gray, with black indicating the weakest light intensity
and white indicating the strongest.

Grayscaling serves a number of important purposes in image processing. Firstly, as
mentioned, it reduces the dimensionality of the image pixel matrix by mapping traditional
three-dimensional color data to one-dimensional gray data. So, instead of having to analyze
and process three layers of color data, image processing programs only have to do one
third of the job with grayscale images. Additionally, by only representing colors using one
spectrum, important patterns in the image are more likely to be recognized with just black
and white data.

There are multiple algorithms for converting color to grayscale: colorimetric conversion,
luma coding, single channel, and so on. Luckily, we do not have to implement one
ourselves, as the OpenCV library provides a one-line method to convert normal images to
grayscale ones. Still using the image of a ship from the last example, let's look at the
Chapter08/example2.py file:

Chapter08/example2.py
import cv2

im = cv2.imread('input/ship.jpg")
gray_im = cv2.cvtColor (im, cv2.COLOR_BGR2GRAY)

cv2.imshow ('Grayscale', gray_im)
cv2.waitKey (0) # press any key to move forward here

print (gray_im)

print ('Type:', type(gray_im))

print ('Shape:', gray_im.shape)

cv2.imwrite ('output/gray_ship.jpg', gray_im)

print ('Done.")

[148]

Concurrent Image Processing Chapter 8

In this example, we are using the cvtColor () method from OpenCV to convert our
original image to a grayscale one. After running this script, the following image should be
displayed on your computer:

Output from Grayscaling

Pressing any key to unblock your program, you should obtain the following output:

> python example2.py

[[128 128 128 ..., 129 128 132]
[125 125 125 ..., 129 128 130]
[124 125 125 ..., 129 129 130]

[20 21 20 ..., 38 39 37]

[19 22 21 ..., 41 42 37]

[21 24 25 ..., 36 37 32]]
Type: <class 'numpy.ndarray'>
Shape: (1118, 1577)

Done.

[149]

Concurrent Image Processing Chapter 8

We can see that the structure of our grayscale image object is different from what we saw
with our original image object. Even though it is still represented by a NumPy arrayj, it is
now a two-dimensional array of integers, each of which ranges from 0 (for black) to 255 (for
white). The table of pixels, however, still consists of 1118 rows and 1577 columns.

In this example, we also used the cv2.imwrite () method, which saves the image object to
your local computer. The grayscale image can therefore be found in the output subfolder of
this chapter's folder, as specified in our code.

Thresholding

Another important technique in image processing is thresholding. With the goal of
categorizing each pixel in a digital image into different groups (also known as image
segmentation), thresholding provides a quick and intuitive way to create binary images
(with just black and white pixels).

The idea behind thresholding is to replace each pixel in an image with a white pixel if the
pixel's intensity is greater than a previously specified threshold, and with a black pixel if
the pixel's intensity is less than that threshold. Similar to the goal of grayscaling,
thresholding amplifies the differences between high- and low-intensity pixels, and from
that important features and patterns in an image can be recognized and extracted.

Recall that grayscaling converts a fully colored image to a version that only has different
shades of gray; in this case, each pixel has a value of an integer ranging from 0 to 255. From
a grayscale image, thresholding can convert it to a fully black-and-white one, each pixel of
which is now only either 0 (black) or 255 (white). So, after performing thresholding on an
image, each pixel of that image can only hold two possible values, also significantly
reducing the complexity of our image data.

The key to an effective thresholding process is therefore finding an appropriate threshold
so that the pixels in an image are segmented in a way that allows separate regions in the
image to become more obvious. The most simple form of thresholding is to use a constant
threshold to process all pixels throughout a whole image. Let's consider an example of this
method in the Chapter08/example3.py file:

Chapter08/example3.py
import cv2

im = cv2.imread('input/ship.jpg")
gray_im = cv2.cvtColor (im, cv2.COLOR_BGR2GRAY)

ret, custom_thresh_im = cv2.threshold(gray_im, 127, 255, cv2.THRESH_BINARY)

[150]

Concurrent Image Processing Chapter 8

cv2.imwrite ('output/custom_thresh_ship.jpg', custom_thresh_im)
print ('Done."')

In this example, after converting the image of a ship that we have been using to grayscale,
we call the threshold(src, thresh, maxval, type) function from OpenCV, which

takes in the following arguments:

e src: This argument takes in the input/source image.

e thresh: The constant threshold to be used throughout the image. Here, we are
using 127, as it is simply the middle point between 0 and 255.

e maxval: Pixels whose original values are greater than the constant threshold will
take this value after the thresholding process. We pass in 255 to specify that those
pixels should be completely white.

¢ type: This value indicates the thresholding type used by OpenCV. We are
performing a simple binary thresholding, so we pass in cv2.THRESH_BINARY.

After running the script, you should be able to find the following image in the output with
the name custom_thresh_ship. jpg:

Output from simple thresholding

[151]

Concurrent Image Processing Chapter 8

We can see that with a simple threshold (127), we have obtained an image that highlights
separate regions of the image: the sky, the ship, and the sea. However, there are a number
of problems that this method of simple thresholding poses, the most common of which is
finding the appropriate constant threshold. Since different images have different color
tones, lighting conditions, and so on, it is undesirable to use a static value across different
images as their threshold.

This issue is addressed by adaptive thresholding methods, which calculate the dynamic
thresholds for small regions of an image. This process allows the threshold to adjust
according to the input image, and not depend solely on a static value. Let's consider two
examples of these adaptive thresholding methods, namely Adaptive Mean Thresholding
and Adaptive Gaussian Thresholding. Navigate to the Chapter08/example4.py file:

Chapter08/exampled.py
import cv2

im = cv2.imread ('input/ship.Jjpg')
im cv2.cvtColor (im, cv2.COLOR_BGR2GRAY)

mean_thresh_im = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 11, 2)
cv2.imwrite ('output/mean_thresh_ship.jpg', mean_thresh_im)

gauss_thresh_im = cv2.adaptiveThreshold(im, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
cv2.imwrite ('output/gauss_thresh_ship.Jjpg', gauss_thresh_im)

print ('Done."')

Similar to what we did with the cv2.threshold () method earlier, here, we again convert
the original image to its grayscale version, and then we pass it to the

adaptiveThreshold () method from OpenCV. This method takes in similar arguments to
the cv2.threshold () method, except that, instead of taking in a constant to be the
threshold, it takes in an argument for the adaptive method. We used
CVZ.ADAPTIVE_THRESH_MEAN_CiﬂkiCVZ.ADAPTIVE_THRESH_GAUSSIAN_C,Hﬁpecﬁvebk

The second to last argument specifies the size of the window to perform thresholding; this
number has to be an odd positive integer. Specifically, we used 11 in our example, so for
each pixel in the image, the algorithm will consider the neighboring pixels (in an 11 x 11
square surrounding the original pixel). The last argument specifies the adjustment to make
for each pixel in the final output. These two arguments, again, help localize the threshold
for different regions of the image, thus making the thresholding process more dynamic
and, as the name suggests, adaptive.

[152]

Concurrent Image Processing Chapter 8

After running the script, you should be able to find the following images as output with the
names mean_thresh_ship.jpgand gauss_thresh_ship. jpg. The output for
mean_thresh_ship. jpg is as follows:

Output from mean thresholding

[153]

Concurrent Image Processing Chapter 8

The output for gauss_thresh_ship. jpg is as follows:

Output from Gaussian thresholding

We can see that with adaptive thresholding, details in specific regions will be thresholded
and highlighted in the final output image. These techniques are useful when we need to
recognize small details in an image, while simple thresholding is useful when we only want
to extract big regions of an image.

[154]

Concurrent Image Processing Chapter 8

Applying concurrency to image processing

We have talked a lot about the basics of image processing and some common image
processing techniques. We also know why image processing is a heavy number-crunching
task, and that concurrent and parallel programming can be applied to speed up
independent processing tasks. In this section, we will be looking at a specific example on
how to implement a concurrent image processing application that can handle a large
number of input images.

First, head to the current folder for this chapter's code. Inside the input folder, there is a
subfolder called 1arge_input, which contains 400 images that we will be using for this
example. These pictures are different regions in our original ship image, which have been
cropped from it using the array-indexing and -slicing options that NumPy provides to slice
OpenCV image objects. If you are curious as to how these images were generated, check
out the Chapter08/generate_input.py file.

Our goal in this section is to implement a program that can concurrently process these
images using thresholding. To do this, let's look at the example5.py file:

from multiprocessing import Pool
import cv2

import sys
from timeit import default_timer as timer

THRESH_METHOD = cv2.ADAPTIVE_THRESH_ GAUSSIAN_C

INPUT_PATH = 'input/large_input/'

OUTPUT_PATH = 'output/large_output/"

n = 20

names = ['ship_%i_%i.Jjpg' % (i, j) for i in range(n) for j in range(n)]

def process_threshold(im, output_name, thresh_method) :
gray_im = cv2.cvtColor (im, cv2.COLOR_BGR2GRAY)
thresh_im = cv2.adaptiveThreshold(gray_im, 255, thresh_method,
cv2.THRESH BINARY, 11, 2)

cv2.imwrite (OUTPUT_PATH + output_name, thresh_im)

if name == '__main__':

for n_processes in range(l, 7):

[155]

Concurrent Image Processing Chapter 8

start = timer ()

with Pool (n_processes) as p:
p.starmap (process_threshold, [(
cv2.imread (INPUT_PATH + name),
name,
THRESH_METHOD
) for name in names])

print ('Took %.4f seconds with %i process(es).

[}

% (timer () - start, n_processes))
print ('Done."')

In this example, we are using the Pool class from the multiprocessing module to
manage our processes. As a refresher, a Pool object supplies convenient options to map a
sequence of inputs to separate processes using the Pool .map () method. We are using the
Pool.starmap () method in our example, however, to pass multiple arguments to the
target function.

At the beginning of our program, we make a number of house-keeping assignments: the
thresholding method to perform adaptive thresholding when processing the images, paths
for the input and output folders, and the names of the images to process. The
process_threshold () function is what we use to actually process the images; which
takes in an image object, the name for the processed version of the image, and which
thresholding method to use. Again, this is why we need to use the Pool.starmap ()
method instead of the traditional Pool .map () method.

In the main program, to demonstrate the differences between sequential and
multiprocessing image processing, we want to run our program with different numbers of
processes, specifically from one single process to six different processes. In each iteration of
the for loop, we initialize a Pool object and map the necessary arguments of each image to
the process_threshold () function, while keeping track of how much time it takes to
process and save all of the images.

After running the script, the processed images can be found in the
output/large_output/ subfolder in our current chapter's folder. You should obtain an
output similar to the following;:

> python example5.py
Took 0.6590 seconds with 1 process(es).

Took 0.3190 seconds with 2 process(es).
Took 0.3227 seconds with 3 process(es).
Took 0.3360 seconds with 4 process(es).
Took 0.3338 seconds with 5 process(es).

[156]

Concurrent Image Processing Chapter 8

Took 0.3319 seconds with 6 process(es).
Done.

We can see a big difference in execution time when we go from one single process to two
separate processes. However, there is negligible or even negative speedup after going from
two to higher numbers of processes. Generally, this is because of the heavy overhead,
which is the product of implementing a large number of separate processes, in comparison
to a relatively low number of inputs. Even though we are not implementing this
comparison in the interest of simplicity, with an increased number of inputs we would see
better improvements from a high number of working processes.

So far, we have seen that concurrent programming could provide a significant speedup for
image processing applications. However, if we take a look at our preceding program, we
can see that there are additional adjustments that we can make to improve the execution
time even further. Specifically, in our preceding program, we are reading in images in a
sequential way by using list comprehension in the following line:

with Pool (n_processes) as p:
p.starmap (process_threshold, [(
cv2.imread (INPUT_PATH + name),
name,
THRESH_METHOD
) for name in names])

Theoretically, if we were to make the process of reading in different image files concurrent,
we could also gain additional speedup with our program. This is especially true in an
image processing application that deals with large input files, where significant time is
spent on waiting for input to be read. With that in mind, let's consider the following
example, in which we will implement concurrent input/output processing. Navigate to the
example6.py file:

from multiprocessing import Pool
import cv2

import sys

from functools import partial
from timeit import default_timer as timer

THRESH_METHOD = cv2.ADAPTIVE_THRESH_ GAUSSIAN_C

INPUT_PATH = 'input/large_input/'

OUTPUT_PATH = 'output/large_output/'

n = 20

names = ['ship_%i_%i.jpg' % (i, Jj) for i in range(n) for j in range (n)]

[157]

Concurrent Image Processing

Chapter 8

def

cv2.

if

name

n_pr

process_threshold (name, thresh_method):

im = cv2.imread (INPUT_PATH + name)

gray_im = cv2.cvtColor (im, cv2.COLOR_BGR2GRAY)

thresh_im = cv2.adaptiveThreshold(gray_im, 255, thresh_method,
THRESH_BINARY, 11, 2)

cv2.imwrite (OUTPUT_PATH + name, thresh_im)

name == '_ _main__ ':

for n_processes in range(l, 7):
start = timer ()

with Pool (n_processes) as p:

p.map (partial (process_threshold, thresh_method=THRESH_METHOD),

s)

print ('Took %.4f seconds with %i process(es).' % (timer()
ocesses))
print ('Done."')

- start,

The structure of this program is similar to that of the previous one. However, instead of
preparing the necessary images to be processed and other relevant input information, we
implement them inside the process_threshold () function, which now only takes the

name of

the input image and handles reading the image itself.

As a side note, we are using Python's built-in functools.partial () method in our main
program to pass in a partial argument (hence the name), specifically thresh_method, to
the process_threshold () function, as this argument is fixed across all images and
processes. More information about this tool can be found at https://docs.python.org/3/
library/functools.html.

After running the script, you should obtain an output similar to the following;:

> python exampleé6.py

Took
Took
Took
Took
Took
Took

0.5300 seconds with
.4133 seconds with
.2154 seconds with
.2147 seconds with
.2213 seconds with
.2329 seconds with

process (es) .
process (es) .
process (es) .
process (es) .
process (es) .
process (es) .

O oO0Oooo
ol WDNPE

Done.

Compared to our last output, this implementation of the application indeed gives us a
significantly better execution time.

[158]

https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html

Concurrent Image Processing Chapter 8

Good concurrent image processing
practices

Up until this point, you have most likely realized that image processing is quite an
involved process, and implementing concurrent and parallel programming in an image
processing application can add more complexity to our work. There are, however, good
practices that will guide us in the right direction while developing our image processing
applications. The following section discusses some of the most common practices that we
should keep in mind.

Choosing the correct way (out of many)

We have hinted at this practice briefly when we learned about thresholding. How an image
processing application handles and processes its image data heavily depends on the
problems it is supposed to solve, and what kind of data will be fed to it. Therefore, there is
significant variability when it comes to choosing specific parameters when processing your
image.

For example, as we have seen earlier, there are various ways to threshold an image, and
each will result in very different output: if you want to focus on only the large, distinct
regions of an image, simple constant thresholding will prove to be more beneficial than
adaptive thresholding; if, however, you want to highlight small changes in the details of an
image, adaptive thresholding will be significantly better.

Let's consider another example, in which we will see how tuning a specific parameter for an
image processing function results in better output. In this example, we are using a simple
Haar Cascade model to detect faces in images. We will not go too deeply into how the
model handles and processes its data, since it is already built into OpenCV; again, we are
only using this model on a high level, changing its parameters to obtain different results.

Navigate to the example7.py file in this chapter's folder. The script is designed to detect
faces in the obamal . jpeg and obama2. jpg images in our input folder:

import cv2

face_cascade =
cv2.CascadeClassifier ('input/haarcascade_frontalface_default.xml')

for filename in ['obamal.jpeg', 'obamal.]jpg'l]:
im = cv2.imread('input/' + filename)
gray_im = cv2.cvtColor (im, cv2.COLOR_BGR2GRAY)

[159]

Concurrent Image Processing Chapter 8

faces = face_cascade.detectMultiScale (im)

for (x, y, w, h) in faces:
cv2.rectangle (im, (x, y), (x + w, y + h), (0, 255, 0), 2)

o

cv2.imshow ('%1i face(s) found' % len(faces), im)
cv2.waitKey (0)

print ('Done."')

First, the program loads the pretrained Haar Cascade model from the input folder using
the cv2.CascadeClassifier class. For each input image, the script converts it to
grayscale and feeds it to the pretrained model. The script then draws a green rectangle
around each face found in the image, and finally displays it in a separate window.

Run the program, and you will see the following image with the title 5 face (s) found:

Correct face detection

[160]

Concurrent Image Processing Chapter 8

It looks like our program is working well so far. Press any key to continue, and you should
see the following image with the title 7 face (s) found:

Incorrect face detection

Now, our program is mistaking some other objects as actual faces, resulting in two false-
positives. The reason behind this involves how the pretrained model was created.
Specifically, the Haar Cascade model used a training dataset with images of specific (pixel)
sizes, and when an input image contains faces of different sizes—which is common when it
is a group picture with some people being close to the camera, while others are far
away—is fed into this model, it will cause false-positives in the output.

The scaleFactor parameter in the detectMultiScale method of the
cv2.CascadeClassifier class addresses this issue. This parameter will scale down
different areas of the input image before trying to predict whether those areas contain a face
or not—doing this negates the potential difference in face sizes. To implement this, change
the line where we pass the input images to the model to the following to specify the
scaleFactor parameteras 1.2:

faces = face_cascade.detectMultiScale (im, scaleFactor=1.2)

Run the program, and you will see that this time our application is able to correctly detect
all of the faces in our input images without making any false-positives.

From this example, we can see that it is important to know about the potential challenges
that the input images will pose to your image processing application in execution, and to
try different methods or parameters within one method of processing to achieve the best
results.

[161]

Concurrent Image Processing Chapter 8

Spawning an appropriate number of processes

One point we noticed in our example for concurrent image processing is that the task of
spawning processes takes a considerable amount of time. Due to this, if the number of
processes available to analyze the data is too high in comparison to the amount of input,
the improvement in execution time received from increasing the number of working
processes will diminish and sometimes even become negative.

However, there is no concrete way to tell whether a specific number of separate processes is
appropriate for a program unless we also take into account its input images. For example, if
the input images are relatively large files, and it takes a significant amount of time for the
program to load them from storage, having a larger number of processes might be
beneficial; when some processes are waiting for their images to load, others can proceed to
perform processing on theirs. In other words, having a larger number of processes will
allow for some overlapping between loading and processing time, which will result in
better speedup.

In short, it is important to test out different processes that are available for your image
processing application to see what the optimal number for scalability is.

Processing input/output concurrently

We saw that loading input images in a sequential way might have a negative effect on the
execution time of an image processing application, as opposed to allowing separate
processes to load their own inputs. This is specifically true if the image files are
significantly large, as the loading time in separate processes might overlap with the
loading/processing time in other processes. The same is applicable for writing output
images to files.

Summary

Image processing is the task of analyzing and manipulating digital image files to create new
versions of the images or to extract important data from them. These digital images are
represented by tables of pixels, which are RGB values, or in essence, tuples of numbers.
Therefore, digital images are simply multidimensional matrices of numbers, which results
in the fact that image processing tasks typically come down to heavy number-crunching.

[162]

Concurrent Image Processing Chapter 8

Since images can be analyzed and processed independently from each other in an image
processing application, concurrent and parallel programming — specifically
multiprocessing — provides a way to achieve significant improvements in execution time for
the application. Additionally, there are a number of good practices to follow while
implementing your own concurrent image processing program.

So far in this book, we have covered the main two forms of concurrent programming;:
multithreading and multiprocessing. In the next chapter, we will be moving on to the topic
of asynchronous I/O, which is also one of the key elements of concurrency and parallelism.

Questions

e What is an image processing task?

What is the smallest unit of digital imaging? How is it represented in computers?

What is grayscaling? What purpose does this technique serve?

What is thresholding? What purpose does this technique serve?

Why should image processing be made concurrent?

What are some good practices for concurrent image processing?

Further reading

For more information, you can refer to the following links:

e Automate the Boring Stuff with Python: Practical Programming for Total
Beginners, Al Sweigart, No Starch Press, 2015

Learning Image Processing with OpenCV, Garcia, Gloria Bueno, et al, Packt
Publishing Ltd, 2015

A Computational Introduction to Digital Image Processing, Alasdair

McAndrew, Chapman and Hall/CRC, 2015

Howse, J., P. Joshi, and M. Beyeler. OpenCV: Computer Vision Projects with Python.
Packt Publishing Ltd, 2016

[163]

Introduction to Asynchronous
Programming

In this chapter, we will introduce readers to the formal definition of asynchronous
programming. We will be discussing the basic idea behind asynchronous processing, the
differences between asynchronous programming and other programming models that we
have seen, and the reason why asynchronous programming is such a major factor in
concurrency.

The following topics will be covered in this chapter:

¢ The concept of asynchronous programming

¢ The key differences between asynchronous programming and other
programming models

Technical requirements

The following is a list of prerequisites for this chapter:

¢ You must have Python 3 installed on your computer

¢ Download the GitHub repository from https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder titled Chapter09, so
make sure that you have it at the ready

e Check out the following video to see the Code in Action: http://bit.1ly/2DF700L

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2DF700L
http://bit.ly/2DF700L
http://bit.ly/2DF700L
http://bit.ly/2DF700L
http://bit.ly/2DF700L
http://bit.ly/2DF700L
http://bit.ly/2DF700L
http://bit.ly/2DF700L
http://bit.ly/2DF700L

Introduction to Asynchronous Programming Chapter 9

A quick analogy

Asynchronous programming is a model of programming that focuses on coordinating
different tasks in an application. Its goal is to ensure that the application finishes executing
those tasks in the smallest amount of time possible. From this perspective, asynchronous
programming is about switching from one task to another when it is appropriate to create
overlapping between waiting and processing time, and from there, shorten the total time
taken to finish the whole program.

To understand the underlying idea of asynchronous programming, let's consider a quick,
real-life analogy. Imagine a scenario in which you are cooking a three-course meal that
contains the following;:

e An appetizer that will take 2 minutes of preparation and 3 minutes of
cooking/waiting

¢ A main course that will take 5 minutes of preparation and 10 minutes of
cooking/waiting

e A dessert that will take 3 minutes of preparation and 5 minutes of
cooking/waiting

Now, considering the order in which the courses finish cooking, your goal is to determine a
way to produce the three courses that will take the least amount of time. For example, if we
are cooking the courses in a sequential way, we will finish the appetizer first, which will
take 5 minutes, then we will move on to the main course, which will take 15 minutes, and
then finally the dessert, which will take 8 minutes, respectively. In total, the whole meal
will take 28 minutes to finish.

The key to finding a quicker way to go about this is to overlap the cooking/waiting time of
one course with the preparation time of another. Since you will not be occupied while
waiting for the food that has already been prepared for cooking, this time could be saved
by preparing the food for another dish. For example, improvements could be achieved
through the following steps:

¢ Preparing the appetizer: 2 minutes.

e Preparing the main course while waiting for the appetizer to cook: 5 minutes.
The appetizer will have finished during this step.

¢ Preparing and cooking the dessert while waiting for the main course to cook: 8
minutes. The dessert will have finished during this step, and the main course will
have 2 minutes of cooking remaining.

e Waiting for the main course to finish cooking: 2 minutes. The main course will
have cooking finished during this step.

[165]

Introduction to Asynchronous Programming Chapter 9

By overlapping the time, we have saved a significant amount of time cooking the three
meals, which now takes only 17 minutes in total, compared to 28 minutes if we had done
this in the sequential way. However, there is obviously more than one way to decide which
dish we should start first, and which dish should be cooked second and last. Another
variation of the cooking order could be as follows:

e Preparing the main course: 5 minutes.

¢ Preparing the appetizer while waiting for the main course to cook: 2 minutes.
The main course will have 8 minutes of cooking left.

¢ Preparing the dessert while waiting for the appetizer and the main course to
cook: 3 minutes. The appetizer will have finished during this step, and the main
course will have 5 minutes of cooking left.

e Waiting for the main course and the dessert to finish cooking: 5 minutes. Both the
main course and the dessert will have finished during this step.

This time, it only takes 15 minutes in total to produce the whole meal. As we can see,
different variations of the cooking order might result in a different total cooking time.
Finding the best order to execute and switch between tasks in a program is the main idea
behind asynchronous programming: instead of executing all of the instructions of that
program in a sequential way, we coordinate those instructions so that we can create
overlapped waiting and processing times and finally achieve a better execution time.

Asynchronous versus other programming
models

Asynchronous programming is one of the major concepts in concurrency specifically, and
in programming in general. However, it is quite a complex concept that can be considerably
challenging for us to sometimes differentiate it from other programming models. In this
section, we will be comparing asynchronous programming with synchronous
programming and other concurrent programming models that we have seen (that is,
threading and multiprocessing).

[166]

Introduction to Asynchronous Programming Chapter 9

Asynchronous versus synchronous
programming

Again, asynchronous programming is fundamentally different from synchronous
programming because of its task-switching nature. In synchronous programming, the
instructions of a program are executed sequentially: a task has to have finished executing
before the next task in the program starts processing. With asynchronous programming, if
the current task takes significant time to finish, you have the option to specify a time during
the task at which the execution is switched to another task. As we have observed, doing this
would result in potential improvements in the execution time of the whole program.

One common example of asynchronous programming is the interaction between a server
and a client during an HTTP request. If HTTP requests were synchronous, clients would
have to wait after making a request until receiving the response from the server. Imagine a
scenario in which your browser would hang every time you go to a new link or start
playing a video until the actual data returns from the server. This would be extremely
inconvenient and inefficient for HTTP communication.

A better approach is asynchronous communication, where the client is free to continue
working, and when data from the requests made returns from the server is when the client
will be notified and proceed to process that data. Asynchronous programming is so
common in web development that a whole programming model called AJAX (short for
Asynchronous JavaScript and XML) is now used in almost every website. Additionally, if
you have used common libraries in JavaScript such as jQuery or Node.js, chances are you
have worked with, or at least heard the term callback, which simply means a function that
can be passed to another function to execute later in the future. Switching back and forth
between the execution of functions is the main idea of asynchronous programming, and we
will actually analyze an advanced example of callback usage in chapter 18, Building a
Server from Scratch.

[167]

Introduction to Asynchronous Programming Chapter 9

The following diagram further illustrates the difference between synchronous and
asynchronous client-server communication:

Synchronous Asynchronous
Client Client
I Make I
Make request
request
Waiting Continue
for Working
response
Get
Response
and do
something

Differences between synchronous and asynchronous HTTP requests

Asynchronous programming is, of course, not limited to HTTP requests. Tasks that involve
general network communication, software data processing, interaction with databases, and
so on all take advantage of asynchronous programming. Contrary to synchronous
programming, asynchronous programming provides responsiveness for users by
preventing the program from hanging while waiting for data. Therefore, it is a great tool to
implement in programs that deal with a large amount of data.

Asynchronous versus threading and
multiprocessing

While providing somewhat similar benefits to those that threading and multiprocessing
provide, asynchronous programming is fundamentally different from these two
programming models, especially in the Python programming language.

[168]

Introduction to Asynchronous Programming Chapter 9

As we know, in multiprocessing, multiple copies of our main program—together with its
instructions and variables—are created and executed independently across different cores.
Threads, which are also known as lightweight processes, operate on the same basis:
although the code is not executed in separate cores, independent portions of the code that
are executed in separate threads do not interact with one another either.

Asynchronous programming, on the other hand, keeps all of the instructions of a program
in the same thread and process. The main idea behind asynchronous programming is to
have a single executor to switch from one task to another if it is more efficient (in terms of
execution time) to simply wait for the first task while processing the second. This means
that asynchronous programming will not take advantage of the multiple cores that a
system might have.

An example in Python

While we will go into more depth regarding how asynchronous programming can be
implemented in Python and the main tools we will be using, including the asyncio
module, let's consider how asynchronous programming can improve the execution time of
our Python programs.

Let's take a look at the Chapter09/examplel.py file:
Chapter09/examplel.py
from math import sqgrt

def is_prime(x):

print ('Processing %i...' $ x)
if x < 2:

print ('$i is not a prime number.' % x)
elif x == 2:

print ('%$1i is a prime number.' % x)
elif x % 2 == 0:

print ('$i is not a prime number.' % x)
else:

limit = int(sgrt(x)) + 1
for i in range(3, limit, 2):
if x $ 1 ==
print ('$i is not a prime number.' % x)
return

[169]

Introduction to Asynchronous Programming Chapter 9

print ('%1i is a prime number.' % x)
if name == '__main__ ':

is_prime (9637529763296797)
is_prime (427920331)
is_prime (157)

Here, we have our familiar prime-checking is_prime () function, which takes in an integer
and prints out a message indicating whether that input is a prime number or not. In our
main program, we call is_prime () on three different numbers. We are also keeping track
of how much time it takes for our program to process all three numbers.

Once you execute the script, your output should be similar to the following;:

> python examplel.py

Processing 9637529763296797. ..
9637529763296797 is a prime number.
Processing 427920331...

427920331 is a prime number.
Processing 157...

157 is a prime number.

You have probably noticed that the program took quite some time to process the first input.
Because of the way the is_prime () function is implemented, if the input of the prime
number is large, then it takes is_prime () longer to process it. So, since we have a large
prime number as the first input, our Python program will hang for a significant amount of
time before printing out the output. This typically creates a non-responsive feel for our
program, which is not desirable in both software engineering and web development.

To improve the responsiveness of the program, we will take advantage of the asyncio
module, which has been implemented in the Chapter09/example2.py file:

Chapter09/example2.py
from math import sqgrt
import asyncio

async def is_prime (x):

print ('Processing %$i...' $ x)
if x < 2:

print ('$i is not a prime number.' % x)
elif x == 2:

[170]

Introduction to Asynchronous Programming Chapter 9

print ('%1i is a prime number.' % x)
elif x & 2 == 0:
print ('$i is not a prime number.' % x)

else:
limit = int(sgrt(x)) + 1
for i in range (3, limit, 2):
if x $ 1 ==
print ('%$1i is not a prime number.' % x)
return
elif 1 % 100000 ==
#print ('Here!')
await asyncio.sleep(0)

print ('%1i is a prime number.' % x)
async def main() :
taskl = loop.create_task(is_prime (9637529763296797))

task2 = loop.create_task (is_prime (427920331))
task3 loop.create_task (is_prime (157))

await asyncio.wait ([taskl, task2, task3])

if _ name_ == '_ main__ ':

try:
loop = asyncio.get_event_loop/()
loop.run_until_complete (main())

except Exception as e:
print ('There was a problem:"')
print (str(e))

finally:
loop.close()

We will go into the details of this code in the next chapter. For now, simply run the script,
and you will see an improvement in responsiveness in the printed output:

> python example2.py

Processing 9637529763296797. ..
Processing 427920331...

427920331 is a prime number.
Processing 157...

157 is a prime number.
9637529763296797 is a prime number.

[171]

Introduction to Asynchronous Programming Chapter 9

Specifically, while 9637529763296797 (our largest input) was being processed, the
program decided to switch to the next inputs. Therefore, the results for 427920331 and 157
were returned before it, hence improving the responsiveness of the program.

Summary

Asynchronous programming is a programming model that is based on task coordination
through task switching. It is different from traditional sequential (or synchronous)
programming since it creates an overlap between processing and waiting time, which
provides potential improvements in speed. Asynchronous programming is also different
from threading and multiprocessing, as it only takes place within one single thread in one
single process.

Asynchronous programming is mostly used to improve the responsiveness of a program.
When a large input takes a significant amount of time to process, the sequential version of a
program will appear to be hanging, while the asynchronous program will move to other
less heavy tasks. This allows small inputs to finish executing first and help the program to
be more responsive.

In the next chapter, we will learn about the main structure of an asynchronous program
and look into the asyncio module and its functionalities in more detail.

Questions

e What is the idea behind asynchronous programming?
¢ How is asynchronous programming different from synchronous programming?

e How is asynchronous programming different from threading and
multiprocessing?

[172]

Introduction to Asynchronous Programming Chapter 9

Further reading

For more information, you can refer to the following links:

o Parallel Programming with Python, by Jan Palach, Packt Publishing Ltd, 2014

e Python Parallel Programming Cookbook, by Giancarlo Zaccone, Packt Publishing
Ltd, 2015

e RabbitMQ Cookbook, by Sigismondo Boschi and Gabriele Santomaggio, Packt
Publishing Ltd, 2013

[173]

10

Implementing Asynchronous
Programming in Python

This chapter will introduce you to the asyncio module in Python. It will cover the idea
behind this new concurrency module, which utilizes event loops and coroutines and
provides an API that is as readable as synchronous code. In this chapter, we will also
discuss the implementation of asynchronous programming, in addition to threading and
multiprocessing through the concurrent . futures module. During this process, we will
cover the application of asynchronous programming via the most common uses of
asyncio, including asynchronous input/output and avoiding blocking tasks.

The following topics will be covered in this chapter:
¢ The fundamental elements of implementing asynchronous programming using
asyncio
e The framework for asynchronous programming provided by asyncio
e The concurrent. futures module and its usage, in respect to asyncio

Technical requirements

The following is the list a prerequisites for this chapter:

¢ Ensure that you have Python 3 installed on your computer

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder titled Chapter10
e Check out the following video to see the Code in Action: http://bit.ly/2TAtTrA

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2TAtTrA
http://bit.ly/2TAtTrA
http://bit.ly/2TAtTrA
http://bit.ly/2TAtTrA
http://bit.ly/2TAtTrA
http://bit.ly/2TAtTrA
http://bit.ly/2TAtTrA
http://bit.ly/2TAtTrA
http://bit.ly/2TAtTrA

Implementing Asynchronous Programming in Python Chapter 10

The asyncio module

As you saw in the previous chapter, the asyncio module provides an easy way to convert
a sequential program to an asynchronous one. In this section, we will be discussing the
general structure of an asynchronous program, and subsequently, how to implement the
conversion from a sequential to an asynchronous program in Python.

Coroutines, event loops, and futures

There are a few common elements that most asynchronous programs have, and coroutines,
event loops, and futures are three of those elements. They are defined as follows:

¢ Event loops are the main coordinators of tasks in an asynchronous program. An
event loop keeps track of all of the tasks that are to be run asynchronously, and
decides which of those tasks should be executed at a given moment. In other
words, event loops handle the task switching aspect (or the execution flow) of
asynchronous programming.

e Coroutines are a special type of function that wrap around specific tasks, so that
they can be executed asynchronously. A coroutine is required in order to specify
where in the function the task switching should take place; in other words, they
specify when the function should give back the flow of execution to the event
loop. The tasks for coroutines are typically either stored in a task queue or
created inside the event loop.

e Futures are placeholders for the results returned from coroutines. These future
objects are created as soon as coroutines are initiated in the event loop, so futures
can represent actual results, pending results (if the coroutines have not finished
executing), or even an exception (if that is what the coroutine will return).

An event loop, coroutines, and their corresponding futures, are the core elements of an
asynchronous programming process. First, the event loop is started and interacts with its
task queue, in order to obtain the first task. The coroutine for this task and its
corresponding future are then created. When a task switching has to take place inside of
that coroutine, the coroutine suspends, and the next coroutine is called; all data and the
context from the first coroutine are also saved.

Now, if that coroutine is blocking (for example, input/output processing or sleeping), the
flow of execution is released back to the event loop, which will move on to the next item in
the task queue. The event loop will initiate the last item in the task queue before it switches
back to the first coroutine, and will proceed the execution from where it was last
suspended.

[175]

Implementing Asynchronous Programming in Python

Chapter 10

As each task finishes executing, it will be dequeued from the task queue, its coroutine will
be terminated, and the corresponding future will register the returned result from the
coroutine. This process will go on until all tasks in the task queue are completely executed.
The following diagram further illustrates the general structure of the asynchronous process
described earlier:

passes control
back to event loop

Thread

event-loop

l get task from queue

l runs coroutine 1

coroutine 1

l calls another coroutine 2 ('await')
suspends current coroutine 1

IF
YES 1/0,

task 1

switches context
runs coroutine 2

runs coroutine 1 from

l where it left

Asynchronous programming process

[176]

Implementing Asynchronous Programming in Python Chapter 10

Asyncio API

With the general structure of an asynchronous program in mind, let's consider the specific
APIs that the asyncio module and Python provide for the implementation of
asynchronous programs. The first foundation for this API is the async and await
keywords that were added to Python 3.5. These keywords are used to specify the main
elements of an asynchronous program to Python.

Specifically, async is typically put in front of the de f keyword when a function is declared.
A function with the async keyword in front of it will be interpreted by Python as a
coroutine. As we discussed, inside of each coroutine, there has to be a specification
regarding when the task switching events will take place. The await keyword is then used
to specify where and when, exactly, to give back the flow of execution to the event loop;
this is typically done through waiting for another coroutine to produce a result (await
coroutine) or through helper functions from the asyncio module, such

as the asyncio.sleep () and asyncio.wait () functions.

It is important to note that the async and await keywords are actually provided by Python
and are not managed by the asyncio module. This means that asynchronous
programming can actually be implemented without asyncio, but, as you will see, asyncio
provides a framework and infrastructure to streamline this process, and is therefore the
primary tool in Python for the implementation of asynchronous programming.

Specifically, the most commonly used API from the asyncio module is event-loop-
managing functionalities. With asyncio, you can start to manipulate your tasks and event
loop with intuitive and easy function calls, without extensive boilerplate code. These
include the following:

e asyncio.get_event_loop (): This method returns the event loop for the
current context, which is an AbstractEventLoop object. Most of the time, we do
not need to worry about this class, as the asyncio module already provides a
high-level API to manage our event loops.

® AbstractEventLoop.create_task (): This method is to be called by an event
loop. It adds its input to the current task queue of the calling event loop; the
input is typically a coroutine (that is, a function with the async keyword).

[177]

Implementing Asynchronous Programming in Python Chapter 10

e AbstractEventLoop.run_until_complete (): This method is also to be called
by an event loop. It takes in the main coroutine of an asynchronous program and
executes it until the corresponding future of the coroutine is returned. While the
method initiates the event loop execution, it also blocks all subsequent code
following it, until all futures are complete.

e AbstractEventLoop.run_forever (): This method is somewhat similar to
AbstractEventLoop.run_until_complete (), except for the fact that, as
suggested by the method name, the calling event loop will run forever, unless the
AbstractEventLoop.stop () method is called. So, instead of exiting, the loop
will continue to run, even upon obtaining the returned futures.

e AbstractEventLoop.stop (): This method causes the calling event loop to stop
executing and exit at the nearest appropriate opportunity, without causing the
whole program to crash.

Aside from these methods, we use a number of non-blocking functions to facilitate the task
switching event. These include the following:

e asyncio.sleep (): While in itself a coroutine, this function creates an additional
coroutine that completes after a given time (specified by the input, in seconds). It
is typically used as asyncio.sleep (0), to cause an immediate task switching
event.

e asyncio.wait (): This function is also a coroutine, and hence, it can be used to

switch tasks. It takes in a sequence (usually a list) of futures and waits for them to
complete their execution.

The asyncio framework in action

As you have seen, asyncio provides a simple and intuitive way to implement the
framework of an asynchronous program with Python's asynchronous programming
keywords. With that, let's consider the process of applying the framework provided to a
synchronous application in Python, and convert it to an asynchronous one.

[178]

Implementing Asynchronous Programming in Python Chapter 10

Asynchronously counting down

Let's take a look at the Chapter10/examplel.py file, as follows:
ChapterlO/examplel.py
import time

def count_down (name, delay):
indents = (ord(name) — ord('A')) * '\t'

n =3
while n:
time.sleep (delay)

duration = time.perf_counter() - start
print ('="' * 40)
print ('%$.4f \t%s%s = %$i' % (duration, indents, name, n))
n -=1
start = time.perf_counter ()

count_down ('A', 1)
count_down ('B', 0.8)
count_down ('C', 0.5)

print ('="' * 40)
print ('Done.")

The goal of this example is to illustrate the asynchronous nature of overlapping the
processing and waiting time of independent tasks. To do this, we will be analyzing a
countdown function (count_down ()) that takes in a string and a delay time. It will then
count down from three to one, in seconds, while printing out the time elapsed from the
beginning of the function's execution and the input string (with the current countdown
number).

In our main program, we will call the count_down () function on the letters A, B, and c,
with different delay times. After running the script, your output should be similar to the
following;:

> python examplel.py

1.0006 A

3

2.0041 A

2

[179]

Implementing Asynchronous Programming in Python Chapter 10

3.0055 A =1

3.8065 B =3

4.6070 B =2

5.4075 B=1

5.9081 c=3

6.4105 c=2

6.9107 c=1

Done.

The numbers at the beginning of the lines indicate the total numbers of seconds elapsed
from the beginning of the program. You can see that the program counted down for letter A
first, with one-second intervals, and it moved on to letter B, with 0.8-second intervals, and
finally, to letter C, with 0.5-second intervals. This is a purely sequential, synchronous
program, since there is no overlapping between processing and waiting time. Additionally,
it took approximately 6.9 seconds to run the program, which is the sum of the counting
down time of all three letters:

1 second x 3 (for A) + 0.8 seconds x 3 (for B) + 0.5 seconds x 3 (for C) =
6.9 seconds

Keeping the idea behind asynchronous programming in mind, we can see that it is actually
possible for us to convert this program to an asynchronous one. Specifically, let's suppose
that during the first second of the program, while we are waiting to count down the letter
A, we can switch tasks to move to other letters. In fact, we will implement this setup for all
of the letters inside the count_down () function (in other words, we will turn

count_down () into a coroutine).

Theoretically, now that all counting down tasks are coroutines in an asynchronous
program, we should achieve better execution time and responsiveness for our program.
Since all three tasks are processed independently, the countdown messages should be
printed out of order (jumping between different letters), and the asynchronous program
should only take about the same time as the largest task takes (that is, three seconds for
letter n).

[180]

Implementing Asynchronous Programming in Python Chapter 10

But first, let's make our program asynchronous. To do this, we first need to make
count_down () into a coroutine and specify a point inside the function to be a task
switching event. In other words, we will add the keyword async in front of the function,
and, instead of the time.sleep () function, we will be using the asyncio.sleep ()
function along with the await keyword; the rest of the function should remain the same.
Our count_down () coroutine should now be as follows:

Chapterl0/example?2.py

async def count_down (name, delay):
indents = (ord(name) — ord('A')) * '\t'

n =3
while n:
await asyncio.sleep (delay)

duration = time.perf_counter() - start

print ('=' * 40)

print ('$.4f \t%s%s = %$i' % (duration, indents, name, n))
n -=1

As for our main program, we will need to initialize and manage an event loop. Specifically,
we will create an empty event loop with the asyncio.get_event_loop () method, add all
of the three counting down tasks into the task queue with
AbstractEventLoop.create_task (), and, finally, start running the event loop with
AbstractEventLoop.run_until_complete (). Our main program should look like the
following;:

Chapterl0/example?2.py

loop = asyncio.get_event_loop/()

tasks = [
loop.create_task (count_down ('A', 1)),
loop.create_task (count_down ('B', 0.8)),
loop.create_task (count_down ('C', 0.5))

start = time.perf_counter ()
loop.run_until_complete (asyncio.wait (tasks))

print ('=-"' * 40)
print ('Done."')

[181]

Implementing Asynchronous Programming in Python Chapter 10

The complete script can also be found in the code repository of the book, inside the
Chapter10 subfolder, named example2.py. After running the script, your output should
look similar to the following;:

> python example2.py

0.5029 c=3

0.8008 B =3

1.0049 A = 3

1.0050 c=2
1.5070 c=1
1.6011 B =2

2.0090 A = 2

2.4068 B=1

3.0147 A

"
[y

Done.

Now, you can see how having an asynchronous program can improve the execution time
and responsiveness of our programs. Instead of executing individual tasks sequentially, our
program now switches between different countdowns and overlaps their
processing/waiting times. This, as we discussed, results in different letters being printed
out in between each other, or simultaneously.

At the beginning of the program, instead of waiting for the whole first second to print out
the first message A = 3, the program switches to the next task in the task queue (in this
case, it is waiting for 0.8 seconds for the letter B). This process continues until 0.5 seconds
have passed and C = 3 is printed out, and 0.3 seconds later (at the time 0.8 seconds), B = 3
is printed out. This all happens before 2 = 3 is printed out.

This task-switching property of our asynchronous program makes it significantly more
responsive. Instead of hanging for one second before the first message is printed, the
program now only takes 0.5 seconds (the shortest waiting period) to print out its first
message. As for the execution time, you can see that this time, it only takes three seconds, in
total, to execute the whole program (instead of 6.9 seconds). This corresponds to what we
speculated: that the execution time would be right around the time it takes to execute the
largest task.

[182]

Implementing Asynchronous Programming in Python Chapter 10

A note about blocking functions

As you have seen, we have to replace our original time.sleep () function with its
equivalent from the asyncio module. This is because time.sleep () is, by nature, a
blocking function, which means that it cannot be used to implement a task switching event.
To test this, in our Chapter10/example2.py file (our asynchronous program), we will
replace the following line of code:

await asyncio.sleep (delay)

The preceding code will be replaced with the following code:

time.sleep (delay)

After running this new script, your output will simply be the same as that of our original
sequential, synchronous program. So, replacing await asyncio.sleep () with
time.sleep () actually converts our program back to synchronous, ignoring the event
loop that we implemented. What happened was, when our program proceeded to that line
inside of the count_down () function, time.sleep () actually blocked and prevented the
release of the execution flow, essentially rendering the whole program synchronous once
again. Revert time.sleep () back to await asyncio.sleep () to fix this problem.

The following diagram illustrates an example of the difference in execution time between
blocking and non-blocking file handling:

Os 5s 10s

Blocking filel file2

file2 J
filel]

Non-blocking

Blocking versus non-blocking

[183]

Implementing Asynchronous Programming in Python Chapter 10

This phenomenon raises an interesting issue: if a heavy, long-running task is blocking, then
it is literally impossible to implement asynchronous programming with that task as a
coroutine. So, if we really wanted to achieve what a blocking function returns in an
asynchronous application, we would need to implement another version of that blocking
function, which could be made into a coroutine and allow for task switching events to take
place at at least one point inside the function.

Luckily, after implementing asyncio as one of the official features of Python, Python core
developers have been on working to produce the coroutine version of the most commonly
used Python blocking functions. This means that if you ever find blocking functions that
prevent your program from being truly asynchronous, you will most likely be able to find
the coroutine versions of those functions to implement in your program.

However, the fact that there are asynchronous versions of traditionally blocking functions
in Python with potentially different APIs means that you will need to familiarize yourself
with those APIs from separate functions. Another way to handle blocking functions
without having to implement their coroutine versions is to use an executor to run the
functions in separate threads or separate processes, to avoid blocking the thread of the
main event loop.

