

Learning SciPy for Numerical
and Scientific Computing
Second Edition

Quick solutions to complex numerical problems in
physics, applied mathematics, and science with SciPy

Sergio J. Rojas G.

Erik A Christensen

Francisco J. Blanco-Silva

BIRMINGHAM - MUMBAI

Learning SciPy for Numerical and Scientific Computing
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Second edition: February 2015

Production reference: 1200215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-770-2

www.packtpub.com

www.packtpub.com

Credits

Authors
Sergio J. Rojas G.

Erik A Christensen

Francisco J. Blanco-Silva

Reviewers
Dr. Robert Clewley

Nicolas Fauchereau

Valentin Haenel

Andy Ray Terrel

Commissioning Editor
Kartikey Pandey

Acquisition Editors
Kartikey Pandey

Meeta Rajani

Content Development Editor
Shweta Pant

Technical Editor
Rahul C. Shah

Copy Editors
Roshni Banerjee

Puja Lalwani

Merilyn Pereira

Project Coordinator
Shipra Chawhan

Proofreaders
Paul Hindle

Clyde Jenkins

Indexers
Monica Ajmera Mehta

Priya Sane

Graphics
Sheetal Aute

Valentina D'silva

Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Authors

Sergio J. Rojas G. is currently a full professor of physics at Universidad Simón
Bolívar, Venezuela. Regarding his formal studies, in 1991, he earned a BS in physics
with his thesis on numerical relativity from the Universidad de Oriente, Estado Sucre,
Venezuela, and then, in 1998, he earned a PhD in physics from the Department of
Physics at City College of the City University of New York, where he worked on
the applications of fluid dynamics in the flow of fluids in porous media, gaining
and developing since then a vast experience in programming as an aid to scientific
research via Fortran77/90 and C/C++. In 2001, he also earned a master's degree in
computational finance from the Oregon Graduate Institute of Science and Technology.

Sergio's teaching activities involve lecturing undergraduate and graduate physics
courses at his home university, Universidad Simón Bolívar, Venezuela, including a
course on Monte Carlo methods and another on computational finance. His research
interests include physics education research, fluid flow in porous media, and the
application of the theory of complex systems and statistical mechanics in financial
engineering. More recently, Sergio has been involved in machine learning and its
applications in science and engineering via the Python programming language.

I am deeply grateful to my mother, Eufemia del Valle Rojas González,
a beloved woman whose given steps were always in favor of showing
and upraising the best of a human being.

Erik A Christensen is a quant analyst/developer in finance and creative industries.
He has a PhD from the Technical University of Denmark, with postdoctoral studies
at the Levich Institute at the City College of the City University of New York and the
Courant Institute of Mathematical Sciences at New York University. His interests in
technology span from Python to F# and Cassandra/Spark. He is active in the meet-up
communities in London!

I would like to thank my family and friends for their support during
this work!

Francisco J. Blanco-Silva is the owner of a scientific consulting
company—Tizona Scientific Solutions—and adjunct faculty in the Department
of Mathematics of the University of South Carolina. He obtained his formal training as
an applied mathematician at Purdue University. He enjoys problem solving, learning,
and teaching. Being an avid programmer and blogger, when it comes to writing,
he relishes finding that common denominator among his passions and skills and
making it available to everyone. He coauthored Modeling Nanoscale Imaging in Electron
Microscopy, Springer along with Peter Binev, Wolfgang Dahmen, and Thomas Vogt.

About the Reviewers

Dr. Robert Clewley is a polymath scientist and educator. He has been a faculty
member at Georgia State University, Atlanta, GA. He specializes in computational
and mathematical modeling methods for complex adaptive systems and has
published a diverse range of academic journals involving applications in epilepsy,
cancer, cardiology, and biomechanics. His research has been supported by federal
grants from NSF and the Army Research Laboratory. From the high school level to
graduate degree level, he has developed and taught a variety of courses spanning
mathematics, computer science, physics, biological sciences, and philosophy of science.
Dr. Clewley also develops the open source PyDSTool modeling software that is used
internationally in many scientific and engineering fields.

Nicolas Fauchereau is a climate scientist at the National Institute for Water and
Atmospheric Research (NIWA Ltd.) based in Auckland, New Zealand.

After obtaining his PhD in France in 2004, he spent 7 years in South Africa working
at the University of Cape Town and then at the Council for Scientific and Industrial
Research, before joining NIWA in 2012.

He uses statistics, data mining, and machine learning to try and make sense of
climate and environmental data and to develop solutions to help people anticipate
and adapt to climate variability and change.

He's been using the Python scientific stack for about 10 years and is a passionate
advocate for the use of Python in environmental and earth sciences.

A water sports enthusiast, he likes to spend his free time either surfing, kite surfing,
or sailing with his wife and two kids.

Valentin Haenel is a software engineer interested in the architectures of
high-performance number crunching with Python. Specifically, he is interested in
low-level aspects such as interfacing Python with C code, strategies for efficient
memory allocation, avoiding redundant memory copies, and exploiting the memory
hierarchy for accelerated computation. He spends some of his spare time working
on Blosc (http://blosc.org), an extremely fast and multi threaded meta-codec.
Occasionally, he flirts with machine learning.

In the past, he had worked on psychophysics data analysis, large-scale brain
simulations, analytical engines for business intelligence, and large-scale data-center
monitoring. He wrote a book about using the Git version control system and has
contributed to a diverse selection of over 50 open source projects. He currently
resides in Berlin and works as a freelance software engineer, consultant, and trainer.

http://blosc.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Introduction to SciPy	 7

What is SciPy?	 7
Installing SciPy	 9

Installing SciPy on Mac OS X	 11
Installing SciPy on Unix/Linux	 11
Installing SciPy on Windows	 12
Testing the SciPy installation	 12

SciPy organization	 14
How to find documentation	 16
Scientific visualization	 19
How to open IPython Notebooks	 20
Summary	 21

Chapter 2: Working with the NumPy Array As a First
Step to SciPy	 23

Object essentials	 25
Using datatypes	 26
Indexing and slicing arrays	 27
The array object	 29

Array conversions	 30
Shape selection/manipulations	 30
Object calculations	 31

Array routines	 32
Routines to create arrays	 32
Routines for the combination of two or more arrays	 39
Routines for array manipulation	 43
Routines to extract information from arrays	 45

Summary	 46

Table of Contents

[ii]

Chapter 3: SciPy for Linear Algebra	 47
Vector creation	 47
Vector operations	 49

Addition/subtraction	 49
Scalar/Dot product	 49
Cross/Vector product – on three-dimensional space vectors	 50

Creating a matrix	 50
Matrix methods	 56

Operations between matrices	 56
Functions on matrices	 58
Eigenvalue problems and matrix decompositions	 60
Image compression via the singular value decomposition	 62
Solvers	 63

Summary	 65
Chapter 4: SciPy for Numerical Analysis	 67

The evaluation of special functions	 67
Convenience and test functions	 68
Univariate polynomials	 69
The gamma function	 74
The Riemann zeta function	 75
Airy and Bairy functions	 76
The Bessel and Struve functions	 77
Other special functions	 78
Interpolation	 78
Regression	 85
Optimization	 89

Minimization	 90
Roots	 91

Integration	 94
Exponential/logarithm integrals	 95
Trigonometric and hyperbolic trigonometric integrals	 95
Elliptic integrals	 96
Gamma and beta integrals 	 96
Numerical integration	 97

Ordinary differential equations	 98
Lorenz attractors	 101
Summary	 104

Table of Contents

[iii]

Chapter 5: SciPy for Signal Processing	 105
Discrete Fourier Transforms	 105
Signal construction	 108
Filters	 110

The LTI system theory	 113
Filter design	 114
Window functions	 114
Image interpolation	 116
Morphology	 119

Summary	 121
Chapter 6: SciPy for Data Mining	 123

Descriptive statistics	 124
Distributions	 124
Interval estimation, correlation measures, and statistical tests	 126
Distribution fitting	 129
Distances	 131
Clustering	 135

Vector quantization and k-means	 136
Hierarchical clustering	 138
Clustering mammals by their dentition	 139

Summary	 142
Chapter 7: SciPy for Computational Geometry	 143

The structural model of oxides	 146
A finite element solver for Laplace's equation	 152
Summary	 158

Chapter 8: Interaction with Other Languages	 159
Interaction with Fortran	 160
Interaction with C/C++	 161
Interaction with MATLAB/Octave	 164
Summary	 166

Index	 169

Preface
While maintaining the main structure of the first edition, this revised edition of
Learning SciPy for Numerical and Scientific Computing includes a set of companion
IPython Notebooks. This will help students, researchers, and practitioners modify
and incorporate in their own work, the set of tested code snippets that are presented
in the book, as the pedagogical strategy. This will also show and illustrate the
computing power that SciPy brings to the fingertips of anyone interested in
performing numerical computation via the unique flexibility offered by the Python
computer language.

We should mention, however, that the IPython Notebooks will make sense to anyone
starting in the field only if they are read alongside the corresponding section in the
book, helping you to develop skills in the use of SciPy to solve large scale numerical
problems while gaining understanding of the conditions and limitations associated
with the modules contained in SciPy. Certainly, the already knowledgeable
reader will find pleasure as they encounter material they already know, but will
be challenged to devise better ways to accomplish with the same level of clarity
presented in the book with the many computational tasks used to illustrate the
functionality of SciPy.

SciPy has been an integral part of the computational environment of choice for
many scientists for years. One of our challenges today is to bring together
professionals with different backgrounds, technologies, and expertise in software
(from the pure mathematician, to the hardcore engineer) to contribute independent
of their working environments.

SciPy in Python is a perfect platform to coordinate projects in a smooth, reliable,
and coherent environment. It allows performing most tasks with ease; reason
being that many dedicated software tools easily integrate with the core features of
SciPy, therefore, interfacing with non-Python-based software packages and tools is
becoming increasingly simple.

Preface

[2]

In summary, this book presents the most robust programming environment to
date. We will show you how to use this system from basic manipulation of data,
to a very detailed exposition through examples in different branches of science
and engineering.

What this book covers
Chapter 1, Introduction to SciPy, shows the benefits of using the combination of
Python, NumPy, SciPy, and matplotlib as a programming environment for scientific
purposes. You will learn how to install, test, and explore the environments, use them
for quick computations, and figure out a few good ways to search for help. A brief
introduction on how to open the companion IPython Notebooks that comes with this
book is also presented.

Chapter 2, Working with the NumPy Array As a First Step to SciPy, explores in depth the
creation and basic manipulation of the object array used by SciPy, as an overview of
the NumPy libraries.

Chapter 3, SciPy for Linear Algebra, covers applications of SciPy to applications
with large matrices, including solving systems or computation of eigenvalues
and eigenvectors.

Chapter 4, SciPy for Numerical Analysis, is without a doubt one of the most interesting
chapters in this book. It covers with great detail the definition and manipulation
of functions (one or several variables), the extraction of their roots, extreme values
(optimization), computation of derivatives, integration, interpolation, regression,
and applications to the solution of ordinary differential equations.

Chapter 5, SciPy for Signal Processing, explores construction, acquisition, quality
improvement, compression, and feature extraction of signals (in any dimension). It is
covered with beautiful and interesting examples from the field of image processing.

Chapter 6, SciPy for Data Mining, covers applications of SciPy for collection,
organization, analysis, and interpretation of data, with examples taken from statistics
and clustering.

Chapter 7, SciPy for Computational Geometry, explores the construction of triangulation
of points, convex hulls, Voronoi diagrams, and applications, including the solving
of the two dimensional Laplace Equation via the Finite Element Method in a
rectangular grid. At this point in the book, it will be possible to combine techniques
from all the previous chapters to show state-of-the-art research performed with ease
with SciPy, and we will explore a few good examples from Material Science and
Experimental Physics.

Preface

[3]

Chapter 8, Interaction with Other Languages, introduces one of the main strengths of
SciPy—the ability to interact with other languages such as C/C++, Fortran, R, and
MATLAB/Octave.

What you need for this book
To work with the examples and try out the code in this book, all you need is a recent
build of Python (2.7 or higher) with the libraries NumPy, SciPy, and matplotlib.
Recipes to install all these are provided throughout the book.

Who this book is for
This book is for scientists, engineers, programmers, or analysts with knowledge of
Python. For some of the sections, a decent command over linear algebra, calculus,
and some statistics is needed to understand some of the concepts, but otherwise this
book is mostly self-contained.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

solve(A, b, sym_pos=False, lower=False, overwrite_a=False,
overwrite_b=False, debug=False)
spsolve(A, b[, permc_spec, use_umfpack])

The reader with the required background should recognize the Python prompt >>>
followed by a space and then the code field. Any command-line input or output is
written as follows:

>>> from scipy import stats

>>> result=scipy.stats.bayes_mvs(scores)

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/7702OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Introduction to SciPy
There is no doubt that the labor of scientists in the twenty-first century is more
comprehensive and interdisciplinary than in previous generations. Members of
scientific communities connect in larger teams and work together on mission-
oriented goals and across their fields. This paradigm on research is also reflected in
the computational resources employed by researchers. No longer are researchers
restricted to one type of commercial software, operating system, or vendor, but
inspired by open source contributions made available and tested by research
institutions and open source communities; research work often spans over various
platforms and technologies.

This book presents the highly-recognized open source programming environment till
date — a system based on two libraries of the computer language Python: NumPy
and SciPy. In the following sections, we will guide you through examples from
science and engineering on the usage of this system.

What is SciPy?
The ideal programming environment for computational mathematics enjoys the
following characteristics:

•	 It must be based on a computer language that allows the user to work
quickly and integrate systems effectively. Ideally, the computer language
should be portable to all platforms: Windows, Mac OS X, Linux, Unix,
Android, and so on. This is key to fostering cooperation among scientists
with different resources and accessibilities. It must contain a powerful set of
libraries that allow the acquisition, storing, and handling of large datasets in
a simple and effective manner. This is central—allowing simulation and the
employment of numerical computations at a large scale.

•	 Smooth integration with other computer languages, as well as third-party
software.

Introduction to SciPy

[8]

•	 Besides running the compiled code, the programming environment should
allow the possibility of interactive sessions as well as scripting capabilities
for quick experimentation.

•	 Different coding paradigms should be supported—imperative,
object-oriented, and/or functional coding styles.

•	 It should be an open source software, that allows user access to the raw data
code, and allows the user to modify basic algorithms if so desired. With
commercial software, the inclusion of the improved algorithms is applied
at the discretion of the seller, and it usually comes at a cost of the end
user. In the open source universe, the community usually performs these
improvements and releases new versions as they are published—at no cost.

•	 The set of applications should not be restricted to mere numerical
computations; it should be powerful enough to allow symbolic
computations as well.

Among the best-known environments for numerical computations used by the
scientific community is MATLAB, which is commercial, expensive, and which does
not allow any tampering with the code. Maple and Mathematica are more geared
towards symbolic computation, although they can match many of the numerical
computations from MATLAB. These are, however, also commercial, expensive, and
closed to modifications. A decent alternative to MATLAB and based on a similar
mathematical engine is the GNU Octave system. Most of the MATLAB code is
easily portable to Octave, which is open source. Unfortunately, the accompanying
programming environment is not very user friendly, it is also very much restricted
to numerical computations. One environment that combines the best of all worlds is
Python with the open source libraries NumPy and SciPy for numerical operations.
The first property that attracts users to Python is, without a doubt, its code
readability. The syntax is extremely clear and expressive. It has the advantage of
supporting code written in different paradigms: object oriented, functional, or old
school imperative. It allows packing of Python codes and to run them as standalone
executable programs through the py2exe, pyinstaller, and cx_Freeze libraries,
but it can also be used interactively or as a scripting language. This is a great
advantage when developing tools for symbolic computation. Python has therefore
been a firm competitor to Maple and Mathematica: the open source mathematics
software Sage (System for Algebra and Geometry Experimentation).

NumPy is an open source extension to Python that adds support for
multidimensional arrays of large sizes. This support allows the desired acquisition,
storage, and complex manipulation of data mentioned previously. NumPy alone is a
great tool to solve many numerical computations.

Chapter 1

[9]

On top of NumPy, we have yet another open source library, SciPy. This library
contains algorithms and mathematical tools to manipulate NumPy objects with
very definite scientific and engineering objectives.

The combination of Python, NumPy, and SciPy (which henceforth are coined
as "SciPy" for brevity) has been the environment of choice of many applied
mathematicians for years; we work on a daily basis with both pure mathematicians
and with hardcore engineers. One of the challenges of this trade is to bring about
the scientific production of professionals with different visions, techniques, tools,
and software to a single workstation. SciPy is the perfect solution to coordinate
computations in a smooth, reliable, and coherent manner.

Constantly, we are required to produce scripts with, for example, combinations
of experiments written and performed in SciPy itself, C/C++, Fortran, and/or
MATLAB. Often, we receive large amounts of data from some signal acquisition
devices. From all this heterogeneous material, we employ Python to retrieve and
manipulate the data, and once finished with the analysis, to produce high-quality
documentation with professional-looking diagrams and visualization aids. SciPy
allows performing all these tasks with ease.

This is partly because many dedicated software tools easily extend the core features
of SciPy. For example, although graphing and plotting are usually taken care of with
the Python libraries of matplotlib, there are also other packages available, such as
Biggles (http://biggles.sourceforge.net/), Chaco (https://pypi.python.
org/pypi/chaco), HippoDraw (https://github.com/plasmodic/hippodraw),
MayaVi for 3D rendering (http://mayavi.sourceforge.net/), the Python
Imaging Library or PIL (http://pythonware.com/products/pil/), and the online
analytics and data visualization tool Plotly (https://plot.ly/).

Interfacing with non-Python packages is also possible. For example, the interaction
of SciPy with the R statistical package can be done with RPy (http://rpy.
sourceforge.net/rpy2.html). This allows for much more robust data analysis.

Installing SciPy
At the time of this book, the stable production releases of Python were 2.7.9 and 3.4.2.
Still, Python 2.7 is more convenient if the user needs to communicate with third-
party applications. No new releases are planned for Python 2; Python 3 is considered
the present and the future of Python. For the purposes of SciPy applications, we do
recommend you hold on to the 2.7 version, as there are still some packages using
SciPy that have not been ported to Python 3 yet. Nevertheless, the companion
software of this book was tested to work on both Python 2.7 and Python 3.4.

http://biggles.sourceforge.net/
https://pypi.python.org/pypi/chaco
https://pypi.python.org/pypi/chaco
https://github.com/plasmodic/hippodraw
http://mayavi.sourceforge.net/
http://pythonware.com/products/pil/
https://plot.ly/
http://rpy.sourceforge.net/rpy2.html
http://rpy.sourceforge.net/rpy2.html

Introduction to SciPy

[10]

The Python software package can be downloaded from the official site
(https://www.python.org/downloads/) and can be installed on all major
systems such as Windows, Mac OS X, Linux, and Unix. It has also been ported
to other platforms, including Palm OS, iOS, PlayStation, PSP, Psion, and so on.

The following screenshot shows two popular options for coding in Python on an
iPad—PythonMath and Sage Math. While the first application allows only the use of
simple math libraries, the second permits the user to load and use both NumPy and
SciPy remotely.

PythonMath and Sage Math bring Python coding to iOS devices. Sage Math allows
importing NumPy and SciPy.

We shall not go into detail about the installation of Python on your system, since we
already assume familiarity with this language. In case of doubt, we advise browsing
the excellent book Expert Python Programming, Tarek Ziadé, Packt Publishing, where
detailed explanations are given for installing many of the different implementations
on different systems. It is usually a good idea to follow the directions given on the
official Python website. We will also assume familiarity with carrying out interactive
sessions in Python, as well as writing standalone scripts.

The latest libraries for both NumPy and SciPy can be downloaded from the official
SciPy site (http://scipy.org/). They both require a Python Version 2.4 or newer,
so we should be in good shape at this point. We may choose to download the
package from SourceForge (http://sourceforge.net/projects/scipy/),
Gohlke (http://www.lfd.uci.edu/~gohlke/pythonlibs/) or Git repositories
(for instance, the superpack from http://stronginference.com/
ScipySuperpack/).

https://www.python.org/downloads/
http://scipy.org/
http://sourceforge.net/projects/scipy/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://stronginference.com/ScipySuperpack/
http://stronginference.com/ScipySuperpack/

Chapter 1

[11]

It is also possible in some systems to use prepackaged executable bundles that
simplify the process, such as the Anaconda (https://store.continuum.io/cshop/
anaconda/) or the Enthought (https://www.enthought.com/products/epd/)
Python distributions. Here, we will show you how to download and install Scipy on
various platforms in the most common cases.

Installing SciPy on Mac OS X
While installing SciPy on Mac OS X, you must consider some criteria before you
install it on your system. This helps in smooth installation of SciPy. The following are
the things to be taken care of:

•	 For instance, in Mac OS X, if MacPorts is installed, the process could not
be easier. Open a terminal as superuser, and at the prompt (%), issue the
following command:
% port search scipy

•	 This presents a list of all ports that either install SciPy or use SciPy as a
requirement. For Python 2.7 we need to install py27-scipy issuing the
following command:

% port install py27-scipy

A few minutes later, the libraries are properly installed and ready to use. Note
how macports also installs all needed requirements for us (including the NumPy
libraries) without any extra effort on our part.

Installing SciPy on Unix/Linux
Under any other Unix/Linux system, if either no ports are available or if the user
prefers to install from the packages downloaded from either SourceForge or Git,
it is enough to perform the following steps:

1.	 Unzip the NumPy and SciPy packages following the recommendation of
the official pages. This creates two folders, one for each library.
Within a terminal session, change directories to the folder where the NumPy
libraries are stored, which contains the setup.py file. Find out which Fortran
compiler you are using (one of gnu, gnu95, or fcompiler), and at prompt,
issue the following command:

% python setup.py build –fcompiler=<compiler>

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/epd/

Introduction to SciPy

[12]

2.	 Once built, and on the same folder, issue the installation command.
This should be all:

% python setup.py install

Installing SciPy on Windows
You can install Scipy on Windows in many ways. The following are some
recommended ways that you might want to have a look on:

•	 Under Microsoft Windows, we recommend you install from the binary
installers provided by the Anaconda or Enthought Python Distributions.
Please, however, be aware of the memory requirements. Alternatively, you
can download and install the SciPy stack or the libraries, individually.

•	 The procedure for the installation of the SciPy libraries is exactly the same,
that is, downloading and building before installing under Unix/Linux or
downloading and running under Microsoft Windows. Note that different
implementations of Python might have different requirements before
installing NumPy and SciPy.

Testing the SciPy installation
As you might know, computer systems are not infallible. Accordingly, before
starting computing via SciPy, one needs to be sure it is working correctly. To that
end, SciPy developers have included a test suit any user of SciPy can execute to be
sure the SciPy being used is working fine. That way, much debugging time can be
saved whenever an error occurs while using any function provided by SciPy.

To run the test suite, at the Python prompt, one can run the following commands:

>>> import scipy

>>> scipy.test()

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[13]

The reader should be aware that the execution of this test will take some time to
finish. It should end with something like this:

This means that at the basic level, your SciPy installation is fine. Eventually, the test
could end in the form:

In this case, one needs to revise carefully the errors and the failed tests. A place to get
help is the SciPy mailing list (http://mail.scipy.org/pipermail/scipy-user/)
to which one could subscribe. We have included a Python script that the reader
could use to run these tests that can be found at the companion software for this
chapter that comes with the book.

http://mail.scipy.org/pipermail/scipy-user/

Introduction to SciPy

[14]

SciPy organization
SciPy is organized as a family of modules. We like to think of each module as a
different field of mathematics. And as such, each has its own particular techniques
and tools. You can find a list of some of the different modules included in SciPy at
http://docs.scipy.org/doc/scipy-0.14.0/reference/py-modindex.html.

Let's use some of its functions to solve a simple problem.

The following table shows the IQ test scores of 31 individuals:

114 100 104 89 102 91 114 114
103 105 108 130 120 132 111 128
118 119 86 72 111 103 74 112
107 103 98 96 112 112 93

A stem plot of the distribution of these 31 scores (refers to the IPython Notebook for
this chapter) shows that there are no major departures from normality, and thus we
assume the distribution of the scores to be close to normal. Now, estimate the mean
IQ score for this population, using a 99 percent confidence interval.

We start by loading the data into memory, as follows:

>>> import numpy

>>> scores = numpy.array([114, 100, 104, 89, 102, 91, 114, 114, 103, 105,
108, 130, 120, 132, 111, 128, 118, 119, 86, 72, 111, 103, 74, 112, 107,
103, 98, 96, 112, 112, 93])

At this point, if we type dir(scores), hit the return key followed by a dot (.), and
press the tab key ;the system lists all possible methods inherited by the data from the
NumPy library, as it is customary in Python. Technically, we could go ahead and
compute the required mean, xmean, and corresponding confidence interval according
to the formula, xmean ± zcrit * sigma / sqrt(n), where sigma and n are respectively the
standard deviation and size of the data, and zcrit is the critical value corresponding
to the confidence (http://en.wikipedia.org/wiki/Confidence_interval).
In this case, we could look up a table on any statistics book to obtain a crude
approximation to its value, zcrit = 2.576. The remaining values may be computed in
our session and properly combined, as follows:

>>> import scipy

>>> xmean = scipy.mean(scores)

>>> sigma = scipy.std(scores)

http://docs.scipy.org/doc/scipy-0.14.0/reference/py-modindex.html
http://en.wikipedia.org/wiki/Confidence_interval

Chapter 1

[15]

>>> n = scipy.size(scores)

>>> xmean, xmean - 2.576*sigma /scipy.sqrt(n), \

 xmean + 2.576*sigma / scipy.sqrt(n)

The output is shown as follows:

(105.83870967741936, 99.343223715529746, 112.33419563930897)

We have thus computed the estimated mean IQ score (with value
105.83870967741936) and the interval of confidence (from about 99.34 to
approximately 112.33). We have done so using purely SciPy-based operations while
following a known formula. But instead of making all these computations by hand
and looking for critical values on tables, we could just ask SciPy.

Note how the scipy.stats module needs to be loaded before we use any of
its functions:

>>> from scipy import stats

>>> result=scipy.stats.bayes_mvs(scores)

The variable result contains the solution to our problem with some additional
information. Note that result is a tuple with three elements as the help
documentation suggests:

>>> help(scipy.stats.bayes_mvs)

The output of this command will depend on the installed version of SciPy. It might
look like this (run the companion IPython Notebook for this chapter to see how the
actual output from your system is, or run the command in a Python console):

Introduction to SciPy

[16]

Our solution is the first element of the tuple result; to see its contents, type:

>>> result[0]

The output is shown as follows:

(105.83870967741936, (101.48825534263035, 110.18916401220837))

Note how this output gives us the same average as before, but a slightly different
confidence interval, due to more accurate computations through SciPy (the output
might be different depending on the SciPy version available on your computer).

How to find documentation
There is a wealth of information online, either from the official pages of SciPy
(although its reference guides are somehow incomplete, as a work in progress), or
from many other contributors that present tutorials on forums, YouTube, or personal
sites. Several developers also publish examples of their work with great detail online.

As we previously saw, it is also possible to obtain help from our interactive Python
sessions. The libraries NumPy and SciPy make use of docstrings heavily, which
makes it simple to request for help for usage and recommendations with the usual
Python help system. For example, if in doubt of the usage of the bayes_mvs routine,
the user can issue the following command:

>>> import scipy.stats

>>> help(scipy.stats.bayes_mvs)

After executing this command, the system provides the necessary information.
Equivalently, both NumPy and SciPy come bundled with their own help system,
info. For instance, look at the following command:

>>> import numpy

>>> numpy.info('random')

This will offer a summary of all information parsed from the contents of all
docstrings from the NumPy library associated with the given keyword (note it must
be quoted). The user may navigate the output scrolling up and down, without the
possibility of further interaction.

This is convenient provided we already do know the function we want to use if we
are unsure of its usage. But, what should we do if we don't know about the existence
of this procedure, and suspect that it may exist? The usual Python way is to invoke
the dir() command on a module, which lists all possible attributes.

Chapter 1

[17]

Interactive Python sessions make it easier to search for such information with the
possibility of navigating and performing further searches inside the output of help
sessions. For instance, type in the following command at prompt:

>>> import scipy.stats

>>> help(scipy.stats)

The output of this command will depend on the installed version of SciPy. It might
look like this (run the companion IPython Notebook for this chapter to see the actual
output from your system, or run the command in a Python console):

Note the colon (:) at the end of the screen—this is an old-school prompt. The system
is in stand-by mode, expecting the user to issue a command (in the form of a single
key). This also indicates that there are a few more pages of help following the given
text. If we intend to read the rest of the help file, we may press spacebar to scroll to
the next page.

Introduction to SciPy

[18]

In this way, we can visit the following manual pages on this topic. It is also possible
to navigate the manual pages scrolling one line of text at a time using the up and
down arrow keys. When we are ready to quit the help session, we simply press
(the keyboard letter) Q.

It is also possible to search the help contents for a given string. In that case, at the
prompt, we press the (/) slash key. The prompt changes from a colon into a slash,
and we proceed to input the keyword we would like to search for.

For example, is there a SciPy function that computes the Pearson kurtosis of a given
dataset? At the slash prompt, we type in kurtosis and press enter. The help system
takes us to the first occurrence of that string. To access successive occurrences of
the string kurtosis, we press the N key (for next) until we find what we require. At
that stage, we proceed to quit this help session (by pressing Q) and request more
information on the function itself:

>>> help(scipy.stats.kurtosis)

The output of this command will depend on the installed version of SciPy. It might
look like this (run the companion IPython Notebook for this chapter to see how the
actual output from your system is, or run the command in a Python console):

Chapter 1

[19]

Scientific visualization
At this point, we would like to introduce you to another resource that we will be using
to generate graphs, namely the matplotlib libraries. It may be downloaded from its
official web page, http://matplotlib.org/, and installed following the standard
Python commands. There is a good online documentation in the official web page,
and we encourage the reader to dig deeper than the few commands that we will use
in this book. For instance, the excellent monograph Matplotlib for Python Developers,
Sandro Tosi, Packt Publishing, provides all that we would need and more. Other plotting
libraries are available (commercial or otherwise that aim to very different and specific
applications. The degree of sophistication and ease of use of matplotlib makes it one of
the best options to generate graphics in scientific computing.

Once installed, it may be imported using import matplotlib. Among all its
modules, we will focus on pyplot that provides a comfortable interface with the
plotting libraries. For example, if we desire to plot a cycle of the sine function,
we could execute the following code snippet:

>>> import numpy

>>> import matplotlib.pyplot as plt

>>> x=numpy.linspace(0,2*numpy.pi,32)

>>> fig = plt.figure()

>>> plt.plot(x, numpy.sin(x))

>>> plt.show()

>>> fig.savefig('sine.png')

We obtain the following plot:

-1.0

1.0

0.5

0.0

-0.5

0 1 2 3 4 5 6 7

http://matplotlib.org/

Introduction to SciPy

[20]

Let us explain each command from the previous session. The first two commands
are used to import numpy and matplotlib.pyplot as usual. We define an array x of
32 uniformly spaced floating point values from 0 to 2π, and define y to be the array
containing the sine of the values from x. The command figure creates space in the
memory to store the subsequent plots and puts in place an object of the matplotlib.
figure.Figure form. The plt.plot(x, numpy.sin(x)) command creates an object
of the matplotlib.lines.Line2D form containing data with the plot of x against
numpy.sin(x) together with a set of axes attached to it and labeled according to
the ranges of the variables. This object is stored in the previous Figure object and
is displayed on the screen via the plt.show()command. The last command in the
session, fig.savefig(), saves the Figure object to whatever valid image format
we desire (in this case, a Portable Network Graphics (PNG) image). From now
on, in any code that deals with matplotlib commands, we will leave the option of
showing/saving open.

There are, of course, commands that control the style of axes, aspect ratio between
axes, labeling, colors, legends, the possibility of managing several figures at the
same time (subplots), and many more features to display all sorts of data. We will be
discovering these as we progress with examples throughout the book.

How to open IPython Notebooks
This book comes with a set of IPython Notebooks that will help you interactively test
and modify or adapt to your needs to the code snippets shown in each chapter of the
book. We should warn, however, that these IPython Notebooks will make sense only
if read along side the book.

In this regard, this book assumes familiarity with Python and some of its
development environment as the IPython Notebook. Consequently, we will only
refer to the documentation on the official website for IPython Notebook (http://
ipython.org/notebook.html). You can find additional help at (http://ipython.
org/ipython-doc/stable/notebook/index.html). Note that IPython Notebook is
also available through Wakari (https://wakari.io/), as a standalone or part of the
Anaconda package, or by Enthought. If you're new to IPython Notebook, get started
by looking at the example collection and reading the documentation.

To use the files for this book, open a terminal and go to the directory where the
file you want to open is stored (it should have the form filename.ipynb). At the
command line, in that terminal, type:

ipython notebook filename.ipynb

http://ipython.org/notebook.html
http://ipython.org/notebook.html
http://ipython.org/ipython-doc/stable/notebook/index.html
http://ipython.org/ipython-doc/stable/notebook/index.html
https://wakari.io/

Chapter 1

[21]

After hitting the enter key, the file should be displayed in the default web browser.
In case that does not happen, please note that the IPython Notebook is officially
supported on the browsers Chrome, Safari, and Firefox. For additional details
refers to the Browser Compatibility section on the documentation currently at
http://ipython.org/ipython-doc/stable/install/install.html.

Once the .ipynb file has been opened, press and hold the shift key and hit enter to
start executing the notebook cell by cell. Another way to execute the notebook cell by
cell is via the player icon on the menu near the left of the cell labeled as markdown.
Alternatively, from the Cell menu (on the top of the browser) you could choose
among several options to execute the contents of the notebook.

To leave the notebook you could choose Close and halt, from the File menu on top
of the browser below the label Notebook. Options to save the notebook can also be
found under the File menu. To completely close the notebook browser you need
to hit the keys ctrl and C simultaneously on the terminal where the notebook was
started and follow the instructions after that.

Summary
In this chapter, you have learned the benefits of using the combination of Python,
NumPy, SciPy, and matplotlib as a programming environment for any scientific
endeavor that requires mathematics; in particular, anything related to numerical
computations. You have explored the environment, learned how to download,
install, and test the required libraries, used them for some quick computations,
and figured out a few good ways to search for help.

In Chapter 2, Working with the NumPy Array As a First Step to SciPy, we will guide you
through basic object creation in SciPy, including the best methods to manipulate
data, or obtain information from it.

http://ipython.org/ipython-doc/stable/install/install.html

Working with the NumPy
Array As a First Step to SciPy
At the top level, SciPy is basically NumPy, since both the object creation and basic
manipulation of these objects are performed by functions of the latter library. This
assures much faster computations, since the memory handling is done internally in
an optimal way. For instance, if an operation must be made on the elements of a big
multidimensional array, a novice user might be tempted to go over columns and
rows with as many for loops as necessary. Loops run much faster when they access
each consecutive element in the same order in which they are stored in memory.
We should not be bothered with considerations of this kind when coding. The
NumPy/SciPy operations assure that this is the case. As an added advantage, the
names of operations in NumPy/SciPy are intuitive and self explanatory. Code
written in this fashion is extremely easy to understand and maintain, faster to
correct or change in case of need.

Let's illustrate this point with an introductory example.

The scipy.misc module in the SciPy package contains a classical image called lena,
used in the image processing community for testing and comparison purposes. This
is a 512 x 512 pixel standard test image, which has been in use since 1973, and was
originally cropped from the centerfold of the November 1972 issue of the Playboy
magazine. It is a picture of Lena Söderberg, a Swedish model, shot by photographer
Dwight Hooker. The image is probably the most widely used test image for all sorts
of image processing algorithms (such as compression and noise reduction) and
related scientific publications.

This image is stored as a two-dimensional array. Note that the number in the nth
column and mth row of this array measures the grayscale value at the pixel position
(n+1, m+1) of the image. In the following, we access this picture and store it in the
img variable, by issuing the following commands:

Working with the NumPy Array As a First Step to SciPy

[24]

>>> import scipy.misc

>>> img=scipy.misc.lena()

>>> import matplotlib.pyplot as plt

>>> plt.gray()

>>> plt.imshow(img)

The image can be displayed by issuing the following command:

>>> plt.show()

We may take a peek at some of these values; say the 7 x 3 upper corner of the image
(7 columns, 3 rows). Instead of issuing for loops, we could slice the corresponding
portion of the image. The img[0:3,0:7] command gives us the following:

array([[162, 162, 162, 161, 162, 157, 163],

 [162, 162, 162, 161, 162, 157, 163],

 [162, 162, 162, 161, 162, 157, 163]])

Chapter 2

[25]

We can use the same strategy to populate arrays or change their values. For instance,
let's change all entries of the previous array to hold zeros on the second row between
columns 2 to 6:

>>> img[1,1:6]=0

>>> print (img[0:3,0:7])

The output is shown as follows:

[[162 162 162 161 162 157 163]

 [162 0 0 0 0 0 163]

 [162 162 162 161 162 157 163]]

Object essentials
We have been introduced to NumPy's main object—the homogeneous
multidimensional array, also referred to as ndarray. All elements of the array are
casted to the same datatype (homogeneous). We obtain the datatype by the dtype
attribute, its dimension by the shape attribute, the total number of elements in the
array by the size attribute, and elements by referring to their positions:

>>> img.dtype, img.shape, img.size

The output is shown as follows:

(dtype('int64'), (512, 512), 262144)

Let's compute the grayscale values now:

>>> img[32,67]

The output is shown as follows:

87

Let's interpret the outputs. The elements of img are 64-bit integer values ('int64').
This may vary depending on the system, the Python installation, and the computer
specifications. The shape of the array (note it comes as a Python tuple) is 512 x 512,
and the number of elements 262144. The grayscale value of the image in the 33rd
column and 68th row is 87 (note that in NumPy, as in Python or C, all indices
are zero-based).

We will now introduce the basic property and methods of NumPy/SciPy
objects—datatype and indexing.

Working with the NumPy Array As a First Step to SciPy

[26]

Using datatypes
There are several approaches to impose the datatype. For instance, if we want all
entries of an already created array to be 32-bit floating point values, we may cast it
as follows:

>>> import scipy.misc

>>> img=scipy.misc.lena().astype('float32')

We can also use an optional argument, dtype through the command:

>>> import numpy

>>> scores = numpy.array([101,103,84], dtype='float32')

>>> scores

The output is shown as follows:

array([101., 103., 84.], dtype=float32)

This can be simplified even further with a third clever method (although this practice
offers code that are not so easy to interpret):

>>> scores = numpy.float32([101,103,84])

>>> scores

The output is shown as follows:

array([101., 103., 84.], dtype=float32)

The choice of datatypes for NumPy arrays is very flexible; we may choose the basic
Python types (including bool, dict, list, set, tuple, str, and unicode), although
for numerical computations we focus on int, float, long, and complex.

NumPy has its own set of datatypes optimized to use with instances of ndarray, and
with the same precision as the previously given native types. We distinguish them
with a trailing underscore (_). For instance, ndarray of strings could be initialized,
as follows:

>>> a=numpy.array(['Cleese', 'Idle', 'Gilliam'], dtype='str_')

>>> a.dtype

 The output is shown as follows (it depends on your Python version):

dtype('<U7')

Note two things; unlike it's purely Python counterpart, the usage of the 'str_'
datatype requires the name to be quoted; we could use the longer unquoted version,
numpy.str_.

Chapter 2

[27]

When prompted for datatype, the system returns its C-derived equivalent: '<U7'
('<U for strings, and 7' to indicate the largest size of any of its elements).

The most common way to address numerical types is with the bit width
nomenclature: boolXX, intXX, uintXX, floatXX, or complexXX, where XX indicates
the bit size (for example, uint32 for 32-bit unsigned integers).

It is also possible to design our own datatypes, and this is where the full potential
of the flexibility of NumPy datatypes arise. For instance, a datatype to indicate the
name and grades of a student could be created, as follows:

>>> dt = numpy.dtype([('name', numpy.str_, 16), ('grades',
 numpy.float64, (2,))])

>>> dt

The output is shown as follows (it depends on your Python version):

dtype([('name', '<U16'), ('grades', '<f8', (2,))])

This means that the dt datatype has two parts: the first part, the name, that must be a
numpy.str_ string with 16 characters. The second part, the grades, is a subarray of
dimension 2 with scores as 64-bit floating point values. A valid array with elements
in this datatype would then look like the following:

>>> MA141=numpy.array([('Cleese', (7.0,8.0)), ('Gilliam',
 (9.0,10.0))], dtype=dt)

>>> MA141

The output is shown as follows (it depends on your Python version):

array([('Cleese', [7.0, 8.0]), ('Gilliam', [9.0, 10.0])],
 dtype=[('name', '<U16'), ('grades', '<f8', (2,))])

Indexing and slicing arrays
There are two basic methods to access the data in a NumPy array; let's call that array
for A. Both methods use the same syntax, A[obj], where obj is a Python object that
performs the selection. We are already familiar with the first method of accessing a
single element. The second method is the subject of this section, namely slicing. This
concept is exactly what makes NumPy and SciPy so incredibly easy to manage.

The basic slice method is a Python object of the form slice(start,stop,step),
or in a more compact notation, start:stop:step. Initially, the three variables,
start, stop, and step are non-negative integer values, with start less than or
equal to stop.

Working with the NumPy Array As a First Step to SciPy

[28]

This represents the sequence of indices k = start + (i * step), where k runs from start
to the largest integer k_max = start + step*int((stop-start)/step), or i from 0 to the largest
integer equal to int((stop - start) / step). When a slice method is invoked on any of
the dimensions of ndarray, it selects all elements in that dimension indexed by the
corresponding sequence of indices. The simple example next illustrates this point:

>>> A=numpy.array([[1,2,3,4,5,6,7,8],[2,4,6,8,10,12,14,16]])

>>> print (A[0:2, 0:8:2])

The output is shown as follows:

[[1 3 5 7]

 [2 6 10 14]]

If start is greater than stop, a negative value of step is used to traverse the
sequence backwards:

>>> print (A[0:2, 8:0:-2])

The output is shown as follows:

[[8, 6, 4, 2]

 [16, 12, 8, 4]]

Negative values of start and stop are interpreted as n-start and n-stop
(respectively), where n is the size of the corresponding dimension. The A[0:2,
-1:0:-2] command gives exactly the same output as the previous example.

The slice objects can be shortened by the absence of start (which implies a zero if
step is positive, or the size of the dimension if step is negative), absence of stop
(which implies the size of the corresponding dimension in case of positive step, or
zero in case of negative step). Absence of step implies step is equal to 1. The ::
object can be shortened simply as : for an easier syntax. The A[:,::-2] command
then offers, yet again, the same output as the previous two.

The first nonbasic method of accessing data from an array is based on the idea of
collecting several indices and requesting the elements in the array with those indices.
For example, from our previous array A, we would like to construct a new array
with the elements on locations (0, 0), (0, 3), (1, 2), and (1, 5). We do so by gathering
the x and y values of the indices in respective lists, [0,0,1,1] and [0,3,2,5], and
feeding these lists to A as an indexing object, as follows:

>>> print (A[[0,0,1,1], [0,3,2,5]])

The output is shown as follows:

[1 4 6 12]

Chapter 2

[29]

Note how the result loses the dimension of the primitive array, and offers a
one-dimensional array. If we desire to capture a subarray of A with indices in the
Cartesian product of two sets of indices, respecting the row and column choice and
creating a new array with the dimensions of the Cartesian product, we use the ix_
command. For instance, if in our previous array we would like to obtain the subarray
of dimension 2 x 2 with indices in the Cartesian product of indices (0, 1) by (0,3)
(these are the locations (0, 0), (0, 3), (1, 0), and (1, 3), we do so as follows:

>>> print (A[numpy.ix_([0,1], [0,3])])

The output is shown as follows:

[[1 4]

 [2 8]]

The array object
At this point, we are ready for a thorough study of all interesting attributes of
ndarray for scientific computing purposes. We have already covered a few, such as
dtype, shape, and size. Other useful attributes are ndim (to compute the number
of dimensions in the array), real, and imag (to obtain the real and imaginary parts
of the data, should this be formed by complex numbers) or flat (which creates a
one-dimensional indexable iterator from the data).

For instance, if we desired to add all the values of an array together, we could use
the flat attribute to run over all the elements sequentially, and accumulate all
the values in a variable. A possible code to perform this task should look like the
following code snippet (compare this code with the ndarray.sum() method, which
will be explained in object calculation ahead):

>>> value=0; import scipy.misc; img=scipy.misc.lena()

>>> for item in img.flat: value+=item

>>> value

The output is shown as follows:

32518120

We will also explore some of the methods applied to arrays. These are tools used
to modify objects; let it be their datatypes, their shape, or their structure through
conversion. These methods can be classified in three big categories—array
conversion, shape selection/manipulation, and object calculation.

Working with the NumPy Array As a First Step to SciPy

[30]

Array conversions
The astype() method returns a copy of the array converted to a specific type;
the copy method returns a copy of the array. Finally, the tofile(), tolist(),
or tostring() method writes the binary data of the array into a file, returns a
hierarchical python list version of the same array, or returns a string representation
of the array data.

For instance, to write the contents of the img array to a text file making sure that each
entry of the array is printed as an integer and that every two integers are separated
by a white space, we can issue the following command:

>>> img.tofile("lena.txt",sep=" ",format="%i")

Note how the formatting string follows the C language conventions.

Shape selection/manipulations
These are used not only when we need to rearrange (swapaxes and transpose) or
sort (argsort and sort) an array, but also when we need to reshape (reshape),
resize (flatten, ravel, resize, and squeeze), or select (choose, compress,
diagonal, nonzero, searchsorted, and take) arrays. Note that these methods are
very powerful when combined with slicing operations; as a matter of fact, many of
them can replace slicing to offer more readability.

We need to say a word about the attributes flat, ravel, and flatten, which offer
very similar outputs, but very different memory management. The first attribute,
flat, creates an iterator over an array. Once used, it disappears from memory. The
attribute ravel returns a one-dimensional flattened array of the input; a copy is
made only if needed. Finally, flatten creates a one-dimensional array of the input,
and always allocates memory for it. We use it only when we need to change the
values of flattened arrays. We will highlight the power of the sorting methods in
the following code snippets. When sorting an array of integers, what would be the
order of their indices? We may obtain this information with the argsort() method.
We may even impose which sorting algorithm is to be used (rather than coding it
ourselves)—quicksort, mergesort, or heapsort. We can even sort the array in
place, using the sort() method. Let's take a look at the following set of commands:

>>> import numpy

>>> A = numpy.array([11,13,15,17,19,18,16,14,12,10])

>>> A.argsort(kind='mergesort')

The output is shown as follows:

array([9, 0, 8, 1, 7, 2, 6, 3, 5, 4])

Chapter 2

[31]

Now, we apply the sort() method:

>>> A.sort()

>>> print(A)

The output is shown as follows:

[10 11 12 13 14 15 16 17 18 19]

Object calculations
Array calculation methods are used to perform computations or extract information
from our data. Python supplies a range of statistical methods to compute, for
instance, maximum and minimum values of the data (max and min) with their
corresponding indices (argmax and argmin) methods to compute the sum,
cumulative sums, product, or cumulative products (sum, cumsum, prod, and
cumprod), and to calculate the average (mean), point spread (ptp), variance (var), and
standard deviation (std) of our data. Other methods allow us to compute complex
conjugate of complex-valued arrays (conj), the trace of the array (trace, which is the
sum of the elements in the diagonal), and even clipping the matrix (clip) by forcing
a minimum and maximum value below and above certain thresholds.

Note, that most of these methods can act on the entire array and each of
their dimension:

>>> A=numpy.array([[1,1,1],[2,2,2],[3,3,3]])

>>> A.mean()

The output is shown as follows:

2

Now, let's apply the mean() method with axis=0:

>>> A.mean(axis=0)

The output is shown as follows:

array([2., 2., 2.])

Similarly, we perform the same command with axis=1:

>>> A.mean(axis=1)

The output is shown as:

array([1., 2., 3.])

Working with the NumPy Array As a First Step to SciPy

[32]

Let's also illustrate the clip command with an easy exercise based on the Lena
image. Compute the maximum and minimum values of Lena (img), and contrast
them with the point spread (it should be equal to the difference between those
two values). Now, create a new array A by clipping Lena so that the minimum is
maintained, but the point spread is reduced to only 100 values. Let's illustrate the
effect of min(), max(), and ptp() commands on Lena (img):

>>> img.min(), img.max(), img.ptp()

The output is shown as follows:

(25, 245, 220)

Further, we illustrate the effect of clip() command on img in the following lines
of code:

>>> A=img.clip(img.min(),img.min()+100)

>>> A.min(), A.max(), A.ptp()

The output is shown as follows:

(25, 125, 100)

Array routines
In this section, we will deal with most operations on arrays. We will classify them
into four main categories:

•	 Routines to create new arrays
•	 Routines to manipulate a single array
•	 Routines to combine two or more arrays
•	 Routines to extract information from arrays

The reader will surely realize that some operations of this kind can be carried out by
methods, which once again shows the flexibility of Python and NumPy.

Routines to create arrays
We have previously seen the command to create an array and store it to a variable A.
Let's take a look at it again:

>>> A=numpy.array([[1,2],[2,1]])

Chapter 2

[33]

The complete syntax, however, writes as follows:

array(object,dtype=None,copy=True,order=None, subok=False,ndim=0)

Let's go over the options: object is simply the data we use to initialize the array. In
the previous example, the object is a 2 x 2 square matrix; we may impose a datatype
with the dtype option. The result is stored in the variable A. If copy is True, the
returned object will be a copy of the array, if False, the returned object will only
be a copy, if dtype is different from the datatype of object. The arrays are stored
following a C-style ordering of rows and columns. If the user prefers to store the
array following the memory style of FORTRAN, the order='Fortran' option
should be used. The subok option is very subtle; if True, the array may be passed as
a subclass of the object, if False, then only ndarray arrays are passed. And finally,
the ndmin option indicates the smallest dimension returned by the array. If not
offered, this is computed from object.

A set of special arrays can be obtained with commands such as zeros, ones, empty,
identity, and eye. The names of these commands are quite informative:

•	 zeros creates an array filled with zeros.
•	 ones creates an array filled with ones.
•	 empty returns an array of required shape without initializing its entries.
•	 identity creates a square matrix with dimensions indicated by a single

positive integer n. The entries are filled with zeros, except the diagonal,
which is filled with ones.

The eye command is very similar to identity. It also constructs diagonal arrays,
but unlike identity, eye allows specifying diagonals offset the traditional centered,
as it can operate on rectangular arrays as well. In the following lines of code, we use
zeros, ones, and identity commands:

>>> Z=numpy.zeros((5,5), dtype=int)

>>> U=numpy.ones((2,2), dtype=int)

>>> I=numpy.identity(3, dtype=int)

In the first two cases, we indicated the shape of the array (as a Python tuple of
positive integers) and the optional datatype imposition.

The syntax for eye is as follows:

numpy.eye(N,M=None,k=0,dtype=float)

The integers, N and M indicate the shape of the array, and the integer k indicates the
index of the diagonal to populate.

Working with the NumPy Array As a First Step to SciPy

[34]

An index k=0 (the default) points to the traditional diagonal; a positive index refers
to upper diagonals and negative to lower diagonals. To illustrate this point, the
following example shows how to create a 4 x 4 sparse matrix with nonzero elements
on the first upper and subdiagonals:

>>> D=numpy.eye(4,k=1) + numpy.eye(4,k=-1)

>>> print (D)

The output is shown as follows:

[[0. 1. 0. 0.]

 [1. 0. 1. 0.]

 [0. 1. 0. 1.]

 [0. 0. 1. 0.]]

Using the previous four commands together with basic slicing, it is possible to create
even more complex arrays very simply. We propose the following challenge.

Use exclusively, the previous definitions of U and I together with an eye array. How
would the reader create a 5 x 5 array A of values, type float with fives at the four
entries (0, 0), (0, 1), (1, 0), and (1, 1); sixes along the remaining entries of the diagonal;
and threes in the two other corners ? The solution to this question can be addressed
by issuing the following set of commands:

>>> A=3.0*(numpy.eye(5,k=4) + numpy.eye(5,k=-4))

>>> A[0:2,0:2]=5*U; A[2:5,2:5]=6*I

>>> print (A)

The output is shown as follows:

[[5. 5. 0. 0. 3.]

 [5. 5. 0. 0. 0.]

 [0. 0. 6. 0. 0.]

 [0. 0. 0. 6. 0.]

 [3. 0. 0. 0. 6.]]

The flexibility of creating an array in NumPy is even more clear using the
fromfunction command. For instance, if we require a 4 x 4 array where each entry
reflects the product of its indices, we may use the lambda function (lambda i,j:
i*j) in the fromfunction command, as follows:

>>> B=numpy.fromfunction((lambda i,j: i*j), (4,4), dtype=int)

>>> print (B)

Chapter 2

[35]

The output is shown as follows:

[[0 0 0 0]

 [0 1 2 3]

 [0 2 4 6]

 [0 3 6 9]]

A very important tool dealing with arrays is the concept of masking. Masking is
based on the idea of selecting or masking those indices for which their corresponding
entries satisfy a given condition. For example, in the array B shown in the previous
example, we can mask all zero-valued entries with the B==0 command, as follows:

>>> print (B==0)

The output is shown as follows:

[[True True True True]

 [True False False False]

 [True False False False]

 [True False False False]]

Now, how would the reader update B so that all zero's would be replaced by the sum
of the squares of their corresponding indices?

Multiplying a mask by a second array of the same shape offers a new array in which
each entry is either zero (if the corresponding entry in the mask is False), or the
entry of the second array (if the corresponding entry in the mask is True):

>>> B += numpy.fromfunction((lambda i,j:i*i+j*j), (4,4))*(B==0)

>>> print (B)

The output is shown as follows:

[[0 1 4 9]

 [1 1 2 3]

 [4 2 4 6]

 [9 3 6 9]]

Note that we have created a new array filled with Boolean values as the size of the
original array and in each step. This isn't a big deal in these toy examples, but when
handling large datasets, allocating too much memory could seriously slow down
our computations and exhaust the memory of our system. Among the commands
to create arrays, there are two in particular putmask and where, which facilitate the
management of resources internally, thus speeding up the process.

Working with the NumPy Array As a First Step to SciPy

[36]

Note, for example, when we look for all odd-valued entries in B, the resulting mask
has size of 16, although the interesting entries are only eight:

>>> print (B%2!=0)

The output is shown as follows:

[[False True False True]

 [True True False True]

 [False False False False]

 [True True False True]]

The numpy.where() command helps us gather those entries more efficiently.
Let's take a look at the following command:

>>> numpy.where(B%2!=0)

The output is shown as follows:

(array([0, 0, 1, 1, 1, 3, 3, 3], dtype=int32),
 array([1, 3, 0, 1, 3, 0, 1, 3], dtype=int32))

If we desire to change those entries (all odd), to, say they are squares plus one, we can
use the numpy.putmask() command instead, and better manage the memory at the
same time. The following is a sample code for the numpy.putmask() command:

>>> numpy.putmask(B, B%2!=0, B**2+1)

>>> print (B)

The output is shown as follows:

[[0 2 4 82]

 [2 2 2 10]

 [4 2 4 6]

 [82 10 6 82]]

Note how the putmask procedure updates the values of B, without the explicit need
to make a new assignment.

There are three additional commands that create arrays in the form of meshes.
The arange and linspace commands create uniformly spaced values between
two numbers. In arange, we specify the spacing between elements; in linspace,
we specify the desired number of elements in the mesh. The logspace command
creates uniformly spaced values in a logarithmic scale between the logarithms of
two numbers to the base 10. The user could think of these outputs as the support of
univariate functions.

Chapter 2

[37]

The following is a sample code for the numpy.arrange() command:

>>> L1=numpy.arange(-1,1,0.3)

>>> print (L1)

The output for the preceding lines of code is shown as follows:

[-1. -0.7 -0.4 -0.1 0.2 0.5 0.8]

The following is a sample code for the numpy.linspace() command:

>>> L2=numpy.linspace(-1,1,4)

>>> print (L2)

The output is shown as follows:

[-1. -0.33333333 0.33333333 1.]

The following is an example for the numpy.logspace() command:

>>> L3= numpy.logspace(-1,1,4)

>>> print (L3)

The output for the preceding lines of code is shown as follows:

[0.1 0.46415888 2.15443469 10.]

Finally, meshgrid, mgrid, and ogrid create two two-dimensional arrays of dimensions
n x m, containing the elements of two given one-dimensional arrays of dimensions n
and m. It accomplished this by repeating the values of each array as necessary. The
user could think of these outputs as the support of functions of two variables.

The first of these routines, meshgrid, accepts only arrays as input. The other two
routines, mgrid and ogrid, accept only indexing objects (for example, slices). The
difference between these last two is a matter of memory allocation; while mgrid
allocates full arrays with all the data, ogrid only creates enough sets so that the
corresponding mgrid command could be obtained by a proper Cartesian product.

Let's take a look at the following meshgrid command:

>>> print (numpy.meshgrid(L2,L3))

The output is shown as follows:

(array([[-1. , -0.33333333, 0.33333333, 1.],

 [-1. , -0.33333333, 0.33333333, 1.],

 [-1. , -0.33333333, 0.33333333, 1.],

 [-1. , -0.33333333, 0.33333333, 1.]]), array([[

Working with the NumPy Array As a First Step to SciPy

[38]

0.1 , 0.1 , 0.1 , 0.1],

 [0.46415888, 0.46415888, 0.46415888, 0.46415888],

 [2.15443469, 2.15443469, 2.15443469, 2.15443469],

 [10. , 10. , 10. , 10.]]))

Let's take a look at the following mgrid command:

>>> print (numpy.mgrid[0:5,0:5])

The output is shown as follows:

[[[0 0 0 0 0]

 [1 1 1 1 1]

 [2 2 2 2 2]

 [3 3 3 3 3]

 [4 4 4 4 4]]

 [[0 1 2 3 4]

 [0 1 2 3 4]

 [0 1 2 3 4]

 [0 1 2 3 4]

 [0 1 2 3 4]]]

Let's take a look at the following ogrid command:

>>> print (numpy.ogrid[0:5,0:5])

The output is shown as follows:

[array([[0],

 [1],

 [2],

 [3],

 [4]]), array([[0, 1, 2, 3, 4]])]

We would like to finish the subsection on creations of arrays by showing one of
the most useful routines for image processing and differential equations—the tile
command. Its syntax is very simple, and is shown as follows:

tile(A, reps)

This routine presents a very effective method of tiling an array A following some
repetition pattern reps (a tuple, a list, or another array) to create larger arrays.
The following checkerboards exercise shows its potential.

Chapter 2

[39]

Start with two small binary arrays—B=numpy.ones((3,3)) and
checker2by2=numpy.zeros((6,6)) and create a checkerboard using tile and as
few operations as possible.

Let's perform some operations using these commands:

>>> checker2by2[0:3,0:3]=checker2by2[3:6,3:6]=B

>>> numpy.tile(checker2by2,(4,4))

The output is too long to be shown here. Please refer to the How to open IPython
Notebooks section in Chapter 1, Introduction to SciPy, to run the IPython Notebook
corresponding to this chapter.

Routines for the combination of two or more
arrays
On occasion, we need to combine the data of two or more arrays together to solve a
specific problem. The core NumPy libraries contain extremely efficient routines to
carry out these computations, and we urge the reader to get familiar with them. They
are constructed with state-of-the-art algorithms, and they make sure that usage of
memory is minimum and the complexity optimal. Most relevant are the routines that
operate on arrays as if they were matrices. These include matrix products (outer,
inner, dot, vdot, tensordot, cross, and kron), array correlations (correlate and
convolve), array stacking (concatenate, vstack, hstack, column_stack, row_
stack, and dstack), and array comparison (allclose).

If you are well-versed in linear algebra, you will surely enjoy the matrix products
included in NumPy. We will postpone their usage and analysis until we cover the
SciPy module on linear algebra in Chapter 3, SciPy for Linear Algebra.