Asynchronous prime-checking

Moving on from our starting counting-down example, let's reconsider the example from the
previous chapter. As a refresher, the following is the code for the synchronous version of
the program:

Chapter09/examplel.py
from math import sqgrt

def is_prime(x):

print ('Processing %i...' % x)
if x < 2:

print ('$i is not a prime number.' % x)
elif x == 2:

print ('%$1i is a prime number.' % x)
elif x % 2 == 0:

print ('$i is not a prime number.' % x)
else:

limit = int(sgrt(x)) + 1

[184]

Implementing Asynchronous Programming in Python Chapter 10

for i in range (3, limit, 2):

)

if x § 1 ==

print ('%$1i is not a prime number.' % x)
return
print ('%1i is a prime number.' % x)
if name == '__main__ ':

is_prime (9637529763296797)
is_prime (427920331)
is_prime (157)

As we discussed in the last chapter, here, we have a simple prime-checking

function, is_prime (x), that prints out messages indicating whether the input integer that
it takes in, x, is a prime number. In our main program, we call is_prime () on three prime
numbers, in an order of decreasing magnitude sequentially. This setup again creates a
significant period of time during which the program appears to be hanging while
processing the large input, resulting in a low responsiveness for the program.

The output produced by the program will look similar to the following;:

Processing 9637529763296797. ..
9637529763296797 is a prime number.
Processing 427920331...

427920331 is a prime number.
Processing 157...

157 is a prime number.

To implement asynchronous programming for this script, first, we will have to create our
first main component: the event loop. To do this, instead of using the ' __main__' scope,
we will convert it to a separate function. This function and our is_prime () prime-
checking function will be the coroutines in our final asynchronous program.

Now, we need to convert both the is_prime () and main () functions into coroutines;
again, this means putting the async keyword in front of the de f keyword, and the await
keyword inside each function, to specify the task-switching event. For main (), we simply
implement that event while waiting for the task queue by using aysncio.wait (), as
follows:

Chapter09/example2.py
async def main():

taskl = loop.create_task (is_prime (9637529763296797))
task2 = loop.create_task (is_prime (427920331))

[185]

Implementing Asynchronous Programming in Python Chapter 10

task3 = loop.create_task (is_prime (157))
await asyncio.wait ([taskl, task2, task3])

Things are more complicated in the is_prime () function, as there is no clear point during
which the execution flow should be released back to the event loop, like in our previous
counting-down example. Recall that the goal of asynchronous programming is to achieve a
better execution time and responsiveness, and to implement this, the task-switching event
should take place during a heavy, long-running task. This requirement, however, is
dependent on the specifics of your program—particularly, the coroutine, the task queue of
the program, and the individual tasks in the queue.

For example, the task queue of our program consists of three numbers:
9637529763296797, 427920331, and 157; in order, we can consider them as a large task, a
medium task, and a small task. To improve responsiveness, we would like to switch tasks
during the large task, and not during the small task. This setup will allow the medium and
small tasks to be started, processed, and maybe finished during the execution of the large
task, even if the large task is in front in the task queue of the program.

Then, we will consider our is_prime () coroutine. After checking for some specific edge
cases, it iterates in a for loop through every odd number under the square root of the input
integer and tests for the divisibility of the input with regards to the current odd number in
question. Inside this long-running for loop, then, is the perfect place to switch tasks—that
is, to release the execution flow back to the event loop.

However, we still need to decide at which specific points in the for loop to implement the
task-switching event. Again, taking into account the individual tasks in the task queue, we
are looking for a point that is fairly common in the large task, not so common in the
medium task, and non-existent in the small task. I have decided that this point is every
1,00,000-number period, which does satisfy our requirements, and I have used the await
asyncio.sleep (0) command to facilitate the task-switching event, as follows:

Chapter09/example?2.py

from math import sqgrt
import asyncio

async def is_prime(x):

print ('Processing %i...' % x)
if x < 2:

print ('$i is not a prime number.' % Xx)
elif x == 2:

[186]

Implementing Asynchronous Programming in Python Chapter 10

print ('%1i is a prime number.' % x)
elif x & 2 == 0:

print ('$i is not a prime number.' % x)
else:

limit = int(sgrt(x)) + 1
for i in range (3, limit, 2):
if x $ 1 ==
print ('%$1i is not a prime number.' % x)
return
elif 1 % 100000 ==
await asyncio.sleep(0)

print ('%1i is a prime number.' % x)

Finally, in our main program (not to be confused with the main () coroutine), we create our
event loop and use it to run our main () coroutine, until it completes its execution:

try:
loop = asyncio.get_event_loop ()
loop.run_until_complete (main())
except Exception as e:
print ('There was a problem:')
print (str(e))
finally:
loop.close()

As you saw in the previous chapter, better responsiveness was achieved through this
asynchronous version of the script. Specifically, instead of appearing like it is hanging
while processing the first large task, our program now prints out output messages for the
other, smaller tasks, before it finishes executing the large task. Our end result will look
similar to the following;:

Processing 9637529763296797. ..
Processing 427920331...

427920331 is a prime number.
Processing 157...

157 is a prime number.
9637529763296797 is a prime number.

[187]

Implementing Asynchronous Programming in Python Chapter 10

Improvements from Python 3.7

As of 2018, Python 3.7 has just come out, with several major new features, such as data
classes, guaranteed ordered dictionaries, better timing precision, and so on. Asynchronous
programming and the asyncio module received a number of important improvements.

First of all, async and await are now officially reserved keywords in Python. While we
have been calling them keywords, Python did not, in fact, treat these words as reserved
keywords, up until now. This means that neither async nor await can be used to name
variables or functions in a Python program. If you are using Python 3.7, fire up a Python
interpreter and try to use these keywords for variable or function names, and you should
receive the following error message:

>>> def async():
File "<stdin>", line 1
def async():

A

SyntaxError: invalid syntax
>>> await = 0
File "<stdin>", line 1

await = 0
A

SyntaxError: invalid syntax

A major improvement in Python 3.7 comes with the asyncio module. Specifically, you
might have noticed from our previous examples that the main program typically contains a
fair amount of boilerplate code to initiate and run the event loop, which most likely
remains the same in all asynchronous programs:

loop = asyncio.get_event_loop ()
asyncio.run_until_complete (main())

With main () being a coroutine in our program, asyncio allows us to simply run it in an
event loop by using the asyncio. run () method. This eliminates significant boilerplate
code in Python asynchronous programming.

So, we can convert the preceding code to a more simplified version in Python 3.7, as
follows:

asyncio.run(main())

There are other improvements regarding asynchronous programming, in both performance
and ease in usage, that were implemented in Python 3.7; however, we will not be
discussing them in this book.

[188]

Implementing Asynchronous Programming in Python Chapter 10

Inherently blocking tasks

In the first example in this chapter, you saw that asynchronous programming can provide
our Python programs with better execution time, but that is not always the case.
Asynchronous programming alone can only provide improvements in speed if all
processing tasks are non-blocking. However, similar to the comparison between
concurrency and inherent sequentiality in programming tasks, some computing tasks in
Python are inherently blocking, and therefore, they cannot be taken advantage of by
asynchronous programming.

This means that if your asynchronous programming has inherently blocking tasks in some
coroutines, the program will not gain any additional improvement in speed from the
asynchronous architecture. While task-switching events still take place in those programs,
which will improve the responsiveness of the programs, no instructions will be overlapping
each other, and no additional speed will thus be gained. In fact, since there is considerable
overhead regarding the implementation of asynchronous programming in Python, our
programs might even take longer to finish their execution than the original, synchronous
programs.

For example, let's look at a comparison in speed between the two versions of our prime-
checking program. Since the primary processing portion of the program is the is_prime ()
coroutine, which solely consists of number crunching, we know that this coroutine contains
blocking tasks. So, the asynchronous version is, in fact, expected to run more slowly than
the synchronous version.

Navigate to the Chapter10 subfolder of the code repository and take a look at the files
example3.py and example4.py. These files contain the same code for the synchronous
and asynchronous prime-checking programs that we have been seeing, but with the
addition that we are also tracking how much time it takes to run the respective programs.
The following is my output after running example3.py, the synchronous version of the
program:

> python example3.py

Processing 9637529763296797. ..
9637529763296797 is a prime number.
Processing 427920331...

427920331 is a prime number.
Processing 157...

157 is a prime number.

Took 5.60 seconds.

[189]

Implementing Asynchronous Programming in Python Chapter 10

The following code shows my output when running example4.py, the asynchronous
program:

> python example4.py

Processing 9637529763296797. ..
Processing 427920331...

427920331 is a prime number.
Processing 157...

157 is a prime number.
9637529763296797 is a prime number.
Took 7.89 seconds.

While the output that you receive might be different in the specific times it took to run
either program, it should be the case that, as we discussed, the asynchronous program
actually took longer to run than the synchronous (sequential) one. Again, this is because the
number crunching tasks inside our is_prime () coroutine are blocking, and, instead of
overlapping these tasks in order to gain additional speed, our asynchronous program
simply switched between these tasks in its execution. In this case, only responsiveness is
achieved through asynchronous programming.

However, this does not mean that if your program contains blocking functions,
asynchronous programming is out of the question. As mentioned previously, all execution
in an asynchronous program, if not specified otherwise, occurs entirely in the same thread
and process, and blocking CPU-bound tasks can thus prevent program instructions from
overlapping each other. However, this is not the case if the tasks are distributed to separate
threads/processes. In other words, threading and multiprocessing can help asynchronous
programs with blocking instructions to achieve better execution time.

concurrent.futures as a solution for blocking
tasks

In this section, we will be considering another way to implement
threading/multiprocessing: the concurrent . futures module, which is designed to be a
high-level interface for implementing asynchronous tasks. Specifically, the

concurrent . futures module works seamlessly with the asyncio module, and, in
addition, it provides an abstract class called Executor, which contains the skeleton of the
two main classes that implement asynchronous threading and multiprocessing,
respectively (as suggested by their names): ThreadPoolExecutor and
ProcessPoolExecutor

[190]

Implementing Asynchronous Programming in Python Chapter 10

Changes in the framework

Before we jump into the API from concurrent. futures, let's discuss the theoretical
basics of asynchronous threading/multiprocessing, and how it plays into the framework of
the asynchronous programming that asyncio provides.

As a reminder, we have three major elements in our ecosystem of asynchronous
programming: the event loop, the coroutines, and their corresponding futures. We still
need the event loop while utilizing threading/multiprocessing, to coordinate the tasks and
handle their returned results (futures), so these elements typically remain consistent with
single-threaded asynchronous programming.

As for the coroutines, since the idea of combining asynchronous programming with
threading and multiprocessing involves avoiding blocking tasks in the coroutines by
executing them in separate threads and processes, the coroutines do not necessarily have to
be interpreted as actual coroutines by Python anymore. Instead, they can simply be
traditional Python functions.

One new element that we will need to implement is the executor that facilitates threading
or multiprocessing; this can be an instance of the ThreadPoolExecutor class or the
ProcessPoolExecutor class. Now, every time we add a task to our task queue in the
event loop, we will also need to reference this executor, so that separate tasks will be
executed in separated threads/processes. This is done through the
AbstractEventLoop.run_in_executor () method, which takes in an executor, a
coroutine (though, again, it does not have to be an actual coroutine), and arguments for the
coroutines to be executed in separate threads/processes. We will see an example of this API
in the next section.

Examples in Python

Let's look at a specific implementation of the concurrent . futures module. Recall that in
this chapter's first example (the counting down example), the blocking time . sleep ()
function prevented our asynchronous program from becoming truly asynchronous, and
had to be replaced with its non-blocking version, asyncio.sleep (). Now, we are
executing the individual countdowns in separate threads or processes, which means that
the blocking time . sleep () function will not pose any problems in terms of executing our
program asynchronously.

[191]

Implementing Asynchronous Programming in Python Chapter 10

Navigate to the Chapter10/example5.py file, as follows:
Chapterl0/example5.py

from concurrent.futures import ThreadPoolExecutor
import asyncio
import time

def count_down (name, delay):
indents = (ord(name) — ord('A')) * '\t'

n =3
while n:
time.sleep (delay)

duration = time.perf_counter() - start

print ('="' * 40)

print ('%$.4f \t%s%s = %$i' % (duration, indents, name, n))
n -=1

async def main():

futures = [loop.run_in_executor (
executor,
count_down,
*args
) for args in [('A', 1), ('B', 0.8), ('C', 0.5)1]1]

await asyncio.gather (*futures)

print ('="' * 40)
print ('Done.")

start = time.perf_counter ()

executor = ThreadPoolExecutor (max_workers=3)
loop = asyncio.get_event_loop ()
loop.run_until_complete (main())

Notice that count_down () is declared as a typical, non-coroutine Python function. In

main (), which remains a coroutine, we declare our task queue for the event loop. Again,
we are using the run_in_executor () method during this process, instead of the
create_task () method that is used in single-threaded asynchronous programming. In
our main program, we also need to initiate an executor, which, in this case, is an instance of
the ThreadPoolExecutor class from the concurrent . futures module.

[192]

Implementing Asynchronous Programming in Python Chapter 10

The decision between using threading and multiprocessing is, as we discussed in previous
chapters, dependent on the nature of the program. Here, we need to share the start
variable (holding the time at which the program starts to execute) among separate
coroutines, so that they can perform the act of counting down; so, threading is chosen over
multiprocessing.

After running the script, your output should be similar to the following:

> python example5.py

0.5033 c=3

0.8052 B =3

1.0052 A = 3

1.0079 c=2

1.5103 c=1

1.6064 B =2

2.0093 A

]
N

2.4072 B=1

3.0143 A

"
[y

Done.

This output is identical to the one that we obtained from the asynchronous program with
pure asyncio support. So, even with a blocking processing function, we were able to make
the execution of our program asynchronous, with threading implemented by the
concurrent . futures module.

Let's now apply the same concept to our prime-checking problem. We are first converting
our is_prime () coroutine to its original, non-coroutine form, and executing it in separate
processes again (which are more desirable than threads, as the is_prime () function is an
intensive number-crunching task). An additional benefit of using the original version of
is_prime () is that we will not have to perform a check of the task-switching condition
that we have in our single-threaded asynchronous program:

elif 1 % 100000 == 1:
await asyncio.sleep (0)

[193]

Implementing Asynchronous Programming in Python Chapter 10

This will provide us with a significant speedup, as well. Let's take a look at the
Chapterl0/example6.py file, as follows:

Chapterl0/exampleb6.py

from math import sqgrt

import asyncio

from concurrent.futures import ProcessPoolExecutor
from timeit import default_timer as timer

#async def is_prime (x):
def is_prime (x) :

print ('Processing %i...' % Xx)
if x < 2:

print ('$i is not a prime number.' % Xx)
elif x ==

print ('%$1i is a prime number.' % x)
elif x % 2 == 0:

print ('$1i is not a prime number.' % x)
else:

limit = int(sgrt(x)) + 1
for i in range (3, limit, 2):
if x $ 1 ==

print ('$i is not a prime number.' % Xx)
return
print ('$i is a prime number.' % x)
async def main() :
taskl = loop.run_in_executor (executor, is_prime, 9637529763296797)
task2 = loop.run_in_executor (executor, is_prime, 427920331)
task3 = loop.run_in_executor (executor, is_prime, 157)

await asyncio.gather (*[taskl, task2, task3])

if __ name_ == '_ main_ ':
try:
start = timer ()
executor = ProcessPoolExecutor (max_workers=3)

loop = asyncio.get_event_loop()
loop.run_until_complete (main())

[194]

Implementing Asynchronous Programming in Python Chapter 10

o o

print ('Took %.2f seconds.' % (timer () - start))

except Exception as e:
print ('There was a problem:"')
print (str(e))

finally:
loop.close()

After running the script, I obtained the following output:

> python exampleé6.py

Processing 9637529763296797. ..
Processing 427920331...

Processing 157...

157 is a prime number.

427920331 is a prime number.
9637529763296797 is a prime number.
Took 5.26 seconds.

Again, your execution time will most likely be different from mine, although the
comparison between this and the other two versions of our prime-checking program
should always be consistent: the original, synchronous version takes less time than the
single-threaded asynchronous version, but more than the multiprocessing asynchronous
version. In other words, by combining multiprocessing with asynchronous programming,
we get the best of both worlds: the consistent responsiveness from asynchronous
programming, and the improvement in speed from multiprocessing.

Summary

In this chapter, you learned about asynchronous programming, which is a model of
programming that takes advantage of coordinating computing tasks to overlap the waiting
and processing times. There are three main components to an asynchronous program: the
event loop, the coroutines, and the futures. The event loop is in charge of scheduling and
managing coroutines using its task queue. Coroutines are computing tasks that are to be
executed asynchronously; each coroutine has to specify inside of its function exactly where
it will give the execution flow back to the event loop (that is, the task-switching event).
Futures are placeholder objects that contain the results obtained from the coroutines.

[195]

Implementing Asynchronous Programming in Python Chapter 10

The asyncio module, together with the Python keywords async and await, provides an
easy-to-use API and an intuitive framework to implement asynchronous programs;
additionally, this framework makes the asynchronous code just as readable as synchronous
code, which is generally quite rare in asynchronous programming. However, we cannot
apply single-threaded asynchronous programming on blocking computing tasks with the
asyncio module alone. The solution to this is the concurrent . futures module, which
provides a high-level API to implement asynchronous threading and multiprocessing, and
can be used in addition to the asyncio module.

In the next chapter, we will be discussing one of the most common applications of
asynchronous programming, Transmission Control Protocol (TCP), as a means of server-
client communication. You will learn about the basics of the concept, how it takes
advantage of asynchronous programming, and how to implement it in Python.

Questions

e What is asynchronous programming? What advantages does it provide?

e What are the main elements in an asynchronous program? How do they interact
with each other?

e What are the async and await keywords? What purposes do they serve?

e What options does the asyncio module provide, in terms of the implementation
of asynchronous programming?

e What are the improvements in regards to asynchronous programming provided
in Python 3.7?

e What are blocking functions? Why do they pose a problem for traditional
asynchronous programming?

e How does concurrent. futures provide a solution to blocking functions for
asynchronous programming? What options does it provide?

[196]

Implementing Asynchronous Programming in Python Chapter 10

Further reading

For more information, you can refer to the following links:

e Zaccone, Giancarlo. Python Parallel Programming Cookbook. Packt Publishing Ltd,
2015

o A gquide to asynchronous programming in Python with asyncio
(medium .freecodecamp.org/a-guide-to—-asynchronous-programming-in-
python—with—asyncio), Mariia Yakimova

L4 AS]/TICIOfOT the Working Python Developer (hackernoon .com/asyncio-for—-the-
workingfpythonfdeveloper), Yeray Diaz

¢ Python Documentation. Tasks and coroutines.
docs.python.org/3/library/asyncio

o Modern Concurrency, (speakerdeck.com/pybay/2017-1uciano-ramalho-modern—
concurrency), PyBay 2017

[197]

https://medium.freecodecamp.org/a-guide-to-asynchronous-programming-in-python-with-asyncio-232e2afa44f6
https://medium.freecodecamp.org/a-guide-to-asynchronous-programming-in-python-with-asyncio-232e2afa44f6
https://hackernoon.com/asyncio-for-the-working-python-developer-5c468e6e2e8e
https://hackernoon.com/asyncio-for-the-working-python-developer-5c468e6e2e8e
https://docs.python.org/3/library/asyncio.html
https://speakerdeck.com/pybay/2017-luciano-ramalho-modern-concurrency
https://speakerdeck.com/pybay/2017-luciano-ramalho-modern-concurrency

11

Building Communication
Channels with asyncio

Communication channels are a big part of applied concurrency in the field of computer
science. In this chapter, we will cover the fundamental theories of transports, which are
classes provided by the asyncio module in order to abstract various forms of
communication channels. We will also cover an implementation of a simple echoing server-
client logic in Python, in order to further illustrate the use of asyncio and concurrency in
communication systems. The code for this example will serve as the foundation for an
advanced example that will appear later in this book.

The following topics will be covered in this chapter:

¢ The fundamentals of communication channels and applying asynchronous
programming to them

e How to build an asynchronous server in Python by using asyncio and aiohttp

e How to make requests to multiple servers asynchronously and handle
asynchronous file reading and writing

Building Communication Channels with asyncio Chapter 11

Technical requirements

The following is a list of prerequisites for this chapter:

¢ Ensure that you have Python 3 installed on your computer

¢ Ensure that you have Telnet installed on your computer

¢ Ensure that you have the Python module aiohttp installed with your Python 3
distribution

e Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

e In this chapter, we will be working with the subfolder named Chapteri1
e Check out the following video to see the Code in Action: http://bit.ly/2FMwKL8

The ecosystem of communication channels

Communication channels are used to denote both the physical wiring connection between
different systems and the logical communication of data that facilitates computer networks.
In this chapter, we will only be concerned with the latter, as it is a problem that is related to
computing and is more germane to the idea of asynchronous programming. In this section,
we will be discussing the general structure of a communication channel, and two specific
elements in that structure that are particularly relevant to asynchronous programming.

Communication protocol layers

Most data transmission processes that are done through communication channels are
facilitated in the form of the Open Systems Interconnection (OSI) model protocol layers.
The OSI model lays out the major layers and topics in an intersystem communication
process.

[199]

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2FMwKL8
http://bit.ly/2FMwKL8
http://bit.ly/2FMwKL8
http://bit.ly/2FMwKL8
http://bit.ly/2FMwKL8
http://bit.ly/2FMwKL8
http://bit.ly/2FMwKL8
http://bit.ly/2FMwKL8
http://bit.ly/2FMwKL8

Building Communication Channels with asyncio Chapter 11

The following diagram shows the general structure of an OSI model:

~
* N/w access to Application e.g. Web Browser

VI LGNNI (1, Worilla Firefox, Google Chrome)

- * Type of Data; HTTPS - Encryption Services
P& Presentation Layer

 Starts and End session and also keeps them
isolated.

Session Layer

N

* Defines Ports and Reliability
Transport Layer

* Logical or IP addressing; Determines Best
path for the destination.

Network Layer

. * Switches
Data Link Layer BY/Vy¥irsss

N
X~0S ~+~02

S * Cable
Phy5|cal Layel’ * Network Interface Cards - Electric Signals

OSI model structure

As indicated in the preceding diagram, there are seven main layers of communication in a
data transmission process, with varying degrees of computing level. We will not be going
into the details of the purposes and specific functions of each layer, but it is still important
that you understand the general ideas behind the media and host layers.

The three bottom layers contain fairly low-level operations that interact with the
underlying process of the communication channel. The operations in the physical and data
link layers include coding schemes, access schemes, low-level error detection and
correction, bit synchronization, and so on. These operations are used to implement and
specify the logic of processing and preparing data before transferring it. The network layer,
on the other hand, handles forwarding packets of data from one system (for example, the
server) to another (for example, the client) in a computer network, via determining the
address of the recipient and which path of data transfer to take.

[200]

Building Communication Channels with asyncio Chapter 11

On the other hand, the top layers deal with high-level data communication and
manipulation. Among these layers, we will be focusing on the transport layer, as it is
directly utilized by the asyncio module in implementing communication channels. This
layer is often viewed as the conceptual transition between the media layers and the host
layers (for example, the client and the server), responsible for sending data along end-to-
end connections between different systems. Additionally, because packets of data
(prepared by the network layer) might be lost or corrupted during transmission processes
due to network errors, the transport layer is also in charge of detecting these errors via
methods in error detection code.

The other host layers implement mechanisms for handling, interpreting, and providing the
data sent from another system. After receiving data from the transport layer, the session
layer handles the authentication, authorization, and session restoration processes. The
presentation layer then translates the same data and reorganizes it into an interpretable
representation. Finally, the application layer displays that data in user-friendly formats.

Asynchronous programming for communication
channels

Given the nature of asynchronous programming, it is no surprise that the programming
model can provide functionalities that complement the process of facilitating
communication channels efficiently. Using the topic of HTTP communication as an
example, the server can asynchronously handle multiple clients at the same time; while it is
waiting for a specific client to make an HTTP request, it can switch to another client and
process that client's request. Similarly, if a client needs to make HTTP requests to multiple
servers, and has to wait for large responses from some servers, it can process the more
lightweight responses, which have already been processed and were sent back to the client
first. The following diagram shows an example of how servers and clients interact with
each other asynchronously in HTTP requests:

[201]

Building Communication Channels with asyncio Chapter 11

Clients Server

Time

Asynchronous, interleaved HTTP requests

Transports and protocols in asyncio

The asyncio module provides a number of different transport classes. In essence, these
classes are the implementations of the functionalities of the transport layer that were
discussed in the preceding section. You already know that the transport layer plays an
integral role in communication channels; the transport classes, therefore, give asyncio
(and consequently, the developers) more control over the process of implementing our own
communication channels.

The asyncio module combines the abstract of transports with the implementation of an
asynchronous program. Specifically, even though transports are the central elements of
communication channels, in order to utilize the transport classes and other relevant
communication channel tools, we need to initiate and call an event loop, which is an
instance of the asyncio.AbstractEventLoop class. The event loop itself will then create
the transports and manage the low-level communication procedures.

[202]

Building Communication Channels with asyncio Chapter 11

It is important to note that a transport object in an established communication channel in
asyncio is always associated with an instance of the asyncio.Protocol class. As the
name suggests, the Protocol class specifies the underlying protocols that the
communication channels use; for each connection made with another system, a new
protocol object from this class will be created. While working closely with a transport
object, a protocol object can call various methods from the transport object; this is the
point where we can implement the specific inner workings of a communication channel.

For this reason, generally we need to focus on the implementation of

an asyncio.Protocol subclass and its methods while building a connection channel. In
other words, we use asyncio.Protocol as a parent class to derive a subclass that meets
the needs of our communication channel. To do this, we overwrite the following methods
from the asyncio.Protocol base class in our own custom protocol subclass:

e Protocol.connection_made (transport): This method is automatically
called whenever a connection from another system is made. The transport
argument holds the t ransport object that is associated with the connection.
Again, each transport needs to be paired with a protocol; we generally store
this t ransport object as an attribute of this specific protocol object in
the connection_made () method.

e Protocol.data_received (data): This method is automatically called
whenever the one system that we are connected to sends its data. Note that the
data argument, which holds the sent information, is usually represented in
bytes, so the encode () function of Python should be used before data is
processed further.

Next, let us consider the important methods from the transport classes from asyncio. All
transport classes inherit from a parent transport class, called asyncio.BaseTransport,
for which we have the following common methods:

® BaseTransport.get_extra_info (): This method returns, as the name
suggests, additional channel-specific information for the calling t ransport
object. The result can include information regarding the socket, the pipe, and the
subprocess associated with that transport. Later in this chapter, we will be calling
BaseTransport.get_extra_info ('peername'), in order to obtain the
remote address from which the transport traveled.

[203]

Building Communication Channels with asyncio Chapter 11

e BaseTransport.close (): This method is used to close the calling t ransport
object, after which the connections between different systems will be stopped.
The corresponding protocol of the transport will automatically call its
connection_lost () method.

Out of the many implementations of transport classes, we will focus on the
asyncio.WriteTransport class, which again inherits the methods from the
BaseTransport class, and additionally implements other methods that are used to
facilitate write-only transport functionalities. Here, we will be using the
WriteTransport.write () method, which will write the data that we would like to send
to the other system that we communicate with via the transport object. As a part of the
asyncio module, this method is not a blocking function; instead, it buffers and sends out
the written data in an asynchronous way.

The big picture of asyncio's server client

You have learned that asynchronous programming, and asyncio specifically, can
drastically improve the execution of your communication channels. You have also seen the
specific methods that you will need to use when implementing an asynchronous
communication channel. Before we dive into a working example in Python, let us briefly
discuss the big picture of what we are trying to accomplish — or, in other words, the general
structure of our program.

As mentioned earlier, we need to implement a subclass of asyncio.Protocol to specify
the underlying organization of our communication channel. Again, there is an event loop at
the heart of each asynchronous program, so we also need to create a server outside of the
context of the protocol class, and initiate that server inside of the event loop of our
program. This process will set up the asynchronous architecture of our entire server, and
can be done via the asyncio.create_server () method, which we will look at in our
upcoming example.

[204]

Building Communication Channels with asyncio Chapter 11

Finally, we will run the event loop of our asynchronous program forever by using the
AbstractEventLoop.run_forever () method. Similar to an actual, real-life server, we
would like to keep our sever running until it encounters a problem, in which case we will
close the server gracefully. The following diagram illustrates this whole process:

Register [
o, __Gaback L1 INTENSIVE
REQUESTS - OPERATION
———— > N I
EVENT File System
I roop Y ____—_____|
: Database
A U AU
: T Computation
| : - O_pt-:Tra_tio_n T ieee——
: Trigger Callback | Complete

Asynchronous program structure in communication channels

Python example

Now, let us look at a specific Python example that implements a server that facilitates
asynchronous communication. Download the code for this book from the GitHub page
(https://github.com/PacktPublishing/Mastering-Concurrency-in-Python), and
navigate to the Chapter11 folder.

Starting a server

In the Chapter1l/examplel.py file, let's look at the EchoServerClientProtocol class,
as follows:

Chapterll/examplel.py
import asyncio
class EchoServerClientProtocol (asyncio.Protocol) :

def connection_made (self, transport):
peername = transport.get_extra_info ('peername')

[205]

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python

Building Communication Channels with asyncio Chapter 11

print ('Connection from {}'.format (peername))
self.transport = transport

def data_received(self, data):
message = data.decode ()
print ('Data received: {!r}'.format (message))

Here, our EchoServerClientProtocol class is a subclass of asyncio.Protocol. As we
discussed earlier, inside of this class, we need to implement the

connection_made (transport) and data_received (data) methods. In the
connection_made () method, we simply obtain the address of the connected system via
the get_extra_info () method (with the 'peername' argument), print a message out
with that information, and finally store the transport object in an attribute of the class. In
order to print out a similar message in the data_received () method, again we use the
decode () method to obtain a string object from byte data.

Let us move on to the main program of our script, as follows:

Chapterll/examplel.py

loop = asyncio.get_event_loop ()
coro = loop.create_server (EchoServerClientProtocol, '127.0.0.1', 8888)
server = loop.run_until_complete (coro)

Serve requests until Ctrl+C is pressed
print ('Serving on {}'.format (server.sockets[0].getsockname()))
try:
loop.run_forever ()
except KeyboardInterrupt:
pass

Close the server

server.close ()

loop.run_until_complete (server.wait_closed())
loop.close()

We are using the familiar asyncio.get_event_loop () function to create an event loop
for our asynchronous program. Then, we create a server for our communication by having
that event loop call the create_server () method; this method takes in a subclass from
the asyncio.Protocol class, an address for our server (in this case, it is our local

host: 127.0.0. 1), and finally, a port for that address (typically, 8888).

[206]

Building Communication Channels with asyncio Chapter 11

Note that this method does not create the server itself; it only initiates the process of
creating the server asynchronously, and returns a coroutine that will finish the process. For
this reason, we need to store the returned coroutine from the method in a variable (coro, in
our case) and have our event loop run that coroutine. After printing out a message using
the sockets attribute of our server object, we will run the event loop forever, in order to
keep the server running, except for the case of a KeyboardInterrupt exception being
invoked.

Finally, at the end of our program, we will handle the house cleaning portion of the script,
which is closing the server gracefully. This is typically done by having the server object call
the close () method (to initiate the closing process of the server) and using the event loop
to run the wait_closed () method on the server object, to make sure that the server is
properly closed. Finally, we close the event loop.

Installing Telnet

Before we can run our sample Python program, we have to install the Telnet program, in
order to correctly simulate a connection channel between a client and a server. Telnet is a
program that provides Terminal commands that facilitate protocols for bidirectional,
interactive, text-oriented communication. If you already have Telnet working on your
computer, simply skip to the next section; otherwise, find the information appropriate to
your system in this section.

In Windows systems, Telnet is already installed, but might not be enabled. To enable it, you
can either utilize the Turn Windows features on or off window and make sure that the
Telnet Client box is checked, or run the following command:

dism /online /Enable-Feature /FeatureName:TelnetClient

Linux systems typically come with Telnet preinstalled, so if you own a Linux system,
simply move on to the next section.

In macOS systems, it is possible that Telnet has already been installed on your computer. If
not, you will need to do it via the package management software Homebrew, as follows:

brew install telnet

Note that macOS systems do have a preinstalled alternative to Telnet, called Netcat. If you
do not want Telnet installed on your macOS computer, simply use the nc command instead
of telnet in the following examples, and you will achieve the same effect.

[207]

Building Communication Channels with asyncio Chapter 11

Simulating a connection channel

There are multiple steps to running the following server example. First, we need to run the
script to start the server, from which you will obtain the following output:

> python examplel.py
Serving on ('127.0.0.1', 8888)

Notice that the program will run until you invoke the Ctrl + C key combination. With the
program still running in one Terminal (this is our server Terminal), open another Terminal
and connect to the server (127.0.0.1) at the specified port (8888); this will server as our
client Terminal:

telnet 127.0.0.1 8888

Now, you will see some changes in both the server and the client Terminals. Most likely,
your client Terminal will have the following output:

> telnet 127.0.0.1 8888
Trying 127.0.0.1...
Connected to localhost.

This is from the interface of the Telnet program, which indicates that we have successfully
connected to our local server. The more interesting output is on our server Terminal, and it
will be similar to the following:

> python examplel.py
Serving on ('127.0.0.1', 8888)
Connection from ('127.0.0.1', 60332)

Recall that this is an information message that we implemented in

our EchoServerClientProtocol class—specifically in the connection_made () method.
Again, as a connection between the server and a new client is made, this method will be
called automatically, in order to initiate the communication. From the output message, we
know that the client is making their requests from port 60332 of server 127.0.0.1 (which
is the same as the running server, since they are both local).

Another feature that we implemented in the EchoServerClientProtocol class was in the
data_received () method. Specifically, we print the decoded data that is sent from the
client. To simulate this type of communication, simply type a message in your client
Terminal and press the Return (Enter, for Windows) key. You will not see any changes in
the client Terminal output, but the server Terminal should print out a message, as specified
in the data_received () method of our protocol class.

[208]

Building Communication Channels with asyncio Chapter 11

For example, the following is my server Terminal output when I send the message Hello,
World! from my client Terminal:

> python examplel.py

Serving on ('127.0.0.1', 8888)
Connection from ('127.0.0.1', 60332)
Data received: 'Hello, World!\r\n'

The \r and \n characters are simply the return characters included in the message string.
With our current protocol, you can send multiple messages to the server, and can even have
multiple clients send messages to the server. To implement this, simply open another
Terminal and connect to the local server again. You will see from your server Terminal that
a different client (from a different port) has made a connection to the server, while the
original communication of our server with the old client is still being maintained. This is
another result achieved from asynchronous programming, allowing multiple clients to
communicate with the same server seamlessly, without using threading or multiprocessing.

Sending messages back to clients

So, in our current example, we are able to have our asynchronous server receive, read, and
process messages from clients. However, in order for our communication channel to be
useful, we would also like to send messages from the server to the clients. In this section,
we will update our server to an echo server, which, by definition, will send any and all data
that it receives from a specific client back to the client.

To do this, we will be using the write () method from the asyncio.WriteTransport
class. Examine the Chapterill/example?2.py file, in the data_received () method of the
EchoServerClientProtocol class, as follows:

Chapterll/example2.py
import asyncio

class EchoServerClientProtocol (asyncio.Protocol) :
def connection_made (self, transport):
peername = transport.get_extra_info('peername')
print ('Connection from {}'.format (peername))
self.transport = transport

def data_received(self, data):
message = data.decode()

print ('Data received: {!r}'.format (message))

self.transport.write (('Echoed back: {}'.format (message)) .encode())

[209]

Building Communication Channels with asyncio Chapter 11

loop = asyncio.get_event_loop()
coro = loop.create_server (EchoServerClientProtocol, '127.0.0.1', 8888)
server = loop.run_until_complete (coro)

Serve requests until Ctrl+C is pressed
print ('Serving on {}'.format (server.sockets[0] .getsockname()))
try:
loop.run_forever ()
except KeyboardInterrupt:
pass

Close the server

server.close ()

loop.run_until_complete (server.wait_closed())
loop.close()

After receiving the data from the transport object and printing it out, we write a
corresponding message to the t ransport object, which will go back to the original client.
By running the Chapter11/example2.py script and simulating the same communication
that we implemented in the last example with Telnet or Netcat, you will see that after
typing a message in the client Terminal, the client receives an echoed message from the
server. The following is my output after initiating the communication channel and typing
in the Hello, World! message:

> telnet 127.0.0.1 8888
Trying 127.0.0.1...
Connected to localhost.
Hello, World!

Echoed back: Hello, World!

In essence, this example illustrates the capability of a bidirectional communication channel
that we can implement through a custom asyncio.Protocol class. While running a
server, we can obtain data sent from various clients connected to the server, process the
data, and finally send the desired result back to the appropriate clients.

Closing the transports

Occasionally, we will want to forcefully close a transport in a communication channel. For
example, even with asynchronous programming and other forms of concurrency, it is
possible for your server to be overwhelmed with constant communications from multiple
clients. On the other hand, it is undesirable to have the server completely handle some of
the sent requests and plainly reject the rest of the requests as soon as the server is at its
maximum capacity.

[210]

Building Communication Channels with asyncio Chapter 11

So, instead of keeping the communication open for each and every client connected to the
server, we can specify in our protocol that each connection should be closed after a
successful communication. We will do this by using the BaseTransport.close () method
to forcefully close the calling t ransport object, which will stop the connection between the
server and that specific client. Again, we are modifying the data_received () method of
the EchoServerClientProtocol class in Chapterll/example3.py, as follows:

Chapterll/example3.py
import asyncio

class EchoServerClientProtocol (asyncio.Protocol) :
def connection_made (self, transport):

peername = transport.get_extra_info ('peername')
print ('Connection from {}'.format (peername))
self.transport = transport

def data_received(self, data):
message = data.decode ()
print ('Data received: {!r}'.format (message))

self.transport.write (('Echoed back: {}'.format (message)) .encode())

print ('Close the client socket')
self.transport.close()

loop = asyncio.get_event_loop ()
coro = loop.create_server (EchoServerClientProtocol, '127.0.0.1', 8888)
server = loop.run_until_complete (coro)

Serve requests until Ctrl+C is pressed
print ('Serving on {}'.format (server.sockets[0].getsockname()))
try:
loop.run_forever ()
except KeyboardInterrupt:
pass

Close the server

server.close ()

loop.run_until_complete (server.wait_closed())
loop.close()

[211]

Building Communication Channels with asyncio Chapter 11

Run the script, try to connect to the specified server, and type in some messages, in order to
see the changes that we implemented. With our current setup, after a client connects and
sends a message to the server, it will receive an echoed message back, and its connection
with the server will be closed. The following is the output (again, from the interface of the
Telnet program) that I obtained after simulating this process with our current
implementation of the protocol:

> telnet 127.0.0.1 8888

Trying 127.0.0.1...

Connected to localhost.

Hello, World!

Echoed back: Hello, World!
Connection closed by foreign host.

Client-side communication with aiohttp

In previous sections, we covered examples of implementing asynchronous communication
channels with the asyncio module, mostly from the perspective of the server side of the
communication process. In other words, we have been considering handling and
processing requests sent from external systems. This, however, is only one side of the
equation, and we also have the client side of communication to explore. In this section, we
will discuss applying asynchronous programming to make requests to servers.

As you have most likely guessed, the end goal of this process is to efficiently collect data
from external systems by asynchronously making requests to those systems. We will be
revisiting the concept of web scraping, which is the process of automating HTTP requests
to various websites and extracting specific information from their HTML source code. If
you have not read chapter 5, Concurrent Web Requests, I highly recommend going through
it before proceeding with this section, as that chapter covers the foundational ideas of web
scraping, and other relevant, important concepts.

In this section, you will also be introduced to another module that supports asynchronous
programming options: aiohttp (which stands for Asynchronous I/O HTTP). This module
provides high-level functionalities that streamline HTTP communication procedures, and it
also works seamlessly with the asyncio module, in order to facilitate asynchronous
programming.

[212]

Building Communication Channels with asyncio Chapter 11

Installing aiohttp and aiofiles

The aiohttp module does not come preinstalled with your Python distribution; however,
similarly to other packages, you can easily install the module by using the pip or conda
commands. We will also be installing another module, aiofiles, which facilitates
asynchronous file-writing. If you use pip as your package manager, simply run the
following commands:

pip install aiohttp
pip install aiofiles

If you'd like to use Anaconda, run the following commands:

conda install aiohttp
conda install aiofiles

As always, to confirm that you have successfully installed a package, open your Python
interpreter and try to import the module. In this case, run the following code:

>>> import aiohttp
>>> import aiofiles

There will be no error messages if the package has been successfully installed.

Fetching a website's HTML code

First, let's look at how to make a request and obtain the HTML source code from a single
website with aiohttp. Note that even with only one task (a website), our application
remains asynchronous, and the structure of an asynchronous program still needs to be
implemented. Now, navigate to the Chapter11/example4.py file, as follows:

Chapterll/exampled.py

import aiohttp
import asyncio

async def get_html (session, url):
async with session.get (url, ssl=False) as res:
return await res.text ()

async def main():
async with aiohttp.ClientSession() as session:
html = await get_html (session, 'http://packtpub.com')
print (html)

[213]

Building Communication Channels with asyncio Chapter 11

loop = asyncio.get_event_loop()
loop.run_until_complete (main())

Let's consider the main () coroutine first. We are initiating an instance from the
aiohttp.ClientSession class within a context manager; note that we are also placing the
async keyword in front of this declaration, since the whole context block itself will also be
treated as a coroutine. Inside of this block, we are calling and waiting for the get_html ()
coroutine to process and return.

Turning our attention to the get_html () coroutine, we can see that it takes in a session
object and a URL for the website that we want to extract the HTML source code from.
Inside of this function, we make another context manager asynchronous, which is used to
make a GET request and store the response from the server to the res variable. Finally, we
return the HTML source code stored in the response; since the response is an object
returned from the aiohttp.ClientSession class, its methods are asynchronous
functions, and therefore we need to specify the await keyword when we call the text ()
function.

As you run the program, the entire HTML source code of Packt's website will be printed
out. For example, the following is a portion of my output:

®0e ch11 — Quan's Terminal — -bash — 150x40

HTML source code from aiohttp

[214]

Building Communication Channels with asyncio Chapter 11

Writing files asynchronously

Most of the time, we would like to collect data by making requests to multiple websites,
and simply printing out the response HTML code is inappropriate (for many reasons);
instead, we'd like to write the returned HTML code to output files. In essence, this process
is asynchronous downloading, which is also implemented in the underlying architecture of
popular download managers. To do this, we will use the aiofiles module, in
combination with aiohttp and asyncio.

Navigate to the Chapter11l/example5.py file. First, we will look at the
download_html () coroutine, as follows:

Chapterll/example5.py

async def download_html (session, url):
async with session.get (url, ssl=False) as res:
filename = f'output/{os.path.basename (url)}.html'

async with aiofiles.open(filename, 'wb') as f:
while True:
chunk = await res.content.read(1024)
if not chunk:
break
await f.write (chunk)

return await res.release()

This is an updated version of the get_html () coroutine from the last example. Instead of
using an aiohttp.ClientSession instance to make a GET request and print out the
returned HTML code, now we write the HTML code to the file using the aiofiles
module. For example, to facilitate asynchronous file writing, we use the asynchronous
open () function from aiofiles to read in a file in a context manager. Furthermore, we
read the returned HTML in chunks, asynchronously, using the read () function for the
content attribute of the response object; this means that after reading 1024 bytes of the
current response, the execution flow will be released back to the event loop, and the task-
switching event will take place.

[215]

Building Communication Channels with asyncio Chapter 11

The main () coroutine and the main program of this example remain relatively the same as
those in our last example:

async def main(url):
async with aiohttp.ClientSession() as session:
await download_html (session, url)

urls = [
'http://packtpub.com',
'http://python.org',
'http://docs.python.org/3/library/asyncio’,
'http://aiohttp.readthedocs.io’,
'http://google.com'

1

loop = asyncio.get_event_loop()
loop.run_until_complete (
asyncio.gather (* (main (url) for url in urls))

)

The main () coroutine takes in a URL and passes it to the download_html () coroutine,
along with an aiohttp.ClientSession instance. Finally, in our main program, we create
an event loop and pass each item in a specified list of URLs to the main () coroutine. After
running the program, your output should look similar to the following, although the time it
takes to run the program might vary:

> python3 example5.py
Took 0.72 seconds.

Additionally, a subfolder named output (inside of the Chapter11 folder) will be filled
with the downloaded HTML code from each website in our list of URLs. Again, these files
were created and written asynchronously, via the functionalities of the aiofiles module,
which we discussed earlier. As you can see, to compare the speed of this program and its
corresponding synchronous version, we are also keeping track of the time it takes to run the
entire program.

[216]

Building Communication Channels with asyncio Chapter 11

Now, head to the Chapter1l/example6.py file. This script contains the code of the
synchronous version of our current program. Specifically, it makes HTTP GET requests to
individual websites in order, and the process of file writing is also implemented
sequentially. This script produced the following output:

> python3 exampleé6.py
Took 1.47 seconds.

While it achieved the same results (downloading the HTML code and writing it to files),
our sequential program took significantly more time than its asynchronous counterpart.

Summary

There are seven main layers of communication in a data transmission process, with varying
degrees of computing level. The media layers contain fairly low-level operations that
interact with the underlying process of the communication channel, while the host layers
deals with high-level data communication and manipulation. Of the seven, the transport
layer is often viewed as the conceptual transition between the media layers and the host
layers, responsible for sending data along end-to-end connections between different
systems. Asynchronous programming can provide functionalities that complement the
process of efficiently facilitating communication channels.

Server-wise, the asyncio module combines the abstract of transports with the
implementation of an asynchronous program. Specifically, via its BaseTransport and
BaseProtocol classes, asyncio provides different ways to customize the underlying
architecture of a communication channel. Together with the aiohttp module,

asyncio offers efficiency and flexibility regarding client-side communication processes.
The aiofiles module, which can work in conjunction with the other two asynchronous
programming modules, can also help to facilitate asynchronous file reading and writing.

We have now explored three of the biggest, most important topics in concurrent
programming: threading, multiprocessing, and asynchronous programming. We have
shown how each of them can be applied to various programming problems and provide
significant improvements in speed. In the next chapter of this book, we will start to discuss
problems that concurrent programming commonly poses to developers and programmers,
starting with deadlocks.

[217]

Building Communication Channels with asyncio Chapter 11

Questions

e What is a communication channel? What is its connection to asynchronous
programming?

e What are the two main parts of the OSI model protocol layers? What purposes do
each of them serve?

e What is the transport layer? Why is it crucial to communication channels?

e How does asyncio facilitate the implementation of server-side communication
channels?

e How does asyncio facilitate the implementation of client-side communication
channels?

e Whatis aiofiles?