An excellent use for correlation of arrays is basic pattern-matching. For instance, the
image in the following example (the text array) contains an image of a paragraph
extracted from the Wikipedia page about Don Quixote, while the second array,
letterE, contains an image of the letter e, which is actually a subarray obtained from
the text array and represents the pattern to be matched.

First, we load the text image and performs some preprocessing on it in order to bring
the image to the right format (as close as possible to the grayscale approximation) to
have better performance on this naive approach of pattern matching. We do this by
executing the following lines of code in a Python console:

>>> import scipy.ndimage

>>> import numpy as np

>>> import matplotlib.pyplot as plt

Working with the NumPy Array As a First Step to SciPy

[40]

>>> text = scipy.ndimage.imread('Chap_02_text_image.png')

>>> text = np.mean(text.astype(float)/255,-1)*2-1

Second, the pattern for the letter e is identified:

>>> letterE = text[37:53,275:291]

Next, a fraction of the maximum value of the correlation of both arrays offers the
location of all the e letters contained in the array text:

>>> corr = scipy.ndimage.correlate(text,letterE)

>>> eLocations = (corr >= 0.95 * corr.max())

The positions in the image of the pattern found for x are as follows:

>>> CorrLocIndex = np.where(eLocations==True)

>>> x=CorrLocIndex[1]

>>> x

The output is shown as follows:

array([283, 514, 583, 681, 722, 881, 929, 1023, 64, 188, 452,

 504, 892, 921, 1059, 1087, 1102, 1133, 118, 547, 690, 1066,

 1110, 330, 363, 519, 671, 913, 951, 1119, 120, 292, 441,

 516, 557, 602, 649, 688, 717, 747, 783, 813, 988, 1016,

 250, 309, 505, 691, 769, 876, 904, 1057, 224, 289, 470,

 596, 626, 780, 1027, 112, 151, 203, 468, 596, 751, 817,

 867, 203, 273, 369, 560, 599, 888, 1111, 159, 221, 260,

 352, 427, 861, 901, 1034, 1146, 325, 506, 558])

The positions in the image of the found pattern for y are as follows:

>>> y=CorrLocIndex[0]

>>> y

The output is shown as follows:

array([45, 45, 45, 45, 45, 45, 45, 45, 74, 74, 74, 74, 74,

 74, 74, 74, 74, 74, 103, 103, 103, 103, 103, 132, 132, 132,

 132, 132, 132, 132, 161, 161, 161, 161, 161, 161, 161, 161, 161,

 161, 161, 161, 161, 161, 190, 190, 190, 190, 190, 190, 190, 190,

 219, 219, 219, 219, 219, 219, 219, 248, 248, 248, 248, 248, 248,

 248, 248, 277, 277, 277, 277, 277, 277, 277, 306, 306, 306, 306,

 306, 306, 306, 306, 306, 335, 335, 335])

Chapter 2

[41]

There are 86 elements, which are in fact the total number of the occurrence of the
letter e in the text image, as can be verified by counting them. Whether the matching
has been done correctly can be verified graphically, superposing each pair (x,y) of
the pattern on the text image, as follows:

>>> thefig=plt.figure()

>>> plt.subplot(211)

<matplotlib.axes._subplots.AxesSubplot object at 0x7fb9b2390110>

>>> plt.imshow(text, cmap=plt.cm.gray, interpolation='nearest')

<matplotlib.image.AxesImage object at 0x7fb9b1f29410>

>>> plt.axis('off')

The output for plt.axis() is shown as follows:

(-0.5, 1199.5, 359.5, -0.5)

Now, let's move further in the code:

>>> plt.subplot(212)

<matplotlib.axes._subplots.AxesSubplot object at 0x7fb9b1f29890>

>>> plt.imshow(text, cmap=plt.cm.gray, interpolation='nearest')

<matplotlib.image.AxesImage object at 0x7fb9b1637e10>

>>> plt.autoscale(False)

>>> plt.plot(x,y,'wo',markersize=10)

[<matplotlib.lines.Line2D object at 0x7fb9b1647290>]

>>> plt.axis('off')

The output for plt.axis() is shown as follows:

(-0.5, 1199.5, 359.5, -0.5)

Finally, in the following show() command, we display a figure that superposes each
pair (x,y) of the pattern on the text image:

>>> plt.show()

Working with the NumPy Array As a First Step to SciPy

[42]

This results in the following screenshot (the first image is the text and the next is the
text where all occurrences of letter e have been crossed out):

A few words about stacking operations; we have a basic concatenation routine,
concatenate, which joins a sequence of arrays together along a pre-determined
axis. Of course, all arrays in the sequence must have the same dimensions, otherwise
it obviously doesn't work. The rest of the stack operations are syntactic sugar for
special cases of concatenate—vstack to glue arrays vertically, hstack to glue
arrays horizontally, dstack to glue arrays in the third dimension, and so on.

Another impressive set of routines are set operations. They allow the user to handle
one-dimensional arrays as if they were sets and perform the Boolean operations of
intersection (intersect1d), union (union1d), set difference (setdiff1d), and set
exclusive or (setxor1d). The results of these set operations return sorted arrays.
Note that it is also possible to test whether all the elements in one array belong to a
second array (in1d).

Chapter 2

[43]

Routines for array manipulation
There is a sequence of splitting routines, designed to break up arrays into smaller
arrays, in any given dimension—array_split, split (both are basic splitting along
the indicated axis), hsplit (horizontal split), vsplit (vertical split), and dsplit
(in the third axis). Let's illustrate these with a simple example:

>>> import numpy

>>> B = numpy.ones((3,3))

>>> checker2by2 = numpy.zeros((6,6))

>>> checker2by2[0:3,0:3] = checker2by2[3:6,3:6] = B

>>> print(checker2by2)

The output is shown as follows:

[[1. 1. 1. 0. 0. 0.]

 [1. 1. 1. 0. 0. 0.]

 [1. 1. 1. 0. 0. 0.]

 [0. 0. 0. 1. 1. 1.]

 [0. 0. 0. 1. 1. 1.]

 [0. 0. 0. 1. 1. 1.]]

Now, let's perform the vertical split:

>>> numpy.vsplit(checker2by2,3)

The output is shown as follows:

[array([[1., 1., 1., 0., 0., 0.],

 [1., 1., 1., 0., 0., 0.]]),

 array([[1., 1., 1., 0., 0., 0.],

 [0., 0., 0., 1., 1., 1.]]),

 array([[0., 0., 0., 1., 1., 1.],

 [0., 0., 0., 1., 1., 1.]])]

Applying a Python function on an array usually means applying the function to
each element of the array. Note how the NumPy function sin works on an array,
for example:

>>> a=numpy.array([-numpy.pi, numpy.pi])

>>> print (numpy.vstack((a, numpy.sin(a))))

Working with the NumPy Array As a First Step to SciPy

[44]

The output is shown as follows:

[[-3.14159265e+00 3.14159265e+00]

 [-1.22464680e-16 1.22464680e-16]]

Note that the sin function was computed on each element of the array.

This works provided the function has been properly vectorized (which is the
case with numpy.sin). Notice the behavior with non-vectorized Python functions.
Let's define such a function for computing, for each value of x, the maximum
between x and 100 without using any routine from the NumPy libraries:

function max100

>>> def max100(x):

 return(x)

If we try to apply this function to the preceding array, the system raises an error,
as follows:

>>> max100(a)

The output is an error which is shown as:

ValueError: The truth value of an array with more than one element is
ambiguous. Use a.any() or a.all()

We need to explicitly indicate to the system when we desire to apply one of our
functions to arrays, as well as scalars. We do that with the vectorize routine,
as follows:

>>> numpy.vectorize(max100)(a)

The output is shown as follows:

array([100, 100])

For our benefit, the NumPy libraries provide a great deal of already-vectorized
mathematical functions. Some examples are round_, fix (to round the elements
of an array to a desired number of decimal places), and angle (to provide the
angle of the elements of an array, provided they are complex numbers) and any
basic trigonometric (sin, cos, tan, sic), exponential (exp, exp2, sinh, cosh), and
logarithmic functions (log, log10, log2).

We also have mathematical functions that treat the array as an output of
multidimensional functions, and offer relevant computations. Some useful examples
are diff (to emulate differentiation along any specified dimension, by performing
discrete differences), gradient (to compute the gradient of the corresponding
function), or cov (for the covariance of the array).

Chapter 2

[45]

Sorting the whole array according to the values of the first axis is also possible with
the msort and sort_complex routines.

Routines to extract information from arrays
Most of the routines to extract information are statistical in nature, which include
average (which acts exactly as the mean method), median (to compute the
statistical median of the array on any of its dimensions, or the array as a whole),
and computation of histograms (histogram, histogram2d, and histogramdd,
depending on the dimensions of the array). The other important set of routines
in this category deal with the concept of bins for arrays of dimension one.
This is more easily explained by means of examples. Take the array A=numpy.
array([5,1,1,2,1,1,2,2,10,3,3,4,5]), the unique command finds the unique
values in the array and presents them as sorted:

>>> numpy.unique(A)

The output is shown as follows:

array([1, 2, 3, 4, 5, 10])

For arrays such as A, in which all the entries are nonnegative integers, we can
visualize the array A as a sequence of eleven bins labeled with numbers from 0 to 10
(the maximum value in the array). Each bin with label n contains the number of n's in
the array:

>>> numpy.bincount(A)

The output is shown as follows:

array([0, 4, 3, 2, 1, 2, 0, 0, 0, 0, 1])

For arrays where some of the elements are not numbers (nan), NumPy has a set of
routines that mimic methods to extract information, but disregard the conflicting
elements—nanmax, nanmin, nanargmax, nanargmin, nansum, and so on:

>>> A=numpy.fromfunction((lambda i,j: (i+1)*(-1)**(i*j)), (4,4))

>>> print (A)

The output is shown as follows:

[[1. 1. 1. 1.]

 [2. -2. 2. -2.]

 [3. 3. 3. 3.]

 [4. -4. 4. -4.]]

Working with the NumPy Array As a First Step to SciPy

[46]

Let's see the effect of log2 on array A:

>>> B=numpy.log2(A)

__main__:1: RuntimeWarning: invalid value encountered in log2

>>> print (B)

The output is shown as follows:

[[0. 0. 0. 0.]

 [1. nan 1. nan]

 [1.5849625 1.5849625 1.5849625 1.5849625]

 [2. nan 2. nan]]

Let's take a look at the sum and nansum commands in the following line of code:

>>> numpy.sum(B), numpy.nansum(B)

The output is shown as follows:

(nan, 12.339850002884624)

Summary
In this chapter, we have explored in depth the creation and basic manipulation
of the object array used by SciPy, as an overview of the NumPy libraries. In
particular, we have seen the principles of slicing and masking, which simplify the
coding of algorithms to the point of transforming an otherwise unreadable sequence
of loops and primitive commands into an intuitive and self-explanatory set of
object calls and methods. You also learned that the nonbasic modules in NumPy
are replicated as modules in SciPy itself. The chapter roughly followed the same
structure as the official NumPy reference (which the reader can access at the SciPy
pages http://docs.scipy.org/doc/numpy/reference/). There are other good
sources that cover NumPy with rigor, and we refer you to any of that material for a
more detailed coverage of this topic.

In the next five chapters, we will be accessing the commands that make SciPy a
powerful tool in numerical computing. The structure of those chapters is basically a
reflection of the different SciPy modules structured in an order that allows building
applications on top of each other.

http://docs.scipy.org/doc/numpy/reference/

SciPy for Linear Algebra
In this chapter, we will continue exploring the different SciPy modules through
meaningful examples. We will start with the treatment of matrices (whether normal
or sparse) with the modules on Linear Algebra—linalg and sparse. Note that
linalg expands on the NumPy module with the same name.

This discipline of mathematics studies vector spaces and linear mappings between
them. Matrices represent objects in this field in such a way that any property of
the underlying objects may be obtained by performing adequate operations on the
representing matrices. In this chapter, we assume that you are familiar with at least
the basics of linear algebra, in particular with the notion of matrix multiplication,
finding the determinant and inverse of a matrix, as well as their immediate
applications in vector calculus.

Accordingly, in this chapter, we will explore how vectors and matrices are handled
in Numpy/SciPy, how to create them, how to program standard mathematical
operations between them, and how to represent this on a functional form. Next,
we will solve linear system of equations expressed in the matrix form involving
dense or sparse matrices. The corresponding IPython Notebook will help you test
the functionality of the modules involved and modify each illustrative example
according to your specific needs.

Vector creation
As mentioned in Chapter 2, Working with the NumPy Array As a First Step to SciPy,
SciPy depends on NumPy's main object's ndarray data structure. You can
look at one-dimensional arrays as vectors and vice versa (oriented points in an
n-dimensional space). Consequently, a vector can be created via Numpy as follows:

>>> import numpy

>>> vectorA = numpy.array([1,2,3,4,5,6,7])

SciPy for Linear Algebra

[48]

>>> vectorA

The output is shown as follows:

array([1, 2, 3, 4, 5, 6, 7])

We can also use already defined arrays to create a new candidate. Some examples
were presented in the previous chapter. Here we can reverse the already created
vector and assign it to a new one:

>>> vectorB = vectorA[::-1].copy()

>>> vectorB

The output is shown as follows:

array([7, 6, 5, 4, 3, 2, 1])

Notice that in this example, we have to make a copy of the reverse of the elements of
vectorA and assign it to vectorB. This way, by changing elements of vectorB, the
elements of vectorA remain unchanged, as shown here:

>>> vectorB[0]=123

>>> vectorB

The output is shown as follows:

array([123, 6, 5, 4, 3, 2, 1])

Let's look at vectorA:

>>> vectorA

The output is shown as follows:

array([1, 2, 3, 4, 5, 6, 7])

Let's make a copy of vectorA by reversing its elements and assigning it to vectorB:

>>> vectorB = vectorA[::-1].copy()

>>> vectorB

The output is shown as follows:

array([7, 6, 5, 4, 3, 2, 1])

In the last code statement, we repeated the previous assignment to vectorB, bringing
it back to its initial values taking the reverse of vectorA, once again.

Chapter 3

[49]

Vector operations
In addition to being mathematical entities studied in linear algebra, Vectors are
widely used in physics and engineering as a convenient way to represent physical
quantities as displacement, velocity, acceleration, force, and so on. Accordingly,
basic operations between vectors can be performed via Numpy/SciPy operations
as follows:

Addition/subtraction
Addition/subtraction of vectors does not require any explicit loop to perform them.
Let's take a look at addition of two vectors:

>>> vectorC = vectorA + vectorB

>>> vectorC

The output is shown as follows:

array([8, 8, 8, 8, 8, 8, 8])

Further, we perform subtraction on two vectors:

>>> vectorD = vectorB - vectorA

>>> vectorD

The output is shown as follows:

array([6, 4, 2, 0, -2, -4, -6])

Scalar/Dot product
Numpy has the built-in function dot to compute the scalar (dot) product between
two vectors. We show you its use computing the dot product of vectorA and
vectorB from the previous code snippet:

>>> dotProduct1 = numpy.dot(vectorA,vectorB)

>>> dotProduct1

The output is shown as follows:

84

Alternatively, to compute this product we could perform the element-wise product
between the components of the vectors and then add the respective results. This is
implemented in the following lines of code:

SciPy for Linear Algebra

[50]

>>> dotProduct2 = (vectorA*vectorB).sum()

>>> dotProduct2

The output is shown as follows:

84

Cross/Vector product – on three-dimensional
space vectors
First, two vectors in 3 dimensions are created before applying the built-in function
from NumPy to compute the cross product between the vectors:

>>> vectorA = numpy.array([5, 6, 7])

>>> vectorB = numpy.array([7, 6, 5])

>>> crossProduct = numpy.cross(vectorA,vectorB)

>>> crossProduct

The output is shown as follows:

array([-12, 24, -12])

Further, we perform a cross operation of vectorB over vectorA:

>>> crossProduct = numpy.cross(vectorB,vectorA)

>>> crossProduct

The output is shown as follows:

array([12, -24, 12])

Notice that the last expression shows the expected result that vectorA cross vectorB
is the negative of vectorB cross vectorA.

Creating a matrix
In SciPy, a matrix structure is given to any one- or two-dimensional ndarray, with
either the matrix or mat command. The complete syntax is as follows:

numpy.matrix(data=object, dtype=None, copy=True)

Creating matrices, the data may be given as ndarray, a string or a Python list (as the
second example below), which is very convenient. When using strings, the semicolon
denotes change of row and the comma, change of column:

Chapter 3

[51]

>>> A=numpy.matrix("1,2,3;4,5,6")

>>> A

The output is shown a follows s:

matrix([[1, 2, 3],

 [4, 5, 6]])

Let's look at another example:

>>> A=numpy.matrix([[1,2,3],[4,5,6]])

>>> A

The output is shown as follows:

matrix([[1, 2, 3],

 [4, 5, 6]])

Another technique to create a matrix from a two-dimensional array is to enforce
the matrix structure on a new object, copying the data of the former with the
asmatrix routine.

A matrix is said to be sparse (http://en.wikipedia.org/wiki/Sparse_matrix)
if most of its entries are zeros. It is a waste of memory to input such matrices in
the usual way, especially if the dimensions are large. SciPy provides different
procedures to store such matrices effectively in memory. Most of the usual methods
to input sparse matrices are contemplated in SciPy as routines in the scipy.sparse
module. Some of those methods are block sparse row (bsr_matrix), coordinate
format (coo_matrix), compressed sparse column or row (csc_matrix, csr_matrix),
sparse matrix with diagonal storage (dia_matrix), dictionary with Keys-based
sorting (dok_matrix), and Row-based linked list (lil_matrix).

At this point, we would like to present one of these: the coordinate format. In this
format, and given a sparse matrix A, we identify the coordinates of the nonzero
elements, say n of them, and we create two n-dimensional ndarray arrays containing
the columns and the rows of those entries, and a third ndarray containing the values
of the corresponding entries. For instance, notice the following sparse matrix:

0 10 0 0 0
0 0 20 0 0
0 0 0 30 0
0 0 0 0 40
0 0 0 0 0

 
 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/Sparse_matrix

SciPy for Linear Algebra

[52]

The standard form of creating such matrices is as follows:

>>> A=numpy.matrix([[0,10,0,0,0], [0,0,20,0,0], [0,0,0,30,0],
 [0,0,0,0,40], [0,0,0,0,0]])

>>> A

The output is shown as follows:

matrix([[0, 10, 0, 0, 0],

 [0, 0, 20, 0, 0],

 [0, 0, 0, 30, 0],

 [0, 0, 0, 0, 40],

 [0, 0, 0, 0, 0]])

A more memory-efficient way to create these matrices would be to properly store
the nonzero elements. In this case, one of the nonzero entries is at the 1st row and 2nd
column (or location (0, 1) in Python) with value, 10. Another nonzero entry is at
(1, 2) with value, 20. A 3rd nonzero entry, with the value 30, is located at (2, 3).
The last nonzero entry of A is located at (3, 4), and has the value, 40.

We then have ndarray of rows, ndarray of columns, and another ndarray of values:

>>> import numpy

>>> rows=numpy.array([0,1,2,3])

>>> cols=numpy.array([1,2,3,4])

>>> vals=numpy.array([10,20,30,40])

We create the matrix A as follows:

>>> import scipy.sparse

>>> A=scipy.sparse.coo_matrix((vals,(rows,cols)))

>>> print (A); print (A.todense())

The output is shown as follows:

 (0, 1) 10

 (1, 2) 20

 (2, 3) 30

 (3, 4) 40

[[0. 10 0. 0. 0.]

 [0. 0. 20 0. 0.]

 [0. 0. 0. 30 0.]

 [0. 0. 0. 0. 40]]

Chapter 3

[53]

Notice how the todense method turns sparse matrices into full matrices. Also note
that it obviates any row or column of full zeros following the last nonzero element.

Associated to each input method, we have functions that identify sparse matrices
of each kind. For instance, if we suspect that A is a sparse matrix in the coo_matrix
format, we may use the following command:

>>> scipy.sparse.isspmatrix_coo(A)

The output is shown as follows:

True

All the array routines are cast to matrices, provided the input is a matrix. This is very
convenient for matrix creation, especially thanks to stacking commands (hstack,
vstack, tile). Besides these, matrices enjoy one more amazing stacking command,
bmat. This routine allows the stacking of matrices by means of strings, making use of
the convention: semicolon for change of row and comma for change of column. Also,
it allows matrix names inside of the string to be evaluated. The following example
is enlightening:

>>> B=numpy.mat(numpy.ones((3,3)))

>>> W=numpy.mat(numpy.zeros((3,3)))

>>> print (numpy.bmat('B,W;W,B'))

The output is shown as follows:
[[1. 1. 1. 0. 0. 0.]

 [1. 1. 1. 0. 0. 0.]

 [1. 1. 1. 0. 0. 0.]

 [0. 0. 0. 1. 1. 1.]

 [0. 0. 0. 1. 1. 1.]

 [0. 0. 0. 1. 1. 1.]]

The main difference between arrays and matrices is in regards to the behavior of the
product of two objects of the same type. For example, multiplication between two
arrays means element-wise multiplication of the entries of the two arrays and requires two
objects of the same shape. The following code snippet is an example of multiplication
between two arrays:

>>> a=numpy.array([[1,2],[3,4]])

>>> a*a

The output is shown as follows:

array([[1, 4],

 [9, 16]])

SciPy for Linear Algebra

[54]

On the other hand, matrix multiplication requires a first matrix with shape (m, n),
and a second matrix with shape (n, p)—the number of columns in the first matrix
must be the same as the number of rows in the second matrix. This operation offers
a new matrix of shape (m, p), as shown in the following diagram:

1 2 1 2 7 10
3 4 3 4 15 22
     

⋅ =     
     

The following is the code snippet:

>>> A=numpy.mat(a)

>>> A*A

The output is shown as follows:

matrix([[7, 10],

 [15, 22]])

Alternatively, to obtain the matrix product between two conforming matrices as
ndarray objects, we don't really need to transform the ndarray object to a matrix
object if not needed. The matrix product could be obtained directly via the numpy.
dot function introduced earlier in the Scalar/Dot product section of this chapter.
Let's take a look at the following numpy.dot command example:

>>> b=numpy.array([[1,2,3],[3,4,5]])

>>> numpy.dot(a,b)

The output is shown as follows:

array([[7, 10, 13],

 [15, 22, 29]])

If we desire to perform an element-wise multiplication of the elements of two
matrices, we can do so with the versatile numpy.multiply command, as follows:

>>> numpy.multiply(A,A)

The output is shown as follows:

matrix([[1, 4],

 [9, 16]])

Chapter 3

[55]

The other difference between arrays and matrices worth noticing is in regard to their
shapes. While we allow arrays to have one dimension; their corresponding matrices
must have at least two. This is very important to have in mind when we transpose
either object. Let's take a look at the following code snippet implementing shape()
and transpose() commands:

>>> a=numpy.arange(5); A=numpy.mat(a)

>>> a.shape, A.shape, a.transpose().shape, A.transpose().shape

The output is shown as follows:

((5,), (1, 5), (5,), (5, 1))

As it has been shown, SciPy offers quite a number of basic tools to instantiate and
manipulate matrices, with many related methods to follow. This also allows us to
speed up computations in the cases where special matrices are used.

The scipy.linalg module provides commands to create special matrices such as
block diagonal matrices from provided arrays (block_diag), circulant matrices
(circulant), companion matrices (companion), Hadamard matrices (hadamard),
Hankel matrices (hankel), Hilbert and inverse Hilbert matrices (hilbert,
invhilbert), Leslie matrices (leslie), square Pascal matrices (pascal), Toeplitz
matrices (toeplitz), lower-triangular matrices (tril), and upper-triangular
matrices (triu).

Let's see an example on optimal weighings.

Suppose we are given p objects to be weighed in n weighings with a two-pan balance.
We create an n x p matrix of plus and minus one, where a positive value in the (i, j)
position indicates that the jth object is placed in the left pan of the balance in the ith
weighing and a negative value that the jth object corresponding is in the right pan.

It is known that optimal weighings are designed by submatrices of Hadamard
matrices. For the problem of designing an optimal weighing for eight objects
with three weighings, we could then explore different choices of three rows of
a Hadamard matrix of order eight. The only requirement is that the sum of the
elements on the row of the matrix is zero (so that the same number of objects are
placed on each pan). Through slicing, we can accomplish just that:

>>> import scipy.linalg

>>> A=scipy.linalg.hadamard(8)

>>> zero_sum_rows = (numpy.sum(A,0)==0)

>>> B=A[zero_sum_rows,:]

>>> print (B[0:3,:])

SciPy for Linear Algebra

[56]

The output is shown as follows:

[[1 -1 1 -1 1 -1 1 -1]

 [1 1 -1 -1 1 1 -1 -1]

 [1 -1 -1 1 1 -1 -1 1]]

The scipy.sparse module has its own set of special matrices. The most common
are matrices of those along diagonals (eye), identity matrices (identity), matrices
from diagonals (diags, spdiags), block diagonal matrices from sparse matrices
(block_diag), matrices from sparse sub-blocks (bmat), column-wise and row-wise
stacks (hstack, vstack), and random matrices of a given shape and density with
uniformly distributed values (rand).

Matrix methods
Besides inheriting all the array methods, matrices enjoy four extra attributes: T for
transpose, H for conjugate transpose, I for inverse, and A to cast as ndarray:

>>> A = numpy.matrix("1+1j, 2-1j; 3-1j, 4+1j")

>>> print (A.T); print (A.H)

The output is shown as follows:

[[1.+1.j 3.-1.j]

 [2.-1.j 4.+1.j]]

[[1.-1.j 3.+1.j]

 [2.+1.j 4.-1.j]]

Operations between matrices
We have briefly covered the most basic operation between two matrices; the matrix
product. For any other kind of product, we resort to the basic utilities in the NumPy
libraries, as: dot product for arrays or vectors (dot, vdot), inner and outer products
of two arrays (inner, outer), tensor dot product along specified axes (tensordot),
or the Kronecker product of two arrays (kron).

Let's see an example of creating an orthonormal basis.

Create an orthonormal basis in the nine-dimensional real space from an orthonormal
basis of the three-dimensional real space.

Chapter 3

[57]

Let's choose, for example, the orthonormal basis formed by the vectors as shown in
following diagram:

()

()

()

1

2

3

1 1,0,1 ,
2
0,1,0 ,
1 1,0, 1
2

v

v

v

=

=

= −

We compute the desired basis by collecting these vectors in a matrix and using a
Kronecker product, as follows:

>>> import numpy

>>> import scipy.linalg

>>> mu = 1/numpy.sqrt(2)

>>> A = numpy.matrix([[mu,0,mu],[0,1,0],[mu,0,-mu]])

>>> B = scipy.linalg.kron(A,A)

The columns of matrix B shown previously, give us an orthonormal basis directly.
For instance, the vectors with odd indices would be the columns of the
following submatrix:

>>> print (B[:,0:-1:2])

The output is shown as follows:

[[0.5 0.5 0. 0.5]

 [0. 0. 0. 0.]

 [0.5 -0.5 0. 0.5]

 [0. 0. 0. 0.]

 [0. 0. 1. 0.]

 [0. -0. 0. 0.]

 [0.5 0.5 0. -0.5]

 [0. 0. 0. -0.]

 [0.5 -0.5 0. -0.5]]

SciPy for Linear Algebra

[58]

Functions on matrices
The scipy.linalg module offers a useful set of functions on matrices. The basic two
commands on square matrices are inv (for the inverse of a matrix) and det (for the
determinant). The power of a square matrix is given by the standard exponentiation;
that is, if A is a square matrix, then A**2 indicates the matrix product A*A, which is
shown in the following code snippet:

>>> A=numpy.matrix("1,1j;21,3")

>>> A; A*A; A**2

The output is shown as follows:

matrix([[1.+0.j, 0.+1.j],

 [21.+0.j, 3.+0.j]])

matrix([[1.+21.j, 0. +4.j],

 [84. +0.j, 9.+21.j]])

matrix([[1.+21.j, 0. +4.j],

 [84. +0.j, 9.+21.j]])

It should be pointed out that as a type array, the product of A*A (or A**2) is
calculated by squaring each element of the array:

>>> numpy.asarray(A); numpy.asarray(A)*numpy.asarray(A);
 numpy.asarray(A)**2

The output is shown as follows:

array([[1.+0.j, 0.+1.j],

 [21.+0.j, 3.+0.j]])

array([[1.+0.j, -1.+0.j],

 [441.+0.j, 9.+0.j]])

array([[1.+0.j, -1.+0.j],

 [441.+0.j, 9.+0.j]])

More advanced commands compute matrix functions that rely on the power
series representation of expressions involving matrix powers, such as the matrix
exponential (for which there are three possibilities—expm, expm2, and expm3), the
matrix logarithm (logm), matrix trigonometric functions (cosm, sinm, tanm), matrix
hyperbolic trigonometric functions (coshm, sinhm, tanhm), the matrix sign function
(signm), or the matrix square root (sqrtm).

Notice the difference between the application of the normal exponential function on
a matrix, and the result of a matrix exponential function.

Chapter 3

[59]

In the former case, we obtain the application of numpy.exp to each entry of the
matrix; in the latter, we actually compute the exponential of the matrix following
the power series representation:

0

1
!

A n

n
e A

n

∞

=

=∑

The preceding formula is illustrated in this code snippet:

>>> import numpy

>>> import scipy.linalg

>>> a=numpy.arange(0,2*numpy.pi,1.6)

>>> A = scipy.linalg.toeplitz(a)

>>> print (A)

The output is shown as follows:

[[0. 1.6 3.2 4.8]

 [1.6 0. 1.6 3.2]

 [3.2 1.6 0. 1.6]

 [4.8 3.2 1.6 0.]]

Let's perform the exp() operation on A:

>>> print (numpy.exp(A))

The output is shown as follows:

[[1. 4.95303242 24.5325302 121.51041752]

 [4.95303242 1. 4.95303242 24.5325302]

 [24.5325302 4.95303242 1. 4.95303242]

 [121.51041752 24.5325302 4.95303242 1.]]

Let's perform the expm() operation on A:

>>> print (scipy.linalg.expm(A))

The output is shown as follows:

[[1271.76972856 916.49316549 916.63015271 1271.70874469]

 [916.49316549 660.86560972 660.5306514 916.63015271]

 [916.63015271 660.5306514 660.86560972 916.49316549]

 [1271.70874469 916.63015271 916.49316549 1271.76972856]]

SciPy for Linear Algebra

[60]

For sparse square matrices, we have an optimized inverse function, as well as a
matrix exponential—scipy.sparse.linalg.inv, scipy.sparse.linalg.expm.

For general matrices, we have the basic norm function (norm), as well as two
versions of the Moore-Penrose pseudoinverse (pinv and pinv2).

Once again, we need to emphasize how important it is to rely on these functions,
rather than coding their equivalent expressions manually. For instance, note the norm
computation of vectors or matrices, scipy.linalg.norm. Let's show you, by example,
the 2-norm of a two-dimensional vector v=numpy.matrix([x,y]), where at least one
of the x and y values is extremely large—large enough so that x*x overflows:

>>> import numpy

>>> import scipy.linalg

>>> x=10**100; y=9; v=numpy.matrix([x,y])

>>> scipy.linalg.norm(v,2)

The output is shown as follows:

1e+100

Now, let's perform the sqrt() operation:

>>> numpy.sqrt(x*x+y*y)

The output is an error which is shown as follows:

Traceback (most recent call last)

 File "<stdin>", line 1, in <module>

AttributeError: 'long' object has no attribute 'sqrt'

Eigenvalue problems and matrix
decompositions
Another set of operations heavily used on matrices is to compute and handle
eigenvalues and eigenvectors of square matrices. These two problems rank among
the most complex operations that we can perform on square matrices, and extensive
research has been put in place to obtain good algorithms with low complexity and
optimal usage of memory resources. SciPy has state-of-the-art code to implement
these ideas.

Chapter 3

[61]

For the computation of eigenvalues, the scipy.linalg module provides
three routines: eigvals (for any ordinary or general eigenvalue problem),
eigvalsh (if the matrix is symmetric of complex Hermitian), and eigvals_banded
(if the matrix is banded). To compute the eigenvectors, we similarly have three
corresponding choices: eig, eigh, and eigh_banded.

The syntax used in all cases is very similar. For example, for the general case of
eigenvalues, we use the following line of code where matrix A must be square:

eigvals(A, B=None, overwrite_a=False)

This should be the only parameter passed to the routine if we wish to solve an
ordinary eigenvalue problem. If we wish to generalize this, we may provide an extra
square matrix (of the same dimensions as matrix A). This is passed in the B parameter.

The module also offers an extensive collection of functions that compute different
decompositions of matrices, as follows:

•	 Pivoted LU decomposition: This function allows us to use the lu and
lufactor commands.

•	 Singular value decomposition: This function allows us to use the svd
command. To compute the singular values, we issue svdvals. If we wish
to compose the sigma matrix in the singular value decomposition from its
singular values, we do so with the diagsvd routine. If we wish to compute
an orthogonal basis for the range of a matrix using SVD, we can accomplish
this with the orth command.

•	 Cholesky decomposition: This function allows us to use the cholesky,
cholesky_banded, and cho_factor commands.

•	 QR and QZ decompositions: This function allows us to use the qr and
qz commands. If we wish to multiply a matrix with the matrix Q of a
decomposition, we use the syntactic sugar qr_multiply, rather than
performing this procedure in two steps.

•	 Schur and Hessenberg decompositions: This function allows us to use the
schur and Hessenberg commands. If we wish to convert a real Schur form to
complex, we have the rsf2csf routine.

At this point, we have an interesting application—image compression, which makes
use of some of the routines explained so far.

SciPy for Linear Algebra

[62]

Image compression via the singular value
decomposition
This is a very simple application where a square image A of size n x n, and stored as
ndarray is regarded as a matrix, and where a singular value decomposition (SVD) is
performed on it. This operation is visible in the following diagram:

()
1 1

1, , , n

n n

u s
A U S V U S V v v

u s

∗ ∗

   
   = ⋅ ⋅ = = =   
   
   

� � �

From all the singular values of s we choose a fraction, together with their
corresponding left and right singular vectors u, v. We compute a new matrix by
collecting them according to the formula given in the following diagram:

()
1

k

j j j
j
s u v

=

⋅∑

Note, for example, the similarity between the original (512 singular values) and an
approximation using only 32 singular values:

>>> import numpy

>>> import scipy.misc

>>> from scipy.linalg import svd

>>> import matplotlib.pyplot as plt

>>> img=scipy.misc.lena()

>>> U,s,Vh=svd(img) # Singular Value Decomposition

>>> A = numpy.dot(U[:,0:32], # use only 32 singular values

 numpy.dot(numpy.diag(s[0:32]),

 Vh[0:32,:]))

>>> plt.subplot(121,aspect='equal'); plt.imshow(img); plt.gray()

>>> plt.subplot(122,aspect='equal'); plt.imshow(A)

>>> plt.show()

This produces the following images, of which the picture to the left is the original
image and the picture to the right, the approximation using 32 singular values:

Chapter 3

[63]

Using the svd approximation we managed to compress the original image of 262,144
coefficients (512 * 512)to only 32,800 coefficients ((2 * 32 * 512) + 32), or to one-eighth
of the original information.

Solvers
One of the fundamental applications of linear algebra is to solve large systems of
linear equations. For the basic systems of the form Ax=b, for any square matrix A and
general matrix b (with as many rows as columns in A), we have two generic methods
to find x (solve for dense matrices and spsolve for sparse matrices), using the
following syntax:

solve(A, b, sym_pos=False, lower=False, overwrite_a=False,
overwrite_b=False, debug=False)
spsolve(A, b[, permc_spec, use_umfpack])

There are solvers that are even more sophisticated in SciPy, with enhanced
performance for situations in which the structure of the matrix A is known.
For dense matrices we have three commands in the scipy.linalg module:
solve_banded (for banded matrices), solveh_banded (if besides banded,
A is Hermitian), and solve_triangular (for triangular matrices).

When a solution is not possible (for example, if A is a singular matrix), it is still possible
to obtain a matrix x that minimizes the norm of b-Ax in a least-squares sense. We can
compute such a matrix with the lstsq command, which has the following syntax:

lstsq(A, b, cond=None, overwrite_a=False, overwrite_b=False)

SciPy for Linear Algebra

[64]

The output of this function is a tuple that contains the following:

•	 The solution found (as ndarray)
•	 The sum of residues (as another ndarray)
•	 The effective rank of the matrix A
•	 The singular values of the matrix A (as another ndarray)

Let's illustrate this routine with a simple example, to solve the following system:

0 1 0 1
0 0 1 2
0 0 0 3

x
y
z

     
     ⋅ =     
     
     

The following is the code snippet:

>>> import numpy

>>> import scipy.linalg

>>> A=numpy.mat(numpy.eye(3,k=1))

>>> print(A)

The output is shown as follows:

[[0. 1. 0.]

 [0. 0. 1.]

 [0. 0. 0.]]

Let's move further into the code and perform the following operations on b:

>>> b=numpy.mat(numpy.arange(3) + 1).T

>>> print(b)

The output is shown as follows:

[[1]

 [2]

 [3]]

Further, let's perform the lstsq operation:

>>> xinfo=scipy.linalg.lstsq(A,b)

>>> print (xinfo[0].T) # output the solution

Chapter 3

[65]

The output is shown as follows:

[[0. 1. 2.]]

The overwrite_ options are designed to enhance performance of the algorithms,
and should be used carefully, since they destroy the original data.

The truly fastest solvers in SciPy are based upon decomposition of matrices. Reducing
the system into something simpler easily solves huge and really complicated systems
of linear equations. We may accomplish this using decomposition techniques
presented in the Eigenvalue problems and matrix decompositions and Image compression
via the singular value decomposition subsections under the Matrix methods section of this
chapter, but of course, the SciPy philosophy is to help us deal with all nuisances of
memory and resources internally. To this end, the module also has the lu_solve
(for solutions based on LU decompositions), and cho_solve, cho_solve_banded
(for solutions based on Cholesky decompositions).

Finally, you will also find solvers for very complex matrix equations—the Sylvester
equation (solve_sylvester), both the continuous and discrete algebraic Riccati
equations (solve_continuous_are, solve_discrete_are) and both the continuous
and discrete Lyapunov equations (solve_discrete_lyapunov, solve_lyapunov).

Most of the matrix decompositions and solutions to eigenvalue problems are
contemplated for sparse matrices in the scipy.sparse.linalg module with a
similar naming convention, but with much more robust use of computer resources
and error control.

Summary
This chapter explored the treatment of vectors, matrices (whether normal or sparse)
with the modules on linear algebra—linalg and sparse.linalg, which expand and
improve the NumPy module with the same name.

In Chapter 4, SciPy for Numerical Analysis, we will continue discussing details of the
options available in SciPy to perform numerical computations efficiently, will cover
how to evaluate special functions found in applied mathematics and mathematical
physics problems. This will be discussed in details of doing regression, interpolation
and optimization via SciPy.

SciPy for Numerical Analysis
Practically all the different areas of numerical analysis are contemplated in some
SciPy module. For example, in order to compute values of special functions, we
use the scipy.special module. The scipy.interpolate module takes care of
interpolation, extrapolation, and regression. For optimization, we have the scipy.
optimize module, and finally, we have the scipy.integrate module for numerical
evaluation of integrals. This last module serves as the interface to perform numerical
solutions of ordinary differential equations as well.

Thus, in this chapter, we will first extensively explore how to use SciPy to
numerically evaluate the special functions that are commonly found in the field of
mathematical physics. Then, we will discuss the modules available in SciPy to tackle
regression, interpolation, and optimization problems.

The chapter ends with a solution of the chaotic Lorenz system as an illustration
of the capabilities included in SciPy to find numerical solutions of ordinary
differential equations. The corresponding IPython Notebook will help you to try
the functionalities of the modules involved in the computations and to modify each
illustrative example according to your specific needs.

The evaluation of special functions
The scipy.special module contains numerically stable definitions of useful
functions. Most often, the straightforward evaluation of a function at a single
value is not very efficient. For instance, we would rather use a Horner scheme
(http://en.wikipedia.org/wiki/Horner%27s_method) to find the value of a
polynomial at a point than use the raw formula. The NumPy and SciPy modules
ensure that this optimization is always guaranteed with the definition of all its
functions, whether by means of Horner schemes or with more advanced techniques.

http://en.wikipedia.org/wiki/Horner%27s_method

SciPy for Numerical Analysis

[68]

Convenience and test functions
All the convenience functions are designed to facilitate a computational environment
where the user does not need to worry about relative errors. The functions seem to
be pointless at first sight, but behind their codes, there are state-of-the-art ideas that
offer faster and more reliable results.

We have convenience functions beyond the ones defined in the NumPy libraries to
find the solutions of trigonometric functions in degrees (cosdg, sindg, tandg, and
cotdg); to compute angles in radians from their expressions in degrees, minutes,
and seconds (radian); common powers (exp2 for 2**x, and exp10 for 10**x); and
common functions for small values of the variable (log1p for log(1 + x), expm1 for
exp(x) - 1, and cosm1 for cos(x) - 1).

For instance, in the following code snippet, the log1p function computes the
natural logarithm of 1 + x. Why not simply add 1 to the value of x and then take
the logarithm instead? Let's compare:

>>> import numpy

>>> import scipy.special

>>> a=scipy.special.exp10(-16)

>>> numpy.log(1+a)

The output is as follows:

0.0

Now let's use log1p() on a:

>>> scipy.special.log1p(a)

The output is as follows:

9.9999999999999998e-17

While the absolute error of the first computation is small, the relative error is
100 percent.

In the same way as Lena image is regarded as the performance test in image
processing, we have a few functions that are used to test different algorithms
in different scenarios.

Chapter 4

[69]

For instance, it is customary to test minimization codes against the Rosenbrock's
banana function (http://en.wikipedia.org/wiki/Rosenbrock_function):

() () ()22 2, 1 100f x y x y x= − + −

The corresponding optimization module, scipy.optimize, has a routine to
accurately evaluate this function (rosen), its derivative (rosen_der), its Hessian
matrix (rosen_hess), or the product of the latter with a vector (rosen_hess_prod).

Univariate polynomials
Polynomials are defined in SciPy as a NumPy class, poly1d. This class has a
handful of methods associated to compute the coefficients of the polynomial
(coeffs or simply c), to compute the roots of the polynomial (r), to compute its
derivative (deriv), to compute the symbolic integral (integ), and to obtain the
degree (order or simply o), as well as a method (variable) that provides a string
holding the name of the variable we would like to use in the proper definition of
the polynomial (see the example involving P2).

In order to define a polynomial, we must indicate either its coefficients or its roots:

>>> import numpy

>>> P1=numpy.poly1d([1,0,1]) # using coefficients

>>> print (P1)

The output is as follows:

 2

1 x + 1

Now let's find roots, order, and derivative of P1:

>>> print (P1.r); print (P1.o); print (P1.deriv())

The output is as follows:

[0.+1.j 0.-1.j]

2

2 x

http://en.wikipedia.org/wiki/Rosenbrock_function

SciPy for Numerical Analysis

[70]

Let's use the poly1d class:

>>> P2=numpy.poly1d([1,1,1], True) # using roots

>>> print (P2)

The output is as follows:

 3 2

1 x - 3 x + 3 x – 1

Let's use the poly1d class with the variable method:

>>> P2=numpy.poly1d([1,1,1], True, variable='z')

>>> print (P2)

The output is as follows:

 3 2

1 z - 3 z + 3 z - 1

We may evaluate polynomials by treating them either as (vectorized) functions, or
with the __call__ method:

>>> P1(numpy.arange(10)) # evaluate at 0,1,...,9

The output is as follows:

array([1, 2, 5, 10, 17, 26, 37, 50, 65, 82])

Let's issue the __call__ command:

>>> P1.__call__(numpy.arange(10)) # same evaluation

The output is as follows:

array([1, 2, 5, 10, 17, 26, 37, 50, 65, 82])

An immediate application of these ideas is to verify the computation of the natural
logarithm of 1 + x used in the preceding example . When x is close to zero, the
natural logarithm can be approximated by the following formula:

()
2

1 0
2
xln x x if x+ ≈ − →

Chapter 4

[71]

This expression can be entered and evaluated in Python using the ideas just
presented, as follows:

>>> import numpy

>>> Px=numpy.poly1d([-(1./2.),1,0])

>>> print(Px)

The output is as follows:

 2

-0.5 x + 1 x

Let's have a look on the value stored in variable a:

>>> a=1./10000000000000000.

>>> print(a)

The output for value stored in a is as follows:

1e-16

We now use Px (which contains one-dimensional polynomial form) on a in the
following line of code:

>>> Px(a)

The output is as follows:

9.9999999999999998e-17

The result is the same as that obtained before using the SciPy function scipy.
special.log1p, which verifies the computation.

There are also a few routines associated with polynomials: roots (to compute zeros),
polyder (to compute derivatives), polyint (to compute integrals), polyadd (to add
polynomials), polysub (to subtract polynomials), polymul (to multiply polynomials),
polydiv (to perform polynomial division), polyval (to evaluate polynomials), and
polyfit (to compute the best fit polynomial of certain order for two given arrays
of data).

SciPy for Numerical Analysis

[72]

The usual binary operators +, -, *, and / perform the corresponding operations
with polynomials. In addition, once a polynomial is created, any list of values that
interacts with them is immediately casted to a polynomial. Therefore, the following
four commands are equivalent:

>>> P1=numpy.poly1d([1,0,1])

>>> print(P1)

The output for the preceding lines of code is as follows:

 2

1 x + 1

Let's take a look at the following print() command:

>>> print(numpy.polyadd(P1, numpy.poly1d([2,1])))

The output is as follows:

 2

1 x + 2 x + 2

Let's take a look at the following print() command:

>>> print(numpy.polyadd(P1, [2,1]))

The output is as follows:

 2

1 x + 2 x + 2

Let's take a look at the following print() command:

>>> print(P1 + numpy.poly1d([2,1]))

The output is as follows:

 2

1 x + 2 x + 2

Let's take a look at the following print() command:

>>> print(P1 + [2,1])

The output is as follows:

 2

1 x + 2 x + 2

Chapter 4

[73]

Note how the polynomial division offers both the quotient and reminder values,
for example:

>>> P1/[2,1]

The output is as follows:

(poly1d([0.5 , -0.25]), poly1d([1.25]))

This can also be written as follows:

�reminder
2

quotient

1 1 1 5 / 4
2 1 2 4 2 1
x x
x x
+  = − + + + �����

A family of polynomials is said to be orthogonal with respect to an inner product
if for any two polynomials in the family, their inner product is zero. Sequences
of these functions are used as the backbone of extremely fast algorithms of
quadrature (for numerical integration of general functions). The scipy.special
module contains the poly1d definitions and allows fast evaluation of the families
of orthogonal polynomials, such as Legendre (legendre), Chebyshev (chebyt,
chebyu, chebyc, and chebys), Jacobi (jacobi), Laguerre and its generalized version
(laguerre and genlaguerre), Hermite and its normalized version (hermite and
hermitenorm), and Gegenbauer (gegenbauer). There are also shifted versions of
some of them, such as sh_legendre, sh_chebyt, and so on.

The usual evaluation of polynomials can be improved for orthogonal polynomials,
thanks to their rich mathematical structure. In such cases, we never evaluate
them with the generic call methods presented previously. Instead, we employ the
eval_ syntax. For example, we use the following command for Jacobi polynomials:

>>> eval_jacobi(n, alpha, beta, x)

In order to obtain the graph of the Jacobi polynomial of order n = 3 for alpha = 0
and beta = 1, for a thousand values of x uniformly spaced from -1 to 1, we could
issue the following commands:

>>> import numpy

>>> import scipy.special

>>> import matplotlib.pyplot as plt

>>> x=numpy.linspace(-1,1,1000)

>>> plt.plot(x,scipy.special.eval_jacobi(3,0,1,x))

>>> plt.show()

SciPy for Numerical Analysis

[74]

The output is as follows:

The gamma function
The gamma function is a logarithmic, convex, smooth function operating on complex
numbers, which interpolates the factorial function for all nonnegative integers. It is
not defined at zero or any negative integer. This is the most common special function
and is widely used in many different applications, either by itself or as the main
ingredient in the definition of many other functions. The gamma function is used in
diverse fields such as quantum physics, astrophysics, statistics, and fluid dynamics.

The gamma function is defined by the improper integral, as follows:

() 1

0

t zz e t dt
∞ − −Γ = ∫

Evaluation of gamma at integer values gives shifted factorials, and that is precisely
how the factorials are coded in SciPy.

Chapter 4

[75]

The scipy.special module has algorithms to obtain a fast evaluation of the gamma
function at any permissible value. It also contains routines to perform evaluation of
the most common compositions of the gamma functions appearing in the literature:
gammaln for the natural logarithm of the absolute value of gamma, rgamma for the
value one over gamma, beta for quotients, and betaln for the natural logarithm of
the latter. We also have implementations of the logarithm of its derivative (psi).

An obvious application of gamma functions is the ability to perform computations
that are virtually impossible for a computer if approached in a direct way. For
instance, in statistical applications we often work with ratios of factorials. If these
factorials are too large for the precision of a computer, we resort to expressions
involving their logarithms instead. Even then, computing ln(a! / b!) can prove to be
an impossible task (try, for example, with a = 10**15 and b = a - 10**10). An elegant
solution uses the digamma function psi by an application of the mean value theorem
on the ln(gamma(x)) function. With proper estimation, we obtain the excellent
approximation (for this case of choice of a and b):

() ()10!/ ! 10ln a b aψ�

Let's take a look at the following code snippet:

>>> import scipy.special

>>> 10**10*scipy.special.psi(10**15)

The output is as follows:

345387763949.10681

The Riemann zeta function
The Riemann zeta function is very important in analytic number theory and has
applications in physics and the probability theory as well. It computes the p-series
for any complex value p:

()
1

1
p

n
p

n
ζ

∞

=

=∑

SciPy for Numerical Analysis

[76]

The definition coded in SciPy allows a more flexible generalization of this function,
as follows:

()
()0

1, p
n

zeta a p
n a

∞

=

=
+

∑

Among others, this function has applications in the field of particle physics and in
dynamical systems (http://en.wikipedia.org/wiki/Hurwitz_zeta_function)

Airy and Bairy functions
These are solutions of the Stokes equation and are obtained by solving the following
differential equation:

y xy′′ =

This equation has two linearly independent solutions, both of them defined as an
improper integral for real values of the independent variable. The airy command
computes both functions (Ai and Bi) as well as their corresponding derivatives
(Aip and Bip, respectively). In the following code, we take advantage of the
contourf command in matplotlib.pyplot to present an image of the real part
of the output of the Bairy function Bi for an array of 801 x 801 complex values
uniformly spaced in the square from -4 - 4j to 4 + 4j. We also offer this graph as a
surface plot using the mplot3d module of mpl_toolkits:

>>> import numpy

>>> import scipy.special

>>> import matplotlib.pyplot as plt

>>> import mpl_toolkits.mplot3d

>>> x=numpy.mgrid[-4:4:100j,-4:4:100j]

>>> z=x[0]+1j*x[1]

>>> (Ai, Aip, Bi, Bip) = scipy.special.airy(z)

>>> steps = range(int(Bi.real.min()), int(Bi.real.max()),6)

>>> fig=plt.figure()

>>> subplot1=fig.add_subplot(121,aspect='equal')

>>> subplot1.contourf(x[0], x[1], Bi.real, steps)

>>> subplot2=fig.add_subplot(122,projection='3d')

>>> subplot2.plot_surface(x[0],x[1],Bi.real)

>>> plt.show()

http://en.wikipedia.org/wiki/Hurwitz_zeta_function

Chapter 4

[77]

The output is as follows:

The Bessel and Struve functions
Bessel functions are both of the canonical solutions to Bessel's homogeneous
differential equation:

()2 2 2 0x y xy x a y′′ ′+ + = =

These equations arise naturally in the solution of Laplace's equation in cylindrical
coordinates. The solutions of the non-homogeneous Bessel differential equation
shown in the following diagram are called Struve functions:

() () 1
2 2 2 4 / 2

1
2

ax
x y xy x a y

aπ

+

′′ ′+ + = =
 + 
 

In either case, the order of the equation is the complex number alpha which acts as a
parameter. Depending on the canonical solution and the order, the Bessel and Struve
functions are addressed (and computed) differently.

SciPy for Numerical Analysis

[78]

For Bessel functions, we have algorithms to produce Bessel functions of the first
kind (jv) and second kind (yn and yv), Hankel functions of the first and second kind
(hankel1 and hankel2), and the modified Bessel functions of the first and second
kind (iv, kn, and kv). Their syntax is similar in all cases: first parameter is the order
and second parameter the independent variable. The component n in the definition
indicates that an integer is to be used as the order (since they are optimally coded for
that situation):

>>> import numpy

>>> import scipy.special

>>> scipy.special.jn(5,numpy.pi)

The output is as follows:

0.052141184367118461

The scipy.special module also contains fast versions of the most common Bessel
functions (those of orders 0 and 1): j0(x), j1(x) (first kind y0(x)and second kind
y1(x)), and so on. There are definitions of the spherical Bessel functions, such as
sph_jn(n,z) and sph_yn(z); the Riccati-Bessel functions, such as riccati_jn(n,x)
and riccati_yn(n,x); and derivatives of all the basic ones, such as jvp, yvp, kvp,
ivp, h1vp, and h2vp.

For Struve functions, we have fast algorithms to compute solutions of the differential
equation of order v:(struve(v,x) and modstruve(v,x)).

Other special functions
There are more special functions included in the scipy.special module that are of
great use in many applications in both pure and applied mathematics. An exhaustive
list would be too large for the scope of this chapter, and I encourage you to use the
different utilities for each set of special functions. Among the most interesting ones,
we have elliptic functions, Gauss hypergeometric functions, parabolic cylinder
functions, Mathieu functions, spheroidal wave functions, and Kelvin functions.

Interpolation
Interpolation is a basic method in numerical computation that is obtained from a
discrete set of data points, intended to find an interpolation function which represents
some higher order structure that contains the data. The best known example is the
interpolation of a sequence of points (x_k and y_k) in a plane to obtain a curve that goes
through all the points in the order dictated by the sequence.

Chapter 4

[79]

If the points in the previous sequence are in the right position and order, it is possible
to find a univariate function y = f(x) for which y_k = f(x_k). It is often reasonable to
request this interpolating function to be a polynomial, or a rational function, or a
more complex functional object. Interpolation is also possible in higher dimensions,
of course. The objective of the scipy.interpolate module is to offer a complete set
of optimally coded applications to address this problem in different settings.

Let's address the easiest way of interpolating data to obtain a polynomial: lagrange
interpolation. Given a sequence of different x values of size n and a sequence of
arbitrary real values y of the same size n, we seek a polynomial p(x) of the degree of
n - 1 that satisfies the n constraints p(x[k]) = y[k] for all k from 0 to n - 1. The following
code illustrates how to obtain a polynomial of degree 9 that interpolates the 10
uniformly spaced values of sine in the interval (-1, 1):

>>> import numpy

>>> import matplotlib.pyplot as plt

>>> import scipy.interpolate

>>> x=numpy.linspace(-1,1,10); xn=numpy.linspace(-1,1,1000)

>>> y=numpy.sin(x)

>>> polynomial=scipy.interpolate.lagrange(x, numpy.sin(x))

>>> plt.plot(xn,polynomial(xn),x,y,'or')

>>> plt.show()

We will obtain the following plot showing the Lagrange interpolation:

SciPy for Numerical Analysis

[80]

There are numerous issues with Lagrange interpolation. The first obvious drawback
is that the user cannot specify the degree of the interpolation; this depends solely on
the data. The procedure is also highly unstable numerically, especially for datasets
with size over 20 points. This issue can be addressed by allowing the algorithm to
depend on different properties of the dataset, rather than just the size and location
of the points.

Also, it is inconvenient when we need to update the dataset by adding a few more
instances; the procedure needs to be repeated again from the beginning. This proves
impractical if the datasets are increasing in size and are updated frequently. To
address this issue, BarycentricInterpolator has the add_xi and set_yi methods.
For example, in the next session we start by interpolating 10 uniformly spaced
values of the sine function between 1 and 10. Once done, we update the interpolating
polynomial with 10 more uniformly spaced values between 1.5 and 10.5. As
expected, this operation reduces the (percent) relative error of an interpolation
computed at points within the interpolating ones. The following commands are used:

>>> import numpy

>>> import scipy.interpolate

>>> x1=numpy.linspace(1,10,10); y1=numpy.sin(x1)

>>> Polynomial=scipy.interpolate.BarycentricInterpolator(x1,y1)

>>> exactValues=numpy.sin(x1+0.3)

>>> exactValues

Here is the output for exactValues:

array([0.96355819, 0.74570521, -0.15774569, -0.91616594,

-0.83226744,

 0.0168139 , 0.85043662, 0.90217183, 0.12445442,

-0.76768581])

Let's find the value of interpolatedValues by issuing following commands:

>>> interpolatedValues=Polynomial(x1+0.3)

>>> interpolatedValues

The output is as follows:

array([0.97103132, 0.74460631, -0.15742869, -0.91631362,

-0.83216445,

 0.01670922, 0.85059283, 0.90181323, 0.12588718,

-0.7825744])

Chapter 4

[81]

Let's find the value of PercentRelativeError by issuing following commands:

>>> PercentRelativeError = numpy.abs((exactValues - interpolatedValues)/
interpolatedValues)*100

>>> PercentRelativeError

The output is as follows:

array([0.76960822, 0.14758101, 0.20136334, 0.01611703, 0.01237594,

 0.62647084, 0.01836479, 0.0397652 , 1.13812858, 1.90251374])

Then, we find what interpolatedValues2 holds:

>>> x2=numpy.linspace(1.5,10.5,10); y2=numpy.sin(x2)

>>> Polynomial.add_xi(x2,y2)

>>> interpolatedValues2=Polynomial(x1+0.3)

>>> interpolatedValues2

The output is as follows:

array([0.96355818, 0.74570521, -0.15774569, -0.91616594, -0.83226744,

 0.0168139 , 0.85043662, 0.90217183, 0.12445442, -0.76768581])

Let's find the value of PercentRelativeError, keeping in consideration
interpolatedValues2:

>>> PercentRelativeError = numpy.abs((exactValues - interpolatedValues2)/
interpolatedValues2)*100

>>> PercentRelativeError

The output is as follows:

array([1.26241742e-07, 2.02502252e-09, 5.95225989e-10,

 1.84438143e-11, 8.75086862e-12, 4.14359323e-10,

 1.75194631e-11, 8.52321518e-11, 9.45285176e-09,

 1.29570657e-07])

It is possible to interpolate data not only by point location, but also with the
derivatives at those locations. The KroghInterpolator command allows this by
including repeated x values and indicating the location and successive derivatives in
order on the corresponding y values.

SciPy for Numerical Analysis

[82]

For instance, if we desire to construct a polynomial that is zero at the origin, one at x
= 1, two at x = 2, and has horizontal tangent lines at each of these three locations, we
issue the following commands:

>>> import numpy

>>> import matplotlib.pyplot as plt

>>> import scipy.interpolate

>>> x=numpy.array([0,0,1,1,2,2]); y=numpy.array([0,0,1,0,2,0])

>>> interp=scipy.interpolate.KroghInterpolator(x,y)

>>> xn=numpy.linspace(0,2,20) # evaluate polynomial in larger set

>>> plt.plot(x,y,'o',xn,interp(xn),'r')

>>> plt.show()

This renders the following graph:

More advanced one-dimensional interpolation is possible with piecewise
polynomials (PiecewisePolynomial). This allows control over the degrees
of different pieces as well as the derivatives at their intersections. Other
interpolation options in the scipy.interpolate module are PCHIP
monotonic cubic interpolation (pchip) or even univariate splines
(InterpolatedUnivariateSpline).