Further reading

For more information, you can refer to the following links:

o [oT Systems and Communication Channels (bridgera.com/iot—-communication-
channels/), by Bridgera

o Automate the boring stuff with Python: practical programming for total beginners, No
Starch Press, Al. Sweigart

° Tmnsports and pYOtOCOIS (docs.python.org/3/library/asyncio-
protocol), Python documentation

[218]

https://bridgera.com/iot-communication-channels/
https://bridgera.com/iot-communication-channels/
https://docs.python.org/3/library/asyncio-protocol.html
https://docs.python.org/3/library/asyncio-protocol.html

12

Deadlocks

Deadlocks, one of the most common concurrency problems, will be the first problem that
we analyze in this book. In this chapter, we will discuss the theoretical causes of deadlocks
in concurrent programming. We will cover a classical synchronization problem in
concurrency, called the Dining Philosophers problem, as a real-life example of deadlock.
We will also illustrate an actual implementation of deadlock in Python. We will discuss
several methods to address the problem. This chapter will also cover the concept of
livelock, which is relevant to deadlock and is a relatively common problem in concurrent
programming.

The following topics will be covered in this chapter:

e The idea behind deadlock, and how to simulate it in Python
e Common solutions to deadlock, and how to implement them in Python
e The concept of livelock, and its connection to deadlock

Technical requirements

The following is a list of prerequisites for this chapter:

¢ Ensure that you have Python 3 installed on your computer

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

e In this chapter, we will be working with the subfolder titled Chapter12
e Check out the following video to see the Code in Action: http://bit.1ly/2r2WKaUu

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2r2WKaU
http://bit.ly/2r2WKaU
http://bit.ly/2r2WKaU
http://bit.ly/2r2WKaU
http://bit.ly/2r2WKaU
http://bit.ly/2r2WKaU
http://bit.ly/2r2WKaU
http://bit.ly/2r2WKaU
http://bit.ly/2r2WKaU

Deadlocks Chapter 12

The concept of deadlock

In the field of computer science, deadlock refers to a specific situation in concurrent
programming, in which no progress can be made and the program becomes locked in its
current state. In most cases, this phenomenon is caused by a lack of, or mishandled,
coordination between different lock objects (for thread synchronization purposes). In this
section, we will discuss a thought experiment commonly known as the Dining Philosophers
problem, in order to illustrate the concept of deadlock and its causes; from there, you will
learn how to simulate the problem in a Python concurrent program.

The Dining Philosophers problem

The Dining Philosophers problem was first introduced by Edgar Dijkstra (who, as you
learned in chapter 1, Advanced Introduction to Concurrent and Parallel Programming was a
leading pioneer in concurrent programming) in 1965. The problem was first demonstrated
using different technical terms (resource contention in computer systems), and was later
rephrased by Tony Hoare, a British computer scientist and the inventor of the quicksort
sorting algorithm. The problem statement is as follows.

Five philosophers sit around a table, and each has a bowl of food in front of them. Placed
between these five bowls of food are five forks, so each philosopher has a fork on their left
side, and one on their right side. This setup is demonstrated by the following diagram:

[220]

Deadlocks Chapter 12

An illustration of the Dining Philosophers problem

Each silent philosopher is to alternate between thinking and eating. Each philosopher is
required to have both of the forks around them to be able to pick up the food from their
individual bowl, and no fork can be shared between two or more different philosophers.
When a philosopher finishes eating a specific amount of food, they are to place both of the
forks back in their respective, original locations. At this point, the philosophers around that
philosopher will be able to use those forks.

[221]

Deadlocks Chapter 12

Since the philosophers are silent and cannot communicate with each other, they have no
method to let each other know they need the forks to eat. In other words, the only way for a
philosopher to eat is to have both of the forks already available to them. The question of
this problem is to design a set of instructions for the philosophers to efficiently switch
between eating and thinking, so that each philosopher is provided with enough food.

Now, a potential approach to this problem would be the following set of instructions:

1. A philosopher must think until the fork on their left side becomes available.
When that happens, the philosopher is to pick it up.

2. A philosopher must think until the fork on their right side becomes available.
When that happens, the philosopher is to pick it up.

3. If a philosopher is holding two forks, they will eat a specific amount of food from
the bowl in front of them, and then the following will apply:
e Afterwards, the philosopher has to put the right fork down in its
original place
e Afterwards, the philosopher has to put the left fork down in its
original place

4. The process repeats from the first bullet point.

It is quite clear how this set of instructions can lead to a situation where no progress can be
made; namely, if at the beginning, all of the philosophers start to execute their instructions
at the same time. Since all of the forks are on the table at the beginning, and are therefore
available to be picked up by nearby philosophers, each philosopher will be able to execute
the first instruction (picking up the fork on their left side).

Now, after this step, each philosopher will be holding a fork with their left hand, and no
forks will be left on the table. Since no philosopher has both forks in their hands, they
cannot proceed to eat their food. Furthermore, the set of instructions that they were given
specifies that only after a philosopher has eaten a specific amount of food can they put their
forks down on the table. This means that as long as a philosopher has not eaten, they will
not release any fork that they are holding.

So, as each philosopher is holding only one fork with their left hand, they cannot proceed to
eat or put down the fork they are holding. The only time a philosopher gets to eat their food
is when their neighboring philosopher puts their fork down, which is only possible if they
can eat their own food; this creates a never-ending circle of conditions that can never be
satisfied. This situation is, in essence, the nature of a deadlock, in which all of the elements
of a system are stuck in place, and no progress can be made.

[222]

Deadlocks Chapter 12

Deadlock in a concurrent system

With the example of the Dining Philosophers problem in mind, let us consider the formal
concept of deadlock, and the relevant theories around it. Given a concurrent program with
multiple threads or processes, the execution flow enters a situation of deadlock if a process
(or thread) is waiting on a resource that is being held and utilized by another process,
which is, in turn, waiting for another resource that is held by a different process. In other
words, processes cannot proceed with their execution instructions while waiting for
resources that can only be released after the execution is completed; therefore, these
processes are unable to change their execution states.

Deadlock is also defined by the conditions that a concurrent program needs to have at the
same time in order for deadlock to occur. These conditions were first proposed by the
computer scientist Edward G. Coffman, Jr., and are therefore known as the Coffman
conditions. These conditions are as follows:

e At least one resource has to be in a non-shareable state. This means that that
resource is being held by an individual process (or thread), and cannot be
accessed by others; the resource can only be accessed and held by a single
process (or thread) at any given time. This condition is also known as mutual
exclusion.

¢ There exists one process (or thread) that is simultaneously accessing a resource
and waiting for another held by other processes (or threads). In other words, this
process (or thread) needs access to two resources in order to execute its
instructions, one of which it is already holding, the other of which it is waiting
for from other processes (or threads). This condition is called hold and wait.

e Resources can only be released by a process (or a thread) holding them if there
are specific instructions for the process (or thread) to do so. This is to say that
unless the process (or thread) voluntarily and actively releases the resource, that
resource remains in a non-shareable state. This is the no preemption condition.

e The final condition is called circular wait. As suggested by the name, this
condition specifies that there exists a set of processes (or threads) such that the
first process (or thread) in the set is in a waiting state for a resource to be released
by the second process (or thread), which, in turn, needs to be waiting for the
third process (or thread); finally, the last process (or thread) in the set is waiting
for the first one.

[223]

Deadlocks Chapter 12

Let us quickly take a look at a basic example of deadlock. Consider a concurrent program in
which there are two different processes (process A and process B), and two different
resources (resource R1 and resource R2), as follows:

Sample deadlock diagram

Neither of the resources can be shared across separate processes, and each process needs to
access both resources to execute its instructions. Take process A, for example. It is already
holding resource R1, but its also needs R2 to proceed with its execution. However, R2
cannot be acquired by process A, as it is being held by process B. So, process A cannot
proceed. The same goes for process B, which is holding R2 and needs R1 to proceed. R1 is,
in turn, held by process A.

Python simulation

In this section, we will implement the preceding situation in an actual Python program.
Specifically, we will have two locks (we will call them lock A and lock B), and two separate
threads interacting with the locks (thread A and thread B). In our program, we will set up a
situation in which thread A has acquired lock A and is waiting to acquire lock B, which has
already been acquired by thread B, which is, in turn, waiting for lock A to be released.

If you have already downloaded the code for this book from the GitHub page, go ahead
and navigate to the Chapter12 folder. Let us consider the Chapter12/examplel.py file,
as follows:

Chapterl2/examplel.py

import threading
import time

def thread_a():
print ('Thread A is starting...')

print ('Thread A waiting to acquire lock A.')
lock_a.acquire ()
print ('Thread A has acquired lock A, performing some calculation...')

[224]

Deadlocks Chapter 12

time.sleep(2)

print ('Thread A waiting to acquire lock B.'")

lock_b.acquire ()

print ('Thread A has acquired lock B, performing some calculation...')
time.sleep(2)

print ('Thread A releasing both locks.')
lock_a.release()
lock_b.release()

def thread b():
print ('Thread B is starting...')

print ('Thread B waiting to acquire lock B.'")

lock_b.acquire ()

print ('Thread B has acquired lock B, performing some calculation...')
time.sleep (5)

print ('Thread B waiting to acquire lock A.'")

lock_a.acquire ()

print ('Thread B has acquired lock A, performing some calculation...')
time.sleep (5)

print ('Thread B releasing both locks.')
lock_b.release()
lock_a.release()

lock_a = threading.Lock ()
lock_b = threading.Lock ()

threadl threading.Thread(target=thread_a)
thread2 = threading.Thread(target=thread_b)

threadl.start ()
thread2.start ()

threadl. join ()
thread2.join ()

print ('Finished. ")

[225]

Deadlocks Chapter 12

In this script, the thread_a () and thread_b () functions specify our thread A and thread
B, respectively. In our main program, we also have two threading. Lock objects: lock A
and lock B. The general structure of the thread instructions is as follows:

1. Start the thread

2. Try to acquire the lock with the same name as the thread (thread A will try to
acquire lock A, and thread B will try to acquire lock B)

3. Perform some calculations

4. Try to acquire the other lock (thread A will try to acquire lock B, and thread B
will try to acquire lock A)

5. Perform some other calculations
6. Release both locks
7. End the thread

Note that we are using the time.sleep () function to simulate the action of some
calculations being processed.

First of all, we are starting both thread A and thread B almost simultaneously, within the
main program. With the structure of the thread instruction set in mind, we can see that at
this point, both threads will be initiated; thread A will try to acquire lock A, and will
succeed in doing so, since lock A is still available at this point. The same goes for thread B
and lock B. The two threads will then go on to perform some calculations on their own.

Let us consider the current state of our program: lock A has been acquired by thread A, and
lock B has been acquired by thread B. After their respective calculation processes are
complete, thread A will then try to acquire lock B, and thread B will try to acquire lock A.
We can easily see that this is the beginning of our deadlock situation: since lock B is already
being held by thread B, and cannot be acquired by thread A, thread B, for the same reason,
cannot acquire lock A.

Both of the threads will now wait infinitely, in order to acquire their respective second lock.
However, the only way a lock can be released is for a thread to continue its execution
instructions and release all of the locks it has at the end. Our program will therefore be
stuck in its execution at this point, and no further progress will be made.

[226]

Deadlocks

Chapter 12

The following diagram further illustrates the process of how the deadlock unfolds, in

sequence:
Thread A Thread B Lock A Lock B
tries tofacquire _
° acquired 'I
£ -
'_

tries tolacquire

acquired

A

tries to acquire

tries to acquire

Deadlock sequence diagram

Now, let's see the deadlock that we have created in action. Run the script, and you should
obtain the following output:

> python examplel.py

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

A

A
B
A
B
B
A
B

is starting...

waiting to acquire lock A.

is starting...

has acquired lock A, performing some calculation...
waiting to acquire lock B.

has acquired lock B, performing some calculation...
waiting to acquire lock B.

waiting to acquire lock A.

As we discussed, since each thread is trying to acquire a lock that is currently held by the
other thread, and the only way for a lock to be released is for a thread to continue its
execution. This is a deadlock, and your program will hang infinitely, never reaching the
final print statement in the last line of the program.

[227]

Deadlocks Chapter 12

Approaches to deadlock situations

As we have seen, deadlock can lead our concurrent programs to an infinite hang, which is
undesirable in every way. In this section, we will be discussing potential approaches to
prevent deadlocks from occurring. Intuitively, each approach looks to eliminate one of the
four Coffman conditions from our program, in order to prevent deadlocks.

Implementing ranking among resources

From both the Dining Philosophers problem and our Python example, we can see that the
last condition of the four Coffman conditions, circular wait, is at the heart of the problem of
deadlock. It specifies that the different processes (or threads) in our concurrent program
wait for resources held by other processes (or threads) in a circular manner. Giving this a
closer look, we can see that the root cause for this condition is the order (or lack thereof) in
which the processes (or threads) access the resources.

In the Dining Philosophers problem, each philosopher is instructed to pick up the fork on
their left side first, while in our Python example, the threads always try to acquire the locks
with the same name before performing any calculations. As you have seen, when the
philosophers want to start eating at the same time, they will pick up their respective left
forks, and will be stuck in an infinite wait; similarly, when the two threads start their
execution at the same time, they will acquire their individual locks, and, again, they will
wait for the other locks infinitely.

The conclusion that we can infer from this is that if, instead of accessing the resources
arbitrarily, the processes (or threads) were to access them in a predetermined, static order,
the circular nature of the way that they acquire and wait for the resources will be
eliminated. So, for our two-lock Python example, instead of having thread A try to acquire
lock A and thread B try to acquire lock B in their respective execution instructions, we will
require that both threads try to acquire the locks in the same order. For example, both
threads will now try to acquire lock A first, perform some calculations, try to acquire lock B,
perform further calculations, and finally, release both threads.

This change is implemented in the Chapter12/example2.py file, as follows:
Chapterl2/example?2.py

import threading
import time

def thread_al():
print ('Thread A is starting...')

[228]

Deadlocks Chapter 12

print ('Thread A waiting to acquire lock A.'")

lock_a.acquire ()

print ('Thread A has acquired lock A, performing some calculation...')
time.sleep(2)

print ('Thread A waiting to acquire lock B.'")

lock_b.acquire ()

print ('Thread A has acquired lock B, performing some calculation...')
time.sleep(2)

print ('Thread A releasing both locks.')
lock_a.release()
lock_b.release()

def thread b():
print ('Thread B is starting...')

print ('Thread B waiting to acquire lock A.'")

lock_a.acquire ()

print ('Thread B has acquired lock A, performing some calculation...')
time.sleep (5)

print ('Thread B waiting to acquire lock B.'")

lock_b.acquire ()

print ('Thread B has acquired lock B, performing some calculation...')
time.sleep (5)

print ('Thread B releasing both locks.')
lock_b.release()
lock_a.release()

lock_a = threading.Lock ()
lock_b = threading.Lock ()

threadl threading.Thread(target=thread_a)
thread2 = threading.Thread(target=thread_b)

threadl.start ()
thread2.start ()

threadl. join ()
thread2.join ()

print ('Finished. ")

[229]

Deadlocks Chapter 12

This version of the script is now able to finish its execution, and should produce the
following output:

> python3 example2.py
Thread A is starting...

Thread A waiting to acquire lock A.

Thread A has acquired lock A, performing some calculation...
Thread B is starting...

Thread B waiting to acquire lock A.

Thread A waiting to acquire lock B.

Thread A has acquired lock B, performing some calculation...
Thread A releasing both locks.

Thread B has acquired lock A, performing some calculation...
Thread B waiting to acquire lock B.

Thread B has acquired lock B, performing some calculation...
Thread B releasing both locks.

Finished.

This approach efficiently eliminates the problem of deadlock in our two-lock example, but
how well does it hold up for the Dining Philosophers problem? To answer this question,
let's try to simulate the problem and the solution in Python by ourselves. The
Chapterl2/example3.py file contains the implementation of the Dining Philosophers
problem in Python, as follows:

Chapterl2/example3.py
import threading

The philosopher thread
def philosopher (left, right):
while True:
with left:
with right:
print (f'Philosopher at {threading.currentThread() }
is eating.')

The chopsticks
N_FORKS = 5
forks = [threading.Lock() for n in range (N_FORKS)]

Create all of the philosophers
phils = [threading.Thread(
target=philosopher,
args=(forks[n], forks[(n + 1) % N_FORKS])
) for n in range (N_FORKS)]

Run all of the philosophers

[230]

Deadlocks Chapter 12

for p in phils:
p.start ()

Here, we have the philospher () function as the underlying logic for our separate threads.
It takes in two Threading.Lock objects and simulates the previously discussed eating
procedure, with two context managers. In our main program, we create a list of five lock
objects, named forks, and a list of five threads, named phils, with the specification that
the first thread will take in the first and second locks, the second thread will take in the
second and third locks, and so on; and the fifth thread will take in the fifth and first locks
(in order). Finally, we start all five threads simultaneously.

Run the script, and it can easily be observed that deadlock occurs almost immediately. The
following is my output, up until the program hangs infinitely:

> python3 example3.py

Philosopher at <Thread(Thread-1, started 123145445048320)> is eating.
Philosopher at <Thread(Thread-1, started 123145445048320)> is eating.
Philosopher at <Thread(Thread-1, started 123145445048320)> is eating.
Philosopher at <Thread(Thread-1, started 123145445048320)> is eating.
Philosopher at <Thread(Thread-1, started 123145445048320)> is eating.
Philosopher at <Thread(Thread-1, started 123145445048320)> is eating.
Philosopher at <Thread(Thread-3, started 123145455558656)> is eating.
Philosopher at <Thread(Thread-1, started 123145445048320)> is eating.
Philosopher at <Thread(Thread-3, started 123145455558656)> is eating.
Philosopher at <Thread(Thread-3, started 123145455558656)> is eating.
Philosopher at <Thread(Thread-3, started 123145455558656)> is eating.
Philosopher at <Thread(Thread-3, started 123145455558656)> is eating.
Philosopher at <Thread(Thread-5, started 123145466068992)> is eating.
Philosopher at <Thread(Thread-3, started 123145455558656)> is eating.
Philosopher at <Thread(Thread-3, started 123145455558656)> is eating.

The question that naturally follows is: how can we implement an order in which the locks
are acquired in the philosopher () function? We will be using the built-in id () function
in Python, which returns the unique, constant identity of the parameter, as the keys to sort
the lock objects. We will also implement a custom context manager, in order to factor out
this sorting logic in a separate class. Navigate to Chapter12/example4.py for this specific
implementation, as follows:

Chapterl2/exampled.py

class acquire (object) :
def _ _init_ (self, *locks):
self.locks = sorted(locks, key=lambda x: id(x))

def _ _enter_ (self):
for lock in self.locks:

[231]

Deadlocks Chapter 12

lock.acquire ()

def __exit__ (self, ty, val, tb):
for lock in reversed(self.locks):
lock.release()
return False

The philosopher thread
def philosopher (left, right):
while True:
with acquire(left,right):
print (f'Philosopher at {threading.currentThread() }
is eating."')

With the main program remaining in the same, this script will produce an output showing
that this solution of ranking can effectively address the Dining Philosophers problem.

However, there is a problem with this approach when it is applied to some particular cases.
Keeping the high-level idea of concurrency in mind, we know that one of our main goals
when applying concurrency to our programs is to improve the speed. Let us go back to our
two-lock example and examine the execution time of our program with resource ranking
implemented. Take a look at the Chapter12/example5.py file; it is simply the two-lock
program with ranked (or ordered) locking implemented, combined with a timer that is
added to keep track of how much time it takes for the two threads to finish executing.

After running the script, your output should look similar to the following:

> python3 example5.py
Thread A is starting...
Thread A waiting to acquire lock A.

Thread B is starting...

Thread A has acquired lock A, performing some calculation...
Thread B waiting to acquire lock A.

Thread A waiting to acquire lock B.

Thread A has acquired lock B, performing some calculation...
Thread A releasing both locks.

Thread B has acquired lock A, performing some calculation...
Thread B waiting to acquire lock B.

Thread B has acquired lock B, performing some calculation...
Thread B releasing both locks.

Took 14.01 seconds.
Finished.

[232]

Deadlocks Chapter 12

You can see that the combined execution of both threads took around 14 seconds. However,
if we take a closer look at the specific instructions in the two threads, we can see that aside
from interacting with the locks, thread A would take around 4 seconds to do its calculations
(simulated by two time.sleep (2) commands), while thread B would take around 10
seconds (two time.sleep (5) commands).

Does this mean that our program is taking as long as it would if we were to execute the two
threads sequentially? We will test this theory with our Chapter12/example6.py file, in
which we specify that each thread should execute its instructions one at a time, in our main
program:

Chapterl2/example6.py

lock_a = threading.Lock ()
lock_b threading.Lock ()

threadl = threading.Thread(target=thread_a)
thread?2 threading.Thread (target=thread_b)

start = timer ()

threadl.start ()
threadl. join ()

thread2.start ()

thread2.join ()

print ('Took %.2f seconds.' % (timer () - start))
print ('Finished. ")

Run this script, and you will see that this sequential version of our two-lock program will
take the same amount of time as its concurrent counterpart:

> python3 exampleé6.py
Thread A is starting...

Thread waiting to acquire lock B.
Thread has acquired lock B, performing some calculation...
Thread releasing both locks.

Took 14.01 seconds.

Thread A waiting to acquire lock A.
Thread A has acquired lock A, performing some calculation...
Thread A waiting to acquire lock B.
Thread A has acquired lock B, performing some calculation...
Thread A releasing both locks.
Thread B is starting...
Thread B waiting to acquire lock A.
Thread B has acquired lock A, performing some calculation...
B
B
B

[233]

Deadlocks Chapter 12

Finished.

This interesting phenomenon is a direct result of the heavy requirements that we have
placed on the locks in the program. In other words, since each thread has to acquire both
locks to complete its execution, each lock cannot be acquired by more than one thread at
any given time, and finally, the locks are required to be acquired in a specific order, and the
execution of individual threads cannot happen simultaneously. If we were to go back and
examine the output produced by the Chapter12/example5.py file, it would be apparent
that thread B could not start its calculations after thread A released both locks at the end of
its execution.

It is quite intuitive, then, to arrive at the conclusion that if you placed enough locks on the
resources of your concurrent program, it would become entirely sequential in its execution,
and, combined with the overhead of concurrent programming functionalities, it would
have an even worse speed than the purely sequential version of the program. However, we
did not see in the Dining Philosophers problem (simulated in Python) this sequentiality
created by locks. This is because in the two-thread problem, two locks were enough to
sequentialize the program execution, while five were not enough to do the same for the
Dining Philosophers problem.

We will explore another instance of this phenomenon in chapter 14, Race Conditions.

Ignoring locks and sharing resources

Locks are undoubtedly an important tool in synchronization tasks, and in concurrent
programming in general. However, if the use of locks leads to an undesirable situation,
such as a deadlock, then it is quite natural for us to explore the option of simply not using
locks in our concurrent programs. By ignoring locks, our program's resources effectively
become shareable among different processes/threads in a concurrent program, thus
eliminating the first of the four Coffman conditions: mutual exclusion.

This approach to the problem of deadlock can be straightforward to implement; let us try
with the two preceding examples. In the two-lock example, we simply remove the code
specifying any interaction with the lock objects both inside the thread functions and in the
main program. In other words, we are not utilizing a locking mechanism anymore. The
Chapterl2/example7.py file contains the implementation of this approach, as follows:

Chapterl2/example’7.py
import threading

import time
from timeit import default_timer as timer

[234]

Deadlocks

Chapter 12

def thread_a():
print ('Thread A is

print ('Thread A is
time.sleep(2)

print ('Thread A is
time.sleep(2)

def thread_b{():
print ('Thread B is

print ('Thread B is
time.sleep (5)

print ('Thread B is
time.sleep (5)

threadl

starting...

performing

performing

starting...

performing

performing

some

some

some

some

calculation...

calculation...

calculation...

calculation...

threading.Thread(target=thread_a)

thread2 = threading.Thread(target=thread_b)

start = timer ()

threadl.start ()
thread2.start ()

threadl. join ()
thread2.join ()

o

o

print ('Took %.2f seconds.' % (timer()

print ('Finished. ")

Run the script, and your output should look similar to the following;:

> python3 example7.py
Thread A is starting...
Thread A is performing
Thread B is starting...
Thread B is performing
Thread A is performing
Thread B is performing
Took 10.00 seconds.
Finished.

- start))

some calculation...

some calculation...
some calculation...
some calculation...

[235]

Deadlocks Chapter 12

It is clear that since we are not using locks to restrict access to any calculation processes, the
executions of the two threads have now become entirely independent of one another, and
the threads were therefore run completely in parallel. For this reason, we also obtained a
better speed: since the threads ran in parallel, the total time that the whole program took
was the same as the time that the longer task of the two threads took (in other words,
thread B, with 10 seconds).

What about the Dining Philosophers problem? It seems that we can also conclude that
without locks (the forks), the problem can be solved easily. Since the resources (food) are
unique to each philosopher (in other words, no philosopher should eat another
philosopher's food), it should be the case that each philosopher can proceed with their
execution without worrying about the others. By ignoring the locks, each can be executed in
parallel, similar to what we saw in our two-lock example.

Doing this, however, means that we are completely misunderstanding the problem. We
know that locks are utilized so that processes and threads can access the shared resources
in a program in a systematic, coordinated way, to avoid mishandling the data. Therefore,
removing any locking mechanisms in a concurrent program means that the likelihood of
the shared resources, which are now free from access limitations, being manipulated in an
uncoordinated way (and therefore, becoming corrupted) increases significantly.

So, by ignoring locks, it is relatively likely that we will need to completely redesign and
restructure our concurrent program. If the shared resources still need to be accessed and
manipulated in an organized way, other synchronization methods will need to be
implemented. The logic of our processes and threads might need to be altered to
appropriately interact with this new synchronization method, the execution time might be
negatively affected by this change in the structure of the program, and other potential
synchronization problems might also arise.

An additional note about locks

While the approach of dismissing locking mechanisms in our program to eliminate
deadlocks might raise some questions and concerns, it does effectively reveal a new point
for us about lock objects in Python: it is possible for an element of a concurrent program to
completely bypass the locks when accessing a given resource. In other words, lock objects
only prevent different processes/threads from accessing and manipulating a shared
resource if those processes or threads actually acquire the lock objects.

[236]

Deadlocks Chapter 12

Locks, then, do not actually lock anything. They are simply flags that help to indicate
whether a resource should be accessed at a given time; if a poorly instructed, or even
malicious, process/thread attempts to access that resource without checking the lock object
exists, it will most likely be able to do that without difficulty. In other words, locks are not
at all connected to the resources that they are supposed to lock, and they most certainly do
not block processes/threads from accessing those resources.

The simple use of locks is therefore inefficient to design and implement a secure, dynamic,
concurrent data structure. To achieve that, we would need to either add more concrete links
between the locks and their corresponding resources, or utilize a different synchronization
tool altogether (for example, atomic message queues).

Concluding note on deadlock solutions

You have seen two of the most common approaches to the problem of deadlock. Each
addresses one of the four Coffman conditions, and, while both (somewhat) successfully
prevent deadlocks from occurring in our examples, each raises different, additional
problems and concerns. It is therefore important to truly understand the nature of your
concurrent programs, in order to know which of the two is applicable, if either of them are.

It is also possible that some programs, through deadlock, are revealed to us as unsuitable to
be made concurrent; some programs are better left sequential, and will be made worse with
forced concurrency. As we have discussed, while concurrency provides significant
improvements in many areas of our applications, some are inherently inappropriate for the
application of concurrent programming. In situations of deadlock, developers should be
ready to consider different approaches to designing a concurrent program, and should not
be reluctant to implement another method when one concurrent approach does not work.

The concept of livelock

The concept of livelock is connected to deadlock; some even consider it an alternate version
of deadlock. In a livelock situation, the processes (or threads) in the concurrent program are
able to switch their states; in fact, they switch states constantly. Yet, they simply switch
back and forth infinitely, and no progress is made. We will now consider an actual scenario
of livelock.

[237]

Deadlocks Chapter 12

Suppose that a pair of spouses are eating dinner together at a table. They only have one
fork to share with each other, so only one of them can eat at any given point. Additionally,
the spouses are really polite to each other, so even if one spouse is hungry and wants to eat
their food, they will leave the fork on the table if their partner is also hungry. This
specification is at the heart of creating a livelock for this problem: when both spouses are
hungry, each will wait for the other to eat first, creating a infinite loop in which each spouse
switches between wanting to eat and waiting for the other spouse to eat.

Let's simulate this problem in Python. Navigate to Chapter12/example8.py, and take a
look at the Spouse class:

Chapterl2/example8.py

class Spouse (threading.Thread) :

def __init__ (self, name, partner):
threading.Thread.__init__ (self)
self.name = name

self.partner = partner
self.hungry = True

def run(self):
while self.hungry:
print ('$s is hungry and wants to eat.' % self.name)

if self.partner.hungry:
print ('%$s is waiting for their partner to eat first...'

o)

% self.name)
else:
with fork:
print ('%$s has stared eating.' % self.name)
time.sleep (5)

o)

print ('$s is now full.' % self.name)
self.hungry = False

This class inherits from the threading. Thread class and implements the logic that we
discussed previously. It takes in a name for the Spouse instance and another Spouse object
as its partner; when initialized, a Spouse object is also always hungry (the hungry attribute
is always set to True). The run () function in the class specifies the logic when the thread is
started: as long as the Spouse object's hungry attribute is set to True, the object will
attempt to use the fork, which is a lock object, to eat. However, it always checks to see
whether its partner also has its hungry attribute set to True, in which case, it will not
proceed to acquire the lock, and will instead wait for its partner to do it.

[238]

Deadlocks

Chapter 12

In our main program, we create the fork as a lock object first; then, we create two

Spouse thread objects, which are each other's partner attributes. Finally, we start both

threads, and run the program until both threads finish executing:

Chapterl2/example8.py

fork = threading.Lock ()

partnerl =

partner?2
partnerl

partnerl.
partner2.

partnerl.
partner2.

print ('F

Spouse ('Wife', None)
= Spouse ('Husband', partnerl)
.partner = partner?2

start ()

start ()

join ()
join ()

inished.")

Run the script, and you will see that, as we discussed, each thread will go into an infinite
loop, switching between wanting to eat and waiting for its partner to eat; the program will
run forever, until Python is interrupted. The following code shows the first few lines of the

output that I

obtained:

> python3 exampleS8.py

Wife is
Wife is
Husband
Wife is
Husband
Wife is
Husband
Wife is
Husband
Wife is
Husband
Wife is
Husband

hungry and wants to eat.

waiting for their partner to eat first...
is hungry and wants to eat.

hungry and wants to eat.

is waiting for their partner to eat first...

waiting for their partner to eat first...
is hungry and wants to eat.
hungry and wants to eat.

is waiting for their partner to eat first...

waiting for their partner to eat first...
is hungry and wants to eat.
hungry and wants to eat.

is waiting for their partner to eat first...

[239]

Deadlocks Chapter 12

Summary

In the field of computer science, deadlock refers to a specific situation in concurrent
programming, in which no progress is made and the program is locked in its current state.
In most cases, this phenomenon is caused by a lack of, or mishandled, coordination
between different lock objects, and it can be illustrated with the Dining Philosophers
problem.

Potential approaches to preventing deadlocks from occurring include imposing an order for
the lock objects and sharing non-shareable resources by ignoring lock objects. Each solution
addresses one of the four Coffman conditions, and, while both solutions can successfully
prevent deadlocks, each raises different, additional problems and concerns.

Connected to the concept of deadlock is livelock. In a livelock situation, processes (or
threads) in the concurrent program are able to switch their states, but they simply switch
back and forth infinitely, and no progress is made. In the next chapter, we will discuss
another common problem in concurrent programming: starvation.

Questions

e What can lead to a deadlock situation, and why is it undesirable?
e How is the Dining Philosophers problem related to the problem of deadlock?
e What are the four Coffman conditions?

e How can resource ranking solve the problem of deadlock? What other problems
can occur when this is implemented?

e How can ignoring locks solve the problem of deadlock? What other problems can
occur when this is implemented?

e How is livelock related to deadlock?

Further reading

For more information, you can refer to the following links:

e Parallel Programming with Python, by Jan. Palach, Packt Publishing Ltd, 2014

e Python Parallel Programming Cookbook, by Giancarlo Zaccone, Packt Publishing
Ltd, 2015

e Python Thread Deadlock Avoidance (dabeaz.blogspot.com/2009/11/python-
thread-deadlock-avoidance_20)

[240]

http://dabeaz.blogspot.com/2009/11/python-thread-deadlock-avoidance_20.html
http://dabeaz.blogspot.com/2009/11/python-thread-deadlock-avoidance_20.html

13

Starvation

In this chapter, we will discuss the concept of starvation and its potential causes in
concurrent programming. We will cover a number of readers-writers problems, which are
prime examples of starvation, and we will simulate them in example Python code. This
chapter will also cover the relationship between deadlock and starvation, as well as some
potential solutions for starvation.

The following topics will be covered in this chapter:

e The basic idea behind starvation, its root causes, and some more relevant
concepts

¢ A detailed analysis of the readers-writers problem, which is used to illustrate the
complexity of starvation in a concurrent system

Technical requirements

The following is a list of prerequisites for this chapter:

¢ Ensure that you have Python 3 installed on your computer

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder titled Chapter13
¢ Check out the following video to see the Code in Action: http://bit.ly/2r3caws

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2r3caw8
http://bit.ly/2r3caw8
http://bit.ly/2r3caw8
http://bit.ly/2r3caw8
http://bit.ly/2r3caw8
http://bit.ly/2r3caw8
http://bit.ly/2r3caw8
http://bit.ly/2r3caw8
http://bit.ly/2r3caw8

Starvation Chapter 13

The concept of starvation

Starvation is a problem in concurrent systems, in which a process (or a thread) cannot gain
access to the necessary resources in order to proceed with its execution and, therefore,
cannot make any progress. In this section, we will look into the characteristics of a
starvation situation, analyze the most common causes of starvation, and finally, consider a
sample program that exemplifies starvation.

What is starvation?

It is quite common for a concurrent program to implement some sort of ordering between
the different processes in its execution. For example, consider a program that has three
separate processes, as follows:

¢ One is responsible for handling extremely pressing instructions that need to be
run as soon as the necessary resources become available

¢ Another process is responsible for other important executions, which are not as
essential as the tasks in the first process

¢ The last one handles miscellaneous, very infrequent tasks

Furthermore, these three process need to utilize the same resources in order to execute their
respective instructions.

Intuitively, we have every reason to implement a specification that allows the first process
to have the highest priority of execution and access to resources, then the second process,
and then the last process, with the lowest priority. However, imagine situations in which
the first two processes (with higher priorities) run so often that the third process cannot
execute its instructions; anytime the third process needs to run, it checks to see whether the
resources are available to be used and finds out that one of the other, higher-priority
processes is using them.

This is a situation of starvation: the third process is given no opportunity to execute and,
therefore, no progress can be made with that process. In a typical concurrent program, it is
quite common to have more than three processes at different priority levels, yet the
situation is fundamentally similar: some processes are given more opportunities to run and,
therefore, they are constantly executing. Others have lower priorities and cannot access the
necessary resources to execute.

[242]

Starvation Chapter 13

Scheduling

In the next few subsections, we will be discussing the potential candidates that cause
starvation situations. Most of the time, a poorly coordinated set of scheduling instructions
is the main cause of starvation. For example, a considerably naive algorithm that deals with
three separate tasks might implement constant communication and interaction between the
first two tasks.

This setup leads to the fact that the execution flow of the algorithm switches solely between
the first and second tasks, while the third finds itself idle and unable to make any progress
with its execution; in this case, because it is starved of CPU execution flow. Intuitively, we
can identify the root of the problem as the fact that the algorithm allows the first two tasks
to always dominate the CPU, and hence, effectively prevents any other task to also utilize
the CPU. A characteristic of a good scheduling algorithm is the ability to distribute the
execution flow and allocate the resources equally and appropriately.

As mentioned previously, many concurrent systems and programs implement a specific
order of priority, in terms of process and thread execution. This implementation of ordered
scheduling may very likely lead to the starvation of processes and threads of lower
priorities and can result in a condition called priority inversion.

Suppose that, in your concurrent program, you have process A of the highest priority,
process B of a medium priority, and finally, process C of the lowest priority; process C
would most likely be put in the situation of starvation. Additionally, if the execution of
process A, the prioritized process, is dependent on the completion of process C, which is
already in starvation, then process A might never be able to complete its execution, either,
even though it is given the highest priority in the concurrent program.

[243]

Starvation Chapter 13

The following diagram further illustrates the concept of priority inversion: a high-priority
task running from the time t2 to t3 needs to access some resources, which are being utilized
by a low-priority task:

Priority Inversion
Priority
A
-8 @
| | | |
: TAKE | | OGIVE
(MEDIUM) : : : :
| | | |
TAKE | I GIVE I
| | | |
(LOW) (:) | 1 (: 2 |
| | | | I N
t1 t2 t3 t4 t5 t6
Time

Diagram of priority inversion

To reiterate, combining starvation and priority inversion can lead to a situation where even
the high-priority tasks are unable to execute their instructions.

Causes of starvation

With the complexity of designing a scheduling algorithm in mind, let us discuss the specific
causes of starvation. The situations that we described in the preceding section indicate
some potential causes of the situation of starvation. However, starvation can arise from a
number of sources, as follows:

e Processes (or threads) with high priorities dominate the execution flow in the
CPU, and hence, low-priority processes (or threads) are not given the
opportunity to execute their own instructions.

¢ Processes (or threads) with high priorities dominate the usage of non-shareable
resources, and hence, low-priority processes (or threads) are not given the
opportunity to execute their own instructions. This situation is similar to the first
one, but addresses the priority of accessing resources, instead of the priority of
the execution itself.

[244]

Starvation Chapter 13

e Processes (or threads) with low priorities are waiting for resources to execute
their instructions, but, as soon as the resources become available, other processes
(or threads) with higher priorities are immediately given access to them, so the
low-priority processes (or threads) wait infinitely.

There are other causes of starvation, as well, but the preceding are the most common root
causes.

Starvation's relationship to deadlock

Interestingly, deadlock situations can also lead to starvation, as the definition of starvation
states that if there is a process (or a thread) that is unable to make any progress because it
cannot gain access to the necessary process, the process (or thread) is experiencing
starvation.

Recall our example of deadlock, the Dining Philosophers problem, illustrated as follows:

An illustration of the Dining Philosophers problem

[245]

Starvation Chapter 13

When deadlock occurs for this situation, no philosopher can obtain the necessary resources
to execute their instructions (each philosopher is required to have two forks to start eating).
Each philosopher that is in a deadlock is therefore also in a state of starvation.

The readers-writers problem

The readers-writers problem is one of the classic and most complex examples in the field of
computer science, illustrating problems that might occur in a concurrent program.
Throughout the analysis of the different variations of the readers-writers problem, we will
reveal more about starvation, as well as its common causes. We will also simulate the
problem in Python, so that a deeper understanding of the problem can be gained.

Problem statement

In a readers-writers problem, first and foremost, we have a shared resource, which, in most
cases, is a text file. Different threads interact with that text file; each is either a reader or a
writer. A reader is a thread that simply accesses the shared resource (the text file) and reads
in the data included in that file, while a writer is a thread that accesses, and possibly
mutates, the contents of the text file.

We know that writers and readers cannot access the shared resources simultaneously since
if a thread is writing data to the file, no other thread should be accessing the file to read any
data from it. The goal of the readers-writers problem is therefore to find a correct and
efficient way to design and coordinate the scheduling of these reader and writer thread. A
successful implementation of that goal is not only that the program as a whole executes in
the most optimized way, but also that all threads are given sufficient opportunity to
execute their instructions and no starvation can occur. Additionally, the shared resource
(the text file) needs to be handled appropriately, so that no data will be corrupted.

[246]

Starvation

Chapter 13

The following diagram further illustrates the setup of the readers-writers problem:

Activity of readers and writers on shared data:

2

Readers - Writers

reader
1
reader

S

shared
data

*Readers - only read the data set do not perform
any updates

*Writers - can both read and write

Diagram of readers-writers problem

The first readers-writers problem

As we mentioned, the problem asks us to come up with a scheduling algorithm, so that

readers and writers can access the text file appropriately and efficiently, without

mishandling/corrupting the data that is included. A naive solution to this problem is to
impose a lock on the text file, so that it becomes a non-shareable resource; this means that
only one thread (either a reader or a writer) can access (and potentially manipulate) the text

file at any given time.

Yet, this approach simply equates to a sequential program: if the shared resource can be
utilized by only one thread at a given time, none of the processing time between different
threads can be overlapped, and effectively, the execution becomes sequential. Therefore,
this is not an optimal solution, as it is taking advantage of concurrent programming.

[247]

Starvation Chapter 13

One insight regarding the reader threads can lead to a more optimal solution to this
problem: since readers simply read in the text file and do not alter the data in it, multiple
readers can be allowed to access the text file simultaneously. Indeed, even if more than one
reader is fetching data from the text file at the same time, the data is not being changed in
any way, and the consistency and accuracy of the data is therefore maintained.

Following this approach, we will implement a specification in which no reader will be kept
waiting if the shared resource is being opened for reading by another reader. Specifically, in
addition to a lock on the shared resource, we will also have a counter for the number of
readers currently accessing the resource. If, at any point in the program, that counter goes
from zero to one (in other words, at least one reader is starting to access the resource), we
will lock the resource from the writers; similarly, whenever the counter decreases to zero
(in other words, no reader is asking for access to the resource), we will release the lock on
the resource, so that writers can access it.

This specification is efficient for the readers, in the sense that, once the first reader has
accessed the resource and placed a lock on it, no writers can access it, and the subsequent
readers will not have to re-lock it until the last reader finishes reading the resource.

Let us try to implement this solution in Python. If you have already downloaded the code
for this book from the GitHub page, go ahead and navigate to the Chapter13 folder. Let us
take a look at the Chapter13/examplel.py file; specifically, the writer () and reader ()
functions, as follows:

Chapterl3/examplel.py

def writer():
global text

while True:
with resource:
print (f'Writing being done by
{threading.current_thread() .name}.")
text += f'Writing was done by
{threading.current_thread() .name}. '

def reader () :
global rcount

while True:
with rcounter:
rcount += 1
if rcount == 1:
resource.acquire ()

[248]

Starvation Chapter 13

print (f'Reading being done by
{threading.current_thread() .name}:")
print (text)

with rcounter:
rcount -= 1
if rcount ==
resource.release ()

In the preceding script, the writer () function, which is to be called by a
threading.Thread instance (in other words, a separate thread), specifies the logic of the
writer threads that we discussed previously: accessing the shared resource (in this case, the
global variable, text, which is simply a Python string) and writing some data to the
resource. Note that we are putting all of its instructions inside a while loop, to simulate the
constant nature of the application (writers and readers constantly try to access the shared
resource).

We can also see the reader logic in the reader () function. Before asking for access to the
shared resource, each reader will increment a counter for the number of readers that are
currently active and trying to access the resource. Similarly, after reading data off the file,
each reader needs to decrement the number of readers. During this process, if a reader is
the first reader to access the file (in other words, when the counter is one), it will put a lock
on the file, so that no writers can access it; conversely, when a reader is the last reader to
read the file, it has to release that lock.

One note about the handling of that counter of readers: you might have noticed that we are
using a lock object named rcounter when incrementing/decrementing the counter
variable (rcount). This is a method that is used to avoid a race condition, which is another
common concurrency-related problem, for the counter variable; specifically, without the
lock, multiple threads can be accessing and altering the counter variable at the same time,
but the only way to ensure the integrity of the data is for this counter variable to be handled
sequentially. We will discuss race conditions (and the practice that is used to avoid them) in
more detail in the next chapter.

Going back to our current script, in the main program, we will set up the text variable, the
counter for readers, and two lock objects (for the reader counter and the shared resource,
respectively). We are also initializing and starting three reader threads and two writer
threads, as follows:

Chapterl3/examplel.py

text = 'This is some text. '
rcount = 0

[249]

Starvation Chapter 13

rcounter = threading.Lock ()
resource = threading.Lock ()

threads = [threading.Thread(target=reader) for i in range(3)] +
[threading.Thread (target=writer) for i in range(2)]

for thread in threads:
thread.start ()

It is important to note that, since the instructions of the reader and writer threads are both
wrapped in while loops, the script, when started, will run infinitely. You should cancel the
Python execution after around 3-4 seconds, when enough output has been produced so that
the general behavior of the program can be observed.

The following code shows the first few lines of output that I obtained after running the
script:

> python3 examplel.py

Reading being done by Thread-1:
This is some text.

Reading being done by Thread-2:
Reading being done by Thread-1:
This is some text.

This is some text.

Reading being done by Thread-2:
Reading being done by Thread-1:
This is some text.

This is some text.

Reading being done by Thread-3:
Reading being done by Thread-1:
This is some text.

This is some text.

As you can see, there is a specific pattern in the preceding output: all of the threads that
were accessing the shared resource were readers. In fact, throughout my entire output, no
writer was able to access the file, and therefore, the text variable only contains the initial
string, This is some text., and was not altered in any way. The output that you obtain
should also have the same pattern (the shared resource not being altered).

In this case, the writers are experiencing starvation, as none of them are able to access and
use the resource. This is a direct result of our scheduling algorithm; since multiple readers
are allowed to access the text file simultaneously, if there are multiple readers accessing the
text file frequently enough, it will create a continuous stream of readers going through the
text file, giving no room for a writer to attempt to access the file.

[250]

Starvation Chapter 13

This scheduling algorithm inadvertently gives priority to the readers over the writers, and
is therefore called readers-preference. So, this design is undesirable.

The second readers-writers problem

The problem with the first approach is that, when a reader is accessing the text file and a
writer is waiting for the file to be unlocked, if another reader starts its execution and wants
to access the file, it will be given priority over the writer that has already been waiting.
Additionally, if more and more readers keep requesting access to the file, the writer will be
waiting infinitely, and that was what we observed in our first code example.

To address this problem, we will implement the specification that, once a writer makes a
request to access the file, no reader should be able to jump in line and access the file before
that writer. To do this, we will have an additional lock object in our program, to specify
whether a writer is waiting for the file, and consequently, whether a reader thread can
attempt to read the file; we will call this lock read_try.

Similar to how the first of the readers accessing the text file always locks it from the writers,
we will now have the first writer of the multiple that are waiting to access the file lock
read_try, so that no reader can, again, jump in line before those writers that requested
access before it. As we discussed in reference to the readers, since we are keeping track of
the number of writers waiting for the text file, we will need to implement a counter for the
number of writers, and its corresponding lock, in our program.

The Chapter13/example2.py file contains the code for this implementation, as follows:
Chapterl3/example2.py
import threading

def writer () :
global text
global wcount

while True:
with wcounter:
wcount += 1
if wcount == 1:
read_try.acquire ()

with resource:
print (f'Writing being done by
{threading.current_thread() .name}.")
text += f'Writing was done by

[251]

Starvation

Chapter 13

{threading.current_thread() .name}.

with wcounter:
wcount -= 1
if wcount ==
read_try.release()

def reader():
global rcount

while True:
with read_try:
with rcounter:
rcount += 1
if rcount == 1:
resource.acquire ()

print (f'Reading being done by

{threading.current_thread() .name}:"'

print (text)

with rcounter:
rcount -= 1
if rcount == 0:
resource.release ()

text = 'This is some text. '
wcount = 0
rcount = 0

wcounter = threading.Lock
rcounter threading.Lock
resource threading.Lock
read_try = threading.Lock

O
O
O
O

threads = [threading.Thread(target=reader) for i in range(
[threading.Thread (target=writer) for i in range

for thread in threads:
thread.start ()

)

Compared to our first solution to the problem, the main program remains relatively the
same (except for the initialization of the read_try lock, the wcount counter, and its

lock, wcounter), butin our writer () function, we are locking read_try as soon as there
is at least one writer waiting to access the file; when the last writer finishes its execution, it

will release the lock, so that any reader waiting for the file can now access it.

[252]

Starvation Chapter 13

Again, to see the output produced by the program, we will have it run for 3-4 seconds, and
then cancel the execution, as the program would otherwise run forever. The following is the
output that I obtained via this script:

> python3 example2.py

Reading being done by Thread-1:
This is some text.

Reading being done by Thread-1:
This is some text.

Writing being done by Thread-4.
Writing being done by Thread-5.
Writing being done by Thread-4.
Writing being done by Thread-4.
Writing being done by Thread-4.
Writing being done by Thread-5.
Writing being done by Thread-4.

It can be observed that, while some readers were able to access the text file (indicated by the
first four lines of my output), once a writer gained access to the shared resource, no reader
was able to access it anymore. The rest of my output included messages about writing
instructions: Writing being done by, and so on. As opposed to what we saw in the first
solution of the readers-writers problem, this solution is giving priority to writers, and, as a
consequence, the readers are starved. This is therefore called writers-preference.

The priority that writers were given over readers resulted from the fact that, while only the
first and the last writers have to acquire and release the read_try lock, respectively, each
and every reader wanting to access the text file have to interact with that lock object
individually. Once read_try is locked by a writer, no reader can even attempt to execute
its instructions, let alone try to access the text file.

There are cases in which some readers are able to gain access to the text file, if the readers
are initialized and executed before the writers (for example, in our program, the readers
were the first three elements, and the writers were the last two, in our list of threads).
However, once a writer is able to access the file and acquire the read_try lock during its
execution, starvation will most likely occur for the readers.

This solution is also not desirable, as it gives higher priority to the writer threads in our
program.

[253]

Starvation Chapter 13

The third readers-writers problem

You have seen that both of the solutions that we tried to implement can result in starvation,
by not giving equal priorities to the separate threads; one can starve the writers, and the
other can starve the readers. A balance between these two approaches might give us an
implementation with equal priorities among the readers and writers, and hence, solve the
problem of starvation.

Recall this: in our second approach, we are placing a lock on a reader's attempt to access the
text file, requiring that no writer will be starved once it starts waiting for the file. In this
solution, we will implement a lock that also utilizes this logic, but is then applied to both
readers and writers. All of the threads will then be subjected to the constraints of the lock,
and equal priority will hence be achieved among the separate threads.

Specifically, this is a lock that specifies whether a thread will be given access to the text file
at a given moment; we will call this the service lock. Each writer or reader has to try to
acquire this service lock before executing any of its instructions. A writer, having obtained
this service lock, will also attempt to obtain the resource lock and release the service lock
immediately thereafter. The writer will then execute its writing logic and finally release the
resource lock at the end of its execution.

Let us take a look at the writer () function in the Chapter13/example3.py file for our
implementation in Python, as follows:

Chapterl3/example3.py

def writer():
global text

while True:
with service:
resource.acquire ()

print (f'Writing being done by
{threading.current_thread() .name}.")

text += f'Writing was done by
{threading.current_thread() .name}. '

resource.release ()

A reader, on the other hand, will also need to acquire the service lock first. Since we are still
allowing multiple readers to access the resource at the same time, we are implementing the
reader counter and its corresponding lock.

[254]

Starvation Chapter 13

The reader will acquire the service lock and the counter lock, increment the reader counter
(and potentially, lock the resource), and then release the service lock and counter lock,
sequentially. Now, it will actually read data off the text file, and finally, it will decrement
the reader counter, and will potentially release the resource lock, if it is the last reader to
access the file at that time.

The reader () function contains this specification, as follows:
Chapterl3/example3.py

def reader():
global rcount

while True:
with service:
rcounter.acquire ()
rcount += 1
if rcount == 1:
resource.acquire ()
rcounter.release ()

print (f'Reading being done by
{threading.current_thread() .name}:")
#print (text)

with rcounter:
rcount -= 1
if rcount == 0:
resource.release ()

Finally, in our main program, we initialize the text string, the reader counter, all of the
necessary locks, and the reader and writer threads, as follows:

Chapterl3/example3.py

text = 'This is some text. '
rcount = 0

rcounter = threading.Lock ()
resource = threading.Lock ()
service = threading.Lock ()

threads = [threading.Thread(target=reader) for i in range(3)] +
[threading.Thread (target=writer) for i in range(2)]

for thread in threads:
thread.start ()

[255]

Starvation Chapter 13

Note that, we are commenting the code that prints out the current content of the text file in
the reader () function for readability for our output later on. Run the program for 3-4
seconds, and then cancel it. The following output is what I obtained on my personal
computer:

> python3 example3.py

Reading being done by Thread-3:
Writing being done by Thread-4.
Reading being done by Thread-1:
Writing being done by Thread-5.
Reading being done by Thread-2:
Reading being done by Thread-3:
Writing being done by Thread-4.

The pattern that we have with this current output is that the readers and writers are able to
access the shared resource cooperatively and efficiently; all of the readers and writers are
executing their instructions, and no thread is being starved by this scheduling algorithm.

Note that as you work with a reader-writer problem in your concurrent program, you do
not have to reinvent the wheel regarding the approaches that we just discussed. PyPI
actually has an external library called readerwriterlock that contains the
implementation of the three approaches in Python, as well as supports for timeouts.
Navigate to https://pypi.org/project/readerwriterlock/ to find out more about the
library and its documentation.

Solutions to starvation

Through an analysis of different approaches to the readers-writers problem, you have seen
the key to solving starvation: since some threads will be starved if they are not given a high
priority in accessing the shared resources, implementing fairness in the execution of all of
the threads will prevent starvation from occurring. Fairness, in this case, does not require a
program to forgo any order or priority that it has imposed on the different threads; but to
implement fairness, a program needs to ensure that all threads are given sufficient
opportunities to execute their instructions.

[256]

https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/
https://pypi.org/project/readerwriterlock/

Starvation Chapter 13

Keeping this idea in mind, we can potentially address the problem of starvation by
implementing one (or a combination) of the following approaches:

e Increasing the priority of low-priority threads: As we did with the writer
threads in the second approach and the reader threads in the third approach to
the readers-writers problem, prioritizing the threads that would otherwise not
have any opportunity to access the shared resource can successfully eliminate
starvation.

e First-in-first-out thread queue: To ensure that a thread that started waiting for
the shared resource before another thread will be able to acquire the resource
before the other thread, we can keep track of the threads requesting access in a
first-in-first-out queue.

¢ Other methods: Several methods can also be implemented to balance the
selection frequency of different threads. For example, a priority queue that also
gives gradually increasing priority to threads that have been waiting in the
queue for a long time, or if a thread has been able to access the shared resource
for many times, it will be given less priority, and so on.

Solving starvation in your concurrent program can be a rather complex and involved
process, and a deep understanding of its scheduling algorithm, combined with an
understanding of how processes and threads interact with the shared resources, is
necessary during the process. As you saw in the example of the readers-writers problem, it
can also take several implementations and revisions of different approaches to arrive at a
good solution to starvation.

Summary

Starvation is a problem in concurrent systems in which a process (or thread) cannot gain
access to the necessary resources to proceed with its execution and, therefore, cannot make
any progress. Most of the time, a poorly coordinated set of scheduling instructions is the
main cause of starvation; deadlock situations can also lead to starvation.

The readers-writers problem is one of the classic and most complex examples in the field of
computer science, illustrating problems that might occur in a concurrent program. Through
an analysis of different approaches to the readers-writers problem, you have gained insight
regarding how starvation can be solved with different scheduling algorithms. Fairness is an
essential element of a good scheduling algorithm, and, by making sure that the priority is
distributed appropriately among different processes and threads, starvation can be
eliminated.

[257]

Starvation Chapter 13

In the next chapter, we will discuss the last of the three common problems of concurrent
programming: race conditions. We will cover the basic foundation and causes of race
conditions, relevant concepts, and the connection of race conditions to other concurrency-
related problems.

Questions

e What is starvation, and why is it undesirable in a concurrent program?

e What are the underlying causes of starvation? What are the common high-level
causes of starvation that can manifest from the underlying cause?

e What is the connection between deadlock and starvation?
e What is the readers-writers problem?

e What is the first approach to the readers-writers problem? Why does starvation
arise in that situation?

e What is the second approach to the readers-writers problem? Why does
starvation arise in that situation?

e What is the third approach to the readers-writers problem? Why does it
successfully address starvation?

e What are some common solutions to starvation?

Further reading

e Parallel Programming with Python, by Jan Palach, Packt Publishing Ltd, 2014

e Python Parallel Programming Cookbook, by Giancarlo Zaccone, Packt Publishing
Ltd, 2015

o Starvation and Fairness (tutorials.jenkov.com/java-concurrency/starvation-
and—fairness), by Jakob Jenkov

e Faster Fair Solution for the Reader-Writer Problem, V.Popov and O.Mazonka

[258]

http://tutorials.jenkov.com/java-concurrency/starvation-and-fairness.html
http://tutorials.jenkov.com/java-concurrency/starvation-and-fairness.html

14

Race Conditions

In this chapter, we will discuss the concept of race conditions and their potential causes in
the context of concurrency. The definition of critical section, which is a concept highly
relevant to race conditions and concurrent programming, will also be covered. We will use
some example code in Python to simulate race conditions and the solutions commonly used
to address them. Finally, real-life applications that commonly deal with race conditions will
be discussed.

The following topics will be covered in this chapter:

e The basic concept of a race condition, and how it occurs in concurrent
applications, along with the definition of critical sections

¢ A simulation of a race condition in Python and how to implement race condition
solutions

e The real-life computer science concepts that commonly interact and work with
race conditions

Technical requirements

Following is the list of prerequisites needed for this chapter:

¢ Ensure that you have Python 3 installed on your computer

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder titled Chapter14
¢ Check out the following video to see the Code in Action: http://bit.ly/2AdYWR]

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2AdYWRj
http://bit.ly/2AdYWRj
http://bit.ly/2AdYWRj
http://bit.ly/2AdYWRj
http://bit.ly/2AdYWRj
http://bit.ly/2AdYWRj
http://bit.ly/2AdYWRj
http://bit.ly/2AdYWRj
http://bit.ly/2AdYWRj

Race Conditions Chapter 14

The concept of race conditions

A race condition is typically defined as a phenomenon during which the output of a system
is indeterminate and dependent on the scheduling algorithm and the order in which tasks
are scheduled and executed. When the data becomes mishandled and corrupted during this
process, a race condition becomes a bug in the system. Given the nature of this problem, it
is quite common for a race condition to occur in concurrent systems, which emphasize
scheduling and coordinating independent tasks.

A race condition can occur in both an electronic hardware system and a software
application; in this chapter, we will only be discussing race conditions in the context of
software development—specifically, concurrent software applications. This section will
cover the theoretical foundations of race conditions and their root causes and the concept of
critical sections.

Critical sections

Critical sections indicate shared resources that are accessed by multiple processes or
threads in a concurrent application, which can lead to unexpected, and even erroneous,
behavior. We have seen that there are multiple methods to protect the integrity of the data
contained in these resources, and we call these protected sections critical sections.

As you can imagine, the data in these critical sections, when interacted with and altered
concurrently or in parallel, can become mishandled or corrupted. This is especially true
when the threads and processes interacting with it are poorly coordinated and scheduled.
The logical conclusion, therefore, is to not allow multiple agents to go into a critical section
at the same time. We call this concept mutual exclusion.

We will discuss the relationship between critical sections and the causes of race conditions
in the next subsection.

[260]

Race Conditions Chapter 14

How race conditions occur

Let's consider a simple concurrent program, in order to understand what can give rise to a
race condition. Suppose that the program has a shared resource and two separate threads
(thread 1 and thread 2) that will access and interact with that resource. Specifically, the
shared resource is a number and, as per their respective execution instructions, each thread
is to read in that number, increment it by 1, and finally, update the value of the shared
resource with the incremented number.

Suppose that the shared number is originally 2, and then, thread 1 accesses and interacts
with the number; the shared resource then becomes 3. After thread 1 successfully alters and
exits the resource, thread 2 begins to execute its instructions, and the shared resource that is
a number is updated to 4. Throughout this process, the number was originally 2, was
incremented twice (each time by a separate thread), and held a value of 4 at the end. The
shared number was not mishandled and corrupted in this case.

Imagine, then, a scenario in which the shared number is still 2 at the beginning, yet both of
the threads access the number at the same time. Now, each of the threads reads in the
number 2 from the shared resource, each increments the number 2 to 3 individually, and
then, each writes the number 3 back to the shared resource. Even though the shared
resource was accessed and interacted with by a thread twice, it only held a value of 3 at the
end of the process.

This is an example of a race condition occurring in a concurrent program: since the second
thread to access a shared resource does it before the first thread finishes its execution (in
other words, writing the new value to the shared resource), the second thread fails to take
in the updated resource value. This leads to the fact that, when the second thread writes to
the resource, the value that is processed and updated by the first thread is overwritten. At
the end of the execution of the two threads, the shared resource has technically only been
updated by the second thread.

[261]

Race Conditions

Chapter 14

The following diagram further illustrates the contrast between a correct data handling
process and a situation with a race condition:

edit

e Correct behavior

A

Task 2 gets the
updated value

from task 1

read

A

v

edit
write

* incorrect behavior

edit

Task 1 and task
2 work on the
same data

write

read

write

A 4

Update from
task 2 gets
overwritten by
task 1

v

A

edit

Mishandling shared data

Intuitively, we can see that a race condition can result in the mishandling and corruption of
data. In the preceding example, we can see that a race condition can occur with only two
separate threads accessing a common resource, causing the shared resource to be updated
incorrectly and hold an incorrect value at the end of the program. We know that most real-
life concurrent applications contain significantly more threads and processes and more
shared resources, and the more threads/processes that interact with the shared resource, the
more likely it is that a race condition will occur.

[262]

Race Conditions Chapter 14

Simulating race conditions in Python

Before we discuss a solution that we can implement to solve the problem of race conditions,
let's try to simulate the problem in Python. If you have already downloaded the code for
this book from the GitHub page, go ahead and navigate to the Chapter14 folder. Let's take
a look at the Chapter14/examplel.py file—specifically, the update () function, as
follows:

Chapterl4/examplel.py

import random
import time

def update() :
global counter

current_counter = counter # reading in shared resource
time.sleep (random.randint (0, 1)) # simulating heavy calculations
counter = current_counter + 1 # updating shared resource

The goal of the preceding update () function is to increment a global variable

called counter, and it is to be called by a separate thread in our script. Inside the function,
we are interacting with a shared resource—in this case, counter. We then assign the value
of counter to another local variable, called current_counter (this is to simulate the
process of reading data from more complex data structures for the shared resources).

Next, we will pause the execution of the function by using the t ime.sleep () method. The
length of the period during which the program will pause is pseudo-randomly chosen
between 0 and 1, generated by the function call, random. randint (0, 1), so the program
will either pause for one second or not at all. Finally, we assign the newly computed value
of current_counter (which is its one-increment) to the original shared resource (the

counter variable).

NOW, we can move on to our main program:

Chapterld4/examplel.py

import threading

counter = 0

threads = [threading.Thread(target=update) for i in range(20)]

for thread in threads:
thread.start ()

[263]

Race Conditions Chapter 14

for thread in threads:
thread.join ()

print (f'Final counter: {counter}.')
print ('Finished. ")

Here, we are initializing the counter global variable with a set of threading. Thread
objects, in order to execute the update () function concurrently; we are initializing
twenty thread objects, to increment our shared counter twenty times. After starting and
joining all of the threads that we have, we can finally print out the end value of our shared
counter variable.

Theoretically, a well-designed concurrent program will successfully increment the share
counter twenty times in total, and, since its original value is 0, the end value of the counter
should be 20 at the end of the program. However, as you run this script, the counter
variable that you obtain will most likely not hold an end value of 20. The following is my
own output, obtained from running the script:

> python3 examplel.py
Final counter: 9.
Finished.

This output indicates that the counter was only successfully incremented nine times. This is
a direct result of a race condition that our concurrent program has. This race condition
occurs when a specific thread spends time reading in and processing the data from the
shared resource (specifically, for one second, using the time . sleep () method), and
another thread reads in the current value of the counter variable, which, at this point, has
not been updated by the first thread, since it has not completed its execution.

Interestingly, if a thread does not spend anytime processing the data (in other words, when
0 is chosen by the pseudo-random random. randint () method), the value of the shared
resource can potentially be updated just in time for the next thread to read and process it.
This phenomenon is illustrated by the fact that the end value of the counter varies within
different runs of the program. For example, the following is the output that I obtained after
running the script three times. The output from the first run is as follows:

> python3 examplel.py
Final counter: 9.
Finished.

[264]

Race Conditions Chapter 14

The output from the second run is as follows:

> python3 examplel.py
Final counter: 12.
Finished.

The output from the third run is as follows:

> python3 examplel.py
Final counter: 5.
Finished.

Again, the final value of the counter is dependent on the number of threads that spend one
second pausing and the number of threads not pausing at all. Since these two numbers are,
in turn, dependent on the random. randint () method, the final value of the counter
changes between different runs of the program. We will still have a race condition in our
program, except for when we can ensure that the final value of the counter is always 20
(the counter being successfully incremented twenty times, in total).

Locks as a solution to race conditions

In this section, we will discuss the most common solution to race conditions: locks.
Intuitively, since the race conditions that we observed arose when multiple threads or
processes accessed and wrote to a shared resource simultaneously, the key idea to solving
race conditions is to isolate the executions of different threads/processes, especially when
interacting with a shared resource. Specifically, we need to make sure that a thread/process
can only access the shared resource after any other threads/processes interacting with the
resource have finished their interactions with that resource.

The effectiveness of locks

With locks, we can turn a shared resource in a concurrent program into a critical section,
whose integrity of data is guaranteed to be protected. A critical section guarantees the
mutual exclusion of a shared resource, and cannot be accessed concurrently by multiple
processes or threads; this will prevent any protected data from being updated or altered
with conflicting information, resulting from race conditions.

[265]

Race Conditions Chapter 14

In the following diagram, Thread B is blocked from accessing the shared resource—the
critical section, named var—by a mutex (mutual exclusion) lock, because Thread A is
already accessing the resource:

access

lock @ block

Thread A Thread B

Locks prevent simultaneous access to a critical section

Now, we will specify that, in order to gain access to a critical section in a concurrent
program, a thread or process needs to acquire a lock object that is associated with the
critical section; similarly, that thread or process also needs to release that lock upon leaving
the critical section. This setup will effectively prevent multiple accesses to the critical
section, and will therefore prevent race conditions. The following diagram illustrates the
execution flow of multiple threads interacting with multiple critical sections, with the
implementation of locks in place:

L1/cs1 L2/cS2 L3/cs3
T 0| | .. O)
L1/cs1 L2/cs2 L3/cs3

Locks and critical sections in multiple threads

As you can see in the diagram, threads T1 and T2 both interact with three critical sections
in their respective execution instructions: CS1, CS2, and CS3. Here, T1 and T2 attempt to
access CS1 at almost the same time, and, since CS1 is protected with lock L1, only T1 is able
to acquire lock L1, and hence, access/interact with the critical section, while T2 has to spend
time waiting for T1 to exit out of the critical section and release the lock before accessing the
section itself. Similarly, for the critical sections, CS2 and CS3, although both threads require
access to a critical section at the same time, only one can process it, while the other has to
wait to acquire the lock associated with the critical section.

[266]

Race Conditions Chapter 14

Implementation in Python

Now, let's implement the specification in the preceding example, in order to solve the
problem of race conditions. Navigate to the Chapter14/example2.py file and consider
our corrected update () function, as follows:

Chapterld/example?2.py

import random
import time

def update():
global counter

with count_lock:

current_counter = counter # reading in shared resource
time.sleep(random.randint (0, 1)) # simulating heavy calculations
counter = current_counter + 1

You can see that all of the execution instructions of a thread specified in the update ()
function are under the context manager of a lock object named count_lock. So, every time
a thread is called to run the function, it will have to first acquire the lock object, before any
instructions can be executed. In our main program, we simply create the lock object in
addition to what we already had, as follows:

Chapterld/example?2.py

import threading

counter = 0
count_lock = threading.Lock ()
threads = [threading.Thread(target=update) for i in range (20)]

for thread in threads:
thread.start ()

for thread in threads:
thread.join ()

print (f'Final counter: {counter}.')
print ('Finished. ")

[267]

Race Conditions Chapter 14

Run the program, and your output should look similar to the following;:

> python3 example2.py
Final counter: 20.
Finished.

You can see that the counter was successfully incremented twenty times and held the
correct value at the end of the program. Furthermore, no matter how many times the script
is executed, the final value of the counter will always be 20. This is the advantage of using
locks to implement critical sections in your concurrent programs.

The downside of locks

In chapter 12, Deadlock, we covered an interesting phenomenon, in which the use of locks
can lead to undesirable results. Specifically, we found out that, with enough locks
implemented in a concurrent program, the whole program can become sequential. Let's
analyze this concept with our current program. Consider the Chapter14/example3.py
file, as follows:

chld/example3.py

import threading
import random; random.seed(0)
import time

def update (pause_period) :
global counter

with count_lock:
current_counter = counter # reading in shared resource
time.sleep (pause_period) # simulating heavy calculations
counter = current_counter + 1 # updating shared resource
pause_periods = [random.randint (0, 1) for i in range (20)]

FHEd R

counter = 0
count_lock = threading.Lock ()

start = time.perf_counter ()
for i in range (20):

update (pause_periods[i])

print ('--Sequential version--"')

[268]

Race Conditions Chapter 14

print (f'Final counter: {counter}.')
print (f'Took {time.perf_counter() - start : .2f} seconds.')

FH S S 4
counter = 0

threads = [threading.Thread(target=update, args=(pause_periods[i],)) for i
in range (20)]

start = time.perf_counter ()

for thread in threads:
thread.start ()

for thread in threads:
thread.join ()

print ('-—-Concurrent version—-")
print (f'Final counter: {counter}."')
print (f'Took {time.perf_counter() - start : .2f} seconds.')

FH A R R R R R R R

print ('Finished. ")

Turning a concurrent program sequential

The goal of this script is to compare the speed of our current concurrent program with its
sequential version. Here, we are still using the same update () function, with locks, and we
are running it twenty times, both sequentially and concurrently, like we did earlier. We are
also creating a list of determined periods of pausing, so that these periods are consistent
between when we simulate the sequential version and when we simulate the concurrent
version (for this reason, the update () function now takes in a parameter that specifies the
period of pausing each time it is called):

pause_periods = [random.randint (0, 1) for i in range (20)]

During the next step of the program, we simply call the update () function inside a for
loop, with twenty iterations, keeping track of the time it takes for the loop to finish. Note
that, even though this is to simulate the sequential version of the program, the update ()
function still needs the lock object to be created prior, so we are initializing it here:

counter = 0
count_lock = threading.Lock ()
start = time.perf_counter ()

[269]

Race Conditions Chapter 14

for i in range (20):
update (pause_periods[i])

print ('--Sequential version—-")
print (f'Final counter: {counter}.')
print (f'Took {time.perf_counter() - start : .2f} seconds.')

The last step is to reset the counter and run the concurrent version of the program that we
already implemented. Again, we need to pass in the corresponding pause period while
initializing each of the threads that run the update () function. We are also keeping track of
the time it takes for this concurrent version of the program to run:

counter = 0

threads = [threading.Thread (target=update, args=(pause_periods[i],)) for i
in range(20)]

start = time.perf_counter ()

for thread in threads:
thread.start ()

for thread in threads:
thread.join ()

print ('--Concurrent version--"')
print (f'Final counter: {counter}.')
print (f'Took {time.perf_counter() - start : .2f} seconds.')

Now, after you have run the script, you will observe that both the sequential version and
the concurrent version of our program took the same amount of time to run. Specifically,
the following is the output that I obtained; in this case, they both took approximately 12
seconds. The actual time that your program takes might be different, but the speed of the
two versions should still be equal:

> python3 example3.py
—--Sequential version—-—-
Final counter: 20.
Took 12.03 seconds.
——Concurrent version——
Final counter: 20.
Took 12.03 seconds.
Finished.

[270]

Race Conditions Chapter 14

So, our concurrent program is taking just as much time as its sequential version, which
negates one of the biggest purposes of implementing concurrency in a program: improving
speed. But why would concurrent and traditional sequential applications with the same
sets of instructions and elements also have the same speed? Should the concurrent program
always produce a faster speed than the sequential one?

Recall that, in our program, the critical section is being protected by a lock object, and no
multiple threads can access it at the same time. Since all of the execution of the program
(incrementing the counter for twenty times) depends on a thread accessing the critical
section, the placement of the lock object on the critical section means that only one thread
can be executing at a given time. With this specification, the executions of any two threads
cannot overlap with each other, and no additional speed can be gained from this
implementation of concurrency.

This is the phenomenon that we encountered when analyzing the problem of deadlock: if
enough locks are placed in a concurrent program, that program will become entirely
sequential. This is a reason why locks are sometimes undesirable solutions to problems in
concurrent programming. However, this situation only happens if all of the execution of the
concurrent program is dependent upon interacting with the critical section. Most of the
time, reading and manipulating the data of a shared resource is only a portion of the entire
program and, therefore, concurrency still provides the intended additional speed for our
program.

Locks do not lock anything

An additional aspect of locks is the fact that they do not actually lock anything. The only
way that a lock object is utilized, with respect to a specific shared resource, is for the
threads and processes interacting with that resource to also interact with the lock. In other
words, if those threads and processes choose to not check with the lock before accessing
and altering the shared resource, the lock object itself cannot stop them from doing so.

In our examples, you have seen that, to implement the acquiring/releasing process of a lock
object, the instructions of a thread or process will be wrapped around by a lock context
manager; this specification is dependent on the implementation of the thread/process
execution logic and not the resource. That is because the lock objects that we have seen are
not connected to the resources that they are supposed to protect in any way. So, if the
thread/process execution logic does not require any interaction with the lock object
associated with the shared resource, that thread or process can simply gain access to the
resource without difficulty, potentially resulting in the mismanipulation and corruption of
data.

[271]

Race Conditions Chapter 14

This is not only true in the scope of having multiple threads and processes in a single
concurrent program. Suppose that we have a concurrent system consisting of multiple
components that all interact and manipulate the data of a resource shared across the
system, and this resource is associated with a lock object; it follows that, if any of these
components fail to interact with that lock, it can simply bypass the protection implemented
by the lock and access the shared resource. More importantly, this characteristic of locks
also has implications regarding the security of a concurrent program. If an outside,
malicious agent is connected to the system (say, a malicious client interacting with a server)
and intends to corrupt the data shared across the system, that agent can be instructed to
simply ignore the lock object and access that data in an intrusive way.

The view that locks don't lock anything was popularized by Raymond Hettinger, a Python
core developer who worked on the implementation of various elements in Python
concurrent programming. It is argued that using lock objects alone does not guarantee a
secure implementation of concurrent data structures and systems. Locks need to be
concretely linked to the resources that they are to protect, and nothing should be able to
access a resource without first acquiring the lock that is associated with it. Alternatively,
other concurrent synchronization tools, such as atomic message queues, can provide a
solution to this problem.

Race conditions in real life

You have now learned about the concept of race conditions, how they are caused in
concurrent systems, and how to effectively prevent them. In this section, we will provide an
overarching view of how race conditions can occur in real-life examples, within the various
sub-fields of computer science. Specifically, we will be discussing the topics of security, file
management, and networking.

Security

Concurrent programming can have significant implications in terms of the security of the
system in question. Recall that a race condition arises between the process of reading and
altering the data of a resource; a race condition in an authenticating system can cause the
corruption of data between the time of check (when the credentials of an agent are
checked) and the time of use (when the agent can utilize the resource). This problem is also
known as a Time-Of-Check-To-Time-Of-Use (TOCTTOU) bug, which is undoubtedly
detrimental to security systems.

[272]

Race Conditions Chapter 14

Careless protection of shared resources when handling race conditions, as we briefly
touched upon during the last section, can provide external agents with access to those
supposedly protected resources. Those agents can then change the data of the resources to
create privilege escalation (in simple terms, to give themselves more illegal access to more
shared resources), or they can simply corrupt the data, causing the whole system to
malfunction.

Interestingly, race conditions can also be used to implement computer security. As race
conditions result from the uncoordinated access of multiple threads/processes to a shared
resources, the specification in which a race condition occurs is significantly random. For
example, in our own Python example, you saw that, when simulating a race condition, the
final value of the counter varies between different executions of the program; this is (partly)
because of the unpredictable nature of the situation, in which multiple threads are running
and accessing the shared resources. (I say partly, since the randomness also results from the
random pausing periods that we generate in each execution of the program.) So, race
conditions are sometimes intentionally provoked, and the information obtained when the
race condition occurs can be used to generate digital fingerprints for security
processes—this information, again, is significantly random, and is therefore valuable for
security purposes.

Operating systems

Race conditions can occur in the context of file and memory management in an operating
system, when two separate programs attempt to access the same resource, such as memory
space. Imagine a situation where two processes from different programs have been running
for a significant amount of time, and, even though they were originally initialized apart
from each other in terms of memory space, enough data has been accumulated and the
stack of execution of one process now collides with that of the other process. This can lead
to the two processes sharing the same portion of memory space and can ultimately result in
unpredictable consequences.

Another aspect of the complexity of race conditions is illustrated by the Unix version 7
operating system—specifically, in the mkdir command. Typically, the mkdir command is
used to create a new directory in the Unix operating system; this is done by calling the
mknod command to create the actual directory and the chown command to specify the
owner of that directory. Because there are two separate commands to be run and a definite
gap exists between when the first command is finished and the second is called, this can
cause a race condition.

[273]

Race Conditions Chapter 14

During the gap between the two commands, if someone can delete the new directory
created by the mknod command and link the reference to another file, when the chown
command is run, the ownership of that file will be changed. By exploiting this vulnerability,
someone can theoretically change the ownership of any file in an operating system so that
someone can create a new directory. The following diagram further illustrates this
exploitation:

1. Allocate
space

3. Transfer
ownership

2. Create link to
password file

Diagram of mkdir race condition

Networking

In networking, race conditions can take the form of giving multiple users unique privileges
in a network. Specifically, say a given server should only have exactly one user with admin
privileges. If two users, who are both eligible to become the server admin, request access to
those privileges at the same time, then it is possible for both of them to gain that

access. This is because, at the point when both of the user requests are received by the
server, neither of the users have been granted admin privileges yet, and the server thinks
that admin privileges can still be given out.

This form of a race condition is quite common when a network is highly optimized for
parallel processing (for example, non-blocking sockets), without a careful consideration of
the resources shared across the network.

[274]

Race Conditions Chapter 14

Summary

A race condition is defined as a phenomenon during which the output of a system is
indeterminate and is dependent on the scheduling algorithm and the order in which tasks
are scheduled and executed. Critical sections indicate shared resources that are accessed by
multiple processes or threads in a concurrent application, which can lead to unexpected,
and even erroneous, behavior. A race condition occurs when two or more threads/processes
access and alter a shared resource simultaneously, resulting in mishandled and corrupted
data. Race conditions also have significant implications in real-life applications, such as
security, operating systems, and networking.

Since the race conditions that we observed arose when multiple threads or processes
accessed and wrote to a shared resource simultaneously, the key idea for solving race
conditions is to isolate the execution of different threads/processes, especially when
interacting with a shared resource. With locks, we can turn a shared resource in a
concurrent program into a critical section, whose integrity of data is guaranteed to be
protected. However, there are a number of disadvantages to using locks: with enough locks
implemented in a concurrent program, the whole program might become sequential; locks
don't lock anything.

In the next chapter, we will consider one of the biggest problems in Python concurrent
programming: the infamous Global Interpreter Lock (GIL). You will learn about the basic
idea behind the GIL, its purposes, and how to effectively work with it in concurrent Python
applications.

Questions

e What is a critical section?

What is a race condition and why is it undesirable in a concurrent program?

What is the underlying cause of race conditions?

How can locks solve the problem of race conditions?

Why are locks sometimes undesirable in a concurrent program?

What is the significance of race conditions in real-life systems and applications?

[275]

Race Conditions Chapter 14

Further reading

For more information, you can refer to the following links:

Parallel Programming with Python, by Jan Palach, Packt Publishing Ltd, 2014
Python Parallel Programming Cookbook, by Giancarlo Zaccone, Packt Publishing
Ltd, 2015

Race Conditions and Critical Sections (tutorials.jenkov.com/Jjava-
concurrency/ race—conditions—and—critical—sections), by Jakob Jenkov

Race conditions, files, and security flaws; or the tortoise and the hare redux, by Matt
Bishop, Technical Report CSE-95-98(1995)

Computer and Information Security, Chapter 11, Software Flaws and Malware 1
Hustration (slideplayer.com/slide/10319860/)

[276]

http://tutorials.jenkov.com/java-concurrency/race-conditions-and-critical-sections.html
http://tutorials.jenkov.com/java-concurrency/race-conditions-and-critical-sections.html
https://slideplayer.com/slide/10319860/

15

The Global Interpreter Lock

One of the major players in Python concurrent programming is the Global Interpreter
Lock (GIL). In this chapter, we will cover the definition and purposes of the GIL, and how
it affects concurrent Python applications. The problems that the GIL poses for Python
concurrent systems and the controversy around its implementation will also be discussed.
Finally, we will mention some thoughts on how Python programmers and developers
should think about, and interact with, the GIL.

The following topics will be covered in this chapter:

¢ A brief introduction to the GIL: what gave rise to it, and the problems it causes
e Efforts in removing/fixing the GIL in Python
e How to effectively work with the GIL in Python concurrent programs

Technical requirements

The following is a list of prerequisites for this chapter:

¢ Ensure that you have Python 3 installed on your computer

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder named Chapter15

e Check out the following video to see the Code in Action: http://bit.1ly/
2DFDYhC

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2DFDYhC
http://bit.ly/2DFDYhC
http://bit.ly/2DFDYhC
http://bit.ly/2DFDYhC
http://bit.ly/2DFDYhC
http://bit.ly/2DFDYhC
http://bit.ly/2DFDYhC
http://bit.ly/2DFDYhC

The Global Interpreter Lock Chapter 15

An introduction to the Global Interpreter
Lock

The GIL is quite popular in the Python concurrent programming community. Designed as a
lock that will only allow one thread to access and control the Python interpreter at any
given time, the GIL in Python is often known as the infamous GIL that prevents
multithreaded programs from reaching their fully optimized speed. In this section, we will
discuss the concept behind the GIL, and its goals: why it was designed and implemented,
and how it affected multithreaded programming in Python.

An analysis of memory management in Python

Before we jump into the specifics of the GIL and its effects, let's consider the problems

that Python core developers encountered during the early days of Python, and that gave
rise to a need for the GIL. Specifically, there is a significant difference between Python
programming and programming in other popular languages, in terms of managing objects
in the memory space.

For example, in the programming language C++, a variable is actually a location in the
memory space where a value will be written. This setup leads to the fact that, when a non-
pointer variable is assigned with a specific value, the programming language will
effectively copy that specific value to the memory location (that is, the variable).
Additionally, when a variable is assigned with another variable (which is not a pointer),
the memory location of the latter will be copied to that of the former; no further connection
between these two variables will be maintained after the assignment.

On the other hand, Python considers a variable as simply a name, while the actual values of
its variables are isolated in another region in the memory space. When a value is assigned
to a variable, the variable is effectively given a reference to the location in the memory
space of the value (even though the term referencing is not used in the same sense as C++
referencing). Memory management in Python is therefore fundamentally different from the
model of putting a value into a memory space that we see in C++.

This means that when an assignment instruction is executed, Python simply interacts with
references and switches them around—not the actual values themselves. Also, for this
reason, multiple variables can be referenced by the same value, and the changes made by
one variable will be reflected throughout all of the other associated variables.

[278]

The Global Interpreter Lock Chapter 15

Let's analyze this feature in Python. If you have already downloaded the code for this book
from the GitHub page, go ahead and navigate to the Chapter15 folder. Let's take a look at
the Chapter15/examplel.py file, as follows:

Chapterl5/examplel.py
import sys
print (f'Reference count when direct-referencing: {sys.getrefcount ([7])}.")

a = [7]
print (f'Reference count when referenced once: {sys.getrefcount(a)}."')

b = a
print (f'Reference count when referenced twice: {sys.getrefcount(a)}.")

FHEHFE AR A R R R R R R

a[0] = 8
print (f'Variable a after a is changed: {a}."')
print (f'Variable b after a is changed: {b}."'")

print ('Finished. ")

In this example, we are looking at the management of the value [7] (a list of one element:
the integer 7). We mentioned that values in Python are stored independently of variables,
and value management in Python simply references variables to the appropriate values.
The sys.getrefcount () method in Python takes in an object and returns the counter of
all references that the value associated to that object has. Here, we are calling
sys.getrefcount () three times: on the actual value, [7]; the variable a that is assigned
with the value; and finally, the variable b that is assigned with the variable a.

Additionally, we are exploring the process of mutating the value by using a variable
referenced with it and the resulting values of all of the variables associated to that value.
Specifically, we are mutating the first element of the list via variable a, and printing out the
values of both a and b. Run the script, and your output should be similar to the following:

> python3 examplel.py

Reference count when direct-referencing: 1.
Reference count when referenced once: 2.
Reference count when referenced twice: 3.
Variable a after a is changed: [8].
Variable b after a is changed: [8].
Finished.

[279]

The Global Interpreter Lock Chapter 15

As you can see, this output is consistent with what we discussed: for the

first sys.getrefcount () function call, there is only one reference count for the value [7],
which is created when we directly reference it; when we assign the list to variable a, the
value has two references, since a is now associated with the value; finally, when a is
assigned to b, [7] is additionally referenced by b, and the reference count is now three.

In the output of the second part of the program, we can see that, when we changed the
value of which variable a references, [7] was mutated instead of the variable a. As a result,
variable b, which was referencing the same value as a, also had its value changed.

The following diagram illustrates this process. In Python programs, variables (a and b)
simply make references to the actual values (objects), and an assignment statement between
two variables (for example, a = b) instructs Python to have the two variables reference the

same object (as opposed to copying the actual value to another memory location, like in
CH+t):

a" is actually reference to object

Reference Object
n refernced K+

a 4l

by "a

P e — -
1

a=h, makes identifier "b",
o refer to the
same object as identifier "a"

|
L e e e e e e e e e e - - 4

Reference
HbH

Diagram of Python's referencing scheme

[280]

The Global Interpreter Lock Chapter 15

The problem that the GIL addresses

Keeping Python's implementation of memory and variable management in mind, we can
see that references to a given value in Python are constantly changing in a program, and
keeping track of the reference count for a value is therefore highly important.

Now, applying what you learned in chapter 14, Race Conditions, you should know that in a
Python concurrent program, this reference count is a shared resource that needs protection
from race conditions. In other words, this reference count is a critical section, which, if
handled carelessly, will result in an incorrect interpretation of how many variables are
referencing a particular value. This will cause memory leaks that will make Python
programs significantly inefficient, and may even release a memory that is actually being
referenced by some variables, losing that value forever.

As you learned in the previous chapter, a solution to making sure that race conditions will
not occur with regard to a particular shared resource is to place a lock on that resource,
effectively allowing one thread, at the most, to access the resource at any given time within
a concurrent program. We also discussed that, if enough locks are placed in a concurrent
program, that program will become entirely sequential, and no additional speed will be
gained by implementing concurrency.

The GIL is a solution to the combination of the two preceding problems, being one single
lock on the entire execution of Python. The GIL must first be acquired by any Python
instruction that wants to be executed (CPU-bound tasks), preventing a race condition from
occurring for any reference count.

In the early days of the development of the Python language, other solutions to the problem
described here were also proposed, but the GIL was the most efficient and simple to
implement, by far. Since the GIL is a lightweight, overarching lock for the entire execution
of Python, no other lock needs to be implemented to guarantee the integrity of other critical
sections, keeping the performance overhead of Python programs at a minimum.

[281]

The Global Interpreter Lock Chapter 15

Problems raised by the GIL

Intuitively, with a lock guarding all CPU-bound tasks in Python, a concurrent program will
not be able to become fully multithreading. The GIL effectively prevents CPU-bound tasks
from being executed in parallel across multiple threads. To understand the effect of this
feature of the GIL, let's consider an example in Python; navigate

to Chapterl5/example2.py, as follows:

Chapterl5/example?2.py

import time
import threading

COUNT = 50000000
def countdown (n) :
while n > 0:

n -=1

FH A R R A R

start = time.time ()
countdown (COUNT)

print ('Sequential program finished.')
print (f'Took {time.time() - start : .2f} seconds.')

FH A R R A R R R R R R R

threadl threading.Thread (target=countdown, args=(COUNT // 2,))
thread2 = threading.Thread(target=countdown, args=(COUNT // 2,))

start = time.time ()
threadl.start ()
thread2.start ()
threadl.join ()
thread2.join ()

print ('Concurrent program finished.')
print (f'Took {time.time() - start : .2f} seconds.')

[282]

The Global Interpreter Lock Chapter 15

In this example, we are comparing the speed of executing a particular program in Python
sequentially and concurrently, via multithreading. Specifically, we have a function named
countdown () that simulates a heavy CPU-bound task, which takes in a number, n, and
decrements it until it becomes zero or negative. We then call countdown () on 50,000,000
once, as a sequential program. Finally, we call the function twice, each in a separate thread,
on 25,000,000, which is exactly half of 50,000,000; this is the multithreading version of the
program. We are also keeping track of the time it takes for Python to run both the
sequential program and the multithreading program.

Theoretically, the multithreading version of the program should take half as long as the
sequential version, as the task is effectively being split in half and run in parallel, via the
two threads that we created. However, the output produced by the program would suggest
otherwise. The following output is what I obtained through running the script:

> python3 example2.py
Sequential program finished.
Took 2.80 seconds.
Concurrent program finished.
Took 2.74 seconds.

Contrary to what we predicted, the concurrent version of the countdown took almost as
long as the sequential version; multithreading did not offer any considerable speedup for
our program. This is a direct effect of having the GIL guarding CPU-bound tasks, as
multiple threads are not allowed to run simultaneously. Sometimes, a multithreading
program can take even longer to complete its execution than its sequential counterpart,
since there is also the overhead of acquiring and releasing the GIL.

This is undoubtedly a significant problem for multithreading, and for concurrent
programming in Python in general, because as long as a program contains CPU-bound
instructions, those instructions will, in fact, be sequential in the execution of the program.
However, instructions that are not CPU-bound happen outside the GIL, and thus, they are
not affected by the GIL (for example, I/O-bound instructions).

[283]

The Global Interpreter Lock Chapter 15

The potential removal of the GIL from
Python

You have learned that the GIL sets a significant constraint on our multithreading programs
in Python, especially those with CPU-bound tasks. For this reason, many Python
developers have come to view the GIL in a negative light, and the term “the infamous GIL"
has started to become popular; it is not surprising that some have even advocated the
complete removal of the GIL from the Python language.

In fact, multiple attempts to remove the GIL have been made by prominent Python users.
However, the GIL is so deeply implanted in the implementation of the language, and the
execution of most libraries and packages that are not thread-safe is so significantly
dependent on the GIL, that the removal of the GIL will actually engender bugs as well as
backward incompatibility issues for your Python programs. A number of Python
developers and researchers tried to completely omit the GIL from Python execution, and
most existing C extensions, which depend heavily on the functionalities of the GIL, stopped
working.

Now there are other viable solutions to address the problems that we have discussed; in
other words, the GIL is in every way replaceable. However, most of these solutions contain
so many complex instructions that they actually decrease the performance of sequential and
I/O-bound programs, which are not affected by the GIL. So, these solutions will slow down
single-threaded or multithreaded I/O programs, which actually make up a large percentage
of existing Python applications. Interestingly, the creator of Python, Guido van Rossum,
also commented on this topic in his article, It isn’t Easy to Remove the GIL:

"I'd welcome a set of patches into Py3k only if the performance for a single-threaded
program (and for a multi-threaded but I/O-bound program) does not decrease.”

Unfortunately, this request has not been achieved by any of the proposed alternatives to the
GIL. The GIL remains an integral part of the Python language.

How to work with the GIL

There are a few ways to deal with the GIL in your Python applications, which will be
addressed as follows.

[284]

The Global Interpreter Lock Chapter 15

Implementing multiprocessing, rather than
multithreading

This is perhaps the most popular and easiest method to circumvent the GIL and achieve
optimal speed in a concurrent program. As the GIL only prevents multiple threads from
executing CPU-bound tasks simultaneously, processes executing over multiple cores of a
system, each having its own memory space, are completely immune to the GIL.

Specifically, considering the preceding countdown example, let's compare the performance
of that CPU-bound program when it is sequential, multithreading, and multiprocessing.
Navigate to the Chapter15/example3.py file; the first part of the program is identical to
what we saw earlier, but at the end we add in an implementation of a multiprocessing
solution for the problem of counting down from 50,000,000, using two separate processes:

Chapterl5/example3.py

import time
import threading
from multiprocessing import Pool

COUNT = 50000000

def countdown (n) :
while n > 0:
n -=1
if __ name_ == '_ main_ ':
FHAHH A S A
Sequential

start = time.time ()
countdown (COUNT)

print ('Sequential program finished.')
print (f'Took {time.time() - start : .2f} seconds.')
print ()

S i i
Multithreading

threadl = threading.Thread (target=countdown, args=(COUNT // 2,))
thread?2 threading.Thread (target=countdown, args=(COUNT // 2,))

start = time.time ()
threadl.start ()

[285]

The Global Interpreter Lock Chapter 15

thread2.start ()
threadl. join ()
thread2.join ()

print ('Multithreading program finished.')
print (f'Took {time.time() - start : .2f} seconds.')
print ()

FHA A A S A E AR AR AR AR A AR A A A R A R R R R R R 4
Multiprocessing

pool = Pool (processes=2)

start = time.time ()

pool.apply_async (countdown, args=(COUNT//2,))
pool.apply_async (countdown, args=(COUNT//2,))
pool.close()

pool.join ()

print ('Multiprocessing program finished.')
print (f'Took {time.time() - start : .2f} seconds.')

After running the program, my output was as follows:

> python3 example3.py
Sequential program finished.
Took 2.95 seconds.

Multithreading program finished.
Took 2.69 seconds.

Multiprocessing program finished.
Took 1.54 seconds.

There is still a minimal difference in speed between the sequential and multithreading
versions of the program. However, the multiprocessing version was able to cut that speed
by almost half in its execution; as discussed in earlier chapters; since processes are fairly
heavy weight, multiprocessing instructions contain significant overhead, which is the
reason why the speed of the multiprocessing program was not exactly half of the sequential
program.