Let's examine an example with univariate splines. Its syntax is as follows:

InterpolatedUnivariateSpline(x, y, w=None, bbox=[None, None], k=3)

Chapter 4

[83]

The x and y arrays contain dependent and independent data, respectively. The array
w contains positive weights for spline fitting. The two-sequence bbox parameter
specifies the boundary of the approximation interval. The last option indicates the
degree of the smoothing polynomials (k).

Suppose we want to interpolate five points as shown in the following example.
These points are ordered by strictly increasing x values. We need to perform this
interpolation with four cubic polynomials (one for every two consecutive points) in
such a way that at least the first derivative of each two consecutive pieces agree on
their intersection. We will proceed as follows:

>>> import numpy

>>> import matplotlib.pyplot as plt

>>>import scipy.interpolate

>>> x=numpy.arange(5); y=numpy.sin(x)

>>> xn=numpy.linspace(0,4,40)

>>> interp=scipy.interpolate.InterpolatedUnivariateSpline(x,y)

>>> plt.plot(x,y,'.',xn,interp(xn))

>>> plt.show()

This offers the following plot showing interpolation with univariate splines:

SciPy for Numerical Analysis

[84]

SciPy excels at interpolating in two-dimensional grids as well. It performs
well with simple piecewise polynomials (LinearNDInterpolator),
piecewise constants (NearestNDInterpolator), or more advanced splines
(BivariateSpline). It is capable of carrying out spline interpolation on rectangular
meshes in a plane (RectBivariateSpline) or on the surface of a sphere
(RectSphereBivariateSpline). For unstructured data, besides the basic scipy.
interpolate.BivariateSpline, it is capable of computing smooth approximations
(SmoothBivariateSpline) or more involved weighted least-squares splines
(LSQBivariateSpline).

The following code creates a 10 x 10 grid of uniformly spaced points in the square
from (0, 0) to (9, 9), and evaluates the function sin(x) * cos(y) on the points. We
use these points to create a scipy.interpolate.BivariateSpline and evaluate the
resulting function on the square for all values:

>>> import numpy

>>> import scipy.interpolate

>>> import matplotlib.pyplot as plt

>>> from mpl_toolkits.mplot3d import Axes3D

>>> x=y=numpy.arange(10)

>>> f=(lambda i,j: numpy.sin(i)*numpy.cos(j)) # function to interpolate

>>> A=numpy.fromfunction(f, (10,10)) # generate samples

>>> spline=scipy.interpolate.RectBivariateSpline(x,y,A)

>>> fig=plt.figure()

>>> subplot=fig.add_subplot(111,projection='3d')

>>> xx=numpy.mgrid[0:9:100j, 0:9:100j] # larger grid for plotting

>>> A=spline(numpy.linspace(0,9,100), numpy.linspace(0,9,100))

>>> subplot.plot_surface(xx[0],xx[1],A)

>>> plt.show()

Chapter 4

[85]

The output is as follows, and it shows the interpolation of 2D data with
bivariate splines:

Regression
Regression is similar to interpolation. In this case, we assume that the data is
imprecise, and we require an object of predetermined structure to fit the data as
closely as possible. The most basic example is univariate polynomial regression to a
sequence of points. We obtain that with the polyfit command, which we discussed
briefly in the Univariate polynomials section of this chapter. For instance, if we want to
compute the regression line in the least-squares sense for a sequence of 10 uniformly
spaced points in the interval (0, π/2) and their values under the sin function, we will
issue the following commands:

>>> import numpy

>>> import scipy

>>> import matplotlib.pyplot as plt

>>> x=numpy.linspace(0,1,10)

>>> y=numpy.sin(x*numpy.pi/2)

>>> line=numpy.polyfit(x,y,deg=1)

>>> plt.plot(x,y,'.',x,numpy.polyval(line,x),'r')

>>> plt.show()

SciPy for Numerical Analysis

[86]

This gives the following plot that shows linear regression with polyfit:

Curve fitting is also possible with splines if we use the parameters wisely. For
example, in the case of univariate spline fitting that we introduced before, we can
play around with the weights, smoothing factor, the degree of the smoothing spline,
and so on. If we want to fit a parabolic spline for the same data as the previous
example, we could issue the following commands:

>>> import numpy

>>> import scipy.interpolate

>>> import matplotlib.pyplot as plt

>>> x=numpy.linspace(0,1,10)

>>> y=numpy.sin(x*numpy.pi/2)

>>> spline=scipy.interpolate.UnivariateSpline(x,y,k=2)

>>> xn=numpy.linspace(0,1,100)

>>> plt.plot(x,y,'.', xn, spline(xn))

>>> plt.show()

Chapter 4

[87]

This gives the following graph that shows curve fitting with splines:

For regression from the point of view of curve fitting, there is a generic routine:
curve_fit in the scipy.optimize module. This routine minimizes the sum of squares
of a set of equations using the Levenberg-Marquardt algorithm and offers a best fit
from any kind of functions (not only polynomials or splines). The syntax is simple:

curve_fit(f, xdata, ydata, p0=None, sigma=None, **kw)

The f parameter is a callable function that represents the function we seek, and
xdata and ydata are arrays of the same length that contain the x and y coordinates
of the points to be fit. The tuple p0 holds an initial guess for the values to be found,
and sigma is a vector of weights that could be used instead of the standard deviation
of the data, if necessary.

SciPy for Numerical Analysis

[88]

We will show its usage with a good example. We will start by generating some
points on a section of a sine wave with amplitude A=18, angular frequency w=3π,
and phase h=0.5. We corrupt the data in the array y with some small random noise:

>>> import numpy

>>> import scipy

>>> A=18; w=3*numpy.pi; h=0.5

>>> x=numpy.linspace(0,1,100); y=A*numpy.sin(w*x+h)

>>> y += 4*((0.5-scipy.rand(100))*numpy.exp(2*scipy.rand(100)**2))

We want to estimate the values of A, w, and h from the corrupted data, hence
technically finding a curve fit from the set of sine waves. We start by gathering the
three parameters in a list and initializing them to some values, for example, A = 20,
w = 2π, and h = 1. We also construct a callable expression of the target function
(target_function):

>>> import scipy.optimize

>>> p0 = [20, 2*numpy.pi, 1]

>>> target_function = lambda x,AA,ww,hh: AA*numpy.sin(ww*x+hh)

We feed these, together with the fitting data, to curve_fit in order to find the
required values:

>>> pF,pVar = scipy.optimize.curve_fit(target_function, x, y, p0)

A sample of pF run on any of our experiments should give an accurate result for the
three requested values:

>>> print (pF)

The output for the preceding command is as follows:

[18.13799397 9.32232504 0.54808516]

This means that A was estimated to about 18.14, w was estimated very close to 3π,
and h was between 0.46 and 0.55. The output of the initial data together with a
computation of the sine wave is as follows, in which original data (in blue on the
left-hand side graph), corrupted (in red in both graphs), and computed sine wave
(in black in the right-hand side) are shown in following plots:

Chapter 4

[89]

The code is too long to be included here. Instead, the full code (intermediate plots
that are produced are not shown here) can be found in the corresponding electronic
resource IPython Notebook for this chapter.

Optimization
Optimization involves finding extreme values of functions or their roots. We have
already seen the power of optimization in the curve-fitting arena, but it does not stop
there. There are applications to virtually every single branch of engineering, and
robust algorithms to perform these tasks are a must in every scientist's toolbox.

The curve_fit routine is actually syntactic sugar for the general algorithm that
performs least-squares minimization, leastsq, with the imposing syntax:

leastsq(func, x0, args=(), Dfun=None, full_output=0,
 col_deriv=0, ftol=1.49012e-8, xtol=1.49012e-8,
 gtol=0.0, maxfev=0, epsfcn=0.0, factor=100, diag=None):

For instance, the curve_fit routine could have been called with a leastsq
call instead:

leastsq(error_function,p0,args=(x,y))

Here, error_function is equal to lambda p,x,y: target_
function(x,p[0],p[1],p[2])-y

SciPy for Numerical Analysis

[90]

The implementation is given in the corresponding section on the IPython
Notebook of this chapter. Most of the optimization routines in SciPy can be
accessed from either native Python code, or as wrappers for Fortran or C classical
implementations of their corresponding algorithms. Technically, we are still using
the same packages we did under Fortran or C, but from within Python. For instance,
the minimization routine that implements the truncated Newton method can be
called with fmin_ncg (and this is purely Python) or as fmin_tnc (and this one is a
wrap of a C implementation).

Minimization
For general minimization problems, SciPy has many different algorithms. So far,
we have covered the least-squares algorithm (leastsq), but we also have brute
force (brute), simulated annealing (anneal), Brent or Golden methods for scalar
functions (brent or golden), the downhill simplex algorithm (fmin), Powell's
method (fmin_powell), nonlinear conjugate gradient or Newton's version of it
(fmin_cg, fmin_ncg), and the BFGS algorithm (fmin_bfgs).

Constrained minimization is also possible computationally, and SciPy has routines
that implement the L-BFGS-S algorithm (fmin_l_bfgs_s), truncated Newton's
algorithm (fmin_tnc), COBYLA (fmin_cobyla), or sequential least-squares
programming (fmin_slsqp).

The following code, for example, compares the output of all different methods to
finding a local minimum of the Rosenbrock function, scipy.optimize.rosen, near
the origin using the downhill simplex algorithm:

>>> import scipy.optimize

>>> scipy.optimize.fmin(scipy.optimize.rosen,[0,0])

The output is as follows:

Optimization terminated successfully.

 Current function value: 0.000000

 Iterations: 79

 Function evaluations: 146

array([1.00000439, 1.00001064])

Chapter 4

[91]

Since the Version 0.11 of SciPy, all minimization routines can be called from the
generic scipy.optimize.minimize, with the method parameter pointing to one of
the strings, such as Nelder-Mead (for the downhill simplex), Powell, CG, Newton-CG,
BFGS, or anneal. For constrained minimization, the corresponding strings are one of
L-BFGS-S, TNC (for truncated Newton's), COBYLA, or SLSQP:

minimize(fun, x0, args=(), method='BFGS', jac=None, hess=None,
hessp=None, bounds=None, constraints=(),tol=None, callback=None,
options=None)

Roots
For most special functions included in the scipy.special module, we have accurate
algorithms that allow us to their zeros. For instance, for the Bessel function of first
kind with integer order, jn_zeros, offers as many roots as desired (in ascending
order). We may obtain the first three roots of the Bessel J-function of order four by
issuing the following command:

>>> import scipy.special

>>> print (scipy.special.jn_zeros(4,3))

The output is as follows:

[7.58834243 11.06470949 14.37253667]

For nonspecial scalar functions, the scipy.optimize module allows approximation
to the roots through a great deal of different algorithms. For scalar functions,
we have the crude bisection method (bisect), the classical secant method of
Newton-Raphson (newton), and more accurate and faster methods such as Ridders'
algorithm (ridder), and two versions of the Brent method (brentq and brenth).

Finding roots for functions of several variables is very challenging in many ways;
the larger the dimension, the more difficult it is. The effectiveness of any of these
algorithms depends on the problem, and it is a good idea to invest some time and
resources in knowing them all. Since Version 0.11 of SciPy, it is possible to call any of
the designed methods with the same routine scipy.optimize.root, which has the
following syntax:

root(fun, x0, args=(), method='hybr', jac=None, tol=None,
 callback=None, options=None)

SciPy for Numerical Analysis

[92]

The different methods are obtained upon changing the value of the method
parameter to a method's string. We may choose from methods such as 'hybr' for
a modified hybrid Powell's method; 'lm' for a modified least-squares method;
'broyden1' or 'broyden2' for Broyden's good and bad methods, respectively;
'diagbroyden' for the diagonal Broyden Jacobian approximation; 'anderson' for
Anderson's extended mixing; 'Krylov' for Krylov approximation of the Jacobian;
'linearmixing' for scalar Jacobian approximation; and 'excitingmixing' for a
tuned diagonal Jacobian approximation.

For large-scale problems, both the Krylov approximation of the Jacobian or the
Anderson extended mixing are usually the best options.

Let's present an illustrative example of the power of these techniques. Consider the
following system of differential equations:

2

2 2

2 0.5
4 4

x x x y
y x y

′ = − − +

′ = + −

We use the plot routine quiver from the matplotlib.pyplot libraries to visualize a
slope field for values of x and y between -0.5 and 2.5, and hence identify the location
of the possible critical points in that region:

>>> import numpy

>>> import matplotlib.pyplot as plt

>>> f=lambda x: [x[0]**2 - 2*x[0] - x[1] + 0.5, x[0]**2 + 4*x[1]**2 -
 4]

>>> x,y=numpy.mgrid[-0.5:2.5:24j,-0.5:2.5:24j]

>>> U,V=f([x,y])

>>> plt.quiver(x,y,U,V,color='r', \

 linewidths=(0.2,), edgecolors=('k'), \

 headaxislength=5)

>>> plt.show()

Chapter 4

[93]

The output is as follows:

Note how there is a whole region of the plane in which the slopes are extremely
small. Because of the degrees of the polynomials involved, there are at most four
different possible critical points. In this area, we should be able to identify two such
points (as a matter of fact there are only two noncomplex solutions). One of them
seems to be near (0, 1) and the second one is near (2, 0). We use these two locations as
initial guesses for our searches:

>>> import scipy.optimize

>>> f=lambda x: [x[0]**2 - 2*x[0] - x[1] + 0.5, x[0]**2 + 4*x[1]**2 -
 4]

>>> scipy.optimize.root(f,[0,1])

The output is as follows:

 status: 1

 success: True

qtf: array([-4.81190247e-09, -3.83395899e-09])

nfev: 9

 r: array([2.38128242, -0.60840482, -8.35489601])

 fun: array([3.59529073e-12, 3.85025345e-12])

 x: array([-0.22221456, 0.99380842])

SciPy for Numerical Analysis

[94]

 message: 'The solution converged.'

fjac: array([[-0.98918813, -0.14665209],

 [0.14665209, -0.98918813]])

Let's look at second case:

>>> scipy.optimize.root(f,[2,0])

The output is as follows:

 status: 1

 success: True

qtf: array([2.08960516e-10, 8.61298294e-11])

nfev: 12

 r: array([-4.56575336, -1.67067665, -1.81464307])

 fun: array([2.44249065e-15, 1.42996726e-13])

 x: array([1.90067673, 0.31121857])

 message: 'The solution converged.'

fjac: array([[-0.39612596, -0.91819618],

 [0.91819618, -0.39612596]])

In the first case, we converged successfully to (-0.22221456, 0.99380842). In the second
case, we converged to (1.90067673, 0.31121857). The routine gives us the details of
the convergence and the properties of the approximation. For instance, nfev tells us
about the number of function calls performed, and fun indicates the output of the
function at the found location. The other items in the output reflect the matrices used
in the procedure, such as qtf, r, and fjac.

Integration
SciPy is capable of performing very robust numerical integration. Definite integrals
of a set of special functions are evaluated accurately with routines in the scipy.
special module. For other functions, there are several different algorithms to obtain
reliable approximations in the scipy.integrate module.

Chapter 4

[95]

Exponential/logarithm integrals
A summary of the indefinite and definite integrals in the category of
exponential/logarithm is presented here: the exponential integrals (expn, expi,
and exp1), Dawson's integral (dawsn), and Gauss error functions (erf and erfc).
We also have Spence's dilogarithm (also known as Spence's integral). Let's have a
look at the following formulas:

() ()

() ()

() ()

()

2

2 2

1 1

2

0

0

1

expn , exp1

expi dawsn

2 2erf erfc

logspence
1

xt xt

n n

tx x t

x t t

x

x

e en x dt x dt
t t

ex dt x e x e dt
t

x e dt x e dt

tx dt
t

π π

− −∞ ∞

−∞

∞− −

= =

= = −

= =

= −
−

∫ ∫

∫ ∫

∫ ∫

∫

Trigonometric and hyperbolic trigonometric
integrals
In the category of trigonometric and hyperbolic trigonometric integrals,
we have Fresnel sine and cosine integrals, as well as the sinc and hyperbolic
trigonometric integrals. Let's have a look at the following formulas:

()

()

()

2

0

0 0

0 0

fresnel sin
2

sin cos 1sici , log

sinh cosh 1shichi , log

z

x x

x x

z t dt

t tx dt x dt
t t

t tx dt x dt
t t

π

γ

γ

 =  
 

−
= + +

−
= + +

∫

∫ ∫

∫ ∫

SciPy for Numerical Analysis

[96]

In the definitions given in the preceding list of integrals, the gamma symbol denotes
the Euler-Mascheroni constant:

1

1lim log
n

n k
n

k
γ

→∞
=

 = − 
 
∑

Elliptic integrals
Elliptic integrals arise naturally when computing the arc length of ellipses. SciPy
follows the argument notation for elliptic integrals: complete (one argument) and
incomplete (two arguments). Let's have a look at the following formulas:

() ()

() ()

/2 /2 2

20 0

2

20 0

ellipkm1 ellipe 1 sin
1 sin

ellipkinc , ellipeinc , 1 sin
1 sin

n n

dm m m d
m
dm n m n m d
m

π πθ θ θ
θ

θ θ θ
θ

= = −
−

= = −
−

∫ ∫

∫ ∫

Gamma and beta integrals
In the category of gamma and beta integrals, we have one incomplete gamma
function, one complemented incomplete gamma integral, and one incomplete beta
integral. These are some of the most useful functions in this category. Let's have a
look at the following formulas:

() ()

() ()

() ()
() () ()

1

0

1

11

0

1gammainc ,

1gammaincc ,

betainc , , 1

x t a

t a

x

x ba

a x e t dt
a

a x e t dt
a

a b
a b c t t dt

a b

− −

∞ − −

−−

=
Γ

=
Γ

Γ +
= −
Γ Γ

∫

∫

∫

Chapter 4

[97]

Numerical integration
For any other functions, we are content with approximating definite integrals
with quadrature formulae, such as quad (adaptive quadrature), fixed_quad
(fixed-order Gaussian quadrature), quadrature (fixed-tolerance Gaussian
quadrature), and romberg, (Romberg integration). For functions with more than
one variable, we have dbquad (double integral) and tplquad (triple integral)
methods. The syntax in all cases is a variation of quad:

quad(func, a, b, args=(), full_output=0, epsabs=1.49e-08,
 epsrel=1.49e-08, limit=50, points=None, weight=None,
 wvar=None, wopts=None, maxp1=50, limlst=50)

If we have samples instead of functions, we may use routines such as trapz,
cumtrapz (composite trapezoidal rule and its cumulative version), romb
(Romberg integration again), and simps (Simpson's rule) instead. In these routines,
the syntax is simpler and changes the order of the parameters. For example, this is
how we call simps:

>>> simps(y, x=None, dx=1, axis=-1, even='avg')

Those of us familiar with the QUADPACK libraries will find similar syntax, usage,
and performance.

For extra information, run the scipy.integrate.quad_explain() command.
In the IPython Notebook for this chapter, the alternative help command, scipy.
integrate.quad, is executed and its output is displayed in the corresponding
section. This explains with great detail all the different outputs of the quadrature
integrals included in the module result, the estimation of absolute error and
convergence, and explanation of the used weightings, if necessary. Let's give at least
one meaningful example where we integrate a special function and compare the
output of a quadrature formula against the more accurate value of the routines given
in scipy.special:

>>> f=lambda t: numpy.exp(-t)*t**4

>>> from scipy.special import gammainc

>>> from scipy.integrate import quad

>>> from scipy.misc import factorial

>>> print (gammainc(5,1))

SciPy for Numerical Analysis

[98]

The output is as follows:

0.00365984682734

Let's take a look at following print command:

print('%.19f' % gammainc(5,1))

The output is as follows:

0.0036598468273437131

Let's look further into the code:

>>> import numpy

>>> result,error=quad(f,0,1)/factorial(4)

>>> result

The output is as follows:

0.0036598468273437122

To use a routine that integrates from samples, we have the flexibility of assigning
the frequency and length of the data. For the following problem, we could try with
10,000 samples in the same interval:

>>> import numpy

>>> import scipy.integrate

>>> x=numpy.linspace(0,1,10000)

>>> scipy.integrate.simps(f(x)/factorial(4), x)

The output is as follows:

0.0036598468273469071

Ordinary differential equations
As with integration, SciPy has some extremely accurate general-purpose solvers for
systems of ordinary differential equations of first order:

() () () ()()1, , ,..., ,n
dy f t y y t y t y t t
dt

= = ∈�

Chapter 4

[99]

For real-valued functions, we have basically two flavors: ode (with options passed
with the set_integrator method) and odeint (simpler interface). The syntax of ode
is as follows:

ode(f,jac=None)

The first parameter, f, is the function to be integrated, and the second parameter,
jac, refers to the matrix of partial derivatives with respect to the dependent variables
(the Jacobian). This creates an ode object, with different methods to indicate the
algorithm to solve the system (set_integrator), the initial conditions (set_
initial_value), and different parameters to be sent to the function or its Jacobian.

The options for integration algorithm are 'vode' for real-valued variable coefficient
ODE solver, with fixed-leading-coefficient implementation (it provides Adam's
method for non-stiff problems and BDF for stiff); 'zvode' for complex-valued
variable coefficient ODE solver, with similar options as the preceding option;
'dopri5' for a Runge-Kutta method of order (4)5; 'dop853' for a Runge-Kutta
method of order 8(5, 3).

The next code snippet presents an example of usage of the scipy.integrate.ode to
solve the initial value problem using the following formula:

()20 , 0 1y y y′ = − =

We compute each step sequentially and compare it with the actual solution, which is
known. You will notice that virtually there is no difference:

>>> import numpy

>>> from scipy.integrate import ode

>>> f=lambda t,y: -20*y # The ODE

>>> actual_solution=lambda t:numpy.exp(-20*t) # actual solution

>>> dt=0.01 # time step

>>> solver=ode(f).set_integrator('dop853') # solver

>>> solver.set_initial_value(1,0) # initial value

>>> while solver.successful() and solver.t<=1+dt:

 # solve the equation at succesive time steps,

 # until the time is greater than 1

 # but make sure that the solution is successful

SciPy for Numerical Analysis

[100]

 print (solver.t, solver.y, actual_solution(solver.t))

 # We compare each numerical solution with the actual

 # solution of the ODE

 solver.integrate(solver.t + dt) # solve next step

Once run, the preceding code gives us the following output:

<scipy.integrate._ode.ode at 0x10eac5e50>

0 [1.] 1.0

0.01 [0.81873075] 0.818730753078

0.02 [0.67032005] 0.670320046036

0.03 [0.54881164] 0.548811636094

0.04 [0.44932896] 0.449328964117

0.05 [0.36787944] 0.367879441171

0.06 [0.30119421] 0.301194211912

0.07 [0.24659696] 0.246596963942

0.08 [0.20189652] 0.201896517995

0.09 [0.16529889] 0.165298888222

0.1 [0.13533528] 0.135335283237

 ...

0.9 [1.52299797e-08] 1.52299797447e-08

0.91 [1.24692528e-08] 1.24692527858e-08

0.92 [1.02089607e-08] 1.02089607236e-08

0.93 [8.35839010e-09] 8.35839010137e-09

0.94 [6.84327102e-09] 6.84327102222e-09

0.95 [5.60279644e-09] 5.60279643754e-09

0.96 [4.58718175e-09] 4.58718174665e-09

0.97 [3.75566677e-09] 3.75566676594e-09

0.98 [3.07487988e-09] 3.07487987959e-09

0.99 [2.51749872e-09] 2.51749871944e-09

1.0 [2.06115362e-09] 2.06115362244e-09

The full output is displayed on the corresponding section of the IPython
Notebook for this chapter. For systems of differential equations of first order
with complex-valued functions, we have a wrapper of ode, which we call with
the complex_ode command. Syntax and usage are similar to those of ode.

Chapter 4

[101]

The syntax of odeint is much more intuitive, and more Python friendly:

odeint(func, y0, t, args=(), Dfun=None, col_deriv=0,
full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None,
h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12,
mxords=5, printmessg=0)

The most impressive part of this routine is that one is able to indicate not only
the Jacobian, but also whether this is banded and how many nonzero diagonals
are under or over the main diagonal we have (with the ml and mu options). This
speeds up computations by a huge factor. Another amazing feature of odeint is the
possibility to indicate critical points for the integration (tcrit).

We will now introduce an application to analyze Lorentz attractors with the routines
presented in this section.

Lorenz attractors
No book on scientific computing is complete without revisiting Lorenz attractors;
SciPy excels both at computation of solutions and presentation of ideas based upon
systems of differential equations, of course, and we will show how and why in this
section.

Consider a two-dimensional fluid cell that is heated from underneath and cooled
from above, much like what occurs with the Earth's atmosphere. This creates
convection that can be modeled by a single partial differential equation, for which
a decent approximation has the form of the following system of ordinary
differential equations:

()dx y x
dt
dy rx y xz
dt
dz xy bz
dt

σ = −

 = − −

 = −

SciPy for Numerical Analysis

[102]

The variable x represents the rate of convective overturning. The variables y and
z stand for the horizontal and vertical temperature variations, respectively. This
system depends on four physical parameters, the descriptions of which are far
beyond the scope of this book. The important point is that we may model Earth's
atmosphere with these equations, and in that case a good choice for the parameters
is given by sigma = 10.0, and b = 8/3.0. For certain values of the third parameter,
we have systems for which the solutions behave chaotically. Let's explore this effect
with the help of SciPy.

In the following code snippet, we will use one of the solvers in the scipy.integrate
module as well as the plotting utilities:

>>> import numpy

>>> from numpy import linspace

>>> import scipy

>>> from scipy.integrate import odeint

>>> import matplotlib.pyplot as plt

>>> from mpl_toolkits.mplot3d import Axes3D

>>> sigma=10.0

>>> b=8/3.0

>>> r=28.0

>>> f = lambda x,t: [sigma*(x[1]-x[0]), r*x[0]-x[1]-x[0]*x[2], x[0]*x[1]-
b*x[2]]

Let's choose a time interval t large enough with a sufficiently dense partition and
any initial condition, y0. Then, issue the following commands:

>>> t=linspace(0,20,2000); y0=[5.0,5.0,5.0]

>>> solution=odeint(f,y0,t)

>>> X=solution[:,0]; Y=solution[:,1]; Z=solution[:,2]

If we want to plot a 3D rendering of the solution obtained, we can do so as follows:

>>> import matplotlib.pyplot as plt

>>> plt.gca(projection='3d'); plt.plot(X,Y,Z)

>>> plt.show()

Chapter 4

[103]

This produces the following graph that shows a Lorenz attractor:

This is most illustrative and shows precisely the chaotic behavior of the solutions.
Let's observe the fluctuations of the vertical temperature in detail, along with the
fluctuation of horizontal temperature against vertical. Issue the following commands:

>>> plt.rcParams['figure.figsize'] = (10.0, 5.0)

>>> plt.subplot(121); plt.plot(t,Z)

>>> plt.subplot(122); plt.plot(Y,Z)

>>> plt.show()

This produces the following the plots that show vertical temperature with respect
to time (left-hand side plot) and horizontal versus vertical temperature (right-hand
side plot):

SciPy for Numerical Analysis

[104]

Summary
This chapter explored special functions, integration, interpolation, and optimization
through the corresponding modules (special, integrate, interpolate, and
optimize), as well as discussed solutions of systems of ordinary differential equations.

In Chapter 5, SciPy for Signal Processing, we will describe the functionality of SciPy
modules to analyze processes involving time series and spatial signals, including
how to perform on numerical data the discrete Fourier transform, how to construct
signals, how to apply filters on data, and how to interpolate images.

SciPy for Signal Processing
We define a signal as data that measures either time-varying or spatially varying
phenomena. Sound or electrocardiograms are excellent examples of time-varying
quantities, while images embody the quintessential spatially varying cases.
Moving images (movies or videos) are treated with the techniques of both types
of signals, obviously.

The field of signal processing treats four aspects of this kind of data – its acquisition,
quality improvement, compression, and feature extraction. SciPy has many routines
to treat tasks effectively in any of the four fields. All these are included in two
low-level modules (scipy.signal being the main one, with an emphasis in
time-varying data, and scipy.ndimage, for images). Many of the routines in
these two modules are based on Discrete Fourier Transform of the data.

In this chapter, we will cover the following things:

•	 Definition of background algorithms, scipy.fftpack
•	 Built-in functions for signal construction
•	 Presentation of functions to filter spatial or time series signals

Additional details on the subject can be found in Python for Signal Processing,
Unpingco José, Springer Publishing.

Discrete Fourier Transforms
Discrete Fourier Transform (DFT) transforms any signal from its time/space domain
into a related signal in frequency domain. This allows us not only to analyze the
different frequencies of the data, but also enables faster filtering operations, when used
properly. It is possible to turn a signal in frequency domain back to its time/spatial
domain, thanks to the Inverse Fourier Transform (IFT). We will not go into details of
the mathematics behind these operators, since we assume familiarity at some level
with this theory. We will focus on syntax and applications instead.

SciPy for Signal Processing

[106]

The basic routines in the scipy.fftpack module compute the DFT and its inverse,
for discrete signals in any dimension – fft, ifft (one dimension); fft2, ifft2
(two dimensions); fftn, ifftn (any number of dimensions). All of these routines
assume that the data is complex valued. If we know beforehand that a particular
dataset is actually real valued, and should offer real-valued frequencies, we use rfft
and irfft instead, for a faster algorithm. All these routines are designed so that
composition with their inverses always yields the identity. The syntax is the same in
all cases, as follows:

fft(x[, n, axis, overwrite_x])

The first parameter, x, is always the signal in any array-like form. Note that fft
performs one-dimensional transforms. This means that if x happens to be two-
dimensional, for example, fft will output another two-dimensional array where
each row is the transform of each row of the original. We can use columns instead,
with the optional parameter, axis. The rest of the parameters are also optional; n
indicates the length of the transform and overwrite_x gets rid of the original data
to save memory and resources. We usually play with the integer n when we need to
pad the signal with zeros, or truncate it. For a higher dimension, n is substituted by
shape (a tuple), and axis by axes (another tuple).