[286]

The Global Interpreter Lock Chapter 15

Getting around the GIL with native extensions

There are Python native extensions that are written in C/C++, and are therefore able to
avoid the limitations that the GIL sets out; one example is the most popular Python
scientific computing package, NumPy. Within these extensions, manual releases of the GIL
can be made, so that the execution can simply bypass the lock. However, these releases
need to be implemented carefully and accompanied by the reassertion of the GIL before the
execution goes back to the main Python execution.

Utilizing a different Python interpreter

The GIL only exists in CPython, which is the most common interpreter for the language by
far, and is built in C. However, there are other interpreters for Python, such as Jython
(written in Java) and IronPython (written in C++), that can be used to avoid the GIL and its
affects on multithreading programs. Keep in mind that these interpreters are not as widely
used as CPython, and some packages and libraries might not be compatible with one or
both of them.

Summary

While the GIL in Python offers a simple and intuitive solution to one of the more difficult
problems in the language, it also raises a number of problems of its own, concerning the
ability to run multiple threads in a Python program to process CPU-bound tasks. Multiple
attempts have been made to remove the GIL from the main implementation of Python, but
none have been able to achieve it while maintaining the effectiveness of processing non-
CPU-bound tasks, which are affected by the GIL.

In Python, multiple methods are available to provide options for working with the GIL. All
in all, while it possesses considerable notoriety among the Python programming
community, the GIL only affects a certain portion of the Python ecosystem, and can be seen
as a necessary evil that is too essential to remove from the language. Python developers
should learn to coexist with the GIL, and work around it in their concurrent programs.

In the last four chapters, we discussed some of the most well-known and common
problems in concurrent programming in Python. In the last section of the book, we will be
looking at some of the more advanced functionalities of concurrency that Python provides.
In the next chapter, you will learn about the design of lock-free and lock-based concurrent
data structures.

[287]

The Global Interpreter Lock Chapter 15

Questions

e What are the differences in memory management between Python and C++?

e What problem does the GIL solve for Python?

e What problem does the GIL create for Python?

e What are some of the approaches to circumventing the GIL in Python programs?

Further reading

For more information, you can refer to the following links:

o What is the Python Global Interpreter Lock (GIL)? (realpython.com/python-gil/),
Abhinav Ajitsaria

o The Python GIL Visualized (dabeaz .blogspot.com/2010/01/python-gil-
visualized), Dave Beazley

. Copy Opemtions n Python (pythontic.com/modules/copy/introduction)

e It isn't Easy to Remove the GIL
(www .artima.com/weblogs/viewpost.jsp?thread=2 14235), Guido Van Rossum

e Parallel Programming with Python, by Jan Palach, Packt Publishing Ltd, 2014

e Learning Concurrency in Python: Build highly efficient, robust, and concurrent
applications, Elliot Forbes (2017)

[288]

https://realpython.com/python-gil/
http://dabeaz.blogspot.com/2010/01/python-gil-visualized.html
http://dabeaz.blogspot.com/2010/01/python-gil-visualized.html
https://pythontic.com/modules/copy/introduction
https://www.artima.com/weblogs/viewpost.jsp?thread=214235

16

Designing Lock-Based and
Mutex-Free Concurrent Data
Structures

In this chapter, we will analyze the detailed process of designing and implementing two
common types of data structure in concurrent programming: lock-based and mutex-free.
The principal differences between the two data structures, as well as their respective usages
in concurrent programming, will be discussed. Throughout the chapter, an analysis of the
trade-off between the accuracy and speed of concurrent programs is also supplied. Through
this analysis, readers will be able to apply the same trade-off analysis for their own
concurrent applications.

The following topics will be covered in this chapter:

e Common problems with lock-based data structures, and how to address them
¢ A detailed analysis of how to implement a lock-based data structure

e The idea behind mutex-free data structures, along with their advantages and
disadvantages, as compared to lock-based data structures

¢ A detailed analysis of how to implement a mutex-free data structure

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Technical requirements

The following is a list of prerequisites for this chapter:

¢ Ensure that you have Python 3 installed on your computer
¢ Download the GitHub repository at https://github.com/PacktPublishing/

Mastering-Concurrency-in-Python
¢ Throughout this chapter, we will be working with the subfolder
named Chapterl6

e Check out the following video to see the Code in Action: http://bit.1ly/20hT3MS

Lock-based concurrent data structures in
Python

In previous chapters that covered the usage of locks, you learned that locks don't lock
anything; an insubstantial locking mechanism implemented on a data structure does not
actually prevent external programs from accessing the data structure at the same time, by
simply bypassing the lock imposed. One solution to this problem is to embed the lock into
the data structure, so that it is impossible for the lock to be ignored by external entities.

In the first section of this chapter, we will consider the theories behind the preceding
specific use of locks and lock-based data structures. Specifically, we will analyze the
process of designing a concurrent counter that can be safely executed by different threads,
using locks (or mutex) as the synchronization mechanism.

LocklessCounter and race conditions

First, let's simulate the problem encountered with a naive, lockless implementation of a
counter class in a concurrent program. If you have already downloaded the code for this
book from the GitHub page, go ahead and navigate to the Chapter16 folder.

[290]

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2QhT3MS
http://bit.ly/2QhT3MS
http://bit.ly/2QhT3MS
http://bit.ly/2QhT3MS
http://bit.ly/2QhT3MS
http://bit.ly/2QhT3MS
http://bit.ly/2QhT3MS
http://bit.ly/2QhT3MS
http://bit.ly/2QhT3MS

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Let us take a look at the Chapter16/examplel .py file—specifically, the implementation of
the LocklessCounter class:

Chapterlé6/examplel.py

import time

class LocklessCounter:
def _ _init_ (self

) e
self.value = 0

def increment (self, x):

new_value = self.value + x
time.sleep(0.001) # creating a delay
self.value = new_value

def get_value (self):
return self.value

This is a simple counter that has an attribute called value, which contains the current value
of the counter, assigned with 0 when the counter instance is first initialized. The
increment () method of the class takes in an argument, %, and increases the current value
of the calling LocklessCounter object by x. Notice that we are creating a small delay
inside the increment () function, between the process of computing the new value of the
counter and the process of assigning that new value to the counter object. The class also has
a method called get_value (), which returns the current value of the calling counter.

It is quite obvious why this implementation of the LocklessCounter class can create a
race condition in a concurrent program: while a thread is in the middle of incrementing a
shared counter, another thread also might access the counter to execute the increment ()
method, and the change to the counter value made by the first thread might be overwritten
by the one made by the second thread.

[291]

Designing Lock-Based and Mutex-Free Concurrent Data Structures

Chapter 16

As a refresher, the following diagram shows how a race condition can occur in situations
where multiple processes or threads access and mutate a shared resource at the same time:

e Correct behavior ¢ incorrect behavior

< read Task 2 gets the read

updated value odit read

A

edit

from task 1

Task 1 and task
2 work on the
same data

read

v

edit write

write

A

write

\ 4

Update from
task 2 gets
overwritten by
task 1

<
P

edit

Diagram of a race condition

To simulate this race condition, in our main program we are including a total of three

threads, to increment a shared counter by 300 times:
Chapterl6/examplel.py
from concurrent.futures import ThreadPoolExecutor
counter = LocklessCounter ()
with ThreadPoolExecutor (max_workers=3) as executor:

executor.map (counter.increment, [1 for i in range(300)1])

print (f'Final counter: {counter.get_value()}.")
print ('Finished.")

[292]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

The concurrent . futures module offers us an easy and high-level way to schedule a task
through a pool of threads. Specifically, after initializing a shared counter object, we declare
the variable executor as a pool of three threads (use a context manager), and that executor
calls the increment () method on the shared counter 300 times, each time incrementing the
value of the counter by 1.

These tasks are to be executed among the three threads in the pool, using the map ()
method of the ThreadPoolExecutor class. At the end of the program, we simply print out
the final value of the counter object. The following code shows my own output after
running the script:

> python3 examplel.py
Final counter: 101.
Finished.

While it is possible to obtain a different value for the counter when executing the script on
your own system, it is extremely unlikely that the final value of the counter will actually be
300, which is the correct value. Additionally, if you were to run the script over and over
again, it would be possible to obtain different values for the counter, illustrating the non-
deterministic nature of the program. Again, as some threads were overwriting the changes
made by other threads, some increments got lost during the execution, resulting in the fact
that the counter was only successfully incremented 101 times, in this case.

Embedding locks in the data structure of the
counter

The goal of a good lock-based concurrent data structure is to have its locks internally
implemented within its class attributes and methods, so that external functions and
programs cannot bypass those locks and access a shared concurrent object simultaneously.
For our counter data structure, we will be adding an additional attribute for the class,
which will hold the 1ock object that corresponds to the value of the counter. Consider the
following new implementation of the data structure in the Chapter16/example2.py file:

Chapterl6/example?2.py

import threading
import time

class LockedCounter:
def _ _init__ (self):
self.value = 0
self.lock = threading.Lock ()

[293]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

def increment (self, x):
with self.lock:

new_value = self.value + x
time.sleep(0.001) # creating a delay
self.value = new_value

def get_value (self):
with self.lock:
value = self.value

return value

In this implementation of our counter data structure, a 1ock object is also initialized as an
attribute of a LockedCounter instance, when that instance is initialized. Additionally, any
time the value of the counter is accessed by a thread, whether for reading (the
get_value () method) or updating (the increment () method), that 1ock attribute has to
be acquired, to ensure that no other thread is also accessing it. This is done by using a
context manager with the 1ock attribute.

Theoretically, this implementation should solve the problem of the race condition for us. In
our main program, we are implementing the same thread pool that was used in the
previous example. A shared counter will be created, and it will be incremented 300 times
(each time by one unit), across three different threads:

Chapterl6/example?2.py

from concurrent.futures import ThreadPoolExecutor
counter = LockedCounter ()

with ThreadPoolExecutor (max_workers=3) as executor:

executor.map (counter.increment, [l for i in range (300)])

print (f'Final counter: {counter.get_value()}.")
print ('Finished. ")

Run the script, and the output produced by the program should be similar to the following:

> python3 example2.py
Final counter: 300.
Finished.

[294]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

As you can see, the problem of the race condition has been addressed successfully: the final
value of the counter is 300, which corresponds perfectly to the number of increments that
were executed. Furthermore, no matter how many times the program is run again, the
value of the counter will always remain 300. What we currently have is a working, correct
data structure for concurrent counters.

The concept of scalability

One aspect of programming that is essential to the application of concurrency is scalability.
By scalability, we mean the changes in performance when the number of tasks to be
processed by the program increases. Andre B. Bondi, founder and president of Software
Performance and Scalability Consulting, LLC, defines the term scalability as “the capability
of a system, network, or process to handle a growing amount of work, or its potential to be enlarged
to accommodate that growth.”

In concurrent programming, scalability is an important concept that always needs to be
taken into account; the amount of work that grows in concurrent programming is typically
the number of tasks to be executed, as well as the number of processes and threads active to
execute those tasks. For example, the designing, implementing, and testing phases of a
concurrent application usually involve fairly small amounts of work, to facilitate efficient
and fast development. This means that a typical concurrent application will handle
significantly more work in real-life situations than it did during the development stage.
This is why an analysis of scalability is crucial in well-designed concurrent applications.

Since the execution of a process or thread is independent of the process execution of
another, as long as the amount of work a single process/thread is responsible for remains
the same, we would like changes in the number of processes/threads to not affect the
performance of the general program. This characteristic is called perfect scalability, and is
a desirable characteristic for a concurrent program; if the amount of work for a given
perfectly scalable concurrent program increases, the program can simply create more active
processes or threads, in order to absorb the increased amount of work. Its performance can
then stay stable.

However, perfect scalability is virtually impossible to achieve most of the time, due to the
overhead in creating threads and processes. That being said, if the performance of a
concurrent program does not considerably worsen as the number of active processes or
threads increases, then we can accept the scalability. The term considerably worsen is
highly dependent on the types of task that the concurrent program is responsible for
executing, as well as how large a decrease in program performance is permitted.

[295]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

In this kind of analysis, we will consider a two-dimensional graph, representing the
scalability of a given concurrent program. The x axis denotes the number of active threads
or processes (again, each is responsible for executing a fixed amount of work throughout
the program); the y axis denotes the speed of the program, with different numbers of active
threads or processes. The graph under consideration will have a generally increasing trend;
the more processes/threads the program has, the more time it will (most likely) take for the
program to execute. Perfect scalability, on the other hand, will translate to a horizontal line,
as no additional time is needed when the number of threads/processes increases.

The following diagram is an example of such a graph, for scalability analysis:

40

35

30

25

20

seconds

15
-

 eA—-a
I 1
3

10

Example of scalability analysis (Source: stackoverflow.com/questions/10660990/c-sharp-server-scalability-issue-on-linux)

In the preceding graph, the x axis indicates the number of executing threads/processes, and
the y axis indicates the running time (in seconds, in this case). The different graphs indicate
the scalability of specific setups (the operating system combined with multiple cores).

The steeper the slope of a graph is, the worse the corresponding concurrent model scales
with an increasing number of threads/processes. For example, a horizontal line (the dark
blue and lowest graph in this case) signifies perfect scalability, while the yellow (upper
most) graph indicates an undesirable scalability.

[296]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Analysis of the scalability of the counter data
structure

Now, let's consider the scalability of our current counter data structure—specifically, with
changing numbers of active threads. We had three threads increment a shared counter for a
total of 300 times; so, in our scalability analysis, we will have each of the active threads
increment a shared counter 100 times, while changing the number of active threads in our
program. Following the aforementioned specification of scalability, we will look at how the
performance (speed) of the program that uses the counter data structure changes when the
number of threads increases.

Consider the Chapter16/example3.py file, as follows:
Chapterl6/example3.py

import threading

from concurrent.futures import ThreadPoolExecutor
import time

import matplotlib.pyplot as plt

class LockedCounter:
def _ _init_ (self):
self.value = 0
self.lock = threading.Lock ()

def increment (self, x):
with self.lock:

new_value = self.value + x
time.sleep(0.001) # creating a delay
self.value = new_value

def get_value(self):
with self.lock:
value = self.value

return value

n_threads = []

times = []

for n_workers in range(l, 11):
n_threads.append (n_workers)
counter = LockedCounter ()

start = time.time ()

[297]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

with ThreadPoolExecutor (max_workers=n_workers) as executor:
executor.map (counter.increment,
[1 for i in range (100 * n_workers)])

times.append(time.time () - start)

print (f'Number of threads: {n_workers}')

print (f'Final counter: {counter.get_value()}.")
print (f'Time taken: {times[-1] : .2f} seconds.')
print ('-"' * 40)

plt.plot (n_threads, times)
plt.xlabel ("Number of threads'); plt.ylabel('Time in seconds')
plt.show ()

In the preceding script, we are still using the same implementation of the LockedCounter
class that we used in the previous example. In our main program, we are testing this class
against various numbers of active threads; specifically, we are iterating over a for loop, to
have the number of active threads go from 1 to 10. In each iteration, we initialize a shared
counter and create a pool of threads to process an appropriate number of tasks—in this
case, incrementing the shared counter 100 times for each thread.

We are also keeping track of the number of active threads, as well as the time it took for the
pool of threads to finish its tasks in each iteration. This is our data for the scalability
analysis process. We are printing this data out and plotting a scalability graph similar to
what we saw in the preceding sample graph.

The following code shows my output from running the script:

> python3 example3.py
Number of threads: 1
Final counter: 100.

Time taken: 0.15 seconds.

Number of threads: 2
Final counter: 200.
Time taken: 0.28 seconds.

Number of threads: 3
Final counter: 300.
Time taken: 0.45 seconds.

Number of threads: 4
Final counter: 400.
Time taken: 0.59 seconds.

Number of threads: 5

[298]

Designing Lock-Based and Mutex-Free Concurrent Data Structures

Chapter 16

Final counter:

500.
Time taken: 0.75 seconds.

Number of threads:
600.
Time taken: 0.87 seconds.

Final counter:

Number of threads:
700.
Time taken: 1.01 seconds.

Final counter:

Number of threads:
800.
Time taken: 1.18 seconds.

Final counter:

Number of threads:
900.
Time taken: 1.29 seconds.

Final counter:

Number of threads:
1000.
Time taken: 1.49 seconds.

Final counter:

Additionally, the scalability graph that I obtained is shown as follows:

Time in seconds

1.4+

1.2 4

1.0 A

0.8 1

0.6

0.4

0.2 1

4 6
Number of threads

10

Scalability of lock-based counter data structures

[299]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Even if your own output varies in the specific duration of each iteration, the scalability
trend should be relatively the same; in other words, your scalability graph should have the
same slope as the preceding graph. As you can see from the kinds of output that we have,
even though the counter in each iteration had the correct value, the current scalability of
our counter data structure is highly undesirable: as more threads are added to the program
to execute more tasks, the performance of the program decreases, almost linearly. Recall
that the desired perfect scalability requires the performance to remain stable across
different numbers of threads/processes. Our counter data structure increases the execution
time of the program that we have by an amount that is proportional to the increase in the
number of active threads.

Intuitively, this constraint in scalability results from our locking mechanism: since only one
thread can access and increment the shared counter at any given time, the more increments
the program has to execute, the longer it will take to finish all increment tasks. Of the
biggest disadvantages to using locks as a synchronization mechanism, this is the second:
locks can execute a concurrent program (again, the first disadvantage is the fact that locks
don't actually lock anything).

Approximate counters as a solution for
scalability

Given the complexity of designing and implementing a correct, yet fast, lock-based
concurrent data structure, developing efficiently scalable locking mechanisms is a popular
topic of research in computer science, and many approaches to solving the problem that we
are facing have been proposed. In this section, we will discuss one of them: approximate
counters.

The idea behind approximate counters

Let's think back to our current program and the reason why the locks are preventing us
from achieving good performance in terms of speed: all of the active threads in our
program interact with the same shared counter, which can only interact with one thread at
a time. The solution to this problem is to isolate the interactions with a counter of separate
threads. Specifically, the value of the counter that we are keeping track of will not be
represented by only a single, shared counter object anymore; instead, we will use many
local counters, one per thread/process, in addition to the shared global counter that we
originally had.

[300]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

The basic idea behind this approach is to distribute the work (incrementing the shared
global counter) across other low-level counters. When an active thread executes and wants
to increment the global counter, first it has to increment its corresponding local counter.
Interacting with individual local counters, unlike doing it with a single, shared counter, is
highly scalable, as only one thread accesses and updates each local counter; in other words,
there is no contention between different threads in interacting with the individual local
counters.

As each thread interacts with its corresponding local counter, the local counters have to
interact with the global counter. Specifically, each local counter will periodically acquire the
lock for the global counter and increment it with respect to its current value; for example, if
a local counter holding the value of six wants to increment the global counter, it will do it
by six units, and set its own value back to zero. This is because all increments reported from
the local counters are relative to the value of the global counter, meaning that, if a local
counter holds the value of x, the global counter should increment its value by x.

You can think of this design as a simple network, with the global counter being at the
center node, and each local counter being a rear node. Each rear node interacts with the
center node by sending its value to the center node and consequently resetting its value
back to zero. The following diagram further illustrates this design:

Thread 1
Local
Counter

Thread 4
Local
Counter

Counter

Thread 3
Local
Counter

Thread 2
Local
Counter

Diagram of four-thread approximate counters

[301]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

As discussed previously, if all of the active threads were to interact with the same lock-
based counter, no additional speed could be gained from making the program concurrent,
since the execution between separate threads cannot be overlapped. Now, with one
separate counter object for each thread, the threads can update their corresponding local
counters independently and simultaneously, creating overlaps that will result in better
performance in speed for our program, making the program more scalable.

The name of the technique, approximate counters, comes from the fact that the value of the
global counter is simply an approximation of the correct value. Specifically, the value of the
global counter is calculated solely via the values of the local counters, and it becomes more

accurate each time the global counter is incremented by one of the local counters.

There is, however, a specification in this design that deserves great consideration. How
often should the local counters interact with the global counter and update its value? Surely
it cannot be at the rate of every increment (incrementing the global counter every time a
local counter is incremented), as that would be equivalent to using one shared lock, with
even more over overhead (from the local counters).

A quantity called threshold S is used to denote the frequency in question; specifically,
threshold S is defined as the upper boundary of the value of a local counter. So, if a local
counter is incremented such that its value is greater than threshold S, it should update the
global counter and reset its value to zero. The smaller threshold S is, the more frequently
the local counters will update the global counter, and the less scalable our program will be,
but the value of the global counter will be more up-to-date. Conversely, the larger
threshold S is, the less frequently the value of the global counter will be updated, but the
better the performance of our program will be.

There is, therefore, a trade-off between the accuracy of an approximate counter object and
the scalability of a concurrent program using the data structure. Similar to other common
trade-offs in computer science and programming, only through personal experimentation
and testing can one determine the optimal threshold S for one's approximate counter data
structure. In the next section, when we implement our own design for an approximate
counter data structure, we will arbitrarily set the value of threshold S to 10.

Implementing approximate counters in Python

With the concept of approximate counters in mind, let's try to implement the data structure
in Python, building on our previous design for the lock-based counter. Consider the
following Chapterl16/exampled.py file—specifically, the LockedCounter class and

the ApproximateCounter class:

Chapterl6/exampled.py

[302]

Designing Lock-Based and Mutex-Free Concurrent Data Structures

Chapter 16

import threading
import time

class LockedCounter:
def _ _init__ (self):
self.value = 0
self.lock = threading.Lock ()

def increment (self, x):
with self.lock:

new_value = self.value + x
time.sleep(0.001) # creating a delay
self.value = new_value

def get_value (self):
with self.lock:
value = self.value

return value

class ApproximateCounter:
def __init__ (self, global_counter):
self.value = 0
self.lock = threading.Lock ()
self.global_counter = global_counter
self.threshold = 10

def increment (self, x):
with self.lock:

new_value = self.value + x
time.sleep(0.001) # creating a delay
self.value = new_value

if self.value >= self.threshold:

self.global_counter.increment (self.value)

self.value = 0
def get_value (self):
with self.lock:

value = self.value

return value

[303]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

While the LockedCounter class remains the same as in our previous example (this class
will be used to implement our global counter objects), the ApproximateCounter class,
which contains the implementation of the approximate counter logic that we discussed
previously, is of interest. A newly initialized ApproximateCounter object will be given a
starting value of 0, and it will also have a lock, as it is also a lock-based data structure. The
important attributes of an ApproximateCounter object are the global counter that it needs
to report to and the threshold that specifies the rate at which it reports to its corresponding
global counter. As mentioned previously, here, we are simply choosing 10 as an arbitrary
value for the threshold.

In the increment () method of the ApproximateCounter class, we can also see the same
increment logic: the method takes in a parameter named x and increments the value of the
counter by x while holding the lock of the calling approximate counter object. Additionally,
the method also has to check whether the newly incremented value of the counter is past its
threshold; if so, it will increment the value of its global counter by an amount that is equal
to the current value of the local counter, and that value of the local counter will be set back
to 0. The get_value () method that is used to return the current value of the counter in
this class is the same as what we saw previously.

Now, let's test and compare the scalability of the new data structure in our main program.
First, we will regenerate the data for the scalability of our old single-lock counter data
structure:

Chapterl6/exampled.py
from concurrent.futures import ThreadPoolExecutor
Previous single-lock counter
single_counter_n_threads = []
single_counter_times = []
for n_workers in range (1, 11):
single_counter_n_threads.append (n_workers)
counter = LockedCounter ()
start = time.time ()
with ThreadPoolExecutor (max_workers=n_workers) as executor:
executor.map (counter.increment,

[1 for i in range (100 * n_workers)])

single_counter_times.append(time.time () - start)

[304]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Just like in our previous example, we are using a ThreadPoolExecutor object to process
tasks concurrently, in separate threads, while keeping track of the time it took for each
iteration to finish; there is nothing surprising here. Next, we will generate the same data
with a corresponding number of active threads in the iterations of the for loop, as follows:

New approximate counters

def thread_increment (counter) :
counter.increment (1)

approx_counter_n_threads = []

approx_counter_times = []

for n_workers in range(l, 11):
approx_counter_n_threads.append (n_workers)

global_counter = LockedCounter ()
start = time.time ()

local_counters = [ApproximateCounter (global_counter) for i in
range (n_workers)]
with ThreadPoolExecutor (max_workers=n_workers) as executor:
for i in range (100):
executor.map (thread_increment, local_counters)

approx_counter_times.append(time.time () - start)

print (f'Number of threads: {n_workers}')
print (f'Final counter: {global_counter.get_value()}.")
print ('=-"' * 40)

Let's take some time to analyze the preceding code. First, we have an external
thread_increment () function that takes in a counter and increments it by 1; this function
will be used as refactored code later on, to individually increment our local counters.

Again, we will be iterating through a for loop to analyze the performance of this new data
structure with a changing number of active threads. Inside each iteration, we first initialize
a LockedCounter object as our global counter, together with a list of local counters, which
are instances of the ApproximateCounter class. All of them are associated with the same
global counter (which was passed in the initialization method), as they need to report to the
same counter.

[305]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Next, similar to what we have been doing to schedule tasks for multiple threads, we are
using a context manager to create a thread pool, inside of which we will be distributing the
tasks (incrementing the local counters) via a nested for loop. The reason we are looping
through another for loop is to simulate the number of tasks consistent with what we
implemented in the previous example, and also to distribute those tasks across all of the
local counters concurrently. We are also printing out the final value of the global counter in
each iteration, to ensure that our new data structure is working correctly.

Finally, in our main program, we will be plotting the data points that are generated from
the two for loops, to compare the scalability of the two data structures via their respective
performances:

Chapterlé6/exampled.py
import matplotlib.pyplot as plt

Plotting
single_counter_line, = plt.plot(

single_counter_n_threads,
single_counter_times,

c = 'blue',
label = 'Single counter'
)
approx_counter_line, = plt.plot(

approx_counter_n_threads,
approx_counter_times,

c = 'red',

label = 'Approximate counter'
)
plt.legend(handles=[single_counter_line, approx_counter_line], loc=2)
plt.xlabel ('Number of threads'); plt.ylabel('Time in seconds')
plt.show ()

Run the script, and the first output that you will receive will include the individual final
values of the global counters in our second for loop, as follows:

> python3 exampled.py
Number of threads: 1
Final counter: 100.

Number of threads: 2
Final counter: 200.

Number of threads: 3
Final counter: 300.

[306]

Designing Lock-Based and Mutex-Free Concurrent Data Structures

Chapter 16

Number of threads: 4
400.

Final counter:

Number of threads: 5
500.

Final counter:

Number of threads: 6
600.

Final counter:

Number of threads: 7
700.

Final counter:

Number of threads: 8
800.

Final counter:

Number of threads: 9
900.

Final counter:

Number of threads: 10
1000.

Final counter:

As you can see, the final values that we obtained from the global counters are all correct,
proving that our data structure is working as intended. Additionally, you will obtain a
graph similar to the following:

Time in seconds

1.4 1

1.2 1

1.0 1

0.8 1

0.6

0.4 1

0.2 1

—— Single counter
—— Approximate counter

2 4 6 8 10
Number of threads

Scalability of single-lock counter and approximate counters

[307]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

The blue line indicates the changes in speed of the single-lock counter data structure, while
the red line indicates those of the approximate counter data structure. As you can see, even
though the performance of the approximate counter does worsen somewhat as the number
of threads increases (due to overheads such as creating individual local counters and
distributing an increasing number of increment tasks), our new data structure is highly
scalable, especially in comparison to our previous single-lock counter data structure.

A few considerations for approximate counter designs

One thing that you may have noticed is that, even though only a single thread interacts
with a single local counter, the data structure still has a 1ock attribute in its initialization.
This is because it is, in fact, possible for multiple threads to share the same local counters.
There are situations in which it is inefficient to create one local counter for every active
thread, so the developer can have two or more share the same local counter instead, and
individual counters can still report to the same global counter.

For example, suppose that there are 20 threads executing in a concurrent counter program;
we can only have 10 local counters reporting to one global counter. From what we have
seen, this setup will have a lower level of scalability than one with an individual local
counter for each thread, but the advantage of this approach that it uses less memory space
and avoids the overhead of creating more local counters.

There is another possible variation to the way in which a program that utilizes approximate
counters can be designed. Instead of having only one layer of local counters, we can also
implement semi-global counters that local counters report to, which, in turn, report to the
global counters that are one level higher than themselves. When using the approximate
counter data structure, the developer not only has to find, as discussed previously, an
appropriate threshold of reporting, but he or she also needs to optimize the number of
threads associated with one single local counter, as well as the number of layers in our
design.

Mutex-free concurrent data structures in
Python

The previous subsection concluded our discussion of designing a lock-based concurrent
data structure in Python, and the complexities involved therein. We will now move on to
one approach to the theoretical design of mutex-free concurrent data structures.

[308]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

The term mutex-free in concurrent data structures indicates the lack of a locking
mechanism to protect the integrity of the data structure. This does not mean that the data
structure simply disregards the protection of its data; instead, the data structure has to
employ other synchronization mechanisms. In this section, we will analyze one such
mechanism, known as read-copy-update, and discuss how to apply it to a Python data
structure.

The impossibility of being lock-free in Python

The opposite of a lock-based data structure is a lock-free one. Here we will be discussing its
definition and the reason why the characteristic of being lock-free is actually impossible in
Python, and why the closest we can get to it is being mutex-free.

Unlike a lock-based data structure, a data structure that is lock-free not only does not
employ any locking mechanism (like mutex-free data structures), but also requires that any
given thread or process cannot be waiting to execute indefinitely. This means that, if a lock-
free data structure is successfully implemented, applications utilizing that data structure
will never encounter the problems of deadlock and starvation. For this reason, lock-free
data structures are widely considered a more advanced technique in concurrent
programming, and consequently, they are significantly more difficult to implement.

The characteristic of being lock-free, however, is actually impossible to implement in
Python (or in the CPython interpreter, to be more specific). As you have probably guessed,
this is due to the existence of the GIL, which prevents more than one thread from executing
in the CPU at any given time. To learn more about the GIL, navigate to chapter 15, The
Global Interpreter Lock, and read the in-depth analysis on the GIL, if you have not already.
All in all, having a purely lock-free data structure implemented in CPython is a logical
impossibility.

However, this does not mean that concurrent programs in Python cannot benefit from the
design of lock-free data structures. As mentioned previously, mutex-free Python data
structures (which can be considered a subset of lock-free data structures) are entirely
possible to implement. In fact, mutex-free data structures still result in the successful
avoidance of deadlock and starvation problems. However, they cannot fully take advantage
of the purely lock-free execution that would result in better speed.

In the next subsections, we will take a look at a custom data structure in Python, analyze
the problem that it raises if used concurrently, and, finally, try to apply a mutex-free logic
to the underlying data structure.

[309]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Introduction to the network data structure

The data structure that we are implementing resembles a network of nodes, one of which is
the primary node. Additionally, each node contains a key and a value for the node. You can
think of this data structure as a Python dictionary (in other words, a set of keys and values
respectively paired together), but one of these key and value pairs is called the primary
node of the network.

A good way to visualize this data structure is to analyze a situation in which the data
structure is utilized. Suppose that you have been asked to implement the request handling
logic of a popular website, which is also, unfortunately, a common target for denial of
service (DoS) attacks. Since it is highly possible that the website will be taken down fairly
frequently, despite the efforts of the cybersecurity team, an approach that you could take to
guarantee that clients of the website will still be able to access it is to keep more than one
working copy of the website, in addition to the main website, on the server.

These copies are equivalent to the main website in every way, and the main website can
therefore be completely replaced by any of the copies at any time. Now, if and when the
main website is taken down by a DoS attack, you, as the server administrator, can simply
allow the main website to go down and switch the address of the new main website to one
of the copies that you have ready. The clients of the website will therefore experience no
difficulty or inconsistency when accessing the data from the website, since the copies are
identical to the main website that was taken down. Servers that do not implement this
mechanism, on the other hand, will most likely have to spend some time recovering from a
DoS attack (isolating the attack, building back the interrupted or corrupted data, and so
on).

At this point, a connection between this method of web administration and the
aforementioned network data structure can be made. In fact, the network data structure is,
in essence, a high-level abstraction of the method; the data structure is a set of nodes or
pairs of values (the website address and the data, in the preceding case), while keeping
track of a primary node that can also be replaced by any other node (clients accessing the
website are directed to a new website when the main website is attacked). We will call this
processing refreshing the primary in our data structure, which is illustrated in the
following diagram:

[310]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

— ey

Refreshing ﬂ
B ——> Bdata the Primary B ——> Bdata

C ——> Cdata C ——> Cdata

Diagram of network primary refreshing

In the preceding diagram, we have three separate notes of data in our network data
structure (visualized as a dictionary, denoted by a pair of curly braces): key A, pointing to
some data; key B, pointing to its own data; and, finally, key C, also pointing to its own data.
Additionally, we have a pointer indicating the primary key of our dictionary network,
pointing to key A. As the primary refresh process takes place, we will stop keeping track of
key A (which is the primary key) and its own, and then have the primary pointer pointing
to another node in the network (in this case, key B).

Implementing a simple network data structure in
Python and race conditions

Let's consider a starting implementation of this data structure in Python. Navigate to the
Chapterlé6/network.py file, as follows:

Chapterl6/network.py

import time
from random import choice

class Network:
def __init__ (self, primary_key, primary_value):
self.primary_key = primary_key
self.data = {primary_key: primary_value}

def _ str_ (self):
result = '{\n'
for key in self.data:
result += f'\t{key}: {self.datalkey]};\n’

[311]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

return result + '}'

def add_node(self, key, value):
if key not in self.data:
self.datalkey] = wvalue
return True

return False
precondition: the object has more than one node left
def refresh_primary(self):

del self.data[self.primary_key]

self.primary_key = choice(list (self.data))

def get_primary_value (self):
primary_key = self.primary_key
time.sleep(l) # creating a delay
return self.data[primary_key]

This file contains the Network class, which implements the logic that we discussed
previously. Upon initialization, each instance of this class will have at least one node in its
network (stored in the data attribute) that is its primary node; we are also using Python's
dictionary data structure to implement this network design. Each object also has to keep
track of the key of its primary data, stored in its primary_key attribute.

In this class, we also have an add_node () method that is used to add a new node of data to
a network object; note that each node has to have a key and a value. Recall our web
administration example—this corresponds to an internet address and the data that the
website has. The class also has a refresh_primary () method that simulates refreshing
the primary process (which deletes the reference to the previous primary data and pseudo-
randomly selects a new primary node from the remaining nodes). Keep in mind that the
precondition for this method is that the calling network object has to have at least two
nodes left .

Finally, we have an accessor method, called get_primary_value (), that returns the value
that the primary key of the calling network object points to. Here, we add in a slight delay
in the execution of the method, to simulate the race condition that will occur from using
this naive data structure. (Additionally, we are overwriting the default __str__ () method,
for easy debugging.)

[312]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Now, let's turn our attention to the Chapter16/example5.py file, where we import this
data structure and use it in a concurrent program:

Chapterl6/example5.py

from network import Network
import threading

def print_network_primary_value () :
global my_network

print (f'Current primary value: {my_network.get_primary_value()}.")

my_network = Network ('A', 1)
print (f'Initial network: {my_network}'")
print ()

my_network.add_node ('B', 1)
my_network.add_node ('C', 1)
print (f'Full network: {my_network}")

print ()
threadl = threading.Thread(target=print_network_primary_value)
thread2 = threading.Thread(target=my_network.refresh primary)

threadl.start ()
thread2.start ()

threadl.join ()
thread2.join ()

print (f'Final network: {my_network}"')
print ()

print ('Finished."')

First of all, we implement a function called print_network_primary_value (), which
accesses and obtains the primary data of a network object that is also a global variable,
using the aforementioned get_primary_value () method. In our main program, we then
initialize a network object with a starting node, with A as the node key and 1 as the node
data (this node also automatically becomes the primary node). We then add two more
nodes to this network: B, pointing to 1, and C, pointing to 1, respectively.

[313]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Now, two threads are initialized and started, the first of which calls the
print_network_primary_value () function to print out the current primary data of the
network. The second calls the refresh_primary () method from the network object. We
are also printing out the current state of the network object at various points throughout the
program.

It is quite easy to spot the race condition that will likely occur here: since the first thread is
trying to access the primary data while the second thread is trying to refresh the data of the
network (in essence, deleting the current primary data at that time), the first thread will
most likely cause an error in its execution. Specifically, the following is my output after
running the script:

> python3 example5.py
Initial network: {

A: 1;
}
Full network: {
A: 1;
B: 1;
C: 1;

Exception in thread Thread-1:
Traceback (most recent call last):

File
"/Library/Frameworks/Python. framework/Versions/3.7/1ib/python3.7/threading.
py", line 917, in _bootstrap_inner

self.run()

File
"/Library/Frameworks/Python. framework/Versions/3.7/1ib/python3.7/threading.
py", line 865, in run

self._target (*self._args, **self._kwargs)
File "example5.py", line 7, in print_network_primary_value
print (f'Current primary value: {my_network.get_primary_value()}.')

File
"/Users/quannguyen/Documents/python/mastering_concurrency/chlé/network.py",
line 30, in get_primary_value

return self.data[primary_key]
KeyError: 'A'

Final network: {

B: 1;

C: 1;
}
Finished.

[314]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Just like we discussed, we encountered a KeyError that resulted from the fact that, by the
time the first thread obtained the primary key, that key and the primary data had already
been deleted from the data structure by its execution in the second thread. The following
diagram further illustrates this point:

A —— Adata A ata
B — Bdata First Thread B — Bdata
Requesting
Primary Data
C ——> Cdata C ——> Cdata

Race condition with network data structure

As you saw in previous chapters, we are using the time.sleep () function in the source
code of the data structure, to ensure that the race condition will occur. Most of the time, the
execution will be fast enough that an error will not occur, yet the race condition will still be
there, and this is a problem in our current data structure that we need to address.

RCU as a solution

The root of the race condition that we are encountering is, as we know, the fact that the
network object that we are working with is being shared between different threads, which
are mutating and reading the data from the data structure simultaneously. Specifically, the
second thread in our program was mutating the data (by calling the refresh_primary ()
method), while the first thread was reading from the same data.

Obviously, we can simply apply locking as the synchronization mechanism for this data
structure. However, we know that the tasks of acquiring and releasing locks involve a
slight cost that will become substantial as the data structure is widely used across a system.
As popular websites and systems (namely, MongoDB) use this abstraction to design and
structure their servers, a considerably high level of traffic will make the cost of using locks
apparent, and cause the performance to decrease. Implementing a variation of an
approximate data structure could help with this issue, but the complexity of the
implementation might prove to be too difficult to follow through.

[315]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Thus, we arrive at the goal of using a mutex-free approach as our synchronization
mechanism—in this case, read-copy-update (RCU). To protect the integrity of your data
structure, RCU is, in essence, a synchronization mechanism that creates and maintains
another version of the data structure when a thread or process requests read or write access
to it. By isolating the interaction between the data structure and threads/processes within a
separate copy, RCU ensures that no conflicting data can occur. As a thread or a process has
mutated the information in the copy of the data structure that it is assigned to, that update
can then be reported to the original data structure.

In short, when a shared data structure has threads or processes requesting access to it

(the read process), it needs to return a copy of itself, instead of letting the threads/processes
access its own data (the copy process); finally, if there are any changes in the copies of the
data structure, they will need to be updated back to the shared data structure (the update
process).

RCU is particularly useful for data structures that have to handle a single updater and
multiple readers at the same time, which is the typical case of the server network that we
discussed previously (multiple clients constantly accessing and requesting data, but only
occasional, periodic attacks). But how would this apply to our current network data
structure? Theoretically, the accessor method of our data structure (the
get_primary_value () method), which is, again, the root of the race condition, needs to
create a copy of the data structure before reading the data from a thread. This specification
is implemented in the accessor method, in the Chapter16/concurrent_network.py file,
as follows:

Chapterl6/concurrent_network.py

from copy import deepcopy
import time

class Network:

[...]

def get_primary_value (self):
copy_network = deepcopy (self)

primary_key = copy_network.primary_key
time.sleep(l) # creating a delay
return copy_network.data[primary_key]

[316]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Here, we are using the built-in deepcopy method from the copy module, which returns a
separate copy of our network in a different memory location. Then, we only read the data
from this copy of the network object, and not the original object itself. This process is
illustrated in the following diagram:

| primary |
|

A ——> Adata

B ——> Bdata

C ——> Cdata

B —— Bdata
C —— Cdata

RCU addressing the race condition

In the preceding diagram, we can see that no conflict will occur in terms of data, as the two
threads now deal with different copies of the data structure. Let us see this implementation
in action in the Chapter16/example6.py file, which contains the same instructions as the
previous example5.py file (initializing a network object, calling two threads at the same

time—one to access the primary data of the network, the other to refresh the same primary

data), only now the program is using our new data structure from the
concurrent_network.py file.

After running the script, your output should be the same as the following:

> python3 exampleé6.py
Initial network: {

A: 1;
}
Full network: {
A: 1;
B: 1;
C: 1;

[317]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Current primary value: 1.
Final network: {

B: 1;
C: 1;
}
Finished.

As you can see, not only does the program obtain the correct value of the primary data in
the first thread without evoking any errors, it also holds the correct network at the end of
the program (without the previously deleted node, with the key). The RCU method does,
indeed, solve the problem of the race condition, without the use of any locking
mechanisms.

One thing that you might have also noticed is that RCU could also be applied for our
counter example in the previous section. It is true that both RCU and approximate counters
are reasonable approaches to the counter problem, and the question of which one is the
better solution for a specific concurrent problem can only be answered by empirical, hands-
on analysis such as scalability analysis.

Building on simple data structures

Throughout this chapter, we have worked with a number of simple, concurrent data
structures, such as counters and networks. For this reason, we were able to truly get to the
bottom of the problems that we encountered in the concurrent programs that utilize these
data structures, and were able perform in-depth analyses of how to improve their
structures and design.

As you work on more complex concurrent data structures in your work and projects, you
will see that their designs and structures, and the problems that accompany them, are, in
fact, fundamentally similar to those that we saw in the data structures we analyzed. By
truly understanding the underlying architecture of the data structures, as well as the root of
problems that can occur in the programs that use them, you can build on this knowledge
and design data structures that are more complex in instruction but equivalent in logic.

[318]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Summary

In this chapter, we studied the theoretical differences between lock-based and mutex-free
data structures: a lock-based data structure uses a locking mechanism to protect the
integrity of its data, while a mutex-free one does not. We analyzed the problem of race
conditions that can occur in poorly-designed data structures, and looked at how to address
it in both situations.

In our example of the concurrent lock-based counter data structure, we considered the
design of approximate counters, as well as the improved scalability that the design can
offer. In our analysis of the concurrent network data structure, we studied the RCU
technique, which isolates reading instructions from updating instructions, with the goal of
maintaining the integrity of the concurrent data structure.

In the next chapter, we will look at another set of advanced concepts in Python concurrent
programming: memory models and operations on atomic types. You will learn more about
Python memory management, as well as the definition and uses of atomic types.

Questions

e What is the main approach to solving the problem that locks don't lock anything?

e Describe the concept of scalability in the context of concurrent programming

e How does a naive locking mechanism affect the scalability of a concurrent
program?

e What are approximate counters, and how do they help with the problem of
scalability in concurrent programming?

¢ Are lock-free data structures possible in Python? Why or why not?

e What is a mutex-free concurrent data structure, and how is it different from a
concurrent lock-based one?

e What is the RCU technique, and what problem does it solve for mutex-free
concurrent data structures?

[319]

Designing Lock-Based and Mutex-Free Concurrent Data Structures Chapter 16

Further reading

For more information, you can refer to the following links:

Operating systems: Three easy pieces. Vol. 151. Wisconsin: Arpaci-Dusseau Books,
2014, by Arpaci-Dusseau, Remzi H. and Andrea C. Arpaci-Dusseau

The Secret Life of Concurrent Data Structures (addthis.com/blog/2013/04/25/the-
secret-life-of-concurrent-data-structures/), by Michael Spiegel

What is RCU, fundamentally? Linux Weekly News (LWN. net) (2007), McKenney,
Paul E. and Jonathan Walpole

Wasp's Nest: The Read-Copy-Update Pattern in Python (emptysqua.re/blog/wasps—
nest-read-copy-update-python/), Davis, A. Jesse Jiryu

Characteristics of scalability and their impact on performance, proceedings of the

second international workshop on software and performance (WOSP) '00.
p- 195, André B

[320]

https://www.addthis.com/blog/2013/04/25/the-secret-life-of-concurrent-data-structures/#.W7onwBNKiAw
https://www.addthis.com/blog/2013/04/25/the-secret-life-of-concurrent-data-structures/#.W7onwBNKiAw
https://emptysqua.re/blog/wasps-nest-read-copy-update-python/
https://emptysqua.re/blog/wasps-nest-read-copy-update-python/

17

Memory Models and
Operations on Atomic Types

The considerations that need to be made during concurrent programming processes, and
the problems that follow, are all connected to the way in which Python manages its
memory. A deep understanding of how variables and values are stored and referenced in
Python, therefore, would not only help to pinpoint the low-level bugs that cause the
concurrent program to malfunction but also helps to optimize the concurrent codes. In this
chapter, we will take an in-depth look into the Python memory model as well as its atomic
types, specifically their places in the Python concurrency ecosystem.

The following topics will be covered in this chapter:

e The Python memory model, its components that support memory allocation on
various levels, and the general philosophy in managing memory in Python

e The definition of atomic operations, the roles they play in concurrent
programming, and how to use them in Python

Technical requirements

The following are the technical requirements for this chapter:

e Have Python 3 installed on your computer

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder titled Chapter17
e Check out the following video to see the Code in Action: http://bit.1ly/2AiToVy

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2AiToVy
http://bit.ly/2AiToVy
http://bit.ly/2AiToVy
http://bit.ly/2AiToVy
http://bit.ly/2AiToVy
http://bit.ly/2AiToVy
http://bit.ly/2AiToVy
http://bit.ly/2AiToVy
http://bit.ly/2AiToVy

Memory Models and Operations on Atomic Types Chapter 17

Python memory model

You might remember the brief discussion on the method of memory management in
Python in chapter 15, The Global Interpreter Lock. In this section, we will look at the Python
memory model in greater depth by comparing its memory management mechanism to
those of Java and C++ and discuss how it relates to the practices of concurrent
programming in Python.

The components of Python memory manager

Data in Python is stored in memory in a particular way. To gain an in-depth understanding
on a high level, regarding how data is handled in concurrent programs, we first need to
dive deep into the theoretical structure of Python memory allocation. In this section, we
will discuss how data is allocated in a private heap, and the handling of this data via the
Python memory manager—an overarching entity that ensures the integrity of the data.

The Python memory manager consists of a number of components that interact with
different entities and support different functionalities. For example, one component
handles the allocation of memory at a low level by interacting with the memory manager of
the operating system that Python is running on; it is called the raw memory allocator.

On the higher levels, there are also a number of other memory allocators that interact with
the aforementioned private heap of objects and values. These components of the Python
memory manager handle object-specific allocations that execute memory operations that
are specific to the given data and object types: integers have to be handled and managed by
a different allocator to one that manages strings, or one for dictionaries or tuples. As storing
and reading instructions varies between these data types, these different object-specific
memory allocators are implemented to gain additional speed while sacrificing some
processing space.