To better understand the output, it is often useful to shift the zero frequencies to the
center of the output arrays with fftshift. The inverse of this operation, ifftshift,
is also included in the module. The following code shows some of these routines in
action when applied to a checkerboard image:

>>> import numpy

>>> from scipy.fftpack import fft,fft2, fftshift

>>> import matplotlib.pyplot as plt

>>> B=numpy.ones((4,4)); W=numpy.zeros((4,4))

>>> signal = numpy.bmat("B,W;W,B")

>>> onedimfft = fft(signal,n=16)

>>> twodimfft = fft2(signal,shape=(16,16))

>>> plt.figure()

>>> plt.gray()

>>> plt.subplot(121,aspect='equal')

>>> plt.pcolormesh(onedimfft.real)

Chapter 5

[107]

>>> plt.colorbar(orientation='horizontal')

>>> plt.subplot(122,aspect='equal')

>>> plt.pcolormesh(fftshift(twodimfft.real))

>>> plt.colorbar(orientation='horizontal')

>>> plt.show()

Note how the first four rows of the one-dimensional transform are equal (and so are
the last four), while the two-dimensional transform (once shifted) presents a peak at
the origin and nice symmetries in the frequency domain.

In the following screenshot, which has been obtained from the previous code, the
image on the left is fft and the one on the right is fft2 of a 2 x 2 checkerboard signal:

The scipy.fftpack module also offers the Discrete Cosine Transform with its
inverse (dct, idct) as well as many differential and pseudo-differential operators
defined in terms of all these transforms – diff (for derivative/integral); hilbert,
ihilbert (for the Hilbert transform); tilbert, itilbert (for the h-Tilbert transform
of periodic sequences); and so on.

SciPy for Signal Processing

[108]

Signal construction
To aid the construction of signals with predetermined properties, the
scipy.signal module has a nice collection of the most frequent one-dimensional
waveforms in the literature – chirp and sweep_poly (for the frequency-swept
cosine generator), gausspulse (a Gaussian modulated sinusoid), sawtooth and
square (for the waveforms with those names). They all take as their main parameter
a one-dimensional ndarray representing the times at which the signal is to be
evaluated. Other parameters control the design of the signal according to frequency
or time constraints. Let's take a look into the following code snippet which illustrates
the use of these one dimensional waveforms that we just discussed:

>>> import numpy

>>> from scipy.signal import chirp, sawtooth, square, gausspulse

>>> import matplotlib.pyplot as plt

>>> t=numpy.linspace(-1,1,1000)

>>> plt.subplot(221); plt.ylim([-2,2])

>>> plt.plot(t,chirp(t,f0=100,t1=0.5,f1=200)) # plot a chirp

>>> plt.title("Chirp signal")

>>> plt.subplot(222); plt.ylim([-2,2])

>>> plt.plot(t,gausspulse(t,fc=10,bw=0.5)) # Gauss pulse

>>> plt.title("Gauss pulse")

>>> plt.subplot(223); plt.ylim([-2,2])

>>> t*=3*numpy.pi

>>> plt.plot(t,sawtooth(t)) # sawtooth

>>> plt.xlabel("Sawtooth signal")

>>> plt.subplot(224); plt.ylim([-2,2])

>>> plt.plot(t,square(t)) # Square wave

>>> plt.xlabel("Square signal")

>>> plt.show()

Chapter 5

[109]

Generated by this code, the following diagram shows waveforms for chirp,
gausspulse, sawtooth, and square:

The usual method of creating signals is to import them from a file. This is possible by
using purely NumPy routines; for example, fromfile:

fromfile(file, dtype=float, count=-1, sep='')

The file argument may point to either a file or a string, the count argument is
used to determine the number of items to read, and sep indicates what constitutes
a separator in the original file/string. For images, we have the versatile routine,
imread in in either the scipy.ndimage or scipy.misc module:

imread(fname, flatten=False)

The fname argument is a string containing the location of an image. The routine
infers the type of file, and reads the data into array accordingly. In case if the
flatten argument is turned to True, the image is converted to gray scale. Note that,
in order for fromfile and imread to work, the Python Imaging Library (PIL) needs
to be installed.

SciPy for Signal Processing

[110]

It is also possible to load .wav files for analysis, with the read and write routines
from the wavfile submodule in the scipy.io module. For instance, the following
line of code reads an audio file, say audio.wav, using the read routine:

>>> rate,data = scipy.io.wavfile.read("audio.wav")

The command assigns an integer value to the rate variable, indicating the sample
rate of the file (in samples per second), and a NumPy ndarray to the data variable,
containing the numerical values assigned to the different notes. If we wish to write
some one-dimensional ndarray data into an audio file of this kind, with the sample
rate given by the rate variable, we may do so by issuing the following command:

>>> scipy.io.wavfile.write("filename.wav",rate,data)

Filters
A filter is an operation on signals that either removes features or extracts some
component. SciPy has a complete set of known filters as well as the tools to allow
construction of new ones. The complete list of filters in SciPy is long, and we encourage
the reader to explore the help documents of the scipy.signal and scipy.ndimage
modules for the complete picture. We will introduce in these pages, as an exposition,
some of the most used filters in the treatment of audio or image processing.

We start by creating a signal worth filtering:

>>> from numpy import sin, cos, pi, linspace

>>> f=lambda t: cos(pi*t) + 0.2*sin(5*pi*t+0.1) + 0.2*sin(30*pi*t) +
0.1*sin(32*pi*t+0.1) + 0.1*sin(47* pi*t+0.8)

>>> t=linspace(0,4,400); signal=f(t)

First, we test the classical smoothing filter of Wiener and Kolmogorov, wiener.
We present in a plot the original signal (in black) and the corresponding filtered
data, with a choice of Wiener window of size 55 samples (in blue). Next we compare
the result of applying the median filter, medfilt, with a kernel of the same size as
before (in red):

>>> from scipy.signal import wiener, medfilt

>>> import matplotlib.pylab as plt

>>> plt.plot(t,signal,'k', label='The signal')

>>> plt.plot(t,wiener(signal,mysize=55),'r',linewidth=3, label='Wiener
filtered')

Chapter 5

[111]

>>> plt.plot(t,medfilt(signal,kernel_size=55),'b',linewidth=3,
label='Medfilt filtered')

>>> plt.legend()

>>> plt.show()

This gives us the following graph showing the comparison of smoothing filters
(Wiener, in red, is the one that has its starting point just above 0.5 and Medfilt,
in blue, has its starting point just below 0.5):

Most of the filters in the scipy.signal module can be adapted to work with
arrays of any dimension. But in the particular case of images, we prefer to use the
implementations in the scipy.ndimage module, since they are coded with these
objects in mind. For instance, to perform a median filter on an image for smoothing,
we use scipy.ndimage.median_filter. Let us show an example. We will start by
loading Lena to array, and corrupting the image with Gaussian noise (zero mean and
standard deviation of 16):

>>> from scipy.stats import norm # Gaussian distribution

>>> import matplotlib.pyplot as plt

SciPy for Signal Processing

[112]

>>> import scipy.misc

>>> import scipy.ndimage

>>> plt.gray()

>>> lena=scipy.misc.lena().astype(float)

>>> plt.subplot(221);

>>> plt.imshow(lena)

>>> lena+=norm(loc=0,scale=16).rvs(lena.shape)

>>> plt.subplot(222);

>>> plt.imshow(lena)

>>> denoised_lena = scipy.ndimage.median_filter(lena,3)

>>> plt.subplot(224);

>>> plt.imshow(denoised_lena)

The set of filters for images come in two flavors – statistical and morphological. For
example, among the filters of statistical nature, we have the Sobel algorithm oriented
to detection of edges (singularities along curves). Its syntax is as follows:

sobel(image, axis=-1, output=None, mode='reflect', cval=0.0)

The optional parameter, axis, indicates the dimension in which the computations
are performed. By default, this is always the last axis (-1). The mode parameter, which
is one of the strings 'reflect', 'constant', 'nearest', 'mirror', or 'wrap',
indicates how to handle the border of the image in case there is insufficient data to
perform the computations there. In case mode is 'constant', we may indicate the
value to use in the border with the cval parameter. Let's look into the following code
snippet which illustrates the use of sobel filter:

>>> from scipy.ndimage.filters import sobel

>>> import numpy

>>> lena=scipy.misc.lena()

>>> sblX=sobel(lena,axis=0); sblY=sobel(lena,axis=1)

>>> sbl=numpy.hypot(sblX,sblY)

>>> plt.subplot(223);

>>> plt.imshow(sbl)

>>> plt.show()

Chapter 5

[113]

The following screenshot illustrates the previous two filters in action—Lena (upper-
left), noisy Lena (upper-right), edge map with sobel (lower-left), and median filter
(lower-right):

The LTI system theory
To investigate the response of a time-invariant linear system to input signals, we
have many resources in the scipy.signal module. As a matter of fact, to simplify
representation of objects, we have an lti class (linear-time invariant class) with
associated methods such as bode (to calculate bode magnitude and phase data),
impulse, output, and step.

Whether we are working with continuous or discrete-time linear systems, we have
routines to simulate such systems (lsim and lsim2 for continuous, dsim for discrete),
as well as compute impulses (impulse and impulse2 for continuous, dimpulse for
discrete) and steps (step and step2 for continuous, dstep for discrete).

SciPy for Signal Processing

[114]

Transforming a system from continuous to discrete is possible with cont2discrete,
but in either case we are able to provide for any system with any of its
representations, as well as to convert from one to another. For instance, if we have
the zeros z, poles p, and system gain k of the transfer function, we may obtain the
polynomial representation (numerator first, then denominator) with zpk2tf(z,p,k).
If we have numerator (num) and denominator (dem) of the transfer function, we
obtain the state-space with tf2ss(num,dem). This operation is reversible with the
ss2tf routine. The change of representation from zero-pole-gain to/from state-space
is also contemplated in the (zpk2ss, ss2zpk) module.

Filter design
There are routines in the scipy.signal module that allow the creation of different
kinds of filters with diverse methods. For instance, the bilinear function returns
a digital filter from an analog using a bilinear transform. Finite impulse response
(FIR) filters can be designed by the window method with the firwin and firwin2
routines. Infinite impulse response (IIR) filters can be designed in two different
ways, via iirdesign or iirfilter. Butterworth filters can be designed with the
butter routine. There are also routines to design filters of Chebyshev (cheby1,
cheby2), Cauer (ellip), and Bessel (bessel).

Window functions
No signal processing computational system would be complete without an extensive
list of windows—mathematical functions that are zero valued outside specific
domains. In this section, we will use a few of the coded windows implemented in the
scipy.signal module to design very simple smoothing filters by using convolution.

We will be testing them on the same one-dimensional signal we employed before,
for comparison.

We start by showing the plot of four well-known window functions – Boxcar,
Hamming, Blackman-Harris (Nuttall version), and triangular. We will use a size
of 31 samples:

>>> from scipy.signal import boxcar, hamming, nuttall, triang

>>> import matplotlib.pylab as plt

>>> windows=['boxcar', 'hamming', 'nuttall', 'triang']

>>> plt.subplot(121)

>>> for w in windows:

Chapter 5

[115]

 eval('plt.plot(' + w + '(31))')

 plt.ylim([-0.5,2]); plt.xlim([-1,32])

 plt.legend(windows)

We need to extend the original signal by fifteen samples for plotting purposes:

>>> plt.subplot(122)

>>> import numpy

>>> from numpy import sin, cos, pi, linspace

>>> f=lambda t: cos(pi*t) + 0.2*sin(5*pi*t+0.1) + 0.2*sin(30*pi*t) +
0.1*sin(32*pi*t+0.1) + 0.1*sin(47* pi*t+0.8)

>>> t=linspace(0,4,400); signal=f(t)

>>> extended_signal=numpy.r_[signal[15:0:-1],signal,signal[-1:-15:- 1]]

>>> plt.plot(extended_signal,'k')

The final step is the filter itself, which we perform by a simple convolution:

>>> for w in windows:

 window = eval(w+'(31)')

 output=numpy.convolve(window/window.sum(),signal)

 plt.plot(output,linewidth=2)

 plt.ylim([-2,3]); plt.legend(['original']+windows)

>>> plt.show()

This produces the following output, showing convolution of a signal with
different windows:

SciPy for Signal Processing

[116]

Image interpolation
The set of filters on images that performs some geometric manipulation of the
input is classically termed image interpolation, since this numerical technique is
the root of all the algorithms. As a matter of fact, SciPy collects all these under the
submodule, scipy.ndimage.interpolation, for ease of access. This section is best
explained through examples, going over the most meaningful routines for geometric
transformation. The starting point is the image, Lena. We now assume that all
functions from the submodule have been imported into the session.

We need to apply an affine transformation on the domain of the image, given in
matrix form as follows:

()
�

11 1

21 22 2

bA

12
,

a a bx
L x y

a a by
    

= +    
    �����

To apply the transformation on the domain of the image we issue the
affine_transform command (note that the syntax is self-explanatory):

>>> import scipy.misc

>>> import numpy

>>> import matplotlib.pylab as plt

>>> from scipy.ndimage.interpolation import affine_transform

>>> lena=scipy.misc.lena()

>>> A=numpy.mat("0,1;-1,1.25"); b=[-400,0]

>>> Ab_Lena=affine_transform(lena,A,b,output_shape=(512*2.2,512*2.2))

>>> plt.gray()

>>> plt.subplot(121)

>>> plt.imshow(Ab_Lena)

For a general transformation, we use the geometric_transform routine with the
following syntax:

geometric_transform(input, mapping, output_shape=None,
 output=None, order=3, mode='constant',
cval=0.0, prefilter=True, extra_arguments=(),
extra_keywords={})

Chapter 5

[117]

We need to provide a rank-2 map from tuples to tuples as the parameter mapping.
For instance, we desired to apply the Möbius transform for complex-valued number
z (where we assume the values of a, b, c, and d are already defined and they are
complex-valued numbers) in the following formula:

() az bf z
cz d
+

=
+

We would have to code it in the following way:

>>> def f(z):

 temp = a*(z[0]+1j*z[1]) + b

 temp /= c*(z[0]+1j*z[1])+d

 return (temp.real, temp.imag)

In both functions, the values of the grid that cannot be computed directly with
the formula are inferred with spline interpolation. We may specify the order of
this interpolation with the order parameter. The points outside the domain of
definition are not interpolated, but filled according to some predetermined rule.
We may impose this rule by passing a string to the mode option. The choices are
– 'constant', to use a constant value that we may impose with the cval option;
'nearest', that continues the last value of the interpolation on each level line; and
'reflect' or 'wrap', which are self-explanatory.

For example, for the values a = 2**15*(1+1j), b = 0, c = -2**8*(1-1j*2), and
d = 2**18-1j*2**14, we obtain (after imposing the reflect mode) the result, as
shown just after this line of code:

>>> from scipy.ndimage.interpolation import geometric_transform

>>> a = 2**15*(1+1j); b = 0; c = -2**8*(1-1j*2); d = 2**18-1j*2**14

>>> Moebius_Lena = geometric_transform(lena,f,mode='reflect')

>>> plt.subplot(122);

>>> plt.imshow(Moebius_Lena)

>>> plt.show()

SciPy for Signal Processing

[118]

The following screenshot shows affine transformation (left) and geometric
transformation (right):

For special cases of rotations, shifts, or dilations, we have the syntactic
sugar routines, rotate(input,angle), shift(input, offset), and
zoom(input,dilation_factor).

Given any image, we know the value of the array at pixel values (with integer
coordinates) in the domain. But what would the corresponding value of a location
be without integer coordinates? We may obtain that information with the valuable
routine, map_coordinates. Note that the syntax may be confusing, especially with
the coordinates parameter:

map_coordinates(input, coordinates, output=None, order=3,
 mode='constant', cval=0.0, prefilter=True)

For instance, if we wish to evaluate Lena at the locations (10.5, 11.7) and (12.3, 1.4),
we collect the coordinates as a sequence of sequences; the first internal sequence
contains the x values, and the second, the y values. We may specify the order of
splines used with order, and the interpolation scheme outside of the domain,
if needed, as in the previous examples. Let's evaluate Lena at the locations
(which we just discussed in our example) using following code snippet:

>>> import scipy.misc

>>> from scipy.ndimage.interpolation import map_coordinates

>>> lena=scipy.misc.lena().astype(float)

>>> coordinates=[[10.5, 12.3], [11.7, 1.4]]

>>> map_coordinates(lena, coordinates, order=1)

Chapter 5

[119]

The output is shown as:

array([157.2 , 157.42])

Further, we evaluate Lena with order=2 as shown in following line of code:

>>> map_coordinates(lena, coordinates, order=2)

The output is shown as:

array([157.80641507, 157.6741489])

Morphology
We also have the possibility of creating and applying filters to images based on
mathematical morphology, both to binary and gray-scale images. The four basic
morphological operations are opening (binary_opening), closing (binary_
closing), dilation (binary_dilation), and erosion (binary_erosion). Note that the
syntax of each of these filters is very simple, since we only need two ingredients – the
signal to filter and the structuring element to perform the morphological operation.
Let's take a look into the general syntax for these morphological operations:

binary_operation(signal, structuring_element)

We have illustrated the use some of these operations towards an application to
obtain the structural model of an oxide, but we will postpone this example until
we cover the notions of triangulations and Voronoi diagrams in Chapter 7, SciPy for
Computational Geometry.

We may use combinations of these four basic morphological operations to
create more complex filters for the removal of holes, hit-or-miss transforms
(to find the location of specific patterns in binary images), denoising, edge detection,
and many more. The module even provides us with some of the most common
filters constructed this way. For instance, for the location of the letter e in a text
(which we covered in Chapter 2, Working with the NumPy Array As a First Step to SciPy,
as an application of correlation), we could use the following command instead:

>>> binary_hit_or_miss(text, letterE)

For comparative purposes, let's apply this command to the example from
Chapter 2, Working with the NumPy Array As a First Step to SciPy:

>>> import numpy

>>> import scipy.ndimage

>>> import matplotlib.pylab as plt

SciPy for Signal Processing

[120]

>>> from scipy.ndimage.morphology import binary_hit_or_miss

>>> text = scipy.ndimage.imread('CHAP_05_input_textImage.png')

>>> letterE = text[37:53,275:291]

>>> HitorMiss = binary_hit_or_miss(text, structure1=letterE, origin1=1)

>>> eLocation = numpy.where(HitorMiss==True)

>>> x=eLocation[1]; y=eLocation[0]

>>> plt.imshow(text, cmap=plt.cm.gray, interpolation='nearest')

>>> plt.autoscale(False)

>>> plt.plot(x,y,'wo',markersize=10)

>>> plt.axis('off')

>>> plt.show()

This generates the following output, which the reader should compare with the
corresponding one on Chapter 2, Working with the NumPy Array As a First Step to SciPy:

For gray-scale images, we may use a structuring element (structuring_element) or
a footprint. The syntax is, therefore, a little different:

grey_operation(signal, [structuring_element, footprint, size, ...])

If we desire to use a completely flat and rectangular structuring element (all ones),
then it is enough to indicate the size as a tuple. For instance, to perform gray-scale
dilation of a flat element of size (15,15) on our classical image of Lena, we issue
the following command:

>>> grey_dilation(lena, size=(15,15))

Chapter 5

[121]

The last kind of morphological operations coded in the scipy.ndimage module perform
distance and feature transforms. Distance transforms create a map that assigns to each
pixel the distance to the nearest object. Feature transforms provide the index of the
closest background element instead. These operations are used to decompose images
into different labels. We may even choose different metrics such as Euclidean distance,
chessboard distance, and taxicab distance. The syntax for the distance transform
(distance_transform) using a brute force algorithm is as follows:

distance_transform_bf(signal, metric='euclidean', sampling=None,
return_distances=True, return_indices=False,
 distances=None, indices=None)

We indicate the metric with the strings such as 'euclidean', 'taxicab', or
'chessboard'. If we desire to provide the feature transform instead, we switch
return_distances to False and return_indices to True.

Similar routines are available with more sophisticated algorithms – distance_
transform_cdt (using chamfering for taxicab and chessboard distances).
For Euclidean distance, we also have distance_transform_edt. All these
use the same syntax.

Summary
In this chapter, we explored signal processing (any dimensional), including
the treatment of signals in frequency space, by means of their Discrete Fourier
Transforms. These correspond to the fftpack, signal, and ndimage modules.

The Chapter 6, SciPy for Data Mining, will explore the tools included in SciPy to
approach Statistical and Data Mining problems. In addition to standard statistical
quantities, special topics like kernel estimation, statistical distances, and the
clustering of big data sets will be presented.

SciPy for Data Mining
This chapter covers those branches of mathematics and statistics that treat the
collection, organization, analysis, and interpretation of data. There are different
applications and operations that spread over several modules and submodules:
scipy.stats (for purely statistical tools), scipy.ndimage.measurements (for analysis
and organization of data), scipy.spatial (for spatial algorithms and data structures),
and finally the clustering package scipy.cluster. The scipy.cluster clustering
package consists of two submodules: scipy.cluster.vq (vector quantization) and
scipy.cluster.hierarchy (for hierarchical and agglomerative clustering).

As in the previous chapters, fluency with the subject matter is assumed. Our
emphasis is to show you some of the SciPy functions available to perform statistical
computations, not to teach it. Accordingly, you are welcome to read this chapter
along side your preferred book(s) on the subject so that you can fully explore the
examples provided in this chapter on additional data sets.

We should mention, however, that there are other specialized modules in
Python that can be used to explore this subject from different perspectives.
Some of them (not covered by any means in this book) are the Modular Toolkit
for Data Processing (MDP) (http://mdp-toolkit.sourceforge.net/install.
html), scikit-learn (http://scikit-learn.org/), and Statsmodels
(http://statsmodels.sourceforge.net/).

In this chapter, we will cover the following things:

•	 The standard descriptive statistics measures computed via SciPy
•	 The built-in functions in SciPy that deal with statistical distributions
•	 The Scipy functionality to find interval estimation
•	 Performing computations of statistical correlations and some statistical tests,

the fitting of distributions, and statistical distances
•	 A clustering example

http://mdp-toolkit.sourceforge.net/install.html
http://mdp-toolkit.sourceforge.net/install.html
http://scikit-learn.org/
http://statsmodels.sourceforge.net/

SciPy for Data Mining

[124]

Descriptive statistics
We often require the analysis of data in which certain features are grouped in
different regions, each with different sizes, values, shapes, and so on. The scipy.
ndimage.measurements submodule has the right tools for this task, and the best
way to illustrate the capabilities of the module is by means of exhaustive examples.
For example, for binary images of zeros and ones, it is possible to label each blob
(areas of contiguous pixels with value one) and obtain the number of these with the
label command. If we desire to obtain the center of mass of the blobs, we may do
so with the center_of_mass command. We may see these operations in action once
again in the application to obtain the structural model of oxides in Chapter 7, SciPy for
Computational Geometry.

For nonbinary data, the scipy.ndimage.measurements submodule provides the
usual basic statistical measurements (value and location of extreme values, mean,
standard deviation, sum, variance, histogram, and so on).

For more advanced statistical measurements, we must access functions from the
scipy.stats module. We may now use geometric and harmonic means (gmean,
hmean), median, mode, skewness, various moments, or kurtosis (median, mode, skew,
moment, kurtosis). For an overview of the most significant statistical properties
of the dataset, we prefer to use the describe routine. We may also compute item
frequencies (itemfreq), percentiles (scoreatpercentile, percentileofscore),
histograms (histogram, histogram2), cumulative and relative frequencies (cumfreq,
relfreq), standard error (sem), and the signal-to-noise ratio (signaltonoise),
which is always useful.

Distributions
One of the main strengths of the scipy.stats module is the great number of
distributions coded, both continuous and discrete. The list is impressively large and
has at least 80 continuous distributions and 10 discrete distributions.

One of the most common ways to employ these distributions is the generation of
random numbers. We have been employing this technique to contaminate our images
with noise, for example:

>>> import scipy.misc

>>> from scipy.stats import signaltonoise

>>> from scipy.stats import norm # Gaussian distribution

>>> lena=scipy.misc.lena().astype(float)

>>> lena+= norm.rvs(loc=0,scale=16,size=lena.shape)

>>> signaltonoise(lena,axis=None)

Chapter 6

[125]

The output is shown as follows:

array(2.459233897516763)

Let's see the SciPy way of handling distributions. First, a random variable class is
created (in SciPy there is the rv_continuous class for continuous random variables
and the rv_discrete class for the discrete case). Each continuous random variable
has an associated probability density function (pdf), a cumulative distribution
function (cdf), a survival function along with its inverse (sf, isf), and all possible
descriptive statistics. They also have associated the random variable, rvs, which is
what we used to actually generate the random instances. For example, with a Pareto
continuous random variable with parameter b = 5, to check these properties, we
could issue the following commands:

>>> import numpy

>>> from scipy.stats import pareto

>>> import matplotlib.pyplot as plt

>>> x=numpy.linspace(1,10,1000)

>>> plt.subplot(131); plt.plot(pareto.pdf(x,5))

>>> plt.subplot(132); plt.plot(pareto.cdf(x,5))

>>> plt.subplot(133); plt.plot(pareto.rvs(5,size=1000))

>>> plt.show()

This gives the following graphs, showing probability density function (left),
cumulative distribution function (center), and random generation (right):

SciPy for Data Mining

[126]

Interval estimation, correlation measures,
and statistical tests
We briefly covered interval estimation as an introductory example of SciPy:
bayes_mvs, in Chapter 1, Introduction to SciPy, with very simple syntax, as follows:

bayes_mvs(data, alpha=0.9)

It returns a tuple of three arguments in which each argument has the form
(center, (lower, upper)). The first argument refers to the mean; the second
refers to the variance; and the third to the standard deviation. All intervals are
computed according to the probability given by alpha, which is 0.9 by default.

We may use the linregress routine to compute the regression line of some
two-dimensional data x, or two sets of one-dimensional data, x and y. We may
compute different correlation coefficients, with their corresponding p-values,
as well. We have the Pearson correlation coefficient (pearsonr), Spearman's
rank-order correlation (spearmanr), point biserial correlation (pointbiserialr),
and Kendall's tau for ordinal data (kendalltau). In all cases, the syntax is the same,
as it is only required either a two-dimensional array of data, or two one-dimensional
arrays of data with the same length.

SciPy also has most of the best-known statistical tests and procedures: t-tests
(ttest_1samp for one group of scores, ttest_ind for two independent samples
of scores, or ttest_rel for two related samples of scores), Kolmogorov-Smirnov
tests for goodness of fit (kstest, ks_2samp), one-way Chi-square test (chisquare),
and many more.

Let us illustrate some of the routines of this module with a textbook example,
based on Timothy Sturm's studies on control design.

To turn a knob that moved an indicator by the screw action, 25 right-handed
individuals were asked to use their right hands. There were two identical
instruments, one with a right-handed thread where the knob turned clockwise,
and the other with a left-hand thread where the knob turned counter-clockwise.
The following table gives the times in seconds each subject took to move the
indicator to a fixed distance:

Chapter 6

[127]

Subject 1 2 3 4 5 6 7 8 9 10

Right thread 113 105 130 101 138 118 87 116 75 96

Left thread 137 105 133 108 115 170 103 145 78 107

Subject 11 12 13 14 15 16 17 18 19 20

Right thread 122 103 116 107 118 103 111 104 111 89

Left thread 84 148 147 87 166 146 123 135 112 93

Subject 21 22 23 24 25

Right thread 78 100 89 85 88

Left thread 76 116 78 101 123

We may perform an analysis that leads to a conclusion about right-handed people
finding right-hand threads easier to use, by a simple one-sample t-statistic. We will
load the data in memory, as follows:

>>> import numpy

>>> data = numpy.array([[113,105,130,101,138,118,87,116,75,96, \

 122,103,116,107,118,103,111,104,111,89,78,100,89,85,88], \

 [137,105,133,108,115,170,103,145,78,107, \

 84,148,147,87,166,146,123,135,112,93,76,116,78,101,123]])

The difference of each row indicates which knob was faster, and for how much time.
We can obtain that information easily and perform some basic statistical analysis on
it. We will start by computing the mean, standard deviation, and a histogram with
10 bins:

>>> dataDiff = data[1,:]-data[0,:]

>>> dataDiff.mean(), dataDiff.std()

The output is shown as:

(13.32, 22.472596645692729)

Let's plot the histogram by issuing the following set of commands:

>>> import matplotlib.pyplot as plt

>>> plt.hist(dataDiff)

>>> plt.show()

SciPy for Data Mining

[128]

This produces the following histogram:

In light of this histogram, it is not far-fetched to assume a normal distribution.
If we assume that this is a proper simple random sample, the use of t-statistics is
justified. We would like to prove that it takes longer to turn the left thread than
the right, so we set the mean of dataDiff to be contrasted against the zero mean
(which would indicate that it takes the same time for both threads).

The two-sample t-statistics and p-value for the two-sided test are computed by the
simple command, as follows:

>>> from scipy.stats import ttest_1samp

>>> t_stat,p_value=ttest_1samp(dataDiff,0.0)

The p-value for the one-sided test is then calculated:

>>> print (p_value/2.0)

The output is shown as follows:

0.00389575522747

Note that this p-value is much smaller than either of the usual thresholds alpha = 0.05
or alpha = 0.1. We can thus guarantee that we have enough evidence to support the
claim that right-handed threads take less time to turn than left-handed threads.

Chapter 6

[129]

Distribution fitting
In Timothy Sturm's example, we claim that the histogram of some data seemed
to fit a normal distribution. SciPy has a few routines to help us approximate the
best distribution to a random variable, together with the parameters that best
approximate this fit. For example, for the data in that problem, the mean and
standard deviation of the normal distribution that realizes the best fit can be
found in the following way:

>>> from scipy.stats import norm # Gaussian distribution

>>> mean,std=norm.fit(dataDiff)

We can now plot the (normed) histogram of the data, together with the computed
probability density function, as follows:

>>> plt.hist(dataDiff, normed=1)

>>> x=numpy.linspace(dataDiff.min(),dataDiff.max(),1000)

>>> pdf=norm.pdf(x,mean,std)

>>> plt.plot(x,pdf)

>>> plt.show()

We will obtain the following graph showing the maximum likelihood estimate
to the normal distribution that best fits dataDiff:

SciPy for Data Mining

[130]

We may even fit the best probability density function without specifying any
particular distribution, thanks to a non-parametric technique, kernel density
estimation. We can find an algorithm to perform Gaussian kernel density estimation
in the scipy.stats.kde submodule. Let us show by example with the same data
as before:

>>> from scipy.stats import gaussian_kde

>>> pdf=gaussian_kde(dataDiff)

A slightly different plotting session as given before, offers us the following
graph, showing probability density function obtained by kernel density estimation
on dataDiff:

The full piece of code is as follows:

>>> from scipy.stats import gaussian_kde

>>> pdf = gaussian_kde(dataDiff)

>>> pdf = pdf.evaluate(x)

>>> plt.hist(dataDiff, normed=1)

>>> plt.plot(x,pdf,'k')

>>> plt.savefig("hist2.png")

>>> plt.show()

Chapter 6

[131]

For comparative purposes, the last two plots can be combined into one:

>>> plt.hist(dataDiff, normed=1)

>>> plt.plot(x,pdf,'k.-',label='Kernel fit')

>>> plt.plot(x,norm.pdf(x,mean,std),'r',label='Normal fit')

>>> plt.legend()

>>> plt.savefig("hist3.png")

>>> plt.show()

The output is the combined plot as follows:

Distances
In the field of data mining, it is often required to determine which members of a
training set are closest to unknown test instances. It is imperative to have a good
set of different distance functions for any of the algorithms that perform the search,
and SciPy has, for this purpose, a huge collection of optimally coded functions in the
distance submodule of the scipy.spatial module. The list is long. Besides Euclidean,
squared Euclidean, or standardized Euclidean, we have many more—Bray-Curtis,
Canberra, Chebyshev, Manhattan, correlation distance, cosine distance, dice
dissimilarity, Hamming, Jaccard-Needham, Kulsinski, Mahalanobis, and so on.
The syntax in most cases is simple:

distance_function(first_vector, second_vector)

SciPy for Data Mining

[132]

The only three cases in which the syntax is different are the Minkowski,
Mahalanobis, and standardized Euclidean distances, in which the distance function
requires either an integer number (for the order of the norm in the definition of
Minkowski distance), a covariance for the Mahalanobis case (but this is an optional
requirement), or a variance matrix to standardize the Euclidean distance.

Let us see now a fun exercise to visualize the unit balls in Minkowski metrics:

>>> import numpy

>>> from scipy.spatial.distance import minkowski

>>> Square=numpy.mgrid[-1.1:1.1:512j,-1.1:1.1:512j]

>>> X=Square[0]; Y=Square[1]

>>> f=lambda x,y,p: minkowski([x,y],[0.0,0.0],p)<=1.0

>>> Ball=lambda p:numpy.vectorize(f)(X,Y,p)

We have created a function, Ball, which creates a grid of 512 x 512 Boolean values.
The grid represents a square of length 2.2 centered at the origin, with sides parallel
to the coordinate axis, and the true values on it represent all those points of the grid
inside of the unit ball for the Minkowksi metric, for the parameter p. All we have to
do is show it graphically, as in the following example:

>>> import matplotlib.pylab as plt

>>> plt.imshow(Ball(3), cmap = plt.cm.gray)

>>> plt.axis('off')

>>> plt.subplots_adjust(left=0.0127,bottom=0.0164,\

 right=0.987,top=0.984)

>>> plt.show()

This produces the following, where Ball(3) is a unit ball in the Minkowski metric
with parameter p = 3:

Chapter 6

[133]

We feel the need to issue the following four important warnings:

•	 First warning: We must use these routines instead of creating our own
definitions of the corresponding distance functions whenever possible.
They guarantee a faster result and optimal coding to take care of situations
in which the inputs are either too large or too small.

•	 Second warning: These functions work great when comparing two vectors;
however, for the pairwise computation of many vectors, we must resort to
the pdist routine. This command takes an m x n array representing m vectors
of dimension n, and computes the distance of each of them to each other. We
indicate the distance function to be used with the option metric and additional
parameters as needed. For example, for the Manhattan (cityblock) distance
for five randomly selected randomly selected four-dimensional vectors with
integer values 1, 0, or -1, we could issue the following command:
>>> import scipy.stats

>>> from scipy.spatial.distance import pdist

>>> V=scipy.stats.randint.rvs(0.4,3,size=(5,4))-1

>>> print (V)

The output is shown as follows:

[[1 0 1 -1]

 [-1 0 -1 0]

 [1 1 1 -1]

 [1 1 -1 0]

 [0 0 1 -1]]

Let's take a look at the following pdist command:

>>> pdist(V,metric='cityblock')

The output is shown as follows:

array([5., 1., 4., 1., 6., 3., 4., 3., 2., 5.])

This means, if v1 = [1,0,1,-1], v2 = [-1,0,-1,0], v3 = [1,1,1,-1], v4
= [1,1,-1,0], and v5 = [0,0,1,-1], then the Manhattan distance of v1
from v2 is 5. The distance from v1 to v3 is 1; from v1 to v4, 4; and from v1 to
v5, 1. From v2 to v3 the distance is 6; from v2 to v4, 3; and from v2 to v5, 4.
From v3 to v4 the distance is 3; and from v3 to v5, 2. And finally, the distance
from v4 to v5 is 5, which is the last entry of the output.

SciPy for Data Mining

[134]

•	 Third warning: When computing the distance between each pair of two
collections of inputs, we should use the cdist routine, which has a similar
syntax. For instance, for the two collections of three randomly selected
four-dimensional Boolean vectors, the corresponding Jaccard-Needham
dissimilarities are computed, as follows:
>>> from scipy.spatial.distance import cdist

>>> V=scipy.stats.randint.rvs(0.4, 2, size=(3,4)).astype(bool)

>>> W=scipy.stats.randint.rvs(0.4, 3, size=(2,4)).astype(bool)

>>> cdist(V,W,'jaccard')

array([[0.75 , 1.],

 [0.75 , 1.],

 [0.33333333, 0.5]])

That is, if the three vectors in V are labeled v1, v2, and v3 and if the two
vectors in W are labeled as w1 and w2, then the dissimilarity between v1
and w1 is 0.75; between v1 and w2, 1; and so on.

•	 Fourth warning: When we have a large amount of data points and we
need to address the problem of nearest neighbors (for example, to locate the
closest element of the data to a new instance point), we seldom do it by brute
force. The optimal algorithm to perform this search is based on the idea of
k-dimensional trees. SciPy has two classes to handle these objects – KDTree and
cKDTree. The latter is a subset of the former, a little faster since it is wrapped
from C code, but with very limited use. It only has the query method to find
the nearest neighbors of the input. The syntax is simple,
as follows:

KDTree(data, leafsize=10)

This creates a structure containing a binary tree, very apt for the design
of fast search algorithms. The leafsize option indicates at what level the
search based on the structure of the binary tree must be abandoned in favor
of brute force.
The other methods associated with the KDTree class are—count_neighbors,
to compute the number of nearby pairs that can be formed with another
KDTree; query_ball_point, to find all points at a given distance from the
input; query_ball_tree and query_pairs, to find all pairs of points within
certain distance; and sparse_distance_matrix, that computes a sparse
matrix with the distances between two KDTree classes.

Chapter 6

[135]

Let us see it in action, with a small dataset of 10 randomly generated four-
dimensional points with integer entries:

>>> from scipy.spatial import KDTree

>>> data=scipy.stats.randint.rvs(0.4,10,size=(10,4))

>>> print (data)

The output is shown as follows:

[[8 6 1 1]

 [2 9 1 5]

 [4 8 8 9]

 [2 6 6 4]

 [4 1 2 1]

 [3 8 7 2]

 [1 1 3 6]

 [5 2 1 5]

 [2 5 7 3]

 [6 0 6 9]]

>>> tree=KDTree(data)

>>> tree.query([0,0,0,0])

The output is shown as follows:

(4.6904157598234297, 4)

This means, among all the points in the dataset, the closest one in the Euclidean
distance to the origin is the fifth one (index 4), and the distance is precisely about
4.6 units.

We can have an input of more than one point; the output will still be a tuple,
where the first entry is an array that indicates the smallest distance to each of the
input points. The second entry is another array that indicates the indices of the
nearest neighbors.

Clustering
Another technique used in data mining is clustering. SciPy has two modules
to deal with any problem in this field, each of them addressing a different
clustering tool—scipy.cluster.vq for k-means and scipy.cluster.hierarchy
for hierarchical clustering.

SciPy for Data Mining

[136]

Vector quantization and k-means
We have two routines to divide data into clusters using the k-means technique—
kmeans and kmeans2. They correspond to two different implementations.
The former has a very simple syntax:

kmeans(obs, k_or_guess, iter=20, thresh=1e-05)

The obs parameter is an ndarray with the data we wish to cluster. If the dimensions
of the array are m x n, the algorithm interprets this data as m points in the
n-dimensional Euclidean space. If we know the number of clusters in which this
data should be divided, we enter so with the k_or_guess option. The output is a
tuple with two elements. The first is an ndarray of dimension k x n, representing
a collection of points—as many as clusters were indicated. Each of these locations
indicates the centroid of the found clusters. The second entry of the tuple is a
floating-point value indicating the distortion between the passed points, and the
centroids generated previously.

If we wish to impose an initial guess for the centroids of the clusters, we may do so
with the k_or_guess parameter again, by sending a k x n ndarray.

The data we pass to kmeans need to be normalized with the whiten routine.

The second option is much more flexible, as its syntax indicates:

kmeans2(data, k, iter=10, thresh=1e-05,
minit='random', missing='warn')

The data and k parameters are the same as obs and k_or_guess, respectively. The
difference in this routine is the possibility of choosing among different initialization
algorithms, hence providing us with the possibility to speed up the process and use
fewer resources if we know some properties of our data. We do so by passing to
the minit parameter, one of the strings such as 'random' (initialization centroids
are constructed randomly using a Gaussian), 'points' (initialization is done
by choosing points belonging to our data), or 'uniform' (if we prefer uniform
distribution to Gaussian).

In case we would like to provide the initialization centroids ourselves with the k
parameter, we must indicate our choice to the algorithm by passing 'matrix' to the
minit option as well.

In any case, if we wish to classify the original data by assigning to each point the
cluster to which it belongs; we do so with the vq routine (for vector quantization).
The syntax is pretty simple as well:

vq(obs, centroids)

Chapter 6

[137]

The output is a tuple with two entries. The first entry is a one-dimensional ndarray
of size n holding for each point in obs, the cluster to which it belongs. The second
entry is another one-dimensional ndarray of the same size, but containing floating-
point values indicating the distance from each point to the centroid of its cluster.

Let us illustrate with a classical example, the mouse dataset. We will create a big
dataset with randomly generated points in three disks, as follows:

>>> import numpy

>>> from scipy.stats import norm

>>> from numpy import array,vstack

>>> data=norm.rvs(0,0.3,size=(10000,2))

>>> inside_ball=numpy.hypot(data[:,0],data[:,1])<1.0

>>> data=data[inside_ball]

>>> data = vstack((data, data+array([1,1]),data+array([-1,1])))

Once created, we will request the data to be separated into three clusters:

>>> from scipy.cluster.vq import *

>>> centroids, distortion = kmeans(data,3)

>>> cluster_assignment, distances = vq(data,centroids)

Let us present the results:

>>> from matplotlib.pyplot import plot

>>> import matplotlib.pyplot as plt

>>> plt.plot(data[cluster_assignment==0,0], \

 data[cluster_assignment==0,1], 'ro')

>>> plt.plot(data[cluster_assignment==1,0], \

 data[cluster_assignment==1,1], 'b+')

>>> plt.plot(data[cluster_assignment==2,0], \

 data[cluster_assignment==2,1], 'k.')

>>> plt.show()

SciPy for Data Mining

[138]

This gives the following plot showing the mouse dataset with three clusters from left
to right—red (squares), blue (pluses), and black (dots):

Hierarchical clustering
There are several different algorithms to perform hierarchical clustering. SciPy has
routines for the following methods:

•	 Single/min/nearest method: single
•	 Complete/max/farthest method: complete
•	 Average/UPGMA method: average
•	 Weighted/WPGMA method: weighted
•	 Centroid/UPGMC method: centroid
•	 Median/WPGMC method: median
•	 Ward's linkage method: ward

In any of the previous cases, the syntax is the same; the only input is the dataset,
which can be either an m x n ndarray representing m points in the n-dimensional
Euclidean space, or a condensed distance matrix obtained from the previous data
using the pdist routine from scipy.spatial. The output is always an ndarray
representing the corresponding linkage matrix of the clustering obtained.

Chapter 6

[139]

Alternatively, we may call the clustering with the generic routine linkage.
This routine accepts a dataset/distance matrix, and a string indicating the method to
use. The strings coincide with the names introduced. The advantage of linkage over
the previous routines is that we are also allowed to indicate a different metric than
the usual Euclidean distance. The complete syntax for linkage is then as follows:

linkage(data, method='single', metric='euclidean')

Different statistics on the resulting linkage matrices may be performed with
the routines such as Cophenetic distances between observations (cophenet);
inconsistency statistics (inconsistent); maximum inconsistency coefficient for each
non-singleton cluster with its descendants (maxdists); and maximum statistic for
each non-singleton cluster with its descendants (maxRstat).

It is customary to use binary trees to represent linkage matrices, and the scipy.
cluster.hierachy submodule has a large number of different routines to manipulate
and extract information from these trees. The most useful of these routines is the
visualization of these trees, often called dendrograms. The corresponding routine in
SciPy is dendrogram, and has the following imposing syntax:

dendrogram(Z, p=30, truncate_mode=None, color_threshold=None,
get_leaves=True, orientation='top', labels=None,
count_sort=False, distance_sort=False,
show_leaf_counts=True, no_plot=False, no_labels=False,
color_list=None, leaf_font_size=None,
leaf_rotation=None, leaf_label_func=None,
no_leaves=False, show_contracted=False,
link_color_func=None)

The first obvious parameter, Z, is a linkage matrix. This is the only non-optional
variable. The other options control the style of the output (colors, labels, rotation,
and so on), and since they are technically nonmathematical in nature, we will not
explore them in detail in this monograph, other than through the simple application
to animal clustering shown next.

Clustering mammals by their dentition
Mammals' teeth are divided into four groups such as incisors, canines, premolars,
and molars. The dentition of several mammals has been collected, and is available
for download at http://www.uni-koeln.de/themen/statistik/data/cluster/
dentitio.dat.

This file presents the name of the mammal, together with the number of top incisors,
bottom incisors, top canines, bottom canines, top premolars, bottom premolars, top
molars, and bottom molars.

http://www.uni-koeln.de/themen/statistik/data/cluster/dentitio.dat
http://www.uni-koeln.de/themen/statistik/data/cluster/dentitio.dat

SciPy for Data Mining

[140]

We wish to use hierarchical clustering on that dataset to assess which species are
closer to each other by these features.

We will start by preparing the dataset and store the relevant data in ndarrays.
The original data is given as a text file, where each line represents a different
mammal. The first four lines are as follows:

OPOSSUM 54113344
HAIRY TAIL MOLE 33114433
COMMON MOLE 32103333
STAR NOSE MOLE 33114433

The first 27 characters of each line hold the name of the animal. The characters in
positions 28 to 35 are the number of respective kinds of dentures. We need to prepare
this data into something that SciPy can handle. We will collect the names apart, since
we will be using them as labels in the dendrogram. The rest of the data will be forced
into an array of integers:

>>> import numpy

>>> file=open("dentitio.dat","r") # open the file

>>> lines=file.readlines() # read each line in memory

>>> file.close() # close the file

>>> mammals=[] # this stores the names

>>> dataset=numpy.zeros((len(lines),8)) # this stores the data

>>> for index,line in enumerate(lines):

 mammals.append(line[0:27].rstrip(" ").capitalize())

 for tooth in range(8):

 dataset[index,tooth]=int(line[27+tooth])

We will proceed to compute the linkage matrix and its posterior dendrogram,
making sure to use the Python list, mammals, as labels:

>>> import matplotlib.pyplot as plt

>>> from scipy.cluster.hierarchy import linkage, dendrogram

>>> Z=linkage(dataset)

>>> dendrogram(Z, labels=mammals, orientation="right")

>>> matplotlib.pyplot.show()

>>> plt.show()

Chapter 6

[141]

This gives us the following dendrogram showing clustering of mammals according
to their dentition:

Note how all the bats are clustered together. The mice are also clustered together,
but far from the bats. Sheep, goats, antelopes, deer, and moose have similar dentures
too, and they appear clustered at the bottom of the tree, next to the opossum and the
armadillo. Note how all felines are also clustered together, on the top of the tree.

Experts in data analysis can obtain more information from dendrograms; they
are able to interpret the lengths of the branches or the different colors used in the
composition, and give us more insightful explanations about the way the clusters
differ from each other.

SciPy for Data Mining

[142]

Summary
This chapter dealt with tools appropriate for data mining and explored modules such
as stats (for statistics), spatial (for data structures), and cluster (for clustering
and vector quantization). In the next chapter, additional functionalities included in
the SciPy module, scipy.spatial, will be studied, complementing the ones already
explored in previous chapters. As usual, each function introduced will be illustrated
via non-trivial examples which can be enriched modifying the IPython Notebook
corresponding to this chapter.

SciPy for Computational
Geometry

In this chapter, we will be covering the fundamentals of SciPy to develop programs
in this very specialized topic: Computational Geometry. Two examples will be
used to illustrate the use of SciPy functions in this area. To be able to profit from
the first example, you might want to have handy a copy of Computational Geometry:
Algorithms and Applications Third Edition, de Berg M., Cheong O., van Kreveld M., and
Overmars M., Springer Publishing. The second example, on which the Finite Element
Method is used to solve a two-dimensional problem involving the numerical
solution of the Laplace Equation, could be followed without trouble with knowledge
on the topic described in Introduction to the Finite Element Method, Ottosen N. S. and
Petersson H., Prentice Hall.

Let's start by covering the routines in the scipy.spatial module that deal with
the construction of triangulations of points in spaces of any dimension, and the
corresponding convex hulls.

The procedure is simple; given a set of m points in the n-dimensional space
(which we represent as an m x n NumPy array), we create the scipy.spatial
class Delaunay, containing a triangulation formed by those points:

>>> import scipy.stats

>>> import scipy.spatial

>>> data = scipy.stats.randint.rvs(0.4,10,size=(10,2))

>>> triangulation = scipy.spatial.Delaunay(data)

SciPy for Computational Geometry

[144]

Any Delaunay class has the basic search attributes such as points (to obtain the set
of points in the triangulation), vertices (that offer the indices of vertices forming
simplices in the triangulation), neighbors (for the indices of neighbor simplices of
each simplex—with the convention that "-1" indicates no neighbor for simplices at
the boundary).

More advanced attributes, for example, convex_hull, indicate the indices of the
vertices that form the convex hull of the given points. If we desire to search for the
simplices that share a given vertex, we may do so with the vertex_to_simplex
method. If, instead, we desire to locate the simplices that contain any given point
in the space, we do so with the find_simplex method.

At this stage we would like to point out the intimate relationship between
triangulations and Voronoi diagrams, and offer a simple coding exercise. Let us
start by first choosing a random set of points, and obtaining the corresponding
triangulation:

>>> from numpy.random import RandomState

>>> rv = RandomState(123456789)

>>> locations = rv.randint(0, 511, size=(2,8))

>>> triangulation=scipy.spatial.Delaunay(locations.T)

We may use the matplotlib.pyplot routine triplot to obtain a graphical
representation of this triangulation. We first need to obtain the set of computed
simplices. Delaunay offers us this set, but by means of the indices of the vertices
instead of their coordinates. We, thus, need to map these indices to actual points
before feeding the set of simplices to the triplot routine:

>>> import matplotlib.pyplot as plt

>>> assign_vertex = lambda index: triangulation.points[index]

>>> triangle_set = map(assign_vertex, triangulation.vertices)

We will now obtain the edge map of the Voronoi diagram in a similar fashion as
we did before (this time using the scipy.spatial.Voronoi module), and plot it
together with the triangulation. This is done by the following lines of code:

>>> voronoiSet=scipy.spatial.Voronoi(locations.T)

>>> scipy.spatial.voronoi_plot_2d(voronoiSet)

>>> fig = plt.figure()

>>> thefig = plt.subplot(1,1,1)

>>> scipy.spatial.voronoi_plot_2d(voronoiSet, ax=thefig)

>>> plt.triplot(locations[1], locations[0], triangles=triangle_set,
color='r')

Chapter 7

[145]

Let's take a look at the following xlim() command:

>>> plt.xlim((0,550))

The output is shown as follows:

 (0, 550)

Now, let's take a look at following ylim() command:

>>> plt.ylim((0,550))

The output is shown as follows:

 (0, 550)

We now plot the edge map of the Voronoi diagram together with triangulation in the
following plt.show() command:

>>> plt.show()

The output is shown as follows:

SciPy for Computational Geometry

[146]

Note how the triangulation and the corresponding Voronoi diagrams are dual of
each other; each edge in the triangulation (red) is perpendicular with an edge in the
Voronoi diagram (white). How should we use this observation to code an actual
Voronoi diagram for a cloud of points? The actual Voronoi diagram is the set of
vertices and edges that composes it.

Interesting ways to find the Voronoi diagram can be found at
http://stackoverflow.com/questions/10650645/python-
calculate-voronoi-tesselation-from-scipys-delaunay-
triangulation-in-3d.

Let us finish this chapter with two applications of scientific computing that use these
techniques extensively, in combination with routines from other SciPy modules.

The structural model of oxides
In this example, we will cover the extraction of the structural model of a molecule
of a bronze-type Niobium oxide, from HAADF-STEM micrographs (further
background on this topic can be found in Chapter 5, High-Quality Image Formation
by Nonlocal Means Applied to High-Angle Annular Dark-Field Scanning Transmission
Electron Microscopy (HAADF--STEM) of the book Modeling Nanoscale Imaging in
Electron Microscopy, Vogt T., Dahmen W., and Binev P., Springer Publishing.

The following diagram shows the HAADF-STEM micrograph of a bronze-type
Niobium oxide (taken from http://www.microscopy.ethz.ch/BFDF-STEM.htm):

Courtesy: ETH Zurich

http://www.microscopy.ethz.ch/BFDF-STEM.htm

Chapter 7

[147]

For pedagogical purposes, we took the following approach to solving this problem:

•	 Segmentation of the atoms by thresholding and morphological operations.
•	 Connected component labeling to extract each single atom for

posterior examination.
•	 Computation of the centers of mass of each label identified as an atom.

This presents us with a lattice of points in the plane that shows a first insight
in the structural model of the oxide.

•	 Computation of the Voronoi diagram of the previous lattice of points.
The combination of information with the output of the previous step will lead
us to a decent (approximation of the actual) structural model of our sample.

Let us proceed in this direction.

Once retrieved and saved in the current working directory, our HAADF-STEM
images will be read in python and stored by default (depending on your computer
architecture) as big matrices with float32 or float64 precision. For this project,
it is enough to retrieve some tools from the scipy.ndimage module, and some
procedures from the matplotlib library. The preamble then looks like the
following code:

>>> import numpy

>>> import scipy

>>> from scipy.ndimage import *

>>> from scipy.misc import imfilter

>>> import matplotlib.pyplot as plt

>>> import matplotlib.cm as cm

The image is loaded with the imread(filename) command. This stores the image
as a numpy.array with dtype = float32. Notice that the image is rescaled so that
the maxima and minima are 1.0 and 0.0, respectively. Other interesting information
about the image can be retrieved as follows:

>>> img=imread('./NbW-STEM.png')

>>> minVal = numpy.min(img)

>>> maxVal = numpy.max(img)

>>> img = (1.0/(maxVal-minVal))*(img - minVal)

>>> plt.imshow(img, cmap = cm.Greys_r)

>>> plt.show()

>>> print "Image dtype: %s"%(img.dtype)

>>> print "Image size: %6d"%(img.size)

>>> print "Image shape: %3dx%3d"%(img.shape[0],img.shape[1])

>>> print "Max value %1.2f at pixel %6d"%(img.max(),img.argmax())

SciPy for Computational Geometry

[148]

>>> print "Min value %1.2f at pixel %6d"%(img.min(),img.argmin())

>>> print "Variance: %1.5f\nStandard deviation: \

 %1.5f"%(img.var(),img.std())

This provides the following output:

Image dtype: float64

Image size: 87025

Image shape: 295x295

Max value 1.00 at pixel 75440

Min value 0.00 at pixel 5703

Variance: 0.02580

Standard deviation: 0.16062

We perform thresholding by imposing an inequality in the array holding the data.
The output is a Boolean array where True (white) indicates that the inequality
has been fulfilled, and False (black) otherwise. We may perform at this point
several thresholding operations and visualize them to obtain the best threshold
for segmentation purposes. The following images show several examples
(different thresholdings applied to the oxide image):

The following lines of code generate that oxide image:

>>> plt.subplot(1, 2, 1)

>>> plt.imshow(img > 0.2, cmap = cm.Greys_r)

>>> plt.xlabel('img > 0.2')

Chapter 7

[149]

>>> plt.subplot(1, 2, 2)

>>> plt.imshow(img > 0.7, cmap = cm.Greys_r)

>>> plt.xlabel('img > 0.7')

>>> plt.show()

By visual inspection of several different thresholds, we choose 0.62 as one that
gives us a good map showing what we need for segmentation. We need to get rid of
outliers, though: small particles that might fulfill the given threshold but are small
enough not to be considered as actual atoms. Therefore, in the next step we perform
a morphological operation of opening to get rid of those small particles. We decided
that anything smaller than a square of size 2 x 2 is to be eliminated from the output
of thresholding:

>>> BWatoms = (img> 0.62)

>>> BWatoms = binary_opening(BWatoms,structure=numpy.ones((2,2)))

We are ready for segmentation, which will be performed with the label routine
from the scipy.ndimage module. It collects one slice per segmented atom and
offers the number of slices computed. We need to indicate the connectivity type. For
instance, in the following toy example, do we want to consider that situation as two
atoms or one atom?

It depends; we would rather have it now as two different connected components,
but for some other applications we might consider that they are one. The way we
indicate the connectivity to the label routine is by means of a structuring element
that defines feature connections. For example, if our criterion for connectivity
between two pixels is that their edges are adjacent, then the structuring element
looks like the image shown on the left-hand side from the images shown next. If our
criterion for connectivity between two pixels is that they are also allowed to share a
corner, then the structuring element looks like the image on the right-hand side.

SciPy for Computational Geometry

[150]

For each pixel we impose the chosen structuring element and count the intersections;
if there are no intersections, then the two pixels are not connected. Otherwise, they
belong to the same connected component.

We need to make sure that atoms that are too close diagonally are counted as two,
rather than one, so we chose the structuring element on the left. The script then reads
as follows:

>>> structuring_element = [[0,1,0],[1,1,1],[0,1,0]]

>>> segmentation,segments = label(BWatoms,structuring_element)

The segmentation object contains a list of slices, each with a Boolean matrix
containing each of the found atoms of the oxide. We may obtain a great deal of
useful information for each slice. For example, the coordinates of the center of mars
(centers_of_mass) of each atom can be retrieved with the following commands:

>>> coords = center_of_mass(img, segmentation, range(1,segments+1))

>>> xcoords = numpy.array([x[1] for x in coords])

>>> ycoords = numpy.array([x[0] for x in coords])

Note that because of the way matrices are stored in memory, there is a transposition
of the x and y coordinates of the locations of the pixels. We need to take this
into account.

Notice the overlap of the computed lattice of points over the original image (the
left-hand side image from the two images shown next). We may obtain it with the
following commands:

>>> plt.imshow(img, cmap = cm.Greys_r)

>>> plt.axis('off')

>>> plt.plot(xcoords,ycoords,'b.')

>>> plt.show()

Chapter 7

[151]

We have successfully found the centers of mass for most atoms, although there are
still about a dozen regions where we are not too satisfied with the result. It is time to
fine-tune by the simple method of changing the values of some variables; play with
the threshold, with the structuring element, with different morphological operations,
and so on. We can even add all the obtained information for a wide range of those
variables, and filter out outliers. An example with optimized segmentation is shown,
as follows (look at the right-hand side image):

For the purposes of this exposition, we are happy to keep it simple and continue
working with the set of coordinates that we have already computed. We will be now
offering an approximation to the lattice of the oxide, computed as the edge map of
the Voronoi diagram of the lattice:

>>> L1,L2 = distance_transform_edt(segmentation==0, return_
distances=False, return_indices=True)

>>> Voronoi = segmentation[L1,L2]

>>> Voronoi_edges= imfilter(Voronoi,'find_edges')

>>> Voronoi_edges=(Voronoi_edges>0)

Let us overlay the result of Voronoi_edges with the locations of the found atoms:

>>> plt.imshow(Voronoi_edges); plt.axis('off'); plt.gray()

>>> plt.plot(xcoords,ycoords,'r.',markersize=2.0)

>>> plt.show()

SciPy for Computational Geometry

[152]

This gives the following output, which represents the structural model we were
searching for (recall that we started from an image where we wanted to find the
structural model of a molecule):

A finite element solver for Laplace's
equation
We use finite elements when the size of the data is so large that its results prohibit
dealing with finite differences. To illustrate this case, we would like to explore the
numerical solution of the Laplace equation, subject to certain boundary conditions.

We will start by defining the computational domain and produce a mesh dividing
this domain using triangles as local finite elements. This will be our starting point to
solve this problem using finite elements, as we will be placing on the computational
domain a piecewise continuous function, whose pieces are linear and supported on
each of the triangles.