One step lower than the aforementioned raw memory allocator are the system allocators
from the standard C library (assuming that the Python interpreter under consideration is
CPython). Sometimes known as general-purpose allocators, these written-in-C entities are
responsible for helping the raw memory allocator interact with the memory manager of the
operating system.

[322]

Memory Models and Operations on Atomic Types Chapter 17

The entire model of the Python memory manager described previously can be illustrated by
the following diagram:

Python Memory Allocator

Pymon Object [integer]
AI locator

Strl ng

| Private Heap

|

‘ Python Raw Memory Allocator J

(General Purpose J o Objects/obmalloc.c

Allocator (malloc)

[0S memory manager }

Python memory manager components

Memory model as a labeled directed graph

We have learned about the general process of memory allocation in Python, so in this
section, let's think about how data is stored and referenced in Python. Many programmers
often think about the memory model in Python as one object graph with a label at each
node and the edges are directed—in short, it is a labeled directed object graph. This
memory model was first put into use with the second oldest computer programming
language, Lisp (previously known as LISP).

[323]

Memory Models and Operations on Atomic Types Chapter 17

It is often thought of as a directed graph because its memory model keeps track of its data
and variables via nothing but pointers: the value of every variable is a pointer, and this
point can be pointing to a symbol, a number, or a subroutine. So, these pointers are the
directed edges in the object graph, and the actual values (symbols, numbers, subroutines)
are the nodes in the graph. The following diagram is a simplification of the Lisp memory
model in its early stages:

LISP
1.0

e

Lisp memory model as an object graph

With this object-graph memory model come a number of advantageous characteristics for
memory management. First of all, the model offers a significant degree of flexibility in
terms of reusability; it is possible, and in fact quite easy, to write a data structure or a set of
instructions for one kind of data type or object and then also reuse it on other kinds. In
contrast, C is a programming language that utilizes a different memory model that does not
offer this flexibility, and its programmers are usually required to spend a significant
amount of time rewriting the same data structures and algorithms for different kinds of
data types and objects.

[324]

Memory Models and Operations on Atomic Types Chapter 17

Another form of flexibility that this memory model provides is the fact that every object can
be referenced by any number of pointers (or ultimately variables) and therefore be mutated
by any of them. We have already seen the effect of this characteristic in a sample Python
program in chapter 15, The Global Interpreter Lock, if two variables reference the same
(mutable) object (achieved when one variable is assigned to another) and one successfully
mutates the object via its reference, then the change will also be reflected through the
reference of the second variable.

As also discussed in chapter 15, The Global Interpreter Lock, this is not similar to the
memory management in C++. For example, as when a variable (that is not a pointer or a
reference) is assigned with a specific value, the programming language will copy that
specific value to the memory location that contains the original variable. Additionally,
when a variable is assigned with another variable, the memory location of the latter will be
copied to that of the former; no further connection between these two variables is
maintained after the assignment.

However, some argue that this can, in fact, be a disadvantage in programming, especially
concurrent programming, as uncoordinated attempts to mutate a shared object can lead to
undesirable results. As experienced Python programmers, you might have also noticed that
type errors (when a variable expected to be one specific type is referencing an object of a
different, noncompatible type) are quite common in Python programming. This is also a
direct result of this memory model, because, again, a reference pointer can point to
anything.

In the context of concurrency

With the theoretical basics of the Python memory model in mind, how can we expect it to
affect the ecosystem of Python concurrent programming? Fortunately, the Python memory
model works in favor of concurrent programming in the sense that it allows thinking and
reasoning about concurrency that is easier and more intuitive. Specifically, Python
implements its memory model and executes its program instructions in the same way that
we conventionally expect it to.

[325]

Memory Models and Operations on Atomic Types Chapter 17

To understand this advantage that Python possesses, let's first consider concurrency in the
Java programming language. To achieve better performance in terms of speed in concurrent
programs (specifically multithreading programs), Java allows CPUs to rearrange the order
in which given operations included in Java code are to be executed. The

rearrangement, however, is made in an arbitrary way so that we cannot easily reason the
order of execution from just the sequential ordering of the code when multiple threads are
executing. This leads to the fact that if a concurrent program in Java executes in a way that
is not intended, the developer would need to spend a significant amount of time
determining the order of execution of the program to pinpoint the bug in their program.

Unlike Java, Python has its memory model structured in a way that maintains the
sequential consistency of its instructions. This means that the order in which the
instructions are arranged in the Python code specifies the order of their execution—no
arbitrary rearrangement of the code and, therefore, no surprising behavior from the
concurrent programs. However, since the rearrangement in Java concurrency is
implemented in order to achieve better speed for the programs, this means that Python is
sacrificing its performance to keep its execution simpler and more intuitive.

Atomic operations in Python

Another important topic regarding memory management is atomic operations. In this
subsection, we will be exploring the definition of being atomic in programming, the roles
that atomic operations have in the context of concurrent programming, and finally how to
use atomic operations in Python programs.

What does it mean to be atomic?

Let's first examine the actual characteristic of being atomic. If an operation is atomic in a
concurrent program, then it cannot be interrupted by other entities in the program during
its execution; an atomic operation can also be called linearizable, indivisible, or
uninterruptible. Given the nature of race conditions and how common they are in
concurrent programs, it is quite intuitive to conclude that atomicity is a desirable
characteristic of a program, as it guarantees the integrity of the shared data, and protects it
from uncoordinated mutations.

[326]

Memory Models and Operations on Atomic Types Chapter 17

The term "atomic" refers to the fact that an atomic operation appears instantaneous to the
rest of the program that it is in. This means that the operation has to be executed in a
continuous, uninterrupted manner. The most common method of implementing atomicity,
as you could probably guess, is via mutual exclusion, or locks. Locks, as we have seen,
require interactions with a shared resource to take place one thread or process at a time,
thus protecting those interactions of one thread/process from being interrupted and
potentially corrupted by other competing threads or processes.

If a programmer allows some of the operations in their concurrent program to be
nonatomic, they would also need to allow those operations to be careful and flexible (in the
sense of interacting and mutating data) enough so that no errors should result from them
being interrupted by other operations. If, however, irregular and erroneous behaviors were
to take place when these operations are interrupted during their execution, it would be
quite difficult for the programmer to actually reproduce and debug those behaviors.

The GIL reconsidered

One of the major elements in the context of Python atomic operations is, of course, the GIL;
there are additionally common misconceptions as well as complexities regarding the role
the GIL plays in atomic operations.

For example, as reading about the definition of atomic operations, some tend to argue
that all operations in Python are actually atomic, as the GIL actually requires threads to
execute in a coordinated manner, with only one being able to run at any given point. This
is, in fact, a false statement. The requirement of the GIL that only one thread can execute
Python code at a given time does not lead to the atomicity of all Python operations; one
operation can still be interrupted by another, and errors can still result from the
mishandling and corruption of shared data.

At a lower level, the Python interpreter handles the switching between threads in a Python
concurrent program. This process is done with respect to bytecode instructions, which are
compiled Python code that are interpretable and executable by machines. Specifically,
Python maintains a fixed frequency specifying how often the interpreter should switch
between one active thread to another and this frequency can be set using the built-in
sys.setswitchinterval () method. Any nonatomic operation can be interrupted during
its execution by this thread switching event.

[327]

Memory Models and Operations on Atomic Types Chapter 17

In Python 2, the default value for this frequency is 1,000 bytecode instructions, which
means that after a thread has successfully executed 1,000 bytecode instructions, the Python
interpreter will look for other active threads that are waiting to be executed. If there is at
least one other waiting thread, the interpreter will have the currently running thread to
release the GIL and have the waiting thread acquire it and thus start the execution of the
latter thread.

In Python 3, the frequency is fundamentally different. The unit used for the frequency is
now time-based, specifically in seconds. With the default value of 15 milliseconds, this
frequency specifies that if a thread has been executing for at least the amount of time equal
to the threshold, then the thread switching event (together with the releasing and acquiring
of the GIL) will take place as soon as the thread finishes the execution of the current
bytecode instruction.

Innate atomicity in Python

As mentioned previously, an operation can be interrupted during its execution if the thread
executing it has passed its executing limit (for example, 15 milliseconds in Python 3 by
default), at which point the operation has to finish its current bytecode instruction and give
back the GIL to another thread that is waiting. This means that the thread-switching event
only takes place between bytecode instructions.

There are operations in Python that can be executed in one single bytecode instruction and
are therefore atomic in nature without the help of external mechanisms, such as mutual
exclusion. Specifically, if an operation in a thread completes its execution in one single
bytecode, it cannot be interrupted by the thread-switching event as the event only takes
place after the current bytecode instruction is completed. This characteristic of innate
atomicity is very useful, as it allows the operations that have it to execute their instructions
freely even if no synchronization method is being utilized, while still guaranteeing that
they will not be interrupted and have their data corrupted.

Atomic versus nonatomic

It is important to note that it can be surprising for programmers to learn which operations
in Python are atomic and which are not. Some might assume that since simple operations
take less bytecode than complex ones, the simpler an operation is, the more likely it is to be
innately atomic. However, this is not the case, and the only way to determine with certainty
which operations are atomic in nature is to perform further analyses.

[328]

Memory Models and Operations on Atomic Types Chapter 17

According to the documentation of Python 3 (which can be found via this link:
docs.python.org/3/faqg/library.html#what-kinds-of-global-value-mutation-are-

thread-safe), some examples of innately atomic operations include the following:

¢ Appending a predefined object to a list

¢ Extending a list with another list

e Fetching an element from a list

e "Popping" from a list

e Sorting a list

¢ Assigning a variable to another variable

e Assigning a variable to an attribute of an object
¢ Creating a new entry for a dictionary

e Updating a dictionary with another dictionary

Some operations that are not innately atomic include the following:

e Incrementing an integer, including using +=
¢ Updating an element in a list by referencing another element in that list
e Updating an entry in a dictionary via referencing another entry in that dictionary

Simulation in Python

Let's analyze the difference between an atomic operation and a nonatomic one in an actual
Python concurrent program. If you already have the code for this book downloaded from
the GitHub page, go ahead and navigate to the Chapter17 folder. For this example, we are
considering the Chapter17/examplel.py file:

Chapterl7/examplel.py

import sys; sys.setswitchinterval (.000001)
import threading

def foo():
global n
n +=1

n =20

threads = []

for i in range(1000) :
thread = threading.Thread (target=foo)
threads.append (thread)

[329]

https://docs.python.org/3/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe
https://docs.python.org/3/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe

Memory Models and Operations on Atomic Types Chapter 17

for thread in threads:
thread.start ()

for thread in threads:
thread.join ()

print (f'Final value: {n}."'")
print ('Finished. ")

First of all, we are resetting the thread-switching frequency of the Python interpreter to
0.000001 seconds—this is to have the thread switching event take place more often than
usual and thus amplify any race condition that might be in our program.

The gist of the program is to increment a simple global counter (n) with 1,000 separate
threads, each incrementing the counter once via the foo () function. Since the counter was
originally initialized as 0, if the program executed correctly, we would have that counter
holding the value of 1,000 at the end of the program. However, we know that the increment
operator that we are using in the foo () function (+=) is not an atomic operation, which
means it can be interrupted by a thread-switching event when applied on a global variable.

After running the script multiple times, we can observe that there is, in fact, a race
condition existing in our code. This is illustrated by incorrect values of the counter that are
less than 1,000. For example, the following is an output I obtained:

> python3 examplel.py
Final value: 998.
Finished.

This is consistent with what we have previously discussed, that is, since the += operator is
not atomic, it would need other synchronization mechanisms to ensure the integrity of the
data that it interacts with from multiple threads concurrently. Let's now simulate the same
experiment with an operation that we know is atomic, specifically appending a predefined
object to a list.

In the Chapter17/example2.py file, we have the following code:
Chapterl7/example?2.py

import sys; sys.setswitchinterval(.000001)
import threading

def foo():
global my_list
my_list.append(1l)

[330]

Memory Models and Operations on Atomic Types Chapter 17

my_list = []

threads = []

for i in range(1000) :
thread = threading.Thread(target=foo0)
threads.append (thread)

for thread in threads:
thread.start ()

for thread in threads:
thread.join ()

print (f'Final list length: {len(my_list)}.")
print ('Finished. ")

Instead of a global counter, we now have a global list that was originally empty. The new
foo () function now takes this global list and appends the integer 1 to it. In the rest of the
program, we are still creating and running 1,000 separate threads, each of which calls the
foo () function once. At the end of the program, we will print out the length of the global
list to see if the list has been successfully mutated 1,000 times. Specifically, if the length of
the list is less than 1,000, we will know that there is a race condition in our code, similar to
what we saw in the previous example.

As the 1ist.append () method is an atomic operation, however, it is guaranteed that there
is no race condition when the threads call the foo () function and interact with the global
list. This is illustrated by the length of the list at the end of the program. No matter how
many times we run the program, the list will always have a length of 1,000:

> python3 example2.py
Final list length: 1000.
Finished.

Even though some operations in Python are innately atomic, it can be quite difficult to tell
whether a given operation is atomic on its own or not. Since the application of nonatomic
operations on shared data can lead to race conditions and thus erroneous results, it is
always recommended that programmers utilize synchronization mechanisms to ensure the
integrity of the shared data within a concurrent program.

[331]

Memory Models and Operations on Atomic Types Chapter 17

Summary

In this chapter, we have examined the underlying structure of the Python memory model,
as well as how the language manages its values and variables in a concurrent programming
context. Given the way memory management in Python is structured and implemented, the
reasoning for the behaviors of a concurrent program can be significantly easier than doing
the same in another programming language. The ease in understanding and debugging
concurrent programs in Python, however, also comes with a decrease in performance.

Atomic operations are instructions that cannot be interrupted during their execution.
Atomicity is a desirable characteristic of concurrent operations, as it guarantees the safety
of data shared across different threads. While there are operations in Python that are
innately atomic, synchronization mechanisms such as locking are always recommended to
guarantee the atomicity of a given operation.

In the next chapter, we will be looking into how to build a concurrent server from scratch.
Through this process, we will learn more about implementing communication protocols as
well as applying concurrency to an existing Python application.

Questions

e What are the main components of the Python memory manager?
e How does the Python memory model resemble a labeled directed graph?

What are the advantages and disadvantages of the Python memory model in
terms of developing concurrent applications in Python?

What is an atomic operation, and why is it desirable in concurrent programming?

Give three examples of innately atomic operations in Python.

[332]

Memory Models and Operations on Atomic Types Chapter 17

Further reading

For more information you can refer the following links:

The memory models that underlie programming languages (http://canonical.org/
~kragen/memory-models/), K. J. Sitaker

Grok the GIL: How to write fast and thread-safe

Python (opensource .com/article/17/4/grok-gil), A. Jesse]iryu Davis

Thread Synchronization Mechanisms in Python (http://effbot.org/zone/thread-
synchronization.htm#atomic-operations), Fredrik Lundh

Memory Management (https://docs.python.org/3/c—-api/memory.html), Python
Documentation

Concurrency (jython .org/jythonbook/en/1. O/Concurrency),]ython
Documentation

Memory management in Python (anubnair.wordpress.com/2014/09/30/memory-
management-in-python/), Anu B Nair

[333]

http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/
https://opensource.com/article/17/4/grok-gil
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
http://effbot.org/zone/thread-synchronization.htm#atomic-operations
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
http://www.jython.org/jythonbook/en/1.0/Concurrency.html
https://anubnair.wordpress.com/2014/09/30/memory-management-in-python/
https://anubnair.wordpress.com/2014/09/30/memory-management-in-python/

18

Building a Server from Scratch

In this chapter, we will analyze a more advanced application of concurrent programming;:
building a working non-blocking server from scratch. We will cover complex uses of the
socket module, such as isolating the user business logic from callbacks and writing the
callback logic with inline generators, both instances designed to run concurrently. We will
also discuss the use of the await and yield keywords, using an example.

The following topics will be covered in this chapter:

e Using a comprehensive API from the socket module to build a server from
scratch

e Basic information on Python generators and asynchronous generators

e How to use inline generators with the await and yield keywords to convert a
blocking server to a non-blocking one

Technical requirements

The following is a list of prerequisites for this chapter:

¢ Ensure that you have Python 3 installed on your computer

Ensure that you have telnet installed on your computer

Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

During this chapter, we will be working with the subfolder named Chapter18

Check out the following video to see the Code in Action: http://bit.ly/2KrgWwh

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2KrgWwh
http://bit.ly/2KrgWwh
http://bit.ly/2KrgWwh
http://bit.ly/2KrgWwh
http://bit.ly/2KrgWwh
http://bit.ly/2KrgWwh
http://bit.ly/2KrgWwh
http://bit.ly/2KrgWwh
http://bit.ly/2KrgWwh

Building a Server from Scratch Chapter 18

Low-level network programming via the
socket module

In this chapter, we will be using the socket module, which is a built-in library in Python,
to build our working server. The socket module is one of the modules that are most
frequently used to implement low-level communication protocols, while providing
intuitive options to control those protocols. In this section, we will introduce the process of
implementing the underlying low-level architecture of a server, as well as the key methods
and functionalities of the module that will be used in our examples later on.

Note that in order to successfully follow the examples in this chapter, you will need to
install the telnet program on your system. Telnet is a program that provides terminal
commands that facilitate protocols for bidirectional, interactive, text-based communication.
We covered the installation of telnet in chapter 11, Building Communication Channels with
asyncio; if you do not already have Telnet installed on your system, simply navigate to (and
follow the directions in) that chapter.

Note that macOS systems have a preinstalled alternative to Telnet, called Netcat. If you do
not want Telnet installed on your macOS computer, simply use the command nc instead
of telnet in the following examples, and you will achieve the same effect.

The theory of server-side communication

In chapter 11, Building Communication Channels with asyncio, you encountered brief
examples of implementing asynchronous communication channels at a higher level, using
the aiohttp module. In this section, we will dive deeper into the programming structure
of a server-side communication channel, and how it can interact with its clients in an
efficient way.

In the field of network programming, a socket is defined as a theoretical endpoint within a
node of a specific computer network. The socket is responsible for receiving or sending
data from the node that it is in. The fact that the socket is unique to the node that owns it
means that other nodes in the same computer network are theoretically unable to interact
with the socket. In other words, the socket is only available to its corresponding node.

[335]

Building a Server from Scratch Chapter 18

To open a communication channel from the server-side, a network programmer must first
create a socket and bind it to a specific address. This address is typically a pair of values,
containing information about the host and a port for the server. Then, through the socket,
the server begins to listen to any potential communication request created by its clients in
the network. Any request from a client to connect to the server will thus need to be through
the created socket.

Upon receiving a request to connect from a potential client, the server can decide whether
to accept that request. A connection will then be established between the two systems in the
network, which means that they can start to communicate and share data with each other.
As the client sends a message to the server via the communication channel, the server then
processes the message and eventually sends a response back to the client through the same
channel; this process continues until the connection between them ends, either through one
of them quitting the connection channel or through some external factors.

The preceding is the basic process of creating a server and establishing connections with
potential clients. There are multiple security measures implemented at each stage of the
process, though they are not our concern and will not be discussed here. The following
diagram also maps out the process that was just described:

Socket Programming

socket () Connection-oriented
Protocol

Server

listen () Client

accept () connection

blocks until connetion establishment
from ¢lient

socket ()

data (request)

process request

2t {rephy ead ()

Network programming with sockets

Note that in order to create a request to connect to the server, a potential client also has to
initialize its own socket for the communication channel (as shown in the preceding
diagram). Again, we are only interested in the server-side theory of this process, and thus,
we are not discussing client-side elements here.

[336]

Building a Server from Scratch Chapter 18

The API of the socket module

In this section, we will explore the key API provided by the socket module to achieve the
same functionalities in the process described previously. As we have mentioned, the
socket module comes built-in in any Python 3 distribution, so we can simply import the
module into our program without having to run installation commands.

To create a socket, we will use the socket . socket () method, which returns a socket
object. This object is what we will be working with during most of the process of
implementing various communication protocols. Additionally, socket methods have the
following methods that help us control the communication protocols:

e socket.bind (): This method binds the calling socket to the address that is
passed to the method. In our examples, we will be passing in a tuple containing
the address of the host and the port for the communication channel.

e socket.listen ():This method allows the server that we create to accept
connections from potential clients. Another optional positive-integer parameter
can be passed to the method, to specify the number of allowed unaccepted
connections before the server refuses new connections. We will be using 5 as an
arbitrary number for this method in our later examples.

e socket.accept (): This method, as the name suggests, accepts a specific
connection that the calling socket object has. This calling object has to first be
bound to an address and listening for connections to call this method. In other
words, this method is to be called after the two preceding methods. The method
also returns a pair of values, (conn, address), with conn being the new socket
object that has accepted the connection and is able to send and receive data, and
address being the address on the other end of the connection (the client
address).

e socket.makefile (): This method returns a £ile object that is associated with
the calling socket object. We will be using this method to create a file that
contains the data sent from the accepted clients of our server. This £ile object
will also need to be closed appropriately, using the close () method.

® socket.sendall (): This method sends the data passed as a parameter to the
calling socket object. We will use this method to send data back to the clients
connected to our server. Note that this method takes in data in bytes, so we will
be passing byte strings to this method in our examples.

e socket.close (): This method marks the calling socket object as closed. After
this point, all operations applied on the socket object will fail. This is to be used
when we terminate our server.

[337]

Building a Server from Scratch Chapter 18

Building a simple echo server

The best way to truly understand the use of the methods and functions described
previously is to see them in action in a sample program. In this section, we will build an
echo server as our starting example. This server, as the term suggests, sends whatever it
received from each client back to the client. Through this example, you will learn how to set
up a functional server, as well as how to handle client connections and data from it, and we
will build more complex servers in later sections.

Before we jump into the code, however, let's discuss the structure of the program that will
implement the communication logic for this server. First, we will have what is called the
reactor, which sets up the server itself and provides the logic whenever a new connection is
requested from potential clients. Specifically, once the server has been set up, this reactor
will go through an infinite loop and handle all connection requests that the server receives.

If you have read the previous chapters on asynchronous programming, it is also possible to
think of this reactor as an event loop. This event loop goes through all of the events that are
to be processed (in this case, they are requests), and handles them one by one, using an
event handler. The following diagram further illustrates this process:

HTTP requests Event

T

Event quene

Event loop O

Event
handler

An event loop in network programming

The second part of our program, then, is the event handler in the event loop analogy, which
contains the user business logic: how to process the data received from clients, and what to
send back to each of them. For our current example, since it is an echo server, we are only
sending back whatever each client sent to our server (if the data is valid).

[338]

Building a Server from Scratch Chapter 18

With that structure in mind, let's move on to the actual implementation of this server.
Download the code for this chapter from the GitHub page, then go ahead and navigate to
the Chapter18 folder. The script that we are interested in is in the
Chapterl8/examplel.py file, as follows:

Chapterl8/examplel.py
import socket

Main event loop
def reactor (host, port):
sock = socket.socket ()
sock.bind ((host, port))
sock.listen (5)
print (f'Server up, running, and waiting for call on {host} {port}'")

try:
while True:
conn, cli_address = sock.accept ()
process_request (conn, cli_address)
finally:

sock.close ()

def process_request (conn, cli_address):
file = conn.makefile()

print (f'Received connection from {cli_address}"')

try:
while True:
line = file.readline()
if line:
line = line.rstrip()
if line == 'quit':
conn.sendall (b'connection closed\r\n')
return
print (f'{cli_address} —-—> {line}')
conn.sendall (b'Echoed: %a\r\n' % line)
finally:
print (f'{cli_address} quit')
file.close()
conn.close ()
if _ name_ == '_ main__ ':

reactor ('localhost', 8080)

[339]

Building a Server from Scratch Chapter 18

The program is structured in the same way that we discussed previously: a reactor and a
user business logic handler (the process_request () function). First, the reactor sets up
the server (by creating a socket, binding it to the parametric host and port address, and
calling the 1isten () method). It then goes into an infinite loop and facilitates any potential
connection with a client, first accepting the connection by calling the accept () method on
the socket object, and then calling the process_request () function. The reactor is also
responsible for closing the socket object if an error occurs during the preceding process.

The process_request () function, on the other hand, will first create a file object
associated with the socket that is passed to it. Again, this £ile object is used by our server
to read data from its client that is connected via that specific socket. Specifically, after
making the file object, the function will go into another infinite loop that keeps reading
from the file object, using the readline () function. If the data read from the file is valid,
we will send back the same data, using the sendall () method.

We are also printing out what the server receives from each of its clients as the server
output, by including the line print (£'{cli_address} —--> {line}').One more
specification is that, if the data read from the file is equal to the string quit, then we will
close the connection with that specific client. After a connection is closed, we will need to
carefully handle the socket object itself, and the £ile object associated with it, using the
close () method for both.

Finally, at the end of our program, we simply call the reactor () function and pass it
information about our server. In this case, we simply use the loopback interface of our
server, at port 8080. Now, we will execute the script to initialize our local server. Your
output should be similar to the following:

> python3 examplel.py
Server up, running, and waiting for call on localhost 8080

At this point, our server is up and running (as indicated in the output). Now, we would like
to create some clients for this server. To do this, open another Terminal window and use
the Telnet program to connect to the running server, by running telnet localhost

8080. Your output should be similar to the following;:

> telnet localhost 8080
Trying 127.0.0.1...
Connected to localhost.

[340]

Building a Server from Scratch Chapter 18

This output means that the Telnet client has successfully connected to the server that we
created. Now, we can test whether the server can handle its requests the way that we
intended it to. Specifically, enter some data and hit refurn or Enter to send it to the server,
and you will see that the client will receive an echoed message from the server, in the way
that we implemented in the preceding process_request () function. Again, a client can
stop its connection to this server by sending the string quit to the server.

The following code shows my output when entering a few different phrases:

> telnet localhost 8080
Trying 127.0.0.1...
Connected to localhost.
Escape character is '*]'.
hello

Echoed: 'hello'

nice

Echoed: 'nice'

fdkgsnas

Echoed: 'fdkgsnas'

quit

connection closed
Connection closed by foreign host.

Looking at the output of our server, you can also see what was happening during this
connection:

> python3 examplel.py

Server up, running, and waiting for call on localhost 8080
Received connection from ('127.0.0.1', 59778)

('127.0.0.1', 59778) —--> hello

('127.0.0.1', 59778) ——> nice

('127.0.0.1', 59778) —--> fdkgsnas

('127.0.0.1', 59778) quit

The server, as mentioned, is designed to run forever in the reactor as an event loop, which
can be stopped by a KeyboardInterrupt exception.

We have successfully implemented our first echo server, using low-level methods provided
by the socket module. In the next section, we will implement a more advanced
functionality for our server and analyze the process of converting it to a non-blocking
server that can handle multiple clients at the same time.

[341]

Building a Server from Scratch Chapter 18

Building a calculator server with the socket
module

The functionality that we are trying to implement is to have a simple request handler that
calculates either the sum or the product of a list of integers, and that is included in the data
sent from the clients. Specifically, if a client sends the string 1, 2,4 to our server, then the
server should send back 7 if it is to calculate sums, or 8 if it is to calculate products.

Every server implements some form of data processing, in addition to handling requests
coming in from clients and sending the results of that data processing task to those clients.
This prototype will therefore serve as a first building block for more extensive servers, with
further complex functionalities.

The underlying calculation logic

We will be using the split () method for Python strings to extract elements that are
separated by a specific character in a string. Therefore, we will require all data coming from
clients to be formatted this way (integers separated by commas), and, if a client sends in
something that is not in this format, we will simply send back an error message and require
them to make a new message.

The basic calculation logic is included in the Chapter18/example2.py file, as follows:
Chapterl8/example2.py

from operator import mul
from functools import reduce

try:
while True:
line = input ('Please enter a list of integer, separated by commas:
")
try:
nums = list (map(int, line.split(',"')))

except ValueError:
print ('ERROR. Enter only integers separated by commas')
continue

print ('Sum of input integers', sum(nums))
print ('Product of input integers', reduce(mul, nums, 1))

except KeyboardInterrupt:
print ("\nFinished.")

[342]

Building a Server from Scratch Chapter 18

Again, we are using the split () method, with the ', ' argument, to extract out the
individual numbers in a specific string. The sum () function is used to calculate, evidently,
the sum of the parametric list of numbers. To calculate the aggregated product, we need to
import the mul () method (for multiplication) from the operator module, as well as the
reduce () method from the functools module, to apply the multiplication on each of the
elements in the list of numbers under consideration.

As a side note, the third argument passed to the reduce () method (the number 1) is the
starting value for the reduction process. To learn more about reduction operations, read
through chapter 7, Reduction Operators in Processes, if you have not done so already.

As for our actual server, we will also keep track of the mode of calculation. The mode of
calculation, whose default is to execute summation, dictates whether the server should
perform summation and multiplication on the input list of numbers. The mode is also
unique to each client connection, and can be switched around by that client. Specifically, if
the data sent by a specific client is the string sum, then we will switch the mode of
calculation to summation, and the same goes for the string product.

Implementing the calculator server

Now, let's take a look at the full implementation of this server in the
Chapterl8/example3.py file:

Chapterl8/example3.py

import socket
from operator import mul
from functools import reduce

Main event loop
def reactor (host, port):
sock = socket.socket ()
sock.bind((host, port))
sock.listen (5)
print (f'Server up, running, and waiting for call on {host} {port}')

try:
while True:
conn, cli_address = sock.accept ()
process_request (conn, cli_address)
finally:

sock.close ()

[343]

Building a Server from Scratch Chapter 18

def process_request (conn, cli_address):
file = conn.makefile()

print (f'Received connection from {cli_address}"')
mode = 'sum'

try:
conn.sendall (b'<welcome: starting in sum mode>\n')
while True:
line = file.readline ()
if line:
line = line.rstrip()
if line == 'quit':
conn.sendall (b'connection closed\r\n')
return

if line == 'sum':
conn.sendall (b'<switching to sum mode>\r\n')
mode = 'sum'
continue

if line == 'product':
conn.sendall (b'<switching to product mode>\r\n')
mode = 'product'
continue

print (f'{cli_address} —--> {line}')
try:

nums = list (map(int, line.split(',"')))
except ValueError:

conn.sendall (

b'ERROR.
Enter only integers separated by commas\n')
continue
if mode == 'sum':

conn.sendall (b'Sum of input numbers: %a\r\n'
% str(sum(nums)))
else:
conn.sendall (b'Product of input numbers: %a\r\n'
% str (reduce (mul, nums, 1)))
finally:
print (f'{cli_address} quit')
file.close()
conn.close ()
if _ name_ == '_ main__ ':
reactor ('localhost', 8080)

[344]

Building a Server from Scratch Chapter 18

The reactor component of our server remains the same as our previous example, since the
event loop handles the same type of logic. In our user business logic part (the
process_request () function), we are still using £ile objects returned from the
makefile () method to obtain data sent by the clients of the server. If a client sends in the
string quit, the connection between that client and the server will still be stopped.

The first new thing in this program is the local variable mode in the process_request ()
function. This variable specifies the mode of calculation that we discussed earlier, and has
the default value of the string sum. As you can see, at the very end of the t ry block in the
process_request () function, this variable decides what kind of data is to be sent back to
the current client:

if mode == 'sum':
conn.sendall (b'Sum of input numbers: %a\r\n'
% str(sum(nums)))
else:
conn.sendall (b'Product of input numbers: %a\r\n'
% str(reduce (mul, nums, 1)))

Additionally, if data sent from a client is equal to the string sum, then the mode variable will
be set to sum, and the same applies for the string product. The client will also receive a
message announcing that the mode of calculation has been changed. This logic is included
in the following portion of the code:

if line == 'sum':
conn.sendall (b'<switching to sum mode>\r\n')
mode = 'sum'
continue

if line == 'product':
conn.sendall (b'<switching to product mode>\r\n')
mode = 'product'
continue

Now, let's look at how this server performs in a real experiment. Execute the program to
run the server, and you will see output similar to that of the previous example:

> python3 example3.py
Server up, running, and waiting for call on localhost 8080

Again, we will be using Telnet to create clients for this server. As you are connected to the
server through a Telnet client, try to enter some data to test out the server logic that we
implemented. The following code shows what I obtained with various types of input:

> telnet localhost 8080
Trying 127.0.0.1...
Connected to localhost.

[345]

Building a Server from Scratch Chapter 18

Escape character is '*]'.
<welcome: starting in sum mode>

1,2

Sum of input numbers: '3’

4,9

Sum of input numbers: '13'

product

<switching to product mode>

0,-3

Product of input numbers: '0’'

5,-9,10

Product of input numbers: '-450'

hello

ERROR. Enter only integers separated by commas
a,l

ERROR. Enter only integers separated by commas
quit

connection closed
Connection closed by foreign host.

You can see that our server can handle the requests as we intended. Specifically, it can
compute both the sum and the product of a given correctly formatted input string; it can
appropriately switch the mode of calculation; and it can send error messages to its clients if
the input strings are not correctly formatted. Again, this ever-running server can be
stopped with a KeyboardInterrupt exception.

Building a non-blocking server

One thing that we will discover is that the server that we currently have is not non-
blocking. In other words, it cannot handle multiple clients simultaneously. In this section,
you will learn how to build on the current server to make it non-blocking, using Python
keywords that facilitate concurrent programming, in addition to low-level functionalities
from the socket module.

Analyzing the concurrency of the server

We will now illustrate that the server that we currently have cannot have multiple clients at
the same time. First, execute the Chapter18/example3.py file to run the server again, as
follows:

> python3 example3.py
Server up, running, and waiting for call on localhost 8080

[346]

Building a Server from Scratch Chapter 18

Similar to what we did in the previous examples, let's now open another Terminal and use
Telnet into the running server:

> telnet localhost 8080

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.
<welcome: starting in sum mode>

To create the second client for this server, open another Terminal and type in the same
telnet command, as follows:

> telnet localhost 8080
Trying 127.0.0.1...
Connected to localhost.
Escape character is '*]'.

Here, we can already see that the server is not handling this second client correctly: it is not
sending back the welcome message (<welcome: starting in sum mode>) to this client.
If we look at the output of our server, we can also see that it is only registering one
client—specifically, the first of the two:

> python3 example3.py
Server up, running, and waiting for call on localhost 8080
Received connection from ('127.0.0.1', 61099)

Next, we will try to enter input from each of the clients. We will see that the server is only
successfully handling requests from the first client. Specifically, the following is my output
from the first client, with various types of input:

> telnet localhost 8080

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.
<welcome: starting in sum mode>
hello

ERROR. Enter only integers separated by commas
1,5

Sum of input numbers: '6'
product

<switching to product mode>

6,7

Product of input numbers: '42'

[347]

Building a Server from Scratch Chapter 18

Now, with the first client still maintaining the connection with the server, switch to the
Terminal of the second client and try to enter its own input. You will see that unlike the
first client, this client is not receiving any message back from the server:

> telnet localhost 8080
Trying 127.0.0.1...
Connected to localhost.
Escape character is '*]'.
hello

1,5

product

6,7

If we look at the server output, we will see that the server is only handling requests from
the first client:

> python3 example3.py

Server up, running, and waiting for call on localhost 8080
Received connection from ('127.0.0.1', 61099)

('127.0.0.1', 61099) -—> hello

('127.0.0.1', 61099) --—> 1,5

('127.0.0.1', 61099) -—> 6,7

The only way for the second client to be able to interact with the server is if the first client
disconnects from the server—in other words, when we stop the connection between the
first client and the server, as follows:

> telnet localhost 8080

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.
<welcome: starting in sum mode>
hello

ERROR. Enter only integers separated by commas
1,5

Sum of input numbers: '6'

product

<switching to product mode>

6,7

Product of input numbers: '42'
quit

connection closed

Connection closed by foreign host.

[348]

Building a Server from Scratch Chapter 18

Now, if you switch to the Terminal of the second client, you will see that the client will be
flushed with messages from the server that it should have been receiving earlier:

> telnet localhost 8080

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.

hello

1,5

product

6,7

<welcome: starting in sum mode>
ERROR. Enter only integers separated by commas
Sum of input numbers: '6'
<switching to product mode>
Product of input numbers: '42'

All of the appropriate replies from the server are now present, but they were sent all at
once, and not after each of the input messages. The same surge of information is also
illustrated in the output from our server Terminal, as follows:

> python3 example3.py

Server up, running, and waiting for call on localhost 8080
Received connection from ('127.0.0.1', 61099)
('127.0.0.1', 61099) —--> hello

('127.0.0.1', 61099) -—> 1,5

('127.0.0.1', 61099) -——> 6,7

('127.0.0.1', 61099) quit

Received connection from ('127.0.0.1', 61100)
('127.0.0.1', 61100) —--> hello

('127.0.0.1', 61100) -—> 1,5

('127.0.0.1', 61100) ——> 6,7

This output makes it seem as if the server only received the connection from the second
client after the first client had quit, when in reality, we created the two clients and had them
communicate with the server at the same time. This is because our current server is only
able to handle one client at a time, and only after the current client has quit can it move on
to the next client that has requested a communication channel. We call this a blocking
server.

[349]

Building a Server from Scratch Chapter 18

Generators in Python

In the next section, we will discuss how to convert the blocking server that we currently
have to a non-blocking one, while keeping the calculating functionalities. In order to do
that, we will first need to look into another concept in Python programming, called
generators. Chances are you have already worked with Python generators, but to recap, we
will go over the key features of generators in this section.

Generators are functions that return iterators and can be paused and resumed dynamically.
Return values from generators are often compared to list objects, because generator
iterators are lazy (https://en.wikipedia.org/wiki/Lazy_evaluation)and only produce
results when explicitly asked. For this reason, generator iterators are more efficient in terms
of memory management, and are therefore often preferred over lists when large amounts of
data are involved.

Each generator is defined as a function, but instead of using the keyword return inside the
function block, we use yield, which is to indicate that the return value is only temporary
and the whole generator itself can still be resumed after the return value is obtained. Let's
look at how Python generators work in an example, included in the
Chapterl8/example4.py file, as follows:

Chapterl8/exampled.py

def read_dataf():
for i in range(5):
print ('Inside the inner for loop...'")
yield 1 * 2

result = read_datal()

for i in range (6):
print ('Inside the outer for loop...'")
print (next (result))

print ('Finished. ")

Here, we have a generator named read_data (), which returns multiples of 2, from 0 to 8,
in a lazy manner. This is done with the keyword yield, which is placed in front of what
would be the return value in an otherwise normal function: i * 2. Note that the yield
keyword is placed in front of the individual elements in the iterator that should be sent
back, which facilitates the lazy generation.

[350]

https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Lazy_evaluation

Building a Server from Scratch Chapter 18

Now, in our main program, we are obtaining the whole iterator and storing it in the
variable result. Then, we loop through that iterator six times, using the next () function
(which, evidently, returns the next element in the iterator passed in). After executing the
code, your output should be similar to the following;:

> python3 exampled.py

Inside the outer for loop...

Inside the inner for loop...

0

Inside the outer for loop...

Inside the inner for loop...

2

Inside the outer for loop...

Inside the inner for loop...

4

Inside the outer for loop...

Inside the inner for loop...

6

Inside the outer for loop...

Inside the inner for loop...

8

Inside the outer for loop...

Traceback (most recent call last):
File "example4.py", line 11, in <module>

print (next (result))
StopIteration

You can see that, even though the iterator was generated and returned from the
read_data () generator before we looped through it, the actual instructions inside the
generator were only executed as we tried to obtain more items from the iterator.

This is illustrated by the fact that the print statements in the output were alternatively
placed with each other (one print statement from the outer for loop and one from the inner
for loop, alternatively): the execution flow goes into the outer for loop first, tries to access
the next item in the iterator, goes into the generator, and goes into its own for loop. As
soon as the execution flow reaches the yield keyword, it goes back out to the main
program. This process continues until one of the for loops terminates; in our case, the for
loop in the generator stopped first, and we therefore encountered a StopIteration error
at the end.

The laziness in the generation of the iterator comes from the fact that the generator stops
executing when it reaches the yield keyword, and only continues its execution when
asked by outside instructions (in this case, by the next () function). Again, this form of
data generation is significantly more efficient in memory management than simply
generating everything that might need to be iterated over (such as a list).

[351]

Building a Server from Scratch Chapter 18

Asynchronous generators and the send method

How are generators relevant to our purposes of building an asynchronous server? The
reason our current server cannot handle multiple clients is because the readline ()
function that we are using in the user business logic part, in order to obtain client data, is a
blocking function that prevents the execution flow from going to other potential clients, as
long as the current file object is still open. That is why, when the current client stops its
connection with the server, the next client immediately receives the surge of information
that we saw earlier.

If we could rewrite this function into an asynchronous one that allowed the execution flow
to switch between different clients while those clients were all connecting to the server, that
server would then become non-blocking. We will do this by using asynchronous generators
to concurrently generate data from potentially multiple clients at the same time for our
server.

To see the underlying structure of the asynchronous generator that we will use for our
server, let's first consider the Chapter18/example5.py file, as follows:

Chapterl8/example5.py
import types

@types.coroutine
def read_data():
def inner (n):
try:
print (f'Printing from read_data(): {n}'")
callback = gen.send(n * 2)
except Stoplteration:
pass

data = yield inner
return data

async def process():

try:
while True:
data = await read_data()
print (f'Printing from process(): {data}')
finally:

print ('Processing done.')

gen = process ()
callback = gen.send(None)

[352]

Building a Server from Scratch Chapter 18

def main() :
for i in range(5):

print (f'Printing from main(): {i}")
callback (1)
if _ name_ == '_ main__ ':
main ()

We are still considering the task of printing out multiples of 2, between 0 and 8. The
process () function is our asynchronous generator in this example. You can see that there
is, in fact, no yield keyword inside the generator; this is because we are using the await
keyword, instead. This asynchronous generator is responsible for printing out the multiples
of 2, computed by another generator, read_data ().

The @types.coroutine decorator is used to convert the generator read_data () into a
coroutine function that returns a generator-based coroutine, which can still be used as a
regular generator but can also be awaited. This generator-based coroutine is the key to
converting our blocking server to a non-blocking one. The coroutine performs the
computation with the send () method, which is a way to provide a generator with input (in
this case, we are providing the process () generator with multiples of 2).

This coroutine returns a callback, which can be called by our main program later. This is
why, before looping through range (5) in the main program, we need to keep track of the
process () generator itself (stored in the variable gen) and the callback that is returned
(stored in the variable callback). The callback, specifically, is the return value of
gen.send (None), which is used to start the execution of the process () generator. Finally,
we simply loop over the aforementioned range object and call the callback object with
the appropriate input.

A lot has been said about the theory behind this method of using asynchronous generators.
Now, let's see it in action. Execute the program, and you should get the following output:

> python3 example5.py
Printing from main(): O
Printing from read_data(): O
Printing from process(): 0
Printing from main(): 1
Printing from read_data(): 1
Printing from process(): 2
Printing from main(): 2
Printing from read_data(): 2
Printing from process(): 4
Printing from main(): 3
Printing from read_data(): 3
Printing from process(): 6

[353]

Building a Server from Scratch Chapter 18

Printing from main(): 4
Printing from read _data(): 4
Printing from process(): 8
Processing done.

In the output (specifically, the print statements), we can still observe the task switching
events that are quintessential for both the asynchronous programming that was discussed
in earlier chapters and the generators that produce output lazily. Essentially, we have
achieved the same goal as the previous example (printing multiples of 2), but here, we used
asynchronous generators (with the async and await keywords) to facilitate task switching
events, and we were also able to pass specific arguments to generators by using a callback.
These techniques, when combined, form the basic structure that will be applied to our
currently blocking server.

Making the server non-blocking

Finally, we will consider the problem of implementing a non-blocking server again. Here,
we are applying the asynchronous generators discussed previously to facilitate the
asynchronous reading and handling of data received from clients of the server. The actual
code for the server is included in the Chapter18/example6.py file; we will be going
through various parts of it, as it is a relatively long program. Let's turn our attention to the
global variables that we will have in this program, as follows:

Chapterl8/example6.py
from collections import namedtuple

FhAtH A A AR A A A A A AR A A A A AR A A AR AR AR A A AR AR AR H AR HF
Reactor

Session = namedtuple('Session', ['address',6 'file'])

sessions = {} # { csocket : Session(address, file)}
callback = {} # { csocket : callback(client, line) }
generators = {} # { csocket : inline callback generator }

To be able to successfully facilitate services for multiple clients at the same time, we will
allow the server to have multiple sessions (one for each client) at the same time, and
therefore, we will need to keep track of multiple dictionaries, each of which will hold one
specific piece of information about the current session.

[354]

Building a Server from Scratch Chapter 18

Specifically, the sessions dictionary maps a client socket connection to a Session object,
which is a Python namedtuple object that contains the address of the client and the file
object associated with that client connection. The callback dictionary maps a client socket
connection to a callback that is the return value of the asynchronous generator that we will
implement later; each of these callbacks takes in its corresponding client socket connection
and data read from that client as arguments. Finally, the generators dictionary maps a
client socket connection to its corresponding asynchronous generator.

Now, let's take a look at the reactor function:
Chapterl8/example6.py
import socket, select

Main event loop
def reactor (host, port):
sock = socket.socket ()
sock.bind ((host, port))
sock.listen (5)
sock.setblocking (0) # Make asynchronous

sessions[sock] = None
print (f'Server up, running, and waiting for call on {host} {port}')

try:
while True:
Serve existing clients only if they already have data ready
ready_to_read, _, _ = select.select(sessions, [], [], 0.1)
for conn in ready_to_read:
if conn is sock:

conn, cli_address = sock.accept ()

connect (conn, cli_address)

continue

line = sessions|[conn].file.readline ()
if line:
callback[conn] (conn, line.rstrip())
else:
disconnect (conn)
finally:
sock.close ()

[355]

Building a Server from Scratch Chapter 18

Aside from what we already had from our previous blocking server, we are adding in a
number of instructions: we use the setblocking () method from the socket module to
potentially make our server asynchronous, or non-blocking; as we are starting a server, we
also register that specific socket to the sessions dictionary, with a None value for now.

Inside our infinite while loop (the event loop) is part of the new non-blocking feature that
we are trying to implement. First, we use the select () method from the select module
to single out the sockets from the sessions dictionary that are ready to be read (in other
words, the sockets that have available data). Since the first argument of the method is for
the data to be read, the second is for the data to be written, and the third is for exception
data, we are only passing in the sessions dictionary in the first argument. The fourth
argument specifies the timeout period for the method (in seconds); if unspecified, the
method will block infinitely, until at least one item in sessions becomes available, which
is not suitable for our non-blocking server.

Next, for every client socket connection that is ready to be read, if the connection
corresponds to our original server socket, we will accept that connection and call the
connect () function (which we will look at soon). In this for loop, we will also handle the
callback methodologies. Specifically, we will access the file attribute of the session of the
current socket connection (recall that each session has an address attribute and a file
attribute) and will read data from it using the readline () method. Now, if what we read
is valid data, then we will pass it (along with the current client connection) to the
corresponding callback; otherwise, we will end the connection.

Note that even though our server is made asynchronous by the socket being set to non-
blocking, the preceding readline () method is still a blocking function. The

readline () function returns when it gets to a carriage return in its input data (the '\r"'
character in ASCII). This means that if the data sent by a client somehow does not contain a
carriage return, then the readline () function will fail to return. However, since the server

is still non-blocking, an error exception will be raised so that other clients will not be
blocked.

Now, let's look at our new helper functions:
Chapterl8/exampleb.py

def connect (conn, cli_address):
sessions[conn] = Session(cli_address, conn.makefile())

gen = process_request (conn)
generators[conn] = gen
callback[conn] = gen.send(None) # Start the generator

[356]

Building a Server from Scratch Chapter 18

def disconnect (conn) :
gen = generators.pop (conn)
gen.close ()
sessions[conn] .file.close ()
conn.close ()

del sessions[conn]
del callback[conn]

The connect () function, which is to be called when a client connection has data that is
ready to read, will initiate starting instructions at the beginning of a valid connection with a
client. First, it initializes the namedtuple object associated with that specific client
connection (we are still using the makefile () method to create the £ile objects here). The
rest of the function is what we saw in the usage pattern of asynchronous generators, which
we discussed earlier: we pass the client connection to process_request (), which is now
an asynchronous generator; register it in the generators dictionary; have it call

send (None) to initiate the generator; and store the return value to the callback
dictionary, so that it can be called later (specifically, in the last part of the event loop in the
reactor that we just saw).

The disconnect () function, on the other hand, facilitates various cleaning instructions
when a connection with a client stops. It removes the generator associated with the client
connection from the generators dictionary and closes the generator, the £ile object
stored in the sessions dictionary, as well as the client connection itself. Finally, it deletes
the keys that correspond to the client connection from the remaining dictionaries.

Let's turn our attention to the new process_request () function, which is now an
asynchronous generator:

Chapterl8/exampleb.py

from operator import mul
from functools import reduce

FH A R R S R R R R R R

User's Business Logic

async def process_request (conn) :
print (f'Received connection from {sessions[conn].address}')
mode = 'sum'

try:
conn.sendall (b'<welcome: starting in sum mode>\n')
while True:
line = awailt readline (conn)

[357]

Building a Server from Scratch Chapter 18

if line == 'quit':
conn.sendall (b'connection closed\r\n')
return

if line == 'sum':
conn.sendall (b'<switching to sum mode>\r\n')
mode = 'sum'
continue

if line == 'product':
conn.sendall (b'<switching to product mode>\r\n')
mode = 'product'
continue

print (f'{sessions|[conn].address} —-—> {line}"')
try:
nums = list (map(int, line.split(',"')))
except ValueError:
conn.sendall (
b'ERROR. Enter only integers separated by commas\n')
continue

if mode == 'sum':
conn.sendall (b'Sum of input integers: %a\r\n'
% str(sum(nums)))
else:
conn.sendall (b'Product of input integers: %a\r\n'
% str(reduce (mul, nums, 1)))
finally:
print (f'{sessions|[conn].address} quit')

The logic that handles client data and performs the computation remains the same, and the
only differences with this new function are the async keyword (placed in front of the def
keyword) and the await keyword used with the new readline () function. These
differences, in essence, convert our process_request () function into a non-blocking one,
with the condition that the new readline () function is also non-blocking;:

Chapterl8/example6.py
import types

@types.coroutine
def readline (conn) :
def inner (conn, line):
gen = generators[conn]
try:
callback[conn] = gen.send(line) # Continue the generator
except StopIlteration:
disconnect (conn)

[358]

Building a Server from Scratch Chapter 18

line = yield inner
return line

Similar to what we saw in the previous example, we are importing the t ypes module from
Python and using the @types.coroutine decorator to make the readline () function a
generator-based coroutine, which is non-blocking. Each time a callback (which takes in a
client connection and a line of data) is called, the execution flow will go into the inner ()
function inside this coroutine and execute the instructions.

Specifically, it sends the line of data to the generator, which will enable the instructions in
process_request () to handle it asynchronously and store the return value to the
appropriate callback—unless the end of the generator has been reached, in which case the
disconnect () function will be called.

Our last task is to test whether this server is actually capable of handling multiple clients at
the same time. To do this, execute the following script first:

> python3 exampleé6.py
Server up, running, and waiting for call on localhost 8080

Similar to what you saw earlier, open two additional Terminals and use Telnet into this
running server with both:

> telnet localhost 8080

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.
<welcome: starting in sum mode>

As you can see, both clients are being handled correctly: both are able to connect, and both
receive the welcome message. This is also illustrated by the server output, as follows:

> python3 exampleé6.py

Server up, running, and waiting for call on localhost 8080
Received connection from ('127.0.0.1', 63855)

Received connection from ('127.0.0.1', 63856)

Further tests could involve sending messages to the server at the same time, which it can
still handle. The server can also keep track of individual modes of calculation that are
unique to individual clients (in other words, assuming each client has a separate mode of
calculation). We have successfully built a non-blocking, concurrent server from scratch.

[3591]

Building a Server from Scratch Chapter 18

Summary

More often than not, low-level network programming involves the manipulation and
handling of sockets (defined as theoretical endpoints within the nodes of a specific
computer network, responsible for receiving or sending data from the nodes that they are
in). The architecture of server-side communication consists of multiple steps involving
socket handling, such as bind, listen, accept, read, and write. The socket module provides
an intuitive API that facilitates these steps.

To create a non-blocking server with the socket module, asynchronous generators need to
be implemented, in order for the execution flow to switch between tasks and data. This
process also involves using callbacks that can be run by the execution flow at a later time.
These two elements allow for the server to read and handle the data coming in from
multiple clients at the same time, allowing the server to become non-blocking.

We will conclude our book with the next chapter, with practical techniques for designing
and implementing concurrent programs. Specifically, we will discuss how to test, debug,
and schedule concurrent applications, methodically and effectively.

Questions

e What is a socket? How is it relevant to network programming?

e What is the procedure for server-side communication when a potential client
makes a request to connect?

e What are some methods provided by the socket module to facilitate low-level
network programming on the server-side?
e What are generators? What is their advantage over Python lists?

e What are asynchronous generators? How can they be applied to build a non-
blocking server?

[360]

Building a Server from Scratch Chapter 18

Further reading

For more information, you can refer to the following links:

Keynote on Concurrency, PyBay 2017, Raymond Hettinger (https://pybay.com/
site_media/slides/raymond2017-keynote/async_examples.html)

A simple Python webserver, Stephen C. Phillips
(blog.scphillips.com/posts/2012/12/afsimplefpythonfwebserver/)

How to Work with TCP Sockets in Python, Alexander Stepanov
(steelkiwi.com/blog/working—tcp—sockets/)

Socket Programming in Python, Nathan Jennings (realpython.com/python-

sockets/#multi-connection-client-and-server)

Introduction to Python Generators (realpython.com/introduction-to-python-

generators/)

[361]

https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
https://pybay.com/site_media/slides/raymond2017-keynote/async_examples.html
http://blog.scphillips.com/posts/2012/12/a-simple-python-webserver/
https://steelkiwi.com/blog/working-tcp-sockets/
https://realpython.com/python-sockets/#multi-connection-client-and-server
https://realpython.com/python-sockets/#multi-connection-client-and-server
https://realpython.com/introduction-to-python-generators/
https://realpython.com/introduction-to-python-generators/

19

Testing, Debugging, and
Scheduling Concurrent
Applications

In this chapter, we will discuss the process of using concurrent Python programs on a
higher level. First, you will learn about scheduling Python programs to be run concurrently
at a later time—either once, or periodically. We will analyze APScheduler, a Python library
that allows us to do this on a cross-platform basis. Furthermore, we will go over testing and
debugging, which are essential yet are often overlooked components of programming.
Given the complexities of concurrent programming, testing and debugging are even more
difficult than in traditional applications. This chapter will cover a number of strategies for
the effective testing and debugging of concurrent programs.

The following topics will be covered in this chapter:

e The APScheduler library and its usage in concurrently scheduling Python
applications

e Different testing techniques for Python programs

e Debugging practices in Python programming, as well as concurrency-specific
debugging techniques

Technical requirements

The following is a list of prerequisites for this chapter:

¢ Ensure that you have Python 3 installed on your computer

¢ Ensure that you have the apscheduler and concurrencytest libraries
installed with your Python distribution

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

¢ Download the GitHub repository at https://github.com/PacktPublishing/
Mastering-Concurrency-in-Python

¢ During this chapter, we will be working with the subfolder named Chapter19
e Check out the following video to see the Code in Action: http://bit.1ly/202d0%c

Scheduling with APScheduler

APScheduler (short for Advanced Python Scheduler) is an external Python library that
supports the scheduling of Python code to be executed later, either once or periodically.
This library gives us high-level options to dynamically add/remove jobs to/from the job list
so they can be scheduled and executed, as well as to decide how to distribute those jobs to
different threads and processes.

Some might think of Celery (http://www.celeryproject.org/) as the go-to scheduling tool
for Python. However, while Celery is a distributed task queue with basic scheduling
capabilities, APScheduler is quite the opposite: a scheduler with basic task queuing options
and advanced scheduling functionalities. Additionally, users of both tools have reported
that APScheduler is easier to set up and implement.

Installing APScheduler

As with most common Python external libraries, APScheduler can be installed via the
package manager, pip, by running the following command in your Terminal:

pip install apscheduler

Another way to install this library, if the pip command does not work, is to manually
download the source code from PyPI, which can be found at
pypi.org/project/APScheduler/. The downloaded file can then be extracted and installed
by running the following command:

python setup.py install

As always, to test whether your APScheduler distribution has been correctly installed, open
a Python interpreter and try to import the library, as follows:

>>> import apscheduler

If no errors are returned, it means that the library has been completely installed and is
ready to be used.

[363 1]

https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
https://github.com/PacktPublishing/Mastering-Concurrency-in-Python
http://bit.ly/2OZdOZc
http://bit.ly/2OZdOZc
http://bit.ly/2OZdOZc
http://bit.ly/2OZdOZc
http://bit.ly/2OZdOZc
http://bit.ly/2OZdOZc
http://bit.ly/2OZdOZc
http://bit.ly/2OZdOZc
http://bit.ly/2OZdOZc
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
http://www.celeryproject.org/
https://pypi.org/project/APScheduler/

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

Not a scheduling service

As the term scheduler can be quite misleading to specific groups of developers, let's clarify
the functionalities that APScheduler provides, as well as what it does not provide. First and
foremost, the library can be used as a cross-platform scheduler that is also application-
specific, as opposed to more common schedulers that are platform-specific, such as the cron
daemon (for Linux systems) or the Windows task scheduler.

It is important to note that APScheduler is not, in itself, a scheduling service that has a
prebuilt GUI or command-line interface. It is still a Python library that has to be imported
and utilized inside existing applications (that is why it is application-specific). However, as
you will learn later on, APScheduler comes with numerous functionalities that can be
leveraged to build an actual scheduling service.

For example, the ability to schedule jobs (specifically, background ones) is essential for web
applications nowadays, as they can include different but important functionalities, such as
sending emails or backing up and synchronizing data. In that context, APScheduler is
arguably the most common tool to schedule tasks for cloud applications that involve
Python instructions, such as Heroku and PythonAnywhere.

APScheduler functionalities

Let's explore some of the most common functionalities provided by the APScheduler
library. Execution-wise, it offers three different scheduling mechanisms, so that one can
choose the mechanism that is most suitable for one's applications (these mechanisms are
also sometimes called event triggers):

¢ Cron-style scheduling: This mechanism allows jobs to have prespecified start
and end times

e Interval-based execution: This mechanism runs jobs at even intervals (for
example, every two minutes, every day), with optional start and end times

¢ Delayed execution: This mechanism allows the application to wait for a specific
period of time before executing items in the job list

Furthermore, APScheduler allows us to store jobs to be executed in various backend
systems, such as regular memory, MongoDB, Redis, RethinkDB, SPLAlchemy, or
ZooKeeper. Whether it is a desktop program, a web application, or simply a Python script,
APScheduler is most likely to be able to work with how scheduled jobs are stored.

[364]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

In addition to that, the library can also work seamlessly with common Python concurrency
frameworks, such as AsynclO, Gevent, Tornado, and Twisted. This means that the low-
level code included in the APScheduler library contains instructions that can cohesively
schedule and execute functions and programs implemented in these frameworks, making
the library even more dynamic.

Finally, APScheduler provides different options to actually execute the scheduled code, by
specifying the appropriate executor(s). Specifically, one can simply execute jobs normally,
in a blocking way or in the background. We also have the option to use a pool of threads or
processes to distribute the work in a concurrent way. Later on, we will look at an example
where we utilize a process pool to execute scheduled jobs.

The following diagram maps out all of the major classes and functionalities included in
APScheduler:

Tornado Gevent Twisted
AsynclO
Scheduler Scheduler Scheduler ProcessPool Exgcutor
Tornado Executor
Background Executor
Scheduler
AsynciO Gevent
Execut
Scheduler / ecutor
Qt Base Base Twisted
— 0|
Scheduler | ————3] Scheduler Executor Executor
Blocking
Scheduler ThreadPool
Job \ Executor
Memory | —»f Base Base
JobStore JobStore Trigger
3 \
Mongodb Cron
JobStore Trigger Combining
Trigger
J F;ZTS SQLAIchemy Interval
obstore JobStore Trigger
Rethinkdb ‘ ZooKeeper Date And or
JobStore JobStore Trigger Trigger Trigger

APScheduler—main classes and functionalities

[365]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

APScheduler API

In this section, we will look at how to actually integrate APScheduler into existing Python
programs, by analyzing the different classes and methods provided by the library. We will
also look at how jobs are distributed across different threads and processes, when we
utilize a concurrent executor to run our scheduled jobs.

Scheduler classes

First, let's look at the options available for our main scheduler, which is the most important
component in the process of scheduling tasks to be executed at a later time:

e BlockingScheduler: This class should be used when the scheduler is intended
to be the only task running in the process. As the name suggests, an instance of
this class will block any other instructions in the same process.

¢ BackgroundScheduler: As opposed to BlockingScheduler, this class allows
scheduled jobs to be executed in the background, inside an existing application.

In addition, there are also scheduler classes to be used if your application utilizes specific
concurrency frameworks: AsyncIOScheduler for the asyncio module;
GeventScheduler for Gevent; TornadoScheduler for Tornado applications;
TwistedScheduler for Twisted applications; and so on.

Executor classes

Another important choice to be made during the process of scheduling jobs to be executed
at a later time is: Which executor(s) should run the jobs? Generally, the default

executor, ThreadPoolExecutor, which distributes the work across different threads in the
same process, is recommended. However, as you have learned, if the scheduled jobs
contain instructions that utilize CPU-intensive operations, then the workload should be
distributed across multiple CPU cores, and ProcessPoolExecutor should be utilized.

It is important to note that these two executor classes interact with the

concurrent . futures module that we discussed in earlier chapters, in order to facilitate
concurrent execution. The default number of maximum workers for both executor classes is
10, and can be changed upon initialization.

[366]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

Trigger keywords

The last decision in the process of building a scheduler is how scheduled jobs should be
executed in the future; this is the event-trigger option we mentioned earlier. APScheduler
provides three different triggering mechanisms; the following keywords should be passed
as an argument to the scheduler initializer, in order to specify the event trigger type:

e 'date': This keyword is used when the job is to be run once, at a specific point
in the future.

e 'interval': This is keyword is used when the job is to be run at fixed intervals
of time. We will be using this keyword in our examples later on.

e 'cron': This keyword is used when the job is to be periodically run at a certain
time of day.

Additionally, it is possible to mix and match multiple types of trigger. We also have the
option to have scheduled jobs executed either when all registered triggers so specify, or
when at least one of them does.

Common scheduler methods

Finally, let's consider the methods that are commonly used when declaring a scheduler, in
addition to the preceding classes and keywords. Specifically, the following methods are
called by scheduler objects:

¢ add_executor (): This method is called to register an executor to run jobs in the
future. Specifically, we typically pass the string 'processpool’ to this method
to have the jobs be distributed across multiple processes. Otherwise, as
mentioned, as thread pool will be used a the default executor. This method also
returns an executor object that can be manipulated further.

e remove_executor (): This method is used on an executor object, to remove it
from a scheduler.

e add_job () : This method can be used to add an additional job to the job list, to be
executed later. The method first takes in a callable that is the new job in the job
list, and various other arguments that are used to specify how the job should be
scheduled and executed. Similar to add_executor (), this method can return a
job object that can be manipulated outside the method.

e remove_job (): Similarly, this method can be used on a job object, to remove it
from a scheduler.

[367]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

e start (): This method starts scheduled jobs along with implemented executors,
and begins to process the job list.

e shutdown () : This method stops the calling scheduler object, along with its job
list and implemented executors. If it is called when there are current jobs
running, those jobs will not be interrupted.

Examples in Python

In this subsection, we will look at how some of the APIs that we discussed are used in
sample Python programs. Download the code for this book from the GitHub page, then go
ahead and navigate to the Chapter19 folder.

Blocking scheduler

First, let's take a look at an example of a blocking scheduler in the
Chapterl9/examplel.py file:

Chapterl9/examplel.py

from datetime import datetime

from apscheduler.schedulers.background import BlockingScheduler

def tick():
print (f'Tick! The time is: {datetime.now()}"')

if __name_ == '_ _main__ ':
scheduler = BlockingScheduler ()
scheduler.add_job(tick, 'interval', seconds=3)

try:

scheduler.start ()

print ('Printing in the main thread.')
except KeyboardInterrupt:

pass

scheduler.shutdown ()

[368]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

In this example, we are implementing a scheduler for the tick () function specified in the
preceding code, which simply prints out the current time at which it is executed. In our
main function, we are using an instance from the BlockingScheduler class, imported
from APScheduler, as our scheduler for this program. In addition to this, the
aforementioned add_job () method is used to register tick () as ajob to be executed later.
Specifically, it should be executed periodically, at even intervals (specified by the
'interval' string passed in)—particularly, every three seconds (specified by the
argument seconds=3).

Recall that a blocking scheduler will block all other instructions in the same process that it
runs in. To test this, we are also inserting a print statement, right after starting the
scheduler, to see whether it will be executed. After running the script, your output should
look similar to the following (except for the specific times that are being printed out):

> python3 examplel.py

Tick! The time is: 2018-10-31 17:25:01.758714
Tick! The time is: 2018-10-31 17:25:04.760088
Tick! The time is: 2018-10-31 17:25:07.762981

Notice that this scheduler will run forever, unless it is stopped by a KeyboardInterrupt
event or other potential exceptions, and the printing statement that we placed near the end
of the main program will never be executed. For this reason, the BlockingScheduler class
should only be used when it is intended to be the only task running in its process.

Background scheduler

In this example, we will look at whether the use of the BackgroundScheduler class would
help if we wanted to execute our scheduler in the background, concurrent with other tasks.
The code for this example is included in the Chapter19/example2.py file, as follows:

Chapterl9/example?2.py

from datetime import datetime
import time

from apscheduler.schedulers.background import BackgroundScheduler

def tick():
print (f'Tick! The time is: {datetime.now()}"')

if _ name_ == '_ main__':
scheduler = BackgroundScheduler ()
scheduler.add_job(tick, 'interval', seconds=3)

scheduler.start ()

[369 1]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

try:
while True:
time.sleep(2)
print ('Printing in the main thread.')
except KeyboardInterrupt:
pass

scheduler.shutdown ()

The code in this example is almost identical to what we had previously. However, here, we
are using the class for background schedulers, as well as printing out messages from the
main program every two seconds, in an infinite while loop. Theoretically, if the
scheduler object can indeed run the scheduled job in the background, our output will
consist of a combination of print statements, in both the main program and the tick ()
function.

The following is my output, after executing the script:

> python3 example2.py

Printing in the main thread.

Tick! The time is: 2018-10-31 17:36:35.231531
Printing in the main thread.

Tick! The time is: 2018-10-31 17:36:38.231900
Printing in the main thread.

Printing in the main thread.

Tick! The time is: 2018-10-31 17:36:41.231846
Printing in the main thread.

Again, the scheduler will continue on forever, until an interruption from the keyboard is
evoked. Here, we can see what we expected to see: print statements from the main program
and the scheduled job are produced concurrently, indicating that the scheduler was indeed
running in the background.

Executor pool

One additional functionality offered by APScheduler is the ability to distribute scheduled
jobs to be executed across multiple CPU cores (or processes). In this example, you will learn
how to do that with a background scheduler. Navigate to the Chapter19/example3.py
file and inspect the included code, as follows:

Chapterl9/example3.py

from datetime import datetime
import time
import os

[370]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

from apscheduler.schedulers.background import BackgroundScheduler

def task():
print (f'From process {os.getpid()}: The time is {datetime.now()}")
print (f'Starting job inside {os.getpid()}"')
time.sleep (4)
print (f'Ending job inside {os.getpid()}"')

if _ name_ == '_ main__ ':
scheduler = BackgroundScheduler ()
scheduler.add_executor ('processpool')
scheduler.add_job (task, 'interval', seconds=3, max_instances=3)
scheduler.start ()

try:
while True:
time.sleep (1)
except KeyboardInterrupt:
pass

scheduler.shutdown ()

In this program, the job that we would like to schedule (the task () function) prints out the
identifier of the process that is running it at each call (using the os.getpid () method)

and is designed to last for around four seconds. In the main program, we are using the
same background scheduler we used in the last example, but we are specifying that
scheduled jobs should be executed in a pool of processes:

scheduler.add_executor ('processpool')

Remember that the default value of the number of processes in this pool is 10, and can be
changed to a different value. Next, as we add the job to the scheduler, we also have to
specify that this job can be executed in more than one process instance (in this case, three
instances); this allows our process pool executor to be utilized fully and efficiently:

scheduler.add_job (task, 'interval', seconds=3, max_instances=3)

The first few lines of my output, after running the program, are as follows:

> python3 example3.py

From process 1213: The time is 2018-11-01 10:18:00.559319
Starting job inside 1213

From process 1214: The time is 2018-11-01 10:18:03.563195
Starting job inside 1214

Ending job inside 1213

From process 1215: The time is 2018-11-01 10:18:06.531825
Starting job inside 1215

[371]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

Ending job inside 1214

From process 1216: The time is 2018-11-01 10:18:09.531439
Starting job inside 1216

Ending job inside 1215

From process 1217: The time is 2018-11-01 10:18:12.531940
Starting job inside 1217

Ending job inside 1216

From process 1218: The time is 2018-11-01 10:18:15.533720
Starting job inside 1218

Ending job inside 1217

From process 1219: The time is 2018-11-01 10:18:18.532843
Starting job inside 1219

Ending job inside 1218

From process 1220: The time is 2018-11-01 10:18:21.533668
Starting job inside 1220

Ending job inside 1219

From process 1221: The time is 2018-11-01 10:18:24.535861
Starting job inside 1221

Ending job inside 1220

From process 1222: The time is 2018-11-01 10:18:27.531543
Starting job inside 1222

Ending job inside 1221

From process 1213: The time is 2018-11-01 10:18:30.532626
Starting job inside 1213

Ending job inside 1222

From process 1214: The time is 2018-11-01 10:18:33.534703
Starting job inside 1214

Ending job inside 1213

As you can see from the printed process identifiers, the scheduled job was being executed
in different processes. You will also notice that the ID of the first process was 1213, and, as
soon as our scheduler started to use the process with the ID of 1222, it then switched back
to the 1213 process (notice the last few lines of the preceding output). This is because our
process pool contains 10 workers, and the 1222 process was the last element of the pool.

Running on the cloud

Earlier, we mentioned that cloud services that host Python code, such as Heroku and
PythonAnywhere, are some of the most common places to apply APScheduler's
functionalities. In this subsection, we will look at one example from the user guide on the
Heroku website, which can be found in the Chapter19/example4.py file:

chl9/exampled.py
Copied from: http://devcenter.heroku.com/articles/clock—-processes—-python

[372]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

from apscheduler.schedulers.blocking import BlockingScheduler
scheduler = BlockingScheduler ()

@scheduler.scheduled_job ('interval', minutes=3)
def timed_job () :
print ('This job is run every three minutes.')

@scheduler.scheduled_job('cron', day_of_week='mon-fri', hour=17)
def scheduled_job():
print ('This job is run every weekday at 5Spm."'")

scheduler.start ()

You can see that this program uses decorators to register scheduled jobs for the scheduler.
Specifically, when the scheduled_job () method is called by a scheduler object, that
whole instruction can be used as a decorator for a function, to convert it to a scheduler job
for that scheduler. You can also see an example of a cron scheduled job in the preceding
code, which can be executed at specific times of day (in this case, it is every weekday at 5:00

p-m.).

As a final note on APScheduler, we have seen that instructions utilizing the library API are
also Python code, and not a separate service in itself. However, considering how flexible
the library is in providing different scheduling options and how pluggable its programs are
in terms of working with external services (such as cloud-based ones), APScheduler is a
valuable tool for scheduling Python applications.

Testing and concurrency in Python

As mentioned previously, testing is an essential (yet often overlooked) component of
software development specifically, and programming in general. The goal of testing is to
evoke errors that would indicate the existence of bugs in our programs. This is to be
contrasted with the process of debugging, which is used to identify the bugs themselves;
we will discuss the topic of debugging in the next section.

In the most general sense, testing is about determining whether specific functions and
methods can perform and produce results that we intend them to; this is typically done by
comparing the results that are produced. In other words, testing is collecting evidence as to
the correctness of our programs.

[373]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

However, testing cannot ensure that all potential defects and bugs in the program under
consideration will be identified. Additionally, the test results are only as good as the tests
themselves, and if the tests do not cover some specific potential bugs, then those bugs will
most likely not be detected during the testing process.

Testing concurrent programs

In this chapter, we will consider two distinct topics of testing, with regard to concurrency:
testing concurrent programs and testing programs concurrently. When it comes to testing
concurrent programs, the general consensus is that it is extremely demanding and difficult
to get right. As you saw in previous chapters, bugs such as deadlocks or race conditions can
be quite subtle in a concurrent program, and can manifest themselves in many ways.

Furthermore, one distinct feature of concurrency is nondeterminism, which means that it is
possible for a concurrency bug to be detected in one run of the test and become invisible in
another. This is because a major component of concurrent programming is the scheduling
of tasks, and, like the order in which different tasks are executed in a concurrent program,
concurrency bugs can show and hide themselves in an unpredictable way. We call these
tests non-reproducible, to indicate that we cannot reliably pass or fail a program with these
tests in a consistent way.

With that said, there are some general strategies that can help us to navigate through the
process of testing concurrent programs. In the following section, we will explore the
various tools that can assist us with specific strategies for testing concurrent programs.

Unit testing

The first strategy that we will consider is unit testing. The term indicates a method that tests
for individual units of the program under consideration, where a unit is the smallest
testable part of the program. For this reason, unit testing is not meant for testing a complete
concurrent system. Specifically, it is recommended that you do not test a concurrent
program as a whole, but that you break the program down into smaller components and
test them separately.

[374]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

As usual, Python provides libraries that offer intuitive APIs to solve most common
problems in programming; in this case, it is the unittest module. The module was
originally inspired by the unit testing framework for the Java programming language JUnit;
it also provides common unit testing functionalities in other languages. Let's consider a
quick example of how we can use unittest to test a Python function in the
Chapterl9/example5.py file:

Chapterl9/example5.py
import unittest

def fib(i):
if 1 in [0, 1]:
return i

return fib(i - 1) + fib(i - 2)

class FibTest (unittest.TestCase) :

def test_start_values(self):
self.assertEqual (£fib(0), 0)
self.assertEqual (fib (1), 1)

def test_other_values(self):
self.assertEqual (fib(10), 55)

if _ name_ == '_ main__ ':
unittest.main ()

In this example, we would like to test the f£ib () function that generates specific elements in
the Fibonacci sequence (where an element is the sum of its two previous elements), whose
starting values are 0 and 1, respectively.

Now, let's focus our attention on the FibTest class, which extends the TestCase class
from the unittest module. This class contains different methods that test for specific cases
of the results returned by the fib () function. Specifically, we have a method that looks at
edge cases for this function, which are the first two elements of the sequence, and another
method that tests for an arbitrary value in the sequence.

After running the preceding script, your output should be similar to the following:

> python3 unit_test.py

Ran 2 tests in 0.000s

OK

[375]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

The output indicates that our tests passed without any errors. Additionally, as suggested by
the class name, this class is an individual test case, which is a unit of testing. You can
expand different test cases into a test suite, which is defined as a collection of test cases, test
suites, or both. Test suites are generally used to combine tests that you would like to run
together.

Static code analysis

Another viable method to identify potential errors and bugs in your concurrent programs is
to perform static code analysis. This method looks for patterns in the code itself, as opposed
to executing some (or all) parts of the code. In other words, static code analysis inspects a
program by visually looking at its structure, the use of variables and instructions, and how
different parts of the program interact with each other.

The main advantage of using static code analysis is that we are not relying on just the
execution of our programs and the results produced during that process (in other words,
dynamic testing) to determine whether the programs are correctly designed. This method
can detect errors and bugs that do not manifest themselves (easily, or at all) in implemented
tests. For this reason, static code analysis should be combined with other testing methods,
such as unit testing, to create a comprehensive testing process.

Static code analysis is often used to identify subtle errors or bugs, such as unused variables,
empty catch blocks, or even unnecessary object creation. In terms of concurrent
programming, the method can be used to analyze synchronization techniques used in a
program. Specifically, static code analysis can look for the atomicity of shared resources in a
program, then reveal any uncoordinated usage of non-atomic resources that could produce
detrimental race conditions.

Various tools are available to facilitate static code analysis for Python programs, with one of
the more common ones being PMD (https://github.com/pmd/pmd). With that said, the
specific use of these tools is beyond the scope of this book, and we will not go into them
further.

Testing programs concurrently

Another aspect of combining testing and concurrent programming is performing tests in a
concurrent way. This aspect of testing is more straightforward and intuitive than testing
concurrent programs themselves. In this subsection, we will explore a library that can help
us facilitate this process, concurrencytest, which can work seamlessly with test cases
implemented with the preceding unittest module.

[376]

https://github.com/pmd/pmd
https://github.com/pmd/pmd
https://github.com/pmd/pmd
https://github.com/pmd/pmd
https://github.com/pmd/pmd
https://github.com/pmd/pmd
https://github.com/pmd/pmd
https://github.com/pmd/pmd
https://github.com/pmd/pmd
https://github.com/pmd/pmd
https://github.com/pmd/pmd

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

concurrencytest is designed as a testtools extension that implements concurrency in
running test suites. It can be installed from PyPI, using pip, as follows:

pip install concurrencytest

Additionally, concurrencytest is dependent on the

testtools (pypi.org/project/testtools/)and python-

subunit (pypi.org/project/python-subunit/) libraries, which are a test extension
framework and a streamlining protocol for test results, respectively. These libraries can also
be installed via pip, as follows:

pip install testtools
pip install python-subunit

As always, to verify your installation, try to import the library in a Python interpreter:
>>> import concurrencytest

Receiving no printed errors means that the library and its dependencies were installed
successfully. Now, let's look at how this library can help us to achieve better speed for our
tests. Navigate to the Chapter19/example6.py file and consider the following code:

Chapterl9/exampleb.py
import unittest
def fib(i):

if 1 in [0, 1]:

return i

a, b=20,1

n =1

while n < 1i:
a, b=Db, a+Db
n += 1

return b

class FibTest (unittest.TestCase) :
def __init__ (self, *args, **kwargs):
super (FibTest, self).__init__ (*args, **kwargs)
self.mod = 10 ** 10

def test_start_values(self):
self.assertEqual (fib(0), 0)
self.assertEqual (fib (1), 1)

[377]

https://pypi.org/project/testtools/
https://pypi.org/project/python-subunit/

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

def test_big_value_vl (self):
self.assertEqual (£fib(499990) % self.mod, 9998843695)

def test_big_value_v2(self):
self.assertEqual (£fib(499995) % self.mod, 1798328130)

def test_big _value_v3(self):
self.assertEqual (£fib(500000) % self.mod, 9780453125)

if _ name_ == '_ main__ ':
unittest.main ()

The main goal of the examples in this section is testing the function that produces numbers
in the Fibonacci sequence, specifically numbers with large indices. The fib () function that
we have is similar to that of the previous example, although this one performs the
calculation iteratively, without using recursion.

In our test case, aside from the two starting values, we are now testing numbers at

indices 499,990, 499,995, and 500,000. Since the resulting numbers are significantly large, we
are only testing the last ten digits for each number (this is done via the mod attribute of the
test class, specified in the initialization method). This testing process will be executed in one
process, in a sequential way.

Run the program, and your output should be similar to the following;:

> python3 exampleé6.py

Ran 4 tests in 8.809s

OK

Again, the time specified in the output can vary from system to system. With that said,
remember the amount of time that the program took, so that you can compare it with the
speed of other programs that we will consider later on.

Now, let's look at how we can distribute the testing workload across multiple processes,
with concurrencytest. Consider the Chapter19/example7.py file, as follows:

Chapterl9/example’.py

import unittest
from concurrencytest import ConcurrentTestSuite, fork_for_tests

def fib(i):
if i in [0, 17:
return i

[378]

Testing, Debugging, and Scheduling Concurrent Applications

Chapter 19

a, b =20, 1

n =1

while n < 1i:
a, b=D>b, a+b
n +=1

return b

class FibTest (unittest.TestCase) :

def __init__ (self, *args, **kwargs):
super (FibTest, self).__init__ (*args, **kwargs)
self.mod = 10 ** 10

def test_start_values(self):
self.assertEqual (£fib(0), 0)
self.assertEqual (fib (1), 1)
def test_big_value_vl (self):
self.assertEqual (£ib(499990)
def test_big_value_v2(self):
self.assertEqual (£ib(499995)
def test_big _value_v3(self):
self.assertEqual (£ib (500000)
if _ name_ == '_ main__ "':
suite =
concurrent_suite =
runner.run (concurrent_suite)

o

3 self.mod,

\

9998843695)

)

3 self.mod,

\

1798328130)

o

3 self.mod,

\

9780453125)

unittest.TestLoader () .loadTestsFromTestCase (FibTest)
ConcurrentTestSuite (suite,

fork_for_tests (4))

This version of the program is examining the same f£ib () function, using the same test
case. However, in the main program, we are initializing an instance of the
ConcurrentTestSuite class, from the concurrencytest library. This instance takes in a
test suite, which was created using the TestLoader () API from the unittest module,
and the fork_for_tests () function, with the parameter 4, to specify that we want to
utilize four separate processes to distribute the testing procedure.

Now, let's run this program and compare its speed with that of our previous tests:

> python3 example7.py

Ran 4 tests in 4.363s

OK

[379]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

You can see that a significant improvement in speed was achieved by this method of
multiprocessing. However, this improvement does not fall around perfect scalability
(discussed in chapter 16, Designing Lock-Based and Mutex-Free Concurrent Data Structures);
that is because there is significant overhead in creating concurrent test suites that can be
executed across multiple processes.

One more thing that we should mention is that it is quite possible to achieve the same
multiprocessing setup that we implemented here by using the traditional concurrent
programming tools that we discussed in previous chapters, such as concurrent . futures
or multiprocessing. With that said, the concurrencytest library, as we have seen, is
able to eliminate significant boilerplate code, and thus provides an easy and fast AP

Debugging concurrent programs

In this last section, we will discuss the various advanced debugging strategies that can be
used individually, or in combination with each other, to detect and pinpoint bugs in our
programs. In general, the term debugging is used to denote the process in which
programmers attempt to identify and resolve problems or defects that would otherwise
cause the computer applications they reside in to produce incorrect results, or even stop
functioning.

The strategies that we will discuss include general debugging strategies, as well as
particular techniques used in debugging concurrent applications. A systematic application
of these strategies would improve your debugging process, in terms of both effectiveness
and speed.

Debugging tools and techniques

First, let's briefly look at some of the most common techniques and tools that can facilitate
the debugging process in Python:

¢ Print debugging: This is perhaps the most elementary and intuitive method of
debugging. This method involves inserting print statements for the values of
variables, or the states of functions, at various points in the execution of the
considered program. Doing this allows us to keep track of how these values and
states interact and change throughout the program, giving us insight into how
particular errors or exceptions are raised.

[380]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

¢ Logging: In the field of computer science, logging is the process of recording
various events that take place during the execution of a particular program. In
essence, logging can be quite similar to print debugging; however, the former
typically writes to a log file that can be viewed later on. Python offers excellent
logging functionalities, included in the built-in 1ogging module. Users can
specify the level of importance for the logging process; for example, normally,
one can log only important events and operations, but during debugging
everything will be logged.

e Tracing: This is another form of keeping track of program execution. Tracing
follows the actual low-level details of the program execution, as opposed to only
changes in variables and functions. Tracing functionalities can be implemented
via the sys.settrace () method in Python.

¢ Using a debugger: Sometimes, the most powerful debugging options can be
achieved via an automated debugger. The most popular debugger in the Python
language is the Python debugger: pdb. This module provides an interactive
debugging environment that implements useful functionalities, such as
breakpoints, stepping through the source code, or inspecting the stack.

Again, the preceding strategies are applicable to both traditional and concurrent programs,
and a combination of more than one of them can help programmers to obtain valuable
information during the debugging process.

Debugging and concurrency

Similar to the problem of testing concurrent programs, debugging, when applied to
concurrency, can become increasingly complex and difficult. Again, this is due to the fact
that shared resources can interact with (and be altered by) multiple agents, simultaneously.
With that said, there are still strategies that can make the process of debugging concurrent
programs more straightforward. These include the following:

e Minimization: Concurrent applications are typically implemented in complex
and interconnected systems. Debugging a whole system when an error occurs
can be quite intimidating, and is not very feasible. The strategy is to isolate
different parts of the system into individual, smaller programs, and identify the
one that fails in the same way as for large systems. Here, we want to divide a
large program into smaller and smaller parts, until they cannot be broken apart
anymore. The original error can then be easily identified and efficiently fixed.

[381]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

e Single-threading and processing: This method is similar to minimization, but
focuses on only one aspect of concurrent programming: the interaction between
different threads/processes. By eliminating the biggest aspect of concurrency in
your concurrent programming, you can isolate errors to either the program logic
itself (which can cause errors, even when running sequentially) or the interaction
between threads/processes (which can result from the common concurrency bugs
that we discussed in previous chapters).

¢ Manipulating scheduling to amplify potential bugs: We have actually seen the
application of this method in previous chapters. Some concurrency bugs do not
manifest themselves often, if the threads/processes implemented in our program
are not scheduled to execute in a specific way. For example, an existing race
condition may not affect a shared resource if the interactions between it and
other agents happen so fast that they do not overlap each other often. This leads
to the fact that testing might not reveal a race condition, even though it actually
exists in the program.

Various methods can be implemented in Python so that incorrect values and operations
resulting from concurrency bugs can be amplified. Two of the most common are fuzzing,
achieved by inserting sleep functions between commands in thread/process instructions,
and minimizing the system thread switching interval, achieved by using the
sys.setcheckinterval () method (discussed in Chapter 17, Memory Models and
Operations on Atomic Types). These methods disrupt the regular scheduling protocols of
thread and process execution in Python in different ways, and can effectively reveal hidden
concurrency bugs.

Summary

In this chapter, we provided a high-level analysis of concurrent programs in Python, via
scheduling, testing, and debugging. Scheduling can be done in Python via the APScheduler
module, which provides powerful and flexible functionalities to specify how scheduled jobs
should be executed later on in the future. Furthermore, the module allows scheduled jobs to
be distributed and executed across different threads and processes, offering a concurrency
improvement in testing speed.

Concurrency also introduces complex problems in terms of testing and debugging,
resulting from simultaneous and parallel interactions between the agents in a program.
However, these problems can be approached effectively, with methodical solutions and the
appropriate tools.

[382]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

This topic marks the end of our journey through Mastering Concurrency in Python.
Throughout this book, we have considered and analyzed various elements of concurrent
programming with the Python language in depth, such as threading, multiprocessing, and
asynchronous programming. Powerful applications involving concurrency, such as context
management, reduction operations, image processing, and network programming, were
also discussed, in addition to the common problems faced by programmers working with
concurrency in Python.

In the most general sense, this book serves as a guide to some of the more advanced
concepts of concurrency; it is my hope that, through reading this book, you have had the
chance to become well versed in the topic of concurrent programming.

Questions

e What is APScheduler? Why isn't it a scheduling service?
e What are the main scheduling functionalities of APScheduler?

e What are the differences between APScheduler and another scheduling tool in
Python, Celery?

e What is the purpose of testing in programming? How is it different in concurrent
programming?

e What methods of testing were discussed in this chapter?

e What is the purpose of debugging in programming? How is it different in
concurrent programming?

e What methods of debugging were discussed in this chapter?

[383]

Testing, Debugging, and Scheduling Concurrent Applications Chapter 19

Further reading

For more information, you can refer to the following links:

Advanced Python Scheduler (apscheduler.readthedocs.io/en/latest/index)
Scheduled Jobs with Custom Clock Processes in Python with APScheduler
(devcenter.heroku.com/articles/clock—processes—python)
The[Ufhﬁecﬁu?(ykqpschedukﬁ,ﬁl[jn(enqueuezero.com/apscheduler)

, Alex. APScheduler 3.0 released, Alex Gronholm
(alextechrants.blogspot.com/2014/O8/apschedulerfBOfreleased)

Testing Your Code (The Hitchhiker's Guide to Python), Kenneth Reitz

Python — concurrencytest: Running Concurrent Tests, Corey Goldberg
(coreygoldberg.blogspot.com/2013/O6/python—concurrencytest—running)
Getting Started With Testing in Python, Anthony Shaw (realpython.com/python-
testing/)

Tracing python code, Andrew Dalke
(dalkescientific.com/writings/diary/archive/2005/04/20/tracing_python_
code)

[384]

https://apscheduler.readthedocs.io/en/latest/index.html
https://devcenter.heroku.com/articles/clock-processes-python
https://enqueuezero.com/apscheduler.html
http://alextechrants.blogspot.com/2014/08/apscheduler-30-released.html
http://coreygoldberg.blogspot.com/2013/06/python-concurrencytest-running.html
https://realpython.com/python-testing/
https://realpython.com/python-testing/
http://www.dalkescientific.com/writings/diary/archive/2005/04/20/tracing_python_code.html
http://www.dalkescientific.com/writings/diary/archive/2005/04/20/tracing_python_code.html

Assessments

Chapter 1

What is the idea behind concurrency, and why is it useful?

Concurrency is about designing and structuring program commands and instructions so
that different sections of the program can be executed in an efficient order, while sharing
the same resources.

What are the differences between concurrent programming and sequential
programming?

In sequential programming, the commands and instructions are executed one at the time, in
a sequential order. In concurrent programming, some sections might be executed in an
efficient way for better execution time.

What are the differences between concurrent programming and parallel programming?

In parallel programming, the separate sections of a program are independent of one
another; they do not interact with one another, and therefore, they can be executed
simultaneously. In concurrent programming, the separate tasks share the same resources,
and some form of coordination between them is therefore required.

Can every program be made concurrent or parallel?
No.
What are embarrassingly parallel tasks?

Embarrassingly parallel tasks can be divided into separate, independent sections, with little
or no effort.

What are inherently sequential tasks?

Tasks wherein the order of execution of individual sections is crucial to the results of the
tasks, which cannot be made concurrent or parallel to obtain better execution time, are
called inherently sequential.

Assessments

What does I/0 bound mean?

This is a condition in which the time it takes to complete a computation is determined
mainly by the time spent waiting for input/output operations to be completed.

How is concurrent processing currently being used in the real world?

Concurrency can be found almost everywhere: desktop and mobile applications, video
games, web and internet development, artificial intelligence, and so on.

Chapter 2

What is Amdahl's law? What problem does Amdahl's law look to solve?

Amdahl's law provides an estimate of the theoretical speedup in latency of the execution of
a task at fixed workload that can be expected of a system whose resources are improved.

Explain the formula of Amdahl's Law, along with its components.

The formula for Amdahl's Law is as follows:

In the preceding formula, the following applies:

¢ S is the theoretical speedup in consideration.
e Bis the portion of the whole task that is inherently sequential.
e jis the number of processors being utilized.

According to Amdahl's Law, would speedup increase indefinitely as resources in the
system improved?

No; as the number of processors becomes larger, the efficiency gained through the
improvement decreases.

What is the relationship between Amdahl's Law and the law of diminishing returns?

You have seen that in specific situations (namely, when only the number of processors
increases), Amdahl's Law resembles the law of diminishing returns. Specifically, as the
number of processors becomes larger, the efficiency gained through the improvement
decreases, and the speedup curve flattens out.

[386 1]

Assessments

Chapter 3

What is a thread? What are the core differences between a thread and a process?

A thread of execution is the smallest unit of programming commands. More than one
thread can be implemented within a same process, usually executing concurrently and
accessing/sharing the same resources, such as memory, while separate processes do not do
this.

What are the API options provided by the thread module in Python?

The main feature of the thread module is its fast and efficient method of creating new
threads to execute functions: the thread.start_new_thread () function. Aside from this,
the module only supports a number of low-level ways of working with multithreaded
primitives and sharing their global data space. Additionally, simple lock objects (for
example, mutexes and semaphores) are provided for synchronization purposes.

What are the API options provided by the threading module in Python?

In addition to all of the functionalities for working with threads that the thread module
provides, the threading module also supports a number of extra methods, as follows:

e threading.activeCount (): This function returns the number of currently
active thread objects in the program.

e threading.currentThread (): This function returns the number of thread
objects in the current thread control from the caller.

e threading.enumerate (): This function returns a list of all of the currently
active thread objects in the program.

What are the processes of creating new threads via the thread and threading modules?

The processes for creating new threads using the thread and threading module is as
follows:

e In the thread module, new threads are created to execute functions
concurrently. The way to do this is by using
the thread.start_new_thread () function: thread.start_new_thread (fun

ction, args[, kwargs]).

[387]

Assessments

e To create and customize a new thread using the threading module, there are
specific steps that need to be followed:
1. Define a subclass of the threading. Thread class in our program
2. Override the default __init_ (self [, args]) method inside the
subclass to add custom arguments for the class
3. Override the default run (self [,args]) method inside the subclass

to customize the behavior of the thread class when a new thread is
initialized and started

What is the idea behind thread synchronization using locks?

In a given program, when a thread is accessing/executing the critical section of the
program, any other threads need to wait until that thread finishes executing. The typical
goal of thread synchronization is to avoid any potential data discrepancies when multiple
threads access their shared resource; allowing only one thread to execute the critical section
at a time guarantees that no data conflicts can occur in our multithreaded applications. One
of the most common ways to apply thread synchronization is through the implementation
of a locking mechanism.

What is the process of implementing thread synchronization using locks in Python?

In our threading module, the threading. Lock class provides a simple and intuitive
approach to creating and working with locks. Its main usage includes the following
methods:

e threading.Lock (): This method initializes and returns a new lock object.