We start by calling the necessary modules to build the mesh (other modules will be
called as they are required):

>>> import numpy

>>> from numpy import linspace

>>> import scipy

>>> import matplotlib.pyplot as plt

>>> from scipy.spatial import Delaunay

First we define the region:

Chapter 7

[153]

>>> xmin = 0 ; xmax = 1 ; nXpoints = 10

>>> ymin = 0 ; ymax = 1 ; nYpoints = 10

>>> horizontal = linspace(xmin,xmax,nXpoints)

>>> vertical = linspace(ymin,ymax,nYpoints)

>>> y, x = numpy.meshgrid(horizontal, vertical)

>>> vertices = numpy.array([x.flatten(),y.flatten()])

We may now create the triangulation:

>>> triangulation = Delaunay(vertices.T)

>>> index2point = lambda index: triangulation.points[index]

>>> all_centers = index2point(triangulation.vertices).mean(axis=1)

>>> trngl_set=triangulation.vertices

We then have the following triangulation:

>>> plt.triplot(vertices[0],vertices[1],triangles=trngl_set)

>>> plt.show()

This produces the following graph:

SciPy for Computational Geometry

[154]

In this case, the problem we have chosen is a standard one in mathematical methods
in Physics and Engineering, consisting of solving the two-dimensional Laplace's
equation on the unit square region, with zero Dirichlet boundary conditions on three
sides and, on the fourth side, a constant. Physically, this problem could represent
diffusion of temperature on a two-dimensional plate. Mathematically, the problem is
formulated in the following form:

() ()
()

2 (,) 0
0, 0; 1, 1; 0 and 1

(, 0) , 1 0

x y
x y x y y y

x y x y

φ
φ φ

φ φ

 ∇ =
 

= = = = ≠ ≠ 
 = = = = 

The solution of this form can be given in terms of Fourier series as follows:

()
1

1 cos() sinh(n), 2 sin(n)
sinh(n)n

n xx y y
n n

πφ π
π π π

∞

=

 = −  
∑

This is important as you can check the correctness of the obtained numerical solution
before attempting to use your numerical scheme to tackle more complex problems
in complex computational domains. It should be mentioned, however, that there
are alternatives in Python that implement the finite element method to solve partial
differential equations. In this regard, the reader could consult the Fenics project
(http://fenicsproject.org/book/) and the SfePy project (http://sfepy.org/
doc-devel/index.html).

We code the solution in the usual fashion. We first compute the stiff matrix A (which
for obvious reasons is sparse). Then, the construction of the vector, R, holding global
boundary conditions is defined (the way we have constructed our mesh makes
defining this vector straightforward). With them, the solution to the system comes
from the solution X obtained from solving a matrix equation of the form AX=R using
a subset of the matrices A and R corresponding to the nodes different from those on
the boundaries. This should be no trouble for SciPy. Let us start with the stiff matrix:

>>> from numpy import cross

>>> from scipy.sparse import dok_matrix

>>> points=triangulation.points.shape[0]

http://fenicsproject.org/book/
http://sfepy.org/doc-devel/index.html
http://sfepy.org/doc-devel/index.html

Chapter 7

[155]

>>> stiff_matrix=dok_matrix((points,points))

>>> for triangle in triangulation.vertices:

 helper_matrix=dok_matrix((points,points))

 pt1,pt2,pt3=index2point(triangle)

 area=abs(0.5*cross(pt2-pt1,pt3-pt1))

 coeffs=0.5*numpy.vstack((pt2-pt3,pt3-pt1,pt1-pt2))/area

 #helper_matrix[triangle,triangle] = \

 array(mat(coeffs)*mat(coeffs).T)

 u=None

 u=numpy.array(numpy.mat(coeffs)*numpy.mat(coeffs).T)

 for i in range(len(triangle)):

 for j in range(len(triangle)):

 helper_matrix[triangle[i],triangle[j]] = u[i,j]

 stiff_matrix=stiff_matrix+helper_matrix

Note that this is the cumbersome way to update the matrix stiff_matrix. This is
due to the fact that the matrix is sparse, and the current choice of representation
does not behave well with indexing.

To compute the global boundary vector we need to collect all edges on the boundary
first and then assign to the nodes with x=1 that the function is one and to the others
that the function is zero. Because of the way we set up the mesh this is easy as the
nodes on which the function will take the value of one are always the last entries in
the global boundary vector. This is accomplished by the following lines of code:

>>> allNodes = numpy.unique(trngl_set)

>>> boundaryNodes = numpy.unique(triangulation.convex_hull)

>>> NonBoundaryNodes = numpy.array([])

>>> for x in allNodes:

 if x not in boundaryNodes:

 NonBoundaryNodes = numpy.append(NonBoundaryNodes,x)

 NonBoundaryNodes = NonBoundaryNodes.astype(int)

 nbnodes = len(boundaryNodes) # number of boundary nodes

 FbVals=numpy.zeros([nbnodes,1]) # Values on the boundary

 FbVals[(nbnodes-nXpoints+1):-1]=numpy.ones([nXpoints-2, 1])

SciPy for Computational Geometry

[156]

We are ready to find the numerical solution to the problem with the values obtained
in our previous step:

>>> totalNodes = len(allNodes)

>>> stiff_matrixDense = stiff_matrix.todense()

>>> stiffNonb = \

 stiff_matrixDense[numpy.ix_(NonBoundaryNodes,NonBoundaryNodes)]

>>> stiffAtb = \

 stiff_matrixDense[numpy.ix_(NonBoundaryNodes,boundaryNodes)]

>>> U=numpy.zeros([totalNodes, 1])

>>> U[NonBoundaryNodes] = numpy.linalg.solve(- stiffNonb , \

 stiffAtb * FbVals)

>>> U[boundaryNodes] = FbVals

This produces the following image depicting the diffusion of temperature inside
the square:

Chapter 7

[157]

This graph was obtained in the following way:

>>> X = vertices[0]

>>> Y = vertices[1]

>>> Z = U.T.flatten()

>>> from mpl_toolkits.mplot3d import axes3d

>>> fig = plt.figure()

>>> ax = fig.add_subplot(111, projection='3d')

>>> surf = ax.plot_trisurf(X, Y, Z, cmap=cm.jet, linewidth=0)

>>> fig.colorbar(surf)

>>> fig.tight_layout()

>>> ax.set_xlabel('X',fontsize=16)

>>> ax.set_ylabel('Y',fontsize=16)

>>> ax.set_zlabel(r"ϕ",fontsize=36)

>>> plt.show()

An important point in numerical analysis is to evaluate the quality of the numerical
solution obtained to any problem. In this case, we have chosen a problem whose
analytical solution is available (see the preceding code), so one could check (not prove)
the validity of the numerical algorithm implemented to solve our problem. In this case
the analytical solution can be coded in the following manner:

>>> from numpy import pi, sinh, sin, cos, sum

>>> def f(x,y):

 return sum(2*(1.0/(n*pi) - \

 cos(n*pi)/(n*pi))*(sinh(n*pi*x)/ \

 sinh(n*pi))*sin(n*pi*y)

 for n in range(1,200))

>>> Ze = f(X,Y)

>>> ZdiffZe = Ze - Z

>>> plt.plot(ZdiffZe)

>>> plt.show()

SciPy for Computational Geometry

[158]

This produces the following graph showing the difference between the exact
solution (evaluated up to 200 terms) and the numerical solution of the problem
(via the corresponding IPython notebook you could perform some further analysis
on the numerical solution just to become more confident on the rightness of the
obtained result):

Summary
In each one of the seven chapters of this book, we have covered at length all the
different modules included in the SciPy libraries in a structured manner, derived
from the logical division of the different branches of mathematics.

We have also witnessed the power of this system to accomplish with minimal coding
and optimal resource use, state-of-the-art applications to research problems in
different areas of science.

In Chapter 8, Interaction with Other Languages, we will introduce one of the main
strengths of SciPy: the ability to interact with other languages.

Interaction with Other
Languages

We often need to incorporate into our workflow some code written in different
languages; mostly C/C++ or Fortran, and also from R, MATLAB, or Octave. Python
excels at allowing code from all these other sources to run from within; care must be
taken to convert different numerical types to something that Python understands,
but this is pretty much the only issue we encounter.

If you are working with SciPy, it is because your Python ecosystem has available
compilers for C and Fortran programs. Otherwise, SciPy could have not been
installed on your system. Also, given its popularity, it is highly probably that
your computer environment has MATLAB/Octave available. Accordingly,
this has driven the selection of topics listed later in this chapter. We left to the
interested reader to find out how interface with R and many other software is
available out there for numerical computing. Two alternatives to do that with R
are the packages PypeR (http://bioinfo.ihb.ac.cn/softwares/PypeR/) and
rpy2 (http://rpy.sourceforge.net/). Additional alternatives can be found at
http://stackoverflow.com/questions/11716923/python-interface-for-r-
programming-language.

In this chapter, we will cover the following things:

•	 A brief discussion on how Python can be used to run codes from Fortran,
C/C++, and MATLAB/Octave

•	 We will first see the basic functionality of the utility f2py to handle the
inclusion of Fortran codes in Python via SciPy

•	 A basic usage to include C/C++ code within Python code using the tools
provided by the the scipy.weave module

http://bioinfo.ihb.ac.cn/softwares/PypeR/
http://rpy.sourceforge.net/
http://stackoverflow.com/questions/11716923/python-interface-for-r-programming-language
http://stackoverflow.com/questions/11716923/python-interface-for-r-programming-language
http://docs.scipy.org/doc/scipy/reference/weave.html#module-scipy.weave

Interaction with Other Languages

[160]

The routines will be illustrated via simple examples that can be enriched by you
modifying the IPython Notebook corresponding to this chapter.

Interaction with Fortran
SciPy provides a simple way of including Fortran code—f2py. This is a utility
shipped with the NumPy libraries, which is operative when distutils from SciPy
are available. This is always the case when we install SciPy.

The f2py utility is supposed to run outside Python, and it is used to create from any
Fortran file a Python module that can be easily called in our sessions. Under any
*nix system, we call it from the terminal. Under Windows, we recommend you run
it in the native terminal, or even better, through a cygwin session.

Before being compiled with f2py, any Fortran code needs to undergo three basic
changes, which are as follows:

•	 Removal of all allocations
•	 Transformation of the whole program into a subroutine
•	 If anything special needs to be passed to f2py, we must add it with the

comment string "!f2py" or "cf2py"

Let's illustrate the process with a simple example. The following naive subroutine,
which we store in the primefactors.f90 file, performs a factorization in prime
numbers for any given integer:

SUBROUTINE PRIMEFACTORS(num, factors, f)
 IMPLICIT NONE
 INTEGER, INTENT(IN) :: num !input number
 INTEGER,INTENT(OUT), DIMENSION((num/2))::factors
 INTEGER, INTENT(INOUT) :: f
 INTEGER :: i, n
 i = 2
 f = 1
 n = num
 DO
 IF (MOD(n,i) == 0) THEN
 factors(f) = i
 f = f+1
 n = n/i
 ELSE
 i = i+1
 END IF
 IF (n == 1) THEN

Chapter 8

[161]

 f = f-1
 EXIT
 END IF
 END DO

Since no allocation was made in the code, and we receive a subroutine directly,
we may skip to the third step, but for the moment we will not tamper with f2py
commands, and are content with trying to create a python module from it. The
fastest way to wrap this primefactors subroutine is by issuing the following
command (at the shell or terminal prompt indicated by %):

% f2py –c primefactors.f90 –m primefactors

If everything is correct, an extension module with the name primefactors.
so is created. We can then access the primefactors routine in Python from the
primefactors module:

>>> import primefactors

>>> primefactors.primefactors(6,1)

The output is shown as follows:

array([2, 3, 0], dtype=int32)

Interaction with C/C++
Technically, f2py can also wrap a C code for us, but there are more efficient ways
to perform this task. For instance, if we need to interface a very large library of C
functions, the preferred method for doing this is Simplified Wrapper and Interface
Generator (SWIG) (http://www.swig.org/). To wrap C++ code, depending on
the features required and the method of interacting with Python, we have several
methods such as SWIG or f2py again, but also PyCXX, Boost.Python, Cython, or
the SciPy module: weave. When C compilers are not available (and thus linking
extensive libraries is not possible in the usual way), we use ctypes. Whenever we
will use NumPy/SciPy code, and want fast solutions to our wrapping/binding, the
two most common ways to interact with C/C++ are usually through the Python/C
API and weave packages.

All the methods briefly enumerated here would require an entire monograph to
describe, at length, the methodology of binding the nuisances of the wrapping,
depending on systems and requirements, and the caveats of their implementations.
The method we would like to cover in more detail in this chapter is the weave
package, more concretely by means of the inline routine. This command receives a
string (raw or otherwise) containing a sequence of commands, and runs it in Python
by calling your C/C++ compiler. The syntax is as follows:

http://www.swig.org/

Interaction with Other Languages

[162]

inline(code, arg_names, local_dict=None, global_dict=None,
 force = 0,
 compiler='',
 verbose = 0,
support_code = None,
 customize=None,
type_factories = None,
auto_downcast=1,
 **kw)

Let's go over the different parameters:

•	 The code parameter is the string that holds the code to be run. Note that this
code must not specify any kind of return statement. Instead, it should assign
some result that can be returned to Python.

•	 The arg_names parameter is a list of strings containing the Python variable
names that are to be sent to the C/C++ code.

•	 The local_dict parameter is optional, and must be a Python dictionary
containing the values used as local scope for the C/C++ code.

•	 The global_dict parameter is also optional, and must be another Python
dictionary containing the values that should be used as the global scope for
the C/C++ code.

•	 The force parameter is used only for debugging purposes. It is also optional,
and can take only two values—0 (by default) or 1. If its value is set to 1, the
C/C++ code is compiled every time inline is called.

•	 We may specify the compiler that takes over the C/C++ code with
the compiler option. It must be a string containing the name of the
C/C++ compiler.

Let's take an example of the inline routine in which we use the following method to
employ cout for text displaying purposes:

>>> import scipy.weave

>>> name = 'Francisco'

>>> pin = 1234

>>> code = 'std::cout << name << "---PIN: " '

>>> code+= '<<std::hex << pin <<std::endl;'

>>> arg_names = ['name','pin']

>>> scipy.weave.inline(code, arg_names)

Chapter 8

[163]

The output is shown as follows:

Francisco---PIN: 4d2

That was a very simple example, in which no external header declarations were
needed. If we wish to do so, those go into the support_code option. For instance,
if we wish to include math functions from R in our C/C++ code and pass it with
inline, we need to perform the following steps:

1.	 Configure the C functions as a shared library. In the folder, holding the R
release in a terminal session, issue the following command:
% ./configure --enable-R-static-lib --enable-static --with
-readline=no

2.	 Change to the standalone folder at src/nmath and finish the installation of
the libraries. At the end, we should have a file named libRmath.so, which
needs to be pointed to from the libpath string back into our Python session:
% cd src/nmath/standalone

% make

3.	 Back in our Python session, we prepare the inline call with the proper
options. For instance, if we wish to call the R routine pbinom, we proceed
as follows:
>>> import scipy.weave

>>> support_code= 'extern "C" double pbinom(double x,\

 double n, double p, int lower_tail, int log_p);'

>>> libpath='/opt/Rlib' #IS THE LOCATION OF LIBRARY libRmath.so

>>> library_dirs=[libpath]

>>> libraries=['Rmath']

>>> runtime_library_dirs=[libpath]

>>> code='return_val=pbinom(100,20000,100./20000.,0,1);'

>>> res=scipy.weave.inline(code, support_code=support_code, \

 library_dirs=library_dirs, libraries=libraries, \

 runtime_library_dirs=runtime_library_dirs)

>>> print(res)

The output is shown as:

-0.747734910363

Interaction with Other Languages

[164]

Note how the function declaration is passed in support_code, not
in code. Also, note that this option needs to start with extern "C"
whenever we are not using C++.

4.	 If extra headers need to be passed, we do so with the header option,
rather than support_code or code:

>>> headers = ['<math.h>']

We have a word of advice. Care must be taken while converting the different
variable types from their original C/C++ format to something that Python
understands. This requires modifying the original C/C++ code in certain cases.
But by default, we do not have to worry about the following C/C++ types, as
SciPy automatically turns them into the indicated Python formats, as shown in the
following table:

Python int float complex string list dict tuple

C/C++ int double std::
complex

py::
string

py::
list

py:
dict

py::
tuple

File types FILE* are sent to Python files. Python callables and instances are both
obtained from py::object. NumPy ndarrays are constructed from PyArrayObject*.
For any other Python type to be used, the corresponding C/C++ types must be
carefully turned into combinations of the previous.

And that should be all. To go beyond trivial uses of the inline function, we usually
create extension modules and catalog the functions within for future use.

Interaction with MATLAB/Octave
Since both numerical computing environments are provide with a fourth-generation
programming language, we discourage the straightforward inclusion of code from
any of these two. There is no gain in terms of speed, resource usage, or coding
power. In the extreme and rare cases, in which a specific routine is not available in
SciPy, the preferred way to bring it to our session is by generating C code from the
MATLAB/Octave code, and then wrap it with any of the methods suggested in the
Interaction with C/C++ section of this chapter.

There is a different story when we receive data created from within MATLAB or
Octave. SciPy has a dedicated module to deal with this situation—scipy.io.

Let's show you by example. We start with Octave, where we generate a Delaunay
triangulation of a random set of 10 points in the plane.

Chapter 8

[165]

We save the coordinates of these points, as well as the pointers to the triangles in the
triangulation, to a MATLAB-style file (version 7) called data:

octave:1> x=rand(1,10);

octave:2> y=rand(size(x));

octave:3> T=delaunay(x,y);

octave:4> save -v7 data x y T

We are done here. We then go to our Python session, where we recover the file data:

>>> from scipy.io import loadmat

>>> datadict = loadmat("data")

The datadict variable holds a Python dictionary with the names of the variables as
keys and the loaded matrices as their corresponding values:

>>> datadict.keys()

The output is shown as follows:

['__header__', '__globals__', 'T', 'y', 'x', '__version__']

Let's issue the datadict command:

>>> datadict['x']

The output is shown as follows:

array([[0.81222999,0.51836246,0.60425982,0.23660352,0.01305779,

 0.0875166,0.77873049,0.70505801,0.51406693,0.65760987]])

Let's take a look at following datadict command:

>>> datadict['__header__']

The output is shown as follows:

'MATLAB 5.0 MAT-file, written by Octave 3.2.4, 2012-11-27

 15:45:20 UTC'

It is possible to save data from our sessions to a format that MATLAB and Octave
will understand. We do so with the savemat command, from the same module.
The syntax is as follows:

savemat(file_name, mdict, appendmat=True, format='5',
long_field_names=False, do_compression=False,
oned_as=None)

Interaction with Other Languages

[166]

The file_name parameter contains the name of the MATLAB-type file where the
data will be written. The Python dictionary mdict contains the names (as keys) of the
variables, and their corresponding array values.

If we wish to append .mat at the end of the file, we may do so in the file_name
variable, or by setting appendmat to True. In case we need to provide long names
for the files (which not all versions of MATLAB accept), we need to indicate so by
setting the long_field_names option to True.

We may indicate the version of MATLAB with the format option. We set it to the
string '5' for versions 5 and later, or to the string '4' for version 4.

It is possible to compress the matrices we send, and we indicate so by setting the
do_compression option to True.

The last option is very interesting. It allows us to indicate to MATLAB/Octave
whether our arrays are to be read column by column, or row by row. Setting the
oned_as parameter to the string 'column' will send our data into a collection of
column vectors. If we set it to the string 'row', it will send the data as collections
of row vectors. If set to None, the format in which the data was written is respected.

Summary
This chapter introduced one of the main strengths of SciPy—the ability to interact
with other languages such as C/C++, Fortran, R, and MATLAB/Octave. To go in
depth into interfacing Python with other languages, you might want to read more
specialized literature like Learning Cython Programming, Philip Herron, Packt Publishing
or the in-depth coverage of F2PY at http://docs.scipy.org/doc/numpy/f2py/
and http://www.f2py.com/home/references. Additional help can be found at
https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages.

If you have reached this chapter and have been reading from the first one, you
should be aware that many topics were left out in this introductory chapter on SciPy.
This book has given you enough background to further strengthen your skills and
ability to work with SciPy. To proceed studying, refer to the SciPy Reference Guide
(http://docs.scipy.org/doc/scipy/reference/) and other documentation
guides available at (http://docs.scipy.org/doc/).

http://docs.scipy.org/doc/numpy/f2py/
http://www.f2py.com/home/references
https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages
http://docs.scipy.org/doc/scipy/reference/
http://docs.scipy.org/doc/

Chapter 8

[167]

In addition, we recommend you regularly read and also subscribe to the SciPy
mailing list (http://mail.scipy.org/mailman/listinfo/scipy-user) where
you can interact with users of SciPy all over the world, not only by asking/
answering questions about SciPy, but also to find out current trends on SciPy
and even jobs related to it.

You can peruse the historical archive of the collection of postings to the list,
http://mail.scipy.org/pipermail/scipy-user/. Also, you should know
that there is a SciPy conference held every year (http://conference.scipy.
org/) which, to quote them, allows participants from academic, commercial, and
governmental organizations to showcase their latest Scientific Python projects,
learn from skilled users and developers, and collaborate on code development.

http://mail.scipy.org/mailman/listinfo/scipy-user
http://mail.scipy.org/pipermail/scipy-user/
http://conference.scipy.org/
http://conference.scipy.org/

Index
A
Airy function 76, 77
Anaconda

URL 11
array conversions 30
array manipulation

array routines, used for 43, 44
array object

about 29
array conversions 30
object calculations 31, 32
shape, manipulating 30
shape, selecting 30

array routines
about 32
used, for array manipulation 43, 44
used, for combining multiple arrays 39-42
used, for creating arrays 32-38
used, for extracting information

from arrays 45, 46
arrays

creating, array routines used 32-38
indexing 27, 28
slicing 27, 28

B
Bairy function 76
Bessel function 77
beta integral 96
Biggles

URL 9
Butterworth filters 114

C
C/C++

formats 164
interacting with 161-164

C/C++, parameters
arg_names parameter 162
code parameter 162
force parameter 162
global_dict parameter 162
local_dict parameter 162

Chaco
URL 9

Chi-square test 126
clustering

about 135
hierarchical clustering 138
k-means 136-138
mammals, clustering by dentition 139-141
vector quantization 136-138

convenience functions
and test functions 68, 69

D
datatypes

using 26, 27
descriptive statistics 124
Discrete Fourier Transform (DFT) 105-107
distances, data mining 131-135
distribution fitting 129-131
distributions 124, 125
documentation

finding 16-18

[170]

E
Eigenvalue problems 60, 61
elliptic integrals 96
empty command 33
exponential integral 95

F
filters

about 110-113
design 114, 115
image interpolation 116-119
LTI system theory 113, 114
morphology 119-121

finite element solver
for Laplace's equation 152-157

Finite impulse response (FIR) 114
Fortran

interacting with 160, 161
functions

Airy function 76, 77
Bairy function 76
Bessel function 77
elliptic functions 78
evaluating 67
gamma function 74, 75
Riemann zeta function 75, 76
special functions 78
Struve function 77

G
gamma function 74, 75
gamma integral 96
GNU Octave system 8

H
HAADF-STEM

about 146
URL 146

hierarchical clustering 138
HippoDraw

URL 9
Horner scheme

URL 67
hyperbolic trigonometric integral 95, 96

I
identity command 33
image compression

via SVD 62
image interpolation 116-119
image processing algorithms 23-25
Infinite impulse response (IIR) 114
integration

about 94
beta integral 96
elliptic integrals 96
exponential integral 95
gamma integral 96
hyperbolic trigonometric integral 95, 96
logarithm integral 95
numerical integration 97, 98
trigonometric integral 95, 96

interpolation 80-85
interval estimation 126-128
IPython Notebook

opening 20, 21
URL 20

K
kernel density estimation 130
Kolmogorov-Smirnov tests 126
KroghInterpolator command 81

L
Laplace's equation

finite element solver, used for 152-157
Levenberg-Marquardt algorithm 87
logarithm integral 95
Lorenz attractors 101-103
LTI system theory 113, 114

M
Mac OS X

SciPy, installing on 11
mammals

clustering, by dentition 139-141
Maple 8
masking 35
Mathematica 8

[171]

MATLAB 8
MATLAB/Octave

interacting with 164-166
matplotlib 9
matrix

creating 50-55
matrix decompositions

about 60, 61
cholesky decomposition 61
Hessenberg decomposition 61
Pivoted LU decomposition 61
QR and QZ decompositions 61
Schur decomposition 61
singular value decomposition 61

matrix methods
about 56
Eigenvalue problems 60, 61
functions, on matrices 58-60
image compression, via SVD 62
matrix decompositions 60, 61
operations between matrices 56
solvers 63, 65

Modular Toolkit for Data Processing (MDP)
URL 123

morphology 119-121
multiple arrays

combining, array routines used 39-42

N
Niobium oxide 146
numerical integration 97, 98

O
object calculations 31, 32
object essentials 25
ones command 33
optimal weighings

example 55
optimization

about 89, 90
minimization, issues 90
roots 91-94

orthonormal basis
creating 56

P
Pearson correlation coefficient 126
Pearson kurtosis 18
Plotly

URL 9
polynomials 69-74
Portable Network Graphics (PNG) 20
Python

formats 164
Python Imaging Library (PIL)

about 109
URL 9

R
rank-order correlation 126
regression 85-89
Riemann zeta function 75
Runge-Kutta method 99

S
scientific visualization 19, 20
scikit-learn

URL 123
SciPy

about 7-9
characteristics 7, 8
installing 9-11
installing, on Mac OS X 11
installing, on Unix/Linux 11, 12
installing, on Windows 12
methods 138
ordinary differential equations 98-101

SciPy installation
testing 12, 13

SciPy mailing list
URL 13

SciPy organization 14-16
signal construction 108, 109
Simplified Wrapper and Interface

Generator. See SWIG
singular value decomposition. See SVD
slicing 27
Sobel algorithm 112

[172]

SourceForge
URL 10

sparse matrix
URL 51

Spence's integral 95
Statsmodels

URL 123
structural model, of oxides 146-152
Struve function 77
SVD

image compression, via 62
SWIG

about 161
URL 161

T
test functions

and convenience function 68, 69
trigonometric integral 95, 96
t-tests 126

U
Unix/Linux

SciPy, installing on 11, 12

V
vector

creating 47, 48
vector operations

about 49
addition 49
cross product 50
dot product 49
scalar product 49
subtraction 49
vector product 50

W
Wakari

URL 20
warnings, distance 133-135
Windows

SciPy, installing on 12

Z
zeros command 33

Thank you for buying
Learning SciPy for Numerical and Scientific Computing

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning SciPy for Numerical and
Scientific Computing
ISBN: 978-1-78216-162-2 Paperback: 150 pages

A practical tutorial that guarantees fast, accurate,
and easy-to-code solutions to your numerical and
scientific computing problems with the power of
Scipy and Python

1.	 Perform complex operations with large
matrices, including eigenvalue problems,
matrix decompositions, or solution to large
systems of equations.

2.	 Step-by-step examples to easily implement
statistical analysis and data mining that rivals
in performance any of the costly specialized
software suites.

Learning NumPy Array
ISBN: 978-1-78398-390-2 Paperback: 164 pages

Supercharge your scientific Python computations
by understanding how to use the NumPy library
effectively

1.	 Improve the performance of calculations with
clean and efficient NumPy code.

2.	 Analyze large data sets using statistical
functions and execute complex linear algebra
and mathematical computations.

3.	 Perform complex array operations in a
simple manner.

Please check www.PacktPub.com for information on our titles

NumPy Beginner's Guide
Second Edition
ISBN: 978-1-78216-608-5 Paperback: 310 pages

An action packed guide using real world examples of
the easy to use, high performance, free open source
NumPy mathematical library

1.	 Perform high performance calculations with
clean and efficient NumPy code.

2.	 Analyze large data sets with statistical functions.

3.	 Execute complex linear algebra and
mathematical computations.

NumPy Cookbook
ISBN: 978-1-84951-892-5 Paperback: 226 pages

Over 70 interesting recipes for learning the Python
open source mathematical library, NumPy

1.	 Do high performance calculations with
clean and efficient NumPy code.

2.	 Analyze large sets of data with
statistical functions.

3.	 Execute complex linear algebra and
mathematical computations.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to SciPy
	What is SciPy?
	Installing SciPy
	Installing SciPy on Mac OS X
	Installing SciPy on Unix/Linux
	Installing SciPy on Windows
	Testing SciPy installation

	SciPy organization
	How to find documentation
	Scientific visualization
	How to open IPython Notebooks
	Summary

	Chapter 2: Working with the NumPy Array As a First Step to SciPy
	Object essentials
	Using datatype
	Indexing and slicing arrays
	The array object
	Array conversions
	Shape selection/manipulations
	Object calculations

	Array routines
	Routines to create arrays
	Routines for the combination of two or more arrays
	Routines for array manipulation
	Routines to extract information from arrays

	Summary

	Chapter 3: SciPy for Linear Algebra
	Vector creation
	Vector operations
	Addition/subtraction
	Scalar/Dot product
	Cross / Vector product – on three-dimensional space vectors

	Creating a matrix
	Matrix methods
	Operations between matrices
	Functions on matrices
	Eigenvalue problems and matrix decompositions
	Image compression via the singular value decomposition
	Solvers

	Summary

	Chapter 4: SciPy for Numerical Analysis
	Evaluation of special functions
	Convenience and test functions
	Univariate polynomials
	The gamma function
	The Riemann zeta function
	Airy and Bairy functions
	The Bessel and Struve functions
	Other special functions
	Interpolation
	Regression
	Optimization
	Minimization
	Roots

	Integration
	Exponential/logarithm integrals
	Trigonometric and hyperbolic trigonometric integrals
	Elliptic integrals
	Gamma and beta integrals
	Numerical integration

	Ordinary differential equations
	Lorenz attractors
	Summary

	Chapter 5: SciPy for Signal Processing
	Discrete Fourier Transforms
	Signal construction
	Filters
	LTI system theory
	Filter design
	Window functions
	Image interpolation
	Morphology

	Summary

	Chapter 6: SciPy for Data Mining
	Descriptive statistics
	Distributions
	Interval estimation, correlation measures, and statistical tests
	Distribution fitting
	Distances
	Clustering
	Vector quantization and k-means
	Hierarchical clustering
	Clustering mammals by their dentition

	Summary

	Chapter 7: SciPy for Computational Geometry
	Structural model of oxides
	A finite element solver for Laplace's equation
	Summary

	Chapter 8: Interaction with Other Languages
	Interaction with Fortran
	Interaction with C/C++
	Interaction with MATLAB/Octave
	Summary

	Index