® acquire (blocking): When this method is called, all threads will run
synchronously (that is, only one thread can execute the critical section at a time).
e release (): When this method is called, the lock is released.

What is the idea behind the queue data structure?

A queue is an abstract data structure that is a collection of different elements maintained in
a specific order; these elements can be other objects in a program.

What is the main application of queuing in concurrent programming?

The concept of a queue is even more prevalent in the subfield of concurrent programming,
as the order of elements maintained inside a queue plays an important role when a
multithreaded program handles and manipulates its shared resources.

[388]

Assessments

What are the core differences between a regular queue and a priority queue?

The priority queue abstract data structure is similar to the queue data structure, but each of
the elements of a priority queue, as the name suggests, has a priority associated with it; in
other words, when an element is added to a priority queue, its priority needs to be
specified. Unlike in regular queues, the dequeuing principle of a priority queue relies on
the priority of the elements: the elements with higher priority are processed before those
with lower priority.

Chapter 4

What is a file descriptor, and in what ways can it be handled in Python?

A file descriptor is used as a handle on an opened external file in a program. In Python, a
file descriptor is handled by either using open () and close () functions or using the with
statement; for example:

e f = open(filename, 'r'); ... ; f.close()

e with open(filename, 'r') as f:
What problem arises when file descriptors are not handled carefully?

Systems can only handle a certain number of opened external files in one running process.
When that limit is passed, the handles on the opened files will be compromised and file
descriptor leakage will occur.

What is a lock, and in what ways can it be handled in Python?

A lock is a mechanism in concurrent and parallel programming that performs thread
synchronization. In Python, a threading.Lock object can be handled by either using
the acquire () and release () methods or using the with statement; for example:

e my_lock.acquire(); ... ; my_lock.release()

e with my_lock:
What problem arises when locks are not handled carefully?

When an exception occurs while a lock is acquired, the lock can never be released and
acquired again if it is not handled carefully, causing a common problem in concurrent and
parallel programming called deadlock.

[389]

Assessments

What is the idea behind context managers?

Context managers are in charge of the context of resources within a program; they define
and handle the interaction of other entities with those resources, and perform cleanup tasks
after the program exits the context.

What options does the with statement in Python provide, in terms of context
management?

The with statement in Python offers an intuitive and convenient way to manage resources
while ensuring that errors and exceptions are handled correctly. Aside from better error
handling and guaranteed cleanup tasks, the with statement also provides extra readability
from your programs, which is one of the strongest features that Python offers to its
developers.

Chapter 5

What is HTML?

HTML stands for Hypertext Markup Language, which is the standard and most common
markup language for developing web pages and web applications.

What are HTTP requests?

Most of the communication done via the internet (more specifically, the World Wide Web)
utilizes HTTP. In HTTP, request methods are used to convey information on what data is
being requested and should be sent back from a server.

What are HTTP response status codes?

HTTP response status codes are three-digit numbers that signify the state of
communication between a server and its client. They are sorted into five categories, each
indicating a specific state of communication.

How does the requests module help with making web requests?

The requests module manages the communication between a Python program and a web
server through HTTP requests.

[390]

Assessments

What is a ping test and how is one typically designed?

A ping test is a tool typically used by web administrators to make sure that their sites are
still available to clients. A ping test does this by making requests to the websites under
consideration and analyzes the returned response status codes

Why is concurrency applicable in making web requests?

Both the process of making different requests to a web server and the process of parsing
and processing downloaded HTML source code are independent across separate requests.

What are the considerations that need to be made when developing web scraping
applications?

The following considerations should be made when developing applications that make
concurrent web requests:

¢ The terms of service and data-collecting policies
e Error handling

e Updating your program regularly

¢ Avoiding over-scraping

Chapter 6

What is a process? What are the core differences between a process and a thread?

A process is an instance of a specific computer program or software that is being executed
by the operating system. A process contains both the program code and its current
activities and interactions with other entities. More than one thread can be implemented
within the same process to access and share memory or other resources, while different
processes do not interact in this way.

What is multiprocessing? What are the core differences between multiprocessing and
multithreading?

Multiprocessing refers to the execution of multiple concurrent processes from an operating
system, in which each process is executed on a separate CPU, as opposed to a single
process at any given time. Multithreading, on the other hand, is the execution of multiple
threads, which can be within the same process.

[391]

Assessments

What are the API options provided by the multiprocessing module?

The multiprocessing module provides APIs to the Process class, which contains the
implementation of a process while offering methods to spawn and interact with processes
using an API similar to the threading module. The module also provides the Poo1l class,
which is mainly used to implement a pool of processes, each of which will carry out the
tasks submitted.

What are the core differences between the Process class and the Pool class from
the multiprocessing module?

The Pool class implements a pool of processes, each of which will carry out tasks
submitted to a Pool object. Generally, the Pool class is more convenient than

the Process class, especially if the results returned from your concurrent application
should be ordered.

What are the options to determine the current process in a Python program?

The multiprocessing module provides the current_process () method, which will
return the Process object that is currently running at any point of a program. Another way
to keep track of running processes in your program is to look at the individual process IDs
through the os module.

What are daemon processes? What are their purposes, in terms of waiting for processes
in a multiprocessing program?

Daemon processes run in the background and do not block the main program from
exiting. This specification is common when there is not an easy way for the main program
to tell if it is appropriate to interrupt the process at any given time, or when exiting the
main program without completing the worker does not affect the end result.

How can you terminate a process? Why is it sometimes acceptable to terminate
processes?

The terminate () method from the multiprocessing.Process class offers a way to
quickly terminate a process. If the processes in your program never interact with the shared
resources, the terminate () method is considerably useful, especially if a process appears
to be unresponsive or deadlocked.

[392]

Assessments

What are the ways to facilitate interprocess communication in Python?

While locks are one of the most common synchronization primitives used for
communication among threads, pipes and queues are the main way to communicate
between different processes. Specifically, they provide message passing options to facilitate
communication between processes: pipes for connections between two processes, and
queues for multiple producers and consumers.

Chapter 7

What is a reduction operator? What conditions must be satisfied so that an operator can
be a reduction operator?

An operator is a reduction operator if it satisfies the following conditions:

e The operator can reduce an array of elements into one scalar value

¢ The end result (the scalar value) is obtained through creating and computing
partial tasks

What properties do reduction operators have that are equivalent to the required
conditions?

The communicative and associative properties are considered to be equivalent to the
requirements for a reduction operator.

What is the connection between reduction operators and concurrent programming?

Reduction operators require communicative and associative properties. Consequently, their
sub-tasks have to be able to be processed independently, which makes concurrency and
parallelism applicable.

What are some of the considerations that must be made when working with
multiprocessing programs that facilitate interprocess communication in Python?

Some considerations include implementing the poison-pill technique, so that sub-tasks are
distributed across all consumer processes; calling task_done () on the task queue each
time the get () function is called, to ensure that the join () function will not block
indefinitely; and avoiding using the gsize () method, which is unreliable and is not
implemented on Unix operating systems.

[393]

Assessments

What are some real-life applications of concurrent reduction operators?

Some real-life applications include heavy number-crunching operators and complex
programs that utilize logic operators.

Chapter 8

What is an image processing task?

Image processing is the task of analyzing and manipulating digital image files to create new
versions of the images, or to extract important data from them.

What is the smallest unit of digital imaging? How is it represented in computers?

The smallest unit of digital imaging is a pixel, which typically contains an RGB value: a
tuple of integers between 0 and 255.

What is grayscaling? What purpose does the technique serve?

Grayscaling is the process of converting an image to gray colors by considering only the
intensity information of each pixel, represented by the amount of light available. It reduces
the dimensionality of the image pixel matrix by mapping traditional three-dimensional
color data to one-dimensional gray data.

What is thresholding? What purpose does the technique serve?

Thresholding replaces each pixel in an image with a white pixel if the pixel's intensity is
greater than a previously specified threshold, and with a black pixel if the pixel's intensity
is less than that threshold. After performing thresholding on an image, each pixel of that
image can only hold two possible values, significantly reducing the complexity of image
data.

Why should image processing be made concurrent?

Heavy computational number-crunching processes are typically involved when it comes to
image processing, as each image is a matrix of integer tuples. However, these processes can
be executed independently, which suggests that the whole task should be made concurrent.

[394]

Assessments

What are some good practices for concurrent image processing?
Some good practices for concurrent image processing are as follows:

e Choosing the correct method (out of many)
e Spawning an appropriate amount of processes
e Processing input/output concurrently

Chapter 9

What is the idea behind asynchronous programming?

Asynchronous programming is a model of programming that focuses on coordinating
different tasks in an application with the goal that the application will use the least amount
of time to finish executing those tasks. An asynchronous program switches from one task to
another when it is appropriate to create overlap between the waiting and processing time,
and therefore shorten the total time taken to finish the whole program.

How is asynchronous programming different from synchronous programming?

In synchronous programming, the instructions of a program are executed sequentially: a
task has to finished executing before the next task in the program starts processing. With
asynchronous programming, if the current task takes a significant amount of time to finish,
you have the option to specify at one time during the task to switch the execution to
another task.

How is asynchronous programming different from threading and multiprocessing?

Asynchronous programming keeps all of the instructions of a program in the same thread
and process. The main idea behind asynchronous programming is to have a single executor
switch from one task to another if it is more efficient (in terms of execution time) to simply
wait for the first task for a while, while processing the second.

Chapter 10

What is asynchronous programming? What advantages does it provide?

Asynchronous programming is a model of programming that takes advantage of
coordinating computing tasks to overlap the waiting and processing times. If successfully
implemented, asynchronous programming provides both responsiveness and an
improvement in speed, as compared to synchronous programming,.

[395]

Assessments

What are the main elements in an asynchronous program? How do they interact with
each other?

There are three main components of an asynchronous program: the event loop, the
coroutines, and the futures. The event loop is in charge of scheduling and managing
coroutines by using its task queue; the coroutines are computing tasks that are to be
executed asynchronously, and each coroutine has to specify, inside its function, exactly
where it will give the execution flow back to the event loop (that is, the task-switching
event); the futures are placeholder objects that contain the results obtained from the
coroutines.

What are the async and await keywords? What purposes do they serve?

The async and await keywords are provided by the Python language as a way to
implement asynchronous programming on a low level. The async keyword is placed in
front of a function, in order to declare it as a coroutine, while the await keyword specifies
the task-switching events.

What options does the asyncio module provide, in terms of the implementation of
asynchronous programming?

The asyncio module provides an easy-to-use API and an intuitive framework to
implement asynchronous programs; additionally, this framework makes the asynchronous
code just as readable as synchronous code, which is generally quite rare in asynchronous
programming.

What are the improvements, in regards to asynchronous programming, provided in
Python 3.7?

Python 3.7 comes with improvements in the API that initiates and runs the main event loop
of asynchronous programs, while reserving async and await as official Python keywords.

What are blocking functions? Why do they pose a problem for traditional asynchronous
programming?

Blocking functions have non-stop execution, and therefore, they prevent any attempts to
cooperatively switch tasks in an asynchronous program. If forced to release the execution
flow back to the event loop, blocking functions will simply halt their execution until it is
their turn to run again. While still achieving better responsiveness, in this case,
asynchronous programming fails to improve the speed of the program; in fact, the
asynchronous version of the program takes longer to finish executing than the synchronous
version, most of the time, due to various overheads.

[396]

Assessments

How does concurrent . futures provide a solution to blocking functions for
asynchronous programming? What options does it provide?

The concurrent . futures module implements threading and multiprocessing for the
execution of coroutines in an asynchronous program. It provides the
ThreadPoolExecutor and ProcessPoolExecutor for asynchronous programming in
separate threads and separate processes, respectively.

Chapter 11

What is a communication channel? What is its connection to asynchronous
programming?

Communication channels are used to denote both the physical wiring connection between
different systems and the logical communication of data that facilitates computer networks.
The latter is related to computing, and is more relevant to the idea of asynchronous
programming. Asynchronous programming can provide functionalities that complement
the process of facilitating communication channels efficiently.

What are the two main parts of the Open Systems Interconnection (OSI) model protocol
layers? What purposes do each of them serve?

The media layers contain fairly low-level operations that interact with the underlying
process of the communication channel, while the host layers deals with high-level data
communication and manipulation.

What is the transport layer? Why is it crucial to communication channels?

The transport layer is often viewed as the conceptual transition between the media layers
and the host layers, responsible for sending data along end-to-end connections between
different systems.

How does asyncio facilitate the implementation of server-side communication
channels?

Server-wise, the asyncio module combines the abstraction of transport with the
implementation of an asynchronous program. Specifically, via its BaseTransport and
BaseProtocol classes, asyncio provides different ways to customize the underlying
architecture of a communication channel.

[397]

Assessments

How does asyncio facilitate the implementation of client-side communication
channels?

Together with the aiohttp module and, specifically, aiohttp.ClientSession, asyncio
also offers efficiency and flexibility regarding client-side communication processes, via
asynchronously making requests and reading the returned responses.

What is aiofiles?

The aiofiles module, which can work in conjunction with asyncio and aiohttp, helps
to facilitate asynchronous file reading/writing.

Chapter 12

What can lead to a deadlock situation, and why is it undesirable?

A lack of (or mishandled) coordination between different lock objects can cause deadlock,
in which no progress can be made and the program is locked in its current state.

How is the dining philosophers problem related to the problem of deadlock?

In the dining philosophers problem, as each philosopher is holding only one fork with their
left hand, they cannot proceed to eat or put down the fork they are holding. The only way a
philosopher gets to eat their food is for their neighbor philosopher to put their fork down,
which is only possible if they can eat their own food; this creates a never-ending circle of
conditions that can never be satisfied. This situation is, in essence, the nature of a deadlock,
in which all elements of a system are stuck in place and no progress can be made.

What are the four Coffman conditions?

Deadlock is also defined by the necessary conditions that a concurrent program needs to
have at the same time, in order for deadlock to occur. These conditions were first proposed
by the computer scientist Edward G. Coffman, Jr., and are therefore known as the Coffman
conditions. The conditions are as follows:

¢ At least one resource has to be in a non-shareable state. This means that that
resource is being held by an individual process (or thread) and cannot be
accessed by others; the resource can only be accessed and held by a single
process (or thread) at any given time. This condition is also known as mutual
exclusion.

[398]

Assessments

¢ There exists one process (or thread) that is simultaneously accessing a resource
and waiting for another held by other processes (or threads). In other words, this
process (or thread) needs access to two resources in order to execute its
instructions, one of which it is already holding, and the other of which it is
waiting for from other processes (or threads). This condition is called hold and
wait.

¢ Resources can only be released by a process (or a thread) holding them if there
are specific instructions for the process (or thread) to do so. This is to say that
unless the process (or thread) voluntarily and actively releases the resource, that
resource remains in a non-shareable state. This is the no preemption condition.

e The final condition is called circular wait. As suggested by the name, this
condition specifies that there exists a set of processes (or threads) such that the
first process (or thread) in the set is in a waiting state for a resource to be released
by the second process (or thread), which, in turn, needs to be waiting for the
third process (or thread); finally, the last process (or thread) in the set is waiting
for the first one.

How can resource ranking solve the problem of deadlock? What other problems occur
when this is implemented?

Instead of accessing the resources arbitrarily, if the processes (or threads) are to access them
in a predetermined, static order, the circular nature of the way that they acquire and wait
for the resources will be eliminated. However, if you place enough locks on the resources of
your concurrent program, it will become entirely sequential in its execution, and, combined
with the overhead of concurrent programming functionalities, it will have an even worse
speed than the purely sequential version of the program.

How can ignoring locks solve the problem of deadlock? What other problems can occur
when this is implemented?

By ignoring locks, our program resources effectively become shareable among different
processes/threads in a concurrent program, thus eliminating the first of the four Coffman
conditions, mutual exclusion. Doing this, however, can be seen as misunderstanding the
problem completely. We know that locks are utilized so that processes and threads can
access the shared resources in a program in a systematic, coordinated way, to avoid
mishandling the data. Removing any locking mechanisms in a concurrent program means
that the likelihood of the shared resources, which are now free from accessing limitations,
being manipulated in an uncoordinated way (and therefore becoming corrupted) increases
significantly.

[399]

Assessments

How is livelock related to deadlock?

In a livelock situation, the processes (or threads) in the concurrent program are able to
switch their states, yet they simply switch back and forth infinitely, and no progress can be
made.

Chapter 13

What is starvation, and why is it undesirable in a concurrent program?

Starvation is a problem in concurrent systems in which a process (or a thread) cannot gain
access to the necessary resources to proceed with its execution, and therefore, cannot make
any progress.

What are the underlying causes of starvation? What are the common superficial causes of
starvation that can manifest from the underlying cause?

Most of the time, a poorly coordinated set of scheduling instructions is the main cause of
starvation. Some high-level causes for starvation might include the following:

e Processes (or threads) with high priorities dominate the execution flow in the
CPU, and thus, low-priority processes (or threads) are not given the opportunity
to execute their own instructions.

e Processes (or threads) with high priorities dominate the usage of non-shareable
resources, and thus, low-priority processes (or threads) are not given the
opportunity to execute their own instructions. This situation is similar to the first
one, but addresses the priority of accessing resources, instead of the priority of
execution itself.

e Processes (or threads) with low priorities are waiting for resources to execute
their instructions, but as soon as the resources become available, other processes
(or threads) with higher priorities are immediately given access to them, so the
low-priority processes (or threads) wait infinitely.

What is the connection between deadlock and starvation?

Deadlock situations can also lead to starvation, as the definition of starvation states that if
there exists a process (or a thread) that is unable to make any progress because it cannot
gain access to the necessary process, the process (or thread) is experiencing starvation. This
is also illustrated in the dining philosophers problem.

[400]

Assessments

What is the readers-writers problem?

The readers-writers problem asks for a scheduling algorithm so that readers and writers
can access the text file appropriately and efficiently, without mishandling/corrupting the
data included.

What is the first approach to the readers-writers problem? Why does starvation arise in
that situation?

The first approach allows for multiple readers to access the text file simultaneously, since
readers simply read in the text file and do not alter the data in it. The problem with the first
approach is that when a reader is accessing the text file and a writer is waiting for the file to
be unlocked, if another reader starts its execution and wants to access the file, it will be
given priority over the writer that has already been waiting. Additionally, if more and more
readers keep requesting access to the file, the writer will be waiting infinitely.

What is the second approach to the readers-writers problem? Why does starvation arise
in that situation?

This approach implements the specification that once a writer makes a request to access the
file, no reader should be able to jump in line and access the file before that writer. As
opposed to what we see in the first solution to the readers-writers problem, this solution is
giving priority to writers and, as a consequence, the readers are starved.

What is the third approach to the readers-writers problem? Why does it successfully
address starvation?

This approach implements a lock on both readers and writers. All threads will then be
subject to the constants of the lock, and equal priority will thus be achieved among separate
threads.

What are some common solutions to starvation?
Some common solutions to starvation include the following;:

¢ Increasing the priority of low-priority threads

e Implementing a first-in-first-out thread queue

e A priority queue that also gives gradually increasing priority to threads that have
been waiting in the queue for a long time

e Or if a thread has been able to access the shared resource for many times, it will
be given less priority

[401]

Assessments

Chapter 14

What is a critical section?

Critical sections indicate shared resources that are accessed by multiple processes or
threads in a concurrent application, which can lead to unexpected, and even erroneous,
behaviors.

What is a race condition, and why is it undesirable in a concurrent program?

A race condition occurs when two or more threads/processes access and alter a shared
resource simultaneously, resulting in mishandled and corrupted data.

What is the underlying cause of a race condition?

The root cause of a race condition is multiple threads/process reading in and altering a
shared resource simultaneously; and, when all of the threads/processes finish their
execution, only the result of the last thread/process is registered.

How can locks solve the problem of a race condition?

Since the race conditions arise when multiple threads or processes access and write to a
shared resource simultaneously, the solution is to isolate the execution of different
threads/processes, especially when interacting with the shared resource. With locks, we can
turn a shared resource in a concurrent program into a critical section, whose integrity of
data is guaranteed to be protected.

Why are locks sometimes undesirable in a concurrent program?

There are a number of disadvantages to using locks: with enough locks implemented in a
concurrent program, the whole program might become entirely sequential; locks don't lock
anything.

What are the problems race conditions raise in real-life systems and applications?
The problems race conditions raise in real-life systems and applications are as follows:

¢ Security: A race condition can be both exploited as a security vulnerability (to
give external agents illegal access to a system) and used as random key
generation, for security processes.

[402]

Assessments

¢ Operating systems: A race condition occurring when two agents (users and
applications) interact with the same memory space can lead to unpredictable
behaviors.

¢ Networking: In networking, a race condition can lead to giving multiple users
powerful privileges in a network.

Chapter 15

What is the difference in memory management between Python and C++?

C++ associates a variable to its value by simply writing the value to the memory location of
the variable; Python has its variables reference point to the memory location of the values
that they hold. For this reason, Python needs to maintain a reference count for every value
in its memory space.

What problem does the GIL solve for Python?

To avoid race conditions, and consequently, the corruption of value reference counts, the
GIL is implemented so that only one thread can access and mutate the counts at any given
time.

What problem does the GIL create for Python?

The GIL effectively prevents multiple threads from taking advantage of the CPU and
executing CPU-bound instructions at the same time. This means that if multiple threads
that are meant to be executed concurrently are CPU-bound, they will actually be executed
sequentially.

What are some of the approaches to circumventing the GIL in Python programs?

There are a few ways to deal with the GIL in your Python applications; namely,
implementing multiprocessing instead of multithreading, and utilizing other, alternative
Python interpreters.

Chapter 16

What is the main approach to solving the problem that locks don't lock anything?

The main approach is to have the locks internally implemented within the data structure's
class attributes and methods, so that external functions and programs cannot bypass those
locks and access a shared concurrent object simultaneously.

[403]

Assessments

Describe the concept of scalability, in the context of concurrent programming.

By the scalability of a program, we mean the changes in performance when the amount of
tasks to be processed by the program increases. Andre B. Bondi defines the term scalability
as, "the capability of a system, network, or process to handle a growing amount of work, or its
potential to be enlarged to accommodate that growth.”

How does a naive locking mechanism affect the scalability of a concurrent program?

The scalability of a simple lock-based data structure is highly undesirable: as more threads
are added to the program to execute more tasks, the performance of the program decreases
somewhat linearly. Since only one thread can access and increment the shared counter at
any given time, the more increments the program has to execute, the longer it will take to
finish all of the incremented tasks.

What are approximate counters, and how do they help with the problem of scalability in
concurrent programming?

The basic idea behind approximate counters is to distribute the work (incrementing the
shared global counter) across other low-level counters. When an active thread executes and
wants to increment the global counter; first, it has to increment its corresponding local
counter. With one separate counter object for each thread, the threads can update their
corresponding local counters independently and simultaneously, creating overlaps that will
result in a better performance in speed for the programs.

Are lock-free data structures possible in Python? Why, or why not?

The characteristic of being lock-free is impossible to implement in CPython, due to the
existence of the Global Interpreter Lock (GIL), which prevents more than one thread from
executing in the CPU at any given time.

What is a mutex-free concurrent data structure, and how is it different from a concurrent
lock-based one?

The term mutex-free concurrent data structures indicates a lack of a locking mechanism and
the use of other synchronization mechanisms to protect the data.

[404]

Assessments

What is the RCU technique, and what problem does it solve for mutex-free concurrent
data structures?

To protect the integrity of concurrent data structures, the RCU technique creates and
maintains another version of the data structure when a thread or process is requesting
reading or writing access to it. By isolating the interaction between the data structure and
the threads/processes within a separate copy, RCU ensures that no conflicting data can
occur.

Chapter 17

What are the main components of the Python memory manager?
The main components of the Python memory manager are as follows:

e The raw memory allocator handles the allocation of memory at a low level by
interacting with the memory manager of the operating system.

e Object-specific memory allocators interact with the private heap of objects and
values in Python. These allocators execute memory operations that are specific to
given data and object types.

¢ The system allocators from the standard C library are responsible for helping the
raw memory allocator interact with the memory manager of the operating
system.

How does the Python memory model resemble a labeled directed graph?

The memory model keeps track of its data and variables via nothing but pointers: the value
of every variable is a pointer, and this point can be pointing to a symbol, a number, or a
subroutine. So, these pointers are the directed edges in the object graph, and the actual
values (symbols, numbers, and subroutines) are the nodes in the graph.

What are the advantages and disadvantages of the Python memory model, in terms of
developing concurrent applications in Python?

Reasoning about the behaviors of a concurrent program can be significantly easier than
doing the same in another programming language. However, the ease of understanding
and debugging concurrent programs in Python also comes with a decrease in performance.

What is an atomic operation, and why is it desirable in concurrent programming?

Atomic operations are instructions that cannot be interrupted during their execution.
Atomicity is a desirable characteristic of concurrent operations, as it guarantees the safety
of data shared across different threads.

[405]

Assessments

Give three examples of innately atomic operations in Python.
Some examples are as follows:

e Appending a predefined object to a list

¢ Extending a list with another list

e Fetching an element from a list

e Popping from a list

e Sorting a list

¢ Assigning a variable to another variable

¢ Assigning a variable to an attribute of an object
¢ Creating a new entry for a dictionary

¢ Updating a dictionary with another dictionary

Chapter 18

What is a socket? How is it relevant in network programming?

Low-level network programming, more often than not, involves the manipulation and
handling of sockets, which are defined as theoretical endpoints within the nodes of a
specific computer network, responsible for receiving or sending data from the nodes that
they are in.

What is the procedure of server-side communication when a potential client makes a
request to connect?

To open a communication channel from the server side, a network programmer must first
create a socket and bind it to a specific address. The server then begins to listen to any
potential communication requests created by the clients in the network. Upon receiving a
request to connect from a potential client, the server can now decide whether to accept that
request. A connection is then established between the two systems in the network, which
means that they can start to communicate and share data with each other. As the client
sends a message to the server via the communication channel, the server then processes the
message, and eventually sends a response back to the client through the same channel; this
process continues until the connection between them ends, either by one of them quitting
the connection channel or through some external factors.

[406]

Assessments

What are some methods provided by the socket module to facilitate low-level network
programming on the server side?

Some of the important methods are as follows:

e socket.bind () binds the calling socket to the address that is passed to the
method

e socket.listen () allows the server that we create to accept connections from
potential clients

e socket.accept () accepts a specific connection that the calling socket object has

e socket.makefile () returns a file object that is associated with the calling
socket object

e socket.sendall () sends the data passed as a parameter to the calling socket
object

e socket.close () marks the calling socket object as closed

What are generators? What is their advantage over Python lists?

Generators are functions that return iterators and are able to be paused and resumed
dynamically. Generator iterators are lazy, and only produce results when specifically
asked. For this reason, generator iterators are more efficient in terms of memory
management, and are therefore often preferred over lists when large amounts of data are
involved.

What are asynchronous generators? How can they be applied in order to build a non-
blocking server?

Asynchronous generators allow for the execution flow to switch between generating tasks.
Combined with using callbacks that can be run at a later time, a server can read and handle
data coming in from multiple clients at the same time.

[407]

Assessments

Chapter 19

What is APScheduler? Why isn't it a scheduling service?

APScheduler is an external Python library that supports scheduling Python code to be
executed later. APScheduler is not, in itself, a scheduling service that has a built-in GUI or
command-line interface. It is still a Python library that has to be imported and utilized
inside existing applications. However, APScheduler comes with numerous functionalities
that can be leveraged in order to build an actual scheduling service.

What are the main scheduling functionalities of APScheduler?

It offers three different scheduling mechanisms: cron-style scheduling, interval-based
execution, and delayed execution. Furthermore, APScheduler allows for storing the jobs to
be executed in various backend systems, and working with common Python concurrency
frameworks, such as AsynclO, Gevent, Tornado, and Twisted. Finally, APScheduler
provides different options to actually execute the scheduled code, by specifying the
appropriate executor(s).

What are the differences between APScheduler and another scheduling tool in Python,
Celery?

While Celery is a distributed task queue with basic scheduling capabilities, APScheduler is
quite the opposite: a scheduler with basic task queuing options and advanced scheduling
functionalities. Users have reported that APScheduler is easier to set up and implement
than Celery.

What is the purpose of testing in programming? How is it different in concurrent
programming?

Testing evokes errors that indicate the existence of bugs in our programs. Testing
concurrent programs is typically difficult, as non-determinism allows for a concurrency
bug to be detected in one run of the test and become invisible in another. We call the
concurrency bugs that might become invisible from test to test non-reproducible, and they
are the main reason why we cannot reply on testing to detect all concurrency bugs
consistently.

[408]

Assessments

What are the methods of testing that were discussed in this chapter?

Unit testing is applied to individual units of the program under consideration, where a unit
is the smallest testable part of the program. Static code analysis, on the other hand, looks at
the actual code itself without executing it. Static code analysis scans for visual errors in the
code structure and usage of variables and functions.

What is the purpose of debugging in programming? How is it different in concurrent
programming?

Debugging is the process by which programmers attempt to identify and resolve problems
or defects that would otherwise cause the computer applications that they reside in to
produce incorrect results, or even stop functioning. Similar to the problem of testing
concurrent programs, debugging, when applied to concurrency, can become increasingly
complex and difficult, as shared resources can interact with (and be altered by) multiple
agents simultaneously.

What are the methods of debugging that were discussed in this chapter?

General debugging methods include print debugging, logging, tracing, and using a
debugger. The process of debugging concurrent programs can utilize minimization, single-
threading/processing, and manipulating scheduling in order to amplify potential bugs.

[409]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python
Programming

Learn Python Programming - Second Edition
Fabrizio Romano

ISBN: 978-1-78899-666-2

¢ Get Python up and running on Windows, Mac, and Linux

¢ Explore fundamental concepts of coding using data structures and control flow
e Write elegant, reusable, and efficient code in any situation

¢ Understand when to use the functional or OOP approach

¢ Cover the basics of security and concurrent/asynchronous programming

¢ Create bulletproof, reliable software by writing tests

e Build a simple website in Django

e Fetch, clean, and manipulate data

https://www.packtpub.com/big-data-and-business-intelligence/hands-data-science-and-python-machine-learning

Other Books You May Enjoy

Clean Code
in Python

Clean Code in Python
Mariano Anaya

ISBN: 978-1-78883-583-1

e Set up tools to effectively work in a development environment

Explore how the magic methods of Python can help us write better code

Examine the traits of Python to create advanced object-oriented design

Understand removal of duplicated code using decorators and descriptors

Effectively refactor code with the help of unit tests

Learn to implement the SOLID principles in Python

[411]

https://www.packtpub.com/networking-and-servers/kali-linux-cookbook-second-edition

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[412]

Index

A using, with send keyword 352, 354
Asynchronous JavaScript and XML (AJAX) 167
aiohttp, client-side communication asynchronous programming
files, writing asynchronously 215,217 about 166
installing 213 analogy 165
using 212 example, in Python 169, 171
website's HTML code, fetching 213,214 versus multiprocessing 168
Amdahl's Law versus programming models 166
about 32 versus synchronous programming 167
diminishing returns 35 versus threading 168
example 34 asyncio APl 177,178
formula 33 asyncio framework
implications 34, 35 asynchronous prime-checking 184, 187
parallel 32 asynchronously counting down 179, 181, 182
practical applications 40, 41 blocking functions 183, 184
program speed 32 improvements, from Python 3.7 188
simulating, in Python 36, 37, 39 using 178
speedup 32 asyncio module
Anaconda about 175
reference 142 protocols 202, 204
approximate counter designs server client 204
considerations 308 transports 202, 204
approximate counters Atom
about 300, 302 reference 27
implementing, in Python 302, 305, 308 atomic operations, Python 326
using, as solution for scalability 300
APScheduler API B
about 366

best practices, concurrent image processing
about 159
appropriate amount of processes, spawning 162
correct way, selecting 159, 161
input/output, processing 162

common scheduler methods 367
executor classes 366

scheduler classes 366

trigger keywords 367

APﬁch?duler best practices, web requests
? ou . 363, 364 about 98
installing 363

data-collecting policies 98
error handling 99
large number of requests, avoiding 99

used, for scheduling 363
asynchronous generators

program, updating 99 multiple threads, spawning 89

terms of service 98 request logic, refactoring 91, 92
blocking functions concurrent.futures
blocking tasks 189, 190 examples, Python 191, 195
framework, changes 191
C using, as solution for blocking tasks 190
calculator server, building with socket module context management
about 342 about 71
calculation logic 342 files, managing 71
implementing 343, 345 coroutines 175
Celery counter data structure
reference link 363 scalability analysis 297, 299
central processing unit (CPU) 106 critical section 58, 260
client-side communication
with aiohttp 212 D
communication channels data structures
asynchronous programming 201 building 318
ecosystem 199 deadlock solutions 237
communication protocol layers 199, 201 deadlock
computer image about 220
about 143 Dining Philosophers' problem 220
coordinates 144 handling 75, 77
pixels 144 locks, ignoring 234
RGB values 143 Python simulation 224, 227
concurrency ranking, implementation among resources 228,
about 9 231,233
applying, to image processing 155, 158 resources, sharing 234
future 22 situation, approaches 228
history 18, 19 using, in concurrent system 223
non-negative number example 10, 12 debugging processes, Python
present 20 debugger, using 381
concurrent programming logging 381
describing 14 print debugging 380
queuing 63, 66 tracing 381
versus parallel programming 13 debugging
versus sequential programming 9 techniques 380
concurrent programs, testing tools 380
about 374 denial of service (DoS) attack 100, 310, 311
static code analysis 376 Dining Philosophers' problem 220, 222
unit testing 374, 376 distributed denial of service (DDoS) 100
concurrent programs
concurrency 381, 382 E
debugging 380, 381, 382 echo server
concurrent web requests building 338, 341
about 88 embarrassingly parallel programs 14, 15

[414]

enqueue 61
event loops 175

F

file descriptor leakage 72
First In First Out (FIFO) queue 62
functionalities, APScheduler
about 364
cron-style scheduling 364
delayed execution 364
interval-based execution 364
futures 175

G

generators 350, 351
Global Interpreter Lock (GIL)
about 24, 278, 327, 328
addresses issues 281
memory management analysis 278, 280
multiprocessing implementation 285
native extensions 287
potential removal, from 284
problems 282
Python interpreter, utilizing 287
working with 284
Google Chrome Helper 103
grayscaling 148

H

HTTP response status code

1xx (informational status code) 83

2xx (successful status code) 83

3xx (redirectional status code) 83

4xx (error status code for the client) 84

5xx (error status code for the server) 84
Hypertext Markup Language (HTML) 80
Hypertext Transfer Protocol (HTTP) 82

image processing
about 141
best practices 159
computer image basics 143
concurrency, applying 155, 157

[415]

OpenCV API 145
Python, usingas 141
techniques 147
inherently sequential programs
about 14, 15
examples, tasks 16
input/output (I/O) operations 18
integrated development environment (IDE)
reference 27
International Data Corporation (IDC) 9
Internet Assigned Numbers Authority (IANA) 84

K

Kaggle
reference 22

L

Last In First Out (LIFO) 62
Lisp 323
livelock 237, 239
lock-based concurrent data structures 290
lock-free data structure 309
lockless counter 290, 293
locks
about 236, 265
concurrent program sequential, turning 269
disadvantages 268
effectiveness 265
embedding, in data structure of counter 293,
295
ignoring 234
implementation, in Python 267
using 271
low-level network programming
via socket module 335

multiple threads

execution example, in Python 47, 50
multiprocessing 106
multithreaded priority queue

about 61

in concurrent programming 63, 67

queue module 62

real-life and programmatic queues, connection

61
multithreaded programs
advantages 46
disadvantages 47
multithreading 45
mutex-free concurrent data structures 308
mutual exclusion 260

N

network data structure
about 310
implementing, in Python 311, 314, 315
implementing, in race condition 311, 314, 315
non-blocking server
building 346
concurrency, analyzing 346, 349
making 354, 357, 359
NumPy 142

O

Open Source Computer Vision (OpenCV)
about 142
installing 142
reference 142
Open Systems Interconnection (OSI) model 199

P

priority queue 68
privilege escalation 273
process ID 104
process of execution 103
process
about 103
example 108, 109
versus threads 105
PyCharm
reference 27
Python 2
thread module 51
Python 3
threading module 52
Python environment
example code, downloading 28
general setup 27
setting up 27

[416]

Python example
about 205
connection channel, simulating 208, 209
messages, sending back to clients 209, 210
server, starting 205, 207
Telnet, installing 207
transports, closing 210, 212

Python memory manager
components 322

Python memory model
about 322
as labeled directed graph 323, 325
concurrency 325

Python
approximate counters, implementing 302, 305,

308

atomic operations 326
atomic, versus non-atomic 328, 329
atomicity 328
background scheduler 369, 370
concurrency 373
concurrent programs, testing 374
examples 368
executing, on cloud 372
executor pool 370, 372
lock-based concurrent data structures 290
lock-free data structure 309
mastering concurrency, overview 24
mutex-free concurrent data structures 308
need for 25
race conditions, simulating 263
reference 26
scheduler, blocking 368, 369
simulation 329, 330, 331
testing 373
tests, performing concurrently 376, 379
thread, creating 52

Q

queue module 62

R

race conditions
about 260, 290, 293
critical section 260

locks, using as solution 265
occurrence 261
real life examples 272
simulating, in Python 263, 265
raw memory allocator 322
read-copy-update (RCU)
as solution 315, 318
readers-writers problem
about 246,247,249, 251, 253, 254, 256
statement 246
real life examples, race conditions
networking 274
operating systems 273
security 273
reduction operators 130
requests module
about 84
ping test, executing 87
used, for making request 85

S

scalability
about 295,296

analysis, of counter data structure 297, 299

semaphores 19, 20
server-side communication
theory 335, 336
simulation, Python 329, 330, 331
socket module
key APl 337
used, for building calculator server 342
starvation
about 242
causes 244
relationship, to deadlock 245
scheduling 243, 244
solutions 256
Sublime Text
reference 27

T

techniques, image processing

about 147

grayscaling 148, 150

thresholding 150, 152, 154
tests

performing concurrently 376, 379
thread synchronization

about 58

example 59, 60

threading.Lock class 59
thread

about 44

synchronizing 58

versus processes 44
threading module

in Python 2 51

in Python 3 51

overview 51

used, for starting thread 53, 55, 58
thresholding 150, 154
time slicing 46, 107

Time-Of-Check-To-Time-Of-Use (TOCTTOU) 272

timeout
issue 93
simulation support 93
specifications 94, 98

w

web requests

about 80

best practices 98

HTTP status code 83

Hypertext Markup Language (HTML) 80

Hypertext Transfer Protocol (HTTP) 82
with statement

in concurrent programming 74

syntax 74

using, as context manager 72
writers-preference 253

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Advanced Introduction to Concurrent and Parallel Programming
	Technical requirements
	What is concurrency?
	Concurrent versus sequential
	Example 1 – checking whether a non-negative number is prime
	Concurrent versus parallel
	A quick metaphor

	Not everything should be made concurrent
	Embarrassingly parallel
	Inherently sequential
	Example 2 – inherently sequential tasks

	I/O bound

	The history, present, and future of concurrency
	The history of concurrency
	The present
	The future

	A brief overview of mastering concurrency in Python
	Why Python?

	Setting up your Python environment
	General setup
	Downloading example code

	Summary
	Questions
	Further reading

	Chapter 2: Amdahl's Law
	Technical requirements
	Amdahl's Law
	Terminology

	Formula and interpretation
	The formula for Amdahl's Law
	A quick example

	Implications

	Amdahl's Law's relationship to the law of diminishing returns
	How to simulate in Python
	Practical applications of Amdahl's Law
	Summary
	Questions
	Further reading

	Chapter 3: Working with Threads in Python
	Technical requirements
	The concept of a thread
	Threads versus processes
	Multithreading
	An example in Python

	An overview of the threading module
	The thread module in Python 2
	The threading module in Python 3

	Creating a new thread in Python
	Starting a thread with the thread module
	Starting a thread with the threading module

	Synchronizing threads
	The concept of thread synchronization
	The threading.Lock class
	An example in Python

	Multithreaded priority queue
	A connection between real-life and programmatic queues
	The queue module
	Queuing in concurrent programming
	Multithreaded priority queue

	Summary
	Questions
	Further reading

	Chapter 4: Using the with Statement in Threads
	Technical requirements
	Context management
	Starting from managing files
	The with statement as a context manager
	The syntax of the with statement

	The with statement in concurrent programming
	Example of deadlock handling

	Summary
	Questions
	Further reading

	Chapter 5: Concurrent Web Requests
	Technical requirements
	The basics of web requests
	HTML
	HTTP requests
	HTTP status code

	The requests module
	Making a request in Python
	Running a ping test

	Concurrent web requests
	Spawning multiple threads
	Refactoring request logic

	The problem of timeout
	Support from httpstat.us and simulation in Python
	Timeout specifications

	Good practices in making web requests
	Consider the terms of service and data-collecting policies
	Error handling
	Update your program regularly
	Avoid making a large number of requests

	Summary
	Questions
	Further reading

	Chapter 6: Working with Processes in Python
	Technical requirements
	The concept of a process
	Processes versus threads
	Multiprocessing
	Introductory example in Python

	An overview of the multiprocessing module
	The process class
	The Pool class
	Determining the current process, waiting, and terminating processes
	Determining the current process
	Waiting for processes
	Terminating processes

	Interprocess communication
	Message passing for a single worker
	Message passing between several workers

	Summary
	Questions
	Further reading

	Chapter 7: Reduction Operators in Processes
	Technical requirements
	The concept of reduction operators
	Properties of a reduction operator
	Examples and non-examples

	Example implementation in Python
	Real-life applications of concurrent reduction operators
	Summary
	Questions
	Further reading

	Chapter 8: Concurrent Image Processing
	Technical requirements
	Image processing fundamentals
	Python as an image processing tool
	Installing OpenCV and NumPy

	Computer image basics
	RGB values
	Pixels and image files
	Coordinates inside an image

	OpenCV API
	Image processing techniques
	Grayscaling
	Thresholding

	Applying concurrency to image processing
	Good concurrent image processing practices
	Choosing the correct way (out of many)
	Spawning an appropriate number of processes
	Processing input/output concurrently

	Summary
	Questions
	Further reading

	Chapter 9: Introduction to Asynchronous Programming
	Technical requirements
	A quick analogy
	Asynchronous versus other programming models
	Asynchronous versus synchronous programming
	Asynchronous versus threading and multiprocessing

	An example in Python
	Summary
	Questions
	Further reading

	Chapter 10: Implementing Asynchronous Programming in Python
	Technical requirements
	The asyncio module
	Coroutines, event loops, and futures
	Asyncio API

	The asyncio framework in action
	Asynchronously counting down
	A note about blocking functions
	Asynchronous prime-checking
	Improvements from Python 3.7
	Inherently blocking tasks

	concurrent.futures as a solution for blocking tasks
	Changes in the framework
	Examples in Python

	Summary
	Questions
	Further reading

	Chapter 11: Building Communication Channels with asyncio
	Technical requirements
	The ecosystem of communication channels
	Communication protocol layers
	Asynchronous programming for communication channels
	Transports and protocols in asyncio
	The big picture of asyncio's server client

	Python example
	Starting a server
	Installing Telnet
	Simulating a connection channel
	Sending messages back to clients
	Closing the transports

	Client-side communication with aiohttp
	Installing aiohttp and aiofiles
	Fetching a website's HTML code
	Writing files asynchronously

	Summary
	Questions
	Further reading

	Chapter 12: Deadlocks
	Technical requirements
	The concept of deadlock
	The Dining Philosophers problem
	Deadlock in a concurrent system
	Python simulation

	Approaches to deadlock situations
	Implementing ranking among resources
	Ignoring locks and sharing resources
	An additional note about locks
	Concluding note on deadlock solutions

	The concept of livelock
	Summary
	Questions
	Further reading

	Chapter 13: Starvation
	Technical requirements
	The concept of starvation
	What is starvation?
	Scheduling
	Causes of starvation
	Starvation's relationship to deadlock

	The readers-writers problem
	Problem statement
	The first readers-writers problem
	The second readers-writers problem
	The third readers-writers problem

	Solutions to starvation
	Summary
	Questions
	Further reading

	Chapter 14: Race Conditions
	Technical requirements
	The concept of race conditions
	Critical sections
	How race conditions occur

	Simulating race conditions in Python
	Locks as a solution to race conditions
	The effectiveness of locks
	Implementation in Python
	The downside of locks
	Turning a concurrent program sequential
	Locks do not lock anything

	Race conditions in real life
	Security
	Operating systems
	Networking

	Summary
	Questions
	Further reading

	Chapter 15: The Global Interpreter Lock
	Technical requirements
	An introduction to the Global Interpreter Lock
	An analysis of memory management in Python
	The problem that the GIL addresses
	Problems raised by the GIL

	The potential removal of the GIL from Python
	How to work with the GIL
	Implementing multiprocessing, rather than multithreading
	Getting around the GIL with native extensions
	Utilizing a different Python interpreter

	Summary
	Questions
	Further reading

	Chapter 16: Designing Lock-Based and Mutex-Free Concurrent Data Structures
	Technical requirements
	Lock-based concurrent data structures in Python
	LocklessCounter and race conditions
	Embedding locks in the data structure of the counter
	The concept of scalability
	Analysis of the scalability of the counter data structure
	Approximate counters as a solution for scalability
	The idea behind approximate counters
	Implementing approximate counters in Python
	A few considerations for approximate counter designs

	Mutex-free concurrent data structures in Python
	The impossibility of being lock-free in Python
	Introduction to the network data structure
	Implementing a simple network data structure in Python and race conditions
	RCU as a solution

	Building on simple data structures
	Summary
	Questions
	Further reading

	Chapter 17: Memory Models and Operations on Atomic Types
	Technical requirements
	Python memory model
	The components of Python memory manager
	Memory model as a labeled directed graph
	In the context of concurrency

	Atomic operations in Python
	What does it mean to be atomic?
	The GIL reconsidered
	Innate atomicity in Python
	Atomic versus nonatomic
	Simulation in Python

	Summary
	Questions
	Further reading

	Chapter 18: Building a Server from Scratch
	Technical requirements
	Low-level network programming via the socket module
	The theory of server-side communication
	The API of the socket module
	Building a simple echo server

	Building a calculator server with the socket module
	The underlying calculation logic
	Implementing the calculator server

	Building a non-blocking server
	Analyzing the concurrency of the server
	Generators in Python
	Asynchronous generators and the send method
	Making the server non-blocking

	Summary
	Questions
	Further reading

	Chapter 19: Testing, Debugging, and Scheduling Concurrent Applications
	Technical requirements
	Scheduling with APScheduler
	Installing APScheduler
	Not a scheduling service
	APScheduler functionalities
	APScheduler API
	Scheduler classes
	Executor classes
	Trigger keywords
	Common scheduler methods

	Examples in Python
	Blocking scheduler
	Background scheduler
	Executor pool
	Running on the cloud

	Testing and concurrency in Python
	Testing concurrent programs
	Unit testing
	Static code analysis

	Testing programs concurrently

	Debugging concurrent programs
	Debugging tools and techniques
	Debugging and concurrency

	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

